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ON THE COMPUTATIONAL COMPLEXITY OF
THE FORCING CHROMATIC NUMBER∗

FRANK HARARY† , WOLFGANG SLANY‡ , AND OLEG VERBITSKY§

Abstract. We consider vertex colorings of graphs in which adjacent vertices have distinct colors.
A graph is s-chromatic if it is colorable in s colors and any coloring of it uses at least s colors. The
forcing chromatic number Fχ(G) of an s-chromatic graph G is the smallest number of vertices which
must be colored so that, with the restriction that s colors are used, every remaining vertex has its
color determined uniquely. We estimate the computational complexity of Fχ(G) relating it to the
complexity class US introduced by Blass and Gurevich [Inform. Control, 55 (1982), pp. 80–88]. We
prove that recognizing whether Fχ(G) ≤ 2 is US-hard with respect to polynomial-time many-one
reductions. Moreover, this problem is coNP-hard even under the promises that Fχ(G) ≤ 3 and G is
3-chromatic. On the other hand, recognizing whether Fχ(G) ≤ k, for each constant k, is reducible to
a problem in US via a disjunctive truth-table reduction. Similar results are obtained also for forcing
variants of the clique and the domination numbers of a graph.
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1. Introduction. The vertex set of a graph G will be denoted by V (G). An s-
coloring of G is a map from V (G) to {1, 2, . . . , s}. A coloring c is proper if c(u) �= c(v)
for any adjacent vertices u and v. A graph G is s-colorable if it has a proper s-coloring.
The minimum s for which G is s-colorable is called the chromatic number of G and
denoted by χ(G). If χ(G) = s, then G is called s-chromatic.

A partial coloring of G is any map from a subset of V (G) to the set of positive
integers. Suppose that G is s-chromatic. Let c be a proper s-coloring and p be a
partial coloring of G. We say that p forces c if c is a unique extension of p to a proper
s-coloring. The domain of p will be called a defining set for c. We call D ⊆ V (G) a
forcing set in G if this set is defining for some proper s-coloring of G. The minimum
cardinality of a forcing set is called the forcing chromatic number of G and denoted
by Fχ(G). This graph invariant was introduced by Harary in [22]. Here we study its
computational complexity.

To establish the hardness of computing Fχ(G), we focus on the respective slice
decision problems which are defined for each nonnegative integer k as follows:

Forceχ(k)
Given: a graph G.
Decide if: Fχ(G) ≤ k.

The cases of k = 0 and k = 1 are tractable. It is clear that Fχ(G) = 0 iff χ(G) = 1,
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that is, G is empty. Furthermore, Fχ(G) = 1 iff χ(G) = 2 and G is connected, that is,
G is a connected bipartite graph. Thus, we will restrict attention to the case where
k ≥ 2. Since there is a simple reduction of Forceχ(k) to Forceχ(k + 1) (see Lemma
3.2), it would suffice to show that even Forceχ(2) is computationally hard. This is
indeed the case.

Let 3COL denote the set of 3-colorable graphs and U3COL the set of those graphs
in 3COL having a unique, up to renaming colors, proper 3-coloring. First of all, note
that a hardness result for Forceχ(2) is easily derivable from two simple observations:

if Fχ(G) ≤ 2, then G ∈ 3COL;
if G ∈ U3COL, then Fχ(G) ≤ 2.

(1)

The set 3COL was shown to be NP-complete at the early stage of the NP-completeness
theory in [45, 18] by reduction from SAT, the set of satisfiable Boolean formulas. We
will benefit from the use of a well-known stronger fact: There is a polynomial-time
many-one reduction p from SAT to 3COL which is parsimonious; that is, any Boolean
formula Φ has exactly as many satisfying assignments to variables as the graph p(Φ)
has proper 3-colorings. (Colorings obtainable from one another by renaming colors
are not distinguished.) In particular, if Φ has a unique satisfying assignment, then
p(Φ) ∈ U3COL and hence Fχ(p(Φ)) ≤ 2, while if Φ is unsatisfiable, then p(Φ) /∈ 3COL
and hence Fχ(p(Φ)) > 2.

Valiant and Vazirani [47] designed a polynomial-time computable randomized
transformation r of the set of Boolean formulas such that, if Φ is a satisfiable for-
mula, then with a nonnegligible probability the formula r(Φ) has a unique satisfying
assignment, while if Φ is unsatisfiable, then r(Φ) is unsatisfiable with probability 1.
Combining r with the parsimonious reduction p of SAT to 3COL, we arrive at the
conclusion that Forceχ(2) is NP-hard with respect to randomized polynomial-time
many-one reductions. As a consequence, the forcing chromatic number is not com-
putable in polynomial time unless any problem in NP is solvable by a polynomial-time
Monte Carlo algorithm with one-sided error.

We aim at determining the computational complexity of Fχ(G) more precisely.
Our first result establishes the hardness of Forceχ(2) with respect to deterministic
polynomial-time many-one reductions. Unless we explicitly state otherwise, all reduc-
tions considered in this paper are deterministic many-one reductions. The complexity
class US, introduced by Blass and Gurevich [4], consists of languages L for which
there is a polynomial-time nondeterministic Turing machine N such that a word w
belongs to L iff N on input w has exactly one accepting computation path. Denote
the set of Boolean formulas with exactly one satisfying assignment by USAT. This
set is complete for US. As is easily seen, U3COL belongs to US and, by the parsi-
monious reduction from SAT to 3COL, U3COL is another US-complete set. By the
Valiant–Vazirani reduction, the US-hardness under polynomial-time many-one reduc-
tions implies the NP-hardness under randomized reductions, and hence the former
hardness concept should be considered stronger. It is known that US includes coNP
[4], and this inclusion is proper unless the polynomial-time hierarchy collapses [42].
Thus, US-hardness implies coNP-hardness. We prove that the problem Forceχ(2) is
US-hard.

Note that this result is equivalent to the reducibility of U3COL to Forceχ(2).
Such a reduction would follow from the naive hypothesis, which may be suggested by
(1), that a 3-chromatic G is in U3COL iff Fχ(G) = 2. It should be stressed that the
latter is far from being true in view of Lemma 2.7.3 below.
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Fig. 1. Location of the slice decision problems for Fχ(G) in the hierarchy of complexity classes.

On the other hand, we are able to estimate the complexity of each Forceχ(k) from
above by putting this family of problems into a complexity class which is a natural
extension of US. We show that, for each k ≥ 2, the problem Forceχ(k) is reducible to
a set in US via a polynomial-time disjunctive truth-table reduction (dtt-reduction for
brevity; see section 2 for definitions). This improves on the straightforward inclusion
of Forceχ(k) in ΣP

2 .
Denote the class of decision problems reducible to US under dtt-reductions by

PUS
dtt. As shown by Chang, Kadin, and Rohatgi [5], PUS

dtt is strictly larger than US
unless the polynomial time hierarchy collapses to its third level. The position of the
problems under consideration in the hierarchy of complexity classes is shown in Fig-
ure 1, where PNP[log n] denotes the class of decision problems solvable by polynomial-
time Turing machines with logarithmic number of queries to an NP oracle. The latter
class coincides with the class of problems polynomial-time truth-table reducible to NP;
see [29]. Another relation of PUS

dtt to known complexity classes is PUS
dtt ⊆ C=P ⊆ PP,

where a language L is in PP (resp., C=P) if it is recognizable by a nondeterministic
Turing machine M with the following acceptance criterion: An input word w is in L
iff at least (resp., precisely) half of the computing paths of M on w are accepting.
This inclusion follows from the facts that US ⊆ C=P and that C=P is closed under
dtt-reductions (see [30, Theorem 9.9]).

In a recent paper [28], Hatami and Maserrat obtain a result that, in a sense,
is complementary to our work, and for this reason is also shown in Figure 1. Let
Forceχ(∗) = { (G, k) : Fχ(G) ≤ k}. The authors of [28] prove that the recognition
of membership in Forceχ(∗) is a ΣP

2 -complete problem. Note that [28] and our paper
use different techniques and that, moreover, the two approaches apparently cannot
be used in place of one another.

Our next result gives more detailed information about the hardness of Forceχ(2).
Note that, if χ(G) = 2, then Fχ(G) is equal to the number of connected components of
G. It turns out that the knowledge that χ(G) = 3 does not help in computing Fχ(G).
Moreover, it is hard to recognize whether or not Fχ(G) = 2, even if it is known that
Fχ(G) ≤ 3. Stating these strengthenings, we relax our hardness concept from US-
hardness to coNP-hardness. (As already mentioned, the former implies the latter,
but the converse is not true unless the polynomial time hierarchy collapses.) Thus,
we prove that the problem Forceχ(2) is coNP-hard even under the promises that
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Fig. 2. The class of graphs {G : Fχ(G) ≤ 2} and surroundings.

G ∈ 3COL and Fχ(G) ≤ 3 (see Figure 2). Note that the Valiant–Vazirani reduction
implies no kind of hardness result for the promise version of Forceχ(2).

In fact, many other graph characteristics also have natural forcing variants. Recall
that a clique in a graph is a set of pairwise adjacent vertices. The maximum number
of vertices of G in a clique is denoted by ω(G) and called the clique number of G. A
clique is optimal if it consists of ω(G) vertices. A set of vertices is called forcing if
it is included in a unique optimal clique. We denote the minimum cardinality of a
forcing set by Fω(G) and call it the forcing clique number of G.

Furthermore, we say that a vertex of a graph G dominates itself and any adjacent
vertex. A set D ⊆ V (G) is called dominating if every vertex of G is dominated by
a vertex in D. The domination number of G, denoted by γ(G), is the minimum
cardinality of a dominating set of G. Similarly to the above, a forcing set of vertices
is one included in a unique optimal dominating set. The minimum cardinality of a
forcing set is denoted by Fγ(G) and called the forcing domination number of G. This
graph invariant is introduced and studied by Chartrand et al. [6].

For the forcing clique and domination numbers we consider the respective slice
decision problems Forceω(k) and Forceγ(k) and show the same relation between
them and the class US that we have for the forcing chromatic number. Actually, the
dtt-reducibility to US is proved for all the three numbers by a uniform argument.
However, the US-hardness with respect to many-one reductions for ω and γ is proved
differently than for χ. The case of ω and γ seems combinatorially simpler because
of the following equivalence: A graph G has a unique optimal clique iff Fω(G) = 0
and similarly with γ. The study of unique optimum (UO) problems was initiated
by Papadimitriou [39]. Due to the US-hardness of the UO CLIQUE and UO DOM-
INATING SET problems, we are able to show the US-hardness of Forceω(k) and
Forceγ(k) using only well-known standard reductions, whereas for Forceχ(k) we
use somewhat more elaborate reductions involving graph products.

Overview of previous related work.
Forcing chromatic number of particular graphs. Let Kn (resp., Cn, Pn) denote

the complete graph (resp., the cycle, the path) on n vertices. As a simple exercise,
we have Fχ(C2m+1) = m + 1. Mahmoodian, Naserasr, and Zaker [37] compute the
forcing chromatic number of several Cartesian products: Fχ(C2m+1 × K2) = m +
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1, Fχ(Cm × Kn) = m(n − 3) and Fχ(Pm × Kn) = m(n − 3) + 2 if n ≥ 6, and
Fχ(Km ×Kn) = m(n −m) if n ≥ m2. Mahdian et al. [36] determine a few missing
values: Fχ(Cm × K3) = �m/2	 + 1 and, if m is even, Fχ(Cm × K5) = 2m. On
the other hand, the asymptotics of Fχ(Kn × Kn) are unknown (a problem having
arisen in research on Latin squares; see below). The best lower and upper bounds
�4(n− 2)/3	 ≤ Fχ(Kn ×Kn) ≤ n2/4 are obtained, respectively, in [31] for n ≥ 8 and
[14] for all n. Our results show that no general approach for efficient computing of
the forcing chromatic number is possible unless NP = P (and even US = P).

Latin squares and the complexity of recognizing a forcing coloring. A Latin square
of order n is an n × n matrix with entries in {1, 2, . . . , n} such that every row and
column contains all the n numbers. In a partial Latin square some entries may be
empty, and every number occurs in any row or column at most once. A partial Latin
square is called a critical set if it can be completed to a Latin square in a unique
way. Colbourn, Colbourn, and Stinson [11] proved that recognition of whether a
given partial Latin square L is a critical set is coNP-hard. Moreover, the problem is
coNP-complete even if one extension of L to a Latin square is known. The result of
[11] is strengthened in [16].

As is observed in [37], there is a natural one-to-one correspondence between Latin
squares of order n and proper n-colorings of the Cartesian square Kn × Kn, which
matches critical sets and forcing colorings.1 It follows that it is coNP-hard to recognize
whether a given partial coloring p of a graph is forcing. Moreover, even if this problem
is restricted to graphs Kn×Kn and one extension of p to a proper n-coloring is given,
the problem is coNP-complete (see also Proposition 2.8 below).

Complexity of the forcing matching number. Given a graph G with a perfect
matching, Harary, Klein, and Živković [25] define its forcing matching number as the
minimum size of a forcing set of edges, where the latter is a set contained in a unique
perfect matching. Denote this number by Fν(G). Let Forceν(k) be the problem of
recognition, given G, if Fν(G) ≤ k, and let Forceν(∗) be the variant of the same
problem with k given as a part of an input. From the polynomial-time solvability of
the perfect matching problem, it easily follows that each Forceν(k) is polynomial-
time solvable and that Forceν(∗) is in NP. Afshani, Hatami, and Mahmoodian [3],
using an earlier result by Adams, Mahdian, and Mahmoodian [1], prove that the latter
problem is NP-complete.

Variety of combinatorial forcing numbers. Critical sets have been studied since
the seventies (Nelder [38]). The forcing chromatic, domination, and matching numbers
attracted attention of researchers in the nineties. In fact, a number of other problems
in diverse areas of combinatorics have a similar forcing nature. Defining sets in block
designs (Gray [19]) have a rather rich bibliography. Other graph invariants whose
forcing versions have appeared in the literature are the orientation number (Chartrand
et al. [7]); the geodetic number, the hull number, the dimension of a graph (Chartrand
and Zhang in, respectively, [8, 9, 10]); and this list is still inexhaustive. As a general
concept, combinatorial forcing was presented by Harary in a series of talks, e.g., [22].

Unique colorability. The concept of a uniquely colorable graph was introduced by
Harary, Hedetniemi, and Robinson [23], [24]. Complexity-theoretic concepts related
to this combinatorial phenomenon were introduced by Valiant and Vazirani [47] and
Blass and Gurevich [4]. However, complexity theorists prefer dealing with USAT, the
uniqueness version of the archetypical SATisfiability problem. The results established
for USAT, as US- and coNP-hardness under many-one reductions and NP-hardness

1Such a correspondence is also well known for edge colorings of the complete bipartite graph Kn,n.
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under randomized reductions, carry through for U3COL by means of the parsimonious
many-one reduction of SAT to 3COL. A direct, purely combinatorial way to show
the coNP-hardness of U3COL is given by a result of Greenwell and Lovász ([20]; see
also [32, Theorem 8.5]). They prove, in particular, that if a connected graph G is not
3-colorable, then the categorical product G ·K3 is a uniquely colorable graph. On the
other hand, if G is 3-colorable, then G ·K3 can be colored in two different ways. The
latter follows from a simple observation: Any proper 3-coloring of one of the factors
efficiently induces a proper 3-coloring of the product G1 ·G2. By the NP-completeness
of 3COL, we arrive at the conclusion that the problem of recognizing, given a graph H
and its proper 3-coloring, whether or not H is uniquely 3-colorable is coNP-complete.
Later this complexity-theoretic fact was observed by Dailey [15], who uses an identical
combinatorial argument.

Organization of the paper. In section 2 we define the categorical and Cartesian
graph products, which will play an important role in our proofs, and prove some
preliminary lemmas about forcing sets in product graphs. We also state a few basic
bounds for Fχ(G) and determine the complexity of recognizing whether a given set
of vertices in a graph is forcing (the latter result is not used later in the paper but
is worth noticing). The hardness of Forceχ(k) is established in section 3. A closer
look at Forceχ(2) is taken in section 4. In section 5, using a combinatorial result
of Hajiabolhassan et al. [21], we analyze the complexity of a related graph invariant,
namely, the largest cardinality of an inclusion-minimal forcing set. Before taking into
consideration the forcing clique and domination numbers, we suggest a general setting
for forcing-combinatorial numbers in section 6. It is built upon the standard formal
concept of an NP optimization problem. We benefit from this formal framework in
some proofs. Section 7 is devoted to the forcing clique and domination numbers. The
dtt-reducibility of Forceπ(k) to US for π ∈ {χ, ω, γ} is shown in section 8. Section 9
contains a concluding discussion and some open questions.

2. Background.

2.1. Basics of complexity theory. We suppose that the discrete structures
under consideration are encoded by binary words. For example, graphs are naturally
representable by their adjacency matrices. The set of all binary words is denoted by
{0, 1}∗. A decision problem is identified with a language, i.e., a subset of {0, 1}∗,
consisting of all yes-instances. A many-one reduction of a problem X to a problem Y
is a map r : {0, 1}∗ → {0, 1}∗ such that x ∈ X iff r(x) ∈ Y . If r(x) is computable in
time bounded by a polynomial in the length of x, the reduction is called polynomial-
time. We write X ≤P

m Y to say that there is a polynomial-time many-one reduction
from X to Y .

Let C be a class of decision problems (or languages). A problem Z is called C-
hard if any X in C is ≤P

m-reducible to Z. A problem Z is called C-complete if Z is
C-hard and belongs to C. USAT and U3COL are examples of US-complete problems.

A disjunctive truth-table reduction (or dtt-reduction) of a language X to a lan-
guage Y is a transformation which takes any word x to a set of words y1, . . . , ym so
that x ∈ X iff yi ∈ Y for at least one i ≤ m. We write X ≤P

dtt Y to say that there is
such a polynomial-time reduction from X to Y .

If C is a class of languages and ≤ is a reducibility, then C ≤ X means that Y ≤ X
for all Y in C (i.e., X is C-hard under ≤), and X ≤ C means that X ≤ Y for some
Y in C.

The formal framework of promise problems is developed in [44]. Let Y and Q
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be languages. Whenever referring to a decision problem Y under the promise Q, we
mean that membership in Y is to be decided only for inputs in Q. A reduction r of an
ordinary decision problem X to a problem Y under the promise Q is a usual many-one
reduction from X to Y with the additional requirement that r(x) ∈ Q for all x. This
definition allows us to extend the notion of C-hardness to promise problems.

A polynomial-time computable function h : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is called
an AND2 function for a language Z if for any pair x, y we have both x and y in Z iff
h(x, y) is in Z. Such an h is an OR2 function for Z if we have at least one of x and
y in Z iff h(x, y) is in Z.

2.2. Graph products. Let E(G) denote the set of edges of a graph G. Given
two graphs G1 and G2, we define a product graph on the vertex set V (G1)×V (G2) in
two ways. Vertices (u1, u2) and (v1, v2) are adjacent in the Cartesian product G1×G2 if
either u1 = v1 and {u2, v2} ∈ E(G2) or u2 = v2 and {u1, v1} ∈ E(G1). They are adja-
cent in the categorical product G1 ·G2 if both {u1, v1} ∈ E(G1) and {u2, v2} ∈ E(G2).

A set V (G1) × {v} for v ∈ V (G2) will be called the G1-layer of v, and a set
{u} × V (G2) for u ∈ V (G1) will be called the G2-layer of u.

Lemma 2.1 (Sabidussi [43]; see also [32, Theorem 8.1]). χ(G×H) = max{χ(G),
χ(H)}.

If c is a proper coloring of G, it is easy to see that c∗(x, y) = c(x) is a proper
coloring of the categorical product G ·H. We will say that c induces c∗. Similarly, any
proper coloring of H induces a proper coloring of G · H. This implies the following
well-known fact.

Lemma 2.2. χ(G ·H) ≤ min{χ(G), χ(H)}.
The next proposition shows that the Cartesian and the categorical products are,

respectively, AND2 and OR2 functions for 3COL (see [34] for an exposition of AND
and OR functions).

Proposition 2.3.

1. G×H ∈ 3COL iff both G and H are in 3COL.
2. G ·H ∈ 3COL iff at least one of G and H is in 3COL.

Proof. Item 1 is straightforward by Lemma 2.1. However, item 2 does not follow
from Lemma 2.2 alone, because the equality χ(G ·H) = min{χ(G), χ(H)} is still an
unproven conjecture made by Hedetniemi. Luckily, the conjecture is known to be true
for 4-chromatic graphs (El-Zahar and Sauer [17]; see also [32, section 8.2]), and this
suffices for our claim.

2.3. Preliminary lemmas.
Lemma 2.4 (Greenwell and Lovász [20]). Let G be a connected graph with χ(G) >

n. Then G ·Kn is uniquely n-colorable.
The proof can be found also in [32, Theorem 8.5]. We will use not only Lemma

2.4 itself but also a component of its proof stated as the next lemma. We call a partial
coloring injective if no two vertices have the same color.

Lemma 2.5. Let G be a connected graph and p be an injective coloring of a
Kn-layer of G ·Kn. Then p forces the Kn-induced coloring of G ·Kn.

Proof. Suppose that p is an injective coloring of the Kn-layer of u ∈ V (G) and
that a proper n-coloring c of G · Kn extends p. Let v ∈ V (G) be adjacent to u. It
follows easily that c(v, i) = c(u, i) for any i ∈ V (Kn). Since G is connected, c is forced
by p to be monochromatic on each G-layer.

Lemma 2.6. Any proper 3-coloring of K3 · K3 is induced by one of the two
factors K3.

Proof. Let V (K3) = {1, 2, 3} and denote Li = {(i, 1), (i, 2), (i, 3)}. Suppose that
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c is a 3-coloring of K3 ·K3. Consider c on one of the layers, say L2. If |c(L2)| = 3,
then c is induced by the second factor by Lemma 2.5. Assume that |c(L2)| = 2,
for example, c(2, 1) = 1, c(2, 2) = 2, and c(2, 3) = 2. Then c(1, 2) = c(3, 3) = 3 is
forced, contradictory to the fact that these vertices are adjacent. There remains the
possibility that |c(L2)| = 1, for example, c(2, 1) = c(2, 2) = c(2, 3) = 2. Color 2 can
occur neither in L1 nor in L3. Assume that one of these layers has both colors 1 and
3, say, c(1, 1) = 1 and c(1, 2) = 3. This forces c(3, 3) = 2, a contradiction. Thus,
|c(L2)| = 1 is possible only if L1, L2, and L3 are all monochromatic and have pairwise
distinct colors. This is the coloring induced by the first factor.

2.4. A few basic bounds. We call two s-colorings equivalent if they are ob-
tainable from one another by permutation of colors. Proper s-colorings of a graph G
are equivalent if they determine the same partition of V (G) into s independent sets.
Let Nχ(G) denote the number of such partitions for s = χ(G). Thus, Nχ(G) is equal
to the number of inequivalent proper s-colorings of s-chromatic G, while the total
number of such colorings is equal to χ(G)!Nχ(G). A graph G is uniquely colorable if
Nχ(G) = 1. In particular, G ∈ U3COL iff χ(G) = 3 and Nχ(G) = 1.

Lemma 2.7.

1. χ(G) − 1 ≤ Fχ(G) ≤ log2Nχ(G) + log2(χ(G)!).
2. If Nχ(G) = 1, then Fχ(G) = χ(G) − 1.
3. For any k, there is a 3-chromatic graph Gk on 4k+2 vertices with Fχ(Gk) = 2

and Nχ(Gk) = 2k−1 + 1.
The lower bound in item 1 is sharp by item 2. The upper bound is sharp because,

for example, Fχ(mK2) = m while Nχ(mK2) = 2m−1, where mK2 denotes the graph
consisting of m isolated edges. Item 3 shows that the converse of item 2 is false.
It is also worth noting that both the lower and the upper bounds in item 1 are
computationally hard, even if one is content with finding an approximate value. The
NP-hardness of approximation of the chromatic number is established in [35]. An
NP-hardness result for approximately computing log2Nχ(G), even for 3-chromatic
graphs, is obtained in [48].

Proof. Item 2 and the lower bound in item 1 are obvious. To prove the upper
bound in item 1, we have to show that an s-chromatic graph G has a forcing set
of at most l = �log2(s!Nχ(G))	 vertices v1, v2, . . .. Let C1 be the set of all s!Nχ(G)
proper s-colorings of G. We choose vertices v1, v2, . . . one by one as follows. Let i ≥ 1.
Assume that the preceding i− 1 vertices have been chosen and that a set of colorings
Ci has been defined and has at least two elements. We set vi to be an arbitrary
vertex such that not all colorings in Ci coincide at vi. Furthermore, we assign vi
a color p(vi) occurring in the multiset { c(vi) : c ∈ Ci} least frequently. Finally, we
define Ci+1 = { c ∈ Ci : c(vi) = p(vi)}. Note that |Ci+1| ≤ |Ci|/2. We eventually
have |Ci+1| = 1 for some i ≤ l = �log2 |C1|	. For this i, denote the single coloring in
Ci+1 by c. By construction, v1, . . . , vi is defining for c.

To prove item 3, consider H = K3×K2. This graph has two inequivalent colorings
c1 and c2, shown in Figure 3. Let u, v, w ∈ V (H) be as in Figure 3. Note that a partial
coloring p1(u) �= p1(v) forces c1 or its equivalent and that p2(u) = p2(v) �= p2(w) forces
c2.

Let Gk consist of k copies of H with all u and all v identified; that is, Gk has
4k + 2 vertices. Since the set {u, v} stays forcing in Gk, we have Fχ(Gk) = 2. If u
and v are assigned the same color, we are free to assign each copy of w any of the two
remaining colors. It follows that Nχ(Gk) = 2k−1 + 1.

2.5. Complexity of recognizing a forcing set.
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Fig. 3. Proper 3-colorings of K3 ×K2.

Proposition 2.8. The problem of recognizing, given a graph G and two vertices
u, v ∈ V (G), whether or not {u, v} is a forcing set is US-complete.

Proof. Suppose that χ(G) ≥ 3, for else the question is efficiently decidable. Set
p(u) = 1 and p(v) = 2. Obviously, {u, v} is a forcing set iff p forces a proper 3-coloring
of G. Verification of the latter condition is clearly in US.

We now describe a reduction R of the US-complete problem U3COL to the prob-
lem under consideration. If an input graph G is empty, let R(G) be an arbitrary
graph with two vertices which are not a forcing set. Otherwise, let u and v be the
lexicographically first pair of adjacent vertices in G. We set R(G) = (G, u, v). It is
not hard to see that G ∈ U3COL iff R(G) consists of a graph and a 2-vertex forcing
set in it.

3. Complexity of Fχ(G): A lower bound.
Theorem 3.1. For each k ≥ 2, the problem Forceχ(k) is US-hard. Moreover,

this holds true even if we consider only connected graphs.
We first observe that the family of problems Forceχ(k) is linearly ordered with

respect to ≤P
m-reducibility. A simple reduction showing this does not preserve con-

nectedness of graphs. However, if we restrict ourselves to connected graphs, we are
able to show that Forceχ(2) remains the minimum element in this order. We then
prove that Forceχ(2) is US-hard (even for connected graphs).

Lemma 3.2. Forceχ(k) ≤P
m Forceχ(k + 1).

Proof. Given a nonempty graph G, we add one isolated vertex to it. Denoting
the result by G+K1, it is enough to notice that Fχ(G+K1) = Fχ(G) + 1.

Lemma 3.3. Let k ≥ 2. Then Forceχ(2) reduces to Forceχ(k) even if we
consider the problems only for connected graphs.

Proof. Let G be a graph on n vertices and m ≤ n. Writing H = G ⊕mK2, we
mean that

• V (H) = {v1, . . . , vn} ∪
⋃m

i=1{ai, bi},
• H induces on {v1, . . . , vn} a graph isomorphic to G,
• {vi, ai} and {ai, bi} for all i ≤ m are edges of H, and
• H has no other edges.

Suppose that χ(G) ≥ 3 and H = G ⊕ mK2. Let us check that Fχ(H) ≤ 2 + m if
Fχ(G) = 2 and Fχ(H) ≥ 3+m if Fχ(G) ≥ 3. This will give us the following reduction
of Forceχ(2) to Forceχ(k): Given G, construct an H = G⊕ (k − 2)K2.

Let Fχ(G) = 2. Note that G must be 3-chromatic. To show that Fχ(H) ≤ 2+m,
we construct a forcing set of 2+m vertices. We will identify G and its copy spanned by
{v1, . . . , vn} in H. Let vj and vl be two vertices such that a partial coloring p(vj) = 1
and p(vl) = 2 forces a proper 3-coloring c of G. Color each bi differently from c(vi).
Then {vj , vl, b1, . . . , bm} becomes a forcing set in H.
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Fig. 4. Proof of Lemma 3.5 (Case 1).

Let Fχ(G) ≥ 3. Clearly, any forcing set contains all bi’s. We hence have to show
that no set S = {b1, . . . , bm, x, y} ⊂ V (H) is forcing in H. We will assume that
χ(G) = 3, as otherwise the claim is easy. Suppose that x ∈ {vj , aj} and y ∈ {vl, al}
for some j, l and that S is augmented with a coloring p extendable to a proper 3-
coloring c of H. Let c′ denote the restriction of c to {v1, . . . , vn}. Since c′ is not a
unique coloring of G compatible with p (otherwise {vj , vl} would be a forcing set for
G), there is another such coloring c′′. Obviously, c′′ and p have a common extension
to a proper coloring of H. Thus, S is not a forcing set.

Lemma 3.4. Forceχ(2) is US-hard even if restricted to connected graphs.
To prove the lemma, we describe a reduction from U3COL. Note that U3COL

remains US-complete when restricted to connected graphs and that our reduction
will preserve connectedness. Since the class of 2-colorable graphs is tractable and
can be excluded from consideration, the desired reduction is given by the following
lemma.

Lemma 3.5. Suppose that χ(G) ≥ 3. Then G ∈ U3COL iff Fχ(G×K3) = 2.
Proof. Case 1: G ∈ U3COL. We have to show that Fχ(G×K3) = 2.
Fix arbitrary u, v ∈ V (G) whose colors in the proper 3-coloring of G are different,

for example, u and v can be any adjacent vertices of G. Let V (K3) = {1, 2, 3}. Assign
p(u, 1) = 1 and p(v, 2) = 2 and check that p forces a proper 3-coloring of G × K3.
Assume that c is a proper 3-coloring of G × K3 consistent with p. Since c on each
G-layer coincides with the 3-coloring of G up to permutation of colors, we easily infer
that c(v, 1) = c(u, 2) = 3 (see Figure 4). This implies c(u, 3) = 2 and c(v, 3) = 1.
Thus, in each G-layer we have two vertices with distinct colors, which determines
colors of all the other vertices. As easily seen, the coloring obtained is really proper.

Case 2: G ∈ 3COL \ U3COL. We have to check that Fχ(G×K3) ≥ 3.
Given a partial coloring p of two vertices a, b ∈ V (G×K3), we have to show that

it is not forcing. The cases when p(a) = p(b) or when a and b are in the same G-
or K3-layer are easy. Without loss of generality we therefore suppose that p(a) = 1,
p(b) = 2, a = (u, 1), and b = (v, 2), where u and v are distinct vertices of G. Define
two partial colorings of G by c1(u) = c1(v) = 1 and by c2(u) = 1, c2(v) = 3.

Subcase 2.1: Both c1 and c2 extend to proper 3-colorings of G. Denote the exten-
sions by e1 and e2, respectively. Denote the three G-layers of G ×K3 by G1, G2, G3

and consider e1, e2 on G1. Note that e1 and e2 each agree with p. We will show that
e1 and p have a common extension to a proper coloring of G×K3 and that the same
is true for e2 and p. Given a 3-coloring e of G, let e+ (resp., e−) denote the coloring
obtained from e by renaming colors accordingly to the cyclic permutation (123) (resp.,
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(132)). If e is proper, so are e+ and e−. Moreover, if we assign e, e+, and e− to G1,
G2, and G3 (in any of the six possible ways), we obtain a proper coloring of G×K3.
Assign now e1, e

+
1 , e−1 and e2, e

−
2 , e+2 to G1, G2, and G3, for each triple in the order

as written. We obtain two proper colorings of G×K3, both compatible with p. Thus,
p is not forcing.

Subcase 2.2: Only c1 extends to a proper 3-coloring of G. Since G is not uniquely
colorable, there must be at least two extensions, e1 and e2, of c1 to proper 3-colorings
of G1. As in the preceding case, e1 and e2 each agree with p and together with p
extend to two distinct colorings of G×K3 (say, e1, e

+
1 , e−1 and e2, e

+
2 , e−2 on G1, G2,

G3, respectively).
Subcase 2.3: Only c2 extends to a proper coloring of G. This case is completely

similar to Subcase 2.2 (we have only to take e1, e
−
1 , e+1 and e2, e

−
2 , e+2 ).

Case 3: G /∈ 3COL. We have χ(G×K3) ≥ 4 by Lemma 2.1 and Fχ(G×K3) ≥ 3
by Lemma 2.7.1.

Theorem 3.1 immediately follows from Lemmas 3.4 and 3.3.

4. Hardness of FORCEχ(2): A closer look.
Theorem 4.1. The problem Forceχ(2) is coNP-hard even under the promises

that Fχ(G) ≤ 3 and χ(G) ≤ 3 and even if an input graph G is given together with its
proper 3-coloring.

Let us for a while omit the promise that Fχ(G) ≤ 3. Then the theorem is provable
by combining the Greenwell–Lovász reduction of coNP to US (Lemma 2.4) and our
reduction of US to Forceχ(2) (Lemma 3.5). Doing so, we easily deduce the following:

• If χ(G) > 3 and G is connected, then G ·K3 is uniquely 3-colorable and hence
Fχ((G ·K3) ×K3) = 2.

• If χ(G) = 3, then G · K3 is 3-chromatic because it contains an odd cycle
(this is an easy particular case of the aforementioned Hedetniemi conjecture).
Moreover, G·K3 has two induced 3-colorings, and hence Fχ((G·K3)×K3) ≥ 3.

To obtain Theorem 4.1 (without the promise Fχ(G) ≤ 3), it now suffices to make the
following observation.

Lemma 4.2. χ((G·K3)×K3) = 3 for any graph G. Moreover, a proper 3-coloring
is efficiently obtainable from the explicit product representation of (G ·K3) ×K3.

Proof. By Lemma 2.2, we have χ(G ·K3) ≤ 3 and hence, by Lemma 2.1, χ((G ·
K3) ×K3) = 3. Let V (K3) = {1, 2, 3} and denote Vi,j = { (v, i, j) : v ∈ V (G)}. It is
not hard to see that V1,1 ∪ V2,2 ∪ V3,3, V1,2 ∪ V2,3 ∪ V3,1, and V1,3 ∪ V2,1 ∪ V3,2 is a
partition of V ((G ·K3) ×K3) into independent sets.

Remark 4.3. The known facts about graph factorizations [32, Chapters 4 and 5]
imply a nontrivial strengthening of Lemma 4.2 under certain, rather general condi-
tions. Namely, if G is a connected nonbipartite graph and no two vertices of G have
the same neighborhood, then we do not need to assume that H = (G ·K3) ×K3 is
explicitly represented as a product graph because the product structure is efficiently
reconstructible from the isomorphism type of H. We thank Wilfried Imrich for this
observation.

To obtain the full version of Theorem 4.1, we only slightly modify the reduction:
Before transforming G into (G · K3) × K3, we add to G a triangle with one vertex
in V (G) and two new vertices. Provided χ(G) ≥ 3, this does not change χ(G), and
hence the modified transformation is an equally good reduction. The strengthening
(the promise Fχ(G) ≤ 3) is given by the following lemma.

Lemma 4.4. If a graph G is connected and contains a triangle, then Fχ((G·K3)×
K3) ≤ 3.
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Fig. 5. (G ·K3) ×K3 (proof of Lemma 4.4).

Proof. Let v be a vertex of a triangle T in G. Consider the product H = G ·K3

and a partial coloring p(v, 1) = 1, p(v, 2) = 2. We claim that p forces the K3-induced
coloring of H. Obviously, the latter is an extension of p. To show that no other
extension is possible, assume that c is a proper 3-coloring of H compatible with p
and consider the restriction of c to T ·K3. By Lemma 2.6, c on T ·K3 coincides with
the coloring induced by the second factor. In particular, c(v, 3) = 3. Our claim now
follows from the connectedness of G by Lemma 2.5.

Now, let H1, H2, H3 denote the three H-layers in H×K3 and, for each i = 1, 2, 3,
let Gi1, Gi2, Gi3 denote the three G-layers in Hi. Let p(v, 1, 1) = 1, p(v, 2, 1) = 2 be
the forcing partial coloring for H1 as described above (see Figure 5). Thus, p forces
coloring the whole G1j in color j for each j = 1, 2, 3. Suppose that c is a proper
3-coloring of H ×K3 that agrees with p. From the product structure of H ×K3 we
see that, for each j, color j cannot occur in G2j . Let T 2 denote the copy of T ·K3

in H2. By Lemma 2.6, c on T 2 is induced by the second factor, and hence c(v, 1, 2),
c(v, 2, 2), and c(v, 3, 2) are pairwise distinct. By Lemma 2.5, each of G21, G22, and
G23 is monochromatic, and these layers receive pairwise distinct colors. We already
know that c(G2j) �= j. Thus, we can choose an arbitrary x ∈ G21 and define p for
the third point by p(x) = 3. This forces c(G21) = 3, c(G22) = 1, and c(G23) = 2.
Since every vertex in G3j is in a triangle with its clones in G1j and G2j , c is uniquely
determined on H3.

The proof of Theorem 4.1 is complete.

5. Maximum size of a minimal forcing set. Another related invariant of a
graph G is the largest cardinality of an inclusion-minimal forcing set in G. We will
denote this number by F ∗

χ(G). A complexity analysis of F ∗
χ(G) is easier, owing to the

characterization of uniquely colorable graphs obtained in [21].
Lemma 5.1 (Hajiabolhassan et al. [21]). A connected graph G is uniquely 3-

colorable iff F ∗
χ(G) = 2.
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Theorem 5.2. The problem of deciding, given a graph G and its proper 3-
coloring, whether or not F ∗

χ(G) ≤ 2 is coNP-complete.
Proof. The problem is in coNP because a no-instance of it has a certificate

consisting of a proper 3-coloring c of G and a 3-vertex set A ⊂ V (G) such that
no 2-element subset B of A is defining for c. The latter fact, for each B, is certified
by another proper 3-coloring cB that agrees with c on B but differs from c somewhere
outside B.

The completeness is proved by reduction from the decision problem whether or
not χ(G) > 3. The latter problem is coNP-complete even if restricted to connected
graphs with χ(G) ≥ 3. Let G be such a graph. Our reduction just transforms G into
the categorical product G ·K3. If χ(G) > 3, then G ·K3 is uniquely 3-colorable by
Lemma 2.4 and, by Lemma 5.1, we have F ∗

χ(G ·K3) = 2. If χ(G) = 3, then G ·K3

has at least two inequivalent proper 3-colorings, namely, those induced by the two
factors. By Lemma 5.1, we have F ∗

χ(G ·K3) ≥ 3.

6. General setting. In fact, many other graph characteristics also have natural
forcing variants. Taking those into consideration, it will be convenient to use the
formal concept of an NP optimization problem (see, e.g., [12]).

Let {0, 1}∗ denote the set of binary strings. The length of a string w ∈ {0, 1}∗ is
denoted by |w|. We will use notation [n] = {1, 2, . . . , n}.

An NP optimization problem π = (optπ, Iπ, solπ, vπ) (where subscript π may be
omitted) consists of the following components:

• opt ∈ {max,min} is a type of the problem.
• I ⊆ {0, 1}∗ is the polynomial-time decidable set of instances of π.
• Given x ∈ I, we have sol(x) ⊂ {0, 1}∗, the set of feasible solutions of π on

instance x. We suppose that all y ∈ sol(x) have the same length and that
length depends only on |x| and is bounded by |x|O(1). Given x and y, it is
decidable in polynomial time whether y ∈ sol(x).

• v : {0, 1}∗ × {0, 1}∗ → N is a polynomial-time computable objective function
taking on positive integer values. If y ∈ sol(x), then v(x, y) is called the value
of y.

The problem is, given an instance x, to compute the optimum value

π(x) = opty∈sol(x) v(x, y).

Such a problem is called polynomially bounded if v(x, y) = |x|O(1) for all x ∈ I
and y ∈ sol(x).

Any y ∈ sol(x) whose value is optimal is called an optimum solution of π on
instance x. Let optsol(x) denote the set of all such y. Given an NP optimization
problem π, we define

UOπ = {x : | optsol(x)| = 1} .
Example 6.1. The problem of computing the chromatic number of a graph is

expressible as a quadruple χ = (min, I, sol, v) as follows. A graph G with vertex set
V (G) = {v1, . . . , vn} is represented by its adjacency matrix written down row after
row as a binary string x of length n2. A feasible solution, that is a proper coloring
c : V (G) → [n], is represented by a binary string y = c(v1) . . . c(vn) of length n2,
where a color i is encoded by string 0i−110n−i. The value v(x, y) is equal to the
actual number of colors occurring in y.

Example 6.2. For the problem of computing the clique number it is natural to
fix the following representation. An instance graph G is encoded as above. A feasible



14 FRANK HARARY, WOLFGANG SLANY, AND OLEG VERBITSKY

solution, which is a subset of V (G), is encoded by its characteristic binary string of
length n. The problem of computing the domination number is represented in the
same way.

Given a nonempty set U ⊆ {0, 1}l, we define force(U) to be the minimum cardi-
nality of a set S ⊆ [l] such that there is exactly one string in U with 1 at every position
from S. With each NP optimization problem π we associate its forcing number Fπ,
an integer-valued function of instances of π defined by

Fπ(x) = force(optsol(x)).

Let Forceπ(k) = {x : Fπ(x) ≤ k}. It is easy to check that, if χ, ω, and γ are rep-
resented as in Examples 6.1 and 6.2, then Fχ, Fω, and Fγ are precisely those graph
invariants introduced in section 1.

Note that force(U) = 0 iff U is a singleton. It follows that for π ∈ {ω, γ} we have

x ∈ UOπ iff Fπ(x) = 0.(2)

This will be the starting point of our analysis of decision problems Forceω(k) and
Forceγ(k) in the next section.

7. Hardness of FORCEω(k) and FORCEγ(k). The results stated here are
based on known reducibilities between several optimization problems related to our
work. Since this material is dispersed through the literature with proofs sometimes
skipped, for the reader’s convenience we outline some details. We first introduce some
reducibility concepts for NP optimization problems.

Let π and � be NP optimization problems of the same type. Let f : {0, 1}∗ →
{0, 1}∗ and g : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be polynomial-time computable functions
such that for every x ∈ Iπ we have f(x) ∈ I� and for every y ∈ sol�(f(x)) we have
g(x, y) ∈ solπ(x). Such a pair (f, g) is said to be an S-reduction from π to � if for
every x ∈ Iπ we have

optπ(x) = opt�(f(x))

and, in addition, for every y ∈ sol�(f(x)) we have

vπ(x, g(x, y)) = v�(f(x), y).

We call an S-reduction (f, g) a parsimonious reduction from π to � if, for any
x ∈ Iπ, g(x, ·) is a one-to-one map from sol�(f(x)) onto solπ(x). If only a weaker
condition is met, namely, that g(x, ·) is a one-to-one correspondence between the
optimum solutions of � on instance f(x) and the optimum solutions of π on instance
x, then (f, g) will be called a weakly parsimonious reduction from π to �.

Given a Boolean formula Φ in conjunctive normal form (CNF), let σ(Φ) denote the
maximum number of clauses of Φ that can be satisfied by any one truth assignment.
By σ3 we denote the restriction of σ to 3CNF formulas (those having at most three
literals per clause). We regard σ and σ3 as NP optimization problems. Both prob-
lems belong to the class MAX NP introduced by Papadimitriou and Yannakakis [41].
Crescenzi, Fiorini, and Silvestri [13], who introduced the notion of an S-reduction,
proved that every problem in MAX NP is S-reducible to ω, the maximum clique
problem. We need a somewhat stronger fact about σ3.

Lemma 7.1. There is a parsimonious reduction from σ3 to ω.
Proof. Let φ be a disjunctive clause, and X be the set of variables occurring in

φ. Let D(φ) denote the set of all conjunctions that contain every variable from X or



COMPLEXITY OF THE FORCING CHROMATIC NUMBER 15

its negation and imply φ. Note that φ is logically equivalent to the disjunction of all
ψ in D(φ).

Given a 3CNF formula Φ, we construct a graph G as follows. Let V (G) be the
union of D(φ) over all clauses φ of Φ. We join ψ1 and ψ2 in V (G) by an edge if
these conjunctions are consistent, i.e., no variable occurring in ψ1 occurs in ψ2 with
negation and vice versa.

Lemma 7.2 (Thierauf [46, section 3.2.3]). The decision problem UOω is US-
hard.

Proof. Denote the restrictions of SAT and USAT to 3CNF formulas by 3SAT and
U3SAT, respectively. Since there is a parsimonious ≤P

m-reduction from SAT to 3SAT
(see, e.g., [40]), U3SAT is US-complete. We now show that U3SAT ≤P

m UOω.
Given a 3CNF formula Φ, let G be the graph constructed from Φ by the reduction

of Lemma 7.1. Let m denote the number of clauses in Φ and H = G + 2Km−1, the
disjoint union of G and two copies of Km−1.

If Φ ∈ U3SAT, then ω(H) = ω(G) = m and H ∈ UOω because G ∈ UOω.
If Φ ∈ SAT \ U3SAT, then ω(H) = ω(G) = m and H /∈ UOω because G /∈ UOω.
If Φ /∈ SAT, then ω(G) ≤ m − 1, ω(H) = m − 1, and H /∈ UOω having at least

two optimal cliques.
Thus, Φ ∈ U3SAT iff H ∈ UOω.
Lemma 7.3. UOω ≤P

m UOγ .
Proof. Recall that a vertex cover of a graph G is a set S ⊆ V (G) such that every

edge of G is incident to a vertex in S. The vertex cover number of G is defined to be
the minimum cardinality of a vertex cover of G and denoted by τ(G). It is easy to
see and well known that S ⊆ V (G) is a clique in G iff V (G) \ S is a vertex cover in
the graph complementary to G. It follows that

UOω ≤P
m UOτ .(3)

We now show that

UOτ ≤P
m UOγ(4)

by regarding τ and γ as NP minimization problems and designing a weakly parsimo-
nious reduction from τ to γ. Recall that, given a set X and a system of its subsets
Y = {Y1, . . . , Yn}, a subsystem {Yi1 , . . . , Yik} is called a set cover if X =

⋃k
j=1 Yij .

We compose two known reductions between minimization problems, Reduction A
from the minimum vertex cover to the minimum set cover [2, Theorem 10.11] and
Reduction B from the minimum set cover to the minimum domination number (an
adaptation of [33, Theorem A.1]).

Reduction A. Given a graph G and its vertex v, let I(v) denote the set of the edges
of G incident to v. Consider the set X = E(G) and the system of its subsets Y =
{ I(v) : v ∈ V (G)}. Then S ⊆ V (G) is an optimal vertex cover for G iff { I(v) : v ∈ S}
is an optimal set cover for (X,Y).

Reduction B. Given a set X = {x1, . . . , xm} and a system of sets Y = {Y1, . . . , Yn}
such that X =

⋃n
j=1 Yj , we construct a graph H as follows. V (H) contains each

element xi in duplicate, namely, xi itself and its clone x′i. There is no edge between
these 2m vertices. Other vertices of H are indices 1, . . . , n, with all possible

(
n
2

)
edges

between them. Iff xi ∈ Yj , both xi and x′i are adjacent to j. There are no more
vertices and edges.

Observe that any optimal dominating set D ⊂ V (H) is included in [n]. Indeed,
if D contains both xi and x′i, then it can be reduced by replacing these two vertices
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by only one vertex j such that xi ∈ Yj . If D contains exactly one of xi and x′i, say
xi, then it should contain some j such that xi ∈ Yj to dominate x′i. But then D can
be reduced just by removing xi.

It is also clear that a set D ⊆ [n] is dominating in H iff {Yj : j ∈ D} is a set cover
for (X,Y). Thus, there is a one-to-one correspondence between optimal set covers for
(X,Y) and optimal dominating sets in H.

Thus, UOω and UOγ are both US-hard.
Lemma 7.4. Let π ∈ {ω, γ}. Then Forceπ(k)≤P

mForceπ(k + 1) for any k ≥ 0.
Proof. Given a graph G, we have to construct a graph H such that Fπ(G) ≤ k iff

Fπ(H) ≤ k + 1. It suffices to ensure that

Fπ(H) = Fπ(G) + 1.(5)

Let π = ω. Let H be the result of adding to G two new vertices u and v and
the edges {w, u} and {w, v} for all w ∈ V (G). Any optimal clique in H consists of
an optimal clique in G and of either u or v. Hence any forcing set in H consists of
a forcing set in G and of either u or v (we use the terminology of section 1). This
implies (5).

If π = γ, we obtain H from G by adding a new isolated edge.
Putting it all together, we make the following conclusion.
Theorem 7.5. Let π ∈ {ω, γ}. Then

US ≤P
m UOπ = Forceπ(0) ≤P

m Forceπ(k) ≤P
m Forceπ(k + 1)

for any k ≥ 0.

8. Complexity of FORCEπ(k): An upper bound. We first state a simple
general property of the class US.

Lemma 8.1. Every US-complete set has an AND2 function.2

Proof. It suffices to prove the lemma for any particular US-complete set, for
example, USAT. Given two Boolean formulas Φ and Ψ, rename the variables in Ψ
so that the formulas are over disjoint sets of variables, and consider the conjunction
Φ ∧ Ψ. The conjunction is in USAT iff both Φ and Ψ are in USAT.

In section 6 with a nonempty set U ⊆ {0, 1}l we associated the number force(U).
Additionally, let us set force(∅) = ∞.

Theorem 8.2. Let π be a polynomially bounded NP optimization problem. Then
Forceπ(k) ≤P

dtt US for each k ≥ 0.
Proof. We will assume that π is a minimization problem (the case of maximization

problems is quite similar). Suppose that v(x, y) ≤ |x|c for a constant c. Given
1 ≤ m ≤ |x|c, we define

solm(x) = {y ∈ sol(x) : v(x, y) = m}
and

Fm
π (x) = force(solm(x)).

In particular, Fm
π (x) = Fπ(x) if m = π(x).

Let k be a fixed integer. Notice that

Fπ(x) ≤ k iff

|x|c∨

m=1

(Fm
π (x) ≤ k ∧ π(x) ≥ m)(6)

2In fact, a stronger fact is true: Every US-complete set has an AND function of unbounded arity.
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(actually, only the clause for which m = π(x) can be true). The set of pairs (x,m)
with π(x) ≥ m is in coNP and hence in US. Let us now show that the set of (x,m)
with Fm

π (x) ≤ k is dtt-reducible to US.
Recall that sol(x) ⊆ {0, 1}l(x), where l(x) ≤ |x|d for a constant d. Define T to be

the set of quadruples (x,m, l,D) such that m and l are positive integers, D ⊆ [l], and
there is a unique y ∈ solm(x) of length l with all 1’s in positions from D. It is easy
to see that T is in US and

Fm
π (x) ≤ k iff

∨

l,D: l≤|x|d,
D⊆[l], |D|≤k

(x,m, l,D) ∈ T.

Combining this equivalence with (6), we conclude that Fπ(x) ≤ k iff there are numbers
m ≤ |x|c and l ≤ |x|d and a set D ⊆ [l] of size at most k such that

(x,m, l,D) ∈ T ∧ π(x) ≥ m.

By Lemma 8.1, this conjunction is expressible as a proposition about membership
of the quadruple (x,m, l,D) in a US-complete set. Thus, the condition Fπ(x) ≤ k
is equivalent to a disjunction of less than |x|c+d(k+1) propositions, each verifiable
in US.

Corollary 8.3. Let π ∈ {χ, ω, γ}. Then Forceπ(k) ≤P
dtt US for each k ≥ 0.

Remark 8.4. Using (3) and Theorem 8.2, we can easily show that for the vertex
cover number τ we also have

US ≤P
m UOτ = Forceτ (0) ≤P

m Forceτ (k) ≤P
m Forceτ (k + 1) ≤P

dtt US.

9. Concluding discussion and open questions.
1. We have considered forcing versions of the three most popular graph invariants:

the chromatic, the clique, and the domination numbers (Fχ, Fω, and Fγ respectively).
We have shown that the slice decision problems for each of Fχ, Fω, and Fγ are as
hard as US under many-one reducibility and as easy as US under dtt-reducibility.
The latter upper bound is actually true for the forcing variant of any polynomially
bounded NP optimization problem. The lower bound in the case of Fω and Fγ is
provable by using standard reductions due to a close connection with the unique
optimum problems UOω and UOγ . However, in the case of Fχ we use somewhat more
elaborate reductions involving graph products. We point out two simple reasons for
the distinction between Fχ and Fω, Fγ . First, unlike the case of ω and γ, the unique
colorability of a graph is not a function of Fχ (cf. Lemma 2.7.3). Second, we currently
do not know any reductions between Fχ, Fω, and Fγ as optimization problems that
would allow us to relate their complexities (cf. further discussion).

2. We have shown that the slice decision problems Forceπ(k) for π ∈ {χ, ω, γ}
are close to each other in the complexity hierarchy. Furthermore, let Forceπ(∗) =
{ (x, k) : Fπ(x) ≤ k}. Hatami [27] has recently shown that, like Forceχ(∗), the deci-
sion problem Forceω(∗) is ΣP

2 -complete. Consequently, the problems of computing
Fχ and Fω are polynomial-time Turing equivalent. It would be also interesting to
compare the complexities of Fχ, Fω, and Fγ using weaker reducibility concepts for
optimization problems. (As is well known, the similarity of decision versions does
not imply the similarity of the underlying optimization problems; for example, the
decision versions of χ, ω, and γ are all NP-complete and parsimoniously equivalent
but have pairwise different parameterized complexities, and the corresponding opti-
mization problems have pairwise different approximation complexities.)
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3. Is Forceπ(k) NP-hard under ≤P
m-reductions for any π under consideration

and constant k? It should be noted that the affirmative answer would settle a long-
standing open problem if C=P contains NP in the affirmative.

4. Let UCOL be the set of all uniquely colorable graphs (with no restriction on
the chromatic number). Is it true that UCOL≤P

m Forceχ(2)? It is not hard to show
that UCOL is US-hard.
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LOWER BOUNDS FOR QUANTUM COMMUNICATION
COMPLEXITY∗

HARTMUT KLAUCK†

Abstract. We prove lower bounds on the bounded error quantum communication complexity.
Our methods are based on the Fourier transform of the considered functions. First we generalize a
method for proving classical communication complexity lower bounds developed by Raz [Comput.
Complexity, 5 (1995), pp. 205–221] to the quantum case. Applying this method, we give an expo-
nential separation between bounded error quantum communication complexity and nondeterministic
quantum communication complexity. We develop several other lower bound methods based on the
Fourier transform, notably showing that

√
s̄(f)/ logn, for the average sensitivity s̄(f) of a function

f , yields a lower bound on the bounded error quantum communication complexity of f((x∧ y)⊕ z),
where x is a Boolean word held by Alice and y, z are Boolean words held by Bob. We then prove
the first large lower bounds on the bounded error quantum communication complexity of functions,
for which a polynomial quantum speedup is possible. For all the functions we investigate, the only
previously applied general lower bound method based on discrepancy yields bounds that are O(logn).

Key words. communication complexity, quantum computing, lower bounds, computational
complexity
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1. Introduction. Quantum mechanical computing and communication have
been studied extensively during the last decade. Communication has to be a physical
process, so an investigation of the properties of physically allowed communication is
desirable, and the fundamental theory of physics available to us for this investigation
is quantum mechanics.

The theory of communication complexity deals with the question of how efficiently
communication problems can be solved, and it has various applications to lower bound
proofs for other resources (an introduction to (classical) communication complexity
can be found in Kushilevitz and Nisan’s excellent monograph [29]).

In a quantum protocol (as defined by Yao [41]) two players Alice and Bob receive
an input and have to cooperatively compute some function defined on the pair of
inputs. To this end they exchange messages consisting of qubits until the result can
be produced from some measurement done by one of the players (for surveys about
quantum communication complexity see [39, 10, 25]).

It is known that quantum communication protocols can sometimes be substan-
tially more efficient than classical probabilistic protocols: the most prominent example
of such a function is the disjointness problem DISJn, in which the players receive
incidence vectors x, y of subsets of {1, . . . , n}, and have to decide whether or not the
sets are disjoint: ¬∨

(xi ∧ yi). By an application of Grover’s search algorithm [19] to
communication complexity given by Buhrman, Cleve, and Wigderson [11], an upper
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bound of O(
√
n log n) holds for the bounded error quantum communication complex-

ity of DISJn. This upper bound has been improved to O(
√
nclog

∗ n) for a constant c
by Høyer and de Wolf [22] and, finally, to O(

√
n) by Aaronson and Ambainis [1]. The

classical bounded error communication complexity of DISJn, on the other hand, is
Ω(n) by a bound due to Kalyanasundaram and Schnitger [24]. The quantum proto-
col for DISJn yields the largest gap between quantum and classical communication
complexities known so far for a total function. For partial functions and so-called sam-
pling problems, even exponential gaps between quantum and classical communication
complexities are known; see [36, 11, 3].

Unfortunately only a few lower bound methods for quantum communication com-
plexity are known: the logarithm of the rank of the communication matrix is known
as a lower bound for exact (i.e., errorless) quantum communication [11, 12]; the (often
weakly applied) discrepancy method can be used to give lower bounds for protocols
with error as shown by Kremer [28]. Buhrman and de Wolf [12] observed that lower
bounds on the minimum rank of matrices approximating the communication matrix
give bounded error quantum lower bounds, but were not able to apply this method
to any explicit function.1 In this paper we introduce several lower bound methods for
bounded error quantum communication complexity exploiting algebraic properties of
the communication matrix.

Let IPn denote the inner product modulo 2 function, i.e.,

IPn(x, y) =

n⊕

i=1

(xi ∧ yi).

Known results about the discrepancy of the inner product function under the
uniform distribution then imply that quantum protocols for IPn with error 1/2−ε have
complexity Ω(n/2 − log(1/ε)); see [28] (actually, only a linear lower bound assuming
constant error is proved there, but minor modifications give the stated result). The
inner product function appears to be the only explicit function for which a large lower
bound on the bounded error quantum communication complexity has been published
prior to this paper.

We prove new lower bounds on the bounded error quantum communication com-
plexity of several functions. These bounds are exponentially bigger than the bounds
obtainable by the discrepancy method. Note that we do not consider the model
of quantum communication with prior entanglement here (as defined by Cleve and
Buhrman [13]).

Our results are as follows. First we generalize a lower bound method developed by
Raz [35] for classical bounded error protocols to the quantum case. The lower bound
is given in terms of the sum of absolute values of selected Fourier coefficients of the
function. To be able to generalize this method we have to decompose the quantum
protocol into a “small” set of weighted monochromatic rectangles, so that the sum
of these approximates the communication matrix. Opposed to the classical case the
weights may be negative, but all weights have absolute value at most 1.

Applying the method, we get a lower bound of Ω(n/ log n) for the bounded error

1A result by Razborov [37] (published subsequently to the conference version of the present
paper) implies such lower bounds for a limited class of functions and gives a tight characterization of
the bounded error quantum communication complexity of functions f(x, y) = g(x ∧ y), also settling
the complexity of the disjointness problem to Θ(

√
n).
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quantum communication complexity of the Boolean function HAM
n/2
n , where

HAM t
n(x, y) = 1 ⇐⇒ dist(x, y) �= t ⇐⇒

∑

i

(xi ⊕ yi) �= t,

for binary strings x, y of length n and the Hamming distance dist. We then show,
using methods of de Wolf [40], that the nondeterministic (i.e., one-sided unbounded

error) quantum communication complexity of HAM
n/2
n is O(log n). So we get an

exponential gap between the nondeterministic quantum and bounded error quantum
complexities. Since it is also known that the equality function EQn has (classical)
bounded error protocols with O(log n) communication [29], while its nondeterministic
quantum communication complexity is Θ(n) [40], we get the following separation.

Let BQP denote the bounded error quantum communication complexity and
NQP denote the nondeterministic quantum communication complexity (see section
2.2 for definitions).

Corollary 1.1. There are total Boolean functions HAM
n/2
n , EQn on 2n inputs

each, such that

1. NQC(HAM
n/2
n ) = O(log n) and BQC(HAM

n/2
n ) = Ω(n/ log n),

2. BQC(EQn) = O(log n) and NQC(EQn) = Ω(n).
Furthermore we give quite tight lower and upper bounds for HAM t

n for general
values of t, establishing that bounded error quantum communication does not give
a significant speedup compared to classical bounded error communication for these
problems. The same bounds hold for testing whether the Hamming distance is at
most t.

Corollary 1.2. Let t : N → N be any monotone increasing function with
t(n) ≤ n/2. Then

1. BQC(HAM
t(n)
n ) ≥ Ω

(
t(n)

log t(n)
+ log n

)
.

2. BPC(HAM
t(n)
n ) = O(t(n) log n).

We then turn to several other techniques for proving lower bounds, which are
also based on the Fourier transform. We concentrate on functions f(x, y) = g(x � y),
for � ∈ {∧,⊕}, which are the bitwise conjunction and parity operators. We prove
that for � = ∧, if we choose any Fourier coefficient ĝz of g, then |z|/(1 − log |ĝz|)
yields a lower bound on the bounded error quantum communication complexity of
f . Averaging over all coefficients leads to a bound given by the average sensitivity of
g divided by the entropy of the squared Fourier coefficients. We then show another
bound for � = ⊕ in terms of the entropy of the Fourier coefficients and obtain a result
solely in terms of the average sensitivity by combining both results.

Corollary 1.3. For all functions f , so that both g(x ∧ y) and g(x ⊕ y) with
g : {0, 1}n → {0, 1} reduce to f ,

BQC(f) = Ω

(√
s̄(g)

log n

)
.

If, e.g., f(x, y, z) = g((x ∧ y) ⊕ z), with x held by Alice and y, z held by Bob,
the required reductions are trivial. For many functions, e.g., for g being the majority
function, it is easy to reduce g(x⊕y) on 2 ·n inputs directly to g(x∧y) on more inputs
using xi ⊕ yi = ¬xi ∧ yi + xi ∧¬yi (plus the addition of a few dummy variables), and
so the lower bound of Corollary 1.3 can sometimes be used for g(x ∧ y). Note that
unlike in Razborov’s bounds in [37] the function g does not need to be symmetric.
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We then modify the lower bound methods and show how we may replace the
Fourier coefficients with the singular values of the communication matrix (divided
by 2n). This means that we may replace the Fourier transform with other unitary
transforms and sometimes get much stronger lower bounds.

Application of the new methods to the Boolean function

MAJn(x, y) = 1 ⇐⇒
∑

i

(xi ∧ yi) ≥ n/2

yields a lower bound of Ω(n/ log n) for its bounded error quantum communication
complexity. MAJn is a function for which neither bounded error quantum nor non-
deterministic quantum protocols are efficient, while the discrepancy bound is still only
O(log n).

We then apply the same approach to

COUNT t
n(x, y) = 1 ⇐⇒

∑

i

(xi ∧ yi) = t.

These functions have a classical complexity of Θ(n) for all t ≤ n/2, since one can
easily reduce the disjointness problem to these functions (DISJn is the complement
of COUNT 0

n). We show the following.
Corollary 1.4.

1. Ω(n1−ε/ log n) ≤ BQC(COUNTn1−ε

n ) ≤ O(n1−ε/2 log n).
2. BPC(COUNT t

n) = Θ(n) for all t ≤ n/2.
These are the first lower bounds for functions which allow a polynomial quantum

speedup.
Prior to this paper the only known general method for proving lower bounds

for the bounded error quantum communication complexity has been the discrepancy
method. We show that for any application of the discrepancy bound to HAM t

n,MAJn,
and COUNT t

n, the result is only O(log n). To show this we characterize the discrep-
ancy bound within a constant multiplicative factor and an additive log-factor as the
classical weakly unbounded error communication complexity PC (see sections 2.2 and
2.4 for definitions).

Corollary 1.5. For all f : {0, 1}n × {0, 1}n → {0, 1},

max
μ

log(1/discμ(f)) ≤ O(UPC(f)) ≤ O

(
max
μ

log(1/discμ(f)) + logn

)
,

where μ denotes distributions on {0, 1}n × {0, 1}n.
This explains why the discrepancy bound in applications is usually not a good

lower bound for bounded error communication complexity, since the weakly un-
bounded error complexity is always asymptotically at most as large as, e.g., the clas-
sical nondeterministic complexity. For our examples the new lower bound methods
are exponentially better than the discrepancy bound. In light of Corollary 1.5, it
becomes clear that, actually, lower bounds using discrepancy follow the approach of
simulating quantum bounded error protocols by classical unbounded error protocols
and subsequent application of a classical lower bound.

We conclude also that the discrepancy bound subsumes other methods for proving
lower bounds on the weakly unbounded error communication complexity [16]. Fur-
thermore we investigate quantum protocols with weakly unbounded error and show
that quantum and classical weakly unbounded error communication complexities are
asymptotically equivalent.
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The organization of the paper is as follows. In section 2 we describe the necessary
technical background. Section 3 shows how we can decompose quantum protocols into
weighted rectangle covers of the communication matrix. Sections 4 and 6 then describe
our main lower bound techniques, while sections 5 and 7 show how to apply these
to specific functions and derive Corollaries 1.1, 1.2, and 1.4. Section 8 is concerned
with the power of classical and quantum weakly unbounded error protocols. Section
9 discusses recent developments and open problems.

2. Preliminaries. Note that we consider functions with range {0, 1} as well as
with range {−1, 1}. If a result is stated for functions with range {0, 1}, then it also
holds for {−1, 1}. Some results are stated only for functions with range {−1, 1}. The
communication complexity does not depend on that choice, so this means that certain
parameters in the lower bounds are dependent on the range.

2.1. Quantum states and transformations. Quantum mechanics is usually
formulated in terms of states and transformations of states. See [32] for general
information on this topic with an orientation on quantum computing.

In quantum mechanics, pure states are unit norm vectors in a Hilbert space,
usually the space C

k. We use the Dirac notation for pure states. So a pure state is
denoted |φ〉 or

∑
x∈{0,...,k−1} αx|x〉 with

∑
x∈{0,...,k−1} |αx|2 = 1 and with { |x〉 |x ∈

{0, . . . , k − 1}} being an orthonormal basis of C
k.

Inner products in the Hilbert space are denoted 〈φ|ψ〉.
If k = 2l, then the basis is also denoted { |x〉 |x ∈ {0, 1}l}. In this case the space

C
2l

is the l-wise tensor product of the space C
2. The latter space is called a qubit,

and the former space consists of l qubits.
As usual, measurements of observables and unitary transformations are considered

as basic operations on states; see [32] for definitions.

2.2. The communication model. Now we provide definitions of the compu-
tational models considered in the paper. We begin with the model of classical com-
munication complexity.

Definition 2.1. Let f : X × Y → {0, 1} be a function. In a classical communi-
cations protocol, players Alice and Bob receive x ∈ X and y ∈ Y , resp., and compute
f(x, y). The players exchange binary encoded messages.

In a deterministic protocol all computations of Alice and Bob are determinis-
tic. The communication complexity of a protocol is the worst case number of bits
exchanged for any input. The deterministic communication complexity DC(f) of f is
the complexity of an optimal protocol for f .

In a randomized protocol both players have access to private random bits. In the
bounded error model the output is required to be correct with probability 1− ε for some
constant 1/2 > ε ≥ 0. The bounded error randomized communication complexity of
a function BPCε(f) is then defined analogously to the deterministic communication
complexity. The worst case communication is taken over both the inputs and the
random bits. We set BPC(f) = BPC1/3(f).

In a weakly unbounded error protocol the output has to be correct with probability
exceeding 1/2. If the worst case error of the protocol (over all inputs and coin tosses)
is 1/2 − δ and the worst case communication is c, then the cost of the protocol is
defined as c − �log δ�. The cost of an optimal weakly unbounded error protocol for a
function is called UPC(f).

Definition 2.2. Let us note that the communication matrix of a function f :
X×Y → Z is the matrix with rows labeled by x ∈ X, columns labeled by y ∈ Y , and the
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entry in row x and column y equal to f(x, y) ∈ Z. A rectangle in the communication
matrix is a product set of inputs labeled by A × B with A ⊆ X and B ⊆ Y . Such a
rectangle is monochromatic iff all its entries are equal.

It is easy to see that a deterministic protocol partitions the communication matrix
into a set of monochromatic rectangles, each corresponding to the set of inputs sharing
the same communication string produced in the run of the protocol.

The above notion of weakly unbounded error protocols coincides with another
type of protocol, namely, majority nondeterministic protocols, which accept an input
whenever there are more nondeterministic computations leading to acceptance than to
rejection. For a proof see Theorem 10 in [20]. So, weakly unbounded error protocols
correspond to certain majority covers for the communication matrix as follows.

Fact 2.3. There is a weakly unbounded error protocol with cost O(c) iff there is
a set of 2O(c) rectangles, each labeled either 1 or 0, such that for every input at least
one half of the adjacent rectangles have the label f(x, y).

Note that there is another type of protocol, the truly unbounded error protocol,
in which the cost is not dependent on the error, defined by Paturi and Simon [34].
Recently a linear lower bound for the unbounded error communication complexity of
IPn has been obtained in [17]. It is not hard to see that the same bound holds for
quantum communication as well. An interesting observation is that the lower bound
method of [17] is actually equivalent to the discrepancy lower bound restricted to the
uniform distribution.

Now we turn to quantum communication protocols. For a more formal definition
of quantum protocols see [41].

Definition 2.4. In a quantum protocol both players have a private set of qubits.
Some of the qubits are initialized to the input before the start of the protocol, while the
other qubits are in state |0〉. In a communication round, one of the players performs
some unitary transformation on the qubits in his or her possession and then sends
one of these qubits to the other player (the latter step does not change the global state
but rather the possession of individual qubits). The choices of the unitary operations
and of the qubit to be sent are fixed in advance by the protocol.

At the end of the protocol the state of some qubit belonging to one player is mea-
sured and the result is taken as the output and communicated to the other player. The
communication complexity of the protocol is the number of qubits exchanged.

In a (bounded error) quantum protocol the correct answer must be given with
probability 1− ε for some 1/2 > ε ≥ 0. The (bounded error) quantum complexity of a
function, called BQCε(f), is the complexity of an optimal protocol for f . BQC(f) =
BQC1/3(f).

In a weakly unbounded error quantum protocol the output has to be correct with
probability exceeding 1/2. If the worst case error of the protocol (over all inputs) is
1/2− δ and the worst case communication is c, then the cost of the protocol is defined
as c− �log δ�. The cost of an optimal weakly unbounded error protocol for a function
is called UQC(f).

In a nondeterministic quantum protocol for a Boolean function f all inputs in
f−1(0) have to be rejected with certainty, while all other inputs have to be accepted
with positive probability. The corresponding complexity is denoted NQC(f).

We have to note that in the defined model no intermediate measurements are
allowed to control either the choice of qubits to be sent or the time of the final mea-
surement. Thus for all inputs the same amount of communication and the same num-
ber of message exchanges are used. As a generalization one could allow intermediate



26 HARTMUT KLAUCK

measurements, whose results could be used to choose (several) qubits to be sent and
possibly when to stop the communication protocol. One would have to make sure that
the receiving player knows when a message ends. While the model in our definition
is in the spirit of the “interacting quantum circuits” definition given by Yao [41], the
latter definition would more closely resemble “interacting quantum Turingmachines.”
Obviously the latter model can be simulated by the former such that in each com-
munication round exactly one qubit is communicated. All measurements can then be
deferred to the end by standard techniques. This increases the overall communication
by a factor of 2 (but leads to an increase in the number of message exchanges).

2.3. Fourier analysis. We consider functions f : {0, 1}n → R. Define

〈f, g〉 =
1

2n

∑

x∈{0,1}n

f(x) · g(x)

as an inner product and use the norm ||f ||2 =
√〈f, f〉. We identify {0, 1}n with Z

n
2

and describe the Fourier transform. A basis for the space of functions from Z
n
2 → R

is given by

χz(x) = (−1)IPn(x,z)

for all z ∈ Z
n
2 . Then the Fourier transform of f with respect to that basis is

∑

z

f̂zχz,

where the f̂z = 〈f, χz〉 are called the Fourier coefficients of f . If the functions are
viewed as vectors, this is closely related to the Hadamard transform used in quantum
computing.

The following facts are well known.
Fact 2.5 (Parseval). For all f , ||f ||22 =

∑
z f̂

2
z .

Fact 2.6 (Cauchy–Schwarz).

∑

z

f̂2
z ·

∑

z

ĝ2
z ≥

(
∑

z

|f̂z · ĝz|
)2

.

When we consider (communication) functions f : Z
n
2 × Z

n
2 → R, we use the basis

functions

χz,z′(x, x′) = (−1)IPn(x,z)+IPn(x′,z′)

for all z, z′ ∈ Z
n
2 ×Z

n
2 in Fourier transforms. The Fourier transform of f with respect

to that basis is
∑

z,z′

f̂z,z′χz,z′ ,

where the f̂z,z′ = 〈f, χz,z′〉 are the Fourier coefficients of f .
We will decompose communication protocols into sets of weighted rectangles.

For each rectangle Ri = Ai × Bi ⊆ {0, 1}n × {0, 1}n let Ri, Ai, Bi also denote the
characteristic functions associated with the rectangle. Then let αi = |Ai|/2n be the
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uniform probability of x being in the rectangle, and let βi = |Bi|/2n be the uniform
probability of y being in the rectangle. Let α̂z,i denote the Fourier coefficients of Ai,

and let β̂z,i denote the Fourier coefficients of Bi. It is easy to see that α̂z,i · β̂z′,i is
the z, z′-Fourier coefficient of the rectangle function Ri.

For technical reasons we will sometimes work with functions f , whose range is
{−1, 1}. Note that we can set f = 2g − 1 for a function g with range {0, 1}. Since
the Fourier transform is linear, the effect on the Fourier coefficients is that they get
multiplied by 2, except for the coefficient of the constant basis function, which is also
decreased by 1.

2.4. Discrepancy, sensitivity, and entropy. We now define the discrepancy
bound.

Definition 2.7. Let μ be any distribution on {0, 1}n × {0, 1}n and let f be any
function f : {0, 1}n × {0, 1}n → {0, 1}. Then let

discμ(f) = max
R

|μ(R ∩ f−1(0)) − μ(R ∩ f−1(1))|,

where R runs over all rectangles in the communication matrix of f .
Then denote disc(f) = minμ discμ(f).
The application to communication complexity is as follows (see [28] for a less

general statement; we also provide a proof for completeness at the end of section 3).
Fact 2.8. For all f ,

BQC1/2−ε(f) = Ω(log(ε/disc(f))).

A quantum protocol which computes a function f correctly with probability 1/2 +
ε over a distribution μ on the inputs (and over its measurements) needs at least
Ω(log(ε/discμ(f))) communication.

We will prove a lower bound on quantum communication complexity in terms of
average sensitivity. The average sensitivity of a function measures how many of the n
possible bit flips in a random input change the function value. We define this formally
for functions with range {−1, 1}.

Definition 2.9. Let f : {0, 1}n → {−1, 1} be a function. For a ∈ {0, 1}n let
sa(f) =

∑n
i=1

1
2
|f(a) − f(a⊕ ei)| for the vector ei containing a one at position i and

zeroes elsewhere. sa(f) is the sensitivity of f at a. Then the average sensitivity of f
is defined as s̄(f) =

∑
a∈{0,1}n

1
2n sa(f).

The connection to Fourier analysis is made by the following fact first observed in
[23].

Fact 2.10. For all f : {0, 1}n → {−1, 1},

s̄(f) =
∑

z∈{0,1}n

|z| · f̂2
z .

So the average sensitivity can be expressed in terms of the expected “height” of
Fourier coefficients under the distribution induced by the squared coefficients.

One more notion we will use in lower bounds is entropy.
Definition 2.11. The entropy of a vector (f1, . . . , fm) with fi ≥ 0 for all i and∑

fi ≤ 1 is H(f) = −∑m
i=1 fi log fi.

We follow the convention 0 log 0 = 0. We will consider the entropy of the vector of
squared Fourier coefficients H(f̂2) = −∑

z f̂
2
z log(f̂2

z ). This quantity has the following
useful property.
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Lemma 2.12. For any f : {0, 1}n → R with ||f ||2 ≤ 1,

H(f̂2) ≤ 2 log

⎛
⎝1 +

∑

z∈{0,1}n

|f̂z|
⎞
⎠ .

Proof.

H(f̂2) =
∑

z

f̂2
z log

1

|f̂z|2

= 2

(
∑

z

f̂2
z log

1

|f̂z|
+

(
1 −

∑

z

f̂2
z

)
· log 1

)

≤ 2 log

(
∑

z

f̂2
z

1

|f̂z|
+

(
1 −

∑

z

f̂2
z

)
· 1
)

(by Jensen’s inequality)

≤ 2 log

(
1 +

∑

z

|f̂z|
)
.

3. Decomposing quantum protocols. In this section we show how to decom-
pose a quantum protocol into a set of weighted rectangles, whose sum approximates
the communication matrix.

Lemma 3.1. For all Boolean functions f : {0, 1}n × {0, 1}n → {0, 1}, and for all
1/2 > ε > 0, if there is a quantum protocol for f with communication c and error 1/3,
then there is a real α ∈ [0, 1], and a set of 2O(c log(1/ε))/ε4 rectangles Ri with weights
wi ∈ {−α, α}, so that

∑

i

wiRi[x, y] ∈
{

[1 − ε, 1] for f(x, y) = 1,
[0, ε] for f(x, y) = 0.

Proof. First we perform the usual success amplification to boost the success
probability of the quantum protocol to 1 − ε/4, increasing the communication to
c′ = O(c log(1/ε)) at most. Using standard techniques [7] we can assume that all
amplitudes used in the protocol are real. Now we employ the following fact proved in
[28] and [41].

Fact 3.2. The final state of a quantum protocol exchanging c′ qubits on an input
(x, y) can be written

∑

m∈{0,1}c′

αm(x)βm(y)|Am(x)〉|mc′〉|Bm(y)〉,

where |Am(x)〉, |Bm(y)〉 are pure states and αm(x), βm(y) are real numbers from the
interval [−1, 1].

Now let the final state of the protocol on (x, y) be
∑

m∈{0,1}c′

αm(x)βm(y)|Am(x)〉|mc′〉|Bm(y)〉,

and let

φ(x, y) =
∑

m∈{0,1}c′−1

αm1(x)βm1(y)|Am1(x)〉|1〉|Bm1(y)〉
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be the part of the state which yields output 1. The acceptance probability of the
protocol on (x, y) is now the inner product 〈φ(x, y)|φ(x, y)〉. Using the convention

amp(x) = αm1(x)αp1(x)〈Am1(x)|Ap1(x)〉,

bmp(y) = βm1(y)βp1(y)〈Bm1(y)|Bp1(y)〉,

this can be written as
∑

m,p amp(x)bmp(y). Viewing amp and bmp as 2n-dimensional

vectors, and summing their outer products over all m, p yields a sum of 22c′ rank
1 matrices containing reals between −1 and 1. Rewrite this sum as

∑
i αiβ

T
i with

1 ≤ i ≤ 22c′ to save notation. The resulting matrix is an approximation of the
communication matrix within componentwise error ε/4.

In the next step define for all i a set Pα,i of the indices of positive entries in
αi, and the set Nα,i of the indices of negative entries of αi. Define Pβ,i and Nβ,i

analogously. We want all rank 1 matrices to have either only positive or only negative
entries. For this we split the matrices into four matrices each, depending on the
positivity/negativity of αi and βi. Let

α′
i(x) =

{
0 if x ∈ Nα,i,
αi(x) if x ∈ Pα,i,

and analogously for β′
i; then set the positive entries in αi and βi to 0. Consider the

sum
∑

i(αiβ
T
i )+

∑
i(α

′
iβ

T
i )+

∑
i(αiβi′T )+

∑
i(αi′βi′T ). This sum equals the previous

sum, but here all matrices are either nonnegative or nonpositive. Again rename the
indices so that the sum is written

∑
i αiβ

T
i (to save notation).

At this point we have a set of C = 22c′+2 rank one matrices which are either
nonnegative or nonpositive with the above properties. We want to round entries and
split matrices into uniformly weighted matrices.

Consider the intervals [0, ε/(16C)] and [ε/(16C) · k, ε/(16C) · (k + 1)], for all k up
to the least k, so that the last interval includes 1. Obviously there are O(C/ε) such
intervals. Round every positive αi(x) and βi(x) to the upper bound of the first interval
it is included in, and change the negative entries analogously by rounding to the upper
bounds of the corresponding negative intervals. The overall error introduced on an
input (x, y) in the approximating sum

∑
i αi(x)βi(y) is at most

∑

i

αi(x) · ε/(16C)

+
∑

i

βi(y) · ε/(16C) + C · ε2/(16C)2

≤ ε/4.

The sum of the matrices is now between 1− ε/2 and 1 + ε/4 for inputs in f−1(1) and
between −ε/4 and ε/2 for inputs in f−1(0). Add a rectangle with weight ε/4 covering
all inputs. Dividing all weights by 1 + ε/2 renormalizes again without increasing the
error beyond ε.

Now we are left with C rank 1 matrices αiβ
T
i containing entries from an O(C2/ε2)

size set only. Splitting the rank 1 matrices into rectangles containing only the entries
with one of the values yields O(C3/ε2) weighted rectangles, whose (weighted) sum
approximates the communication matrix within error ε.
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In a last step we replace any rectangle of weight 2/(256C2(1 + ε/2)) · k · l with kl
rectangles of weights ±α for α = ε2/(256C2(1+ε/2)). The rectangle weighted ε/4 can
be replaced with a set of rectangles of weight α each, introducing a negligible error.
So the overall number of rectangle is at most O(C5/ε4) = O(210c′/ε4).

At first glance the covers obtained in this section seem to be very similar to
majority covers: we have a set of rectangles with either negative or positive weights
of absolute value α, and if the weighted sum of rectangles adjacent to some input
exceeds a threshold, then it is a 1-input. But we have one more property, namely,
that summing the weights of the adjacent rectangles approximates the function value.
Actually the lower bounds in the next sections and the characterization of majority
covers (and weakly unbounded error protocols and the discrepancy bound) in section
8 show that there is an exponential difference between the sizes of the two types of
covers.

Now we state another form of the lemma: this time, if the error is close to 1/2,
the proof is essentially the same as for Lemma 3.1, omitting the success amplification
at the beginning.

Lemma 3.3. For all Boolean functions f : {0, 1}n × {0, 1}n → {0, 1}, and for all
1/2 > ε > 0, if there is a quantum protocol for f with communication c and error
1/2− ε, then there is a real α ∈ [0, 1], and a set of 2O(c)/ε4 rectangles Ri with weights
wi ∈ {−α, α}, so that

∑

i

wiRi[x, y] ∈
{

[1/2 + ε/2, 1] for f(x, y) = 1,
[0, 1/2 − ε/2] for f(x, y) = 0.

Note that all results of this section easily generalize to functions with range
{−1,+1}. Furthermore all the results generalize to partial functions, i.e., the func-
tions may be undefined on some inputs. For those inputs the weighted covers produce
an arbitrary weight between 0 and 1.

As an application of the decomposition results we now prove Fact 2.8. A proof
of this result seems to be available only in the thesis of Kremer [28] and is stated in
less generality there, so we include a proof here.

Proof of Fact 2.8. Obviously it suffices to prove the second statement. Let μ be
any distribution on the inputs. Assume there is a protocol with communication c so
that the average correctness probability over μ and the measurements of the protocol
are at least 1/2 + ε.

Let P (x, y) denote the probability that the protocol accepts x, y and let K(x, y)
denote the probability that the protocol is correct on x, y. W.l.o.g. we assume that
μ(f−1(1)) ≥ μ(f−1(0)). Then we have

∑

x,y∈f−1(1)

μ(x, y)P (x, y)

−
∑

x,y∈f−1(0)

μ(x, y)P (x, y)

=
∑

x,y∈f−1(1)

μ(x, y)K(x, y)

+
∑

x,y∈f−1(0)

μ(x, y)K(x, y) − μ(f−1(0))

≥ 1/2 + ε− 1/2 = ε.
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Following the construction of Lemma 3.3 we get a set of C = 2O(c)/ε4 rectangles
Ri with weights wi so that the sum of these approximates the acceptance probability
of the protocol with componentwise additive error ε/2. Then

∑

x,y∈f−1(1)

μ(x, y)
∑

1≤i≤C

wiRi(x, y)

−
∑

x,y∈f−1(0)

μ(x, y)
∑

1≤i≤C

wiRi(x, y) ≥ ε− ε/2.

Exchanging sums gives us

∑

1≤i≤C

wi

⎛
⎝

∑

x,y∈f−1(1)

μ(x, y)Ri(x, y)−
∑

x,y∈f−1(0)

μ(x, y)Ri(x, y)

⎞
⎠ ≥ ε/2

and

∑

1≤i≤C

wi(μ(f−1(1) ∩Ri) − μ(f−1(0) ∩Ri)) ≥ ε/2.

Thus there is a rectangle Ri with μ(f−1(1)∩Ri)−μ(f−1(0)∩Ri) ≥ (ε/2)/C, since
|wi| ≤ 1. But for all rectangles we have μ(f−1(1) ∩Ri) − μ(f−1(0) ∩Ri) ≤ discμ(f),
hence discμ(f) ≥ (ε/2)/C, and finally

2O(c)

ε4
= C ≥ (ε/2)/discμ(f) ⇒ c ≥ Ω

(
log

ε

discμ(f)

)
.

4. A Fourier bound. In this section we describe a lower bound method first de-
veloped by Raz [35] for classical bounded error communication complexity. We prove
that the same method is applicable in the quantum case, using the decomposition
results from the previous section. The lower bound method is based on the Fourier
transform of the function.

As in section 2.3 we consider the Fourier transform of a communication function.
The basis functions are labeled with pairs of strings (z, z′). Denote by V the set of
all pairs (z, z). Let E ⊆ V denote some subset of indices of Fourier coefficients.

The basic idea of the lower bound is that the communication must be large when
the sum of the absolute values of a small set of Fourier coefficients is large.

Theorem 4.1. Let f be a total Boolean function f : {0, 1}n × {0, 1}n → {0, 1}.
Let E ⊆ V . Denote κ0 = |E| (the number of coefficients considered) and κ1 =∑

(z,z)∈E |f̂z,z| (the absolute value sum of coefficients considered). Then

• if κ1 ≥ Ω(
√
κ0), then BQC(f) = Ω(log(κ1)).

• if κ1 ≤ O(
√
κ0), then BQC(f) = Ω(log(κ1)/(log(

√
κ0) − log(κ1) + 1)).

Proof. We are given any quantum protocol for f with error 1/3 and some worst
case communication c. We have to put the stated lower bound on c. Following
Lemma 3.1 we can find a set of 2O(cd) weighted rectangles, so that the sum of these
approximates the communication matrix up to error 1/2d for any d ≥ 1, where the
weights are either α or −α for some real α between 0 and 1. We will fix d later. Let
{(Ri, wi)|1 ≤ i ≤ 2O(cd)} denote that set. Furthermore let g(x, y) denote the function
that maps (x, y) to

∑
i wiRi(x, y).



32 HARTMUT KLAUCK

First we give a lower bound on the sum of absolute values of the Fourier coefficients
in E for g, in terms of the respective sum for f , using the fact that g approximates f .
Obviously ||f − g||2 ≤ 1/2d. The identity of Parseval then gives us

∑

(z,z)∈E

(f̂z,z − ĝz,z)
2 ≤ ||f − g||22 ≤ 2−2d.

We make use of the following simple consequence of Fact 2.6.

Fact 4.2. Let |||v|||2 =
√∑m

i=1 v
2
i , and |||v|||1 =

∑m
i=1 |vi|. Then |||v − w|||2 ≥

|||v − w|||1/
√
m ≥ (|||v|||1 − |||w|||1)/

√
m.

Hence

∑

E

|ĝz,z| ≥
∑

E

|f̂z,z| −
√
|E| ·

∑

E

(f̂z,z − ĝz,z)2

≥ κ1 −√
κ0 · 2−d.

Thus the sum of absolute values of the chosen Fourier coefficients of g must be
large, if there are not too many such coefficients, or if the error is small enough
to suppress their number in the above expression. Call P = (κ1 − √

κ0 · 2−d), so∑
E |ĝz,z| ≥ P .

Now due to the decomposition of the quantum protocol used to obtain g, the
function is the weighted sum of C = 2O(cd) rectangles. Since the Fourier transform is
a linear transformation, the Fourier coefficients of g are weighted sums of the Fourier
coefficients of the rectangles. Furthermore the Fourier coefficients of a rectangle are
the products of the Fourier coefficients of the characteristic functions of the sets
constituting the rectangle, as argued in section 2.3. So ĝz,z =

∑
i wi · α̂z,i · β̂z,i and

∑

E

|ĝz,z| ≤
∑

E

∑

i

|wi · α̂z,i · β̂z,i|.(4.1)

For all rectangles Ri we have
∑

E α̂2
z,i ≤ ||Ai||22 ≤ 1 by the identity of Parseval.

Using the Cauchy–Schwarz inequality (Fact 2.6) we get
∑

E |α̂z,iβ̂z,i| ≤ 1. But accord-
ing to (4.1) the weighted sum of these values, with weights between −1 and 1, adds
up to at least P , and so at least C ≥ P rectangles are there, and thus cd = Ω(logP ).

If now κ1 ≥ Ω(
√
κ0), then let d = O(1), and we get the lower bound c =

Ω(log(κ1)). Otherwise set d = O(log
√
κ0 − log κ1 + 1) to get P = κ1/2 as well

as c = Ω(log(P )/d) = Ω(log(κ1)/(log(
√
κ0) − log(κ1) + 1)).

Let us note one lemma that is implicit in the above proof, and which will be used
later.

Lemma 4.3. Let g : {0, 1}n ×{0, 1}n → [−1, 1] be any function such that there is

a set of Q rectangles Ri with weights wi ∈ [−1, 1] so that g(x, y) =
∑Q

i=1 wiRi(x, y)
for all x, y. Then

∑

z∈{0,1}n

|ĝz,z| ≤ Q.

5. Applications. In this section we give applications of the lower bound method.
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5.1. Quantum nondeterminism versus bounded error. We first use the
lower bound method to prove that nondeterministic quantum protocols may be ex-
ponentially more efficient than bounded error quantum protocols. Raz has shown the
following [35].

Fact 5.1. For the function HAM
n/2
n consider the set of Fourier coefficients with

labels from a set E containing those strings z, z with z having n/2 ones. Then

κ0 =

(
n

n/2

)
, κ1 =

(
n

n/2

)(
n/2

n/4

)
1/2n.

Thus log(
√
κ0) − log(κ1) = O(log n). Also κ1 = Θ(2n/2/n), and thus log κ1 =

Θ(n).
Applying the lower bound method we get the following:

Theorem 5.2. BQC(HAM
n/2
n ) = Ω(n/ log n).

Now we prove that the nondeterministic quantum complexity of HAM
n/2
n is small.

We use the following technique by de Wolf [40, 22].
Fact 5.3. Let the nondeterministic rank (denoted nrank) of a Boolean function f

be the minimum rank of a matrix that contains 0 at positions corresponding to inputs
(x, y) with f(x, y) = 0 and nonzero reals elsewhere. NQC = log nrank(f) + 1.

Theorem 5.4. NQC(HAM
n/2
n ) = O(log n).

Proof. It suffices to prove that the nondeterministic rank is polynomial. Define
rectangles Mi, which include inputs with xi = 1 and yi = 0, and Ni, which include
inputs with xi = 0 and yi = 1. Let E denote the all one matrix. Then let M =∑

i(Mi + Ni) − n/2 · E. This is a matrix which is 0 exactly at those inputs with∑
i(xi ⊕ yi) = n/2. Furthermore M is composed of 2n + 1 weighted rectangles and

thus the nondeterministic rank of HAM
n/2
n is O(n).

5.2. The complexity of the Hamming distance problem. Now we deter-
mine the complexity of HAM t

n and show that quantum bounded error communication
does not allow a significant speedup.

Theorem 5.5. Let t : N → N be any monotone increasing function with t(n) ≤
n/2. Then

BQC(HAM t(n)
n ) ≥ Ω

(
t(n)

log t(n)
+ log n

)
.

Proof. We already know that the complexity of HAM
n/2
n is Ω(n/ log n). Now

consider functions HAM t
n for smaller t. The logarithmic lower bound is obvious from

the at most exponential speedup obtainable by quantum protocols [28] compared to
deterministic protocols.

Fixing n− 2t pairs of inputs variables to the same values leaves us with 2t pairs
of free variables, and the function accepts if HAM t

2t accepts on these inputs. Thus
the lower bound follows.

Theorem 5.6.

BPC(HAM t
n) = O(t log n).

Proof. The protocol determines (and removes) positions in which x, y are different,
until no more such positions are present, or until t + 1 such positions are found; in
both cases the function value can be decided.
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Nisan [33] has given a protocol in which Alice and Bob, given n-bit strings x, y,
compute the leftmost bit in which x, y differ. The protocol needs communication
O(log n− log ε) to solve this problem with error ε. Hence we can find such a position
with error 1/(3t) and communication O(log n), since t ≤ n. So Alice and Bob can
determine, with error 1/3, whether there are exactly t differences between x and y,
using communication O(t log n) as claimed.

Let us note that there is another way to prove this upper bound, based on the
fingerprinting protocol for EQn (see [29]): Alice sends a fingerprint for input x to Bob
that allows him to check equality between x and strings z with success probability
1 − 1/n2t. Such fingerprints can have length O(t log n). Bob can then go through
all z strings in Hamming distance t from y and check whether z = x. With high
probability all the tests are performed correctly and Bob knows the result. Note that
this protocol needs only one message exchange.

6. More Fourier bounds. In this section we develop more methods for proving
lower bounds on quantum communication complexity in terms of properties of their
Fourier coefficients. Combining them yields a bound in terms of average sensitivity.

6.1. A bound employing one Fourier coefficient. Consider functions of the
type f(x, y) = g(x ∧ y). The Fourier coefficients of g measure how well the parity
function on a certain set of variables is approximated by g. But if g is correlated
with a parity (we hope on a large set of variables), then f should be correlated with
an inner product function. Then we hope the hardness result stated in Fact 2.8 is
applicable (even though f might have low discrepancy).

Theorem 6.1. For all total functions f : {0, 1}n×{0, 1}n → {0, 1} with f(x, y) =
g(x ∧ y) and all z ∈ {0, 1}n,

BQC(f) = Ω

( |z|
1 − log |ĝz|

)
.

Proof. We prove the bound for g with range {−1, 1}. Obviously the bound itself
changes only by a constant factor with this change, and the communication complexity
is unchanged.

Let z be the index of any Fourier coefficient of g. Let |z| = m. Basically ĝz
measures how well g approximates χz, the parity function on the m variables which
are 1 in z. Consider the following distribution μm on {0, 1}m×{0, 1}m: Each variable
is set to one with probability

√
1/2 and to zero with probability 1 − √

1/2. Then
every xi ∧ yi is one resp zero with probability 1/2. So under this distribution on the
inputs (x, y) to f we get the uniform distribution on the inputs z = x ∧ y to g.

We will get an approximation of IPm under μm with error 1/2− |ĝz|/4 by taking
the outputs of a protocol for f under a suitable distribution. We then use a hardness
result for IPm given by the following lemma.

Lemma 6.2. Let μm be the distribution on {0, 1}m×{0, 1}m, that is, the 2m-wise
product of the distribution on {0, 1}, in which 1 is chosen with probability

√
1/2. Then

discμm(IPm) ≤ O(2−m/4).

Clearly with Fact 2.8 we get that computing IPm with error 1/2 − ε under the
distribution μm needs quantum communication Ω(m/4 + log ε).

Let us prove the lemma. Lindsey’s lemma (see, e.g., [4]) states the following.
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Fact 6.3. Let R be any rectangle with a× b entries in the communication matrix
of IPm. Then let

∣∣|R ∩ IP−1
m (1)| − |R ∩ IP−1

m (0)|∣∣ ≤
√
ab2m.

The above fact allows us to compute the discrepancy of IPn under the uniform
distribution, and will also be helpful for μm.

μm is uniform on the subset of all inputs x, y containing k ones. Consider any
rectangle R. There are at most

(
2m
k

)
inputs with exactly k ones in that rectangle.

Furthermore if we intersect the rectangle containing all inputs x, y containing i ones
in x and j ones in y with R we get a rectangle containing at most

(
m
i

) · (mj
) ≤ (

2m
i+j

)

inputs. In this way R is partitioned into m2 rectangles, on which μm is uniform and
Lindsey’s lemma can be applied. Note that we partition the set of inputs with overall
k ones into up to m rectangles.

Let α =
√

1/2. The probability of any input with k ones is (1−α)2m−k ·αk. We
get the following upper bound on discrepancy under μm:

m∑

i,j=0

αi+j · (1 − α)2m−i−j ·
√(

m

i

)(
m

j

)
2m

≤ m2m/2 ·
2m∑

k=0

αk · (1 − α)2m−k ·
√(

2m

k

)

≤ m2m/2 · √2m + 1 ·
√√√√

2m∑

k=0

α2k · (1 − α)4m−2k ·
(

2m

k

)

≤ m
√

2m + 12m/2(α2 + (1 − α)2)m

≤ m
√

2m + 12m/2(2 −
√

2)m

≤ O(2−m/4).

This concludes the proof of Lemma 6.2.

To describe the way we use this hardness result, first we assume that the quantum
protocol for f is errorless. The Fourier coefficient for z measures the correlation
between g and the parity function χz on the variables that are ones in z. We first
show that χ1m can be computed with error 1/2 − |ĝz|/2 from g (or its complement).
To see this, consider ĝz = 〈g, χz〉 =

∑
a

1
2n g(a) ·χz(a). ĝz as W.l.o.g. assume that the

first m variables of z are its ones. So we can rewrite ĝz as

ĝz =
∑

b∈{0,1}n−m

1

2n−m

∑

a∈{0,1}m

1

2m
g(ab) · χz(ab).

Note that χz depends only on the first m variables. In other words, if we fix a random
b, the output of g has an expected advantage of |ĝz| over a random choice in computing
parity on the cube spanned by the first m variables. Consequently there must be some
b realizing that advantage. We fix that b, and use g(ab) (or −g(ab)) to approximate
χ1m . The error of this approximation is 1/2 − |ĝz|/2.

Next we show that IPm, resp., χ1m(x ∧ y) = χz((x ∧ y) ◦ b) is correlated with
g((x ∧ y) ◦ b) under some distribution.
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Let μ′
n be a distribution resulting from μn if all xi and yi for i = m+1, . . . , n are

fixed so that xi ∧ yi = bi−m and all other variables are chosen as for μn. Then

∣∣∣∣∣∣

∑

(x,y)∈{0,1}2·n

μ′
n(x, y) · g(x ∧ y) · χz(x ∧ y)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∑

a∈{0,1}m

g(ab) · χz(ab) ·
∑

x,y:x∧y=ab

μ′
n(x, y)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∑

a∈{0,1}m

g(ab) · χz(ab) · 1

2m

∣∣∣∣∣∣
≥ |ĝz|.

Hence computing f on μ′
n with no error is at least as hard as computing IPm on

distribution μm with error 1/2−|ĝz|/2, which needs at least Ω(|z|/4+ log |ĝz|) qubits
communication due to the discrepancy bound.

We assumed previously that f is computed without error. Now assume the error
of a protocol for f is 1/3. Then reduce the error probability to |ĝz|/4 by repeating the
protocol d = O(1−log |ĝz|) times and taking the majority output. Computing f on μ′

n

with error |ĝz|/4 is at least as hard as computing IPm on distribution μm with error
1/2 − |ĝz|/2 + |ĝz|/4, which needs at least Ω(|z|/4 + log |ĝz|) qubits communication.
The error introduced by the protocol is smaller than the advantage of the function f
in computing IPm.

So a lower bound of Ω(|z|/4 + log |ĝz|) holds for the task of computing f with
error |ĝz|/4. This implies a lower bound of

Ω(|z|/4 + log |ĝz|)
d

= Ω

( |z|
1 − log |ĝz|

)

for the task of computing f with error 1/3.
Note that the discrepancy of f in the above theorem may be much higher than

the discrepancy of IPm (leading to weak lower bounds for f), but that f approximates
IPm well enough to transfer the lower bound known for IPm (which happens to be
provable via low discrepancy).

6.2. A sensitivity bound. A weaker, averaged form of the bound in the above
subsection is the following.

Lemma 6.4. For all functions f : {0, 1}n × {0, 1}n → {−1, 1} with f(x, y) =
g(x ∧ y),

BQC(f) = Ω

(
s̄(g)

H(ĝ2) + 1

)
.

Proof. First note that s̄(g) =
∑

z ĝ
2
z |z| by Fact 2.10. Thus we can read the bound

BQC(f) = Ω

( ∑
z ĝ

2
z |z|∑

z ĝ
2
z(1 − 2 log |ĝz|)

)
.

The ĝ2
z define a probability distribution on the z ∈ {0, 1}n. If we choose a z

randomly, then the expected Hamming weight of z is s̄(g). Also the expectation of
1 − 2 log |ĝz| is 1 + H(ĝ2). We use the following lemma.
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Lemma 6.5. Let a1, . . . , am be nonnegative and b1, . . . , bm be positive numbers
and let p1, . . . , pm be a probability distribution. Then there is an i with

ai
bi

≥
∑

j pjaj∑
j pjbj

.

To see the lemma let a =
∑

j pjaj and b =
∑

j pjbj and assume that for all i we
have aib < bia. Then also for all i with pi > 0 we have piaib < pibia, and hence
b
∑

i piai < a
∑

i pibi, which is a contradiction.
So there must be one z, such that |z|/(1− log ĝ2

z) ≥ s̄(g)/(1+H(ĝ2)). Using that
particular z in the bound derived in Theorem 6.1 finishes our proof.

The above bound decreases with the entropy of the squared Fourier coefficients.
This seems unnecessary, since the method of Theorem 4.1 suggests that functions
with highly disordered Fourier coefficients should be hard. This leads us to the next
bound.

Lemma 6.6. For all functions f : {0, 1}n × {0, 1}n → {−1, 1},

BQC(f) = Ω

(
HD(f̂2)

log n

)
,

where HD(f̂2) = −∑
z f̂

2
z,z log f̂2

z,z.
Proof. Consider any quantum protocol for f with communication c. As described

in Lemma 3.1, we can find a set of 2O(c log n) weighted rectangles so that their sum
yields a function h(x, y) that approximates f entrywise within error 1/n2.

Consequently, due to Lemma 4.3, the sum of certain Fourier coefficients of h is
bounded:

log
∑

z∈{0,1}n

|ĥz,z| ≤ O(c log n).

Also −∑
z∈{0,1}n ĥ2

z,z log ĥ2
z,z ≤ 2 log(1+

∑
z∈{0,1}n |ĥz,z|) ≤ O(c log n) due to Lemma

2.12.
But on the other hand ||f − h||2 ≤ 1/n2, which we will use to relate HD(f̂2) to

HD(ĥ2). We employ the following lemma.
Lemma 6.7. Let f, h : {0, 1}n × {0, 1}n → R with ||f ||2, ||h||2 ≤ 1. Then

∑

z∈{0,1}n

|f̂2
z,z − ĥ2

z,z| ≤ 3||f − h||2.

Let us prove the lemma. Define

Minz =

{
f̂z,z if |f̂z,z| ≤ |ĥz,z|,
ĥz,z if |ĥz,z| < |f̂z,z|

and

Maxz =

{
f̂z,z if |f̂z,z| > |ĥz,z|,
ĥz,z if |ĥz,z| ≥ |f̂z,z|.

Then
∑

z∈{0,1}n |f̂2
z,z − ĥ2

z,z| =
∑

z Max2
z − Min2

z and

||f − h||22 ≥
∑

z

(f̂z,z − ĥz,z)
2 =

∑

z

(Minz − Maxz)
2.
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Due to the triangle inequality, we have

√∑

z

Min2
z + ||f − h||2 ≥

√∑

z

Max2
z

and
√∑

z

Min2
z ≥

√∑

z

Max2
z − ||f − h||2,

which implies

∑

z

Min2
z ≥

∑

z

Max2
z − 2

√∑

z

Max2
z · ||f − g||2

and

∑

z

Max2
z − Min2

z ≤ 2

√∑

z

Max2
z · ||f − h||2

≤ 2

√∑

z

f̂2
z,z + ĥ2

z,z · ||f − h||2

≤ 2
√

2||f − h||2.
Lemma 6.7 is proved.

So the distribution given by the squared z, z-Fourier coefficients of f is close to
the vector of the squared z, z-Fourier coefficients of h. Then also the entropies are
quite close, by the following fact (see Theorem 16.3.2 in [15]).

Fact 6.8. Let p, q be distributions on {0, 1}n with d =
∑

z |pz − qz| ≤ 1/2. Then
|H(p) −H(q)| ≤ d · n− d log d.

Actually the fact also holds if p, q are subdistributions, i.e., if they consist of
nonnegative numbers summing up to at most 1.

So we get

HD(ĥ2) ≥ HD(f̂2) −O(1/n).

Remembering that HD(ĥ2) = O(c log n) we get

HD(f̂2) ≤ O(c log n + 1/n).

This concludes the proof.
If f(x, y) = g(x⊕ y), then HD(f̂2) = H(f̂2) = H(ĝ2). Now we would like to get

rid of the entropies in our lower bounds at all, since the entropy of the squared Fourier
coefficients is, in general, hard to estimate. Therefore we would like to combine the
bounds of Lemmas 6.4 and 6.6. The first holds for functions g(x ∧ y); the second for
functions g(x⊕ y).

Definition 6.9. A communication problem f : {0, 1}n × {0, 1}n → {−1, 1} can
be reduced to another problem h : {0, 1}m × {0, 1}m → {−1, 1} if there are functions
a, b so that f(x, y) = h(a(x), b(y)) for all x, y.

In this case the communication complexity of h is at least as large as the commu-
nication complexity of f . Note that if m is much larger than n, a lower bound which
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is a function of n translates into a lower bound, which is a function of m, and is thus
“smaller.” For more general types of reductions in communication complexity see [4].

If we can reduce g(x ∧ y) and g(x⊕ y) to some f , then combining the bounds of
Lemmas 6.4 and 6.6 gives a lower bound of Ω(s̄(g)/(1+H(ĝ2))+H(ĝ2)/ log n), which
yields Corollary 1.3.

6.3. A bound involving singular values. We return to the technique of
Lemma 6.6. For many functions, like IPm, the entropy of the squared diagonal
Fourier coefficients is small, because these coefficients are all very small. We con-
sider the entropy of a vector of values that sum to something much smaller than 1 in
many cases. Consequently it may be useful to consider other unitary transformations
instead of the Fourier transform.

It is well known that any quadratic matrix M can be brought into diagonal form
by multiplying with unitary matrices; i.e., there are unitary U, V so that M = UDV ∗

for some positive diagonal D. The entries of D are the singular values of M , i.e., they
are unique and equal to the eigenvalues of

√
MM∗; see [8].

Consider a communication matrix for a function f : {0, 1}n × {0, 1}n → {−1, 1}.
Then let Mf denote the communication matrix divided by 2n. Let σ1(f), . . . , σ2n(f)
denote the singular values of Mf in some decreasing order. In the case when Mf is
symmetric these are just the absolute values of its eigenvalues. Let σ2(f) denote the
vector of squared singular values of Mf . Note that the sum of the squared singular
values is 1. The following theorem is a modification of Lemma 6.6 and Theorem 4.1.

Theorem 6.10. Let f : {0, 1}n × {0, 1}n → {−1, 1} be a total Boolean function.

Then BQC(f) = Ω(H(σ2(f))/ log n).

Let κk = σ1(f) + · · · + σk(f).

If κk ≥ Ω(
√
k), then BQC(f) = Ω(log(κk)).

If κk ≤ O(
√
k), then BQC(f) = Ω(log(κk)/(log(

√
k) − log(κk) + 1)).

Proof. We first consider the entropy bound and proceed similarly as in the proof
of Lemma 6.6. Let f be the considered function and let h be the function computed
by a protocol decomposition with error 1/n2 consisting of P rectangles with logP =
O(c log n) for the communication complexity c of some protocol computing f with
error 1/3.

Mf denotes the communication matrix of f divided by 2n; let Mh be the corre-
sponding matrix for h. Using the Frobenius norm on the matrices, we have ||Mf −
Mh||F = ||f −h||2 ≤ 1/n2. Then also the singular values of the matrices are close due
to the Hoffmann–Wielandt theorem for singular values; see Corollary 7.3.8 in [21].

Fact 6.11. Let A,B be two square matrices with singular values σ1 ≥ · · · ≥ σm

and μ1 ≥ · · · ≥ μm. Then

√∑

i

(σi − μi)2 ≤ ||A−B||F .

As in Lemma 6.6 we can use Lemma 6.7 to show that the L1-distance between
the vector of squared singular values of Mf and the corresponding vector for Mh is
bounded and use Fact 6.8 to show that the entropies of the squared singular values
of Mf and Mh are at most o(1) apart.

It remains to show that H(σ2(h)) is upper bounded by logP . Due to Lemma
2.12 H(σ2(h)) ≤ 2 log(1+

∑
i σi(h)). Due to the Cauchy–Schwarz inequality, we have
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2 log

(
1 +

∑

i

σi(h))

)

≤ 2 log

√∑

i

σ2
i (h)

√
rank(Mh) + O(1)

≤ log rank(Mh) + O(1) ≤ logP + O(1).

The last step holds since Mh is the sum of P rank 1 matrices. We get the desired
lower bound.

To prove the remaining part of the theorem we argue as in the proof of Theorem
4.1 that the sum of the selected singular values of Mh is large compared to the sum
of the selected singular values of Mf , then upper bound the former as above by the
rank of Mh and thus by P . The remaining argument is as in the proof of Theorem
4.1.

Note that for IPn all singular values are 1/2n/2, so the entropy of their squares
is n, while the entropy of the squared diagonal Fourier coefficients is close to 0, since
all these are 〈IPn, χz,z〉2 = 1/22n. The log of the sum of all singular values yields a
linear lower bound. In this case the bounds of Lemma 6.6 and Theorem 4.1 are very
small, while Theorem 6.10 gives large bounds.

Ambainis [2] has observed that Theorem 6.10 can also be deduced from a lower
bound on the quantum communication complexity of sampling [3], using success am-
plification and an argument relating the smallest number of singular values whose
sum is at least 1− κ2

k/(4k) to the sum of the first k singular values in the presence of
a sufficiently small error.

Note that Theorem 6.10 does not necessarily generalize our other bounds in the
sense that the results obtained by using Theorem 6.10 are better for all functions.

We mention that the quantity σ1 + · · · + σk is known as the Ky Fan k-norm of
a matrix [8]. Well-known examples of such norms are the case k = 1, which is the
spectral norm, and the case of maximal k, known as the trace norm. The Ky Fan
norms are unitarily invariant for all k, and there is a remarkable fact saying that if
matrix A has a smaller Ky Fan k-norm than B for all k, then the same holds for every
unitarily invariant norm. This leads to the interesting statement that the Raz-type
bound in Theorem 6.10 for a function g is smaller than the respective bound for f
for all k, iff for all unitarily invariant matrix norms |||Mg||| ≤ |||Mf |||. Under the
same condition the distribution (σ2

1(f), . . . , σ2
2n(f)) induced by the singular values of

Mf majorizes the distribution (σ2
1(g), . . . , σ2

2n(g)) induced by Mg. This implies that
H(σ2(f)) ≤ H(σ2(g)). Conversely we get an observation regarding the bounds in
Theorem 6.10: if the entropy bound for g is smaller than the entropy bound for f ,
then there is a k, so that the Raz-type bound for k applied to g is bigger than the
corresponding bound for f .

6.4. Examples. To conclude this section we give examples of lower bounds prov-
able using the methods described by Theorem 6.1 and Corollary 1.3.

Theorem 6.12. BQC(MAJn) = Ω(n/ log n).
Proof. We change the range of MAJn to {−1,+1}. Now consider the Fourier

coefficient with index z = 1n. MAJn = g(x ∧ y) for a function g that is 1, if at least
n/2 of its inputs are one. W.l.o.g. let n/2 be an odd integer. Thus any input to g
with n/2 ones is accepted by both g and χz. Call the set of these inputs I. Similarly
every input to g with an odd number of ones larger than n/2 is accepted by both
d and χz, and every input to g with an even number of ones smaller than n/2 is
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rejected by both d and χz. On all other inputs g and χz disagree. Thus there are |I|
inputs more being classified correctly by χz than are being classified incorrectly. The
Fourier coefficient ĝz is 2

(
n

n/2

)
/2n = Ω(1/

√
n). So the method of Theorem 6.1 gives

the claimed lower bound.

Note also that the average sensitivity of the function g with MAJn(x, y) = g(x∧y)
is Θ(

√
n).

As another example we consider a function g((x∧ y)⊕ z) with a nonsymmetric g.
Let MED(a) be the middle bit of the median of n/(2 log n) numbers of 2 logn bits
given in a. Let us compute a lower bound on the average sensitivity of MED. For
all inputs a there are Θ(n/ log n) numbers bigger than the median and Θ(n/ log n)
smaller than the median. For each number p different from the median we can switch
a single bit to put the changed number below, resp., above the median, shifting the
median in the sorted sequence by one position. For a random a such a bit flip entails
a change of the middle bit of the median with constant probability. Hence the average
sensitivity of MED is at least Ω(n/ log n). With Corollary 1.3 this gives us a lower
bound of Ω(

√
n/ log n) on the bounded error quantum communication complexity of

MED((x ∧ y) ⊕ z).

7. Application: Limits of quantum speedup. Consider COUNT t
n(x, y).

These functions do admit some speedup by quantum protocols; this follows from
a black box algorithm given in [9] (see also [5]) and the results of [11] connecting the
black box and the communication model.

Lemma 7.1. BQC(COUNT t
n) = O(

√
nt log n).

Note that the classical bounded error communication complexity of all COUNT t
n

is Θ(n) by a reduction from DISJn.

Theorem 7.2. Let t : N → N be any monotone increasing function with t(n) ≤
n/2. Then

BQC(COUNT t(n)
n ) ≥ Ω

(
t(n)

log t(n)
+ log n

)
.

Proof. First consider COUNT
n/2
n . This function is equivalent to a function

g(x ∧ y), in which g is 1 if the number of ones in its input is n/2 and −1 otherwise.
Consider the Fourier coefficient for z = 1n. For simplicity assume that n is even and
n/2 is odd. Then clearly ĝz = 2

(
n

n/2

)
/2n = Ω(1/

√
n). Thus the method of Theorem

6.1 gives us the lower bound Ω(n/ log n). Note that finding this lower bound is much

easier than the computations in section 5 for HAM
n/2
n , since we have only to consider

one coefficient.

Now consider functions COUNT t
n for smaller t. The logarithmic lower bound is

obvious from the at most exponential speedup obtainable by quantum protocols [28].

Fixing n/2−t pairs of inputs variables to ones and n/2−t pairs of input variables
to zeroes leaves us with 2t pairs of free variables and the function accepts if COUNT t

2t

accepts on these inputs. Thus the lower bound follows.

Computing the bounds for t = n1−ε yields Corollary 1.4.

8. Discrepancy and weakly unbounded error. Prior to this work, the only
general method for proving lower bounds on the quantum bounded error communica-
tion complexity has been the discrepancy method. We now characterize the parameter
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disc(f) in terms of the communication complexity of f . Due to Fact 2.8 we get for
all ε > 0,

BQC1/2−ε(f) = Ω(log(ε/disc(f)))

⇒ BQC1/2−ε(f) − log(ε) = Ω(log(1/disc(f))).

Thus UPC(f) ≥ UQC(f) = Ω(log(1/disc(f))).
Theorem 8.1. For all f : {0, 1}n×{0, 1}n → {0, 1}, UPC(f) = O(log(1/disc(f))+

log n).
Proof. Let disc(f) = 1/2c. We first construct a protocol with public random-

ness, constant communication, and error 1/2 − 1/2c+1, using the Yao principle, and
then switch to a usual weakly unbounded protocol (with private randomness) with
communication O(c + log n) and the same error using a result of Newman.

We know that for all distributions μ there is a rectangle with discrepancy at least
1/2c. Then the weight of ones is α + 1/2c+1 and the weight of zeroes is α − 1/2c+1,
or vice versa, on that rectangle (for some α ∈ [0, 1/2]).

We take that rectangle and partition the rest of the communication matrix into 2
more rectangles. Assign to each rectangle the label 0 or 1, depending on the majority
of function values in that rectangle according to μ. The error of the rectangles is at
most 1/2. If a protocol outputs the label of the adjacent rectangle for every input,
the error according to μ is only 1/2 − 1/2c+1.

This holds for all μ. Furthermore the rectangle partitions lead to deterministic
protocols with O(1) communication and error 1/2 − 1/2c+1: Alice sends the names
of the rectangles that are consistent with her input. Bob then picks the label of the
only rectangle consistent with both inputs.

We now invoke the following lemma due to Yao (as in [29]).
Fact 8.2. The following statements are equivalent for all f :

1. For each distribution μ there is a deterministic protocol for f with error ε
and communication d.

2. There is a randomized protocol in which both players can access a public
source of random bits, so that f is computed with error probability ε (over the random
coins), and the communication is d.

So we get an O(1) communication randomized protocol with error probability
1/2 − 1/2O(c) using public randomness. We employ the following result from [31] to
get a protocol with private randomness.

Fact 8.3. Let f be computable by a probabilistic protocol with error ε that
uses public randomness and d bits of communication. Then BPC(1+δ)ε(f) = O(d +
log( n

εδ )).

We may now choose δ = 1/2O(c) small enough to get a weakly unbounded error
protocol for f with cost O(c + log n).

Let us also consider the quantum version of weakly unbounded error protocols.
Theorem 8.4. For all f , UPC(f) = Θ(UQC(f)).
Proof. The lower bound is trivial, since the quantum protocol can simulate the

classical protocol.
For the upper bound we have to construct a classical protocol from a quantum

protocol. Consider a quantum protocol with error 1/2−ε ≤ 1/2−1/2c and communi-
cation c. Due to Lemma 3.3 this gives us a set of 2O(c) weighted rectangles, such that
the sum of the rectangles approximates the communication matrix entrywise within
error 1/2 − ε/2. The weights are real ±α with absolute value smaller than 1. Label
the −α weighted rectangles with 0 and the other rectangles with 1, and add (1/2)/α
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rectangles covering all inputs and bearing label 0. This clearly yields a majority cover
of size 2O(c), which is equivalent to a classical weakly unbounded error protocol using
communication O(c) due to Fact 2.3.

It is easy to see that there are weakly unbounded error protocols for MAJn,
HAM t

n, and COUNT t
n with cost O(log n). For MAJn consider the protocol where

Alice picks a random i from 1 to n and sends i, xi. If xi = yi = 1 they accept. Clearly,
if n is odd, this protocol is correct with probability 1/2 + 1/(2n). For even n > 2 the
protocol must be modified by accepting every input with probability 1/n beforehand.
Other threshold predicates can be computed similarly.

For HAM t
n we have w.l.o.g. that t ≤ n/2, since otherwise we can just complement

x and use a protocol for t′ = n− t. If we have a protocol that works for t = n/2 and
even n, we can just add n−2t dummy inputs (which are all different for Alice and Bob)
to solve the problem for other t, since t + (n − 2t) = n − t = (n + n − 2t)/2. The

protocol for HAM
n/2
n goes as follows: Alice rejects unconditionally with probability

1/3 + 1/(8n2), and otherwise picks i1, i2 from 1 to n and sends them along with the
corresponding xi. Bob now accepts if xi1 �= yi1 ∨xi2 = yi2 . For inputs with Hamming
distance d the acceptance probability is (2/3 − 1/(8n2)) · (1 − (d/n) · (1 − d/n)). So
inputs with d = n/2 are accepted with probability 1/2 − 1/O(n2); all other inputs
are accepted with probability at least 1/2 + 1/O(n2). The protocol for COUNT t

n is
similar.

MAJn is even a complete problem for the class of problems computable with
polylogarithmic cost by weakly unbounded error protocols. To see this note that this
class is equal to the class of majority nondeterministic protocols with polylogarithmic
communication [20], and so MAJn is complete by the techniques of [4]. So all these
problems allow only small discrepancy bounds.

Lemma 8.5. For f ∈ {MAJn, HAM t
n, COUNT t

n}, maxμ log(1/discμ(f)) =
O(log n).

9. Discussion. In this paper we have investigated the problem of proving lower
bounds on the bounded error quantum communication complexity. As opposed to
previous approaches our methods both are general and make use of the quantum
properties of the protocols (i.e., do not implicitly follow the pattern of simulating
a bounded error quantum protocol by an unbounded error classical protocol and
employing a lower bound method for the latter). Our results are strong enough
to show separations between unbounded error classical and bounded error quantum
communications, resp., between quantum nondeterministic and quantum bounded
error communications.

Our results do not address the more powerful model of quantum communication
complexity with prior entanglement [13, 14]. It would be interesting to obtain sim-
ilar results for this model. Recently an improved lower bound (compared to [14])
for the complexity of IPn in this model has been obtained in Nayak and Salzman
[30]. However, these bounds do not show hardness under a distribution like in the
second statement of Fact 2.8. So constructions similar to that of Theorem 6.1 remain
unknown for the model with prior entanglement.

More recently Razborov [37] has obtained much stronger lower bounds on the
quantum communication complexity of g(x ∧ y) for symmetric functions g, almost
tightly characterizing the quantum bounded error communication complexity of these
functions, even in the model with prior entanglement. This gives a Ω(

√
n); lower

bound for DISJn; previously superlogarithmic bounds for this function were known
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only for the cases when strong restrictions on the interaction are imposed [27] or
when the error probability is extremely small [12]. Razborov’s techniques are based
on showing good lower bounds on the minimal trace norm (sum of singular values)
of matrices approximating the communication matrix, similar to the approach in
Theorem 6.10. These new results can be used to show that in our Corollary 1.4
actually the upper bounds for COUNT t

n are tight.
The lower bound methods of this paper can also be applied to other types of

functions; see sections 5 and 6.4. It would be interesting to find tighter lower bounds
for these functions and to extend our results to the model with prior entanglement.

A major open problem in the area is to determine whether quantum bounded error
communication can ever be more than quadratically smaller than classical bounded
error communication for total functions. A first step to resolve this problem would
be to show a lower bound in terms of (one-sided) block sensitivity on the quantum
bounded error complexity of all functions g(x ∧ y) (with nonsymmetric g).

Regarding unbounded error protocols, a result of Forster [17] can easily be ex-
tended to show that the discrepancy bound restricted to the uniform distribution is
a lower bound on the unbounded error quantum communication complexity (not its
weak variant as considered in this paper; i.e., the communication of protocols with
error smaller than 1/2 is measured).

Finally, let us mention that the known quantum protocols that give a polynomial
speedup compared to randomized protocols for total functions need much interaction,
i.e., many communication rounds. It has been shown by Jain, Radhakrishnan, and
Sen [38] that this in inevitable for DISJn. Is there a function g(x⊕ y) which cannot
be computed optimally quantum by a 1-round protocol?
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Abstract. The design of new quantum algorithms has proven to be an extremely difficult task.
This paper considers a different approach to this task by studying the problem of quantum state
generation. We motivate this problem by showing that the entire class of statistical zero knowledge,
which contains natural candidates for efficient quantum algorithms such as graph isomorphism and
lattice problems, can be reduced to the problem of quantum state generation. To study quantum
state generation, we define a paradigm which we call adiabatic state generation (ASG) and which is
based on adiabatic quantum computation. The ASG paradigm is not meant to replace the standard
quantum circuit model or to improve on it in terms of computational complexity. Rather, our
goal is to provide a natural theoretical framework, in which quantum state generation algorithms
could be designed. The new paradigm seems interesting due to its intriguing links to a variety of
different areas: the analysis of spectral gaps and ground-states of Hamiltonians in physics, rapidly
mixing Markov chains, adiabatic computation, and approximate counting. To initiate the study
of ASG, we prove several general lemmas that can serve as tools when using this paradigm. We
demonstrate the application of the paradigm by using it to turn a variety of (classical) approximate
counting algorithms into efficient quantum state generators of nontrivial quantum states, including,
for example, the uniform superposition over all perfect matchings in a bipartite graph.
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1. Introduction. Quantum computation carries the hope of solving classically
intractable tasks in quantum polynomial time. The most notable success so far is
Shor’s quantum algorithm for factoring integers and for finding the discrete log [45].
Following Shor’s algorithm several other algorithms were discovered, such as Hall-
gren’s algorithm for solving Pell’s equation [31], Watrous’s algorithms for the group
black box model [48], and the Legendre symbol algorithm by van Dam and Hallgren
[17]. Except for [17] all of these algorithms fall into the framework of the hidden sub-
group problem and in fact use exactly the same quantum circuitry; the exception, [17],
is a different algorithm but also heavily uses Fourier transforms and exploits the spe-
cial algebraic structure of the problem. Recently, a beautiful new algorithm by Childs
et al. [13] was found which gives an exponential speed-up over classical algorithms
using an entirely different approach, namely quantum random walks. The algorithm,
however, works in the black box model and solves a fairly contrived problem.

In order to develop new quantum algorithms, it is crucial that we have a larger
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variety of quantum algorithmic techniques and approaches. In this paper we attempt
to make a step in that direction by studying the problem of quantum algorithm design
from a different point of view, that of “quantum state generation.”

It has been folklore knowledge for almost a decade already that the problem of
graph isomorphism, which is considered hard classically [37], has an efficient quantum
algorithm as long as a certain state, namely the superposition of all graphs isomorphic
to a given graph,

|αG〉 =
∑

σ∈Sn

|σ(G)〉,(1.1)

can be generated efficiently by a quantum Turing machine (here and in the rest of
the paper we ignore normalizing constants for the sake of brevity). The reason that
generating |αG〉 suffices is very simple: for two isomorphic graphs G1 and G2, the
states |αG1〉 and |αG2〉 are identical, whereas for two nonisomorphic graphs they are
orthogonal. Using a simple quantum circuit known as the SWAP test (see section
3.2), one can approximate the inner product between two given states and thus can
distinguish between the two cases of orthogonal and parallel |αG〉’s.

One is tempted to assume that such a state, |αG〉, is easy to construct, since
the equivalent classical distribution, namely the uniform distribution over all graphs
isomorphic to a certain graph, can be sampled from efficiently. Indeed, the state
|βG〉 =

∑
σ∈Sn

|σ〉 ⊗ |σ(G)〉 can easily be generated by this reasoning. However, |βG〉
is inadequate for our needs, as |βG1〉 and |βG2

〉 are always orthogonal. It is a curious
(and disturbing) fact of quantum mechanics that though |βG〉 is an easy state to
generate, so far no one knows how to generate |αG〉 efficiently, because we cannot
forget the value of |σ〉.

In this paper we systematically study the problem of quantum state generation.
We are interested in a restricted version of quantum state generation, that of gener-
ating states corresponding to efficiently samplable classical probability distributions.
To be specific, let C be a classical circuit with n inputs and m outputs. We define the
probability distribution DC to be the distribution over the outputs of the classical cir-
cuit C when its inputs are uniformly distributed, i.e., DC(z) = Prx∈{0,1}n [C(x) = z].
We denote

|C〉 def
=

∑

z∈{0,1}m

√
DC(z) |z〉

and define the quantum sampling (QS) problem.
Definition 1.1 (quantum sampling (QSδ)).
Input: A description of a classical circuit C and a constant δ ≥ 0.
Output: A description of a quantum circuit Q of size poly(|C|), with a marked

set of output qubits, such that on input |0〉 the final state ρ of the output qubits of the
circuit Q is close to |φ〉 = |C〉, namely,

‖ρ− |φ〉 〈φ| ‖tr ≤ δ.

The norm above is the trace norm (see section 2). We say Q quantum samples
(or Qsamples) the output distribution of the circuit C. If δ is not specified, we take δ
to be some fixed small constant, say 10−5.

The problem of generating the graph isomorphism state from (1.1) is an instance
of QS, that of Qsampling the uniform distribution over all isomorphic graphs. We
proceed with the study of quantum state generation as follows:
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• In section 3 we prove that any problem in the complexity class statistical
zero knowledge (SZK) can be reduced to an instance of QS. SZK contains
most problems which are considered good candidates for an efficient quantum
algorithm, or for which such an algorithm already exists. Hence, this provides
a strong motivation for the study of the QS problem. Additional results
related to SZK and to the QS problem are given.

• In section 4 we define a new paradigm for quantum state generation, called
adiabatic state generation (ASG). We show that the existence of ASG implies
the existence of a standard quantum algorithm to generate the same state,
that of polynomially related complexity. Thus, in order to design a quantum
state generator, it is sufficient to design ASG for the same state. The ASG
paradigm is strongly related in spirit to the framework of adiabatic quantum
computation and the physical terminology used therein, such as Schrödinger’s
equation and the adiabatic theorem. Nevertheless, our definition and proofs
do not require any knowledge of those notions and can be understood from
first principles.

• Section 5 shows that a fairly general class of classical approximate counting
algorithms (that use rapidly mixing Markov chains) can be transformed into
ASG algorithms that Qsample from the final distributions of the Markov
chains. This solves the QS problem for various interesting cases, such as the
uniform distribution over all perfect matchings of a given graph. This section
draws intriguing links between the ASG paradigm and Markov chains and
spectral gap analysis.

• Section 6 collects lemmas that were used in previous sections and which might
be useful when applying the ASG paradigm in other cases. These include the
Hamiltonian-to-projection and the Hamiltonian-to-measurement lemmas, the
jagged adiabatic path lemma, and the sparse-Hamiltonian lemma, and we
explain their meaning below.

The problem of QS was also considered by Grover and Rudolph [30], without a
name. They show how to apply standard techniques to construct the state

∑
i

√
pi |i〉

for a probability distribution {pi} that is “integrable,” i.e., for which
∑�

i=k pi can be
efficiently computed (approximated) given k and �. One can apply these techniques to
construct the states that we construct in section 5. This is done by exploiting the self-
reducibility of the problems corresponding to these states. We stress, however, that
the techniques we develop in this paper are qualitatively and significantly different
from previous techniques for generating quantum states and, in particular, do not
require self-reducibility. This can be important for extending our approach to other
quantum states in which self-reducibility cannot be used.

In the remainder of the introduction we provide overviews of each of the different
parts of the paper. We note that each one of these sections can be read in an almost
self-contained way.

1.1. QS and SZK (section 3). Our first observation is an interesting connec-
tion between the QS problem and the complexity class SZK (see section 3 for the
definition and background on this class).

Theorem 1.1. If QS ∈ BQP, then SZK ⊆ BQP.
The proof of Theorem 1.1 relies on a result of Sahai and Vadhan [44]. They

defined a problem, called statistical difference, and proved it is SZK-complete. We
provide a quantum algorithm for the statistical difference problem given a quantum
algorithm for QS.
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Theorem 1.1 shows that a general quantum algorithm for the problem of QS
implies SZK ⊆ BQP.1 We note that most problems that were shown to be in BQP or
are considered good candidates for BQP, such as discrete log, quadratic residuosity,
approximating closest and shortest vectors in a lattice, graph isomorphism, and more,
belong to SZK. Theorem 1.1 thus connects the problem of QS to all these algorithmic
problems. This motivates our definition and study of the QS problem.

A possibly easier task than solving the general QS problem is to solve specific
instances of the problem. To this end, one can apply the proof of Theorem 1.1
to a specific problem in SZK. This would lead to the discovery of the relevant QS
instance to which the problem can be reduced. In the general case, this might be quite
complicated to do, since the proof of Theorem 1.1 uses the nontrivial completeness
result of [44]. In some cases, however, the specification of the relevant QS instance is
much easier. Three such cases are discrete log, quadratic residuosity, and a certain
lattice related problem. We provide in Appendix A explicit specifications of the QS
instances (namely, the quantum superpositions) to which each one of these problems
can be reduced. Note that we already know efficient quantum algorithms for the first
two problems. The case of solving the Qsampling instance associated with the lattice
problem is wide open.

It is interesting to ask whether Theorem 1.1 also holds in the other direction.
In other words, is solving QS equivalent to solving the SZK problem, or is the QS
problem harder? We show that at least for some cases, equivalence holds. It is easy
to see that the QS instance corresponding to discrete log can be solved using the
quantum algorithm for discrete log. We prove that the same is also true for the
graph isomorphism problem; namely, by trying to solve the QS problem for graph
isomorphism, we are not making the problem harder.

Finally, we also study the case of perfect Qsampling. One might hope that if
QSδ=0 can be solved in quantum polynomial time, this would imply that SZK lies in
quantum polynomial time with the one-sided error, RQP. We do not know how to
prove this, but we provide a slightly weaker result.

1.2. The adiabatic quantum state generation paradigm (section 4). In
the past few years, a paradigm called adiabatic quantum computation which was de-
fined in [22] attracted considerable attention. Adiabatic quantum computation is a
framework for quantum algorithms which uses, instead of the unitary gates used in
the standard quantum circuit model, the more physical language of Hamiltonians,
spectral gaps, and ground-states, which we will soon explain.

Inspired by adiabatic quantum computation, we define a paradigm for designing
quantum state generating algorithms (sometimes called quantum state generators) in
the standard quantum circuit model. We call this paradigm ASG. Our goal in the
definition of ASG is not to replace the quantum circuit model, or to improve on it, but
rather to develop a paradigm, or a language, in which the problem of quantum state
generation, and QS in particular, can be studied conveniently. The advantage in using
the language of the adiabatic computation model is that the task of quantum state
generation becomes more natural, since adiabatic evolution is cast into the language
of quantum state generation. Furthermore, as we will see, it seems that this language
lends itself more easily than the standard circuit model to developing general tools.

Our definition of ASG and results regarding this paradigm do not rely on knowl-
edge of the physical terminology on which adiabatic computation is based, such as

1Note that there exists an oracle A relative to which SZKA �⊂ BQPA [1].
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Schrödinger’s equation and the adiabatic theorem. Nevertheless, since these notions,
and the adiabatic computation model in particular, provide so much of the intuition
behind our definitions and proofs, we now provide some background regarding these
notions to motivate our discussion. We refer the reader to [40, 22, 8] for more in-
formation regarding physical background, adiabatic computation, and the adiabatic
theorem, respectively.

1.2.1. Adiabatic computation: The physical motivation for ASG. In
the standard model of quantum computation, the state of n qubits evolves in discrete
time steps by unitary operations. In contrast, the underlying physical description of
this evolution is continuous. This evolution is described by Schrödinger’s equation:
d
dt |ψ(t)〉 = iH(t) |ψ(t)〉, where |ψ(t)〉 is the state of the n qubits at time t, and H(t) is
a Hermitian 2n × 2n matrix operating on the space of n qubits. This matrix is called

the Hamiltonian. The term d
dt |ψ(t)〉 stands for limζ→0

|ψ(t+ζ)〉−|ψ(t)〉
ζ and is a vector

measuring the direction in which |ψ(t)〉 evolves at a given time t. Loosely speaking,
the integration of Schrödinger’s equation over time from time 0 to a later time t gives
the discrete time evolution of the quantum state from time 0 to t; the fact that the
Hamiltonian is Hermitian can be shown to be equivalent to the familiar fact that the
discrete time evolution is unitary. When the Hamiltonian is independent of time, the
solution of Schrödinger’s equation is easy: one can verify that Schrödinger’s equation
is satisfied by

|ψ(t)〉 = eiHt |ψ(0)〉(1.2)

(see section 2 for exponentiation of matrices). Moreover, the fact that H is Hermitian
implies that the matrix eiHt is unitary.

From the physicist’s point of view, not every Hamiltonian can be used in the
above equation, since not every Hamiltonian can be applied on a physical system.
The physically realistic Hamiltonians are those that are local, namely, involve only
interactions between a small number of particles. More formally, such a Hamiltonian
H can be written as the sum H(t) =

∑
m Hm(t), where m is small and each Hm(t) is

a tensor product of some Hermitian matrix on a small number of qubits with identity
on the rest.

An important question in physics is the following. We are given a system which
is in some initial state |ψ(0)〉 at time t = 0, and we let the system evolve according to
a time-dependent Hamiltonian H(t) from time t = 0 to t = T . This means that we
set |ψ(0)〉 as the initial conditions for Schrödinger’s equation and set the Hamiltonian
to be H(t). Our goal is to solve the equation and find out the state of the system at
time T .

Adiabatic evolution is a special case of the above question in which an elegant
solution exists. In adiabatic evolution, one considers a parameterized path in the
Hamiltonian domain, H(s) for s ∈ [0, 1], which starts at some Hamiltonian H(0) =
Hinit and ends at another Hamiltonian H(1) = Hfinal. We require that the ground-
state (the eigenstate of lowest eigenvalue) of the Hamiltonian H(s) is unique for all
s ∈ [0, 1]. To specify the adiabatic evolution, one picks the duration of the process,
namely T . The system is initialized at time t = 0 in the ground-state of H(0). The
system then evolves by Schrödinger’s equation from time 0 to time T , under the
Hamiltonian H̃(t) = H(t/T ). The term adiabatic means that the Hamiltonian is
modified infinitely slowly along the path; in other words, we take T �→ ∞. In this
limit we are guaranteed by the celebrated adiabatic theorem [34, 39] that the final
state will be equal to the ground-state of the final Hamiltonian Hfinal.
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Here we are interested in finite processes. Taking T to be finite introduces an
error in the final state: it is no longer exactly the ground-state of H(T ) but only close
to it in Euclidean distance. How large should T be in order for the error to be small?
Two parameters turn out to be important. Denote by Δ(H(s)) the spectral gap
of H(s), namely the difference between the Hamiltonian’s lowest eigenvalue and the
next one. The first parameter is Δ, the minimal spectral gap of the time-dependent
Hamiltonian H(s), along the path from H(0) to H(1). The other parameter is related
to how fast the Hamiltonian changes in time; we set η to be the maximal norm of the
first derivative of H with respect to s: η = maxs ‖dH

ds (s)‖. It turns out that for the
final state to be within ε Euclidean distance from the final ground-state, T should be

T = poly
( η

Δε

)
.(1.3)

Different versions of the theorem derive different (small degree) polynomials in the
above parameters [43, 8, 10]. In [8] the second derivative of the Hamiltonian with
respect to s also plays a role. We learn from (1.3) that if we would like to consider
processes with polynomially bounded T , we need η to be polynomially bounded, and
Δ to be nonnegligible, namely, bounded from below by a function which is inverse
polynomial in the size of the system.

The proof of the adiabatic theorem [39] is rather nontrivial and is beyond the
scope of this paper. We refer the reader to [8] for an elementary proof of the theorem
and for further references. A very rough intuition about the proof is derived by
considering a fixed Hamiltonian H, and observing how the solution to Schrödinger’s
equation behaves when the initial state is an eigenstate of the Hamiltonian H, with
eigenvalue Λ. In this case, the matrix eiHt applied on the eigenstate simply multiplies
it by a scalar ei(Λtmod2π). This complex number, of absolute value 1, can be viewed as
a vector in the complex plane, which rotates in time faster when Λ is larger and slower
when Λ is smaller. Hence, for the ground-state it rotates the least. The fast rotations
essentially cancel the contributions of the vectors with the higher eigenvalues due to
interference effects.

Farhi et al. considered the possibility of using adiabatic quantum evolutions to
solve NP-hard optimization problems. The idea of Farhi et al. was to find the (unique)
minimum of a given function f : {0, 1}n → {0, 1} as follows: Hinit is chosen to be
some generic Hamiltonian. Hfinal is chosen to be the problem Hamiltonian, namely
a 2n × 2n matrix which has the values of f on its diagonal and zero everywhere else.
The system is then initialized in the ground-state of Hinit and evolves adiabatically
on the convex line H(s) = (1 − s)Hinit + sHfinal. By the adiabatic theorem, if the
minimal spectral gap is lower bounded by some inverse polynomial, then T can be
taken to be polynomially bounded, and the final state would be sufficiently close to
the ground-state of Hfinal which is exactly the sought after minimum of f . Despite
initial optimistic numerical results [20, 15, 21], there is now strong evidence that
the spectral gap along the Hamiltonian path for the NP-hard problems considered is
exponentially small [18, 19, 43].

The general model of adiabatic computation (see, e.g., [4]) does not require the
final Hamiltonian to be diagonal as above, but it does require the Hamiltonians to
be local. We now know that this model is in fact equivalent in computational power
to the standard quantum circuit model. The fact that adiabatic computations with
local Hamiltonians can be simulated efficiently by the standard model was shown in
[22, 18]. The other direction, showing that any standard quantum computation can
be simulated efficiently in the adiabatic model with local Hamiltonians, was recently
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shown by Aharonov et al. [4].2 Adiabatic computation is thus a quantum algorithmic
framework equivalent to the standard quantum computation model, in which compu-
tation is thought of as the process of generating (ground-) states. It is thus natural
to draw intuition from it when attempting to design frameworks for quantum state
generation.

1.2.2. An adiabatic framework for quantum state generation. We would
now like to define a paradigm for quantum state generation that is based, in spirit, on
similar ideas used in adiabatic computation. Our goal is to develop a tool that can be
used when designing quantum algorithms that generate complicated quantum states.
We therefore generalize adiabatic computation as much as we can, while maintaining
its basic structure. First, we allow the path in the Hamiltonian domain to be a
general path (with mild conditions such as smoothness). This is different from the
choice often made in adiabatic computation literature, that the path be a straight
line. Second, and very importantly, we relax the requirement that the Hamiltonians
are local and require only that the Hamiltonians are simulatable. This means that
the time evolution of the system governed by the Hamiltonian, namely the unitary
matrix eiHt, can be approximated by a quantum circuit to within any polynomial
accuracy (for a rigorous definition see Definition 4.1). An adiabatic state generator is
thus a specification of such a nicely behaved path of simulatable Hamiltonians in the
Hamiltonians domain. The running time of the adiabatic state generator is taken to
be exactly the time required for the adiabatic evolution to succeed, roughly given by
(1.3) (again, for the exact condition see section 4).

We need to show that the existence of an adiabatic state generator implies the
existence of a corresponding quantum state generator of the final state of the adiabatic
state generator.

Theorem 1.2 (informal). Let A be an adiabatic state generator, initiated by a
quantum state |ψ(0)〉, with a final state |ψ(T )〉, with a polynomially bounded time T .
Then, if there exists an efficient quantum algorithm that generates |ψ(0)〉, then there
exists an efficient quantum algorithm that generates |ψ(T )〉.

This result means that one can use the framework of ASG as a quantum reduction
from a (presumably, difficult to generate) quantum state to another quantum state
(which is presumably easier to generate).

To prove the theorem we need to show how to simulate the adiabatic state gener-
ator efficiently using a quantum circuit, which is not too difficult, and we also need to
show that the final state is indeed close to the ground-state of the final Hamiltonian.
The second claim follows immediately from the adiabatic theorem. This provides a
natural easy proof of Theorem 1.2, based on the adiabatic theorem. In this paper we
prefer to avoid the use of the adiabatic theorem and instead provide an elementary
proof which uses only the much simpler Zeno effect [42]. We now sketch the idea.

The Zeno effect considers the following situation. We start at some vector v0

and apply a sequence of M projective measurements, each in a very close basis to
the previous one. More precisely, if the jth measurement is in a basis which includes
some vector vj , we require the vectors vj to be slowly varying; i.e., vj is close to
vj−1. In this case, the Zeno effect states that with very high probability, after M
measurements, we end up very close to vM (even though v0 and vM might be very
far away from each other). The Zeno effect resembles adiabatic computation in its

2In fact, the seeds for the result of [4] were planted in the preliminary version of the current
paper.
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slowly varying nature, with the important difference that in adiabatic computation
we have a sequence of Hamiltonians, while in the Zeno effect we have a sequence of
measurements. Our proof uses the useful Hamiltonian-to-projection lemma (Lemma
1.2), which we prove in section 6.

We thank Manny Knill [36] for pointing out to us the similarity between adiabatic
evolution and the Zeno effect, which lead to this proof. A similar connection was used
independently in [14].

1.3. ASG and Markov chains (section 5). We now proceed to show how
the ASG paradigm can be used to Qsample from the limiting distributions of vari-
ous Markov chains. This is done by converting classical approximate counting algo-
rithms, based on rapidly mixing Markov chains, to adiabatic state generators (for a
background on Markov chains see section 5).

It is well known that a Markov chain is rapidly mixing iff the second eigenvalue
gap, namely the difference between the largest and second largest eigenvalue (in ab-
solute values) of the transition matrix M , is nonnegligible [7]. This clearly bears
resemblance to the adiabatic condition of a nonnegligible spectral gap and suggests
looking at Hamiltonians of the form

HM = I −M.

We use I −M so that the spectrum is reversed; i.e., the largest eigenvector of M
becomes the smallest of HM = I −H, and the second eigenvalue gap of M turns into
the spectral gap of HM . HM defined this way is a Hamiltonian if M is symmetric;
if M is not symmetric but is a reversible Markov chain [38], we can still define the
Hamiltonian corresponding to it (see section 5).

The first question is whether the resulting Hamiltonian can be used in our ASG
framework. In other words, when is the Hamiltonian arising from a Markov chain
simulatable? To this end we prove in section 6 a general lemma, called the sparse
Hamiltonian lemma, which provides a very general condition for a Hamiltonian to be
simulatable. Essentially, the condition is that the Hamiltonian be a sparse matrix.
Based on this lemma, we show that for a (very natural) class of Markov chains,
which we call strongly samplable, the Hamiltonian arising from the Markov chain is
simulatable and can be used in the ASG paradigm.

In ASG one is interested not in a single Hamiltonian but in a path in the Hamil-
tonian domain. We recall that many approximate counting algorithms [33] use a
sequence of Markov chains. Usually one starts with a simple Markov chain and slowly
varies it until it gets close to a desired Markov chain. A notable example is the recent
algorithm for approximating the permanent [32]. We show that such approximate
counting algorithms naturally translate to adiabatic state generators. More precisely,
but still informally, we have the following theorem.

Theorem 1.3 (informal). Let A be an efficient randomized algorithm to approx-
imately count a set Ω, possibly with weights. Suppose A uses slowly varying Markov
chains starting from a Markov chain with a simple limiting distribution. Then there
is an efficient quantum algorithm Q that Qsamples the final limiting distribution over
Ω.

We summarize the correspondence between Markov chains and adiabatic com-
putation in Figure 1.1. We stress that it is not the case that we are interested in a
quantum speed-up for sampling various distributions. Rather, we are interested in
the coherent quantum state generation of the classical distribution, namely, in the
solution for the QS problem.
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A Markov chain ⇔ A Hamiltonian
A strongly samplable Markov chain ⇔ A simulatable Hamiltonian
Slowly varying strongly samplable Markov chains ⇔ ASG

Fig. 1.1. The correspondence between Markov chains and adiabatic computation.

The proof of Theorem 1.3 uses another general tool, which we call the jagged
adiabatic path lemma. This lemma shows how we can connect the sequence of Hamil-
tonians resulting from the sequence of Markov chains, into a continuous path, such
that if two subsequent Hamiltonians in the sequence are not too far, and all Hamil-
tonians in the sequence have nonnegligible spectral gaps, then all Hamiltonians along
the path have nonnegligible spectral gaps. We state and prove this theorem in sec-
tion 6.

We exploit this paradigm to Qsample the set of all perfect matchings of a bipartite
graph using the recent algorithm by Jerrum, Sinclair, and Vigoda [32]. Using the
same ideas we can also Qsample the set of all linear extensions of partial orders using
an algorithm by Bubley and Dyer [12], all lattice points in a convex body satisfying
certain restrictions using the Applegate–Kannan technique [9], and many more states.

1.4. Basic tools (section 6). In this section we collect several claims and
lemmas that are used in the proofs inside the paper. We separate them from the rest
of the paper, since these results are of a general flavor, and we believe they might be
useful in other work related to adiabatic state generators, adiabatic computation, and
computation with Hamiltonians in general.

We denote by α(H) the unique ground-state of a Hamiltonian H. The first claim
shows that two close Hamiltonians have close ground-states, as long as their spectral
gaps are big enough.

Claim 1.1. Let A,B be two Hamiltonians of equal dimensions such that
‖A − B‖ ≤ η. Moreover, assume that A,B have spectral gaps bounded from below:

Δ(A),Δ(B) ≥ Δ. Then |〈α(A)|α(B)〉| ≥ 1 − 4η2

Δ2 .

The norm we use is the spectral norm, also called the operator norm (see section
2). The next basic but useful claim provides a lower bound on the spectral gap of
a convex combination of two projections. For a vector |α〉, the Hamiltonian Πα =
I − |α〉〈α| is the projection onto the subspace orthogonal to α.

Claim 1.2. Let |α〉 , |β〉 be two vectors in some Hilbert space. For any convex
combination Hη = (1 − η)Πα + ηΠβ , η ∈ [0, 1], we have Δ(Hη) ≥ |〈α|β〉|.

Both proofs use simple algebra.

Next, we prove the Hamiltonian-to-measurement lemma, which does the following.
We are given a simulatable Hamiltonian with nonnegligible spectral gap. We design an
efficient quantum circuit which essentially simulates a measurement in a basis which
contains the ground-state of the given Hamiltonian.

Lemma 1.1 (Hamiltonian-to-measurement lemma). Assume H is a simulatable
Hamiltonian on n qubits. For any constant d, there exists a poly(n, 1

Δ(H)
)-size circuit

OH which takes |α(H)〉 to |α(H)〉 ⊗ |γ〉, and for any eigenstate of H |α⊥〉 orthogonal
to the ground-state, OH |α⊥〉 = |α⊥〉 ⊗ |β(α⊥)〉, where |〈γ|β(α⊥)〉| ≤ O(n−d).

The next lemma achieves a related task. It shows that if H is a simulatable
Hamiltonian with nonnegligible spectral gap, then the Hamiltonian Πα(H), which is
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the projection on the subspace orthogonal to the ground-state of H, is also simulat-
able.

Lemma 1.2 (Hamiltonian-to-projection lemma). Assume H is a simulatable
Hamiltonian on n qubits, with nonnegligible spectral gap Δ(H) ≥ 1/nc for some
constant c > 0 and with a known ground-value. Then the Hamiltonian Πα(H) is
simulatable.

The proof of both lemmas is a simple application of Kitaev’s phase estimation
algorithm [35].

The next lemma we prove allows connecting a sequence of Hamiltonians with not
too far away ground-states into one adiabatic path.

Lemma 1.3 (the jagged adiabatic path lemma). Let {Hj}T=poly(n)

j=1 be a sequence
of bounded norm, simulatable Hamiltonians on n qubits, with nonnegligible spectral
gaps, Δ(Hj) ≥ n−c, and with known ground-values, such that the inner product be-
tween the unique ground-states α(Hj), α(Hj+1) is at least n−c for all j. Then there
exists an adiabatic state generator with α(H0) as its initial state and α(HT ) as its
final state. In particular there exists an efficient quantum algorithm that takes α(H0)
to within arbitrarily small distance from α(HT ).

The proof of this lemma is fairly simple, with one trick required. Our first attempt
would be to consider the (jagged) path in the Hamiltonian domain that connects one
Hamiltonian in the sequence to the next by a straight line. The main point is to show
that the spectral gap along the lines is not too small. In fact, this does not hold in
the general case (see section 6.4), but if instead of connecting the Hamiltonians we
actually connect the projections Πα(H)’s, we can then use Claim 1.2 to prove that the
convex combination of these projections has a nonnegligible spectral gap.

Finally, we ask which Hamiltonians can be used in the ASG framework, namely,
which Hamiltonians are simulatable. We provide a very general condition under which
we can simulate the Hamiltonian using a quantum circuit. We say that H on n qubits
is sparse if it has at most polynomially many nonzero elements in each row (and
column, as it is Hermitian). We say it is explicit if there exists an efficient classical
algorithm that given an index of a row, j, outputs an approximation of all nonzero
elements in the jth row of the Hamiltonian.

Definition 1.2 (an explicit matrix). We say an N×N matrix A is explicit if for
every d > 0 there exists an algorithm that on input j ∈ N outputs an approximation
of all nonzero elements in the jth row of A to within n−d accuracy and whose running
time is polynomial in log(N).

Lemma 1.4 (the sparse Hamiltonian lemma). If H is an explicit and sparse
Hamiltonian on n qubits and ‖H‖ ≤ poly(n), then H is simulatable.

We note that a local Hamiltonian is in particular sparse and explicit, but sparse
and explicit Hamiltonians are not necessarily local.

The main idea of the proof is to write H as a sum of polynomially many bounded
norm Hamiltonians Hm which are all block diagonal (in a combinatorial sense) and
such that the size of the blocks in each matrix is at most 2 × 2. This is done using
some combinatorial and number theoretical tricks. We then show that each Hamil-
tonian Hm is simulatable. To simulate the sum of the Hamiltonians we use standard
techniques (namely, Trotter’s formula—see section 4.1.1).

1.5. Conclusions. This paper sets the grounds for the general study of quantum
state generation, using the paradigm of ASG. This direction points at interesting
and intriguing connections between quantum computation and many different areas:
the complexity class SZK and its complete problem SD [44], the notion of adiabatic
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evolution [34], the study of rapidly mixing Markov chains using spectral gaps [38],
quantum random walks [13], and the study of ground-states and spectral gaps of
Hamiltonians in physics. Hopefully, techniques from these areas can be borrowed
to give more tools for ASG. Notably, the study of spectral gaps of Hamiltonians in
physics is a lively area with various recently developed techniques (see [46] and the
references therein).

It seems that a much deeper understanding of the adiabatic paradigm is required
in order to solve the most interesting open question, namely to design interesting
new quantum algorithms. As an intermediate task, it would be interesting to present
known quantum algorithms, e.g., Shor’s discrete log algorithm, or the quadratic resid-
uosity algorithm, in the ASG paradigm in an insightful way.

1.6. Related work. The definition of ASG uses adiabatic evolutions along gen-
eral paths in the Hamiltonian domain, and not just straight lines. Such adiabatic
evolutions were also studied in [14].

The connection between adiabatic evolution, the Zeno effect, and measurements,
which we use in our work, was observed before. We thank Manny Knill for pointing
this out to us [36]. These connections were also considered, in a recent independent
work, in [14].

We believe that the sparse Hamiltonian lemma might have other interesting im-
plications, e.g., in the context of Hamiltonian based quantum random walks on graphs
[16, 23, 13]. For example, Childs et al. [13] use quantum random walks to provide
an exponential algorithmic speed-up over any possible classical algorithm for a cer-
tain graph reachability task. To do this, they define certain Hamiltonians and use
a method of coloring to show that these Hamiltonians can be simulated efficiently
by a quantum circuit. The sparse Hamiltonian lemma immediately implies that the
Hamiltonians used in [13] are simulatable.

After the publication of the preliminary version of this article [3], the ideas pre-
sented in it were used to make progress in two different directions.

The first direction is the characterization of the computational complexity of the
problem of approximating the shortest vector in a lattice up to

√
n (GapSVP√

n). Our
reduction of this problem to a QS problem (section 3) was used in [5] to show that
the problem lies in quantum NP. This gave the first nontrivial quantum complexity
upper bound on a lattice problem. A following paper [6] improved this result and
proved that GapSVP√

n lies in NP∩ coNP. Interestingly, this result initiated from an
attempt to design an ASG algorithm for the relevant QS problem.

The second place where these results inspired further progress is in the study of
adiabatic computation, where an important open question was the clarification of the
computational power of the model. Our results raised the question of how powerful
quantum adiabatic algorithms are and gave tools to prove some preliminary results
about their universality [2]. These results were recently improved in [4] to show that
the model of adiabatic computation using local Hamiltonians is equivalent to standard
quantum computation.

1.7. Paper organization. The paper is organized as follows. We give some
notation and general mathematical preliminaries in section 2. Background related to
particular parts of the paper is given at the beginning of each section.

In section 3 we show that the QS problem is sufficient for solving all the languages
in SZK, and we also discuss whether it is equivalent to solving SZK. The specific ex-
amples of the Qsampling instances associated with discrete log, quadratic residuosity,
and a lattice problem are given in Appendix A. We define adiabatic quantum state
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generation in section 4. We also show (using measurements and the Zeno effect)
that adiabatic state generators can be simulated by quantum circuits. In section
5 we show the connection to Markov chains, and prove that a host of approximat-
ing counting algorithms can be translated into adiabatic state generators, generating
many interesting coherent states. Finally, in section 6, we prove several lemmas that
serve as basic building blocks for our previous results, including the sparse Hamil-
tonian lemma, the jagged adiabatic path lemma, and the Hamiltonian-to-projection
and Hamiltonian-to-measurement lemmas.

2. Preliminaries. We assume the reader is familiar with the basic terminology
of quantum computation: qubits, pure states, Hilbert space, density matrix, the class
BQP, etc. For background on these notions, please consult [40]. We now give some
preliminaries relevant for the entire paper. More specific preliminaries are given at
the beginning of each section.

2.1. Distances between distributions: Fidelity and variational distance.
For two classical distributions {p(x)}, {q(x)} we define their variational distance and
their fidelity (this measure is known by many other names as well) to be, respectively,

|p− q| =
1

2

∑

x

|p(x) − q(x)|,

F (p, q) =
∑

x

√
p(x)q(x).

The following fact is very useful.
Fact 2.1 (see [40]).

1 − F (p, q) ≤|p− q|≤
√

1 − F (p, q)2

or, equivalently,

1 − |p− q| ≤F (p, q)≤
√

1 − |p− q|2.
A distribution D is flat if for every z1 and Z2 for which D(z1), D(z2) > 0 we have

D(z1) = D(z2); i.e., D is uniform over all elements in its support.

2.2. Norms on matrices: Trace norm and operator norm. The trace norm
of a Hermitian matrix H with eigenvalues λ1, . . . , λn is ‖H‖tr =

∑ |λi|. Note that
the trace norm of a density matrix is 1. The trace norm satisfies that ‖A ⊗ B‖tr =
‖A‖tr‖B‖tr.

The operator norm of a linear transformation T induced by the l2 norm is called
the spectral norm and is defined by

‖T‖ = max
ψ 	=0

|Tψ|
|ψ| .

The operator norm satisfies that for any two matrices, ‖AB‖ ≤ ‖A‖ · ‖B‖.
If T is Hermitian or unitary (in general, if T is normal, namely, commutes with

its adjoint), then ‖T‖ equals the largest absolute value of its eigenvalues. Hence, if U
is unitary, ‖U‖ = 1.

For any two unitary matrices A and B and any integer k, ‖Ak−Bk‖ ≤ k‖A−B‖.
This follows from the fact that ‖AB −CD‖ ≤ ‖AB −CB‖+ ‖CB −CD‖, which for
unitary matrices is ≤ ‖A− C‖ + ‖B −D‖.

Finally, for a general N ×N matrix A = (ai,j) we have ‖A‖∞ ≤ ‖A‖ ≤ N2‖A‖∞,
where ‖A‖∞ = maxi,j |ai,j |.
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2.3. Distances between density matrices. The variational distance and the
fidelity can be generalized to density matrices, and Fact 2.1 also holds for density
matrices (see [40]).

The generalization of the variational distance is the trace norm of the difference
between the two matrices. It is a well-known fact that the two output distributions
resulting from applying the same quantum measurement on two different density
matrices, ρ1 andρ2, can have variational distance at most 1

2
‖ρ1 − ρ2‖tr. For more

details we refer the reader to [40, section 9.2].

In this paper we need only define fidelity for pure states. For two vectors φ1, φ2

in some Hilbert space, the fidelity is simply the absolute value of their inner product:
F (φ1, φ2) = |〈φ1|φ2〉|.

2.4. Power of a matrix. If M is a Hermitian matrix, then it has an orthonormal
basis of eigenvectors {vi} with real eigenvalues {λi}. For a function f : C → C, f(M)
is the linear transformation that has {vi} as an orthonormal basis of eigenvectors with
eigenvalues {f(λi)}. In particular, this defines eM .

2.5. Hamiltonian terminology. The set of Hamiltonians is the set of Her-
mitian matrices. The ground-state of a Hamiltonian H is the eigenstate with the
smallest eigenvalue, and we denote it by α(H). The spectral gap of a Hamiltonian
H is the difference between the smallest and second to smallest eigenvalues, and we
denote it by Δ(H). If H is Hermitian, then its eigenvalues are real, and hence e−iH

is unitary.

3. Quantum state generation and SZK. In this section we connect the QS
problem to the class SZK. We start with some background about SZK. We refer the
interested reader to Vadhan’s thesis [47] and to Sahai and Vadhan [44] for rigorous
definitions, a discussion of their subtleties, and other results known about this elegant
class. We then proceed to prove Theorem 1.1, and in Appendix A we provide explicit
examples of interesting QS instances. We also prove that the task of QS for graph
isomorphism is not harder than solving the graph isomorphism problem itself, and
that if QS can be done with no error, then the graph isomorphism problem is in
RQP

⋂
coRQP.

3.1. Background on SZK.

3.1.1. Interactive proofs. A pair Π = (ΠY es,ΠNo) is a promise problem if
ΠY es ⊆ {0, 1}∗, ΠNo ⊆ {0, 1}∗, and ΠY es ∩ ΠNo = ∅. We look at ΠY es as the set of
all yes instances and ΠNo as the set of all no instances, and we do not care about all
other inputs. If every x ∈ {0, 1}∗ is in ΠY es ∪ ΠNo, we call Π a language.

An interactive proof is a protocol in which a prover P tries to convince a verifier V
of some fact through an exchange of messages. Formally, the prover and the verifier
are described by probabilistic Turing machines which act on their private working
spaces plus some interaction domain. The verifier is required to be polynomial time,
and the prover is assumed to be all powerful. The interactive proof is denoted by
(P, V ).

We say that a promise problem Π has an interactive proof with soundness error
εs and completeness error εc if there exist V, P such that we have the following:

• If x ∈ ΠY es, V accepts with probability at least 1 − εc.
• If x ∈ ΠNo, then for every prover P ∗, V accepts with probability at most εs.

The class NP consists of one-message interactive proofs with εc, εs = 0.
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When an interactive proof system (P, V ) for a promise problem Π is run on
an input x, it produces a distribution over transcripts that contains the conver-
sation between the prover and the verifier; i.e., each possible transcript appears
with some probability (depending on the random coin tosses of the prover and the
verifier).

3.1.2. SZK. The class SZK consists of promise problems for which there are
interactive proofs which exhibit the following remarkable property: for x ∈ Πyes, the
verifier learns (almost) nothing from the interaction with the prover P , other than the
fact that x is a yes instance. It is remarkable that such proof systems in fact exist.
This is captured mathematically by the concept of simulation as follows.

An interactive proof system (P, V ) for a promise problem Π is said to be an honest
verifier SZK, if there exists a probabilistic polynomial time simulator S that for every
x ∈ ΠY es produces a distribution on transcripts that is close (in the variational
distance sense; see section 2.1) to the distribution on transcripts that V and P would
produce in their interaction. Note that the simulator has no access to the prover, and
that we require only the simulator to produce a good distribution on inputs in ΠY es,
since for no instances there is no proof to learn anyway.

One might wonder whether it is possible for the verifier to deviate from the
protocol (namely, to cheat) and by this to get information from an honest prover.
Indeed, there are honest verifier SZK proofs which are not secure against a cheating
verifier. However, it was shown in [27] that whenever there exists an honest verifier
SZK proof, then there is also an interactive proof that is also secure against dishonest
verifiers. By this we mean that a simulator also exists for verifiers that deviate from
the protocol.

We denote by SZK the class of all promise problems which have interactive proof
systems which are statistically zero knowledge against an honest (or, equivalently, a
general) verifier. It is known that BPP ⊆ SZK ⊆ AM ∩ coAM [24, 11, 47] and that
SZK is closed under complement [41, 47]. It follows that SZK does not contain any
NP-complete language unless the polynomial time hierarchy collapses.

3.1.3. A complete problem for SZK. Sahai and Vadhan [44] found a natural
complete problem for SZK. One nice thing about the problem is that it does not
mention interactive proofs in any explicit or implicit way. We define the complete
problem for SZK.

Definition 3.1 (statistical difference (SDα,β)).
Input: Two classical circuits C0, C1 with m Boolean outputs.
Promise:

• Yes: |DC0 −DC1 | ≥ α.
• No: |DC0 −DC1 | ≤ β.

Sahai and Vadhan [44] and Vadhan [47] show that for any two constants 0 < β <
α < 1 such that α2 > β, SDα,β is complete for SZK.

3.2. A reduction from SZK to QS. We are now ready to prove Theorem 1.1.
We first describe a very simple, standard building block in quantum computation,
called the SWAP test.

Definition 3.2 (the SWAP test). The algorithm operates on three quantum reg-
isters: A is a one qubit register, and B and C are two registers with the same number
of qubits. The algorithm applies a Hadamard on the first qubit, then conditioned on
the first control qubit swaps between the second and third registers, and, finally, applies
a Hadamard on the control qubit and measures it.
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By a direct calculation, we have the following claim.
Claim 3.1. Let v1, v2 be two vectors in the same Hilbert space. If the SWAP

test is applied on |0, v1, v2〉, then the outcome of the SWAP test is 0 with probability
1+|〈v1|v2〉|2

2
and 1 with probability 1−|〈v1|v2〉|2

2
.

We now proceed to prove Theorem 1.1.
Proof of Theorem 1.1. We assume that QS is in BQP. It is enough to show that

SD0.9,0.1, which is an SZK-complete problem, is in BQP.
Indeed, let C0, C1 be an input to SD0.9,0.1. By our assumption there is an efficient

quantum algorithm that can generate states ρ0, ρ1 such that ‖ρi − |Ci〉 〈Ci| ‖tr ≤ δ
for i = 0, 1 and δ = 10−5. We can therefore apply the SWAP test on the two states
ρ0, ρ1 efficiently. We now claim the test results in the outcome 1 with probability
greater than 0.4 in case |DC0

−DC1 | ≥ 0.9 and with probability smaller than 0.1 in
case |DC0 −DC1 | ≤ 0.1.

The BQP algorithm follows from this claim easily: To achieve error ε, simply
repeat the SWAP test O(log( 1

ε )) times, generating the states each time from scratch.
Then count the number of outcomes 1. If it is more than 0.25 of the tests, accept (the
distributions are far); otherwise, reject (the distributions are close).

To prove the claim, we first write down the probability for 1 in the ideal case, in
which the BQP algorithm outputs |Ci〉 exactly. We have

〈C0|C1〉 =
∑

z∈{0,1}m

√
DC0(z)DC1(z) = F (DC0 , DC1).

Claim 3.1 implies, therefore, that the SWAP test on the state |0, C0, C1〉 results

in 1 with probability
1−F (DC0

,DC1
)2

2
.

In fact, the state ρi is within δ trace distance from |Ci〉. This implies that the
actual state on which we apply the swap test is ρ1 ⊗ ρ2, which is 2δ-close in the
trace norm to that of the pure state |0, C0, C1〉 (see section 2.2). By section 2.3, the
variational distance between the distributions resulting from applying the SWAP test
in the two cases is δ. This implies that the probability for 1 in the actual SWAP test

is
1−F (DC0

,DC1
)2

2
± δ.

Using Fact 2.1, we have the following:

• If |DC0
− DC1

| ≥ α, we measure 1 with probability
1−F (DC0

,DC1
)2

2
± δ ≥

|DC0
−DC1

|2
2

− δ ≥ α2−2δ
2

.

• If |DC0 − DC1 | ≤ β, we measure 1 with probability
1−F (DC0

,DC1
)2

2
± δ ≤

2|DC0
−DC1

|−|DC0
−DC1

|2
2

+ δ ≤ 2β−β2+2δ
2

.
Setting α = 0.9 and β = 0.1, we get the desired results.

3.3. Perfect QS and one-sided-error quantum algorithms. One might
hope that if one could perfectly solve QS (i.e., QSδ=0 ∈ BQP), then SZK ⊆ RQP,
where RQP is the one-sided variant of BQP. This, however, does not follow, be-
cause SDα,β is known to be SZK complete only when β > 0 and α < 1. Instead,
we can prove a weaker version of this general result, concerning the class honest ver-
ifier perfect zero knowledge (HVPZK), where the simulator can exactly simulate the
transcripts distribution. This class contains the graph isomorphism and the graph
nonisomorphism problems.

Lemma 3.1. If QSδ=0 ∈ BQP, then coHVPZK ⊆ RQP.
Proof. The proof uses the fact that SD0.5,0 is complete for coHVPZK [47]. It is

enough to show that SD0.5,0 is in RQP. Indeed, let C0, C1 be an input to SD0.5,0. By



62 DORIT AHARONOV AND AMNON TA-SHMA

our assumption we can generate the superpositions |Ci〉 for i = 0, 1. The quantum
algorithm proceeds as in the proof of Theorem 1.1 and accepts iff the result of one of
the measurements is 1. For yes instances, |DC0 −DC1 | ≥ α = 0.5, and so we measure
1 with probability at least 0.12. For no instances, we never measure 1. Hence we get
an RQP algorithm.

As both graph isomorphism and graph nonisomorphism are in HVPZK, we get
the following corollary.

Corollary 3.1. If QSδ=0 ∈ BQP, then GI ∈ RQP
⋂
coRQP.

3.4. Specific examples. We saw that every problem L in SZK reduces to a pair
of circuits CL,0, CL,1 such that if we can Qsample |CL,i〉, we can solve L in quantum
polynomial time. Unfortunately, we do not know how to solve the QS problem in
general. We would like to specify explicitly interesting instances of the QS problem,
associated with specific problems in SZK.

In theory, such an instance can be derived from the SZK proof of the promise
problem in the following way. For every problem L in SZK, one can follow the
reduction from L to SD0.9,0.1 (guaranteed by the SZK-completeness of SD0.9,0.1 [44])
and find two specific circuits CL,i corresponding to L. Qsampling from these circuits
would be sufficient for solving L in quantum polynomial time. In practice, however,
specifying the circuits is often not easy, as the reduction to SD0.9,0.1 is quite involved.

However, it is often possible to infer two such circuits CL,i directly from the zero-
knowledge proof of L. We already saw in the introduction such a specific example
for the graph isomorphism problem. In Appendix A we give three more examples of
particular interest for quantum algorithms: discrete log, quadratic residuosity, and a
gap version of closest vector in a lattice.

3.5. Is solving QS equivalent to solving SZK?. We saw that QS ∈ BQP
implies that SZK ⊆ BQP. A natural question is whether the QS problem is equivalent
to solving SZK or strictly harder.

We start with the simplest case. Say L is a (promise) problem such that

• for any x, (L, x) can be efficiently reduced to solving the instance |Cx〉 of QS,
• Cx is one-to-one on its inputs, and
• there exists a procedure in BQP that using L as an oracle can invert Cx; i.e.,

given z, it computes a y such that Cx(y) = z.

For example, the discrete log problem gives rise to such a situation (see the
problem DLP and the circuit C given in Appendix A). We claim the following.

Claim 3.2. If L and C are as above, then L ∈ BQP iff C is Qsamplable.

Proof. We already know that (L, x) can be reduced to solving the instance
|Cx〉 of QS. We show the other direction. Assume L ∈ BQP. Fix some input
x. Then, given |y〉, we can compute |y, Cx(y)〉 (because the circuit Cx is given
to us), and, given |Cx(y)〉, we can compute |Cx(y), y〉 (because L ∈ BQP and we
assume we can invert Cx using L).3 It then follows that there exists an efficient
procedure that replaces |y〉 with |Cx(y)〉 (by undoing the computation). In partic-
ular we can build the superposition

∑
y |y〉 and transform it into the superposition

|Cx〉 =
∑ |Cx(y)〉.

Next, we consider the case where Cx is not one-to-one but rather regular; i.e.,
the distribution DC = DCx

it induces is flat. Let us further assume that we have an

3In fact, we approximate only the state, since we run a BQP algorithm for the inversion procedure,
and this algorithm may err.
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efficient way to complete Cx to a one-to-one function. Formally, say L is a (promise)
problem such that

• for any x, (L, x) can be efficiently reduced to solving the instance |Cx〉 of QS,
and Cx is a circuit computing a function Cx : {0, 1}n → ΛC for some domain
ΛC ,

• there exists an efficient function fx : {0, 1}n → Λf , for some domain Λf , such
that Cx ⊗ fx : {0, 1}n → ΛC ×Λf (defined by (Cx ⊗ fx)(y) = (Cx(y), fx(y)))
is one-to-one and onto, and

• there exists an efficient procedure that using L as an oracle can invert Cx⊗fx;
i.e., given z, it computes a y such that (Cx ⊗ fx)(y) = z.

We claim the following.
Claim 3.3. If L and C are as above, then L ∈ BQP iff C is Qsamplable.
Proof. As before, we can create the state φ =

∑ |Cx(y), fx(y)〉. As Cx ⊗ fx
is one-to-one and onto ΛC × Λf , we have that φ =

∑
z∈ΛC

|z〉 ⊗∑
v∈Λf

|v〉. Hence

φ is in fact a product state, and we get the state |Cx〉 by just ignoring the second
register.

Graph isomorphism is an example to such a situation, as we now show. A key
fact that we use is that there exists a deterministic search-to-decision reduction for
graph isomorphism (see, e.g., [37, section 1.2]). Given any two isomorphic graphs G
and G′, the reduction R gives a permutation π = R(G,G′) ∈ Sn such that π(G) = G′,
where n is the number of vertices in G, and Sn is the set of all permutations on n
elements.

Then the circuit CG : Sn → Sn(G) gets π ∈ Sn as an input and outputs the
permuted graph π(G), CG(π) = π(G). The function fG : Sn → Aut(G) is defined by
f(π) = (R(G, π(G)))−1 · π (where the product is in Sn). We leave it to the reader
to show that f(π) ∈ Aut(G), that C ⊗ f is one-to-one and onto, and that the above
three conditions are satisfied. Then we have the following lemma.

Lemma 3.2. GI ∈ BQP iff |αG〉 =
∑

σ∈Sn
|σ(G)〉 can be generated in BQP.

It is tempting to try extending the above approach in order to prove Lemma 3.2
for the SZK-complete problem SDα,β . However, we face the following problems:

• Cx might not be regular; i.e., different elements Cx(y) might have a different
number of preimages.

• Even worse, even if we assume Cx is regular, in fact even if Cx is a permuta-
tion, it might be possible that Cx is hard to invert (and then Cx is a one-way
function), and it is possible that it is hard to invert even given access to an
oracle solving L.
Thus, for this approach to work, it must be true that if L = SD (and therefore
also the whole of SZK) is easy (classically or quantumly), then there are no
one-way functions in the quantum model. We note that the question of
whether it is possible that SZK = BPP but yet one-way functions exist (in
the classical model) is a major open problem (see [47, Open problem 4.8.10]).

We therefore do not know if, in general, solving QS in BQP is equivalent to solving
SZK in BQP, and we leave it as an open problem.

4. The ASG paradigm. In this section we define the paradigm of ASG. At
the end of the section we formally state and prove Theorem 1.2, which states that
any adiabatic state generator can be simulated efficiently by a quantum circuit. This
is done using the Zeno effect. As mentioned before, our proof does not rely on the
adiabatic theorem. We start with some background on the Trotter formula, which we
need for our proofs in this section.
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4.1. Preliminaries.

4.1.1. Trotter’s formula. Consider the sum of two Hamiltonians A and B,
A+B. We are interested in writing the unitary matrix ei(A+B)t in terms of eiAt and
eiBt. If A and B commute, this is simple: we have ei(A+B)t = eiAt · eiBt. If the two
matrices do not commute, Trotter’s formula gives a way to do this:

lim
n→∞(eiAt/neiBt/n)n = ei(A+B)t.

In other words, it says that if we interleave short executions of A and B, then in
the limit we get an execution of A+B. For our purpose we need to quantify the error
as a function of n, and for that we use the following variant from ([40, eq. 4.104]):

||e2δi(A+B) − eδiAe2δiBeδiA|| ≤ O((max {||A||, ||B||} · δ)3).(4.1)

We also need to deal with Hamiltonians of the form H =
∑

m Hm that are sums
of m > 2 Hamiltonians. We prove the following lemma (a very similar statement
appears in [40, Exercise 4.50]).

Lemma 4.1. Let Hm be Hermitian, m = 1, . . . ,M , and let H =
∑M

m=1 Hm.

Further, assume that for every 1 ≤ k ≤ � ≤ M we have ‖∑�
i=k Hi‖ ≤ Λ. Define

Uδ = [ eδiH1 · eδiH2 · · · · · eδiHM ] · [ eδiHM · eδiHM−1 · · · · · eδiH1 ].(4.2)

Then ‖Uδ − e2δiH‖ ≤ O(M · (δΛ)
3
).

Proof. We prove by induction on M . The case M = 2 is (4.1). For the induction
step, we notice that by (4.1)

||e2δi
∑M

i=1 Hi − eδiH1e2δi
∑M

i=2 HieδiH1 || ≤ O((δΛ)3).

Also, Uδ = eδiH1 [eδiH2 · · · · · eδiHM ] · [ eδiHM · · · · · eδiH2 ]eδiH1 . Thus,

||Uδ − e2δi
∑M

i=1 Hi ||
≤ ||[eδiH2 · · · · · eδiHM ] · [ eδiHM · · · · · eδiH2 ] − e2δi

∑M
i=2 Hi || + O((δΛ)3),

and by induction this is bounded by O(M(δΛ)3).
Corollary 4.1. Let H,Hm satisfy the conditions of Lemma 4.1. Then, for

every t > 4δ,

∥∥∥U t
2δ �

δ − e−itH
∥∥∥ ≤ O(Λ · δ + MΛ3t · δ2).

Notice that for every fixed t,M , and Λ, the error term goes down to zero with
δ. In applications, we pick δ in such a way that the above error term is polynomially
small. We now give the proof.

Proof.

∥∥∥U t
2δ �

δ − e−itH
∥∥∥ ≤

⌊
t

2δ

⌋
·
∥∥∥∥∥Uδ − e

−it

� t
2δ �H

∥∥∥∥∥

≤ t

2δ
·
[∥∥∥∥Uδ − e

−it
t
2δ

H
∥∥∥∥+

∥∥∥∥∥e
−it
t
2δ

H − e

−it

� t
2δ �H

∥∥∥∥∥

]
.



ADIABATIC QUANTUM STATE GENERATION 65

The first term ‖Uδ − e
−it
t
2δ

H‖ = ‖Uδ − e−i2δH‖ ≤ O(M · (δΛ)3), by Lemma 4.1.

For the second term ‖e
−it
t
2δ

H−e
−it

� t
2δ

�
H‖, we notice that both matrices (and therefore

also their difference) have the same eigenvector basis (that of H). As the norm

is maximized at some eigenvector, ‖e
−it
t
2δ

H − e
−it

� t
2δ

�
H‖ = |e

−it
t
2δ

λ − e
−it

� t
2δ

�
λ| for some

eigenvalue λ with |λ| ≤ Λ (because H has bounded norm). We now use the identities

|e−θi − e−θ′i| = 2| sin( θ−θ′

2
)| ≤ |θ − θ′|. We see that the second term is bounded by

8δ2λ
t .

Altogether,

∥∥∥U t
2δ �

δ − e−itH
∥∥∥ ≤ O

(
t

δ

)
·
[
(M · (δΛ)3) +

Λδ2

t

]

= O(MΛ3tδ2) + O(Λδ).

4.2. Adiabatic quantum state generation. We now define our paradigm for
quantum state generation inspired by the adiabatic theorem. As explained in the
introduction, we would like to allow as much flexibility as possible and therefore allow
any Hamiltonian which can be implemented efficiently by quantum circuits. We define
the following.

Definition 4.1 (simulatable Hamiltonians). We say that a Hamiltonian H on
n qubits is simulatable if for every real value t > 0 and every accuracy 0 < ε < 1 the
unitary transformation

U(t) = e−iHt

can be approximated by a quantum circuit of size poly(n, t, 1/ε) to within ε accuracy
in the operator norm.

Corollary 4.1 implies that a local Hamiltonian is simulatable (but the other
direction is not true). If H is simulatable, then by definition so is cH for any
0 ≤ c ≤ poly(n). It therefore follows by Trotter’s formula that any convex combi-
nation of two simulatable, polynomially bounded norm Hamiltonians is simulatable.
Also, if H is simulatable and U is a unitary matrix that can be efficiently applied by

a quantum circuit, then UHU† is also simulatable, because e−itUHU†
= Ue−itHU†.

We note that these rules cannot be applied unboundedly many times in a recursive
way, because the simulation will then blow up. The interested reader is referred to
[40, 13] for a more complete set of rules for simulating Hamiltonians.

We now describe an adiabatic path, which is an allowed path in the Hamiltonian
space.

Definition 4.2 (adiabatic path). A function H from s ∈ [0, 1] to the vector
space of Hamiltonians on n qubits is an adiabatic path if

• H(s) is continuous,
• H(s) is differentiable, except for polynomially many points,
• for all s, H(s) has a unique ground-state, and
• for all s, H(s) is simulatable given s.

Adiabatic quantum state generation is supposed to mimic the process of imple-
menting Schrödinger’s evolution along an adiabatic path, where the adiabatic condi-
tion holds.

In our case, we use simulatable Hamiltonians rather than local Hamiltonians.
The time associated with ASG is defined using similar parameters to those used in
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the adiabatic theorem (as explained in the introduction). For an adiabatic path H(s)
we define

η(H(·)) = max
s∈[0,1]\D

∥∥∥∥
dH

ds
(s)

∥∥∥∥ and

Δ(H(·)) = min
s∈[0,1]

Δ(H(s)),

where in the above, D is the set of at most polynomially many points where the
derivative is not defined.

Definition 4.3 (adiabatic quantum state generation). An adiabatic quantum
state generator Hx(s) is a function from x ∈ {0, 1}n to adiabatic paths {Hx(s)}s∈[0,1].
We require that the generator is explicit, i.e., that there is a quantum machine running
in time polynomial in its input and output length, such that

• on input x ∈ {0, 1}n outputs α(Hx(0)), the ground-state of Hx(0), and
• on input x ∈ {0, 1}n, s ∈ [0, 1], t > 0, and ε outputs a poly(n, t, 1

ε )-size circuit

Cx(s) approximating e−itHx(s) to within ε accuracy.

We define T (x, ε) = η2(Hx(·))
ε·Δ2(Hx(·)) . For ε > 0 we let Tε = maxx{T (x, ε)}, and we say the

adiabatic quantum state generator H(·) takes time Tε (for the given ε).

4.3. Circuit simulation of adiabatic quantum state generation. We now
prove that an adiabatic quantum state generator can be simulated efficiently by a
quantum circuit.

Theorem 1.2 (formal). Let ε > 0. Let Hx(s) be an adiabatic state generator
taking time Tε. There exists a quantum circuit of size poly(Tε,

1
ε , n) such that for

every input x, it generates α(Hx(1)) to within ε accuracy.
Proof. We start by an overview of the proof. The circuit is built by discretiz-

ing time to sufficiently small intervals of length δ = 1
R for some large enough R =

poly(Tε,
1
ε , n). At each time step j, j = 1, . . . , R, we apply a measurement in a basis

which includes the ground-state α(H(sj)). In other words, we attempt to project
α(H(sj−1)) onto α(H(sj)). This is done using the Hamiltonian-to-measurement
lemma (Lemma 1.1). If R is sufficiently large, the subsequent Hamiltonians are very
close in the spectral norm, and their ground-states are very close in the Euclidean
norm (by Claim 1.1). Given that at time step j the state is the ground-state α(H(sj)),
the next measurement results with very high probability in a projection onto the new
ground-state α(H(sj+1)). The Zeno effect [42] guarantees that the error probability
behaves like 1/R2, i.e., quadratically in R (and not linearly), and so the accumulated
error after R steps is still small, which implies that the probability that the final state
is the ground-state of H(1) is very high, if R is taken to be large enough. We now
give a formal treatment.

The description of the quantum circuit. For a given input x, the adiabatic
state generator specifies an adiabatic path Hx(s). Recall that [0, 1] can be decomposed
into m = poly(n) time intervals of the form [sj , sj+1] where H(·) is continuous on
[sj , sj+1] and differentiable on (sj , sj+1). Let η = η(Hx(·)),Δ = Δ(Hx(·)). We divide

each interval into R equal intervals, where we choose R ≥ Θ( η2

Δ2
m
ε ), and we set

tj,k = sj +(sj+1−sj)
k
R . For each interval, we apply the following R steps. At the kth

step, k = 1, . . . , R, we apply the operation OH(tj,k) defined in the statement of the
Hamiltonian-to-measurement lemma (Lemma 1.1). Each of these applications of OH

takes time which is poly(n, 1/Δ), by Lemma 1.1. The complexity of the algorithm is

therefore O( η2

Δ2
m2

ε ) times the complexity of applying the measurement from Lemma
1.1. This is indeed poly(Tε, n, 1/ε).
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Error analysis in the case that OH is perfect. We first show the algorithm
works when we assume that the OH ’s are perfect; i.e., in Lemma 1.1, 〈γ|β(α⊥)〉 = 0.
We show that starting with the state α(H(sj)), the state after the jth interval is,
with high probability, α(H(sj+1)). We first bound the relative change of H(s + δ)
with respect to H(s). For s, s + δ ∈ [sj , sj+1],

‖H(s + δ) −H(s)‖ =

∥∥∥∥∥

∫ s+δ

s

dH

ds
(s)ds

∥∥∥∥∥

≤
∫ s+δ

s

∥∥∥∥
dH

ds
(s)

∥∥∥∥ ds ≤ η · δ.

Hence, ‖H(tj,k+1) −H(tj,k)‖ ≤ η
R . Claim 1.1 implies that

|〈α(H(tj,k+1)) | α(H(tj,k)) 〉| ≥ 1 − 4
η2

R2Δ2
.

Hence the probability for successful projection at the k′th measurement, i.e., the

probability that the outcome is indeed the ground-state, is (1 − 4η2

R2Δ2 )2 ≥ 1 − 8η2

R2Δ2 .
The probability that we err at any of the R steps in the jth interval is therefore at

most O( η2

RΔ2 ). And the probability that we err at any of the intervals is therefore at
most m times that. This is at most ε by our choice of R.

Including nonperfect OH ’s. We now have to correct the fact that we can
apply the measurements with only some exponentially good accuracy but not exactly.
The above discussion showed that in the perfect measurement case, the output is
within ε trace distance from the desired density matrix of the final ground-state. To
analyze the nonperfect case, we keep track of the entire system (recall that OH adds
ancilla qubits to operate on). We now compare the overall state of the system after
the application of OH to the overall state after the application of an ideal OH which
simulates a perfect measurement. By Lemma 1.1, the Euclidean distance between
the states is arbitrarily small. Summing up all these errors over polynomially many
OH ’s still results in an arbitrarily small distance from the state in the case of perfect
measurements. When considering the reduced state to the original subspace, this
results in a state which is arbitrarily close (in trace distance) to the state in the case
of perfect measurements.

5. ASG for Markov chain states. Finally, we show how to use our techniques
to generate interesting quantum states related to Markov chains and approximate
counting algorithms. We give some Markov chain background below; for more back-
ground, see [38] and the references therein. For background regarding approximate
counting, see [33].

5.1. Markov chain background. We consider a Markov chain on a graph,
with nodes indexed by n bit strings. The bits strings are called states (not to be
confused with quantum states). The Markov chain is characterized by a matrix M
operating over the state space. The matrix M has eigenvalues between −1 and 1.
Under mild conditions on M (namely, M is connected and aperiodic), for any p an
initial probability distribution over the state space, the limit limt→∞ pM t = π exists,
π is called the limiting distribution, it is independent of p, and it is a left eigenvector
of M with eigenvalue 1. Also, πi > 0 for all i.

A Markov chain is reversible if for the limiting distribution π, for every i and j,
it holds that M [i, j] · πi = M [j, i] · πj , i.e., if every directed edge has the same weight
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under the stationary distribution. We note that any symmetric Markov chain M is
reversible, and its limiting distribution must be the uniform distribution.

A Markov chain is said to be rapidly mixing if starting from any initial distribu-
tion, the distribution after poly(n, 1

ε ) steps is within ε total variation distance from
the limiting distribution π. A reversible Markov chain is rapidly mixing iff its second
eigenvalue gap, namely, the difference between the first and second largest (in absolute
value) eigenvalues, is nonnegligible, namely, bounded from below by 1/poly(n).

For the sake of simplicity, we restrict our attention in this paper to Markov chains
with nonnegative eigenvalues. This is standardly done, by adding self-loops with
probability 1/2, and makes sure that no absolute values are needed in the definition
of the eigenvalue gap.

5.2. Reversible Markov chains and Hamiltonians. For a reversible Markov
chain M with a limiting distribution π, we define

HM = I − Diag(
√
π) ·M · Diag

(
1√
π

)
,

where Diag(
√
π) is the diagonal matrix with

√
πi in its diagonal ith entry. Similarly,

Diag( 1√
π
) has 1√

πj
over its diagonal.

A direct calculation shows that M is reversible iff HM is symmetric. Thus, for
a reversible Markov chain, we denote by HM the Hamiltonian corresponding to M .
The properties of HM and M are very much related.

Claim 5.1. Suppose M is a reversible Markov chain with limiting distribution π.
Then

• HM is a Hamiltonian with ‖HM‖ ≤ 2;
• the spectral gap of HM equals the second eigenvalue gap of M .

Let us define |π〉 def
=
∑

i

√
πi |i〉. Then

• the ground-state α(HM ) of HM is |π〉 with ground-value 0.
Proof. If M is reversible, HM is Hermitian and hence has an eigenvector basis.

It is easy to see that v is an eigenvector of HM with eigenvalue λ iff Diag(
√
π)−1v

is an eigenvector of M with eigenvalue 1 − λ. Also, vtDiag(
√
π) is a left eigenvector

of M with the same eigenvalue. It follows that if the eigenvalues of HM are {λr},
then the eigenvalues of M are {1 − λr}. M is a reversible Markov chain and therefore
has eigenvalues between −1 and 1, and the first two items of the claim follow. If
we denote v = (π1, . . . , πn) to be the (unique) left eigenvector of M with eigenvalue
1, then Diag(

√
π)−1v is the (unique) eigenvector of HM with eigenvalue 0. All other

eigenvectors of M have eigenvalues strictly smaller than 1, and so all other eigenvectors
of HM have eigenvalues strictly larger than 0. It follows that |π〉 = Diag(

√
π)−1v is

the unique ground-state of HM with ground-value 0.
This gives a direct connection between Hamiltonians, spectral gaps, and ground-

states on one hand and rapidly mixing reversible Markov chains and limiting distri-
butions on the other hand.

5.3. Simulating HM . Even if M is sparse and explicit, its corresponding Hamil-

tonian HM might not be explicit, because for approximating HM [i, j] = −
√

πi

πj
M [i, j]

we need to be able to approximate πi

πj
. Special cases are easier. For example, it is

easy to compute πi

πj
when M is symmetric. For general reversible Markov chains we

define the following.
Definition 5.1 (strongly samplable). A reversible Markov chain on the state

space Ω with limiting distribution π is called strongly samplable if it is
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• sparse and explicit, and,
• given i, j ∈ Ω, there is an efficient way to approximate πi

πj
.

Sparseness and explicitness hold in most interesting Markov chains. The second
requirement is more restrictive. Still, we note that it holds in many interesting cases

such as all Metropolis algorithms (see [29]). As HM [i, j] = −
√

πi

πj
M [i, j] for i �= j,

we see that if M is strongly samplable, then HM is sparse and explicit. As HM has
bounded norm, we can use the sparse Hamiltonian lemma (Lemma 1.4). This implies
the following corollary.

Corollary 5.1. If a Markov chain M is strongly samplable, then HM is simu-
latable.

5.4. From Markov chains to quantum state generation. We now consider
sequences of Markov chains and define the following.

Definition 5.2 (slowly varying Markov chains). Let {Mn
t }T=T (n)

t=1 be a sequence
of Markov chains on Ωn, |Ωn| = N = 2n. Let πn

t be the limiting distribution of Mn
t .

We say that the sequence is slowly varying if there exists some c > 0 such that for all
large enough n, for all 1 ≤ t ≤ T (n) |πn

t − πn
t+1| ≤ 1 − 1/nc.

We can now state Theorem 1.3 precisely.
Theorem 1.3 (formal). Let {Mn

t }Tt=1 be a slowly varying sequence of strongly
samplable Markov chains which are all rapidly mixing, and let πn

t be their correspond-
ing limiting distributions. Then if there exists an efficient quantum state generator
for |πn

0 〉, then there exists an efficient quantum state generator for |πn
T (n)

〉.
Proof. By Corollary 5.1, the Hamiltonians HMn

t
are simulatable. Also, Claim 5.1

implies that ‖HMn
t
‖ ≤ 2 and that the ground-values of all these Hamiltonians are

0. Also, the Markov chains in the sequence are rapidly mixing, which means that
they have nonnegligible spectral gaps, say ≥ 1

nb , for some b > 0. This means that

Δ(HMn
t
) ≥ 1

nb . To complete the proof, we show that the inner product between the
ground-states of subsequent Hamiltonians is nonnegligible. Indeed,

〈α(HMt)|α(HMt+1)〉 = 〈πt|πt+1〉
=
∑

i

√
πt(i)πt+1(i) ≥ 1 − |πt − πt+1| ≥ 1

nc
,

where the second to last inequality follows from Fact 2.1. The theorem then follows
from the jagged adiabatic path lemma (Lemma 1.3).

Essentially all Markov chains that are used in approximate counting algorithms
that we are aware of meet the criteria of the theorem. The following is a partial
list of states we can generate by applying this theorem. The citations refer to the
approximate counting algorithms that we use as the basis for the quantum state
generation algorithm:

1. uniform superposition over all perfect matchings of a given bipartite graph
[32],

2. all lattice points contained in a high-dimensional convex body satisfying the
conditions of [9],

3. various Gibbs distributions over rapidly mixing Markov chains using the
Metropolis filter [38],

4. log-concave distributions [9],
5. all linear extensions of a given partial order [12].

Remark 5.1. We note that the second requirement in the definition of strongly
samplable Markov chains (Definition 5.1) is crucial. If this requirement can be relaxed,
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and one can prove Theorem 1.3 without it, then these techniques could have been used
to solve the QS problem related to the graph isomorphism problem and thus to give
a quantum algorithm for graph isomorphism.

We illustrate our technique with the example of how to Qsample all perfect match-
ings of a given bipartite graph.

5.5. An example: All perfect matchings of a bipartite graph. In this
section we rely heavily on the work of Sinclair, Jerrum, and Vigoda [32], who recently
showed how to efficiently approximate the permanent of any matrix with nonnegative
entries. It is well known that this can be done if one can efficiently sample a random
perfect matching of a given input bipartite graph. Sinclair et al. achieve the latter
using a sequence of Markov chains M1, . . . ,MT on the set of matchings of a bipartite
graph. The details of this work are far too involved to fully explain here, and we refer
the interested reader to [32] for further details.

In a nutshell, the idea in [32] is to start with M1, which is a Metropolis random
walk on the set of perfect and near perfect matchings (i.e., perfect matchings minus
one edge) of the complete bipartite graph. Since [32] is interested in a given input
bipartite graph which is a subgraph of the complete bipartite graph, they assign
weights to the edges such that weights on the edges that do not participate in the
input graph are slowly decreasing as we move from M1 to MT until their weights in
the final Markov chain MT practically vanish. The weights of the edges are updated
from Markov chain Mt to the next Mt+1 using data that is collected from running
the Markov chain Mt with the current set of weights.

The final Markov chain MT with the final set of parameters converges to a prob-
ability distribution which is essentially concentrated on the perfect and near perfect
matchings of the input graph, where the probability of the perfect matchings is 1/n
times that of the near perfect matching.

We would like to apply Theorem 1.3 in order to solve the quantum sampling prob-
lem for the limiting distribution of MT , namely, to generate the coherent superposition
over perfect and near perfect matchings with the correct weights.

We need to check that the conditions of the theorem hold. It is easy to check
that the Markov chains Mt being used in [32] are all strongly samplable, since they
are Metropolis chains, and so the corresponding Hamiltonians are simulatable by
Corollary 5.1. Moreover, the sequence of Markov chains is slowly varying. To apply
Theorem 1.3, it remains to show that we can Qsample the limiting distribution of M1,
the first Markov chain in the sequence.

The limiting distribution of the initial Markov chain M1 is a distribution over
all perfect and near perfect matchings in the complete bipartite graph, with each
near perfect matching having weight n times that of a perfect matching, where n is
the number of nodes of the given graph. To generate this superposition we do the
following:

• We generate in the first register
∑

π∈Sn
|mπ〉, where mπ is the matching on the

complete bipartite graph induced by π ∈ Sn. We can efficiently generate this
state because we can generate a superposition over all permutations in Sn,
and there is an easy computation from a permutation to a perfect matching
in a complete bipartite graph, and vice versa.

• In the second register, we generate the state |0〉 +
√
n
∑n

i=1 |i〉 normalized
on a log(n)-dimensional register. This can be done efficiently because any
unitary transformation on log(n) qubits can be performed efficiently.

• We apply a transformation that maps |m, i〉 to |0,m〉 when i = 0, and to
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|0,m− {ei}〉 for i > 0, where m−{ei} is the matching m minus the i′th edge
in the matching. There is an easy computation from m − {ei} to m, i, and
vice versa, and so this transformation can be done efficiently. We are now at
the desired state.

Thus we can apply Theorem 1.3 to generate the limiting distribution of the final
Markov chain. We then measure to see whether or not the matching is perfect, and
with nonnegligible probability we project the state onto the uniform distribution over
all perfect matchings of the given graph.

6. The basic tools.

6.1. A lemma about ground-states of close Hamiltonians.
Claim 6.1 (Claim 1.1 repeated). Let A,B be two Hamiltonians of equal dimen-

sions such that ‖A−B‖ ≤ η. Moreover, assume that A,B have spectral gaps bounded

from below: Δ(A),Δ(B) ≥ Δ. Then |〈α(A)|α(B)〉| ≥ 1 − 4η2

Δ2 .
Proof. Adding g · I to both matrices, for any constant g, does not affect the

spectral norm of the difference, the spectral gaps, or the inner product between the
ground-states. We can therefore assume without loss of generality that A and B are
positive, A’s ground-value is 0, and B’s ground-value, denoted by λB , is larger than
0.

Since λB = minv:|v|=1 |Bv|, we have λB ≤ |Bα(A)|. Also,

|Bα(A)| ≤ |Aα(A)| + |(B −A)α(A)| ≤ η,(6.1)

and so λB ≤ η. We now express α(A) = cα(B)+ c⊥α(B)⊥, with α(B)⊥⊥α(B). Then

|Bα(A)| = |cBα(B) + c⊥Bα(B)⊥|
≥ |c⊥| · Δ − |c| · λB

≥ |c⊥| · Δ − |c| · η.(6.2)

Equations (6.1) and (6.2) together imply that η ≥ |c⊥| · Δ − |c| · η. We see that
|c| ≥ Δ

η |c⊥| − 1. Equivalently,
√

1 − |c⊥|2 ≥ Δ
η |c⊥| − 1.

Denoting r = Δ
η > 0, we see that if the right-hand side is negative, then |c⊥| ≤ 1

r ;
otherwise, solving the inequality we get

|c⊥| ≤ 2r

r2 + 1
≤ 2r

r2
=

2

r
.

We get |〈α(A)|α(B)〉| = |c| =
√

1 − |c⊥|2 ≥ 1 − 4
r2 = 1 − 4η2

Δ2 as desired.

6.2. The spectral gap of a convex combination of projections. We now
prove the basic but useful Claim 1.2 regarding the convex combination of two projec-
tions. Recall that for a vector |α〉, the Hamiltonian Πα = I − |α〉〈α| is the projection
onto the subspace orthogonal to α.

Claim 6.2 (Claim 1.2 repeated). Let |α〉 , |β〉 be two vectors in some Hilbert
space. For any convex combination Hη = (1 − η)Πα + ηΠβ , η ∈ [0, 1], we have
Δ(Hη) ≥ |〈α|β〉|.

Proof. We observe that the problem is two-dimensional. We write |β〉 = a|α〉 +
b|α⊥〉. We now express the matrix Hη in a basis which contains |α〉 and |α⊥〉. The
eigenvalues of this matrix are all 1, except for a two-dimensional subspace, where the
matrix is exactly

(
η|a|2 + (1 − η) ηab∗

ηa∗b η|b|2
)
.
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Diagonalizing this matrix we find that the spectral gap is exactly
√

1 − 4(1 − η)η|b|2,
which is minimized for η = 1/2 where it is exactly |a| = |〈α|β〉|.

6.3. The Hamiltonian-to-measurement and projection lemmas. Con-
sider a simulatable Hamiltonian H with ground-state |α〉. It is sometimes desirable to
apply a measurement in the basis of eigenstates of the Hamiltonian. The Hamiltonian-
to-measurement lemma provides an approximation of this procedure in the case where
the spectral gap of the Hamiltonian is nonnegligible. The lemma is based on Kitaev’s
phase estimation procedure, which we now recall.

Lemma 6.1 (phase estimation, adapted from [35]; see also [46, section 5.2]). Let
U be a unitary transformation on n qubits, and assume U can be implemented by a
poly(n)-size circuit. Let ε > 0. Then there exists a quantum procedure Q running
in time poly(n, 1

ε ) which on input v, that is an eigenvector of U with eigenvalue eiλ,
outputs Q |v, 0〉 = |v, ψ〉 such that the following conditions hold. |ψ〉 is exponentially
close in fidelity to another vector |ψ′〉, F (|ψ〉 , |ψ′〉) ≥ 1 − 2−Ω(n), where |ψ′〉 = |λ′〉 ⊗
|0〉, and λ′ is a real number such that |λ′ − λ| ≤ ε. The right register in |ψ′〉 consists
of the ancilla bits of the algorithm.

We can now proceed to proving Lemma 1.1.
Lemma 6.2 (Lemma 1.1 repeated). Assume H is a simulatable Hamiltonian

on n qubits. For any constant d, there exists a poly(n, 1
Δ(H)

)-size circuit OH which

takes |α(H)〉 to |α(H)〉 ⊗ |γ〉, and for any eigenstate of H |α⊥〉 orthogonal to the
ground-state, OH |α⊥〉 = |α⊥〉 ⊗ |β(α⊥)〉, where |〈γ|β(α⊥)〉| ≤ O(n−d).

Proof. We would like to apply the phase estimation algorithm for the unitary
matrix eiH , with ε = Δ(H)/2. Suppose we could exactly simulate H; namely, we
could apply eiH exactly. In this case, by the above lemma, Kitaev’s phase esti-
mation algorithm does the following. For an input state which is a ground-state
of H, the output state is exponentially close to a vector of the form |λ′〉 ⊗ |0〉 for
|λ′ − λ0| < Δ(H)/2, where λ0 is the ground-value. For an input state which is any
other eigenvector, the output state is exponentially close to a vector of the form
|λ′′〉 ⊗ |0〉 for |λ′′ − λj | < Δ(H)/2. For a superposition of eigenvectors not includ-
ing the ground-state, the output is a superposition of such vectors. The two output
vectors are therefore exponentially close to being orthogonal, as required.

We now need to show how to apply the phase estimation algorithm. To do that,
we recall that H is simulatable, and so we can ζ-approximate e−iH in time polynomial
in n and 1

ζ . We pick ζ to be small enough, but still inverse polynomial in n and 1
ε ,

as follows. Let m be the number of times that eiH is applied in the phase estimation
algorithm, with the above ε. We set ζ to be n−d/m. We then apply the above phase
estimation algorithm, where every time we need to apply eiH , we simulate it with this
accuracy. The accumulated error due to the inaccuracies in the simulation of H is at
most n−d. The output states are therefore within n−d Euclidean distance from the
correct ones. This means that the inner product discussed above (between the output
state for an input which is a ground-state, and the output state in case the input is
orthogonal) is also O(n−d).

We now prove the Hamiltonian-to-projection lemma (Lemma 1.2). Consider a
simulatable Hamiltonian H whose ground-state is α. This time we want to simulate
the Hamiltonian Πα(H), rather than the original Hamiltonian H. The Hamiltonian-
to-projection lemma provides a way to do this, provided the spectral gap of H is
nonnegligible.

Lemma 6.3 (Lemma 1.2 repeated). Assume H is a simulatable Hamiltonian on
n qubits, with nonnegligible spectral gap Δ(H) ≥ 1/nc for some constant c > 0 and
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with a known ground-value. Then the Hamiltonian Πα(H) is simulatable.

Proof. As before, let us start with the assumption that we can apply eiH efficiently
and perfectly. We do the following:

• Apply Kitaev’s phase estimation algorithm for the unitary matrix eiH , us-
ing ε = Δ(H)/2. Now, given the output λ′, we can write down one bit
of information on an extra qubit: whether an input eigenstate of H is the
ground-state or orthogonal to it (it is here that we use the fact that we know
the ground-value).

• Apply a phase shift of value e−it to this extra qubit, conditioned that it is in
the state |1〉 (if it is |0〉, do nothing). This conditional phase shift corresponds
to applying for time t a Hamiltonian with two eigenspaces, the ground-state
and the subspace orthogonal to it, with respective eigenvalues 0 and 1, which
is exactly the desired projection Πα(H).

• Finally, to erase the extra data written down, we reverse the first step and
uncalculate the information written on the qubits again using Kitaev’s phase
estimation algorithm.

This procedure computes the desired transformation eiΠα(H)t on any vector, with
1 − 2−O(n) fidelity.

As in the proof of Lemma 1.1, we now need to take into account the fact that we
cannot apply eiH exactly, but we can simulate H only approximately. We approximate
each of the applications of eiH to within ζ. To determine ζ, we note that the number
of times m we apply eiH in the above procedure is poly(n, 1

Δ(H)
). To get an overall

error of size ζ ′, we simply fix ζ to be ζ ′/2m. The overall procedure is then polynomial
in ζ ′, n, 1

Δ(H)
.

Remark 6.1. We remark that in the two previous lemmas there is nothing special
about the ground-state of the Hamiltonian. The same techniques work for measuring
or projecting onto any eigenstate with a known eigenvalue, that is, separated from all
other eigenvalues.

6.4. The jagged adiabatic path lemma. Next, we consider the question of
which paths in the Hamiltonian space guarantee nonnegligible spectral gaps. Figure
6.1 gives an example of two Hamiltonians H1, H2 with nonnegligible spectral gaps
that can be connected through a jagged line but not through a direct line.

The jagged adiabatic path lemma (Lemma 1.3) provides a way, in a more specific
case, to connect Hamiltonians such that the spectral gaps along the path are always
nonnegligible. The additional condition in Lemma 1.3 is that the ground-state of Hj

is close to the ground-state of Hj+1 (this condition is not fulfilled in the example
of Figure 6.1). It may seem natural that in this case the way to prove the jagged
adiabatic path lemma is to connect each pair of Hamiltonians Hj and Hj+1 by a
straight line. However, again this does not work. To see this consider

H1 =

⎛
⎜⎜⎝

λ1 0 0 0
0 λ2 0 0
0 0 2 0
0 0 0 0

⎞
⎟⎟⎠, H2 =

⎛
⎜⎜⎝

λ1 0 0 0
0 λ2 0 0
0 0 1 1
0 0 1 1

⎞
⎟⎟⎠,

where λ1 and λ2 are the eigenvalues of

(
1.5 0.5
0.5 0.5

)
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H1=
(1 0
0 0)

H2

H3=
(1 1

   1 -1)

H1
H2=
(0 0
0 1)

Fig. 6.1. In the left side of the drawing, we see two Hamiltonians H1 and H2 connected by a
straight line and the spectral gaps along that line. In the right side of the drawing, we see the same
two Hamiltonians H1 and H2 connected through a jagged line that goes through a third connecting
Hamiltonian H3 in the middle and the spectral gaps along that jagged path. Note that on the left
the spectral gap becomes zero in the middle, while on the right it is always larger than one.

(they are about 0.3 and 1.7). Let us say the matrices are represented in the orthonor-
mal basis {v1, . . . , v4}. Then H1 has |v4〉 as a unique ground-state with ground-value
0, and H2 has 1√

2
[|v3〉 − |v4〉] as a unique ground-state with ground-value 0. It is

now easy to check that in 1
2
[H1 + H2] all eigenspaces have dimension two, and no

eigenvalue is separated from the others.

The problem with connecting H1 and H2 by a line stems from the fact that Hi

may behave arbitrarily outside the subspace containing their ground-states. This also
hints at the solution. As we are interested only in the ground-states, let us project
each Hi onto the subspace orthogonal to its ground-state; i.e., if H is a Hamiltonian,
let us define ΠH to be the projection onto the space orthogonal to the ground-state
of H. We then replace the sequence {Hj} with the sequence of Hamiltonians

{
ΠHj

}
,

and we connect two neighboring projections by a line.

Lemma 6.4 (Lemma 1.3 repeated). Let {Hj}T=poly(n)

j=1 be a sequence of bounded
norm, simulatable Hamiltonians on n qubits, with nonnegligible spectral gaps, Δ(Hj) ≥
n−c, and with known ground-values, such that the inner product between the unique
ground-states α(Hj), α(Hj+1) is at least n−c for all j. Then there exists an adiabatic
state generator with α(H0) as its initial state and α(HT ) as its final state. In partic-
ular there exists an efficient quantum algorithm that takes α(H0) to within arbitrarily
small distance from α(HT ).

Proof. We replace the sequence {Hj} with the sequence of Hamiltonians
{
ΠHj

}
,

and we connect two neighboring projections by a line. We claim the following:

• As projections, ΠHj have bounded norms, ‖ΠHj‖ ≤ 1. As the Hamiltoni-
ans on the path connecting these projections are convex combinations of the
projections, they also have bounded norm.

• We proved in Lemma 1.2 that the fact that Hj is simulatable and has a
known ground-value implies that ΠHj

is also simulatable. It follows that
the Hamiltonians on the path connecting these projections, which are convex
combinations of the projections and are of polynomially bounded norms, are
also simulatable (see section 4). This means that all the Hamiltonians on the
path are simulatable.
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• The projections ΠHi
have the same ground-states as the Hamiltonians Hi, and

as a result each two neighboring projections have nonnegligible inner product
between their ground-states. In Claim 1.2 we showed that this implies the
Hamiltonians on the line connecting ΠHj and ΠHj+1 have nonnegligible large
spectral gaps. Notice that this step is possible only when working with the
projections ΠH but not with the Hamiltonians Hi themselves.

Thus, we can define an adiabatic state generator in which the initial state is
α(H0) and the final state is α(HT ). The interval [0, 1] of the rescaled time s is
divided equally between the different steps of the jagged path; when we move from one
projection to the next, s increases by 1/T (recall that T is the number of Hamiltonians
we connect). Note that this implies that the maximal norm of the first derivative
of the Hamiltonians in the adiabatic state generator, which is denoted by η in the
definition of ASG, is O(T ). The minimal spectral gap in the adiabatic state generator,
which we denoted by Δ, is bounded from below by an inverse polynomial in n, by
the arguments above. This gives us an adiabatic state generator which takes time

Tε = η2

εΔ2 = poly(T, n, 1
ε ). We can now apply Theorem 1.2 and get an efficient

quantum algorithm that takes α(H0) = α(ΠH0) to within arbitrarily small distance
from α(HT ) = α(ΠHT

).

6.5. The sparse Hamiltonian lemma. The sparse Hamiltonian lemma (Lem-
ma 1.4) gives fairly general conditions for a Hamiltonian to be simulatable: the Hamil-
tonian need only be sparse and explicit.

The main idea of the proof is to explicitly write H as a sum of polynomially many
bounded norm Hamiltonians Hm, which are all block diagonal (in a combinatorial
sense), and such that the size of the blocks in each matrix is at most 2 × 2. We then
show that each Hamiltonian Hm is simulatable and use Trotter’s formula to simulate
H.

6.5.1. Decomposition of H as a sum of block diagonal matrices with
2 × 2 blocks.

Definition 6.1 (combinatorial block). We say that A is combinatorially block

diagonal if we can decompose the set of rows of A by ROWS(A) =
⋃B

b=1 Rb, where we
require that A(i, j) �= 0 implies that there exists b such that both i ∈ Rb and j ∈ Rb.

We say that A is 2 × 2 combinatorially block diagonal if, for every b, either
|Rb| = 1 or |Rb| = 2.

Claim 6.3 (decomposition lemma). Let H be a sparse explicit Hamiltonian over
n qubits, with at most D nonzero elements in each row. Then there is a way to

decompose H into H =
∑(D+1)2n6

m=1 Hm, where

• each Hm is a sparse explicit Hamiltonian over n qubits, and
• each Hm is 2 × 2 combinatorially block diagonal.

Proof. We color all the entries of H with (D + 1)2n6 colors as follows. For
(i, j) ∈ [N ] × [N ] and i ≤ j (i.e., (i, j) is an upper-diagonal entry), we define

colH(i, j) = (k , i mod k , j mod k , rindexH(i, j) , cindexH(i, j)),

where we have the following:

• If i = j, we set k = 1; otherwise, we let k be the first integer in the range
[2 . . . n2] such that i �= j (mod k). We know there must be such a k (for the
product of all primes smaller than n2 is larger than 2n, and by the Chinese
remainder theorem two numbers that have the same modula are equal).
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• rindexH(i, j) = 0 if Hi,j = 0, and otherwise it is the index of Hi,j in the list
of all nonzero elements in the ith row of H. We define cindexH(i, j) similarly,
using the columns.

For lower-diagonal entries, i > j, we define colH(i, j) = colH(j, i). Altogether, we
use at most (n2)3 · (D + 1)2 colors.

The Hamiltonian’s entries are decomposed by their colors. For a color m, we
define Hm[i, j] = H[i, j] · δcolH(i,j),m; i.e., Hm is H on the entries colored by m and
zero everywhere else. Clearly, H =

∑
m Hm, and each Hm is Hermitian. Also as H is

explicit and sparse, there is a simple poly(n)-time classical algorithm computing the
coloring colH(i, j), and so each Hm is also explicit and sparse. It is left to show that
it is 2 × 2 combinatorially block diagonal.

Indeed, fix a color m and consider Hm. For every nonzero element (ib, jb) of
Hm, we define a block. If ib = jb, then we set Rb = {ib}, while if ib �= jb, then we
set Rb = {ib, jb}. Say ib �= jb (the ib = jb case is similar and simpler). We know
that the elements (ib, jb) and (jb, ib) are colored by the same color m, and suppose
m = (k, ib mod k, jb mod k, rindexH(ib, jb), cindexH(ib, jb)). To see that Rb = {ib, jb}
is a 2 × 2 block, we need to show that there are no other elements colored by m on
the ibth and jbth rows and columns. As the color m contains the row-index and
column-index of (ib, jb), it must be that (ib, jb) is the only nonzero element in Hm

from that row or column. Furthermore, all elements (jb, a) on the jbth row have
jb mod k �= ib mod k and therefore are not colored by m. A similar argument shows
no element on the ibth row is colored by m, and the claim follows (see Figure 6.2).

Fig. 6.2. In the upper diagonal side of the matrix Hm, the row and column of (ib, jb) are empty
because the color m contains the row-index and column-index of (i, j), and the jbth row and ibth
column are empty because m contains k, i mod k, j mod k, and i mod k �= j mod k. The lower
diagonal side of Hm is just a reflection of the upper diagonal side. It follows that {ib, jb} is a 2× 2
combinatorial block.

Claim 6.4. For every m, ‖Hm‖ ≤ ‖H‖.
Proof. Fix an m. Hm is block diagonal, and therefore its norm ‖Hm‖ is achieved

as the norm of one of its blocks. Now Hm blocks are either
• 1 × 1, and then the block is (Hi,i) for some i, and it has norm |Hi,i|, or
• 2 × 2, and then the combinatorial block is

(
0 Ak,�

A∗
k,� 0

)

for some k, �, and it has norm |Ak,�|.
It follows that maxm ‖Hm‖ = maxk,� |Hk,�|. On the other hand, ‖H‖ ≥ maxk,�

|Hk,�| (see section 2.2). The proof follows.

6.5.2. 2 × 2 combinatorially block diagonal matrices are simulatable.
Claim 6.5. Every 2 × 2 block diagonal, explicit Hamiltonian A is simulatable to

within arbitrary polynomial approximation.
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Proof. The proof is standard, but we include it for completeness.
Let t > 0, and let α > 0 be an accuracy parameter.

The circuit: A is 2× 2 combinatorially block diagonal. It therefore follows that A’s
action on a given basis state |k〉 is captured by a 2×2 unitary transformation
Uk. Formally, given k, say |k〉 belongs to a 2×2 combinatorial block {k, �} in
A. We set bk = 2 (for a 2× 2 block) and mink = min(k, �), maxk = max(k, �)
(for the subspace to which k belongs). We then set Ak to be the part of A
relevant to this subspace,

Ak =

(
Amink,mink

Amink,maxk

Amaxk,mink
Amaxk,maxk

)
,

and Uk = e−itAk . If |k〉 belongs to a 1 × 1 block, we similarly define bk = 1,
mink = maxk = k, Ak = (Ak,k), and Uk = (e−itAk).
Our approximated circuit simulates this behavior. We need two transforma-
tions. We define

T̃1 : |k, 0〉 →
∣∣∣∣bk,min

k
,max

k
, Ãk, Ũk, k

〉
,

where Ãk is our approximation to the entries of Ak and Ũk is our approxima-

tion to e−itÃk , and where both matrices are expressed by their four (or one)

entries. We use Θ(α) accuracy such that ‖Uk − Ũk‖ ≤ 4‖Uk − Ũk‖∞ ≤ α.

Having Ũk,mink,maxk, k written down, we can simulate the action of Ũk.
We can therefore have an efficient unitary transformation T2:

T̃2 :

∣∣∣∣Ũk,min
k

,max
k

〉
|k〉 =

∣∣∣∣Ũk,min
k

,max
k

〉 ∣∣∣Ũkk
〉

for |Ũkk〉 ∈ Span{mink,maxk}. We can similarly define T2, which applies Uk

on its input, T2 = |A,min,max, k〉 = |A,min,max, Ukk〉.
Our algorithm applies T̃1, followed by T̃2 and then T̃1

−1
for cleanup.

Correctness: Let us denote X = e−itA − T−1
1 T2T1. Our goal is to show that

‖X‖ ≤ α. We notice that X is also 2 × 2 combinatorially block diagonal, and
therefore its norm can be achieved by a vector ψ belonging to one of its dimen-
sion one or two subspaces, say, to Span{|mink〉 , |maxk〉}. On this subspace,

we have a 2 × 2 operator X = e−itAk − T̃1

−1
T̃2T̃1. Also, e−itAk = T̃1T2T̃1

−1
.

It follows that ‖X‖ = ‖T2 − T̃2‖ = ‖Uk − Ũk‖ ≤ α.
Remark 6.2. We proved the claim for matrices with 2 × 2 combinatorial blocks.

A similar claim applies for matrices with m×m combinatorial blocks, with the same
proof technique, as long as m is polynomial in n.

6.5.3. Proving the sparse Hamiltonian lemma. We now prove the sparse
Hamiltonian lemma.

Lemma 6.5 (Lemma 1.4 repeated). If H is an explicit and sparse Hamiltonian
on n qubits and ‖H‖ ≤ poly(n), then H is simulatable.

Proof. Let H be row-sparse with D ≤ poly(n) nonzero elements in each row, and
let ‖H‖ = Λ ≤ poly(n). Let t > 0. Our goal is to efficiently simulate e−itH to within
α accuracy.

We express H =
∑M

m=1 Hm as in Claim 6.3, M ≤ (D + 1)2n6 ≤ poly(n). By
Claim 6.5, for every δ > 0 we can simulate e−iδHm to within α

2Mt/δ accuracy in time
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poly(n, t,M, 1
δ ,

1
α ). It follows that we can approximate Uδ (see section 4.1.1) to within

α
t/δ accuracy and U

 t
2δ �

δ to within α
2

accuracy.

Also, Corollary 4.1 ensures us that U
 t

2δ �
δ is O(M Λ̃δ + M Λ̃3tδ2) close to e−itH ,

where Λ̃ = maxk≤� ‖
∑�

i=k Hi‖ ≤ M‖H‖ (because we saw that for every m, ‖Hm‖ ≤
‖H‖). Picking δ small enough (inverse polynomial in M,Λ, t), we see that U

 t
2δ �

δ is α
2

close to e−itH . Altogether, our approximation is α close to e−itH . It follows that our
approximation has circuit size bounded by poly(n, t,M, 1

δ ,
1
α ) = poly(n, t, 1

α ).

Appendix A. QS instances: Specific problems in SZK. We saw in the
introduction an example of a QS problem, the solution of which implies an efficient
quantum algorithm for graph isomorphism. Here we give three more examples of
problems in SZK which are of particular relevance for quantum algorithms: discrete
log, quadratic residuosity, and a gap version of closest vector in a lattice. An efficient
QS algorithm for the lattice problem is a major open problem.

We also remind the reader that the existence of the reduction of the problems we
consider below to certain instances of QS problems already follows from Theorem 1.1.
Here we do a direct reduction and get simple QS instances sufficient for solving the
above problems.

A.1. A promise problem equivalent to discrete log.

The problem: Goldreich and Kushilevitz [25] define the promise problem DLPc as
Input: A prime p, a generator g of Z∗

p , and an input y ∈ Z∗
p .

Promise:
• Yes: x = logg(y) is in [1, cp].
• No: x = logg(y) is in [p

2
+ 1, p

2
+ cp].

Goldreich and Kushilevitz [25] prove that the discrete-log problem is reducible to
DLPc for every 0 < c < 1/2. They also prove that DLPc has a perfect zero knowledge
proof if 0 < c ≤ 1/6. We take c = 1/6 and show how to solve DLP1/6, given a certain
QS algorithm.

The reduction: We assume we can solve the QS problem for the circuit Cy,k =
Cp,g,y,k that computes Cy,k(i) = y · gi (mod p) for 0 ≤ i < 2k. The algo-
rithm generates the states

∣∣Cgp/2+1,log(p)�−1

〉
,
∣∣Cy,log(p)�−3

〉
and proceeds as

in Theorem 1.1.
Correctness:

We have

∣∣Cgp/2+1,log(p)�−1

〉
=

1√
t

t−1∑

i=0

∣∣∣gp/2+i
〉
,(A.1)

where t is the largest power of 2 smaller than p/2. Also, as y = gx we have

∣∣Cy,log(p)�−3

〉
=

1√
t′

t′−1∑

i=0

∣∣gx+i
〉
,(A.2)

where t′ is the largest power of 2 smaller than p/8. Now, comparing the
powers of g in the support of (A.1) and (A.2), we see that

• if x ∈ [1, cp], then
∣∣Cgp/2+1,log(p)�−1

〉
and

∣∣Cy,log(p)�−3

〉
have disjoint

supports, and therefore 〈Cy,log(p)�−3|Cgp/2+1,log(p)�−1〉 = 0, while
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• if x ∈ [p
2

+ 1, p
2

+ cp], then the overlap is large and

|〈Cy,log(p)�−3|Cgp/2+1,log(p)�−1〉|

is a constant.

A.2. Quadratic residuosity.
The problem: The (total) language QR is to decide on input x, n whether or not

x is a square modulo n. Without loss of generality we can assume the input
x to the problem belongs to Z∗

n. Let us denote xRn if x is a square, i.e.,
if x = y2 (mod n) for some y. An efficient algorithm is known for the case
where n is a prime, and the problem is believed to be hard for n = pq, where
p, q are chosen at random among large primes p and q. A basic fact that
follows directly from the Chinese remainder theorem is the following.
Fact A.1.

• If the prime factorization of n is n = pe11 pe22 . . . pekk , then for every x

xRn ⇐⇒ ∀1≤i≤k xRpi.

• If the prime factorization of n is n = p1p2 . . . pk with different primes
pi, then every z ∈ Z∗

n that has a square root has exactly 2k square roots.
Using this fact, we show how to reduce the n = pq case to QS adopting the
zero knowledge proof of [28].

The reduction: We use the circuit Ca(r) that on input r ∈ Z∗
n outputs z = r2a

(mod n). Suppose we know how to generate |Ca〉 for every a. On input
integers n, x, (n, x) = 1, the algorithm proceeds as in the proof of Theorem
1.1 with the states |C1〉 , |Cx〉.

Correctness: We have

|Cx〉 =
∑

z∈Z∗
n

√
pz |z〉 ,

where pz = Prr∈Z∗
n
(z = r2x), and

|C1〉 = α
∑

z:zRn

|z〉

for α = 4
(p−1)(q−1)

independent of z.

• If xRn, then z = r2x is also a square. Furthermore, pz = Prr∈Z∗
n
(z =

r2x) = Prr(r is a square root of z
x ), and as every square in Z∗

n has
the same number of square roots, we conclude that |Cx〉 = |C1〉 and
〈Cx|C1〉 = 1.

• Suppose x is not a square. For every r ∈ Z∗
n, z = xr2 must be a

nonresidue (or else xRn as well). We conclude that Cx has support only
on nonresidues, and so 〈Cx|C1〉 = 0.

We note that for a general n, different elements might have a different number
of solutions (e.g., try n = 8), and so the given construction does not work.

A.3. Approximating CVP. Here we describe the reduction to QS from a gap
problem of CVP (closest vector in a lattice), which builds upon the SZK proof of
Goldreich and Goldwasser [26]. A lattice of dimension n is represented by a basis,
denoted B, which is an n × n nonsingular matrix over R. The lattice L(B) is the set
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of points L(B) = {Bc | c ∈ Z
n}, i.e., all integer linear combinations of the columns

of B. The distance d(v1, v2) between two points is the Euclidean distance �2. The
distance between a point v and a set A is d(v,A) = mina∈A d(v, a). We also denote
‖S‖ the length of the largest vector of the set S. The closest vector problem, CVP,
gets as input an n-dimensional lattice represented by a basis B and a target vector
v ∈ R

n. The output should be the point b ∈ L(B) closest to v.

The CVP problem is NP-hard. Here we are interested in the variant of the
problem in which the distance to the lattice is approximated to within a factor g.
The approximation problem is known to be NP-hard when g is small, and on the
other hand, it is known to be easy when g is exponential (see [6] for exact parameters
and references). Here we are interested in the intermediate case, when g is about√

n
log(n)

. In this range, the problem is not known to be in BPP, but on the other

hand, it is known to be in SZK by [26] and therefore is not likely to be NP-hard. We
use the SZK proof of [26] to give a reduction to the QS problem. We first describe
the promise problem.

The problem:
Input: An n-dimensional lattice given by a basis B, a vector v ∈ R

n, and a

designated distance d. We set g = g(n) =
√

n
c logn for any fixed c > 0.

Promise:
• Yes: Instances where d(v,L(B)) ≤ d.
• No: Instances where d(v,L(B)) ≥ g · d.

We let Ht denote the sphere of all points in R
n of distance at most t from

the origin.
The reduction: The circuit C0 gets as input a random string, and outputs the vector

r + η, where r is a uniformly random point in H2n‖B∪{v}‖ ∩ L(B) and η is
a uniformly random point η ∈ H g

2 ·d. Reference [26] explains how to sample
such points with almost the right distribution; i.e., they give a description of
an efficient such C0.
We remark that the points cannot be randomly chosen from the real (con-
tinuous) vector space, due to precision issues, but [26] shows that taking a
fine enough discrete approximation results in an exponentially small error.
From now on, we work in the continuous world, bearing in mind that in fact
everything is implemented by its discrete approximation. Now assume we can
Qsample from the circuit C0. We can then also Qsample from the circuit Cv,
which we define to be the same circuit, except that the outputs are shifted by
the vector v and become r + η + v. To solve the gap problem, the algorithm
proceeds as in the proof of Theorem 1.1 with the states |C0〉 , |Cv〉.

Correctness: In a No instance, v is far away from the lattice L(B), namely,
d(v,L(B)) ≥ g · d. The calculation in [26] shows that the states |C0〉 and
|Cv〉 have no overlap, and so 〈C0|Cv〉 = 0. On the other hand, suppose v is
close to the lattice, d(v,L(B)) ≤ d. Notice that the noise η has magnitude
about gd, and so the spheres around any lattice point r and around r + v
have a large overlap. Indeed, the argument of [26] shows that if we express
|C0〉 =

∑
z pz |z〉 and |Cv〉 =

∑
z p

′
z |z〉, then ‖p−p′‖ ≤ 1−n−2c. We see that

〈C0|Cv〉 = F (p, p′) ≥ n−2c. Hence, if we could generate these states, we could
iterate the above poly(n) times and get a BQP algorithm for the problem.
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A PROBABILISTIC STUDY ON COMBINATORIAL EXPANDERS
AND HASHING∗

PHILLIP G. BRADFORD† AND MICHAEL N. KATEHAKIS‡

Abstract. This paper gives a new way of showing that certain constant degree graphs are graph
expanders. This is done by giving new proofs of expansion for three permutations of the Gabber–Galil
expander. Our results give an expansion factor of 3

16
for subgraphs of these three-regular graphs

with (p− 1)2 inputs for p prime. The proofs are not based on eigenvalue methods or higher algebra.
The same methods show the expected number of probes for unsuccessful search in double hashing is
bounded by 1

1−α
, where α is the load factor. This assumes a double hashing scheme in which two

hash functions are randomly and independently chosen from a specified uniform distribution. The
result is valid regardless of the distribution of the inputs. This is analogous to Carter and Wegman’s
result for hashing with chaining. This paper concludes by elaborating on how any sufficiently sized
subset of inputs in any distribution expands in the subgraph of the Gabber–Galil graph expander of
focus. This is related to any key distribution having expected 1

1−α
probes for unsuccessful search

for double hashing given the initial random, independent, and uniform choice of two universal hash
functions.

Key words. expander graphs, double hashing, Gabber–Galil expander, expansion factor, com-
binatorial expanders, pairwise independence, hash collisions
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1. Introduction. Consider a bipartite graph G = (I ∪ O, E), where I and O
form the bipartition of the nodes with n = |I| = |O|, and let r be G’s maximum
degree. G is an (n, r, c)-expander if the following holds:

|N (Î)| ≥ |Î|
(

1 + c

(
1 − |Î|

n

))
,

for every subset Î ⊂ I that contains up to n/2 elements (inputs), where N (Î) =

{o ∈ O : (i, o) ∈ E for some i ∈ Î}. The constant c is the expansion factor of
the graph. Further, the degree r is bounded by a constant. There are many other
essentially equivalent definitions for graph expanders. The “hard part” in designing
graph expanders is proving they expand. In fact, the decision problem of determining
expansion is co-NP-complete [6].

A series of classic papers firmly established that certain graph families expand.
First, Margulis [21] showed that expanders exist, without giving bounds on their
expansion. However, he did show how to construct them explicitly. Next, Gabber
and Galil [12] gave an explicit expander construction with bounds on their expansion.
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Finally, Alon [2] showed that a graph is an expanding graph iff its largest and second-
largest eigenvalues are well separated. See also, for example, [5, 4, 26, 10, 18, 29] for
varying depths of coverage of eigenvalue methods for graph expansion. The eigenvalue
methods have been central in much research on graph expanders.

Eigenvalue methods do not give the best possible expanding graph coefficients [33].
For example, probabilistic methods show the existence of expanders that have better
expansion than is possible to show by the separation of the largest and second-largest
eigenvalues. Pinsker [27] first showed the existence of expanders using probabilistic
methods.

There are some other constructions of expanders. According to Alon [3], the
(eigenvalue-based) construction of Jimbo and Maruoka [15] “only uses elementary
but rather complicated tools from linear algebra.” Ajtai [1] also gives an algorithm
using linear algebra for constructing three-regular expanding graphs. This algorithm
is complex and takes O(n3 log3 n) time to construct an expander. The expansion fac-
tor of these expanders is unknown but positive. Lubotzky, Phillips, and Sarnak [19]
and independently Margulis [22] gave the best possible expanders using the eigen-
value methods [2, 18, 19, 29]. Kahale [16] gave the best expansion constant to date
for Ramanujan and related graphs. Reingold, Vadhan, and Wigderson [28] give very
important combinatorial constructions of constant degree expanders based on their
new “zig-zag” graph product. By showing how the zig-zag product maintains the
eigenvalue bounds (then breaks them), they show how to construct expanders recur-
sively starting from a small expander. Further, Meshulam and Wigderson [25] give
group theoretic techniques whose expansion they show depends on universal hash
functions. Capalbo et al. [7] give constant degree d lossless expanders. These expand
by (1 − ε)d, for ε > 0, which is just about as much as possible.

We demonstrate expansion of 3
16

= 0.1875 for three of the five permutations
that comprise the Gabber–Galil expander [12]. These results hold for three-regular
subgraphs of the Gabber–Galil graphs of p2 input vertices, where p is a prime. This
is done without using Eigenvalue based bounds. The actual Gabber–Galil expansion
was shown to be (2 −√

3)/4 or about 0.067.

Suppose double hashing is based on randomly, independently, and uniformly
choosing two hash functions h1 and h2 from a universal set [11]. Then this paper
shows the expected number of probes for unsuccessful search in double hashing is
bounded by 1

1−α , where α is the load factor. This holds regardless of the distribution
of the inputs. This is analogous to Carter and Wegman’s result for hashing with
chaining.

1.1. Intuitive overview. Given three permutations of the Gabber–Galil ex-
pander graph, this paper shows no matter what subset of inputs (up to half of them)
an adversary chooses, then there is at least 3

16
expansion. This is done in two steps

while trading off the local and global structure of the graph. If the adversary allows
enough local expansion, then we are done. Therefore, assume the adversary focuses
on sufficiently restricting local expansion. In this case, the adversary must choose
inputs in certain patterns. Now, in the second step of our main result, it is shown
that these patterns cannot block much global expansion.

If the elements are in the appropriate local patterns to minimize local expansion,
then the adversary has freedom to choose the number of elements in the patterns as
well as where these patterns start. Certain global patterns are collision sequences (see
Definition 3). Collision sequences reduce the global expansion. Constraining ourselves
to local input patterns, the expected length of all of these collision sequences is at
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most 2, no matter how the adversary chooses to position the local patterns or how
many elements the adversary chooses to put in them.

It is essential to note that showing the expected collision sequence length is at
most 2 uses probability theory applied to the adversary’s constrained selections of in-
put node patterns. Our argument shows the adversary has some very restricted choices
of input nodes in the three fixed permutations of Gabber–Galil’s graph; otherwise, the
adversary allows lots of local expansion. At all times, the three permutations compris-
ing the Gabber–Galil graph remain fixed. The results are given by using probabilistic
methods on these fixed graphs.

Further, using virtually the same methods, start by randomly, uniformly, and
independently selecting two universal hash functions h1 and h2 to build a double
hashing table T . All elements will be put in T by double hashing using h1 and h2.
In this case, let T have fixed load factor α : 1 > α > 0. Then we show the expected
number of probes for an unsuccessful search in T , still using these initially chosen
hash functions, is 1

1−α . As in the case of our expander result, we show this using
probabilistic techniques on fixed graphs.

1.2. Structure of this paper. Section 2 gives details of the three permuta-
tions comprising the Gabber–Galil expander and sets the foundations for showing
both expansion as well as our hashing result. Section 2 has five subsections. Subsec-
tion 2.1 gives the actual graph construction. Next, subsection 2.2 defines local and
global expansion. Subsection 2.3 explains the relation of double hashing to the ex-
pander graph representation. Next, subsection 2.4 focuses on the results of Chor and
Goldreich [9] showing randomly choosing such functions and computing their values
gives pairwise independent and uniformly distributed values. Finally, subsection 2.5
bounds functions that are necessary for our final result.

Section 3 uses our methods to show that randomly independently and uniformly
selecting two double hash functions from a strongly universal set gives a double hash-
ing result analogous to the classical result of Carter and Wegman [8] for hashing with
chaining.

Section 4 completes the expander result, showing the subgraphs expand by 3
16

by
enunciating the trade-off of local and global expansion. Finally, in section 5 we give
our conclusions and tie together the notion of expansion with the notion of double
hashing with universal hash functions.

2. Combinatorial expanders. This section gives the construction and starts
the analysis of expanders without using eigenvalue bounds. Without loss, always
assume that n = |I| = |O| and n = p2, where p is a prime. Let Î denote the
elements from I that an adversary selects from I in trying to foil any expansion. The
adversary foils an expansion by selecting inputs in such a way so there are relatively
few outputs. This section shows that no matter what set Î the adversary chooses,
there is expansion.

2.1. The construction. This subsection constructs three-regular bipartite
graphs G3 = (V,E) with vertices V = I ∪ O denoting the inputs and outputs, re-
spectively. This graph is made up of permutations σ0, σ2, and σ3 used in building
Gabber and Galil’s expander [12]. The permutations comprising the Gabber–Galil
expander are very similar to the permutations that make up Margulis’ expander.

Only inputs can have edges to outputs. Let Z
+
p = {0, 1, . . . , p − 1}. Partition

the inputs I and the outputs O into p blocks Ij and Oj , for all j ∈ Z
+
p , containing p
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nodes each. In particular, for any j : p > j ≥ 0,

Ij = { (j, 0), (j, 1), . . . , (j, p− 1) },
Oj = { (j, 0)′, (j, 1)′, . . . , (j, p− 1)′ }.

For notational convenience let (j, k) denote the kth element of both lists Ij and Oj

for all j, k ∈ Z
+
p .

As an example, consider p = 3 in Figure 1.

(0,0)

(0,1)

(0,2)

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

(2,2)

I0

I1

I2

(0,0)

(0,1)

(0,2)

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

(2,2)

O0

O1

O2

Fig. 1. The nodes in G3 where p = 3.

Now take I as

I =

p−1⋃

j=0

Ij .

Likewise, for O,

O =

p−1⋃

j=0

Oj .

For any input node (j, k) ∈ Ij such that j ∈ Z
+
p and k ∈ Z

+
p , the graph G3 has

the following edges:
1. Identity: id(j, k) −→ (j, k).
2. Local shift: loc(j, k) −→ (j, (j + k + 1) mod p).
3. Global shift: g(j, k) −→ ((j + k) mod p, k).

These edges are directed from the inputs to the outputs. This does not affect the
expansion since it is measured from how the inputs expand to the outputs. Likewise,
these directed edges are consonant with the hashing result given in this paper.
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(0,0)
(0,1)
(0,2)
(0,3)
(0,4)

(1,0)
(1,1)
(1,2)
(1,3)
(1,4)

(2,0)
(2,1)
(2,2)
(2,3)
(2,4)

(3,0)
(3,1)
(3,2)
(3,3)
(3,4)

(4,0)
(4,1)
(4,2)
(4,3)
(4,4)

(1,0)
(1,1)
(1,2)
(1,3)
(1,4)

(2,0)
(2,1)
(2,2)
(2,3)
(2,4)

(3,0)
(3,1)
(3,2)
(3,3)
(3,4)

(4,0)
(4,1)
(4,2)
(4,3)
(4,4)

(0,0)
(0,1)
(0,2)
(0,3)
(0,4)

Fig. 2. Local edges in G3 where p = 5.

Figure 2 gives local edges for G3 where p = 5, and Figure 3 gives global edges
for input blocks I0 and I1 in G3 where p = 5. The identity edges are not shown in
either of these figures. Also see Gabber and Galil [12] or, for example, Motwani and
Raghavan [26]. Note in block Ip−1 the local shift edges degenerate as loc(p− 1, k) =
(p − 1, k) for all k ∈ Z

+
p . Likewise, in nodes (j, 0) the global shift edges degenerate

as g(j, 0) = (j, 0) for all j ∈ Z
+
p . Therefore, these nodes (j, 0) for g and (p− 1, k) for

loc do not share all of the necessary properties for expansion. Generally, this paper
assumes the adversary does not select these degenerate elements. However, after the
main theorems, Theorems 8 and 9, an accounting is made assuming the adversary
does select degenerate elements.

These maps are well defined on sets. So id(S) ∪ loc(S) ∪ g(S) = N (S) ⊆ O
for any set of inputs S ⊆ I. Further, g1(j, k), loc1(j, k), and id1(j, k) denote the
first component of the pair, while g2(j, k), loc2(j, k), and id2(j, k) denote the second
element. An instance of this subcase of the Gabber–Galil expander is

G3 = (O ∪ I, id(I) ∪ loc(I) ∪ g(I)).

2.2. The analysis. An adversary, who knows G3’s construction, selects sublists
Îj from each block Ij . A sublist may be empty. This paper shows that no matter
what elements the adversary selects, the graph G3 expands. This paper assumes up
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(2,3)
(2,4)
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(3,3)
(3,4)

(4,0)
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(1,2)
(1,3)
(1,4)

(2,0)
(2,1)
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(3,0)
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(3,2)
(3,3)
(3,4)

(4,0)
(4,1)
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(4,3)
(4,4)

(0,0)
(0,1)
(0,2)
(0,3)
(0,4)

Fig. 3. Global edges in G3, from I0 and I1, where p = 5.

to half of the inputs to be chosen by the adversary:

p−1∑

j=0

|Îj | ≤
⌊n

2

⌋
.

Let

Î =

p−1⋃

j=0

Îj .

Definition 1. Given block Ij, for j ∈ Z
+
p , the local L and global G expansions

of Ij are

L(Îj) = |loc(Îj) − id(Îj)|,
G(Îj) = |g(Î) ∩Oj − id(Îj)|.

Definition 1 immediately gives

L(Î) =

p−1∑

j=0

L(Îj)

= |loc(Î) − id(Î)|
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and

G(Î) =

p−1∑

j=0

G(Îj)

= |g(Î) − id(Î)|.

Local and global expansion can “collide” in that output nodes that give local
expansion can also give global expansion. That is, there may be some Î ′ ⊆ Î, where
loc(Î ′) = g(Î ′). In this case, to compute the total expansion of Î ′ just divide L(Î ′)+

G(Î ′) by 2. Likewise, if local expansion and global expansion share output nodes,
then just consider the case that offers more expansion (if they do not offer the same
expansion).

For ease of exposition, when possible we generally refer to the elements of the
inputs I from here on. Each input is directly associated with the element that it
maps to by the identity mapping.

Definition 2. In a block Îj, for some j ∈ Z
+
p , the element (j, k1) ∈ Îj is loc-

contiguous iff loc(j, k1) = id(j, k2) for k2 = (j+k1+1) mod p and (j, k2) ∈ Îj. A loc-

contiguous set is a list (j, k1), (j, k2), . . . , (j, kt) all in Îj and loc(j, ks) = id(j, ks+1)
for all s : t > s ≥ 1.

If L(Îj) ≤ 1, for some j ∈ Z
+
p , then the elements in Îj are loc-contiguous.

Lemma 1. If there exists a fixed d : 1 ≥ d > 0, where d|Îj | ≥ |id(Îj) ∩ loc(Îj)|,
for all blocks Ij such that j ∈ K ⊆ Z

+
p , where K �= ∅ and Îj �= ∅, then L(Î) ≥

(1 − d)
∑

j∈K
|Îj |.

Proof. First, since |id(Îj) ∩ loc(Îj)| ≤ d|Îj | so |loc(Îj) − id(Îj)| ≥ (1 − d)|Îj |,
therefore it must be that L(Îj) ≥ (1−d)|Îj |. Since loc(Îj) ⊆ Ij , this proof generalizes
for the index set K.

Definition 3. A collision sequence of length t is the maximal sequence of ele-
ments (j1, k), . . . , (jt, k), where t ≥ 1, such that (ji, k) ∈ Îji , for all i ∈ {1, . . . , t} and

g(j0, k) �∈ Îj0 and (jt+1, k) �∈ Îjt+1 , where

g(j0, k) −→ (j1, k),

g(j1, k) −→ (j2, k),

...

g(jt, k) −→ (jt+1, k).

So Length((j1, k)) = t.

For example, if (j1, k) ∈ Îj1 , but g(j1, k) �∈ Ît, where t = g1(j1, k), then (j1, k) is a
length 1 collision sequence starting in input block Ij1 . Therefore, a collision sequence
of length 1 starts and ends in the same block. Length 1 collision sequences do not
diminish expansion but rather increase it.

Definition 4. Suppose the elements (js, k) ∈ Îjs for all s : t ≥ s ≥ 1 form a
collision sequence. The collision sequence (j1, k) → · · · → (jt, k) ends in block Ijt if

(jt+1, k) �∈ Îjt+1
and g(jt, k) → (jt+1, k).

Collision sequences prevent global expansion. That is, if we have “many” long
collision sequences, then there is “not much” opportunity for global expansion.
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Definition 5. Consider (j, k0), (j, k1), and (j, k2) all from Ij so that (j, k1) =
loc(j, k0) and (j, k2) = loc(j, k1), where

(j, k0) �∈ Îj ,

(j, k1) ∈ Îj so (j, k1) is selected,

(j, k2) �∈ Îj ;

then (j, k1) is a singleton. A singleton has local expansion of 1.
Definition 5 is about elements in the same input block Ij . A collision sequence

has one or more selected inputs that are all in different input blocks. In fact, a length
t collision sequence containing u singletons gives total expansion of at least u + 1.

The degenerate elements (j, 0) for all j ∈ Z
+
p do not have global expansion since

g(j, 0) = (j, 0). This means if an adversary can select an element (j, 0) to extend a loc-

contiguous set in Îj , then they should do it since it will not give any global expansion.
That is, as long as (j, 0) would not be a singleton, then selecting it increases the
number of elements selected but does not increase any expansion.

Likewise, the degenerate elements (p − 1, k) for all k ∈ Z
+
p do not have local

expansion since loc(p− 1, k) = (p− 1, k). Therefore, if selecting a (p− 1, k) either ex-
tends one collision sequence or joins two collision sequences, then an adversary should
select it. Selecting such an (p − 1, k) will increase the number of selected elements
without increasing expansion. In fact, if (p− 1, k) joins two collision sequences, then
it reduces the overall expansion.

2.3. Double hashing. Hashing with open addressing is a storage and search
technique on a table T that assumes the number of elements to be stored in the table
is at most the table size: |T |. Elements or keys are put directly in the table T . No
pointers or data structures are used. There is a special element NIL denoting no
element in a position it occupies. Given t elements in the table T , the load factor
is α = t

|T | and α < 1. Generally, the important questions that have arisen for open

address hashing are related to the number of probes necessary to find elements in the
table.

Consider an open addressing table T of size m and two hash functions h1 and h2.
Given a key x, determining the (i + 1)st hash location using double hashing is done
by

h(i, x) = (h1(x) + i h2(x)) mod m.

Double hashing is a classical data structure, and discussions of it can be found in [11,
24, 17], for example.

Inserting the element x into the table T is done by first searching for x in T . If
T does not contain x, then x can be inserted into T . Likewise, to delete x from T ,
then it must be determined if x is in T as well as where x is located in T . Therefore,
searching for an element x is the focus of studies of double hashing.

The first probe to T is to position T [h1(x) mod m]. If T [h1(x) mod m] =
NIL, then x is not in T . Otherwise, if x is in T [h1(x) mod m], then double hash-
ing reports where x is: position h1(x) mod m since i = 0. If x is not in
T [h1(x) mod m], then the next element probed is T [(h1(x) + h2(x)) mod m] since
i = 1. If T [(h1(x) + h2(x)) mod m] is NIL, then x is not in T . Otherwise, if
x = T [(h1(x) + h2(x)) mod m], then the double hashing algorithm is found where
x resides and returns the value (h1(x) + h2(x)) mod m. Otherwise, x may still be
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in T . Therefore, element T [(h1(x) + 2h2(x)) mod m] is probed, etc. This con-
tinues using the function in the (i + 1)st probe h(i, x) until either x is found or
T [(h1(x) + i h2(x)) mod m] is NIL, indicating x is not in T . In summary, the probe
sequence is in the following addresses of T :

h1(x), (h1(x) + h2(x)) mod m, (h1(x) + 2h2(x)) mod m, . . . .

Assume m > 2 is prime and h1 and h2 are based on loc and g. For a double hash
table T , this paper assumes |T | = m as well as the key x ∈ Zm.

In the case of this paper’s double hashing result, the g edges are the focal point
and the loc edges are not used. In this double hashing scheme, say the pair (j, k) is
generated for some key x by h1 and h2. That is, start in position k in input block
Ij . Hash function h1 generates the first position j (input block) and hash function h2

generates the hop-size k + 1 (how to travel from input block to input block). So the
key x is hashed into Ij , starting at local position k. In other words, the first probe is
in T [j]. If necessary, the second probe is in T [(j + (k + 1)) mod m]. If necessary, the
third probe is in T [(j + 2(k + 1)) mod m], etc.

More precisely, first, a block j0 and a position k are chosen by h1 and h2, re-
spectively. That is, given the key x, compute j0 = h1(x) and k = h2(x). Next,
as necessary, the following blocks are computed: j1 = g1(j0, k) and, in general,
ji = g1(ji−1, k), for i : m− 1 ≤ L ≥ i ≥ 1, giving the permutation

〈j0, g1(j0, k), g1(j1, k), . . . , g1(jL, k)〉.
Since m is prime, g sends this permutation exactly once through each of the input
blocks Î0, Î1, . . . , ÎL, where L ≤ m− 1.

The graph G3, since m a prime, with the functions g represents all permutations
used by open addressed double hashing on a table T [0, . . . ,m − 1]. Of course, T [j]
corresponds to Ij .

Double hashing approximates uniform open address hashing [26, 11, 24]. More
precisely, Guibas and Szemerédi [14] showed unsuccessful searches using double hash-
ing take asymptotically the same number of probes as idealized uniform hashing does
for any fixed load factor α less than about 0.319. For any fixed α < 1, see Lueker
and Molodowitch [20]. However, as pointed out in Schmidt and Siegel [30], these last
results assume ideal randomized functions, whereas [30] utilizes more realistic k-wise
independent and uniform functions (where k = c log n for a suitable constant c).

Theorem 1 (see [20] and [30]). Suppose T has load factor of any fixed α < 1.
The expected number of probes for an unsuccessful search in an open addressing double
hashing table is 1

1−α + ε, where ε is a lower-order term.
Lueker and Molodowitch [20] give the most straightforward method of showing

this based on assumed randomized inputs. Schmidt and Siegel [30] give the tightest
bound (sharpest bound on ε) and the weakest notion of randomness to date. That
is, [30] shows the result of Theorem 1 by supplying randomized hash functions, in
particular randomized hash functions of degree c log n for some constant c, giving
c log n-wise independent functions.

2.3.1. Strong universal hash functions. Given a graph G3, where α = |Î|/|I|
for fixed α : 1 > α > 0, let |Îj |/p = αj , such that j ∈ Z

+
p , and each fixed αj : 1 >

αj > 0. This means

α = |Î|/|I|
=

α0 + · · · + αp−1

p
.
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Consider any block Îj such that L(Îj) ≤ 1. In such blocks the adversary chooses
the starting point bj for the elements of Ij , as well as the total number of elements to

select from Ij , expressed here as αj . More precisely, since L(Îj) ≤ 1, the adversary

must have chosen the inputs so that |id(Îj) ∩ loc(Îj)| ≤ 1, leaving only the number
of elements selected and their starting point to question.

Definition 6 (Carter and Wegman [8]). The set of function H is strongly
universal iff randomly, uniformly, and independently choosing h ∈ H; then for any
two different keys x1 and x2 and any two values y1, y2 ∈ Z

+
p , it must be that

Pr[h(x1) = y1] =
1

p
and

Pr[h(x1) = y1 ∧ h(x2) = y2] =
1

p2
.

Theorem 2 (Carter and Wegman [8]). The functions

hj,b(x) = jx + b mod p for all (j, b) ∈ Z
+
p × Z

+
p

give the strongly universal set

H = {hj,b for all (j, b) ∈ Z
+
p × Z

+
p }.

For all h ∈ H, the range is Z
+
p . Generally, hash functions are expressed as

hj,b(i) mod m, where m is the table size, but here m = p, allowing the focus to be
entirely on hj,b(i).

2.4. Counting frequencies of selected elements. The basic progression from
this subsection to section 3 works as follows. We start with the case where an ad-
versary selects the same number of input elements in each position in all Ij , for

j : j ∈ Z
+
p , while maintaining loc-contiguity of the elements in each Îj . Basic bounds

on the expansion are developed in this subsection. Subsequent subsections in section 2
incrementally allow an adversary to select any elements they choose as long as they
maintain loc-contiguity.

This subsection applies to both universal hashing as well as expansion.
Theorem 3 (Chor and Goldreich [9]). Take hj,b ∈ H uniformly at random; then

the associated values hj,b(i), . . . , hj,b(0), for p > L ≥ i ≥ 1 and L ≥ 2, are pairwise
independent and for all i ≥ 0 the elements hj,b(i), . . . , hj,b(0) are uniform in Z

+
p .

Chor and Goldreich present this result for the sequences of random variables
hj,b(i), . . . , hj,b(1), and it is straightforward that hj,b(0) can be included since hj,b(0) =
b, which is uniformly and randomly chosen.

Theorem 3 will be applied to g functions between different blocks. Relations in
the blocks are discussed next. Recall, for each block Ij , the adversary chooses each
bj as well as αj , and so Theorem 3 does not apply to each block. That is, Theorem 3
assumes the pair (j, b) ∈ Z

+
p × Z

+
p is randomly and uniformly chosen.

In contrast to the strongly universal set H of Theorem 2, take U ⊆ Z
+
p × Z

+
p

such that, for all j ∈ Z
+
p , there is some pair (j, b) ∈ U and further, if (j, b1) ∈ U and

(j, b2) ∈ U , then b1 = b2. So

H ′ = {hj,bj , for all (j, bj) ∈ U}, where bj depends on j.
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Note that |H| = p(p− 1) and |H ′| = p− 1.
So, in our situation, selecting pairs from H ′ uniformly at random does not satisfy

the hypothesis of this theorem because the adversary chooses each bj in each pair
(j, bj) ∈ H ′.

Definition 7. Now, for k ∈ Z
+
p , denote the frequency

nk =

p−1∑

j=0

δ((j, k) ∈ Îj),

where δ is the indicator function, and so δ(true) = 1 and δ(false) = 0.
That is, nk is the frequency of k being selected in all blocks given the adversary’s

choices of the bj ’s and the αj ’s.
Note that if nk = 0, then k does not contribute to expansion or lack of expansion.

Further, if nk = 1, then k must contribute to global expansion by one.
Aggregating the frequencies gives

α =
1

p2

p−1∑

k=0

nk.

Lemma 2. Suppose n1 = n2 = · · · = np−1 and assume L(Îj) ≤ 1 for all j ∈
Z

+
p . Take any randomly and uniformly chosen (J1,K) ∈ Z

+
p × Z

+
p , where (J2,K) =

g(J1,K); then

Pr[(J1,K) ∈ ÎJ1
∧ (J2,K) ∈ ÎJ2

] ≤ n2
k

p2
.

Proof. Assume (J1,K) ∈ Z
+
p × Z

+
p is randomly and uniformly chosen. So we are

considering the collision sequence,

CJ1,K = (J1,K) → (J2,K),

where (J2,K) = g(J1,K).
This gives

Pr[(J1,K) ∈ ÎJ1
∧ (J2,K) ∈ ÎJ2

]

=
1

p2

p−1∑

j=0

p−1∑

k=0

Pr[(j, k) ∈ Îj ∧ g(j, k) ∈ Îg1(j,k)]

=
1

p3

p−1∑

k=0

p−1∑

j=0

δ((j, k) ∈ Îj) Pr[g(j, k) ∈ Îg1(j,k) | (j, k) ∈ Îj ]

=
1

p3

p−1∑

k=0

nk

p−1∑

j=0

Pr[g(j, k) ∈ Îg1(j,k)] by independence and uniformity of Theorem 3

=

p−1∑

k=0

n2
k

p3

≤ n2
k

p2
.
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This completes the proof.
If all nk ≤ αp, then

p−1∑

k=0

n2
k

p3
≤ α2.

In other words, let

Average[n2
k] =

p−1∑

k=0

n2
k

p
.

If nk ≤ �αp�, for all k : p > k ≥ 0, then

Average[n2
k] ≤ α2 p2

so that for uniformly and randomly chosen (J1,K) ∈ Z
+
p ×Z

+
p and (J2,K) = g(J1,K),

then

Pr[(J1,K) ∈ ÎJ1 ∧ (J2,K) ∈ ÎJ2 ] ≤
Average[n2

k]

p2

≤ α2.

Furthermore, if there is a set

K = {k0, . . . , kr}
and |K| ≤ pδ, where δ : 1 > δ ≥ 0, such that

nk > �α(p− 1)� for all k ∈ K,

then, letting K = Z
+
p − K, this gives nk′ ≤ �αp� for all k′ ∈ K. This means

Average[n2
k] =

∑

k∈K

n2
k

p
+

∑

k′∈K

n2
k′

p

≤ pδp2

p
+

α2 p2(p− pδ)

p

≤ pδp + α2 p2.

Therefore, if |K| ≤ pδ for any δ : 1 > δ ≥ 0, and for uniformly and randomly chosen
(J1,K) ∈ Z

+
p × Z

+
p and (J2,K) = g(J1,K), then

Pr[(J1,K) ∈ ÎJ1
∧ (J2,K) ∈ ÎJ2

] ≤ α2 + O(pδ−1) for δ : 1 > δ ≥ 0.

2.5. Bounding Average[n2
k] when nk > �αp� for k ∈ Z

+
p . Consider the

maximal subset K ⊆ Z
+
p , where all k′ ∈ K are such that the frequencies nk′ > �αp�

when L(Î) < 3
16
|Î|.

Start with the case L(Îj) ≤ 1 for all j ∈ Z
+
p . This subsection shows for all

k′ ∈ K ⊆ Z
+
p such that nk′ > �αp� there can be a total of at most p �1/α� total

selected elements in all collision sequences of length more than �αp� for all k ∈ Z
+
p .

Definition 8. Let α = |Î|/|I|. If there is some k ∈ Z
+
p so that k’s frequency nk

is such that

nk > �αp�,
then there are nk − �αp� excess elements selected in the kth position of I.
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2.5.1. The case with up to 1 excess element selected. Here k0 denotes a
single excess element.

Definition 9. Let nk,L denote any nk when all jr ∈ {j0, . . . , jt−1} are all such

that |Îjr | = L.
Further, by Definition 9 it must be that α′ = L/p and all nk’s throughout the

rest of this section are associated only with the blocks indexed by {j0, . . . , jt−1}.
For the next lemma recall hji is a hash function representing the loc functions

corresponding to Îji .

Lemma 3. Let L(Îj) ≤ 1 for all j ∈ Z
+
p . Assume k0 is selected in all of

Ij0 , . . . , Ijt−1 and |Îjr | = L ≤ p, for jr ∈ {j0, . . . , jt−1}, t ≥ L ≥ 2, with hj0(v) =
· · · = hjt−1(v) = k0 for some v ∈ Z

+
p ; then nk ≤ �(α′ − 1

p ) p� for all k �= k0 and

α′ = L/p.

Proof. The proof is by induction on the size of |Îjr | = L. For the moment, assume
v = 0 for the induction; this will be generalized after the induction is complete.

Basis. Consider the case where |Îjr | = 2 = L for all jr ∈ {j0, . . . , jt−1}, where
t ≥ L, and hj0(0) = · · · = hjt−1(0) = k0. Then all elements ur = (jr + 1 + k0) mod p,
for all r : t > r ≥ 0, are distinct since {j0, . . . , jt−1} are distinct and t ≥ 2. That is,
if urx = ury , then

(jx + 1 + k0) mod p = (jy + 1 + k0) mod p,

and so jx = jy mod p, and it must be that jx < p and jy < p, and thus x = y, a
contradiction. So nk = 1, for all k �= k0, and α′ = 2

p . Further, all k �= k0 are such

that nk ≤ �(α′ − 1
p ) t�, completing the basis.

Inductive hypothesis. Suppose |Îjr | = L ≥ 2, where jr ∈ {j0, . . . , jt−1} and t ≥ L.
Then nk,L ≤ �(α′ − 1

p ) t� for all k �= k0 and α′ = L
p .

Inductive step. Suppose |Îjr | = L+1, where jr ∈ {j0, . . . , jt−1} and t ≥ L+1 ≥ 3,
where α′ is associated with nk,L+1. Then by the inductive hypothesis the first L
elements in each block share the property that all but one of the nk,L’s are such that
nk,L ≤ �(α′ − 1

p ) t�. Adding one element to each block and each in a unique position

gives nk,L+1 ≤ �(α′ + 1
p − 1

p ) t�. Each element is put in a unique position since t ≥ L,

and no two elements among ur = (L + 1)(jr + 1) + k0 mod p, for r ∈ {t − 1, . . . , 0},
are the same: If jx �= jy, where

((L + 1)(jx + 1) + k0) = ((L + 1)(jy + 1) + k0) mod p,

then since each element of a field (mod-p) has a multiplicative and additive inverse,
we must have jx = jy mod p, a contradiction since jx < p and jy < p. Therefore,
applying the inductive hypothesis completes the induction.

Now we show this lemma holds for any v ∈ Z
+
p , where hj0(v) = · · · = hjt−1(v) =

k0. Consider |Îjr | = L for all jr ∈ {j0, . . . , jt−1} and t ≥ L, and given some
v �= 0, then break the problem into two cases: The first case consists of all ele-
ments hj0(i), . . . , hjt−1

(i) for i : L > i ≥ v. The second case consists of all elements
hj0(i

′), . . . , hjt−1
(i′) for i′ : v ≥ i′ ≥ 0. (Note that these cases overlap since they both

have k0 in common.)
Now, treating these cases separately, apply the induction above with α1 = L−v

p

to the L− v elements of hj0(i), . . . , hjt−1(i) for i : L > i ≥ v.
Likewise, for each hj0(i

′), . . . , hjt−1(i
′), where i′ : v ≥ i′ ≥ 0, apply the induction

above to the v elements. Here α2 = v+1
p .
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Now α′ = α1 + α2 − 1
p since k0 was counted twice. With this in mind, take the

following inequalities, where k �= k0:

nk ≤
⌈(

α1 − 1

p

)
t

⌉
+

⌈(
α2 − 1

p

)
t

⌉

≤
⌈(

α1 + α2 − 2

p

)
p

⌉

≤
⌈(

α′ +
1

p
− 2

p

)
p

⌉

≤
⌈(

α′ − 1

p

)
p

⌉
,

completing the proof.
With a little work, Lemma 3 generalizes to Theorem 4. Assume L(Îj) ≤ 1, for

all j ∈ Z
+
p and k0, is selected in each block I0, . . . , Ip−2. Let Lu be the number of

elements selected going “above” and including k0. Similarly, let Ld be the number
of elements selected going “down” from k0 but not including k0. (If k0 = h(i), then
h(i + c) is “above” for any integer c, where i + c < p, and h(i− c) is “down,” where
i − c ≥ 0.) The induction is about the same; the only difference is the proof of
Theorem 4 assumes the relation

nk ≤ �(αu + αd) t�
holds before the inductive step. More precisely, suppose t = �p

c � for some integer c,

and by definition αu + αd = Lu+Ld

p , meaning

(
Lu + Ld

p

)
t ≤ Lu + Ld

c
.

So there are a total of Lu + Ld elements selected per input block, and 1
c bounds the

percent of blocks under consideration. The inductive hypothesis says �Lu+Ld

c � is an
upper bound on the number of elements for each k �= k0.

Now consider adding one element to each block going “up” and one element to
each block going “down.” That is, increase αu to αu + 1

p and increase αd to αd + 1
p ,

but at the same time none of the new “up” elements collide with each other and
none of the new elements going “down” collide with each other. That is, for all
r ∈ {0, 1, . . . , t− 1},

ur = (Lu + 1)(jr + 1) mod p

are all different by the uniqueness of multiplicative inverses in Z
+
p − {0}. Likewise,

for all r ∈ {0, 1, . . . , t− 1},
dr = (Ld + 1)(jr + 1) mod p

are all different by the uniqueness of multiplicative inverses in Z
+
p −{0}. Furthermore,

by the uniqueness of multiplicative inverses in Z
+
p − {0}, for each di there can be at

most one uj so that di = uj , where i, j ∈ {0, 1, . . . , t− 1}. Consider increasing Lu to
Lu + 1 and increasing Ld to Ld + 1, and assume t = �p

c �, for some integer c, giving

(
Lu + Ld + 2

p

)
t ≤ Lu + Ld + 2

c
,
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which is the number of selected elements per input block multiplied by the percent of
the input blocks. Therefore, nk ≤ �(αu + αd) t + 2 t

p �, giving, for all k �= k0,

nk ≤
⌈(

αu + αd +
2

p

)
t

⌉
,(1)

which clearly holds for t > p/2 and (αu + αd) t bounded by an integer. In the case
where t < p/2, then since Lu + Ld + 2 elements were selected per input block and
their loc-continuity gives for each k �= k0, by the inductive hypothesis c nk ≤ Lu +Ld

and by the uniqueness of multiplicative inverses, nk can increase no more than 2 when
both Lu and Ld are increased by 1 each. That is, now c nk ≤ Lu + Ld + 2 holds,
completing the inductive step. This gives the next theorem.

Theorem 4. Let L(Îj) ≤ 1 for all j ∈ Z
+
p . Assume k0 is selected in all of

Ij0 , . . . , Ijt−1 and |Îjr | = L ≤ p, for jr ∈ {j0, . . . , jt−1}, t ≥ L ≥ 2, with hj0(v) =
· · · = hjt−1(v) = k0 for some v ∈ Z

+
p ; then nk ≤ �α′ t� for all k �= k0 and α′ = L/p.

The next lemma allows any of t blocks to have any number of elements L selected
as long as t ≥ L. That is, |Îjr | ≤ L for all jr ∈ {j0, . . . , jt−1} and t ≥ L.

Lemma 4. Let L(Îjr ) ≤ 1 for all jr ∈ {j0, . . . , jt−1}. Assume k0 is selected in

all of Ij0 , . . . , Ijt−1
and |Îjr | ≤ L ≤ p for jr ∈ {j0, . . . , jt−1} and t ≥ L ≥ 2 while

hj0(v) = · · · = hjt−1(v) = k0 for some v ∈ Z
+
p ; then nk ≤ �α′ t� for all k �= k0 and

α′ = (|Îj0 | + · · · + |Îjt−1 |)/(t p).
Proof. Consider two sets T1 and T2 with s : t ≥ s ≥ 0, so that

T1 = { Îj0 , . . . , Îjs−1
}, where α1 p = |Îjk | for all k : s− 1 ≥ k ≥ 0,

and

T2 = { Îjs , . . . , Îjt−1 }, where α2 p = |Îjk | for all k : t− 1 ≥ k ≥ s.

Therefore, there is a total of α′ p t selected elements in all of the blocks

{ Îj0 , . . . , Îjt−1 },
and so

α′ p t = α1 p s + α2 p (t− s).

That is,

α′ t = α1 s + α2 (t− s).

Without loss, assume α1 < α2 and T1 represents the first s input blocks. Now,
applying Theorem 4 to all t input blocks considering only αmin = min{ α1, α2 }, it
must be that

n0
k ≤ �αmin t�

for all k �= k0, and each n0
k is computed restricting k to the αmin t elements of each

of all t input blocks. Note that Theorem 4 applies to the first αmin t loc-contiguous
elements from each block since t ≥ L. Without loss, assume αmin t is an integer.

Now, letting αmax = max{ α1, α2 }, then since t ≥ L and assuming t = �p
c � for

some integer c, then applying Theorem 4

n1
k ≤ �(αmax − αmin) t�
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for all k �= k0. But, not considering the �αmin t� elements, it must be that

n1
k ≤ �(αmax − αmin) (t− s)� .

Without loss, assume that (αmax − αmin) (t−s) and αmin t are integers. This means,
for k �= k0, and since the elements represented by αmax and αmin are loc-contiguous,

n0
k + n1

k ≤ �αmin t + (αmax − αmin) (t− s)�
≤ �αmax (t− s) − αmin (t− s) + αmin t�
≤ �αmax (t− s) + αmin s�
≤ �α1 s + α2 (t− s)�
≤ �α′ t� ,

since αmax = α2 and αmin = α1 and α′ t = α1 s + α2 (t − s), while at the same time
n0
k + n1

k > �(α1 + α2) (t − s)� only for k = k0; the proof is completed by induction
on the number of sets of blocks, each set containing blocks with the same number of
elements selected.

Now consider combining loc-contiguous collision sequences as described by Lemma
4. In particular, now look at bounding the length of all collision sequences in G3 by
combining different loc-contiguous subblocks.

The next definition generalizes Definition 2.
Definition 10. Take j ∈ Z

+
p . The set Uj,s is a maximal loc-contiguous subblock

of Îj if Uj,s ⊂ Îj. And if |Uj,s| ≥ 2, while L(Uj,s) ≤ 1, and for any U ′ ⊂ Îj : Uj,s ⊂ U ′

and Uj,s �= U ′, then L(U ′) > 1. Further, if Uj,0 = Ij (so |Uj,0| = p), then Uj,0 is the

only maximal loc-contiguous subblock of Îj.
Note that a maximal loc-contiguous subblock Uj,s must contain at least two

elements; otherwise, it is not loc-contiguous. Further, a block Îj may have many
maximal loc-contiguous subblocks. Allow maximal loc-contiguous subblocks to be
empty. This means maximal loc-contiguous subblocks cannot consist of a single loc-
contiguous element.

Definition 11. Consider the collision sequence C1 made up of selected elements
from the max loc-contiguous subblocks U0,0, . . . , Up−1,0. Another collision sequence
C2 overlaps with C1 iff C2 consists of elements from at least one of the same max
loc-contiguous subblocks U0,0, . . . , Up−1,0.

So now remove from consideration all subblocks associated with any collision
sequence in c0, i.e., U0,0, . . . , Up−1,0. Now with the remaining elements, put the next
largest collision sequences in a set c1. Any collision sequence Cr ∈ c1 is associated
with the sets of max loc-contiguous sequences U0,r, . . . , Up−1,r. By Lemma 4 and
Theorem 4 all elements of any other collision sequence can share no more than �α1 p�
elements with U0,r, . . . , Up−1,r, where α1 = (|U0,r| + · · · + |Up−1,r|)/p2.

This argument extends to all collision sequences larger than �αp�.
Lemma 5. Let K be the set of indices of all s collision sequences larger than �αp�.

Suppose the adversary selects no singletons and αi = (|U0,i|+ · · ·+ |Up−1,i|)/p2, where
ni
k is nk restricted to the jth set of max loc-contiguous subblocks Uj,i, for i, where

i : s ≥ i ≥ 0 and all j : p− 1 ≥ j ≥ 0. So for any k ∈ Z
+
p − K, then

n0
k + · · · + ns

k ≤
⌈(

α0 − 1

p

)
p

⌉
+

⌈(
α1 − 1

p

)
p

⌉
+ · · · +

⌈(
αs − 1

p

)
p

⌉
.
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Proof. Without loss, let C0, C1, . . . , Cs be collision sequences of lengths larger
than �αp�. Assume these are listed largest (C0) to smallest (Cs). No two collision
sequences Ci and Cj , for i �= j, are made up of elements from the same max loc-
contiguous subblocks Uj0,i′ , . . . , Ujk−1,i′ for some i′, by Lemma 4 and Theorem 4. In
the case where two collision sequences share a max loc-contiguous subblock, then this
max loc-contiguous subblock can be cut into two loc-contiguous subblocks. Using
this fact, starting with the largest collision sequences first, each collision sequence is
uniquely associated with a set of p − 1 loc-contiguous subblocks, one for each input
block Ij , for j ∈ Z

+
p . (Some of these loc-contiguous subblocks may be empty.)

This means each collision sequence is associated with one loc-contiguous subblock
from each input block,

〈U0,0, . . . , Up−1,0〉 , 〈U0,1, . . . , Up−1,1〉 , . . . , 〈U0,s, . . . , Up−1,s〉 ,

and in some cases Uj,i = {∅}.
Let K = {k0, . . . , ks} ⊂ Z

+
p be such that k ∈ K means nk ≥ �αp�, and now

take it as nk = p − 1. If k ∈ Z
+
p − K and ni

k is restricted to U0,i, . . . , Up−1,i, where
αi = (|U0,i| + · · · + |Up−1,i|)/p(p− 1), then

ni
k ≤

⌈(
αi − 1

p

)
p

⌉
,

which gives the lemma.

The next lemma deals with the case when the number of elements in each block
is larger than the total number of such blocks, or L > t.

Lemma 6. Let L(Îj) ≤ 1 for all j ∈ Z
+
p . Given t blocks Ij0 , . . . , Ijt−1 , where

|Îjr | ≤ L ≤ p, for jr ∈ {j0, . . . , jt−1} so that α′ = (|Îj0 | + · · · + |Îjt−1 |)/(t p), and

letting S = |id2(Îj0) ∪ · · · ∪ id2(Îjt−1)|, now let

T =

⌈
S

t

⌉
;

then at most T of the nk’s are such that nk > �α′ t�.
Proof. Take the L elements in each block and consider them in T = �S

t � loc-
contiguous sets of inputs of size t each, in every block. If T = 1, then we are done.
Next, consider each set of t selected loc-contiguous input elements among the t blocks;
then assume there is an input set {i0, . . . , it−1}, so that hj0(i0) = · · · = hjt−1(it−1). If
not, then consider the largest such input set for each of the t selected loc-contiguous
sets of elements. By Theorem 4 and since there are up to t elements in each set of
loc-contiguous elements, then each set of loc-contiguous blocks alone has at most one
nk′ such that nk′ > �αs t�, for αs = α′/T , for some k′.

This means, among all T size t loc-contiguous sets among the t input blocks,
there will be at most T elements nk′

i
> �αs t� for αs = t

Lα
′ and i : T − 1 ≥ i ≥ 0. Let

K = { k0, . . . , kT−1 }

be the set of nki
elements so that nki > �αs t�.

Let n�
k denote nk restricted to the �th set of loc-contiguous blocks. In other

words, n�
k is the number of times k occurs in the �th set of loc-contiguous blocks.
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Next, without loss, suppose that αs t = L t
p is an integer, and considering all

loc-contiguous sets at the same time gives, for any ki �∈ K,

n0
ki

+ · · · + nT−1
ki

≤ �(αs + · · · + αs) t�, where there are T total αs

≤ �α′ t�,
by Lemma 5.

This completes the proof.
Suppose there is a collision sequence of length t made of one selected element

from each of Îj0 , . . . , Îjt−1 . If t ≥ �αp�, then Lemma 6 indicates that

T ≤
⌈

S

α p

⌉

≤
⌈

1

α

⌉
,

since p ≥ S, and where S = |id2(Îj0)∪· · ·∪id2(Îjt−1
)|. That is, suppose this occurs in

a set of t input blocks where S > t and the largest collision sequences are of length at
least �αp�. The only selected elements in excess of �αp� in T = �S

α� “large” collision
sequences can be larger than �αp�. Since T ≤ �1/α�, if all of these T “large” collision
sequences consist of p elements each, there is a total of at most

p− �αp�
α

≤ p

α

excess elements out of a total of p2 possible elements and αp2 selected elements. That
is, the uniform random probability of selecting an element that extends a collision
sequence to one of these excess elements is at most 1

αp .

It is also possible that the adversary chooses t > �αp� blocks that have more

elements selected in each block than αp2, where α = |Î|/|I|. Take the case where

α′ > α, where α = |Î|/|I|, and take α = L
p for appropriate L, but say α′ ≤ L+d

p , for

some integer d, for all Îj0 , . . . , Îjt−1
. This means

T =

⌈
L + d

�αp�
⌉
,

but since α = L
p , it must be that αp = L, and therefore

T = 1 +

⌈
d

�αp�
⌉
.

Assuming d > �αp�, then T ≤ 1 + � 1
α�, since d < p, and thus say d = p

c for some
number c ≥ 1; then

⌈
d

�αp�
⌉

=

⌈
p

c �αp�
⌉

≤ 1

c α

≤ 1

α

since 1 > α and c ≥ 1. So now we discard any case where L > t by this discussion
and Lemma 6.
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2.5.2. When more than one excess element is selected in Î. The next
theorem assumes no more than one loc-contiguous subblock is selected per block Ij
for j ∈ Z

+
p . Therefore, L(Îj) ≤ 1 for all j ∈ Z

+
p , which means at most p total elements

of all of the nk’s are such that nk > �(α− 1
p ) p�.

Definition 12. Given the frequency nk, then B[nk] ⊆ Z
+
p is the set of block

indices that have element k selected in each of them. That is, u ∈ B[nk] iff δ((u, k) ∈
Îu).

Theorem 5. Suppose L(Îj) ≤ 1 for all blocks j ∈ Z
+
p . Then the total number of

excess elements in G3 is at most p�1/α�.
Proof. Consider the frequencies, nk0

≥ nk1 ≥ · · · ≥ nks > �α p�. By Lemma 5,
this proof must consider only the elements {k0, . . . , ks} ∈ Z

+
p . Further, by Lemma 6,

at most T = �1/α� frequencies are such that |B[nki ] ∩B[nkj ]| ≥ �αp� for ki �= kj .
Now, if all k, k′ ∈ {k0, . . . , ks} are such that

B[nk] ∩B[nk′ ] �= ∅,
then clearly

s∑

i=0

nki
≤ p,

which would complete the proof.
Furthermore, if any subset {u0, . . . , ut} ⊆ {k0, . . . , ks} is such that for all ki ∈

{k0, . . . , ks} and for all ui ∈ {u0, . . . , ut},
B[nui

] ∩B[nki
] = ∅,

then we need only consider the set

K = {k0, . . . , ks} − {u0, . . . , ut}.
Given two distinct collision sequences, then by Lemma 4 these collision sequences

can share no more than �αp� elements as long as L(Îj) ≤ 1.
This means

|B[nk0
] ∩ (B[nk1

] ∪ · · · ∪B[nks
])| ≤ �αp�,

and thus removing the block indices B[nk0 ] and by applying Lemma 4 again gives

|B[nk1 ] ∩ (B[nk2 ] ∪ · · · ∪B[nks ])| ≤ �αp�.
The proof is completed by induction on the remaining blocks B[nk2

], . . . , B[nks
].

That is, if L(Îj) ≤ 1, for all j ∈ Z
+
p , then the total number of excess selected

elements is �1/α�p. This means the probability of uniformly and randomly selecting
one of these up to p excess elements is at most � p

α p2 � = � 1
αp�.

Next, this is generalized to the case where L(Î) ≤ 3
16
|Î|. In this case, this

subsection concludes by showing for all k ∈ Z
+
p that Average[n2

k] is bounded so
that randomly, independently, and uniformly choosing (J1,K) from Z

+
p × Z

+
p , where

(J2,K) = g(J1,K), gives

Pr[(J1,K) ∈ ÎJ1 ∧ (J2,K) ∈ ÎJ2 ] ≤ α2 + ε,
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where ε = O( 1
p ).

As before, start assuming L(Îj) ≤ 1 for all blocks j ∈ Z
+
p . Take the relations,

nk0 ≥ nk1 ≥ · · · ≥ nks > �αp�,
so that nk ≤ �αp� for all k ∈ Z

+
p − K, where K = { k0, . . . , ks }.

Theorem 6. Suppose L(Îj) ≤ 1 for all j ∈ Z
+
p and α = |Î|/|I|. Take any

randomly and uniformly chosen (J1,K) ∈ Z
+
p × Z

+
p , where (J2,K) = g(J1,K); then

Pr[(J1,K) ∈ ÎJ1 ∧ (J2,K) ∈ ÎJ2
] ≤ α2 + ε,

where ε is of lower-order terms.
Proof. If there is at most one frequency nk0 > �α p�, then for all of the p2 − p or

more nonexcess elements in G3, it must be that

Pr[(J1,K) ∈ ÎJ1
∧ (J2,K) ∈ ÎJ2 ] ≤ α2

holds by Lemma 2.
Consider the frequencies nk0 ≥ nk1 ≥ · · · ≥ nks > �α p�, where s ≥ 1. The case of

the up to p elements in nk0
, . . . , nks

, the probability of them extending a one-element
collision sequence with excess elements by Theorem 5, is

⌈
p

αp2

⌉
=

⌈
1

αp

⌉
.

Thus, for all the elements in G3 it must be that

Pr[(J1,K) ∈ ÎJ1
∧ (J2,K) ∈ ÎJ2

] ≤ α2 + O

(
1

p

)

holds.
This completes the proof.
If L(Îj) > 1 for some j ∈ Z

+
p , then there may be many collision sequences that

must be considered.
Start with G3 where the adversary has selected |Î| input elements. Then con-

sider any set of at most 3
16
|Î| sets of associated loc-contiguous elements, where each

associated set contains a common collision sequence. By applying Theorem 6 to each
collision sequence created by increasing local expansion to decrease global expansion
(by extending or joining collision sequences) gives the next theorem. Note that each

extended collision sequence has some associated αi < α = |Î|/|I| and α1+· · ·+αu = α,
and so α2

1 + · · · + α2
u ≤ α2. This is because

α2
1 + · · · + α2

u ≤ (α1 + · · · + αu)2

≤ α2.

Theorem 7. Let α = |Î|/|I|. Suppose L(Î) < 3
16
|Î| and all selected elements

are in a loc-contiguous subblocks and there are no singletons. Take any randomly and
uniformly chosen (J1,K) ∈ Z

+
p × Z

+
p , where (J2,K) = g(J1,K); then

Pr[(J1,K) ∈ ÎJ1 ∧ (J2,K) ∈ ÎJ2 ] ≤ α2 + ε,

where ε is of lower-order terms.
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3. Variations on hashing. Given an open addressing hash table T with a fixed
load factor of α : 1 > α > 0, assume T is filled using double hashing to load factor α.
As discussed in subsection 2.3, double hashing uses two hash functions h1 and h2. The
goal of this section is to show that if both hash functions h1 and h2 are randomly,
uniformly, and independently chosen from the strongly universal hash functions H
(Definition 6), then the expected cost of an unsuccessful search using double hashing
is 1

1−α table accesses. This question was suggested by Carter and Wegman [8].
Another important form of hashing is hashing with chaining; see, for example, [11,

13, 24]. Carter and Wegman [8] showed that given any strongly universal set of hash
functions H, then randomly and uniformly selecting a hash function h ∈ H gives an
expected chain length of at most 1 + α′ for fixed load factor α′ > 0. For instance,
taking the set of hash functions H with domain and range Z

+
p as in Definition 6,

Carter and Wegman’s result is important since the strongly universal set H (of size
O(p2)) behaves as if randomly selecting a function from the set of all functions from
Z

+
p to Z

+
p (of size O(pp)). See Mehlhorn [24, 23] for lower bounds on the sizes of

universal hash sets.
As future research they suggest extending such an analysis to double or open

hashing. Schmidt and Siegel [30] and Siegel [31] answer this, giving c log n-independent
functions that are computable in constant time for a standard word model random
access machine. Their results are quite general; see also [32]. Next, we focus on
another answer to Carter and Wegman’s question using the standard set H of strongly
universal hash functions, see Definition 6, as they are represented in the G3 graph.
Although this paper uses a different model, the g-edges in G3 make selecting entire
blocks simulate twowise independent functions; see Theorem 3.

The G3 graph can represent a double hashing configuration if all elements in each
input block are either all selected or all unselected. That is, say each block |Îj |/p = αj

is such that either αj = 1 or αj = 0. This gives a fixed load factor α = |Î|/|I|, where
1 > α > 0. Each entire input block corresponds to a cell in the hash table T , where
T is of size p. So, if αj = 1, then T [j] is full; and if αj = 0, then T [j] is empty.

If one wants to build a double hashing table, do this by making two independent
and uniform random choices h1, h2 ∈ H, where H is the strongly universal set de-
scribed in subsection 2.4. So, given a key x, the value j0 = h1(x) is the first table
element T [j0] to probe. Now, if T [j0] is full and T [j0] �= x, then probe the values
T [(j0 + i h2(x)) mod p] for i = 1, . . . , p− 1, until encountering the key x or an empty
table element (NIL).

Next, this paper shows that building a hash table by double hashing with the
initial uniform and independent random choices h1, h2 ∈ H gives an open addressing
table of load factor α with expected number of probes 1

1−α for an unsuccessful search,
regardless of the input distribution.

When searching through a hash table for x, a collision sequence equates to a probe
sequence (j0 + i h2(x)) mod p, given j0 ← h1(x) and h1, h2 both randomly, uniformly,
and independently chosen from a strongly universal set H.

In this context, consider the collision sequence CJ1,K starting in position (J1,K).
So let J1 and K be randomly, uniformly, and independently chosen. Since J1 is
independent of J2 and (J2,K) = g(J1,K), then

Pr[Length(CJ1,K) ≥ 2]

= Pr[Length(CJ1,K) = 1 ∧ Length(CJ2,K) ≥ 1 ∧ (J2,K) = g(J1,K)].

In the next proof, lower-order terms that would appear if the adversary selected
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degenerate elements are ignored.
Proposition 1 (hashing collision sequence). Say T is an open address hash

table with any configuration of elements built by initially randomly, uniformly, and
independently choosing h1, h2 from H and then performing double hashing to insert
elements into T . Let α = |Î|/|I|. Assume each block Ij is such that |Îj |/p = αj

and either αj = 1 or αj = 0. Then the expected collision sequence length in T is
E[Length(C)] ≤ α

1−α .
Proof. For any fixed S = {αi0 , . . . , αis} ⊂ {α0, . . . , αp−2} let s < p−2 and αir = 1

for all ir ∈ {i0, . . . , is} and αj = 0 for all j �∈ {i0, . . . , is}. This means α = s+1
p . In

this case, since each full block (αir = 1) has exactly one edge going to all other blocks,
then the fraction 1 − s+1

p of all collision sequences starting in any full blocks are of
length exactly 1.

Now the claim that E[Length(C)] ≤ α
1−α is shown by induction.

Let CJ1,K be a potential collision sequence that passes through at any randomly
and uniformly chosen (J1,K) ∈ Z

+
p × Z

+
p ; then E[Pr[Length(CJ1,K) ≥ 1]] = α since

α is the probability of randomly and uniformly selecting an input element.
Basis. Since α = s+1

p , then randomly and uniformly choosing (J1,K) ∈ Z
+
p ×Z

+
p ,

where (J2,K) = g(J1,K), gives

Pr[(J1,K) ∈ ÎJ1 ∧ (J2,K) ∈ ÎJ2 ] =

(
s + 1

p

)(
s

p

)

≤ α2

by Lemma 2 noting that since αir = 1, for all αir ∈ S, then n0 = · · · = np−1 = αp.

Further, if T [J1] is full, then Pr[(J2,K) ∈ ÎJ2
] = α− 1

p = s
p and s

p < α.
Inductive hypothesis. For some c ≥ 2, and for all i < c, assume for any collision

sequences CJ1,K that Pr[Length(CJ1,K) ≥ i] ≤ αi.
Inductive step. Take c ≥ 2 and consider t ≤ c; then we claim for all potential

collision sequences CJ1,K , where (J2,K) = g(J1,K),

Pr[Length(CJ1,K) ≥ t + 1] = Pr[Length(CJ1,K) = 1] Pr[Length(CJ2,K) ≥ t].

To substantiate this claim, take a potential length t + 1 collision sequence CJ1,K and
suppose the first probe starts in block IJ1

, and so

CJ1,K = (J1,K) → (J2,K) → · · · → (Jt,K)

and Ji = g1(Ji−1,K), where c ≥ t ≥ i > 1.
It must be that

Pr[Length(CJ1,K) ≥ t + 1] = Pr[Length(CJ1,K) = 1] Pr[Length(CJ2,K) ≥ t]

≤ α Pr[Length(CJ2,K) ≥ t],

which holds by pairwise independence from Theorem 3 and, further, by the inductive
hypothesis Pr[Length(CJ2,K) ≥ t] ≤ αt + ε, completing the induction.

Now, for any t ≥ 1, since the random variable Length(CJ1,K) is nonnegative, this
means

E[Length(C)] =
∑

t≥1

Pr[Length(C) ≥ t]

≤
∑

t≥1

αt

≤ α

1 − α
.
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This completes the proof.
Suppose t < p − 1 elements are in an open addressing hashing table T , where

|T | = p, that is filled with t = αp elements. Such a configuration represents the
elements of T that are filled with load factor α = t

p . In addition, by Proposition 1,
the expected collision sequence length is α

1−α , no matter how the table T is filled. In
the next theorem, α is the load factor of the table T .

Theorem 8 (main double hashing theorem). Say T is an open address hash
table with any configuration of elements built by initially randomly, uniformly, and
independently choosing h1, h2 from H and then performing double hashing to insert
elements into T . Now an unsuccessful search for a key x in T using double hashing
with h1 and h2 has expected cost of at most 1 + E[Length(C)] = 1

1−α hash probes.
Proof. Suppose t = αp different keys x1, . . . , xt have been inserted into the table

T using the randomly, independently, and uniformly chosen h1, h2 ∈ H. Then there
are t = αp blocks Ij1 , . . . , Ijt that have αjr = 1 for all jr ∈ {j1, . . . , jt}. That is, the
table T has load factor α. Note that αj′r = 0 for all j′r ∈ Z

+
p − {j1, . . . , jt}.

Now suppose we are searching for a key x �∈ {x1, . . . , xt} in T given the hash func-
tions h1, h2. Since H is strongly universal, it must be that for any xi ∈ {x1, . . . , xt},
then

Pr[h1(x) = h1(xi)] =
1

p
,

Pr[h2(x) = h2(xi)] =
1

p
.

This means, for xi ∈ {x1, . . . , xt} and x �∈ {x1, . . . , xt}, that

Pr[h1(x) = h1(xi) ∧ h2(x) = h2(xi)] = Pr[h1(x) = h1(xi)] Pr[h2(x) = h2(xi)]

=
1

p(p− 1)
.

Therefore, the probing sequence for x has equal probability ( 1
p(p−1)

) of starting at

any (J1,K) ∈ Z
+
p ×(Z+

p−1−{0}). Thus, applying Proposition 1, the expected collision

sequence length is α
1−α + 1 = 1

1−α for any x �∈ {x1, . . . , xt} and x not in T .
This completes the proof.
This last theorem assumes any (j, k) is not of the form (j, 0) for any j ∈ Z

+
p .

Allowing such elements to be selected from Z
+
p × Z

+
p−1 would add a lower-order term

of O( 1
p ) to 1

1−α .

4. Showing the graph G3 expands. Suppose L(Îj) ≤ 1 for all j ∈ Z
+
p . By

Theorem 6 for randomly and uniformly chosen (J1,K) ∈ Z
+
p × Z

+
p , then

Pr[(J1,K) ∈ ÎJ1
∧ (J2,K) ∈ ÎJ2

] ≤ α2 + ε,

where (J2,K) = g(J1,K) and ε is a lower-order term.
Let L1 be the set of collision sequences of length at least 1. Suppose (J1,K) ∈

Z
+
p ×Z

+
p is randomly and uniformly chosen and it so happens that (J1,K) ∈ L1; then

Pr[Length(CJ1,K) ≥ 1 | (J1,K) ∈ L1] = 1, and Pr[Length(CJ1,K) ≥ 2 | (J1,K) ∈
L1] = α. This last equality holds because (J1,K) = g(J0,K) and

Pr[(J1,K) ∈ ÎJ1
∧ (J2,K) ∈ ÎJ2

| (J1,K) ∈ ÎJ1
] = Pr[(J2,K) ∈ ÎJ2

| (J1,K) ∈ ÎJ1
]

= Pr[(J2,K) ∈ ÎJ2
],
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and the last equality is by pairwise independence of Theorem 3. Furthermore,
Pr[(J2,K) ∈ ÎJ2 ] = α since (J2,K) is independent of (J1,K), making (J2,K) ran-
domly and uniformly chosen from Z

+
p × Z

+
p .

In the next proof, lower-order terms that would appear if the adversary selected
degenerate elements are ignored.

Proposition 2 (general collision sequence length). Take G3 so that α = |Î|/|I|,
where α is fixed and 1 > α > 0, and L(Îj) ≤ 1 for all j ∈ Z

+
p ; then the expected

collision sequence length is E[Length(C)] ≤ 1 + 2 α
1−α .

Proof. The fact that a collision sequence traveling through (J1,K) ∈ ÎJ1 has
expected remaining length via g of E[Length(Cr

J1,K
)] ≤ α

1−α is proved by induction.
After the induction, the proof accounts for the expected prior collision sequence length
E[Length(Cp

J1,K
)] going to (J1,K). (Note that Cp is prior collision sequence and Cr

is the remaining collision sequence.)

Basis. Assuming (J1,K) ∈ Z
+
p × Z

+
p is randomly and uniformly chosen and

(J1,K) ∈ ÎJ1 and (J2,K) = g(J1,K), then

Pr[Length(Cr
J1,K) ≥ 2 | (J1,K) ∈ ÎJ1

]

= Pr[Length(Cr
J1,K) ≥ 1 ∧ Length(Cr

J2,K) ≥ 1 | (J1,K) ∈ ÎJ1 ]

= Pr[(J2,K) ∈ ÎJ2 ]

≤ α,

by the pairwise independence of J1 and J2 and the uniformity of (J2,K), since
(J2,K) = g(J1,K) by Theorem 3 and by the choice of (J1,K).

Inductive hypothesis. For some c ≥ 2, and for all i < c, assume for any potential
collision sequence Cr

J1,K
starting in block IJ1

, so that (J1,K) ∈ ÎJ1 , and traveling via

g that Pr[Length(Cr
J1,K

) ≥ i | (J1,K) ∈ ÎJ1 ] ≤ αi−1 + ε for i > 1 and for i = 1; then
ε = 0.

Inductive step. Take c ≥ 2 and consider t ≤ c; then take a potential length t + 1
collision sequence starting with (J1,K) ∈ ÎJ1 and traveling via g so for i : t ≥ i ≥ 0,

Cr
J1,K = (J1,K) → (J2,K) → · · · → (Jt,K)

and Ji = g1(Ji−1,K), where c ≥ t ≥ i > 1 and (J1,K) ∈ Z
+
p × Z

+
p . It must be that

Pr[Length(Cr
J1,K) ≥ t + 1 | (J1,K) ∈ ÎJ1 ]

= Pr[Length(Cr
J1,K) ≥ 1] Pr[Length(Cr

J2,K) ≥ t]

= Pr[Length(Cr
J2,K) ≥ t],

which holds by pairwise independence by Theorem 3 and by Theorem 6 and, fur-
ther, by the inductive hypothesis Pr[Length(Cr

J2,K
) ≥ t] ≤ αt−1 + ε, completing the

induction.

Now, without conditioning on the first element of a collision sequence being se-
lected, say for any t ≥ 1, since the random variable Length(Cr

J1,K
) is nonnegative,
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this means

E[Length(Cr)] =
∑

t≥1

Pr[Length(Cr) ≥ t]

≤
∑

t≥1

αt

≤ α

1 − α
.

Therefore, conditioning on the first element of a collision sequence being selected gives
a bound of 1 + α

1−α .

The induction above is based on starting at a random uniformly chosen
(J1,K) and going via g. The issue of the prior expected collision sequence length
E[Length(Cp

J1,K
)] = α

1−α is dealt with by a symmetric argument. This means the
expected collision sequence length is

E[Length(CJ1,K)] = E[Length(Cp
J1,K

)] + E[Length(Cr
J1,K)]

=
2α

1 − α
.

Finally, conditioning on the first element of a collision sequence being selected gives
1 + 2α

1−α .

This completes the proof.

Proposition 2 says for any G3 where L(Îj) ≤ 1, for all j ∈ Z
+
p , then the expected

length of collision sequences is 1 + 2α
1−α . Thus randomly and uniformly selecting a

collision sequence C from such a G3, then this collision sequence will be of expected
length 1+ 2α

1−α . This means all collision sequences’ lengths added together divided by

the number of collision sequences is bounded above by 1 + 2α
1−α .

Lemma 7. Suppose L(Îj) ≤ 1, for all j ∈ Z
+
p , and α = |Î|/|I|. Then

G(Î) ≥ 1 − α

1 + α
|Î|.

Proof. Let c be the total number of collision sequences of length greater than 0.
Also, the ith collision sequence is Coll Sequence(i) for i : c ≥ i ≥ 1. A randomly

and uniformly selected collision sequence from G3 when L(Îj) ≤ 1 for j ∈ Z
+
p has

expected length 1 + 2α
1−α by Proposition 2. This means the average of all the collision

sequence lengths is 1 + 2α
1−α . Thus, if C represents a randomly and uniformly chosen

collision sequence, then

E[Length(C)] =

∑c
i=1 Length(Coll Sequence(i))

c
.

Furthermore, since E[Length(C)] ≤ 1 + 2α
1−α by Proposition 2 and since L(Îj) ≤ 1,

for all j ∈ Z
+
p , and since

|Î| =
c∑

i=1

Length(Coll Sequence(i)),



108 PHILLIP G. BRADFORD AND MICHAEL N. KATEHAKIS

it must be that

|Î|
c

≤ 1 +
2α

1 − α
.

Finally, each of the collision sequences has global expansion of 1, and so G(Î) = c.
In other words,

1 − α

1 + α
|Î| ≤ G(Î).

This completes the proof.
The function 1−α

1+α minimizes at α = 1
2
, for α : 1

2
≥ α > 0, since

d

dα

(
1 − α

1 + α

)
=

−1

1 + α
− 1 − α

(1 + α)2
,

which is negative for α : 1
2
≥ α > 0.

Definition 13. Two collision sequences

C1 = (j1, k) → (j2, k) → · · · → (jt, k),

C2 = (jt+2, k) → (jt+3, k) → · · · → (ju, k)

can be joined into one by selecting the element (jt+1, k), where

g(jt, k) → (jt+1, k) and

g(jt+1, k) → (jt+2, k).

In this case, C1 and C2 are separated by one selection.
Consider a total of c < p/2 collision sequences,

C1, C2, . . . , Cc,
where Ci and Ci+1, for i : c > i ≥ 1, are separated by one selection. Then selecting
c− 1 elements joins all of these collision sequences into one single collision sequence.
This can be stated as the following lemma.

Lemma 8. Given c < p/2 collision sequences C1, C2, . . . , Cc, where Ci and Ci+1,
for i : c > i ≥ 1, are each separated by one selection, then c− 1 singletons can be used
to join these collision sequences into one single collision sequence.

Theorem 9 (main expander theorem). Consider any input set Î ⊂ I from G3,

where |Î| ≤ p2

2
so α ≤ 1

2
. The subgraph G3 expands by at least 3

16
.

Proof. Suppose the adversary chooses the elements Î from I, where |Î| ≤ 1
2
|I|.

If L(Î) ≥ 3
16
|Î|, then we are done since there is a total of at least 3

16
expansion.

Therefore, consider the case where L(Î) < 3
16
|Î|.

Start with the situation where L(Îj) ≤ 1 for all j ∈ Z
+
p ; then by Lemma 7 there

is global expansion of at least 1
3

since α = 1
2

minimizes 1−α
1+α for α : 1

2
≥ α > 0. If

α = 1
2
, then 1−α

1+α = 1
3
, and so

G(Î) ≥ 1

3
|Î|.

Now take the more general situation where Î is such that L(Î) < 3
16
|Î|. There

are several cases to consider.
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• Case 1. Not counting singletons.
For now, assume more than 13

16
|Î| selected elements are in loc-contiguous

subblocks. This case assumes no singletons. Thus, ignore the up to 3
16
|Î|

potential singletons.
Therefore, applying Lemma 7 with α′ ≤ 13

16
α ≤ 13

32
, since α ≤ 1

2
, gives

G(Î) ≥ 1 − 13
32

1 + 13
32

|Î|

=
19

45
|Î|.

Furthermore, the function 1−α′

1+α′ is minimal for α′ = 13
32

, where α′ : 13
32

≥ α′ >
0. This case is complete since 19

45
> 3

16
.

• Case 2. Extending collision sequences.
First, if the up to 3

16
|Î| of the elements are used to extend but not join

any two collision sequences, then the global expansion remains the same.
Here the adversary has simply made the collision sequences longer, thereby
changing in which block each of them terminates. But the same number of
collision sequence ends remain, giving the same global expansion. This case
is complete.

• Case 3. Joining collision sequences.
Suppose each of the up to 3

16
|Î| singleton elements can be used to join collision

sequences together.
Of course, it is given there are at least

19

45
|Î| > 6

16
|Î|

collision sequences by Case 1 (by applying Lemma 7). If each of the 3
16
|Î|

singleton elements joins exactly two collision sequences and all such pairs of
joined collision sequences are disjoint, then the global expansion is reduced
by at most 3

16
. This is because joining two collision sequences reduces the

global expansion by one. Now if two singletons join three collision sequences,
then the global expansion is also reduced by two. Lemma 8 indicates that
each singleton reduces the global expansion by exactly one.
Taking this argument to its logical end, let 3

16
|Î| singleton elements be used

to join at most 3
16
|Î| + 1 collision sequences. Applying Lemma 8, the 3

16
|Î|

singletons can be used to join as many as 3
16
|Î| + 1 collision sequences into

one or a few collision sequences. Suppose these collision sequences do not
have any expansion (i.e., they are of length p). Going further, say adding
these singletons forms new loc-contiguous subblocks and does not add any
expansion themselves.
This leaves more than

6

16
|Î| − 3

16
|Î| =

3

16
|Î|

collision sequences, giving global expansion of at least 3
16

, completing this
case.

This completes the proof.
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Next, an accounting is made for an adversary selecting degenerate elements (j, 0)
for all j ∈ Z

+
p and (p − 1, k) for all k ∈ Z

+
p . Suppose the elements (j, 0) for all

j ∈ Z
+
p are selected. Recall these degenerate elements give no global expansion since

g(j, 0) = id(j, 0). Further, assume they extend loc-contiguous sequences in each Îj ,
thus giving no additional local expansion. Thus, in this case the selection of these
elements takes the expansion from 3

16
to 3

16
( 1

1+ 1
p

).

In addition, suppose the elements (p−1, k) for all k ∈ Z
+
p are also selected. These

elements give no local expansion since loc(p−1, k) = (p−1, k). However, it is possible
that p− 1 of these elements can join two collision sequences together. Note that node
(p− 1, 0) is degenerate both locally and globally. Joining pairs of collision sequences
together without adding local expansion changes the expansion of 3

16
( 1

1+ 1
p

) to

3

16

(
1

1 + 1
p

)(
1 − 1

p− 1

)
=

3

16

(
p

p + 1

)(
p− 2

p− 1

)
.

5. Conclusions. This paper gives a new way of showing expansion of three
permutations comprising the Gabber–Galil expander. This is done without using
eigenvalue methods or higher algebra. We use methods based on Chor and Goldreich’s
Theorem 3 on pairwise independence. It is important to notice that we are applying
the probabilistic method to a fixed graph. For α = 1

2
, Theorems 8 and 9 tie closely

the expected collision sequence length of 2 = 2α
1−α = 1

1−α , giving insight into double
hashing and graph expansion. This is interesting since our expander result says no
matter what distribution of inputs are chosen while restricting local expansion, then
we still have expected collision sequence length bounded by 2. If local expansion
is not restricted sufficiently, then the graph expands (locally) as well. Likewise, for
double hashing, no matter what input distribution is assumed for the keys, randomly,
independently, and uniformly choosing two universal hash functions gives expected
collision sequence length bounded by 2. This gives insight into both graph expanders
as well as double hashing.

Fundamentally, universal hash functions are small sets that “randomize” well.
Likewise, expander graphs have relatively few edges, yet they seem to have many
properties amenable to randomness.
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Abstract. We show that there is no γ log logM/ log log logM -approximation for the undirected
congestion minimization problem unless NP ⊆ ZPTIME(npolylog n), where M is the size of the
graph and γ is some positive constant.
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1. Introduction. Consider a graph G with M edges and a set {(si, ti)} of source-
sink pairs. The congestion minimization problem aims to connect all these pairs
while minimizing the edge congestion, i.e., the maximum number of demands that go
through the same edge in G. The problem is known to be NP-hard. The famous
result of Raghavan and Thompson [12] states that by applying randomized rounding
to a linear relaxation of the problem we obtain an O(logM/ log logM)-approximation
for both directed and undirected graphs. Until a few years ago, the best hardness
result was a factor 2− ε assuming P �= NP for both directed and undirected graphs.
This follows from the fact that it is NP-hard to determine if all the terminals can
be routed on edge-disjoint paths [11]. Closing the gap between the upper and lower
bounds has been a long standing open problem.

For directed graphs, there have been a number of improvements to the lower
bound. Chuzhoy and Naor [9] were the first to show a super constant hardness of
Ω(log logM) assuming NP �⊆ DTIME(nlog log log n).1 Recently, we [6] built upon the
techniques in this paper and proved an almost tight lower bound of (logM)1−ε for
any ε > 0 assuming NP �⊆ ZPTIME(npolylog(n)).2 Chuzhoy and Khanna [8] finally
closed the small remaining gap and proved a hardness of logM/ log logM for directed
congestion minimization under the same complexity assumption as in [6].

In this paper we present the first super constant hardness result for undirected
graphs. In particular we show that for some constant γ > 0, undirected conges-
tion minimization is γ log logM/ log log logM -hard to approximate unless NP ⊆
ZPTIME(npolylog(n)). Our proof also shows that the integrality gap for the nat-
ural linear programming relaxation of the problem is Ω(log logM/ log log logM).

The main technique for our hardness proof in this paper is the “canonical path”
technique applied to high-girth graphs. We construct an instance of the congestion
minimization problem on an undirected graph which has a special girth property. A
canonical path is a direct path that connects the source-sink pair of a demand. There

∗Received by the editors July 26, 2005; accepted for publication (in revised form) December 4,
2006; published electronically April 10, 2007. A preliminary version of this paper appeared in the
Proceedings of the 37th ACM Symposium on Theory of Computing, 2005.
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1DTIME(nlog log log n) is the set of languages that have deterministic algorithms that have

nlog log log n running time.
2ZPTIME(npolylog(n)) is the set of languages that have randomized algorithms that always

give the correct answer and have an expected running time npolylog(n).
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are two high-level components in the proof. First, if all demands are routes along
canonical paths, only then it is relatively straightforward to show some link has to
have a high congestion. Unfortunately, demands can deviate from their canonical
paths. Second, we show that, due to the girth property of the graph, with high prob-
ability most demands will have to follow their canonical paths. This technique of
routing along canonical paths in high-girth graphs was first introduced in [1] to prove
the logarithmic hardness result for the buy-at-bulk network design problem. Since
then, we have further developed this technique to prove hardness for a number of ad-
ditional problems, including the edge-disjoint paths problem [4, 2] and the wavelength
assignment problem in optical networking [3, 5].

2. Construction. For the rest of this paper we refer to this congestion mini-
mization problem on undirected graphs as MinCongestion. To show the hardness of
MinCongestion we construct a reduction using the Raz verifier for Max3SAT(5).
We begin with a brief overview of the Raz verifier.

2.1. Raz verifier. A 3SAT(5) formula has n variables and 5n/3 clauses where
each variable appears in exactly 5 distinct clauses and each clause contains exactly
3 literals. The Max3SAT(5) problem aims to find an assignment that maximizes
the number of satisfied clauses. A 3SAT(5) formula is called a yes-instance if it is
satisfiable; it is called a no-instance if no assignment satisfies more than a 1−ε fraction
of the clauses for some constant ε > 0. It follows from the PCP theorem [7] that it is
NP-hard to distinguish between yes-instances and no-instances.

A Raz verifier with � repetitions is defined as follows [13, 9]. A verifier interacts
with two provers: a clause prover (c-prover) and a variable prover (v-prover). Given
a 3SAT(5) formula φ, the verifier sends the c-prover a clause query (c-query) that
consists of � clauses c1, . . . , c� chosen uniformly at random. It also sends the v-prover
a variable query (v-query) that consists of one variable v1, . . . , v� chosen uniformly
at random from each of the � clauses. The c-prover sends back the assignment of
every variable in clauses c1, . . . , c�, and the v-prover sends back the assignment of
the variables v1, . . . , v�. The verifier accepts φ if all the � clauses are satisfied and
the two provers give a consistent assignment to the � variables. The verifier rejects φ
otherwise.

Suppose φ has n variables; then φ has 5n/3 clauses. Clearly, a Raz verifier with �
repetitions has Qc := (5n/3)� distinct c-queries, each of which has Ac := 7� answers.
It also has Qv := n� distinct v-queries, each of which has Av := 2� answers. Since the
verifier only queries variables that appear in a c-query, the number of distinct clause-
variable query pairs is R := (5n)�. Each clause appears in R/Qc = 3� c-v query
pairs, and each variable appears in R/Qv = 5� c-v query pairs. These parameters are
summarized in section 2.3.

Theorem 1 (Raz [13]). There is a universal constant α > 1 such that if φ is a
yes-instance and there is a proof system in which the verifier always accepts and if φ
is a no-instance, the verifier never accepts with probability higher than α−�.

Given a 3SAT(5) formula φ we first construct the two-prover interactive proof
system and represent it in a graph that we call the proof system graph, P . We then
transform this proof system into a MinCongestion instance on a graph that we call
the transformed graph, T . We show that if φ is a yes-instance, then all demands can
be routed with congestion 1. If φ is a no-instance, then with high probability for any
routing of the demands some edge has high congestion.

In defining these two graphs, we do not use the convention of specifying their
node sets and edge sets. Instead we first specify a set of paths that exist in the graph.
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We then add edges to the graph to ensure that these paths are realizable. Our graph
construction involves many parameters which we define in section 2.3. We give an
overview of the analysis in section 2.4. Throughout the paper we use subscripts c
and v when discussing quantities pertaining to clauses and variables, and we omit the
subscript when we do not distinguish them.

2.2. Graph construction. In the proof system graph P , for each possible an-
swer a we have an answer edge which we also denote a. For each query q we group
together all the possible answers to q and refer to this group as a query blob which
we also denote q. A clause query blob (c-blob) contains Ac edges that we call an-
swer edges, and a variable query blob (v-blob) contains Av answer edges. For each
c-v query pair r we have Y demands dr,y, 1 ≤ y ≤ Y , each of which has a source
node sr,y and a destination node tr,y and routes one unit of flow. For each accepting
interaction (r, ac, av), demand dr,y has a special path p that we refer to as a canonical
path.

This path starts at node sr,y, passes through edges ac, av, and ends at node tr,y.
In order for this to be possible, we place a center edge between ac and av, a demand
edge between sr,y and av, and a demand edge between ac and tr,y. Note that each
demand has multiple canonical paths. Note also that we allow parallel demand edges
and center edges so that no two canonical paths share a common edge other than
answer edges.

To facilitate the analysis we label the canonical paths as follows. For each accept-
ing interaction (r, ac, av), there is a random Y -element permutation σ. The canonical
path for demand dr,y that corresponds to the accepting interaction (r, ac, av) is la-
beled pr,ac,av,σ(y). That is, σ induces a random matching between the demands dr,y
and the canonical paths corresponding to the accepting interaction (r, ac, av).

Let us use an example to illustrate the above construction of P , shown in Fig-
ure 1. Let the repetition parameter � = 1. Let φ = (x ∨ y ∨ z̄) ∧ (x̄ ∨ y ∨ w). For a
query pair r that queries clause x ∨ y ∨ z̄ and variable x, there are seven accepting
interactions, namely, the seven satisfying assignments for the clause and the assign-
ment of x consistent with the clause. Suppose Y = 1. We define one demand dr,1
which has seven canonical paths defined by the seven accepting interactions. These
seven canonical paths are shown by solid lines by Figure 1. The demand for query
pair r′ that queries clause x̄ ∨ y ∨ w and variable x also has seven canonical paths,
and they share the answer edges in the v-blob x with demands dr,1. These canonical
paths are shown by dotted lines in Figure 1. We did not draw four other demands
and their canonical paths.

If Y > 1, then for each query pair r we define Y demands, each of which has
its own source node and destination node and its own seven canonical paths. The
canonical paths for these Y demands share the answer edges in c-blob x ∨ y ∨ z̄ and
v-blob x but have distinct center edges and demand edges.

We construct a MinCongestion instance on the transformed graph T . Like P
we have Y demands dr,y for each c-v query pair r. Each demand has a source node
sr,y and a destination node tr,y. The graph T consists of Z levels. Each level of T
consists of Qc c-blobs and Qv v-blobs, and they correspond one-to-one to those in
P . Each c-blob in T consists of Ic image edges, and each v-blob consists of Iv image
edges. We use bq,z to denote the blob at level z of T that corresponds to query blob
q of P ; we use fq,z,j to denote the jth image edge in bq,z.

In the following we describe how to map canonical paths from P to T . For any
c-blob qc in P , Dc := Y R/Qc demands have canonical paths that go through qc.
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Fig. 1. Graph P for a proof system: φ = (x∨ y∨ z̄)∧ (x̄∨ y∨w), � = 1, and Y = 1. The figure
shows two out of six demands.

Since two canonical paths of the same demand cannot share a common answer edge
in qc, Ic := Dc canonical paths go through any answer edge ac in qc. Consider all the
canonical paths that go through ac in P . We map each of these paths to a random
image edge in bqc,z subject to the constraint that no two of these paths are mapped
to the same image edge. That is, there is a random matching between the canonical
paths going through ac and the image edges they are mapped to in bqc,z. This is
always possible due to the choice of Ic.

We now perform a similar construction for each v-query qv. Note that for a fixed
clause and a fixed variable, the number of satisfying assignments of the clause for which
the variable is set to 1 is either 3 or 4, and the number of satisfying assignments for
which the variable is set to 0 is also either 3 or 4. This implies that for any v-blob in
P , at most 4� canonical paths of the same demand can share a common answer edge.
Therefore, at most Iv := 4� ·Y R/Qv canonical paths can go through any answer edge
av in qv. These canonical paths are randomly mapped to distinct image edges in bqv,z
at every level z. (See Figure 2.) We emphasize that the random mapping for blob
bq,z is independent of the random mapping for blob bq,z′ for any 1 ≤ z < z′ ≤ Z.

Consider a canonical path p for demand dr,y that goes through query blobs qc
and qv in P . For notational convenience, if p passes through the image edge fqc,z,j
(resp., fqv,z,j), we sometimes write fc,p,z = fqc,z,j (resp., fv,p,z = fqv,z,j). If p is
for demand dr,y we sometimes write dp = dr,y, sp = sr,y, and tp = tr,y. The above
discussion describes which image edges path p passes through in T . Under the new
notation path p has the following form which gives the ordering of the image edges
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p1

p2

p4

p5

a v–blob in P

corresponding v–blob in T

p3

p3

p4

p5

p1

p2

Fig. 2. A possible mapping of five canonical paths from a v-blob in P to a v-blob in T . Paths
p1, p2, and p3, are mapped to distinct image edges, and paths p4 and p5 are mapped to distinct
image edges. (The figure shows fewer than the actual number of canonical paths in P and fewer
than the actual number of edges in T .)

on the path:

sp → · · · → fc,p,1 → · · · → fv,p,1 → · · · → fc,p,z → · · · → fv,p,z
→ · · · → fc,p,Z → · · · → fv,p,Z → · · · → tp.

We add edges to T to make sure that these paths are realizable. In particular we
add edges between sp and fc,p,1, between fc,p,z and fv,p,z for all z, between fv,p,z and
fc,p,z+1 for all z, and between fv,p,Z and tp. We have now shown how to map a canoni-
cal path in P onto a canonical path in T . As before, we may add parallel edges so that
no two canonical paths share a common edge other than inside a blob. This completes
the description of the graph T and a MinCongestion instance on T . (See Figure 3.)

2.3. Parameters. Given a 3SAT(5) formula φ with n variables, we choose the
Raz verifier repetition parameter � to be

� = β log log log n for a sufficiently large constant β.(1)

We use the following parameters in constructing graphs P and T . Throughout the
paper, we omit the ceilings and floors for ease of presentation.

Qc = (5n/3)� no. of c-blobs in P and per level in T ; no. of c-queries,(2)

Qv = n� no. of v-blobs in P and per level in T ; no. of v-queries,(3)

Ac = 7� no. of answer edges per c-blob in P ; no. of answers to a c-query,(4)

Av = 2� no. of answer edges per v-blob in P ; no. of answers to a v-query,(5)

Ic = Y · 3� no. of image edges per c-blob in T ,(6)

Iv = Y · 20� no. of image edges per v-blob in T ,(7)

R = (5n)� no. of c-v query pairs,(8)

Y R no. of demands

Dc = Y · 3� no. of demands per c-blob in P and T ,(9)

Dv = Y · 5� no. of demands per v-blob in P and T .(10)
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Fig. 3. The transformed graph T from graph P shown in Figure 1, Z = 2. The figure shows
one out of seven canonical paths for demand dr,1. Note also that the figure shows fewer than the
actual number of edges per v-blob.

In order to define Y , the number of demands per c-v query, and Z, the number of
levels in T , we introduce two new parameters, k and h. The parameter k is related
to the length of noncanonical paths in T , and h is used to define the concept of heavy
blobs in P .

h = �−1 · log log n definition of heavy blob in P ,(11)

Z = (40 · 8�)h+1 no. of levels in T ,(12)

k = Z
√
Z noncanonical path length in T ,(13)

Y = (6RQcAcQvAvZ)2k+1 no. of demands per c-v query pair.(14)

Let M be the number of edges in T . We have Y RZ image edges from c-blobs
and Y RZ · 4� image edges from v-blobs. Canonical paths do not share common edges
outside blobs in T , and there are 7�(2Z + 1)Y R such edges. Therefore,

M = Y RZ + Y RZ · 4� + 7�(2Z + 1)Y R.(15)

To get a sense of how big Z, Y , and M are, we note that �h = log logn and therefore
Z = polylog(n), Y = epoly Z which is epolylog(n). Finally, since every term in M is
epolylog(n), M is epolylog(n) as well. We discuss how the values of these parameters are
chosen in section 3.3, after we present the proof.

2.4. Overview of proof. At a high level our proof proceeds as follows. We use
a solution to the MinCongestion instance on T to determine whether the original
3SAT(5) instance φ (that defined the proof system) is a yes-instance or a no-instance.
The most important feature of our construction is that for all the canonical paths
that pass through the same answer edge in query blob q in P , the corresponding
canonical paths in T all pass through different image edges in bq,z in T . Therefore, if
all demands are routed on canonical paths, then for any solution with high congestion
in P , the corresponding solution in T typically has low congestion. Conversely, for
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any solution with low congestion in P , the corresponding solution in T typically has
high congestion.

If φ is a yes-instance it is straightforward to argue that demands can be routed
in T so that the congestion is 1. The two provers can always answer any query pair
using one satisfiable assignment of φ, and the verifier always accepts. Therefore, these
accepting interactions define one canonical path per demand, and only one answer
edge in each query blob of P is used. By construction, when these canonical paths
are mapped from P to T , these paths are mapped to distinct image edges in every
blob in T . Therefore, the corresponding solution in T has congestion 1.

We concentrate on the case in which φ is a no-instance. If all demands are routed
on canonical paths only in T (resp., in P ), we say this solution is canonical in T (resp.,
in P ). For a canonical solution to T , we show in section 3.1 that the corresponding
canonical solution to P must have demands routed through a large number of answer
edges in some blob. Otherwise, a small number of answer edges would be used in
every blob, and we could use them to define a pair of provers that would violate the
error probability of the proof system. (In the extreme example of a satisfiable φ, only
one answer edge is used in every query blob in P , and they define the two provers.)
We then show that for the blob in P in which many answer edges are used, one of
the Z corresponding blobs in T necessarily has high congestion of Ω(h) with high
probability.

In section 3.2 we consider the case in which noncanonical paths may be used. We
say that a canonical path p for demand dp is regular at level z in T if dp is routed
through both fc,p,z and fv,p,z. We say a demand is regular at level z if it has a
canonical path regular at level z; a demand is regular at ζ levels if it has a canonical
path that is regular at ζ levels. We show that for most demands they are either routed
on a long path in T or else they are regular at many levels. The proof of this fact uses
girth properties of T and is similar to an analysis of the buy-at-bulk network design
problem presented in [1].

If many demands are routed on long paths it is easy to show that the congestion
must be high on some edge. If many demands are regular at many levels we generalize
the argument for canonical solutions in section 3.1 (i.e., demands regular at all levels)
to show that the solution in T must have high congestion of Ω(h). Therefore, we have
shown a gap of Ω(h) in congestion depending on whether or not φ is a yes-instance
or a no-instance.

3. No-instances. For the case that φ is a no-instance we now carry out the
detailed analysis outlined previously.

3.1. Special case: Canonical paths only. Let us begin with some notation.
Let M be the particular random mapping between the canonical paths in P and in
T . If T is a canonical solution to the MinCongestion instance on T , then T and
M define a canonical solution to P which we denote P(T ,M). Conversely, if P is a
canonical solution to P , P and M define a canonical solution to T which we denote
T (P,M).

Under a canonical solution P, we say that an answer edge in a blob in P is
heavy if at least D/(10A) demands go through the edge. (As before whenever there
is no need to specify whether a blob is a c-blob or a v-blob, we omit the subscripts
c and v. For example, A denotes the number of edges in the blob of interest, and
D denotes the number of demands that go through the blob.) In addition, we say a
query blob is heavy if it has at least h heavy answer edges; we say a solution P is
heavy if it has at least one heavy query blob. We refer to anything as light if it is



CONGESTION MINIMIZATION 119

not heavy. For a canonical solution T to T , we first show that P(T ,M) has to be a
heavy solution under any mapping M. Otherwise, we choose one edge from the heavy
answer edges in each blob, and these chosen answer edges define two provers. We then
show that since every blob is light, many demands are routed along the chosen answer
edges only. Furthermore, since canonical paths correspond to accepting interactions
of the proof system, it is a contradiction for a no-instance φ if there are more such
paths than the error probability of the proof system would allow. We then show
that with high probability, every heavy canonical solution corresponds to a canonical
solution in T that has high congestion. This probability is taken over all the random
mappings M.

Lemma 2. If T is a canonical solution, P has a heavy blob under P(T ,M).
Proof. For the purpose of contradiction let us assume P(T ,M) is a light solution.

Then every blob in P has fewer than h heavy answer edges. For a particular query
blob q, fewer than A·D/(10A) demands can go through the light edges in q. Summing
over all the v-blobs and c-blobs we have at most Y R/5 demands whose routes contain
light answer edges. Hence at least 4/5 of all demands route through heavy answer
edges only under solution P(T ,M).

We now choose one heavy edge uniformly at random in each query blob in P .
At least (4Y R/5) · h−2 demands are expected to go through these randomly chosen
heavy edges only. Hence there exists a choice of heavy edges such that at least
(4Y R/5) · h−2 demands go through these heavy edges. We refer to these demands
as accepting demands and the rest as unaccepting. Recall that we have defined Y
demands per c-v query pair. Under solution P(T ,M), some of the Y demands that
correspond to the same random string may be accepting, whereas the rest may be
unaccepting. If this is the case for any random string, we reroute the unaccepting
demands along the path of the accepting ones. Therefore, under this new solution
all Y demands of a random string are either accepting or unaccepting. Moreover, a
fraction of at least 4/(5h2) of all demands are accepting.

Recall that canonical paths are defined by accepting interactions. Since accepting
demands are routed along canonical paths, we have shown that at least a 4/(5h2)
fraction of random strings generates queries that have accepting answers to the verifier.
By the choice of � in (1) and h in (11), 4/(5h2) is higher than the error probability
α−� defined in Theorem 1. This is a contradiction for a no-instance φ. Note that the
choice of � is the smallest possible to ensure the contradiction here.

We study the congestion in T that occurs when P(T ,M) has a heavy blob. The
mapping of canonical paths between P and T corresponds to the following balls-and-
bins game. We are given I bins, and we throw ni balls into ni distinct bins during
the ith round. For D = n1 + · · · + nA and I ≥ D, what is the maximum number of
balls in a bin at the end of A rounds?

To see the connection to our problem, let us consider how demands are routed
in one query blob q in P under a solution P(T ,M). The ni’s represent the number
of demands that are routed along the ith answer edge in q; D represents the total
number of demands routed through q; A represents the number of edges in q; and I
represents the number of edges in a blob in T that correspond to q. By construction
these ni paths are mapped to distinct edges in every corresponding blob in T . This
is the same as throwing ni balls into I bins with each ball landing in a distinct bin.
Therefore, the maximum number of balls per bin is the maximum edge congestion in
one corresponding blob in T .

Without loss of generality, let us assume n1 ≥ n2 · · · ≥ nA. Let x be such that
nx ≥ D/(10A) > nx+1. If nA > D/(10A), then x = A. Such an x always exists.
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Lemma 3. The probability that every bin has fewer than x balls is at most
e−(20Aa)−x−1D, where a = I/D.

Proof. We compute the probability that some bin has x balls after the first
x rounds and ignore the balls thrown after x rounds. It is easy to see that for a
particular bin to have a ball in round i equals ni/I since ni distinct bins out of I are
chosen at random. Therefore, this probability is at least 1/(10Aa) for bins i ≤ x since
ni ≥ D/(10A) and a = I/D. Since each round is independent, the probability that
one bin has x balls or more is at least (10Aa)−x. Equivalently, the probability that
one bin has fewer than x balls is at most 1 − (10Aa)−x.

In order to bound the probability that every bin has fewer than x balls, we deal
with the dependence among the bins in the following way. Consider bin j, where
j ≤ D/(20A).

Pr [Bin j has at least x balls | Any configuration of bin 1, . . . , j − 1]

≥ Pr [Bin j has at least x balls | Bin 1, . . . , j − 1 each has x balls]

=
∏

1≤i≤x

ni − j

I − j

≥
∏

1≤i≤x

ni −D/(20A)

I

≥ (20Aa)−x.

Therefore,

Pr [Bin j has fewer than x balls | Any configuration of bin 1, . . . , j − 1]
≤ 1 − (20Aa)−x.

Using conditional probability, we have

Pr [Every bin has fewer than x balls]
≤ Pr [Bins 1, . . . , D/(20A) each has fewer than x balls]

≤ (1 − (20Aa)−x)D/(20A) ≤ e−(20Aa)−x−1D.

We now define a set of bad events. Let q be a query blob in P , let H = {a1, . . . , ah}
be a set of h answer edges, and let Eai for 1 ≤ i ≤ h be a set of D/10A canonical paths
in P that pass through the answer edge ai. Let B(q, Ea1 , . . . , Eah

) be the bad event
in which under M, the images of the paths in Ea1 , . . . , Eah

in T create congestion
less than h.

Recall in the construction of P , at most 4� canonical paths of the same demand
can share the same answer edge in a v-blob in P , and no two canonical paths of the
same demand can share the same answer edge in a c-blob in P . Therefore, the value of
a in Lemma 3 is 4� for a v-blob and a = 1 for a c-blob. Recall also that for every blob
in P we create Z consecutive blobs in T , and the mappings of the canonical paths
from P to these Z blobs are independent from one another. Finally, imagine that
for each Eai a demand is routed along each path in Eai . In this case the value of x
(defined above) satisfies x ≥ h. Therefore, Lemma 3 and the choice of Z immediately
imply the following.

Corollary 4. For fixed q, Ea1 , . . . , Eah
, the probability that B(q, Ea1 , . . . , Eah

)
occurs is at most

e−(20Ac)
−h−1DcZ ≤ e−Dc if q is a c-blob,

e−(20Av4�)−h−1DvZ ≤ e−Dv if q is a v-blob.

This probability is with respect to the random mapping M.
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We now count the number of bad events. If q is a v-blob, then at most Dv4
�

canonical paths pass through any answer edge in q. Therefore, an upper bound on
the total number of events of the form B(q, Ea1 , . . . , Eah

) for a v-blob q is

Qv

(
Av

h

)(
Dv4

�

Dv/(10Av)

)h

≤ Qv · (Av)
h · (10Av4

�e)hDv/(10Av)

= elogQv · eh logAv · e(1+log 10+logAv+log 4�)hDv/(10Av)

= eo(Dv).

The last equality holds since the exponent in each of the three terms is o(Dv). If q is
a c-blob, at most Dc canonical paths pass through any answer edge in q. A similar
(but simpler) calculation shows that an upper bound on the total number of events
of the form B(q, Ea1

, . . . , Eah
) for a c-blob q is

Qc

(
Ac

h

)(
Dc

Dc/(10Ac)

)h

= eo(Dc).

By a union bound, the probability that some event B(q, Ea1 , . . . , Eah
) happens is at

most

e−Dc ·Qc

(
Ac

h

)(
Dc

Dc/(10Ac)

)h

+ e−Dv ·Qv

(
Av

h

)(
Dv4

�

Dv/(10Av)

)h

≤ e−Dv · eo(Dv) + e−Dc · eo(Dc),

which is at most 1/poly(n).
Now suppose that under mapping M no such bad event occurs. For any heavy

solution P in P , by definition we can find a query blob q with h answer edges such
that for each such edge D/10A demands are routed on a canonical path that passes
through the edge. Since no bad event occurs, the images of these canonical paths in
T create congestion at least h. In other words, the canonical solution T (P,M) in T
has a congestion of at least h. We have therefore shown the following.

Lemma 5. With probability 1 − 1/poly(n) every heavy solution P corresponds to
a solution T (P,M) in which the congestion is at least h in T .

Lemma 2 states that if T is a canonical solution, then P(T ,M) must be a heavy
solution in P . Therefore, by Lemma 5, with high probability over the choice of M,
T must have congestion at least h since T = T (P(T ,M)). In summary,

Theorem 6. With probability 1 − 1/poly(n), every canonical solution T has a
congestion of at least h.

3.2. General case. We now consider the general problem in which a demand
does not follow a canonical path p but takes a detour. Whenever this happens the
canonical path p and the detour form a cycle in T . We would like to bound the number
and the lengths of these cycles in T and thereby quantify the detours. However, a
direct analysis on T seems hard mainly due to the cycles formed by two complete
canonical paths of the same demand. To facilitate the analysis, we create an incidence
graph G for which we are able to show the number of small cycles is likely to be small.
This allows us to show that for most demands, either they are routed along long paths
in T or else they are regular at many levels. We show the congestion in T is high in
both cases.

Recall a canonical path p is regular at level z if the demand is routed through
both fc,p,z and fv,p,z, i.e., it does not take a detour from the two image edges along p
at level z; a demand is regular at ζ levels if it has a canonical path regular at ζ levels.
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Fig. 4. (Left) A simple illustrative example of T with two demands d1 and d2 and four paths
p1, p2, p3, and p4. (Right) The corresponding incidence graph G.

3.2.1. Incidence graph. We begin with a description of the incidence graph.
The incidence graph G has a node for each demand d, each canonical path p, and
each image edge fq,z,j (see Figure 4). If path p is a canonical path for demand d,
(i.e., dp = d), then there is an edge between d and p in G. If path p passes through
fq,z,j , (i.e., fc,p,z = fq,z,j or fv,p,z = fq,z,j), then there is an edge between p and fq,z,j .
(Recall we have two ways of denoting an image edge in T . The notation fc,p,z refers
to the image edge in the c-blob at level z along path p; fq,z,j refers to the jth image
edge in the zth blob that corresponds to blob q of P .)

We now show how each edge in T maps into a path in G. Each image edge in T
maps to a single node in G which we call an image node. Each edge that connects
two image edges (or an image edge and a source/destination node) along a canonical
path p in T , maps to the two-edge path that connects the two image nodes (or the
image node and the demand node dp) via the path node p. We refer to these paths in
G as route components. More formally, the route components are defined as follows.

• The image edge fi,p,y in T maps into the single image node fi,p,y in G.
• The edge between fc,p,z and fv,p,z maps into the path fc,p,z → p → fv,p,z.

3

• The edge between fv,p,z and fc,p,z+1 maps into the path fv,p,z → p → fc,p,z+1.
• The edge between sp and fc,p,1 maps into the path d → p → fc,p,1.
• The edge between fv,p,Z and tp maps into the path fv,p,Z → p → d.

The above definition of route components implies the following relationship between
the path lengths in T and in G.

Lemma 7. For any route in T of length x, the corresponding route in G has
length at most 2x.

We can assume without loss of generality that the route in T is simple (i.e., it
never visits the same node twice). This implies that, although the route in G is not
necessarily simple, it can traverse each of the above route components at most once.

Before presenting the details, we first discuss how T and G are related at a high
level. Consider a demand d, and let π be the path that d is routed along in T . The
first edge in π, i.e., the one that leaves the source node sd, belongs to a canonical
path, say p. Suppose that p and π are not identical. This implies that the union of p

3If the route in T goes from fc,p,z to fv,p,z , then the path in G goes from node fc,p,z to node p
to node fv,p,z . If the route in T goes from fv,p,z to fc,p,z , then the path in G goes in the opposite
direction. A similar statement regarding the orientation of the path in G holds for each of the other
mappings.
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Fig. 5. An image edge fv,p,1 along canonical path p for demand d is detoured along a cycle
formed by two complete canonical paths of demand d′. The cycle is shown in dotted lines. Image
edges on the dotted cycle can be detoured along other such cycles.

and π form a cycle in T . There are two scenarios to consider, depending on whether
or not π(G) contains a cycle in G, where π(G) is the mapping of path π in graph G.

Case 1 (π(G) contains a cycle in G). In this case we can show that either π(G)
contains a small cycle and the demand node d is close to this small cycle; π(G)
contains a small cycle but d is far away from any such small cycle; or π(G) contains
large cycles only. If the first situation holds, then we say the demand is of type (1); if
the latter two situations hold the demand is of type (2). We show in Lemma 11 that
G is likely to have only a small number of small cycles due to the randomness in our
construction. Consequently, the number of type-(1) demands is probably small. We
also have that long paths in G correspond to long paths in T ; hence, if d is a type-(2)
demand, then π is a long path in T . Using this fact we show in Lemma 12 that if
there are many type-(2) demands, the congestion in T has to be high.

Case 2 (π(G) does not contain a cycle in G). We show in Lemma 8 that the only
way this scenario can happen is if an image edge in p is detoured along a cycle formed
by two complete canonical paths of a different demand d′. (See Figure 5.) (We remark
that we allow “nested” detours in that some of the image edges on the detour may
themselves be detoured.) In other words, if a nonimage edge in p is detoured or if an
image edge in p is detoured in a different manner, then π(G) has a cycle in G.

If π detours from p at more than
√
Z levels, we say d is of type (3); otherwise,

d is of type (4). Since each detour of an image edge in this scenario has a length
longer than Z, type-(3) demands are routed along long paths of length longer than
Z
√
Z. If there are many type-(3) demands the congestion in T has to be high, as

shown in Lemma 12. A type-(4) demand is routed along a path π that resembles the
canonical path p in most places. In particular, the path π passes through the same
image edges as p at more than Z −√

Z levels; i.e., the path p is regular at more than
Z −√

Z levels. In section 3.2.5 we focus on the Z −√
Z regular levels and carry out

an analysis similar to the special case of canonical paths only.

3.2.2. Demands of four types. We now formally show that demands have
four types. The proof is similar to an analysis presented in [1].

Lemma 8. Every demand dr,y has at least one of the four following types, where
k is the parameter defined in (13):
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1. π(G) contains a cycle of length at most k in G, and the demand node dr,y is
at most distance k from this cycle.

2. π(G) contains a cycle in G, but demand dr,y is not of type-(1). This implies
that the length of π(G) is more than k in G.

3. Demand dr,y is regular at at most Z−√
Z levels in T . This implies the length

of π is more than Z
√
Z in T .

4. Demand dr,y is regular at more than Z −√
Z levels in T .

Proof. If the demand dr,y is type-(2), then either π(G) contains a cycle longer
than k, or π(G) contains cycles of lengths at most k but dr,y is more than distance
k from any of these cycles. In both cases the length of π(G) is more than k. If the
demand dr,y is not of type (1) or (2), then π(G) does not have a cycle in G. Under
this situation, we use the following fact repeatedly to show that if an edge along π
deviates from p, then it must be an image edge and it detours along a cycle formed
by two complete canonical paths of a different demand. Such detours can be nested.
(See Figure 5.) This implies the demand must be type of (3) or (4).

Fact 9. Consider a route in a graph such that the subgraph induced by the route
does not contain a cycle. Then, if the route leaves node v along edge e, it cannot
return to node v except along edge e. More generally, if the route traverses edge e at
any time after visiting node v, it cannot return to node v without traversing edge e in
the opposite direction.

Consider now the route for demand dr,y in T . The route in T must begin at the
source node for dr,y and then cross one of the edges connecting the source node to an
answer edge at level 1. Recall that the route in G must follow the route components
and it can traverse each route component at most once. Hence the route in G must
begin dr,y → p → fc,p,1 for some path p that is owned by dr,y. The route in G must
return to node dr,y since the route in T must eventually reach the destination node for
dr,y. By Fact 9 this return to dr,y must happen via node p. Fact 9 also implies that on
this return to node p the previous node must be fc,p,1. Since each route component
can be used at most once, the route in G must have the form

dr,y → p → fc,p,1 → Γc,1 → fc,p,1 → p → fv,p,1 . . .

for some subroute Γc,1 that does not pass through p. Once again, Fact 9 implies that
the route must return to node p in order to get back to node dr,y. It must do this
through node fv,p,1. Therefore, because we can use each of our route components at
most once, the route in G must have the form

dr,y → p → fc,p,1 → Γc,1 → fc,p,1 → p → fv,p,1 → Γv,1 → fv,p,1 → p → fc,p,2 . . .

for some subroutes Γc,1 and Γv,1 that do not pass through p. We can repeat this
argument inductively to show that the route in G must have the form

dr,y → p → fc,p,1 → Γc,1 → fc,p,1 → p → fv,p,1 → Γv,1 → fv,p,1 → p → fc,p,2 . . .

...

fc,p,z → Γc,z → fc,p,z → p → fv,p,z → Γv,z → fv,p,z → p → fv,p,z+1 . . .

...

fc,p,Z → Γc,Z → fc,p,Z → p → fv,p,Z → Γv,Z → fv,p,Z → p → dr,y

for some subroutes Γc,1, . . . ,Γc,z,Γv,z, . . . ,Γv,Z that do not pass through p.
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We now consider the subroutes Γc,z and Γv,z. There are two cases.
A. Neither Γc,z nor Γv,z pass through path node p′ for any p′ �= p. This can

happen only if the route for demand dr,y passes through both fc,p,z and
fv,p,z. Hence path p is regular at level z.

B. Either Γc,z or Γv,z pass through some path node p′ �= p. Suppose that this is
true for Γc,z. (The other case is similar.) Then, Γc,z has either the form

. . . fc,p′,z → p′ → fv,p′,z−1 . . .

or else the form

. . . fc,p′,z → p′ → fv,p′,z . . . .

The two cases can be treated similarly. We focus on the former. By Fact 9
since the subroute Γc,z lies between two visits to p, this subroute must return
to p′ via fv,p′,z−1. Therefore Γc,z must have the form

. . . fc,p′,z → p′ → fv,p′,z−1 . . .

. . . fv,p′,z−1 → p′ → fc,p′,z−1 . . . .

By continuing the argument inductively in this manner (as we did for path
p), we can show that Γc,z must eventually have the form . . . p′ → dp′ . . . .
However, Fact 9 implies that the route must return to p′ via dp′ ; i.e., the
route must have the form . . . p′ → dp′ . . . dp′ → p′ . . . . The only way this can
happen is if the route for demand dr,y in T passes through source node sp′

as well as destination node dp′ . Any route in T that does this must have a
length at least Z.

If situation A occurs for more than
√
Z levels, then path p is regular at more than

Z − √
Z; levels, i.e., the demand has type-(4). Otherwise situation B occurs for at

least
√
Z levels which implies that π, the route for demand dr,y in T , has a length at

least Z
√
Z; i.e., the demand has type-(3).

3.2.3. Demands of type (1). Since G is constructed in a random fashion, most
nodes in G are far from small cycles of length at most k. More formally, let B(G) be
the bad event that there are more than Y type-(1) demands. In this section we show
that B(G) does not happen with a constant probability. The analysis resembles that
presented in [1]. We begin with a result whose proof is similar to an argument used
in the proof of the Erdös–Sachs theorem [10]. (The Erdös–Sachs theorem states that
high-girth graphs exist. The girth of a graph is the length of its shortest cycle.)

Lemma 10. Consider a random graph with ν nodes, and let {e0, e1, . . . , eκ−1}
represent a set of κ < k potential edges. If

Pr[e0 exists|e1, . . . , eκ−1 exist] ≤ ρ

for all such sets of edges and νρ ≥ 2, then the expected number of cycles of fixed length
k′ ≤ k is at most (νρ)k

′
. This implies that, with probability 2

3
, the number of cycles

of length at most k is at most 3(νρ)k+1.
Proof. The total number of potential cycles of length k′ is at most 1

2k′
ν!

(ν−k′)! .

Each such cycle occurs with probability at most ρk
′
. Therefore, the expected number

of cycles of length k′ is at most

ν!ρk
′

2k′(ν − k′)!
≤ (νρ)k

′
.
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This implies that the expected number of cycles of length less than or equal to k is

k∑

k′=1

(νρ)k
′ ≤ (νρ)k+1

since νρ ≥ 2. By Markov’s inequality, with probability 2
3

the number of cycles of
length at most k is at most 3(νρ)k+1.

Lemma 11. Pr[B(G)] ≤ 1
3
; i.e., with probability at least 2

3
the number of type-(1)

demands is at most Y .
Proof. We calculate ν and ρ for the incidence graph G. We begin by counting

the number of nodes, ν. The graph G has
• RY demand nodes, dr,y;
• at most AcAvRY path nodes, p;
• at most (QcIc + QvIv)Z image nodes.

Therefore, the number of nodes in G is at most ν ≤ RY +AcAvRY +(QcIc +QvIv)Z
which is crudely upper bounded by QcAcQvAvRY Z. It is also easy to verify that
each node has a degree at most max{AcAv, 2Z + 1, Ac, Av} which is crudely upper
bounded by AcAvZ. We now calculate the probability that a potential edge in G
exists. If a fixed set of up to k edges already exist, then the following hold.

• The probability that demand node dr,y is connected to path node p is at
most 1/(Y − k). (This is because for any accepting interaction (r, ac, av)
there is a random matching between the demands dr,y and the canonical
paths corresponding to (r, ac, av). See section 2.2.)

• The probability that path node p is connected to any given image node is at
most 1/(min{Ic, Iv} − k) ≤ 1/(Y − k).

Hence for the incidence graph G, ρ = 1/(Y − k).
By the definitions of Y and k in (14) and (13), we ensure that Y is (exponentially)

larger than k. Hence 2 ≤ νρ ≤ 2RQcAcQvAvZ. Lemma 10 implies that, with proba-
bility 2

3
, the number of cycles of length at most k is at most (6RQcAcQvAvZ)k+1.

There are at most k nodes on each such cycle. By our degree bound each node
is within distance k of at most (AcAvZ)k other nodes. Hence with probability 2

3
the

number of nodes in G that are within distance k of a node that is part of a cycle of
length at most k is at most

k(6QcAcQvAvRZ)k+1(AcAvZ)k ≤ (6QcAcQvAvRZ)2k+1 = Y.

3.2.4. Demands of types (2) and (3).
Lemma 12. If the number of type-(2) demands or the number of type-(3) demands

is at least RY/4, then some edge in T has congestion Ω(h).
Proof. Each of the type-(2) demands has a route of length at least k in G which

by Lemma 7 implies that they have a route of length at least k/2 in T . Therefore the
total number of edges used by these routes is at least RY k/8. By (15) the number of
edges in T is at most RY 7�(3Z +1). Therefore some edge has a congestion of at least

k

8 · 7�(3Z + 1)
=

Z((40 · 8�)h+1)
1
2

8 · 7�(3Z + 1)
= Ω(h).

Each of the type-(3) demands has a route of length at least Z
√
Z in T . If the number
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of type-(3) demands is at least RY/4, then some edge has a congestion of at least

Z
√
Z

4 · 7�(3Z + 1)
=

Z((40 · 8�)h+1)
1
2

4 · 7�(3Z + 1)
= Ω(h).

3.2.5. Type-(4) demands. Suppose the bad event B(G) does not occur and the
situation in Lemma 12 does not apply; then there are fewer than Y type-(1) demands,
fewer than RY/4 type-(2) demands, and fewer than RY/4 type-(3) demands. Since
there are RY demands in total, Lemma 8 implies at least RY/4 demands are of type
(4). The routing of these type-(4) demands resembles the special case analyzed in
section 3.1 as each demand is routed along a path that coincides with a canonical
path of the demand at most levels. We use T̃ to denote the “almost canonical”
routing of these type-(4) demands in T and T to denote the canonical solution to T

that resembles T̃ . Following the notation of section 3.1 we use P(T ,M) and T (P,M)
to relate the canonical solutions in P and T , where M defines the mapping between
the two graphs. Therefore, each demand of type (4) has three routes of interest: one

under solution T̃ , one under T , and one under P. We are ready to reapply the analysis
of section 3.1 to show T̃ has high congestion. We first show two lemmas analogous to
Lemma 2.

Lemma 13. If type-(4) has more than RY/4 demands, then P has a heavy blob
under P(T ,M).

Proof. For the purpose of contradiction let us assume every blob in P is light.
At most AcDc/(10Ac) demands pass through light edges in any c-blob in P ; at most
AvDv/(10Av) demands pass through light edges in any v-blob in P . Summing over
all blobs, at most RY/5 demands in total pass through light edges in P . Therefore,
at least

RY

4
− RY

5
=

RY

20

demands pass through heavy edges in P , and they do not induce a heavy solution.
We choose one heavy edge uniformly at random in each query blob in P . At

least RY/(20h2) demands are expected to go through these randomly chosen heavy
edges only. As argued in the proof of Lemma 2, this implies that at least a fraction
of 1/(20h2) query pairs have accepting answers to the verifier. By the choice of h,
1/(20h2) is higher than the error probability α−�. This contradicts Theorem 1 since
φ is a no-instance. Therefore, the RY/4 canonical paths must form a heavy solution
in P .

As in section 3.1 we now define a set of bad events. Let q be a query blob in P ,
let H = {a1, . . . , ah} be a set of h answer edges, and let Eai

for 1 ≤ i ≤ h be a set
of D/10A canonical paths in P that pass through the answer edge ai. For each such
path p let Lp be a set of Z −√

Z levels that we say are marked for path p. Let L be
the set of all sets Lp. Let B(q, Ea1 , . . . , Eah

, L) be the bad event that under M, the
images in T of the paths in Ea1

, . . . , Eah
have congestion less than h/4, even if a path

only contributes to congestion at a level at which it is marked. We wish to analyze the
probability of these bad events. The analysis is complicated by the fact that different
paths may be marked at different levels. However, we make use of the following fact.

Lemma 14. For any q, Ea1
, . . . , Eah

, L we can find a set of Z/4 levels such that
at each of these levels z there are h/4 sets Eai

that have at least D/20A canonical
paths that are marked at level z.

Proof. Consider one particular set Eai . We first show that there exist Z/2 levels
each of which has D/(20A) paths in Eai

that are marked at this level. (We stress that
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these paths need not be the same at every level.) To see this, the number of marked
levels per path multiplied by the number of paths in Eai is at least (Z−√

Z)D/(10A).
Let xz be the number of marked paths at level z. If Z/2 of these xz’s are smaller
than D/(20A), then

∑
z xz is less than (Z/2)D/(20A) + (Z/2)D/(10A) which is less

than (Z −√
Z)D/(10A). This is a contradiction.

For each level z we now let yz be the number of sets Eai
that have D/(20A)

paths marked at level z. We have just shown that
∑

z yz ≥ hZ/2. If 3Z/4 of the
yz’s are smaller than h/4, then

∑
z yz < (3Z/4)(h/4) + (Z/4)h < hZ/2, which is a

contradiction. Therefore, we have Z/4 levels such that at each level z there are h/4
sets Eai each of which has at least D/20A canonical paths marked at level z. (We
stress that these h/4 sets may be different at different levels.)

We can now analyze the probability that bad event B(q, Ea1 , . . . , Eah
, L) occurs

by concentrating on the Z/4 levels whose existence is guaranteed by Lemma 14. We
derive the probability by applying a small variation of Lemma 3. The variation is
due to the fact that for a heavy blob we now consider only Z/4 levels instead of Z
levels in T , we consider only h/4 heavy edges instead of h per level, and we consider
only D/(20A) paths instead of D/(10A) on a heavy edge at each level. We obtain the
following.

Lemma 15. For fixed q, Ea1 , . . . , Eah
, L, the probability that B(q, Ea1 , . . . , Eah

, L)
occurs is at most

e−(40Ac)
−h/4−1DcZ/4 ≤ e−DcZ

2/3

if q is a c-blob,

e−(40Av4�)−h/4−1DvZ/4 ≤ e−DvZ
2/3

if q is a v-blob.

For any path, the number of ways to choose Z − √
Z marked levels is

(
Z√
Z

)
.

Therefore, the total number of events of the form B(q, Ea1
, . . . , Eah

, L) for a v-blob q
is upper bounded by

Qv

(
Av

h

)(
Dv4

�

Dv/(10Av)

)h(
Z√
Z

)hDv/(10Av)

= eo(Dv) · e(log
√
Z+1)

√
ZDvh/(10Av)

= eo(Z
2/3Dv).

The first equality holds due to the analysis in section 3.1. Similarly, the total number
of events of the form B(q, Ea1 , . . . , Eah

, L) for a c-blob q is upper bounded by

Qc

(
Ac

h

)(
Dc

Dc/(10Ac)

)h(
Z√
Z

)hDc/(10Ac)

= eo(Z
2/3Dc).

Hence by a union bound, the probability that some event B(q, Ea1 , . . . , Eah
, L) hap-

pens is at most e−DcZ
2/3

eo(DcZ
2/3) + e−DvZ

2/3

eo(DvZ
2/3), which is 1/poly(n).

Now suppose that under mapping M no such bad event occurs. Consider the
solution T̃ in T and the related canonical solution T . For any canonical path in T we
mark Z−√

Z levels at which the path is regular in the solution T̃ . (Since all demands

routed in T̃ are type-(4) demands, this is always possible.) An important observation

is that the congestion in T̃ is at least the congestion in T under the assumption that
a path contributes to congestion only at a level at which it is marked. This is because
a path in T̃ and the related canonical path in T pass through the same image edges
at all levels at which the canonical path is marked.

We know from Lemma 13 that the solution P(T ,M) is heavy. By definition we
can find a query blob q with h answer edges such that for each such edge D/10A
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demands are routed on a canonical path that passes through the edge. Since no bad
event occurs for this particular M, the images of these canonical paths in T have
congestion at least h/4 even if a path contributes to congestion only at a level at

which it is marked. By our earlier remarks this implies that the solution T̃ has a
congestion of at least h/4. We now have the equivalent of Theorem 6.

Theorem 16. If type (4) has more than RY/4 demands then with probability

1 − 1/poly(n), T̃ has congestion at least h/4.
Combining Lemmas 8, 11, and 12 and Theorem 16, we have the following.
Theorem 17. If φ is a no-instance, T has congestion Ω(h) with a constant

probability.

3.3. Wrapping up. Recall that if φ is a yes-instance, then all demands can be
routed with congestion 1. Therefore the “gap” between the congestion in the yes-
instance case and the congestion in the no-instance case is Ω(h). We now describe
this gap in terms of the size of T . Recall that M , the number of edges in T , is defined
in (15). From the parameter definitions in section 2.3, it is easy to see that logM =
O(log Y ) and log logM = O(logZ). Since logZ = Θ(�h), � = Θ(log log logn), and
h = Θ(log logn/ log log log n), we have

log logM/ log log logM = O(h).

We also compute the complexity of our reduction. As discussed at the end of sec-
tion 2.3 we have

M = epolylog(n);

i.e., the reduction can be carried out in quasi-polynomial time. We have therefore
shown that, for some constant γ, there is no γ log logM/ log log logM -approximation
for the undirected congestion minimization problem unless NP ⊆ coRTIME(npolylog(n)).
A standard result states that if NP ⊆ coRTIME(npolylog(n)), then NP ⊆ ZPTIME
(npolylog(n)); i.e., NP has randomized algorithms that always give the correct answer
and have quasi-polynomial running time.

Theorem 18. There is no γ log logM/ log log logM -approximation for MinCon-

gestion unless NP ⊆ ZPTIME(npolylog(n)), where M is the size of the graph and
γ is some positive constant.

3.4. Remarks. Our construction utilized a large number of parameters. We now
briefly discuss how the values of these parameters are chosen. Recall � is the repetition
parameter of the Raz verifier. We need the error probability α−� to be smaller than
4/(5h2) to reach a contradiction in Lemma 2. We also require �h to be O(log log n)
so that the reduction is quasi polynomial. In addition, we have shown that Θ(h) is
the inapproximability gap. Therefore, we choose h = Θ(log logn/ log log log n), which
is as large as possible. This in turn implies that � = Θ(log log logn). Once � is fixed,
the Raz verifier related parameters (2)–(10) are fixed as well.

The value of Z is determined by Corollary 4 and Lemma 15 in the probabilistic
analysis. The value of Y upper bounds the number of type-(1) demands and is
determined in Lemma 11. The value of k is essentially Z · ζ, where Z − ζ is the
number of regular levels in the definition of type-(3) and type-(4) demands. We note
that ζ cannot be too small since Lemma 12 requires ζ = Ω(h · 7�). Meanwhile, ζ
cannot be too big since the union bound that counts the number of bad events of the

form B(q, Ea1 , . . . , Eah
, L) has a factor

(
Z
ζ

)hDv/(10Av)
and the number of bad events

needs to be smaller than eDcZ
2/3

. We choose ζ =
√
Z. Our analysis works for ζ = Zc,
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where c can be any constant in (0, 2/3), though the exact choice of the exponent does
not affect the inapproximability gap of Θ(h).

3.5. Integrality gap. We conclude by showing that our example also gives a
lower bound on the integrality gap for MinCongestion. As we mentioned in the
Introduction, applying randomized rounding to the linear relaxation of MinConges-

tion yields a logarithmic approximation of the problem [12]. We observe that our
construction of the problem instance on T yields a fractional solution of congestion of
at most 1, even for no-instances. To see this, note that each demand has 7� canonical
paths. Suppose that each canonical path carries a 7−� fraction of the demand. By
construction, if two canonical paths share an image edge in T , their corresponding
canonical paths in P cannot share an answer edge in P . Since a c-blob in P has 7�

answer edges and a v-blob has 2� answer edges, at most 7� canonical paths can share
an image edge in T . Therefore, the congestion on an image edge in T is at most 1.
The congestion on other edges is 7−� since canonical paths can share only image edges
in T .

As outlined above, for no-instances all integral solutions have congestion Ω(h)
with high probability. Therefore, there exists an instance for which there is a fractional
solution with 1, but for all integral solutions the congestion is O(h) = O(log logM/ log
log logM). Hence, the following holds.

Corollary 19. The linear relaxation of MinCongestion has an integrality
gap of γ log logM/ log log logM for some positive constant γ.

4. Conclusions. In this paper we have shown that for some constant γ there
is no γ log logM/ log log logM , approximation for the undirected congestion mini-
mization problem unless NP ⊆ ZPTIME(npolylog(n)). Our techniques also apply
to directed graphs. However, the resulting gap of γ log logM/ log log logM is weaker
than that of [9].

A number of open problems remain. First, there is still an exponential gap
between the best-known O(logM/ log logM)-approximation algorithm for MinCon-

gestion and our γ log logM/ log log logM hardness factor. Second, our reduction is
quasi polynomial and randomized. It would be interesting to obtain a determinis-
tic polynomial-time reduction. Although we believe that it would be possible to use
deterministic constructions of high-girth graphs to create a deterministic instance of
MinCongestion in which the bad event B(G) does not hold, we know of no way to
do this so that the bad events B(q, Ea1 , . . . , Eah

, L) do not hold.
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Abstract. In the 1990s, Feder and Vardi attempted to find a large subclass of NP which exhibits
a dichotomy, that is, where every problem in the subclass is either solvable in polynomial-time or NP-
complete. Their studies resulted in a candidate class of problems, namely, those definable in the logic
MMSNP. While it remains open as to whether MMSNP exhibits a dichotomy, for various reasons it
remains a strong candidate. Feder and Vardi added to the significance of MMSNP by proving that,
although MMSNP strictly contains CSP, the class of constraint satisfaction problems, MMSNP and
CSP are computationally equivalent. We introduce here a new class of combinatorial problems, the
class of forbidden patterns problems FPP, and characterize MMSNP as the finite unions of problems
from FPP. We use our characterization to detail exactly those problems that are in MMSNP but
not in CSP. Furthermore, given a problem in MMSNP, we are able to decide whether the problem
is in CSP or not (this whole process is effective). If the problem is in CSP, then we can construct a
template for this problem; otherwise, for any given candidate for the role of template, we can build
a counterexample (again, this process is effective).
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1. Introduction. Descriptive complexity theory seeks to classify problems, i.e.,
classes of finite structures, as to whether they can be defined using formulae of some
specific logic, in relation to their computational complexity. One of the seminal results
in descriptive complexity is Fagin’s theorem [10], which states that a problem can be
defined in existential second-order logic if and only if it is in the complexity class NP
(throughout we equate a logic with the class of problems definable by the sentences
of that logic). In a relatively recent paper and based upon Fagin’s characterization
of NP, Feder and Vardi [15] attempted to find a large (syntactically defined) subclass
of NP which exhibits a dichotomy, that is, where every problem in the subclass is
either solvable in polynomial-time or NP-complete (recall Ladner’s theorem [22, 26],
which states that if P �= NP, then there is an infinite number of distinct polynomial-
time equivalence classes in NP). What emerged from Feder and Vardi’s consideration
was a (candidate) class of problems called MMSNP, defined by imposing syntactic
restrictions upon the existential fragment of second-order logic. Their focus on a
fragment of existential second-order logic was so that they might apply tools and
techniques of finite model theory to possibly obtain a dichotomy result.

The logic MMSNP is defined by insisting that formulae of the fragment SNP of
existential second-order logic must in addition be monotone, be monadic, and not
involve inequalities (full definitions follow later). Feder and Vardi considered the im-
position of combinations of these three restrictions (monadic, monotone, and without
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inequalities) and showed that under any combination, excepting the imposition of all
three restrictions, the resulting logic does not have a dichotomy (assuming P �= NP).
They were unable to make any similar claim about the logic obtained by imposing
all three restrictions. However, they proved that MMSNP properly contains CSP,
the class of combinatorial problems known as constraint satisfaction problems and,
further, that the two classes are closely related in a computational sense.

Theorem 1 (Feder and Vardi [15]). Every problem in CSP is definable by a
sentence of MMSNP, and every problem definable by a sentence of MMSNP is com-
putationally equivalent to a problem in CSP.

(By “computationally equivalent” above we mean that the MMSNP problem can
be reduced to the CSP problem by a randomized polynomial-time Turing reduction,
and the CSP problem can be reduced to the MMSNP problem by a polynomial-time
Karp reduction.)1

The class CSP of constraint satisfaction problems is of great importance in com-
puter science and artificial intelligence and has strong ties with database theory, graph
theory, and universal algebra (see, for instance, [7, 30, 18, 20, 21]). For example, it
is well-known that constraint satisfaction problems can be modeled in terms of the
existence of homomorphisms between structures [21], in that every constraint sat-
isfaction problem can be realized as the class of structures for which there exists
a homomorphism to some fixed template structure. The close relationship between
CSP and MMSNP prompted Feder and Vardi [15] to make explicit their conjecture
that every problem in CSP is either NP-complete or solvable in polynomial-time.
There are numerous results supporting this conjecture. For example, Schaefer [30]
proved that if the template structure corresponding to some constraint satisfaction
problem has size 2, then the conjecture holds, with Bulatov [3] recently extending
Schaefer’s result to templates of size 3. Also, Hell and Nešetřil [18] proved that the
conjecture holds for all constraint satisfaction problems involving undirected graphs.
Various other related dichotomy results have recently been determined; see, for ex-
ample, [4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 27, 28].

It is with the “border” between CSP and MMSNP that we are concerned in
this paper. Feder and Vardi exhibited specific problems in MMSNP that are not
in CSP, with their proofs relying essentially on counting arguments (they did not
examine in any detail the inclusion relationship between CSP and MMSNP as classes
of problems). We gave more examples of such problems in [25] although our proofs
were of a different nature; they involved the explicit construction of particular families
of graphs. We attempt in this paper to generalize the constructions in [25] so that we
might develop a method by which we can ascertain whether any problem definable in
MMSNP is in CSP or not. To this end, we give a new combinatorial characterization
of MMSNP as the class of finite unions of forbidden patterns problems (from the
class FPP). We use our new combinatorial characterization to answer the following
questions in the affirmative: “Can we characterize exactly those problems that are in
MMSNP but not in CSP?”; “given a problem in MMSNP, is it decidable whether it
is in CSP or not?”; and “if a problem in MMSNP can be shown to be in CSP then
can we construct a template witnessing its inclusion in CSP?”

As we shall see, forbidden patterns problems are given by representations that
involve a finite set of colored structures, and we introduce the key notion of a recoloring
between representations. The notions of a representation and a recoloring somehow
generalize the notion of a structure and a homomorphism. The concept of a recoloring,

1Gábor Kun has recently derandomized this computational equivalence.
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together with two notions that were implicitly present in the proof of Theorem 1 (the
notion of a template of a representation and of a Feder–Vardi transformation), allow
us to derive for any forbidden patterns problem a normal representation. Given
any normal representation, we are then able to decide (according to simple criteria)
whether the corresponding problem is in CSP or not. If it is in CSP, then we show how
to construct its template; if it is not, then we show how to construct a counterexample
to any potential template. Finally, we extend these results about problems in FPP
to answer the questions (about MMSNP) above.

We end this section with a brief word about MMSNP and our research direction.
The logic MMSNP has recently been shown to be related to constraint satisfaction
problems where the template is infinite. In particular, Bodirsky and Dalmau [2] have
shown that any problem in MMSNP that is nontrivial and closed under disjoint unions
can be realized as a constraint satisfaction problem with an ω-categorial template. As
regards our interest in the differences between MMSNP and CSP, there are numerous
decidability investigations into the relative expressibilities of different logics in the
literature, and we highlight a selection of these investigations here. In [1], Benedikt
and Segoufin extend the well-known result that on strings, it is decidable whether a
monadic second-order problem (that is, a regular language) is definable in first-order
logic, to trees. In [16], Gaifman et al. show that the problem of deciding whether
a given Datalog program is equivalent to one without recursion (and therefore to a
formula of existential positive first-order logic) is undecidable. Finally, one very recent
(and pertinent) result is that the problem of deciding whether a constraint satisfaction
problem is first-order definable is decidable; indeed, it is NP-complete [23]. It turns
out that first-order definable constraint satisfaction problems are forbidden patterns
problems with a single color (logically, they correspond to the first-order fragment of
MMSNP). The dual question (that asks, given such a forbidden patterns problem,
whether it is a constraint satisfaction problem or not) is directly related to a popular
notion in structural combinatorics, namely, that of a duality pair. Duality pairs have
been characterized by Tardif and Nešetřil [31].

This paper is organized as follows. In the next section, we formally define CSP
and FPP. In section 3, we recall the definition of Feder and Vardi’s logic MMSNP and
show how it relates to the class of problems FPP. In section 4, we introduce normal
representations and related notions. In section 5, we prove our main result, i.e., an
exact characterization of problems in FPP as to whether they are in CSP or not,
provided that they can be given by connected representations. Next, in section 6,
we extend this result to the disconnected case (this requires us to generalize normal
representations to what we call normal sets) and then extend our results from FPP
to MMSNP. Finally, in section 7, we conclude with some closing remarks.

2. Preliminaries. In this section, we give precise definitions of many of the
concepts involved in this paper. We define many well-known notions in a slightly
nonstandard way as many of these notions are extended very soon to analogous ones
for colored structures.

Structures. A signature is a finite set of relation symbols (with each relation
symbol having some finite arity). Let σ denote some fixed signature. A σ-structure A
consists of a nonempty set A, the domain, together with an interpretation RA ⊆ Am,
for every m-ary relation symbol R in σ. Throughout this paper, we only ever consider
finite σ-structures. Hence, in the following we simply write “a structure” instead of
“a finite σ-structure.” We denote structures by A,B, C, etc., and their respective
domains by A,B,C, etc., or alternatively by |A|, |B|, |C|, etc.
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Let A be a structure. We denote tuples of elements by s, t, etc., and we write
“let t in A” as an abbreviation for “let t be a tuple of elements of A.” Let R be
a relation symbol in σ. We feel free to specify only when it is relevant the precise
length of a tuple, and when we write “RA(t)” this automatically implies that the
tuple of elements t has the same length as the arity of the relation symbol R. We
write “a tuple RA(t)” as an abbreviation for “a tuple of elements t in A such that
RA(t) holds.” We always use R to refer to a relation symbol of σ unless otherwise
stated.

Let A and B be two structures. A homomorphism from A to B is a mapping
h : A → B such that for any relation symbol R in σ and for any tuple RA(t), we have
that RB(h(t)), where h(t) denotes the tuple obtained from t by a componentwise

application of h. To denote that h is a homomorphism from A to B, we write A h→B.
If, furthermore, h is onto (respectively, one-to-one), then h is an epimorphism (respec-

tively, a monomorphism), and we write A h�B (respectively, A h
↪→B). If both A h�B

and A h
↪→B, then we write A h

↪→→B. If A h
↪→→B and Ah−1

→B, then h is an isomorphism, and
we write A ≈ B. If there exists a homomorphism (respectively, a monomorphism) of
A to B, then we write A→B (respectively, A↪→B). When something does not hold,
we use the same notation but place a / through the symbol. For example, we write
A � B if it is not the case that A→B.

If A h
↪→B, then A is a substructure of B, and if, furthermore, for any tuple RB(h(t)),

we have that RA(t) holds, then A is an induced substructure of B. If A h�B and every
tuple RB(t′) is in the image of h (more formally, there exists a tuple t in A such that

h(t) = t′ and RA(t) holds), then B is an homomorphic image of A. If A h→B, then
the homomorphic image of A under h, which we denote by h(A), is the substructure
of B that consists only of those tuples RB(t′) that are in the image of h.

A retract of a structure B is a structure A for which there are two homomorphisms

A i
↪→B and B s�A such that s◦i = idA (where idA denotes the identity homomorphism

on A, so, in particular, if A is a retract of B, then A is isomorphic to an induced
substructure of B). Moreover, A is a proper retract whenever A �≈ B. If B does not
have any proper retracts, then B is automorphic (we use the terminology of [17]). An
automorphic retract of B is called a core. It is well known that a core is unique up to
isomorphism (see [17] or [19]).

Let A be a structure, let s and t be in A, and let n ≥ 1. A path of length n in A
joining s and t consists of n tuples RA

1 (t1), R
A
2 (t2), . . . , R

A
n (tn) such that each Ri is a

relation symbol in σ of arity at least two (these relation symbols need not be distinct
nor need the tuples), s occurs in t1, t occurs in tn, and for every 1 ≤ i < n, the tuples
of elements ti and ti+1 have a common element. If a path joins two distinct elements
s and t, then they are connected . A structure A is connected if and only if any two
distinct elements are connected.

Let B and C be two substructures of A and let x ∈ A. If
• B ∩ C = {x};
• B ∪ C = A;
• for every relation symbol R of σ that has arity at least two and for every

tuple RA(t), either RB(t) or RC(t) holds but not both;
• for every monadic symbol M and for every element y in B (respectively, C),

M(y) holds in B (respectively, C) if and only if M(y) holds in A; and
• each substructure B and C has at least one tuple R(t) (where R has arity at

least two),
then we say that A admits a decomposition with components B and C in the articu-
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lation point x, and we write A = B x
32 C. If A is connected and does not admit any

decomposition, then A is biconnected .
Let A be a structure. A tuple RA(t) is said to be antireflexive if and only if no

element in t occurs more than once. A cycle of size 1 in A consists of one tuple RA(t)
that is not antireflexive. An element that occurs more than once in a cycle of size
1 is called an articulation point of the cycle. A cycle of size 2 in A consists of two
antireflexive tuples RA

1 (t1) and RA
2 (t2), for which we have that if R1 = R2, then t1

and t2 differ and which have at least two distinct common elements, each of which is
called an articulation point of the cycle. Let n > 2. A cycle of size n in A consists of
n tuples RA

1 (t1), R
A
2 (t2), . . . , R

A
n (tn) such that:

• for every 1 ≤ i ≤ n, the tuple RA
i (ti) is antireflexive;

• for every 1 ≤ i < j ≤ n, if j = i + 1 or (i = 1 and j = n), the tuples ti and
tj have one, and only one, common element ai,j ; otherwise, they have none;
and

• the elements ai,j , each of which is called an articulation point of the cycle,
are pairwise distinct.

Colored structures. Let T be a structure. A T -colored structure is a pair (A, a),

where A is a structure and A a→T . We call: T the target of (A, a); a the coloring ;
and A the underlying structure. Let (A, a) and (B, b) be two T -colored structures.
A T -colored homomorphism of (A, a) to (B, b) is a homomorphism A h→B such that
a = b ◦ h. All notions defined above extend to T -colored structures, so that colorings
are respected by morphisms. For example, a retract of a T -colored structure (B, b) is

a T -colored structure (A, a) for which there are two homomorphisms A i
↪→B and B s�A

such that s ◦ i = idA, b ◦ i = a and a ◦ s = b. We use the same terminology but add
the prefix “T -colored,” e.g., as in “T -colored retract,” and we use the same notation,
e.g., (A, a)

h→(B, b) for a T -colored homomorphism from (A, a) to (B, b). However, for
simplicity, we may drop the prefix T -colored when it does not cause confusion. At
times, we deal with different targets, and so to avoid confusion, we sometimes write
the target as a superscript, e.g., as in (A, aT ). We often refer to the elements of
|T | = T as colors. We shall use the following lemmas later on, but we include them
here so that readers can familiarize themselves with colored structures.

Lemma 2. Let (A, aT ) be a T -colored structure, let T ′ be a structure such that

T ′ e
↪→T , and let (A, aT

′
) be a T ′-colored structure, where aT = e ◦ aT ′

. If (A, aT ) is
automorphic, then (A, aT

′
) is automorphic.

Proof. Suppose that (A, aT ) is automorphic, and suppose that (B, bT ′
) is a proper

retract of (A, aT
′
). That is, we have that (B, bT ′

)
i
↪→(A, aT

′
) and (A, aT

′
)

s�(B, bT ′
),

where s ◦ i = idB, aT
′ ◦ i = bT

′
, and bT

′ ◦ s = aT
′

(cf. the left commutative dia-
gram of Figure 1) so that (A, aT

′
) �≈ (B, bT ′

). We can compose the two T ′-colorings

B

A T '

B

T '
b

T '
b

T '
a

i

s
idB

B

A T

B

i

s
idB

Tb   = e o b T '

Tb   = e o b T '

Ta   = e o a T '

Fig. 1. Proof of Lemma 2.
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with e to yield T -colored structures, i.e., let aT := e ◦ aT
′

and bT := e ◦ bT
′

(cf.
the right commutative diagram of Figure 1). Thus, (B, bT ) is a retract of (A, aT ),
and so is isomorphic to (A, aT ). Thus, i is an isomorphism, with inverse s. Conse-
quently, (A, aT

′
) ≈ (B, bT ′

). But (B, bT ′
) is a proper retract of (A, aT

′
) which yields

a contradiction. The result follows.
The proofs of the next two lemmas are almost identical to analogous proofs in

[19], for example, but are included here to allow readers to familiarize themselves with
colored structures.

Lemma 3. The T -colored structure (A, aT ) is automorphic if and only if whenever

(A, aT )
f→(A, aT ), we have that f(A, aT ) ≈ (A, aT ).

Proof. Assume that (A, aT ) is automorphic and also that (A, aT )
f→(A, aT ). From

all such homomorphisms, choose g such that g(A, aT ) has a minimal number of ele-
ments and from those structures also a minimal number of tuples. Define h to be g
restricted to g(A, aT ).

Note that g(A, aT )
h→g(A, aT ), and so h is one-to-one and onto, as otherwise

(A, aT )
h◦g→ (A, aT ) contradicts the minimality of g. So, h is an isomorphism. Thus,

(A, aT )
h−1◦g
� g(A, aT ) and g(A, aT )

i
↪→(A, aT ), where i is the identity on g(A, aT ). For

any x ∈ |g(A, aT )|, h−1 ◦ g ◦ i(x) = h−1 ◦ g(x) = h−1 ◦ h(x) = x. Hence, g(A, aT ) is a
retract of (A, aT ), and so g(A, aT ) ≈ (A, aT ). Consequently, f(A, aT ) ≈ (A, aT ) by
minimality of g.

Conversely, assume that whenever (A, aT )
f→(A, aT ), we have f(A, aT ) ≈ (A, aT ).

Suppose that (B, bT )
i
↪→(A, aT ) and (A, aT )

s�(B, bT ), with s ◦ i = idB. Define f :=
i ◦ s. Thus, f(A, aT ) ≈ (A, aT ), with i an epimorphism and s a monomorphism.
Consequently, (B, bT ) ≈ (A, aT ), and (A, aT ) is automorphic.

Lemma 4. Every T -colored structure has a T -colored core that is unique up to
T -colored isomorphism.

Proof. Trivially, every T -colored structure has a T -colored core. Suppose that
(A1, a1) and (A2, a2) are cores of (B, b) such that (A1, a1) �≈ (A2, a2). In particular:

• (A1, a1)
i1
↪→(B, b) and (B, b) s1�(A1, a1) such that s1 ◦ i1 = idA1 , b ◦ i1 = a1, and

s1 ◦ a1 = b; and

• (A2, a2)
i2
↪→(B, b) and (B, b) s2�(A2, a2) such that s2 ◦ i2 = idA2 , b ◦ i2 = a2, and

s2 ◦ a2 = b.
Then f1 := s2 ◦ i1 : (A1, a

T
1 ) → (A2, a

T
2 ) is a homomorphism as is f2 := s1 ◦ i2 :

(A2, a
T
2 ) → (A1, a

T
1 ). Hence, by Lemma 3, f2 ◦ f1(A1, a

T
1 ) ≈ (A1, a

T
1 ) and f1 ◦

f2(A2, a
T
2 ) ≈ (A2, a

T
2 ). Consequently, (A1, a

T
1 ) and (A2, a

T
2 ) are isomorphic, and the

result follows.
Patterns and representations. A structure (A, aT ) is a T -pattern whenever for

every y ∈ A, there exists a relation symbol R in σ and a tuple t in A in which y
occurs such that RA(t) holds (that is, every element occurs in some tuple in some
relation of A; i.e., A has no isolated elements). A T -pattern (A, aT ) is conform if
and only if A consists solely of an antireflexive tuple RA(t): That is, there exists a
relation symbol R in σ such that RA = {t}, where every element of A occurs in t

exactly once, and for every other relation symbol R′ in σ, we have R′A = ∅. We
denote conform patterns explicitly as in (R(t), aT ).

A representation is a pair (F , T ), where T is a structure, called the target , and
F is a finite set of T -patterns, called the forbidden patterns. If every forbidden
pattern in F is connected, then we say that (F , T ) is connected . Let (F , T ) be a
representation. A T -colored structure (A, aT ) is valid (respectively, weakly valid) with
respect to (F , T ) if and only if there is no forbidden pattern (B, bT ) ∈ F such that
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(B, bT )→(A, aT ) (respectively, (B, bT )↪→(A, aT )). A structure A is valid (respectively,

weakly valid) with respect to (F , T ) if and only if there exists a homomorphism AaT
→T

such that (A, aT ) is valid (respectively, weakly valid) with respect to (F , T ).
Constraint satisfaction problems. It is well-known that constraint satisfaction

problems can be modeled in terms of the existence of homomorphisms between struc-
tures [21]. Recall that the nonuniform constraint satisfaction problem with template
T , denoted by CSP(T ), is the problem defined as follows:

• instances: structures A (over the same signature as T );
• yes instances: those instances A for which A→T .

We denote by CSP the class of nonuniform constraint satisfaction problems. Note
that in [21], the adjective “nonuniform” was coined to distinguish such problems from
uniform constraint satisfaction problems where the template T is not fixed but may
range over a class of structures (all structures in general) and is part of the input.
Since we do not deal with uniform problems in this paper, from now on we drop the
phrase nonuniform.

Forbidden patterns problems. The forbidden patterns problem given by the repre-
sentation (F , T ), and denoted by FPP(F , T ), is the problem defined as follows:

• instances: structures A (over the same signature as T );
• yes instances: those instances A that are valid w.r.t. (F , T ).

We denote by FPP the class of forbidden patterns problems. If two representations
define the same forbidden patterns problem, then we say that the representations are
equivalent .

Remark 5. A problem in CSP is clearly monotone, i.e., closed under substructures.
Furthermore, it is closed under inverse homomorphisms. To see this, let B and T be
two structures. If B ∈ CSP(T ), then A ∈ CSP(T ) for any A such that A→B. It is
not difficult to check that if B ∈ FPP(F , T ), then A ∈ FPP(F , T ) for any A such
that A→B. Moreover, note that the containment problem, i.e., given two structures
T and T ′, decide whether CSP(T ) ⊆ CSP(T ′), is nothing other than the uniform
constraint satisfaction problem (as CSP(T ) ⊆ CSP(T ′) if and only if T →T ′).

Theorem 6. CSP � FPP.
Proof. The inclusion is clear, as a problem from CSP with template T can be

given equivalently as the forbidden patterns problem with representation (∅, T ). It
follows from counterexamples given in [15, 25] that this inclusion is strict.

This provokes the following question, which is intrinsic to this paper: When is a
forbidden patterns problem not a constraint satisfaction problem?

3. Feder and Vardi’s logic. The logic SNP is the fragment of existential
second-order logic, ESO, consisting of formulae Φ of the form ∃S∀tϕ, where S is
a tuple of relation symbols (not in σ), t is a tuple of (first-order) variables, and ϕ is
quantifier-free. Furthermore: Φ is in monadic SNP whenever S is a tuple of monadic
relation symbols; Φ is in monotone SNP whenever every occurrence in ϕ of a symbol
R from σ appears in the scope of an odd number of ¬ symbols; and Φ is in SNP
without inequalities whenever the symbol = does not appear in ϕ (either positively or
negatively). If one thinks about the intuitive properties of the existence of a homomor-
phism from one structure to another, one might find it plausible to consider imposing
some of the above restrictions on ESO. For instance, the existence (cf. the existen-
tial second-order quantifiers) of a homomorphism from an arbitrary source graph to a
fixed target graph is equivalent to finding a partition of the domain of the source graph
into sets (cf. the monadic restriction), one for each element of the target graph, so
that every edge of the source graph (cf. the universal prefix of first-order quantifiers)
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maps to an edge of the target graph (cf. the monotone restriction above, reflecting
that we are interested only in positive information, that is, about mappings of edges,
not about mappings of “nonedges”). The “without inequalities” aspect of MMSNP
comes about as homomorphisms do not distinguish between different elements.

Feder and Vardi considered the imposition of combinations of these three re-
strictions (monadic, monotone, and without inequalities) and showed that under any
combination excepting the imposition of all three restrictions, the resulting logic does
not have a dichotomy (assuming P �= NP). However, they were unable to make any
similar claim about the logic obtained by imposing all three restrictions, and they
observed that this logic subsumes CSP. This motivated the following definition.

Definition 7. Monotone monadic SNP without inequality (MMSNP) is the
fragment of ESO consisting of those formulae Φ of the following form:

∃M∀t
∧

i

¬(αi(σ, t) ∧ βi(M, t)
)
,

where M is a tuple of monadic relation symbols (not in σ), t is a tuple of (first-order)
variables, and for every negated conjunct ¬(αi ∧ βi):

• αi consists of a conjunction of positive atoms involving relation symbols from
σ and variables from t; and

• βi consists of a conjunction of atoms or negated atoms involving relation
symbols from M and variables from t.

(Notice that the equality symbol does not occur in Φ.)
Feder and Vardi showed that CSP is subsumed by MMSNP and, furthermore,

that MMSNP is computationally equivalent to CSP. (Theorem 8 is a more detailed
reformulation of Theorem 1 and is included for completeness.)

Theorem 8 (Feder and Vardi [15]). Every problem in CSP is definable by a
sentence of MMSNP, but there are problems in MMSNP that are not in CSP. However,
for every problem Ω ∈ MMSNP, there exists a problem Ω′ ∈ CSP such that Ω reduces
to Ω′ via a polynomial-time Karp reduction, and Ω′ reduces to Ω via a randomized
polynomial-time Turing reduction.2

(A more detailed proof of Theorem 8 than that in [15] can be found in [24].)
In the remainder of this section, we show that the logic MMSNP essentially

corresponds to the class FPP of forbidden patterns problems. Let us begin by looking
at some illustrative examples.

Example 9. Consider the signature σ2 = 〈E〉, where E is a binary relation symbol.
Define Φ1 as

∃C ∀x ∀y ∀z (¬(E(x, y) ∧ E(y, z) ∧ E(z, x) ∧ C(x) ∧ C(y) ∧ C(z)
)

∧ ¬(E(x, y) ∧ E(y, z) ∧ E(z, x) ∧ ¬C(x) ∧ ¬C(y) ∧ ¬C(z)
))
.

We can easily ascertain that Φ1 defines the forbidden patterns problem with repre-
sentation (F , T ), where |T | := {0, 1}, ET := |T |2, and F contains two forbidden
patterns, one for each negated conjunct, both having as the underlying structure a
directed triangle (domain {x, y, z} and relation E = {(x, y), (y, z), (z, x)}): In the first
forbidden pattern all vertices of this directed triangle are colored 0, whereas in the
second forbidden pattern the vertices are all colored 1 (the colorings are given by C
and correspond to x, y, z �→ 0 and x, y, z �→ 1, respectively, and the colors are the

2As mentioned earlier, Gábor Kun has recently derandomized this reduction.
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ET ET

Φ1
'Φ2

''Φ2

Fig. 2. Primitive sentence and representations.

names of the elements of the template). For simplicity, from now on we usually give
representations in a pictorial fashion. For example, the representation we have just
defined is depicted on the left in Figure 2; the top cell depicts the template, and the
other cells depict the forbidden patterns. Note that the template is not a colored
structure; however, to depict the homomorphisms from the forbidden patterns to the
template, we have colored the elements of the template accordingly.

It is not so clear to which forbidden patterns problem the following sentence
corresponds:

Φ2 := ∃C ∀x ∀y (¬(E(x, y) ∧ C(x)
) ∧ ¬(E(x, x) ∧ C(x) ∧ C(y)

))
.

However, it can be transformed into equivalent sentences as follows. First, we list
all possibilities for the monadic predicate, to ensure that we have “fully colored”
structures:

∃C ∀x ∀y (¬(E(x, y) ∧ C(x) ∧ C(y)
) ∧ ¬(E(x, y) ∧ C(x) ∧ ¬C(y)

)

∧ ¬(E(x, x) ∧ C(x) ∧ ¬C(y)
))
.

The last negated conjunct is comprised of two “independent” parts, namely, (E(x, x)∧
C(x)) and C(y), and does not correspond to a pattern (y does not appear in any atomic
σ-relation). We can rewrite the above formula as the disjunction of two formulae Φ′

2

and Φ′′
2 , where

Φ′
2 = ∃C ∀x ∀y (¬(E(x, y) ∧ C(x) ∧ C(y)

)

∧ ¬(E(x, y) ∧ C(x) ∧ ¬C(y)
) ∧ ¬(E(x, x) ∧ C(x)

))

and

Φ′′
2 = ∃C ∀x ∀y (¬(E(x, y) ∧ C(x) ∧ C(y)

)

∧ ¬(E(x, y) ∧ C(x) ∧ ¬C(y)
) ∧ ¬(¬C(y)

))

(we leave the fact that Φ2 can be so decomposed as a simple exercise). Now from
each formula we can extract a suitable representation: This is easy in the case of Φ′

2;
and, in the case of Φ′′

2 , note that the last negated conjunct essentially forces us to use
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a single color, so we can ignore all negated conjuncts which mention ¬C(z) for some
variable z. Finally, this leads to the representations depicted in the middle and on
the right in Figure 2, respectively.

The above examples motivate the following definition and proposition.
Definition 10. A sentence Φ of MMSNP, where Φ is as in Definition 7, is

primitive if and only if for every negated conjunct ¬(α ∧ β):
• for every first-order variable x that occurs in ¬(α∧β) and for every monadic

symbol C in M, exactly one of C(x) and ¬C(x) occurs in β; and
• unless x is the only first-order variable that occurs in ¬(α ∧ β), an atom of

the form R(t), where x occurs in t and R is a relation symbol from σ, must
occur in α.

Proposition 11. Every sentence of MMSNP is logically equivalent to a finite
disjunction of primitive sentences.

Proof. Let Φ be a sentence of MMSNP that is not primitive. Assume that Φ does
not satisfy the first property of Definition 10. Let ¬(α(σ, t) ∧ β(M, t)

)
be a negated

conjunct in Φ where there exists a (first-order) variable x that occurs in this negated
conjunct and a monadic symbol C in M such that neither C(x) nor ¬C(x) occurs in
β. Replace ¬(α ∧ β) in Φ by the conjunction of two negated conjuncts:

¬(α ∧ β ∧ C(x)
) ∧ ¬(α ∧ β ∧ ¬C(x)

)
.

This new formula belongs to MMSNP and is logically equivalent to Φ. We iterate this
process until the sentence satisfies the first property of Definition 10. Let Φ′ denote
this new sentence.

It may be the case that the second property does not hold for Φ′ because of a
negated conjunct of the form ¬(α(σ, t)∧β0(M, t)∧β1(M, x)

)
, where x does not occur

in t, where α(σ, t) may be empty, and where β1 is the conjunction of all atoms and
negated atoms of β involving symbols from M and the variable x (β0 is a conjunction
of the remaining atoms and negated atoms of β). Let Φ′′ = Φ′

1 ∨ Φ′
2, where

• Φ′
1 is obtained from Φ′ by replacing ¬(α∧ (β0 ∧ β1)) in Φ′ by ¬(α∧ β0); and

• Φ′
2 is obtained from Φ′ by replacing ¬(α ∧ (β0 ∧ β1)) in Φ′ by ¬β1.

First, note that Φ′
1 and Φ′

2 are both in MMSNP. Second, it is not hard to check that
Φ′′ is logically equivalent to Φ′. We iterate this transformation until each sentence in
the disjunction satisfies the second property of Definition 10.

We are now ready to state exactly what the correspondence is between MMSNP
and FPP.

Theorem 12. The class of problems captured by the primitive fragment of the
logic MMSNP is exactly the class FPP of forbidden patterns problems.

Proof. Let Φ = ∃M∀tϕ be a primitive sentence of MMSNP. We shall build a
representation (F , T ) from Φ. A conjunction χ(M, x) of atoms and negated atoms
involving only relation symbols from M and the sole first-order variable x, where for
each relation symbol C in M, exactly one of C(x) or ¬C(x) occurs, is referred to as
an M-color. So, associated with every negated conjunct ¬(α∧β) in Φ (more precisely,
with β in every such negated conjunct) and every variable occurring in this negated
conjunct is a unique M-color; in fact, β can be written as the conjunction of these
M-colors. Construct the structure T from Φ as follows:

• Its domain T consists of all M-colors χ(M, x) that are not explicitly forbidden
in Φ by some negated conjunct ¬(α∧ β) of ϕ having the form ¬χ(M, x), i.e.,
so that α is empty and β is the M-color χ; and

• for every relation symbol R of arity m in σ, set RT := Tm.
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Start with F := ∅, and for every negated conjunct ¬(α ∧ β) in ϕ, add to F the
structure (Aα, a

T
β ), where

• Aα is the structure defined as follows:
– the domain consists of all first-order variables that occur in the negated

conjunct ¬(α ∧ β); and
– for every relation symbol R in σ, there is a tuple RAα(t) if and only if

the atom R(t) appears in α;
• for every x ∈ |Aα|, set aTβ (x) := χ, where χ is the M-color of x in β.

(The fact that Φ is primitive makes these definitions well-defined.)
Let B be a structure such that B |= Φ. So, there exists an assignment Π : M → 2B

(where 2B denotes the power set of B) such that B |= ∀tϕ(Π(M), t) (here, ϕ(Π(M), t)
denotes the formula ϕ where every monadic predicate is instantiated as the subset of
B given by the assignment Π). Since Φ = ∃M∀tϕ is primitive, the formula ϕ is of
the form:

¬χ1(M, x) ∧ ¬χ2(M, x) ∧ · · · ∧ ¬χk(M, x) ∧ ψ(σ,M, t),

where k ≥ 0, and for every 1 ≤ i ≤ k, χi is an M-color (with all such M-colors
distinct) and ψ is a conjunction of negated conjuncts that are not M-colors.

The assignment Π induces a map πT from B to the set T that sends an element
u ∈ B to χ, where χ is the unique M-color for which χ(Π(M), u) holds (note that
χ �= χi for i = 1, 2, . . . , k, as ¬χi(Π(M), u) holds for all u ∈ B).

Let ¬(α∧ β) be a negated conjunct of ϕ, where α is nonempty, and suppose that

(Aα, a
T
β )

h→(B, πT ).

Let R(x1, x2, . . . , xa) be an atom appearing in α. So, RAα(x1, x2, . . . , xa) holds
and consequently RB(h(x1), h(x2), . . . , h(xa)) holds. Thus, if t′ is the tuple of vari-
ables appearing in ¬(α ∧ β), then αB(h(t′)) holds. Also, πT ◦ h = aTβ and so

πT (h(t′)) = aTβ (t′). That is, βB(Π(M), h(t′)) holds. Thus (α ∧ β)B(Π(M), h(t′))
holds, which contradicts the fact that B |= Φ, witnessed by Π(M). Hence, B ∈
FPP(F , T ).

Conversely, suppose that B ∈ FPP(F , T ), witnessed by the homomorphism

BπT
→T . Clearly, πT gives rise to an assignment Π : M → 2B , where u ∈ Π(C)

for some C ∈ M and u ∈ B, if and only if C(y) appears in χ(y), where πT (u) = χ.
Assume that B |= α(h(t′)) ∧ β(Π(M), h(t′)) for some map h : |Aα| → |B|, where
¬(α∧β) is a negated conjunct of ϕ, and t′ is the tuple of variables appearing in α∧β.

If RAα(x1, x2, . . . , xa) holds, then RB(h(x1), h(x2), . . . , h(xa)) holds. If β is of

the form
∧d

i=1 χ
i(xi), where t′ = (x1, x2, . . . , xd) and each χi is an M-color, then

χi(Π(M), h(xi)) holds for each i = 1, 2, . . . , d. However, by definition aTβ (xi) = χi,

and so πT (h(xi)) = aTβ (xi) for each i = 1, 2, . . . , d. Hence, (Aα, a
T
β )

h→(B, πT ), which
yields a contradiction. Thus, B |= Φ, witnessed by the assignment Π(M), and the
implication follows.

Conversely, given a representation (F , T ), we shall build a corresponding primi-
tive sentence of MMSNP. Let M = {C1, C2, . . . , Ck} be a set of monadic predicates
that are not in σ such that k = �log2 |T |�. To each element xi of |T |, we associate
some arbitrary M-color χxi

. Let χ|T |+1, . . . , χ2k denote the remaining M-colors (if

|T | < 2k). Let Φ = ∃M∀tφ, where ∀tφ is the universal closure of the conjunction of
the following negated conjuncts:

• If |T | < 2k, then for every i such that |T | < i ≤ 2k, we add the negated
conjunct ¬χi(y).
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• For each tuple R(i1, i2, . . . , ir) that does not hold in T , we add the negated
conjunct ¬(R(y1, y2, . . . , yr) ∧ χi1(y1) ∧ χi2(y2) ∧ · · · ∧ χir (yr)), where the
variables y1, y2, . . . , yr are pairwise distinct.

• For each forbidden pattern (A, aT ) in F , we add the negated conjunct ¬(α∧
β), where α is the conjunction of the tuples of F , and β is the conjunction∧

x∈|A| χaT (x)(x).
The first type of negated conjunct ensures that we may use only the M-colors that
correspond to elements of T . The second type of negated conjunct describes that there
is a homomorphism to T . Finally, the last type of negated conjunct enforces that this
homomorphism is not compatible with any of the forbidden patterns. Consequently,
a structure B is a yes instance of the forbidden patterns problem with representation
(F , T ) if and only if B |= Φ. The formal proof of this equivalence is similar to that
of the first implication. This concludes the proof.

By Proposition 11, every forbidden patterns problem is described by a primitive
sentence of MMSNP. Since the disjunction of two sentences of MMSNP is logically
equivalent to a sentence of MMSNP, we get the following corollary from the above
theorem.

Corollary 13. The class of problems captured by the logic MMSNP corresponds
exactly to the class of finite unions of problems in FPP.

4. A normal form for problems in FPP. In this section, we introduce nor-
mal representations and show how any representation can be effectively rewritten into
an equivalent normal representation. The transformation is achieved through a com-
bination of different operations so as to enforce various properties. We shall make
clear later, in section 5, why we need these properties.

However, before we proceed, let us try and give some idea here of the direction of
travel by stating the properties we wish to enforce and our intended goal. We shall
state the properties again at the appropriate point in the text, as we do with the
definition and result stated below. Let (F , T ) be a representation. The properties
we wish to enforce upon (F , T ) are as follows.

(p1) Any structure is valid if and only if it is weakly valid.
(p2) Every pattern of F is automorphic.
(p3) It is not the case that (B1, b

T
1 )↪→(B2, b

T
2 ) for any distinct patterns (B1, b

T
1 )

and (B2, b
T
2 ) of F .

(p4) No pattern of F is conform.
(p5) Every forbidden pattern is biconnected.
(p6) The representation (F , T ) is automorphic.

We say that a connected representation for which properties p1 to p6 hold is a normal
representation. In the process of reducing our representation to a normal representa-
tion, we will show that this can be done by an effective procedure.

4.1. Our first batch of reductions. Let (F , T ) be a representation. We now
define a number of operations on representations so that we might enforce certain
properties. However, before we start, we wish our representation to have the following
property:

(p1) Any structure is valid if and only if it is weakly valid.
Let HF be the set of homomorphic images of the patterns from F , up to isomor-

phism. Recall that a forbidden pattern is a colored structure; hence, an homomorphic
image of a forbidden pattern (B, bT ) ∈ F is a colored structure (C, cT ) such that

there exists an epimorphism B h�C with the properties that:
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B C

T

Tb

h

Tc

Fig. 3. A commuting diagram.

• for each symbol R ∈ σ and for each tuple RC (̃t), there exists a tuple RB(t)
such that h(t) = t̃ and

• the diagram in Figure 3 commutes.
Lemma 14. The representation (HF , T ) is equivalent to (F , T ).

Proof. Let A be valid w.r.t. (F , T ), witnessed by AaT
→T . Assume for contradiction

that (A, aT ) is not valid w.r.t. (HF , T ), and let (C, cT ) ∈ HF (defined from (B, bT ) ∈
F , using h as above) be such that (C, cT )

f→(A, aT ). By composition, it follows that

(B, bT )
f◦h→ (A, aT ). This yields a contradiction, and so (A, aT ) is valid w.r.t. (HF , T ).

Conversely, if A is valid w.r.t. (HF , T ), then A is valid w.r.t. (F , T ) since F ⊆
HF .

Lemma 15. The representation (HF , T ) satisfies p1.
Proof. Let (A, aT ) be weakly valid w.r.t. (HF , T ). Assume for contradiction that

(A, aT ) is not valid w.r.t. (HF , T ), and let (C, cT ) ∈ HF (defined from (B, bT ) ∈ F ,

using h as above) be such that (C, cT )
f→(A, aT ). By construction, f(C, cT ) belongs

to HF , and f(C, cT )↪→(A, aT ). This yields a contradiction.
Conversely, if (A, aT ) is valid w.r.t. (HF , T ), then it is trivially weakly valid.

The result follows.
Our next property to enforce is the following:

(p2) Every pattern of F is automorphic.
Definition 16. Let (F , T ) be a representation, and let (F ′, T ) be the represen-

tation obtained by replacing a pattern of F with its core. We call this a core reduction
on (F , T ).

Note that Definition 16 is well-defined by Lemma 4.
Lemma 17. Let the representation (F ′, T ) be obtained from the representation

(F , T ) by a core reduction.
• (F ′, T ) is equivalent to (F , T ).
• If (F , T ) satisfies property p1, then so does (F ′, T ).

Proof. If (C, cT ) is the core of (B, bT ), then (B, bT )→(A, aT ) if and only if
(C, cT )→(A, aT ) for any structure (A, aT ). Hence, (F ′, T ) is equivalent to (F , T ).

Assume that (F , T ) satisfies property p1. Suppose that (A, aT ) is weakly
valid w.r.t. (F ′, T ). If (C, cT )→(A, aT ) for some (C, cT ) ∈ F ′, then we must
have that (B, bT )→(A, aT ) for some (B, bT ) ∈ F . As (F , T ) satisfies property p1,
(D, dT )↪→(A, aT ) for some (D, dT ) ∈ F . If (D, dT ) ∈ F ′, then we obtain a contradic-
tion; otherwise, the core of (D, dT ) is in F ′, and we still obtain that some forbidden
pattern of F ′ embeds into (A, aT ), yielding a contradiction. Hence, (F ′, T ) satisfies
property p1.

Our next property to enforce is the following:
(p3) It is not the case that (B1, b

T
1 )↪→(B2, b

T
2 ) for any distinct patterns (B1, b

T
1 )

and (B2, b
T
2 ) of F .
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Definition 18. Let (F , T ) be a representation, and let (B1, b
T
1 ) and (B2, b

T
2 ) be

distinct patterns of F such that (B1, b
T
1 )↪→(B2, b

T
2 ). Let (F ′, T ) be the representation

obtained by removing the pattern (B2, b
T
2 ) from F . We call this an embed reduction

on (F , T ).
Lemma 19. Let the representation (F ′, T ) be obtained from the representation

(F , T ) by an embed reduction.
• (F ′, T ) is equivalent to (F , T ).
• If (F , T ) satisfies property p1, then so does (F ′, T ).

Proof. Trivially, FPP(F , T ) ⊆ FPP(F ′, T ). If (B2, b
T
2 )→(A, aT ) (with ref-

erence to Definition 18), then (B1, b
T
1 )→(A, aT ) for any structure (A, aT ), and so

FPP(F ′, T ) ⊆ FPP(F , T ).
Assume that (F , T ) satisfies property p1. Suppose that (A, aT ) is weakly valid

w.r.t. (F ′, T ). If (B, bT )→(A, aT ) for some pattern (B, bT ) ∈ F ′, and so some pat-
tern in F , then we have that (A, aT ) is not weakly valid w.r.t. (F , T ). That is,
(C, cT )↪→(A, aT ) for some pattern (C, cT ) ∈ F . If (C, cT ) ∈ F ′, then we obtain a
contradiction; otherwise, (C, cT ) is the pattern removed by the embed reduction and
(D, dT )↪→(C, cT ) for some pattern (D, dT ) ∈ F ′. Thus, we still obtain a contradiction,
and (F ′, T ) satisfies p1.

Our next property to enforce is the following:
(p4) No pattern of F is conform.
Definition 20. Let (F , T ) be a representation, and let (R(t), πT ) be a conform

pattern of F . Let T ′ be the structure obtained from T by the removal of the tuple

R(πT (t)), and let e be the monomorphism T ′ e
↪→T defined by inclusion. Let F ′ denote

the set of patterns of F that are also T ′-patterns; that is, the patterns (B, bT ) ∈ F
for which bT (u) �= πT (t) for any tuple RB(u). The representation (F ′, T ′) has been
obtained from (F , T ) by a conform reduction.

Lemma 21. Let the representation (F ′, T ′) be obtained from the representation
(F , T ) by a conform reduction.

• (F ′, T ′) is equivalent to (F , T ).
• If (F , T ) satisfies property p1, then so does (F ′, T ′).

Proof. We denote a pattern (B, bT ) ∈ F that is also a T ′-pattern by (B, bT ′
) also,

where bT
′
is the homomorphism BbT

′

→T ′ obtained directly from bT ; that is, bT = e◦bT ′
.

Assume that (A, aT
′
) is valid w.r.t. (F ′, T ′) and define aT := e◦aT ′

(so AaT
→T and

aT (u) �= πT (t) for any tuple RA(u)). Suppose that some pattern (B, bT ) ∈ F is such
that (B, bT )→(A, aT ). Thus, (B, bT ) is actually a T ′-pattern, and (B, bT ′

)→(A, aT
′
),

which yields a contradiction.
Conversely, suppose that (A, aT ) is valid w.r.t. (F , T ). There are two cases:

either the map aT yields a homomorphism A→T ′, or it doesn’t.

Suppose that the map aT yields a homomorphism AaT ′

→T ′; thus, aT = e ◦ aT
′
.

If (B, bT ′
) ∈ F ′ is such that (B, bT ′

)→(A, aT
′
), then we have that (B, bT )→(A, aT )

(where bT = e◦bT ′
, recall), which yields a contradiction. Thus, (A, aT

′
) is valid w.r.t.

(F ′, T ′).
Suppose that the map aT does not yield a homomorphism from A to T ′. There

must exist some tuple RA(t̂) such that aT (t̂) = πT (t). Define h : |R(t)| → |A|
as the map which takes t to t̂ (note that this is well-defined as t is antireflexive).

Consequently, (R(t), πT )
h→(A, aT ), which yields a contradiction as (A, aT ) is valid

w.r.t. (F , T ). Hence, (F ′, T ′) is equivalent to (F , T ).
Assume that (F , T ) satisfies property p1. Suppose that (A, aT

′
) is weakly valid

w.r.t. (F ′, T ′) and that there exists a pattern (B, bT ′
) ∈ F ′ such that (B, bT ′

)→(A, aT
′
).
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Fig. 4. Depiction of tuples.

Define bT := e ◦ bT
′

and aT := e ◦ aT
′
. Thus, (B, bT ) ∈ F and (B, bT )→(A, aT ).

Hence, (A, aT ) is not weakly valid w.r.t. (F , T ). That is, (C, cT )↪→(A, aT ) for some
pattern (C, cT ) ∈ F . But as aT = e ◦ aT ′

, so (C, cT ) is also a T ′-pattern and so is in
F ′. This yields a contradiction, and the result follows.

Remark 22. Applying embed reductions clearly preserves property p2. Note also
that applying conform reductions preserves property p2. This follows directly from
Lemma 2.

Example 23. Consider a representation (F , T ) over the signature consisting of a
binary relation symbol E and a ternary relation symbol R. The domain of T consists
of two elements (or colors) ◦ and •, with ET = {◦, •}2 and RT = {◦, •}3.

Consider the conform forbidden pattern consisting of the single tuple R(x, y, z),
where both x and y take the color ◦ and z takes the color •. We depict this pattern
by the left diagram in Figure 4. In the case where x = y, we depict the pattern by
the right diagram in Figure 4.

The first (leftmost) column in Figure 5 depicts the four forbidden patterns in F
(the top three are such that R = ∅, and the bottom is such that E = ∅). The sec-
ond column depicts the representation (HF , T ), formed by adding all homomorphic
images of the forbidden patterns in F (up to isomorphism). In the third column, we
have performed core and embed reductions to obtain an equivalent representation
satisfying properties p1, p2, and p3. In the fourth column, we have performed con-
form reductions to obtain an equivalent representation satisfying properties p1, p2, p3,
and p4.

Note that, in general, starting from a representation satisfying property p1, if we
apply core, embed, and conform reductions arbitrarily, then after a finite sequence of
reductions, by the lemmas of this subsection, we will obtain an equivalent represen-
tation satisfying properties p1, p2, p3, and p4 (a simple induction suffices).

4.2. Feder–Vardi reductions. The reductions introduced so far do not suffice
for us to obtain the normal form for which we are aiming. We need to interleave
applications of these reductions with another reduction that we define now.

From now on, we make an important assumption regarding the representations
we deal with: Until otherwise specified, we assume them to be connected (we shall
deal with the disconnected case in section 6.1.1).

We say that a pattern is biconnected if its underlying structure is biconnected.
Our aim is to enforce the following property (using techniques inspired from the proof
of Theorem 8 in [15]):

(p5) Every forbidden pattern is biconnected.
Before proceeding, we need some definitions relating to the grouping together of

forbidden patterns. A compact T -structure {A, α} is a structure A together with a
map α : A → 2T so that every map aT : A → T with the property that aT (y) ∈ α(y),
for all y ∈ A, yields a T -colored structure (A, aT ). This notion is only a useful
shorthand to denote a set of colored structures, as a compact structure can be expanded
to obtain a set of colored structures, each with the same underlying structure; but we
shall need this notion later on when we prove the termination of a particular sequence
of transformations we employ towards the end of this section (this notion was not
necessary in Feder and Vardi’s original proof as the negated conjuncts correspond
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Fig. 5. Towards a normal representation: step one.

in general to partially colored structures; by choosing to work with fully colored
structures in our combinatorial setting, this is the price we have to pay). Bearing this
in mind, we can extend the definition of a representation to allow compact forbidden
patterns and call it a compact representation, with the problem defined by a compact
representation being the problem defined by the representation obtained by expanding
all of the compact forbidden patterns.

Clearly, we may assume that every representation is compact, by replacing every
forbidden pattern (A, aT ) by the compact forbidden pattern {A, α}, where for every
x in A, α(x) := {aT (x)}. We say that (A, aT ) is a forbidden pattern of the compact
representation (F , T ), and write (A, aT ) ∈ F , if it is one of the forbidden patterns
obtained by expanding one of the compact forbidden patterns. Notice that the notion
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Fig. 6. Feder–Vardi reduction.

of a decomposition involves only the underlying structure; thus it generalizes to com-
pact structures (of course, the definition of a decomposition in section 2 generalizes
to colored structures).

Definition 24 (Feder–Vardi reduction). Let (F , T ) be a compact representation

with F = G ∪ {{B, β} x
32 {C, γ}}, and let K = β(x) = γ(x). The new sets K0 and

K1 are defined as {ki : k ∈ K} (that is, k0 and k1 are two new elements that stand as
copies of k) for i = 0, 1, and we assume that K, K0, and K1 are mutually disjoint.
Let T ′ be the structure obtained from T as follows:

• Replace K by K0 and K1 in |T |.
• Set RT ′

(t) whenever RT (̃t), with t obtained from t̃ by replacing every occur-
rence of an element k ∈ K by either k0 or k1 (where two different occurrences
of an element k might be replaced by k0 and k1; so, one tuple RT (̃t) with i
occurrences of elements of K gives rise to 2i tuples RT ′

(t)).
Let F ′ be the set of compact forbidden patterns induced from F as follows:

• The compact forbidden pattern {B, β} x
32 {C, γ} is replaced by the two compact

forbidden patterns induced from the decomposition so that
– in the compact forbidden pattern {B, β0}, β0(x) = K0, and
– in the compact forbidden pattern {C, γ1}, γ1(x) = K1.

• Every remaining occurrence of a color k ∈ K in a compact forbidden pattern
(including the two described above) is replaced by both k0 and k1; that is,
every forbidden pattern obtained by expanding a compact forbidden pattern of
F is replaced by a set of forbidden patterns, one for each possible assignment
of k0 and k1 to occurrences of k.

We call (F ′, T ′) the Feder–Vardi reduction of (F , T ) with respect to {B, β} x
32

{C, γ}.
Part of a Feder–Vardi reduction can be visualized as in Figure 6. Note that if

(F , T ) is a connected representation, then a Feder–Vardi reduction of (F , T ) is also
connected.

We reiterate that working with compact forbidden patterns is just, to some extent,
a notational convenience and that a Feder–Vardi reduction has the effect of “splitting”
a set of forbidden patterns in one go.

We also need to define the essential notion of a recoloring. Intuitively, a recoloring
is to a (compact) representation what a homomorphism is to a structure.
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Fig. 7. Proof of Proposition 26.

Definition 25 (Recoloring). Let (F , T ) and (F ′, T ′) be two compact represen-

tations. A recoloring r of (F ′, T ′) to (F , T ) is a homomorphism T ′ r→T such that any
inverse image (A, aT

′
) of a forbidden pattern (A, aT ) of F is not valid w.r.t. (F ′, T ′),

where by “inverse image” we mean that r ◦ aT
′

= aT . We denote the fact that r is
a recoloring by (F ′, T ′) r→(F , T ) (we use the same notation as for homomorphisms
without causing any confusion). If, furthermore, r is onto (respectively, one-to-one),
then r is an epirecoloring (respectively, monorecoloring). If (F ′, T ′) r

↪→→(F , T ) and

(F , T )
r−1

→ (F ′, T ′), then r is an isorecoloring, and we write (F , T ) ≈ (F ′, T ′).
The fact that for CSP, CSP(A) ⊆ CSP(B) whenever A→B, generalizes to FPP.
Proposition 26. Let (F , T ) and (F ′, T ′) be two compact representations. If

(F ′, T ′)→(F , T ), then FPP(F ′, T ′) ⊆ FPP(F , T ).

Proof. Let (F ′, T ′) r→(F , T ), and let C be a structure that is not valid w.r.t.
(F , T ). If C � T ′, then C is not valid w.r.t. (F ′, T ′), and we are done. Thus, let

CcT
′

→T ′ and define cT := r ◦ cT
′
. By assumption, there exists a forbidden pattern

(A, aT ) ∈ F such that (A, aT )
f→(C, cT ); so define aT

′
:= cT

′ ◦ f , with the result
that aT = r ◦ aT

′
(see Figure 7). Since r is a recoloring, there exists a forbidden

pattern (B, bT ′
) ∈ F ′ such that (B, bT ′

)
g→(A, aT

′
). This can be summarized by the

commuting diagram of Figure 7.

Hence, we can see that (B, bT ′
)
f◦g→ (C, cT ′

), which proves that (C, cT ′
) is not valid

w.r.t. (F ′, T ′), and we are done.
Proposition 27. Let (F ′, T ′) be obtained from (F , T ) via a Feder–Vardi re-

duction, as in Definition 24. Then (F ′, T ′) and (F , T ) are equivalent.

Proof. Let T ′ r→T be the homomorphism that identifies ki ∈ Ki for i = 0, 1, with
k ∈ K, and leaves all other elements fixed. We begin by proving that r is a recoloring.

By construction, the inverse images of any forbidden pattern of G belong to F ′.
So, it remains to check the inverse images of the patterns expanded from the com-

pact forbidden pattern {B, β} x
32 {C, γ}. Assume without loss of generality (w.l.o.g.)

that we are checking an inverse image where x takes a color from K0. Consider the
substructure of the inverse image induced by B. By construction, this substructure
is one of the patterns expanded from the compact forbidden pattern {B, β0} (con-
structed as in Definition 24), which is a compact forbidden pattern of F ′. The case
when x takes a color from K1 is similar. Hence, r is a recoloring. By Proposition 26,
FPP(F ′, T ′) ⊆ FPP(F , T ).

Conversely, suppose that (A, aT ) is valid w.r.t. (F , T ). We construct a coloring
aT

′
from aT as follows:
• For any y ∈ A such that aT (y) �∈ K, set aT

′
(y) = aT (y);

• Suppose that aT (y) = k ∈ K. As (A, aT ) is valid w.r.t. (F , T ), there does
not exist a homomorphism from any forbidden pattern expanded from the
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Fig. 9. The second case.

compact forbidden pattern {B, β} x
32 {C, γ} to (A, aT ). That is, there does not

exist (B, bT ) ∈ {B, β0} and (C, cT ) ∈ {C, γ1} such that both (B, bT )
hB→(A, aT )

and (C, cT )
hC→(A, aT ), with hB(x) = hC(x) = y. Thus

– if there exists (B, bT ) ∈ {B, β0} such that (B, bT )
hB→(A, aT ), with hB(x) =

y, then set aT
′
(y) = k1;

– otherwise, set aT
′
(y) = k0.

Suppose that (D, dT
′
)
h→(A, aT

′
), where (D, dT

′
) is derived from some forbidden

pattern (D, dT ) of (some compact forbidden pattern of) G (according to the Feder–
Vardi reduction). Thus, we have the commutative diagram of Figure 8. This yields a
contradiction as (A, aT ) is valid w.r.t. (F , T ).

Suppose that (B, bT ′
)
h→(A, aT

′
), where (B, bT ′

) is derived from the compact for-

bidden pattern {B, β} x
32 {C, γ} (according to the Feder–Vardi reduction). Thus, we

have the commutative diagram of Figure 9. In particular, (B, bT )
h→(A, aT ), where

(B, bT ) ∈ {B, β0}. Set h(x) = y. By definition of aT
′
, aT

′ ◦ h(x) ∈ K1. However, by
definition of {B, β0}, bT

′
(x) ∈ K0. The fact that bT

′
= aT

′ ◦ h yields a contradiction.

Suppose that it is not the case that (B, bT ′
)
h→(A, aT

′
) for any (B, bT ′

) derived

from the compact forbidden pattern {B, β} x
32 {C, γ} (according to the Feder–Vardi

reduction) but that (C, cT ′
)
h→(A, aT

′
) for some (C, cT ′

) derived from the compact

forbidden pattern {B, β} x
32 {C, γ}. A contradiction follows by reasoning analogously

to the preceding case. Hence, we have that FPP(F , T ) ⊆ FPP(F ′, T ′).
Proposition 28. Let (F ′, T ′) be obtained from (F , T ) via a Feder–Vardi reduc-

tion, as in Definition 24. If property p1 holds for (F , T ), then it holds for (F ′, T ′).
Proof. Define T ′ r→T to be the homomorphism that identifies ki ∈ Ki for i = 0, 1,

with k ∈ K, and leaves all other elements fixed. Let A be nonvalid w.r.t. (F ′, T ′).
Since (F , T ) is equivalent to (F ′, T ′), by Proposition 27, it follows that A is nonvalid

w.r.t. (F , T ). We may assume that A→T ′. Let AaT ′

→T ′ and define aT := r◦aT ′
. As p1

holds for (F , T ), there exists (D, dT ) ∈ F such that (D, dT )
f
↪→(A, aT ). In particular,
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r ◦aT ′ ◦f = dT ; so, r ◦dT ′
= dT when we define dT

′
:= aT

′ ◦f . If (D, dT ) is a pattern

of G , then (D, dT
′
) ∈ F ′. If (D, dT ) is a pattern of {B, β} x

32 {C, γ}, then a pattern
of either {B, β0} or {C, γ1} (where these are the compact forbidden T ′-patterns as
constructed in Definition 24) is a (colored) substructure of (D, dT

′
). Hence, regardless,

there exists (E , eT ′
) ∈ F ′ such that (E , eT ′

)
g
↪→(D, dT

′
). As dT

′
= aT

′ ◦ f , we have

that (D, dT
′
)

f
↪→(A, aT

′
), and so (E , eT ′

)
f◦g
↪→(A, aT

′
). Consequently, if A is weakly valid

w.r.t. (F ′, T ′), then it is valid w.r.t. (F ′, T ′).
We define the rank of a (connected) compact structure to be the number of

applications of the operator 32 in order that all resulting compact structures are
biconnected. We associate with a compact representation a rank polynomial P (X) =
ΣiaiX

i, where ai is the number of compact forbidden patterns of rank i. Let (F ′, T ′)
be obtained from (F , T ) via a Feder–Vardi reduction, with P the rank polynomial
of (F , T ) and P ′ that of (F ′, T ′). It is easy to check that P ′ < P , where < denotes
the standard well-ordering of polynomials. Consequently, any sequence of Feder–
Vardi reductions is necessarily finite. It is in order to prove this finiteness that we
consider compact representations; given that we now that any sequence of Feder–
Vardi reductions is necessarily finite, we can now revert to dealing with standard,
as opposed to compact, representations. Of course, all of the results in this section
mentioning compact representations also hold for standard representations.

4.3. Enforcing p1 to p5. We now use the reductions developed so far to obtain,
from any connected representation, an equivalent representation satisfying properties
p1, p2, p3, p4, and p5. We remind the reader that we are still assuming all represen-
tations to be connected, and we note that all reductions so far defined preserve the
property of a representation being connected.

Definition 29. Let (F , T ) be a representation where every forbidden pattern of
F is automorphic and nonconform. Define

ρ(F , T ) = max{||(B, bT )|| : (B, bT ) is a forbidden pattern of F

that is not biconnected},
where ||(B, bT )|| is the number of tuples in B; that is, the sum of the numbers of
{||RB|| : R is a relation symbol of the underlying signature}, where ||RB|| is the num-
ber of tuples in the relation RB.

Consider the following process, starting with a (connected) representation (F , T ).
Replace (F , T ) with the representation (HF , T ), and so, by Lemmas 14 and 15,
(HF , T ) is equivalent to (F , T ) and satisfies p1. Perform a maximal sequence of core,
embed, and conform reductions and denote the resulting representation by (F1, T1).
In particular, every forbidden pattern of F1 is a core and nonconform, and so ρ(F1, T1)
is well-defined. If ρ(F1, T1) = 0, then halt.

Otherwise, perform a maximal sequence of Feder–Vardi reductions, followed by
a maximal sequence of core, embed, and conform reductions. Denote the resulting
representation by (F2, T2). In particular, every forbidden pattern of F2 is a core
and nonconform, and so ρ(F2, T2) is well-defined. Also, the sequence of reductions
performed in order to obtain (F2, T2) from (F1, T1) is such that:

• every forbidden pattern of F1 that is a biconnected (T1-colored) core gives
rise to forbidden patterns of F2 that are also biconnected (T2-colored) cores
(see Remark 22); and,

• any non-biconnected core of F1 is split into forbidden patterns, each of which
has strictly less tuples than the original non-biconnected core of F1.

That is, ρ(F2, T2) < ρ(F1, T1).
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Fig. 10. Applying our reductions.

By iterating this process, we eventually obtain a connected representation (F ′, T ′)
that is equivalent to (F , T ) and satisfies properties p1, p2, p3, p4, and p5.

Example 30. Consider a representation (F , T ) over the signature consisting of
two binary relation symbols E and F , where T and the forbidden patterns of F are
as in the first column of Figure 10 (we represent “E-edges” by solid arrowed lines and
“F -edges” by dashed arrowed lines).

As can be seen, (F , T ) satisfies properties p1, p2, p3, and p4. However, one
forbidden pattern is not biconnected, and so we perform a Feder–Vardi reduction so
that the resulting compact forbidden pattern is as depicted in the second column of
Figure 10. This messes up the aforementioned properties, and so we perform some
embed reductions to obtain the compact representation in the third column of Figure
10 (we have left the depiction of this representation in its compact form so that the
figure does not become cluttered). Finally, we perform some conform reductions to
obtain the representation in the fourth column of Figure 10 which is equivalent to the
original one and satisfies properties p1, p2, p3, p4, and p5.

4.4. Enforcing p1–p6. Given our notion of a recoloring of a representation, we
can define a retract of a representation as follows.

Definition 31. A representation (F ′, T ′) is a retract of the representation
(F , T ) if there exists a monorecoloring (F ′, T ′)

r
↪→(F , T ) and an epirecoloring

(F , T )
s�(F ′, T ′) such that s◦r = idT ′ . We call a representation (F , T ) automorphic

if whenever (F ′, T ′) is a retract of (F , T ), then (F ′, T ′) ≈ (F , T ).
It is not difficult to see that given any representation (F , T ), there is an au-

tomorphic representation (F ′, T ′) that is a retract of (F , T ) (and thus defines the
same forbidden patterns problem by Proposition 26). We remark that the notion of
a “core” for representations does not possess the properties that it does in the case
of (colored) structures; e.g., it is not unique up to isorecoloring, but we resist the
temptation to go into further details here as this has no consequence on what follows.
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The next property we wish to enforce is as follows:
(p6) The representation (F , T ) is automorphic.

Suppose that (F , T ) is not automorphic and that (F ′, T ′)
r
↪→(F , T ),

(F , T )
s�(F ′, T ′), and s ◦ r = idT ′ , with (F ′, T ′) automorphic. Define

F ′′ = {(A, aT
′
) : (A, aT ) ∈ F and aT = r ◦ aT ′}.

Let (A, aT ) ∈ F , and let aT = r ◦ aT ′
. By construction, (A, aT

′
) ∈ F ′′ and as such

is not valid w.r.t. (F ′′, T ′). Thus, (F ′′, T ′)
r
↪→(F , T ). However, we also want to show

that (F , T )
s�(F ′′, T ′).

Let (A, aT
′
) ∈ F ′′, and let (A, aT1 ) be such that s ◦ aT1 = aT

′
; i.e., (A, aT ) is an

inverse image of (A, aT
′
) via s. Also, because (A, aT

′
) ∈ F ′′, by definition there exists

(A, aT2 ) ∈ F such that aT2 = r ◦aT ′
. As (F ′, T ′)

r
↪→(F , T ), there exists (B, bT ′

) ∈ F ′

such that (B, bT ′
)
f→(A, aT

′
). Hence, (B, aT1 ◦ f) is an inverse image of (B, bT ′

) via

s, and so there exists (C, cT ) ∈ F such that (C, cT )
g→(B, aT1 ◦ f) (see Figure 11).

Thus, (C, cT )
f◦g→ (A, aT1 ) and (F , T )

s�(F ′′, T ′). In particular, (F ′′, T ′) is a retract of
(F , T ).

We need the notion of a recoloring to be transitive.
Lemma 32. If (F1, T1)

f→(F2, T2) and (F2, T2)
g→(F3, T3) are recolorings, then

(F1, T1)
g◦f→ (F3, T3) is a recoloring.

Proof. Let (A, aT3) ∈ F3, and let (A, aT1)
g◦f→ (A, aT3). As g is a recoloring of

(F2, T2) to (F3, T3), there exists a forbidden pattern (B, bT2) ∈ F2 for which (B, bT2)
h1
�

(A, f ◦ aT1). As f is a recoloring of (F1, T1) to (F2, T2), there exists a forbidden pat-

tern (C, cT1) ∈ F1 for which (C, cT1)
h2→(B, aT1 ◦ h1). The situation can be depicted as

in Figure 12. Consequently, (C, cT1)
h1◦h2→ (A, aT1), and (F1, T1)

g◦f→ (F3, T3).

We have that (F ′′, T ′)
r
↪→(F , T ) and (F , T )

s�(F ′, T ′), and consequently by
Lemma 32, the identity map on T ′ is an isorecoloring from (F ′′, T ′) to (F ′, T ′).
Thus, (F ′′, T ′) is automorphic.
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We now need to affirm the properties p1, p2, p3, p4, and p5 for (F ′′, T ′); we
deal with p1 first (note that if (F , T ) is connected, then so is (F ′′, T ′)). Assume
that A is not valid w.r.t. (F ′′, T ′). Consequently, by Proposition 26, A is not valid

w.r.t. (F , T ). Suppose that AaT ′

→T ′. Thus, Ar◦aT ′

→ T . Hence, there exists (B, bT ) ∈ F

such that (B, bT )
f
↪→(A, r ◦ aT

′
); see Figure 13. So, (B, aT ′ ◦ f) ∈ F ′′ and (B, aT ′ ◦

f)↪→(A, aT
′
). Thus, A is not weakly valid w.r.t. (F ′′, T ′), and property p1 holds for

(F ′′, T ′).
Consider property p2. As every pattern of (F , T ) is automorphic, by Lemma 2,

so is every pattern of (F ′′, T ′).
Consider property p3. Suppose that (A, aT

′
), (B, bT ′

) ∈ F ′′ are distinct and such

that (B, bT ′
)

f
↪→(A, aT

′
). Thus, we have that (A, r ◦ aT

′
), (B, r ◦ bT

′
) ∈ F and also

that (B, r ◦ bT ′
)

f
↪→(A, r ◦aT ′

). This yields a contradiction as (F , T ) satisfies property
p3, and so (F ′′, T ′) satisfies property p3.

Trivially, (F ′′, T ′) satisfies properties p4 and p5.
Definition 33. We say that a connected representation for which properties

p1–p6 hold is a normal representation.
Consequently, we have proven the following result.
Theorem 34. Let (F , T ) be a connected representation. Then there is an effec-

tive procedure by which we can obtain a normal representation equivalent to (F , T ).
We end this section with a theorem crucial to what follows.
Theorem 35. Let (F , T ) be a normal representation. If F �= ∅, then the target

T is not valid w.r.t. (F , T ).
Proof. Assume for contradiction that (T , t) is valid w.r.t. (F , T ). If t is one-to-

one, then t is an isomorphism, and thus, as F �= ∅, there exists (A, aT ) ∈ F such
that t−1 ◦ aT is a homomorphism from (A, aT ) to (T , t). This yields a contradiction,
and so we may assume that t is not one-to-one.

Consider repeatedly applying the homomorphism t to obtain the homomorphism
tk : T → T for each k ≥ 1. For some k ≥ 1, it must be the case that t restricted to the
image of tk is one-to-one and thus an isomorphism. For such a k, denote the image
of tk by T ′ and the isomorphism from T ′ to T ′ induced by t by s. In particular, s−1

exists.
Suppose that there exists (A, aT ) ∈ F such that the image of aT is contained in

T ′. Clearly, the homomorphism s−1 ◦ aT : A → T is well-defined and is a T -colored
homomorphism of (A, aT ) to (T , t). This contradicts our assumption that (T , t) is
valid w.r.t. (F , T ). Consequently, for every (A, aT ) ∈ F , the image of aT is not
contained in T ′.

Consider the representation (∅, T ′). Trivially, (∅, T ′) is a retract of (F , T ), and
T ′ is not isomorphic to T (as t is not one-to-one). Thus, (∅, T ′) is a proper re-
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tract of (F , T ), which contradicts the fact that (F , T ) is automorphic. The result
follows.

5. A generic construction of counterexamples. We prove in this section
that any problem given by a normal representation (F , T ) for which F �= ∅ is not in
CSP. The proof involves a generic construction of a family of structures that provides,
in a sense, a counterexample for any candidate for the role of a template; such a family
of structures is called a witness family. The essence of the proof strategy employed
originated in the proofs in [25] that certain graph problems are not in CSP.

Definition 36 (witness family). Let (F , T ) be a representation. A family of
structures W is said to be a witness family for (F , T ) if and only if W ⊆ FPP(F , T )
and for any structure B (over the underlying signature), there exists W ∈ W such

that either W � B or for some W h→B, the homomorphic image h(W) does not belong
to FPP(F , T ) (the structure W is said to be a witness for B).

Lemma 37. If a representation (connected or otherwise) has a witness family,
then the problem given by the representation does not belong to CSP.

Proof. Let W be a witness family for some representation (F , T ). Assume for
contradiction that FPP(F , T ) = CSP(B) for some structure B. By definition, there

exists W ∈ W such that either W � B or for some W h→B, h(W) �∈ FPP(F , T ). Both
cases immediately lead to a contradiction.

We now state the main result of this section and a corollary.
Theorem 38. Let (F , T ) be a normal representation. If F �= ∅, then there is a

witness family for (F , T ).
Corollary 39. If (F , T ) is a normal representation for which F �= ∅, then

FPP(F , T ) �∈ CSP.
The remainder of this section is devoted to a proof of the above theorem and

corollary. Throughout the remainder of this section, (F , T ) is a normal representation
for which F �= ∅ and where the underlying signature is σ.

Opening up a structure. By Theorem 35, the structure T is not valid w.r.t. (F , T ).

Let tT be some homomorphism T tT→T (there is at least one such homomorphism: the
identity). As (F , T ) is normal, we may assume that some biconnected and non-
conform forbidden pattern (A, aT ) embeds into (T , tT ), via some embedding f . Let
(D, dT ) be identical to (T , tT ).

It is straightforward to show that any biconnected and nonconform pattern must
contain a cycle; choose one of minimal size, and let C be the image of this cycle under
f (and so C is a cycle). Let x be an articulation point of C, and let t be a tuple of
C that is incident with x (thus RD(t) holds for some relation symbol R). Introduce
a new element x′ into the domain of D.

• Suppose that C has size 1; i.e., t is not antireflexive. Replace the first occur-
rence of x in RD(t) with the new element x′ (leaving all other occurrences of
all elements as is).

• Suppose that C has size 2; i.e., C consists of the antireflexive tuples RD(t)
and RD

1 (t1), where t and t1 have at least two distinct elements in common
(one of which is x) and where if R = R1, then t and t1 differ. Replace the
solitary occurrence of x in RD(t) by x′.

• Suppose that C has size greater than 2. Replace the solitary occurrence of x
in RD(t) by x′.

The elements x and x′ of our amended structure are called plug points of sort
1. We define that dT (x′) = dT (x) and denote the amended T -colored structure by
(D, dT ) also.
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If there exists a forbidden pattern of F that embeds into (D, dT ), then we proceed
as above by choosing an appropriate cycle and an articulation point y of this cycle and
then “breaking” the cycle by introducing a new element y′ and amending a specific
tuple of D (note that if we have a cycle of size 1 or 2, then we may need more than
one amendment to “break” the cycle). Again, we define dT (y′) = dT (y) and denote
the amended T -colored structure by (D, dT ) also. As above, we refer to y and y′ as
plug points. If y was either x or x′, then y and y′ are plug points of sort 1; otherwise,
they are plug points of sort 2.

We proceed iteratively in this fashion until no forbidden pattern of F embeds into
(D, dT ), at each stage of the iteration fixing the sort of plug points to be inherited
from the corresponding articulation point or to be of a new sort (the smallest positive
integer as yet unused to describe sorts) if the corresponding articulation point had
not been assigned a sort. Note that this process terminates as ultimately we would
obtain a cycle-free structure (into which no forbidden pattern can embed).

Denote the resulting T -colored σ-structure by (G, gT ) and call it the gadget . Note
that (G, gT ) is valid w.r.t. (F , T ) as no forbidden pattern embeds into (G, gT ) (recall

that (F , T ) is normal). Note also that (G, gT )
r→(T , tT ), where r is the homomorphism

which identifies plug points of the same sort and otherwise leaves elements fixed.
Preparing for plugging. Suppose that the gadget (G, gT ) has pi plug points of sort

i for i = 1, 2, . . . , k (and possibly other elements that have not been assigned a sort).
For each i = 1, 2, . . . , k, define the signature σi as consisting of the relation symbol
Pi of arity pi. For each i = 1, 2, . . . , k and each mi ≥ pi, define the σi-structure Qmi

i

to have domain {0, 1, . . . ,mi − 1} and relation P
Qmi

i
i defined as

{(u1, u2, . . . , upi) : u1 < u2 < · · · < upi}.
Lemma 40. Fix b ≥ 2, fix i ∈ {1, 2, . . . , k}, and suppose that mi ≥ b(pi − 1) + 1.

For every mapping h : |Qmi
i | → {0, 1, . . . , b − 1}, there must exist at least one tuple

P
Qmi

i
i (u1, u2, · · · , upi) such that h(u1) = h(u2) = . . . = h(upi).

Proof. Suppose otherwise for the mapping h. So, there exist at most pi − 1
distinct elements x of |Qmi

i | for which h(x) = j for any j ∈ {0, 1, . . . , b − 1}. Thus,
|Qmi

i | = mi ≤ b(pi − 1), which yields a contradiction.
Now define the signature σ to consist of the relation symbol P of arity p =

Σk
i=1pi. For any m1,m2, . . . ,mk for which mi ≥ pi, for each i = 1, 2, . . . , k, define

the σ-structure Q to have a domain consisting of the disjoint union of the domains
|Qm1

1 |, |Qm2
2 |, . . . , |Qmk

k | and relation PQ defined as

{(u1,u2, . . . ,uk) : ui ∈ |Qmi
i |pi and ui

1 < ui
2 < · · · < ui

pi

for each i = 1, 2, . . . , k}
(the notation is such that ui

j is the jth component of the tuple ui). So, in a sense,

Q is a sort of “amalgamation” of Qm1
i ,Qm2

2 , . . . ,Qmk

k (note that we have suppressed
the parameters “m1,m2, . . . ,mk” in the denotation of Q for ease of readability).

Lemma 41. Fix b ≥ 2 and suppose that mi ≥ b(pi−1)+1 for each i = 1, 2, . . . , k.
For every mapping h : |Q| → {0, 1, . . . , b − 1}, there must exist at least one tuple

PQ(u1,u2, . . . ,uk) such that h(ui
1) = h(ui

2) = · · · = h(ui
pi

) for all i = 1, 2, . . . , k.
Proof. The proof is immediate from Lemma 40.
The girth of a structure is the length of its shortest cycle (and so if there are no

cycles, then the structure has infinite girth). The following theorem is due to Feder
and Vardi [15] (and generalizes a result due to Erdös; see [15]).
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Theorem 42. Fix two positive integers r and s. For every structure B of size
n, there exists a structure B′ (over the same signature) of size na (where a depends
solely on r and s) such that:

• the girth of B′ is greater than r;
• B′ → B; and
• for every structure C of size at most s (over the same signature), B → C if

and only if B′ → C.
Furthermore, B′ can be constructed from B in randomized polynomial time.

Remark 43. We have already mentioned that Gábor Kun has derandomized Theo-
rem 1. To be more precise, he achieved this by giving a deterministic polynomial-time
algorithm for the B′ in the above theorem.

For each forbidden pattern (A, aT ) of F , define γA to be the length of the longest
cycle of A. Define γ to be the maximum of {γA : (A, aT ) ∈ F}.

Fix b ≥ 2. By applying Theorem 42, there is a σ-structure Q′
of girth greater

than γ for which Q′ → Q and for which for every structure C of size at most b, Q → C
if and only if Q′ → C (of course, we assume that m1,m2, . . . ,mk satisfy the hypothesis
of Lemma 41).

Lemma 44. For every mapping h : |Q′| → {0, 1, . . . , b − 1}, there must exist at

least one tuple PQ′
(u1,u2, . . . ,uk) such that h(ui

1) = h(ui
2) = · · · = h(ui

pi
) for all

i = 1, 2, . . . , k.
Proof. The condition in the statement of the lemma (and also the statement of

Lemma 41, with the same value b) is equivalent to there not being a homomorphism

from Q′
to the σ-structure with domain {0, 1, . . . , b− 1} and relation

P = {0, 1, . . . , b− 1}p \ {(bp1

1 , bp2

2 , . . . , bpk

k ) : bi ∈ {0, 1, . . . , b− 1}
for every i = 1, 2, . . . , k}

(where bpi

i is the pi-tuple with each component equal to bi). The result follows by

Lemma 41 and the properties of Q′
detailed above.

Building the witness family. Fix some σ-structure B of size b. We are now in a
position to build a σ-structure WB which will act as a witness for B (see Definition 36).

• Initialize the domain of WB to be that of Q′
.

• For every tuple PQ′
(u1,u2, . . . ,uk), where each ui ∈ |Q′|pi , plug a copy of

the gadget G by identifying the pi sort-i plug points of G with the pi “socket-

points” ui of |Q′| for each i = 1, 2, . . . , k.
All such copies of the gadget should be disjoint, except that two copies of the gadget
may have plug points in common within WB and except where the gadget (possibly)
contains a tuple RG(t) with every element of t a plug point. Let us label every tuple

of every relation RWB with the name of the tuple of PQ′
to which the copy of the

gadget from which it comes corresponds. As just mentioned, there may be difficulties
where the gadget contains a tuple RG(t) with every element of t a plug point, as this
tuple might require more than one label. In such a case, simply arbitrarily choose one
label from the set of potential candidates. Finally, note that WB = WB′ whenever
|B| = |B′|; i.e., the definition of WB depends solely upon b and not on the tuples of B.

Proposition 45. The structure WB is a witness for B.

Proof. We begin by proving that there exists a homomorphism WB
wT
→T .

From above, Q′ → Q via some homomorphism q. Recall that the domain of Q
is the disjoint union of |Qm1

1 |, |Qm2
2 |, . . . , |Qmk

k |. Hence, we can partition |Q′| into
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disjoint subsets S1, S2, . . . , Sk, where for each i = 1, 2, . . . , k, Si = {u ∈ |Q′| : q(u) ∈
|Qmi

i |}. By definition of PQ, if PQ(u1,u2, . . . ,uk) holds, where ui is a pi-tuple of
elements, then ui ∈ Spi

i for i = 1, 2, . . . , k. In particular, in any copy of the gadget
G, plug points of sort i are always identified with “socket elements” from Si for

i = 1, 2, . . . , k. Consequently, the homomorphism GgT

→T , under which plug points of
the same sort are always mapped to the same element of |T |, can be extended to a

homomorphism WB
wT
→T .

Suppose that (WB, wT ) is not valid w.r.t. (F , T ). So, some biconnected, non-
conform forbidden pattern (A, aT ) embeds into (WB, wT ). As no forbidden pattern
embeds into the gadget and each forbidden pattern is biconnected and nonconform,
there must exist a cycle C in WB of length less than γ and involving tuples from at
least two copies of the gadget within WB (we reiterate that each forbidden pattern
is biconnected, and so if there were no such cycles, then we would have an articula-
tion point) or equivalently, involving tuples labeled with at least two distinct tuples

of PQ′
(according to our labeling process as detailed prior to the statement of this

proposition). However, the cycle C of WB yields a closed path of tuples in Q′
(by

following the labels). Continuing, this closed path of tuples in Q′
yields a cycle in Q′

of length at least 2 and less than γ; this contradicts the fact that Q′
has girth greater

than γ. Thus, (WB, wT ) is valid w.r.t. (F , T ).

If WB �→ B, then we are done. So, suppose that WB
h→B. The homomorphism

h induces a map ĥ : |Q′| → {0, 1, . . . , b − 1}, and so by Lemma 44, there exists a

tuple PQ′
(u1,u2, . . . ,uk), where ui ∈ |Q′|pi and ĥ(ui

1) = ĥ(ui
2) = · · · = ĥ(ui

pi
) for

i = 1, 2, . . . , k. Thus, by construction of WB, h(WB) contains a homomorphic image of
the gadget G where all plug points of the same sort are mapped to the same element.

(�) Consequently, h(WB) contains a homomorphic image of the structure T , via
some homomorphism h̃.

Suppose that h(WB)
f→T . So, T f◦h̃→T and, by Theorem 35, there exists a forbid-

den pattern (A, aT ) ∈ (F , T ) such that (A, aT )
f̃→(T , f ◦ h̃). Hence, we have that

(A, aT )
h̃◦f̃→ (h(WB), f), and h(WB) �∈ FPP(F , T ), as required.

Thus, we have proven Theorem 38. Lemma 37 immediately yields Corollary 39.

6. MMSNP versus CSP. We now deal with the disconnected case before turn-
ing to the more general situation involving MMSNP and CSP.

6.1. Normal sets of representations.

6.1.1. The disconnected case. We first turn to the situation when a represen-
tation is not necessarily connected. Let (F , T ) be a representation such that there
exists a disconnected forbidden pattern (A, aT ) ∈ F ; that is, (A, aT ) is the disjoint
union of two colored structures (B, bT ) and (C, cT ). Define F ′ = (F \ {(A, aT )}) ∪
{(B, bT )} and F ′′ = (F \ {(A, aT )}) ∪ {(C, cT )}. Trivially, we have that

FPP(F , T ) = FPP(F ′, T ) ∪ FPP(F ′′, T ).

By iterating this construction, we can transform (F , T ) into a set of connected repre-
sentations so that a structure is in FPP(F , T ) if and only if it is in at least one of the
forbidden patterns problems corresponding to the derived connected representations.

Next, we compute the normal representation of each connected representation,
just as we did in section 4. Finally, we enforce the following property on our set of
normal representations:
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(p7) For any two normal representations (F ′, T ′) and (F ′′, T ′′), we have that
(F ′, T ′) � (F ′′, T ′′).

This property is enforced by simply removing the normal representation (F ′, T ′)
from the collection should there exist another (different) normal representation
(F ′′, T ′′) for which (F ′, T ′)→(F ′′, T ′′).

Consequently, we may assume that any representation (F , T ) corresponds to a
collection N of normal representations (possibly containing only one such representa-
tion) for which property p7 holds; we call N the normal set corresponding to (F , T ).
By Proposition 26, the problem FPP(F , T ) is the union of the forbidden patterns
problems of the representations in the normal set N; that is,

FPP(F , T ) =
⋃

{FPP(F ′, T ′) : (F ′, T ′) ∈ N}.

6.1.2. Finite unions of forbidden patterns problems. The notion of a nor-
mal set extends naturally to finite unions of forbidden patterns problems: Given a
finite set of representations, we split every disconnected representation into a set of
connected representations as above, take the union of all of these sets, and simplify
these sets so as to enforce p7. We write FPP(N) for

⋃
(F,T )∈N

FPP(F, T ).

Proposition 46. Let N be a normal set that contains a representation (F ′, T ′)
such that F ′ �= ∅. Then T ′ is a no instance of FPP(N).

Proof. By Theorem 35, if T ′ is valid w.r.t. (F ′, T ′), then F ′ = ∅. Thus, T ′ is
not valid w.r.t. (F ′, T ′).

Suppose that T ′ is valid w.r.t. (F ′′, T ′′), where (F ′′, T ′′) is a representation in N

distinct from (F ′, T ′). That is, there exists a homomorphism r : T ′ → T ′′ such that
for every forbidden pattern (A′′, aT

′′
) ∈ F ′′, (A′′, aT

′′
) � (T ′, r). In particular, if

(A′′, aT
′′
) ∈ F ′′, then there does not exist a homomorphism aT

′
: A′′ → T ′ for which

r ◦ aT
′

= aT
′′
. Consequently, r is (trivially) a recoloring of (F ′, T ′) to (F ′′, T ′′).

This yields a contradiction, and so T ′ is not valid w.r.t. (F ′′, T ′′). The result
follows.

6.2. Finite unions.
Definition 47 (strong witness family). Let N be a set of representations. A

family of structures W is said to be a strong witness family for N if and only if
W ⊆ FPP(N) and for any finite set of structures {B1,B2, . . . ,Bn} (over the underlying
signature), there exists W ∈ W such that for every 1 ≤ i ≤ n, either W � Bi or for

some W h→Bi, the homomorphic image h(W) does not belong to FPP(N) (the structure
W is said to be a strong witness for B).

Lemma 48. If a set of representations N has a strong witness family, then the
problem FPP(N) is not a finite union of constraint satisfaction problems.

Proof. Let W be a strong witness family for some representation (F , T ). Assume
for contradiction that

FPP(N) =
⋃

(F,T )∈N

FPP(F, T ) =
⋃

1≤i≤n

CSP(Bi)

for some finite set of structures {B1,B2, . . . ,Bn}. By definition, there exists a strong
witness W ∈ W . Since W is a yes instance of FPP(N), we have that W ∈ CSP(Bi) for
some 1 ≤ i ≤ n. Hence, by definition of a strong witness, there is a homomorphism

W h→Bi such that h(W) �∈ FPP(N). However, h(W) ∈ CSP(Bi) = FPP(N), which is
absurd.
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We can extend the main result of the previous section to finite unions of forbid-
den patterns problems and, in particular, to disconnected representations. We first
deal with the case when the normal set corresponds to a finite union of constraint
satisfaction problems.

Theorem 49. Let N be a normal set of the form {(∅, T1), (∅, T2), . . . , (∅, Tn)}.
Then FPP(N) =

⋃
1≤i≤n CSP(Ti). Moreover, if

⋃

1≤i≤n

CSP(Ti) =
⋃

1≤i≤m

CSP(T ′
i ),

then the following hold:
(i) for every 1 ≤ i ≤ m, there exists 1 ≤ j ≤ n such that T ′

i →Tj;
(ii) for every 1 ≤ i ≤ n, there exists 1 ≤ j ≤ m such that Ti is the core of T ′

j ;
(iii) m ≥ n.
Proof. Property (i) follows directly from the fact that T ′

i ∈ CSP(T ′
i ). We now

prove (ii). Using a similar argument as above, there exists T ′
j such that Ti→T ′

j . By
(i), there exists some Tk such that T ′

j→Tk. By composition, Ti→Tk. Recall that, by
definition of the normal set, there is no homomorphism between any Ti and Tk for
any i such that 1 ≤ i < k ≤ n. Moreover, every Ti is automorphic. Thus, i = k,
and it follows that Ti is homomorphically equivalent to T ′

j . This proves that Ti is
the core of T ′

j . Property (iii) follows from (ii) since Ti and Tk, for any i, k such that
i �= k, cannot be the core of the same T ′

j ; otherwise, they would be isomorphic (by
uniqueness of the core). This concludes the proof.

We can now precisely characterize when a normal set does not give rise to a finite
union of constraint satisfaction problems.

Theorem 50. The following are equivalent:
(i) the normal set N contains a representation (F ′, T ′), with F ′ �= ∅;
(ii) the problem FPP(N) is not a finite union of constraint satisfaction problems;
(iii) there exists a strong witness family for N.
Proof. The implication (ii) =⇒ (i) is the contrapositive of the (trivial statement

in the) previous theorem. The implication (iii) =⇒ (ii) holds by Lemma 48. We
now prove that (i) =⇒ (iii).

The case when N is a singleton is a direct corollary of the proof of Theorem 38,
as the construction of a witness family can be easily adapted to obtain a strong
witness family. Indeed, as is pointed out just before the statement of Proposition 45,
the construction of WB depends only on the size of B. So, for a set of structures
B = {B1,B2, . . . ,Bn}, we build WBi , where Bi is a structure with the largest domain

within this set. Now, for any structure C such that |C| ≤ |Bi|, if WBi

h→C, then
h(WBi) contains a homomorphic image of the structure chosen as a basis for our
gadget, namely, T ′ (see (�) in the proof of Proposition 45), which is not a yes instance
of FPP(N) (otherwise, T ′ would also be a yes instance of FPP(N), which would
contradict Theorem 35). This means that WBi

is a strong witness for B.
Suppose now that N is not a singleton. By Proposition 46, T ′ is not valid w.r.t.

(F ′′, T ′′) for any (F ′′, T ′′) ∈ N. Thus, we may choose T ′ as the basis of our gadget
and proceed as in the case of a singleton in order to get a strong witness family for
N.

6.3. The main result. We need a last definition before we can state the main
result of this paper. Let Φ be a sentence of MMSNP. We call a normal set of Φ the
normal set of the set of representations obtained from Φ as follows: First, Φ is logically
equivalent to a finite set of primitive sentences, which we can build effectively as in
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the proof of Proposition 11; second, each such primitive sentence captures precisely
a forbidden patterns problem (again, this is effective; see Theorem 12); finally, we
compute the normal set of this set of representations. The main result of this paper
is an exact characterization of the strict inclusion of MMSNP in CSP.

Theorem 51. Let Φ be a sentence of MMSNP. The problem defined by Φ is in
CSP if and only if its normal set consists of a singleton (∅, T ).

Proof. The result follows from the definition of the normal set of Φ and from
Theorems 49 and 50.

7. Concluding remarks. Building upon a previous attempt by Feder and Vardi
to provide a logical characterization of constraint satisfaction problems, we have in-
troduced a new class of combinatorial problems, the forbidden patterns problems,
and shown that they provide a combinatorial characterization of the logic MMSNP.
Furthermore, we have provided a complete classification as to when forbidden pat-
terns problems are in CSP, and there exists an effective procedure to decide whether
a given forbidden patterns problem (or problem described by a sentence of MMSNP)
is in CSP or not.

We end by describing two directions for further research. Tardif and Nešetřil [31]
have characterized duality pairs, which correspond essentially to forbidden patterns
problems with a single color (the target as only one element) that are also constraint
satisfaction problems. Their elegant proof relies on a correspondence between these
duality pairs and the notion of density (with respect to the partial order given by the
existence of a homomorphism). This correspondence exists essentially because one
can define the notion of the exponential of a structure (in graph theory, this notion
plays an important role in relation with Hedetniemi’s conjecture [29]). It turns out
that a notion of the exponential of a representation can also be defined [24]. In a
forthcoming paper, we will elaborate on this and delineate the relationship between
the two approaches.

Another direction for further research relates to the containment problem and
is as follows. A homomorphism problem is given by its template; hence, given two
homomorphism problems CSP(A) and CSP(B) over the same signature, it is decidable
whether CSP(A) ⊆ CSP (B). As a matter of fact, the containment problem for
homomorphism problems is nothing other than the uniform homomorphism problem,
known to be NP-complete (as we noted in Remark 5). We would like to extend
this result to the more general containment problem for forbidden patterns problems
(given by their representations). Indeed, Feder and Vardi proved in [15] that the
containment problem for MMSNP is decidable; hence by Theorem 13, it follows that
the containment problem for forbidden patterns problems is decidable. However, to
the best of our knowledge, nothing has been proved about the complexity of the
containment problem for MMSNP.

We know that the existence of a recoloring implies the containment of the corre-
sponding problems, and this provokes the following question: “Does the existence of
a recoloring correspond to the containment of the corresponding problems?” However,
we can answer this question negatively. Indeed, the major inconvenience of forbidden
patterns problems, in comparison with homomorphism problems, is that the inclusion
of two problems does not necessarily reduce to the question of the existence of a recol-
oring; for, in [24], an example is given where a representation is transformed into an
equivalent representation, using Feder–Vardi reductions, but such that the representa-
tions are not equivalent with respect to recolorings. However, we think that the right
notion of a morphism for representations should constitute a finite sequence of recol-
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orings and Feder–Vardi reductions. More precisely, we believe that the following ques-
tion can be answered affirmatively: “Does the existence of a recoloring correspond to
the containment of the corresponding problems in the case of normal (connected) repre-
sentations?” In [24], a few restricted cases for which an affirmative answer to the above
question is obtained, and this leads us to propose the following conjecture (where for
any representation R, normal(R) is a normal representation equivalent to R).

Conjecture 52. Let R1 and R2 be two nontrivial connected representations.
FPP(R1) ⊆ FPP(R2) if and only if normal(R1) → normal(R2).

Acknowledgment. The first author thanks Etienne Grandjean for his continual
support.
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1. Introduction. The study of adiabatic quantum computation was initiated
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§CNRS-LRI UMR 8623, Université de Paris-Sud, Orsay, France.
¶Department of Mathematics, City College of New York, New York, NY 10031 (lan-

dau@sci.ccny.cuny.edu).
‖Department of Mechanical Engineering, MIT, Cambridge, MA 02139 (slloyd@mit.edu).

∗∗Computer Science Department, Tel Aviv University, Israel.

166



ADIABATIC COMPUTATION IS EQUIVALENT TO QUANTUM 167

We briefly describe the model of adiabatic computation (a more precise descrip-
tion appears in section 2.2). A computation in this model is specified by two Hamil-
tonians named Hinit and Hfinal (a Hamiltonian is simply a Hermitian matrix). The
eigenvector with smallest eigenvalue (also known as the ground state) of Hinit is re-
quired to be an easy to prepare state, such as a tensor product state. The output of
the adiabatic computation is the ground state of the final Hamiltonian Hfinal. Hence,
we choose an Hfinal whose ground state represents the solution to our problem. We
require the Hamiltonians to be local, i.e., we require them to only involve interactions
between a constant number of particles (this can be seen as the equivalent of allow-
ing gates operating on a constant number of qubits in the standard model). This,
in particular, makes sure that the Hamiltonians have a short classical description,
by simply listing the matrix entries of each local term. The running time of the
adiabatic computation is determined by the minimal spectral gap1 of all the Hamil-
tonians on the straight line connecting Hinit and Hfinal: H(s) = (1− s)Hinit + sHfinal

for s ∈ [0, 1]. More precisely, the adiabatic computation is in polynomial time if this
minimal spectral gap is at least inverse polynomial.

The motivation for the above definition is physical. The Hamiltonian operator
corresponds to the energy of the quantum system, and for it to be physically realistic
and implementable it must be local. Its ground state is the state of lowest energy.
We can set up a quantum system in the ground state of Hinit (which is supposed to
be easy to generate) and apply the Hamiltonian Hinit to the system. We then slowly
modify the Hamiltonian along the straight line from Hinit towards Hfinal. It follows
from the adiabatic theorem that if this transformation is performed slowly enough
(how slow is determined by the minimal spectral gap), the final state of the system
will be in the ground state of Hfinal, as required.

What is the computational power of this model? In order to refer to the adiabatic
model as a computational model that computes classical functions (rather than quan-
tum states), we consider the result of the adiabatic computation to be the outcome of
a measurement of one or more of the qubits, performed on the final ground state. It is
known that adiabatic computation can be efficiently simulated by standard quantum
computers [9,13]. Hence, its computational power is not greater than that of standard
quantum computers. Several positive results are also known. In [9, 30] it was shown
that Grover’s quadratic speed-up for an unsorted search [16] can be realized as an
adiabatic computation. Moreover, [11,29,32] showed that adiabatic computation can
“tunnel” through wide energy barriers and thus outperform simulated annealing, a
classical counterpart of the adiabatic model. However, whether or not adiabatic com-
putation can achieve the full power of quantum computation was not known. In fact,
it was even unknown whether adiabatic computation can simulate general classical
computations efficiently. The focus of this paper is the exact characterization of the
computational power of adiabatic computation.

Before we describe our results, let us clarify one subtle point. Most of the previous
work on the subject focused on a restricted class of adiabatic algorithms that can be
referred to as adiabatic optimization algorithms. In these algorithms, Hfinal is chosen
to be a diagonal matrix, corresponding to a combinatorial optimization problem. In
particular, this implies that the ground state of Hfinal (which is the output of the
computation) is a classical state, i.e., a state in the computational basis. In this
paper, however, we associate the term adiabatic computation with the more general
class of adiabatic algorithms, where the only restriction on Hfinal is that it is a local

1The spectral gap is the difference between the lowest and second lowest eigenvalue.
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Hamiltonian. We do this because, from a physical point of view, there is no reason
to force the physical process described above to have a diagonal Hfinal, when all
other Hamiltonians are not restricted this way. Thus, our definition of adiabatic
computation seems to be the natural one to use. See subsection 1.6 for a further
discussion of adiabatic optimization.

1.1. Results—Computational complexity of the adiabatic model. Our
main result clarifies the question of the computational power of adiabatic algorithms.

Theorem 1.1. The model of adiabatic computation is polynomially equivalent to
the standard model of quantum computation.

As mentioned above, one direction of the equivalence is already known [9, 13].
Our contribution is to show that standard quantum computation can be efficiently
simulated by adiabatic computation. We do this by using adiabatic computation with
3-local Hamiltonians. We note that [4] made a preliminary step in the direction of
Theorem 1.1 but the model that they considered was quite different.2

One corollary of our main theorem is the following. We can consider the model
of adiabatic computation with a more general set of Hamiltonians known as explicit
sparse Hamiltonians. These are Hermitian matrices that have at most polynomially
many nonzero elements in each row and column, and, moreover, for which there is an
efficient Turing machine that can generate a list of all nonzero entries in a given row or
column. Clearly, local Hamiltonians are a special case of explicit sparse Hamiltonians.
It was shown in [4] that adiabatic computation with explicit sparse Hamiltonians can
still be simulated by standard quantum computation (this extends the result of [9,14]
in a nontrivial way). Hence, we obtain the following result.

Corollary 1.2. The model of adiabatic computation with explicit sparse Hamil-
tonians is polynomially equivalent to the standard model of quantum computation.
Explicit sparse matrices are pervasive in computer science and combinatorics, and
hence this corollary might be more useful than Theorem 1.1 in the context of the
design of quantum algorithms and the study of quantum complexity.

To summarize, our results show that questions about quantum computation can
be equivalently considered in the model of adiabatic computation, a model that is quite
different from the more common circuit-based models. In particular, the results imply
that we do not lose in computational power by trying to design quantum algorithms
in the adiabatic framework. There are two reasons why taking this approach seems
worthwhile. First, there are several known powerful techniques to analyze spectral
gaps of matrices, including expander theory [15] and rapidly mixing Markov chains
[24, 34]. Indeed, probability theory is often used in mathematical physics to analyze
spectral gaps of Hamiltonians (see, e.g., [35]), and our proofs also make extensive use
of Markov chain tools. Second, it is known that many interesting algorithmic problems
in quantum computation can be cast as quantum state generation problems [4]. The
problem of generating special quantum states seems more natural in the adiabatic
model than in the standard model. Finally, we mention here that the results also give
a different perspective on lower bounds on quantum computational complexity.

1.2. Results—Towards experimental implications. Theorem 1.1 uses 3-
local Hamiltonians that act on particles that may be arbitrarily far apart. From a

2Namely, [4] showed that adiabatic computation using simulatable Hamiltonians is as powerful as
standard quantum computation. Simulatable Hamiltonians are Hamiltonians that can be simulated
efficiently by a quantum circuit. They are very different from local Hamiltonians, and cannot even be
written explicitly. Instead, such Hamiltonians are specified using products of local unitary matrices.
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practical point of view, it is often difficult to create controlled interactions between
particles located far away from each other. Moreover, three-particle Hamiltonians are
technologically very difficult to realize. If one wants to physically realize the adiabatic
algorithms, it would be much better to have only 2-local interactions between nearest
neighbor particles. To this end we prove the following theorem. This puts our result
in a slightly more physically realistic context.

Theorem 1.3. Any quantum computation can be efficiently simulated by an
adiabatic computation with two-local nearest neighbor Hamiltonians operating on six-
state particles set on a two-dimensional grid.

The need for six-state particles arises from our construction. It is an open question
whether this can be improved.

Theorems 1.1 and 1.3 open up the possibility of physically realizing universal
quantum computation using adiabatically evolving quantum systems. As mentioned
before, there are possible advantages to this approach: adiabatic quantum computa-
tion is resilient to certain types of noise [8]. An important component of this resilience
is the existence of a spectral gap in the Hamiltonian. It is well known in physics that
such a gap plays an important role in the context of protecting quantum systems from
noise. However, it remains to be further studied, both experimentally and theoret-
ically, what the right model for noisy adiabatic computation is, and whether fault
tolerant adiabatic computation can be achieved. We refer the reader to further dis-
cussion in subsection 1.6.

1.3. Proof of Theorem 1.1: Overview. Given an arbitrary quantum cir-
cuit [26], our goal is to design an adiabatic computation whose output is the same as
that of the quantum circuit. Some similarities between the models are obvious: one
model involves unitary gates on a constant number of qubits, while the other involves
local Hamiltonians. However, after some thought, one eventually arrives at the fol-
lowing difficulty. The output state of the adiabatic computation is the ground state
of Hfinal. The output state of the quantum circuit is its final state, which is unknown
to us. How can we specify Hfinal without knowing the output state of the quantum
circuit? Notice that this state can be some complicated quantum superposition. One
might wonder why our task is not trivial, since this state does have an efficient lo-
cal classical description, namely the quantum circuit. However, local quantum gates,
which operate in sequence to generate a nonlocal overall action, are very different from
local Hamiltonians, which correspond to simultaneous local constraints. To explain
the solution, we first set some notations.

Without loss of generality we assume that the input to the quantum circuit
consists of n qubits all initialized to |0〉’s.3 Then, a sequence of L unitary gates,
U1, . . . , UL, each operating on one or two qubits, is applied to the state. The system’s
state after the �th gate is |α(�)〉. The output of the quantum circuit is in general a
complicated quantum state |α(L)〉 of n qubits, which is then measured in the standard
basis. We now want to associate with it a corresponding adiabatic computation.

A first natural attempt would be to define Hfinal as a local Hamiltonian with
|α(L)〉 as its ground state. However, this attempt encounters the difficulty mentioned
above: not knowing |α(L)〉, it seems impossible to explicitly specify Hfinal. The key
to resolve this difficulty is the observation that the ground state of Hfinal need not
necessarily be the state |α(L)〉. It is sufficient (under some mild restrictions) that the
ground state has a nonnegligible inner product with |α(L)〉. This gives us significant

3Otherwise, the first n gates can be used to flip the qubits to the desired input.
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flexibility in designing Hfinal. Our idea is to use an ingenious, seemingly unrelated,
result of Kitaev [22], in which he provides the first complete problem for the class
QMA, a quantum analogue of NP. The problem he describes is known as the local
Hamiltonian problem. His result can be viewed as the quantum analogue of the Cook–
Levin theorem [28], which states that 3-Sat is NP-complete. For his proof, Kitaev
defined a local Hamiltonian that checks the time propagation of a quantum circuit.
Kitaev’s local Hamiltonian has as its ground state the entire history of the quantum
computation, in superposition:

|η〉 :=
1√

L + 1

L∑

�=0

|α(�)〉 ⊗ |1�0L−�〉c.(1)

The right (L qubits) register is a clock that counts the steps by adding 1s from left
to right. The superscript c denotes clock qubits. We note that this state has a
nonnegligible projection on our desired state |α(L)〉. Hence, instead of designing a
Hamiltonian that has the final unknown state of the circuit as its ground state, a task
that seems impossible, we can define Hfinal to be Kitaev’s local Hamiltonian. Why is
it possible to define a local Hamiltonian whose ground state is |η〉, whereas the same
task seems impossible with |α(L)〉? The idea is that the unary representation of the
clock enables a local verification of correct propagation of the computation from one
step to the next, which cannot be done without the intermediate computational steps.

We thus choose Kitaev’s Hamiltonian [22] to be our Hfinal. This Hamiltonian
involves five body interactions (three clock particles and two computation particles).
For the initial Hamiltonian Hinit we require that it has |α(0)〉 ⊗ |0L〉c, the first term
in the history state, as its unique ground state. It is easy to define such a local
Hamiltonian, because |α(0)〉 ⊗ |0L〉c is a tensor product state. Crucially, Hinit and
Hfinal can be constructed efficiently from the given quantum circuit; no knowledge of
|α(L)〉 is required for the construction.

A technical problem lies in showing that the spectral gap of the intermediate
Hamiltonian H(s) is lower-bounded by some inverse polynomial (more specifically,
we show it is larger than 1/L2). To do this, we use a mapping of the Hamiltonian to
a Markov chain corresponding to a random walk on the L + 1 time steps. We then
apply the conductance bound from the theory of rapidly mixing Markov chains [34]
to bound the spectral gap of this chain. We note that, in general, applying the
conductance bound requires knowing the limiting distribution of the chain, which in
our case is hard since it corresponds to knowing the coefficients of the ground state
for all the Hamiltonians H(s). We circumvent this problem by noticing that it is
actually sufficient in our case to know very little about the limiting distribution of
the Markov chain, namely that it is monotone (in a certain sense to be defined later).
This allows us to apply the conductance bound, and deduce that the spectral gap is
Ω(1/L2). From this it follows that the running time of the adiabatic computation
is polynomial. Extracting the output of the quantum circuit from the history state
efficiently is easy: Measure all the qubits of the clock and if the clock is in the state
|1�〉, the computational qubits carry the result of the circuit. Otherwise, start from
scratch.4

The above scheme gives a proof of Theorem 1.1 that uses 5-local Hamiltonians,
and runs in time roughly O(L5). The improvement to 3-locality is based on a simple

4This gives an overhead factor of L which can be avoided by adding O( 1
ε
L) identity gates to the

quantum circuit at the end, which has the effect that most of the history state |η〉 is concentrated
on the final state |α(L)〉. See subsection 3.3 for more details.
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idea (used in [20] to prove that the 3-local Hamiltonian problem is QMA-complete)
but obtaining a lower bound on the spectral gap involves additional technical issues.
We postpone its explanation to the body of the paper. The running time we achieve
in this case is roughly O(L14).

1.4. Proof of Theorem 1.3: Overview. The idea underlying the proof of
Theorem 1.1 by itself does not suffice to prove Theorem 1.3. The basic problem
lies in arranging sufficient interaction between the computational and clock particles,
since if the particles are set on a grid, each clock particle can only interact with
four neighbors. We circumvent this problem as follows. Instead of having separate
clock and computational particles, we now assign to each particle both clock and
computational degrees of freedom (this is what makes our particles six-state). We
then construct a computation that propagates locally over the entire set of particles,
snaking up and down each column of the lattice. The adiabatic evolution now ends
up in the history state of this snake-like sequence of states.

The lower bound on the spectral gap is obtained in an essentially identical way
as in the 3-local Hamiltonian case.

1.5. Related work. After the preliminary version of this paper appeared [2], the
results regarding QMA-completeness were tightened by [21] to show that the 2-local
Hamiltonian problem is QMA-complete. Following the ideas presented in the current
paper, [21] used their result to show that Theorem 1.1 holds when the Hamiltonians
are 2-local.

The idea to use an inverse polynomial spectral gap for fault tolerance is certainly
not new. It is a crucial ingredient in topological (and later, geometrical) quantum
computation [18,23,27]. Note, however, that in those models the spectral gap has no
effect on the running time or on any other algorithmic aspects, and it is used only
to separate the computational subspace from the “noisy” subspace. In contrast, the
spectral gap in adiabatic computation is crucial from the algorithmic point of view,
since it determines the time complexity of the computation.

1.6. Open questions. This paper demonstrates that quantum computation can
be studied and implemented entirely within the adiabatic computation model, without
losing its computational power. This result raises many open questions in various
directions. First, it would be interesting to determine if the parameters presented in
this work can be improved. For example, it might be possible to shorten the running
time of our adiabatic simulation. Decreasing the dimensionality of the particles used
in Theorem 1.3 from six to two or three might be important for implementation
applications. An interesting question is whether Theorem 1.3 can be achieved using
a one-dimensional instead of a two-dimensional grid.

Second, the possibility of fault tolerant adiabatic computation deserves to be stud-
ied both experimentally and theoretically. Since the publication of the preliminary
version of the current paper [2], several researchers have begun to study adiabatic
computation in the presence of noise [1, 31, 33]. However, it is still unclear whether
adiabatic evolution might be helpful for the physical implementation of quantum
computers.

Our results imply the equivalence between standard quantum computation and
various other variants of adiabatic computation that have been considered in the
literature and are more general than our model. These include adiabatic computation
with a general path between Hinit and Hfinal, rather than a straight line (see [4,12] for
a rigorous definition), and adiabatic computation with explicit sparse Hamiltonians [4]
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(see Corollary 1.2). A problem we leave open is to characterize the computational
power of the adiabatic optimization model, the model in which the final Hamiltonian
is assumed to be diagonal. The situation here is unclear. In fact, we believe that
proving that this model can simulate arbitrary quantum computation is a very difficult
task. The reason for this is that the output of an adiabatic optimization algorithm
is the solution of a classical optimization problem and can thus be computed by a
classical polynomial-time Turing machine with the help of an NP oracle. Hence, such
a simulation would place BQP in the polynomial time hierarchy, thereby resolving a
long-standing open question.

Finally, we hope that the adiabatic framework might lead to the discovery of new
quantum algorithms (see [4] in this context). As shown in this paper, as well as in [4],
tools from probability theory, mathematical physics, and spectral gap analysis might
turn out to be relevant and useful. In order to improve our understanding of the
benefits of the adiabatic paradigm, it might be insightful to see adiabatic versions of
known quantum algorithms, presented in a meaningful way.

Organization. In section 2 we describe the model of adiabatic computation and
state some relevant facts about Markov chains. Section 3 shows how adiabatic systems
with five-local Hamiltonians can efficiently simulate standard quantum computations.
Section 4 extends and improves this result, and in particular proves it using only
three-local Hamiltonians. Section 5 shows how to adapt the construction to a two-
dimensional grid.

2. Preliminaries.

2.1. Hamiltonians of n-particle systems. For background on n-qubit sys-
tems, quantum circuits, and Hamiltonians, see [26]. An n-particle system is described
by a state in Hilbert space of dimension dn, the tensor product of n d-dimensional
Hilbert spaces. For simplicity, we restrict our discussion in this subsection to quantum
systems composed of 2-dimensional particles, i.e., qubits; a similar discussion holds
for higher dimensional particles (such as the six-dimensional case we consider later).

In the standard model of quantum computation, the state of n qubits evolves
in discrete time steps by unitary operations. In fact, the underlying physical de-
scription of this evolution is continuous, and is governed by Schrödinger’s equation:
−i d

dt |ψ(t)〉 = H(t)|ψ(t)〉. Here |ψ(t)〉 is the state of the n qubits at time t, and H(t)
is a Hermitian 2n × 2n matrix operating on the space of n qubits. This H(t) is the
Hamiltonian operating on a system; it governs the dynamics of the system. Given
that the state of the system at time t = 0 is equal to |ψ(0)〉, one can in principle
solve Schrödinger’s equation with this initial condition to get |ψ(T )〉, the state of the
system at a later time t = T . The fact that the Hamiltonian is Hermitian corresponds
to the familiar fact that the discrete time evolution of the quantum state from time
t1 to a later time t2 is unitary.

We sometimes refer to eigenvalues of Hamiltonians as energies. The ground en-
ergy of a Hamiltonian is its lowest eigenvalue and the corresponding eigenvector(s)
are called ground state(s). We define Δ(H), the spectral gap of a Hamiltonian H, to
be the difference between the lowest eigenvalue of H and its second lowest eigenvalue.
(Δ(H) = 0 if the lowest eigenvalue is degenerate, that is, has more than one eigenvec-
tor associated with it.) We define the restriction of H to some subspace S, denoted
HS , as ΠSHΠS , where ΠS is the orthogonal projection on S.

A Hamiltonian on an n-particle system represents a certain physical operation
that one can, in principle, apply to an n-particle system. However, it is clear that one
cannot efficiently apply any arbitrary Hamiltonian (even describing a Hamiltonian on
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n qubits requires exponential space in the worst case). We say that a Hamiltonian H
is k-local if H can be written as

∑
A HA, where A runs over all subsets of k particles,

and HA operates trivially on all but the particles in A (i.e., it is a tensor product of
a Hamiltonian on A with identity on the particles outside of A). Notice that for any
constant k, a k-local Hamiltonian on n-qubits can be described by 22knk = poly(n)
numbers. We say that H is local if H is k-local for some constant k.

In this paper we restrict our attention to k-local Hamiltonians. This requirement
corresponds to the fact that all known interactions in nature involve a constant number
of particles. We attempt to make k as small as possible to make the Hamiltonian
presumably easier to implement.

2.2. The model of adiabatic computation. The cornerstone of the adiabatic
model of computation is the celebrated adiabatic theorem [19, 25]. Consider a time-
dependent Hamiltonian H(s), s ∈ [0, 1], and a system initialized at time t = 0 in
the ground state of H(0) (here and in the following we assume that for all s ∈ [0, 1],
H(s) has a unique ground state). Let the system evolve according to the Hamiltonian
H(t/T ) from time t = 0 to time T . We refer to such a process as an adiabatic evolution
according to H for time T . The adiabatic theorem affirms that for large enough T
the final state of the system is very close to the ground state of H(1). Just how large
T should be for this to happen is determined by the spectral gap of the Hamiltonians
H(s). Such an upper bound on T is given in the following theorem, adapted from [29]
(whose proof in turn is based on [6]; see also [5] for a recent elementary proof of a
slightly weaker version).

Theorem 2.1 (the adiabatic theorem (adapted from [29])). Let Hinit and Hfinal

be two Hamiltonians acting on a quantum system and consider the time-dependent
Hamiltonian H(s) := (1− s)Hinit + sHfinal. Assume that for all s, H(s) has a unique
ground state. Fix δ > 0, and let

T ≥ Ω

( ‖Hfinal −Hinit‖1+δ

εδ mins∈[0,1]{Δ2+δ(H(s))}
)
.(2)

Let |ψ(T )〉 be the solution at time t = T for Schrödinger’s equation −i d
dt |ψ(t)〉 =

H(t/T )|ψ(t)〉 with the initial state |ψ(0)〉 being the ground state of Hinit. Then |ψ(T )〉
is ε-close in �2-norm to the ground state of Hfinal (with an appropriate setting of global
phase). The matrix norm is the spectral norm ‖H‖ := maxw �=0 ‖Hw‖2/‖w‖2.

One should think of δ as being some fixed constant, say 0.1. We cannot take
δ = 0 because of the constant hidden in the Ω notation, which goes to infinity as δ
goes to 0.

Let us now describe the model of adiabatic computation. In this paper we use the
following definition of adiabatic computation that slightly generalizes that of Farhi et
al. [14]. The adiabatic “circuit” is determined by Hinit and Hfinal and the output of
the computation is (close to) the ground state of Hfinal.

Definition 2.2. A k-local adiabatic computation AC(n, d,Hinit, Hfinal, ε) is spec-
ified by two k-local Hamiltonians, Hinit and Hfinal acting on n d-dimensional particles,
such that both Hamiltonians have unique ground states. The ground state of Hinit is
a tensor product state. The output is a state that is ε-close in �2-norm to the ground
state of Hfinal. Let T be the smallest time such that the final state of an adiabatic
evolution according to H(s) := (1− s)Hinit + sHfinal for time T is ε-close in �2-norm
to the ground state of Hfinal. The running time of the adiabatic algorithm is defined
to be T · maxs ‖H(s)‖.
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Observe that we have chosen our definition of running time to be T ·maxs ‖H(s)‖
and not T . To see why this is the right notion of running time, notice that according
to Schrödinger’s equation, for any c > 0, the final state of a system that evolves
according to some Hamiltonian H(s) for time T is identical to that of a system that
evolves according to some Hamiltonian cH(s) for time T/c. In fact, this is a basic
physical trade-off between energy and time. This trade-off can also be seen in Theorem
2.1: if both Hinit and Hfinal are multiplied by some factor c > 0, the resulting bound
on T gets divided by the same factor. Hence, one can achieve an arbitrarily small
value of T by multiplying the Hamiltonians by some large factor. This clearly shows
that T is not a meaningful notion of running time. On the other hand, our notion of
running time is invariant under multiplication by a constant factor.

The right-hand side of (2) can be used to provide an upper bound on the running
time of an adiabatic computation. Hence, in order to show that an adiabatic algorithm
is efficient, it is enough to use Hamiltonians of at most poly(n) norm, and show that
for all s ∈ [0, 1] the spectral gap Δ(H(s)) is at least inverse polynomial in n.

We note that in certain cases, it is possible to obtain a stronger upper bound
on the running time. Indeed, assume there exists a subspace S such that for all
s ∈ [0, 1], H(s) leaves S invariant, i.e., H(s)(S) ⊆ S. Equivalently, H(s) is block
diagonal in S and its orthogonal space S⊥. Consider HS(s), the restriction of H(s)
to S. Then, starting from a state inside S, an adiabatic evolution according to H is
identical to an adiabatic evolution according to HS (this follows from Schrödinger’s
equation). Hence, we can potentially obtain a stronger upper bound by replacing
Δ(H(s)) with Δ(HS(s)) in (2). This stronger upper bound will be used in our first
adiabatic algorithm.

Finally, let us mention that one can define more general models of adiabatic com-
putation. For example, one might consider nonlocal Hamiltonians (see [4]). Another
possible extension is to consider more general paths between Hinit and Hfinal (see,
e.g., [4, 8, 12]). Obviously, our main results, such as Theorem 1.1, hold also for these
more general models.

2.3. Markov chains and Hermitian matrices. Under certain conditions,
there exists a standard mapping of Hamiltonians to Markov chains (for background
on Markov chains, see [24]). The following fact is useful to show that this mapping
applies in the case we analyze.

Fact 2.3 (adapted from Perron’s theorem, Theorem 8.2.11 in [17]). Let G be
a Hermitian matrix with real nonnegative entries. If there exists a finite k such
that all entries of Gk are positive, then G’s largest eigenvalue is positive, and all
other eigenvalues are strictly smaller in absolute value. Moreover, the corresponding
eigenvector is unique, and all its entries are positive.

We define the mapping for G, a Hermitian matrix operating on an L+1-dimensional
Hilbert space. Suppose that all the entries of G are real and nonnegative, that its
eigenvector (α0, . . . , αL) with largest eigenvalue μ satisfies αi > 0 for all 0 ≤ i ≤ L,
and that μ > 0. Define P by

Pij :=
αj

μαi
Gij .(3)

The matrix P is well defined, and is stochastic because all its entries are nonnegative
and each of its rows sums up to one. It is easy to verify the following fact.

Fact 2.4. The vector (v0, . . . , vL) is an eigenvector of G with eigenvalue δ if and
only if (α0v0, . . . , αLvL) is a left eigenvector of P with eigenvalue δ/μ.
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We will consider G of the form G = I −H for some Hamiltonian H. The above
fact implies that if (α0, . . . , αL) is the ground state of H with eigenvalue λ, then
(α2

0, . . . , α
2
L) is a left eigenvector of P with maximal eigenvalue 1. By normalizing, we

obtain that π := (α2
0/Z, . . . , α

2
L/Z) is the limiting distribution of P , where Z =

∑
α2
i .

Moreover, the gap between P ’s largest and second largest eigenvalues is equal to
Δ(H)/(1 − λ).

2.4. Spectral gaps of Markov chains. Given a stochastic matrix P with
limiting distribution π, and a subset B ⊆ {0, . . . , L}, the flow from B is given by
F (B) :=

∑
i∈B,j /∈B πiPij . Define the π-weight of B as π(B) :=

∑
i∈B πi. The con-

ductance of P is defined by ϕ(P ) := minB F (B)/π(B), where we minimize over all
nonempty subsets B ⊆ {0, . . . , L} with π(B) ≤ 1

2
.

Theorem 2.5 (the conductance bound [34]). The eigenvalue gap of P is at least
1
2
ϕ(P )2.

3. Equivalence of adiabatic and quantum computation. Here we prove
Theorem 1.1 by showing how to simulate a quantum circuit consisting of L two-qubit
gates on n qubits by an adiabatic computation on n + L qubits (the other direction
was shown in [9,14]). We allow five-qubit interactions; this will be improved to three-
qubit interactions in the next section. Theorem 1.1 thus follows as a corollary from
the following theorem.

Theorem 3.1. Given a quantum circuit on n qubits with L two-qubit gates
implementing a unitary U , and ε > 0, there exists a 5-local adiabatic computation
AC(n+L, 2, Hinit, Hfinal, ε) whose running time is poly(L, 1

ε ) and whose output (after
tracing out some ancilla qubits) is ε-close (in trace distance) to U |0n〉. Moreover,
Hinit and Hfinal can be computed by a polynomial time Turing machine.

The running time we obtain here is O(ε−(5+3δ)L5+2δ) for any fixed δ > 0.

3.1. The Hamiltonian. For our construction we use the Hamiltonian defined
in [22]. Denote |γ�〉 := |α(�)〉⊗ |1�0L−�〉c, where |α(�)〉 denotes the state of the circuit
after the �th gate and the superscript c denotes the clock qubits. We would like to
define a local Hamiltonian Hinit with ground state |γ0〉 = |0n〉 ⊗ |0L〉c, and a local

Hamiltonian Hfinal with ground state |η〉 = 1√
L+1

∑L
�=0 |γ�〉 as in (1). To do this, we

write Hinit and Hfinal as a sum of terms:

Hinit := Hclockinit + Hinput + Hclock,

Hfinal :=
1

2

L∑

�=1

H� + Hinput + Hclock.

The terms in Hfinal (and likewise in Hinit) are defined such that the only state whose
energy (i.e., eigenvalue) is 0 is the desired ground state. This is done by assigning
an energy penalty to any state that does not satisfy the required properties of the
ground state. The different terms, which correspond to different properties of the
ground states, are described in the following paragraphs. The adiabatic evolution
then follows the time-dependent Hamiltonian

H(s) = (1 − s)Hinit + sHfinal.(4)

Notice that as s goes from 0 to 1, Hclockinit is slowly replaced by 1
2

∑L
�=1 H� while

Hinput and Hclock are held constant.
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We now describe each of the terms. First, Hclock checks that the clock’s state is
of the form |1�0L−�〉c for some 0 ≤ � ≤ L. This is achieved by assigning an energy
penalty to any basis state on the clock qubits that contains the sequence 01,

Hclock :=

L−1∑

�=1

|01〉〈01|c�,�+1,

where the subscript indicates which clock qubits the projection operates on. Note
that illegal clock states are eigenstates of Hclock with an eigenvalue of at least 1; legal
clock states have an eigenvalue of 0.

Next, Hinput checks that if the clock is |0L〉c, the computation qubits must be in
the state |0n〉,

Hinput :=

n∑

i=1

|1〉〈1|i ⊗ |0〉〈0|c1.

We complete the description of Hinit with Hclockinit whose goal is to check that
the clock’s state is |0L〉c,

Hclockinit := |1〉〈1|c1.

Claim 3.2. The state |γ0〉 is a ground state of Hinit with an eigenvalue of 0.5

Proof. It is easy to verify that Hinit|γ0〉 = 0. As a sum of projectors, Hinit is
positive semidefinite and hence |γ0〉 is a ground state of Hinit.

We now proceed to the first term in Hfinal. The Hamiltonian H� checks that the
propagation from step �− 1 to � is correct, i.e., that it corresponds to the application
of the gate U�. For 1 < � < L, it is defined as

H� := I ⊗ |100〉〈100|c�−1,�,�+1 − U� ⊗ |110〉〈100|c�−1,�,�+1

−U†
� ⊗ |100〉〈110|c�−1,�,�+1 + I ⊗ |110〉〈110|c�−1,�,�+1.(5)

Intuitively, the three-qubit terms above move the state of the clock one step forward,
one step backward, or leave it unchanged. The accompanying matrices U�, U

†
� describe

the associated time evolution. For the boundary cases � = 1, L, we omit one clock
qubit from these terms and define

H1 := I ⊗ |00〉〈00|1,2 − U1 ⊗ |10〉〈00|1,2 − U†
1 ⊗ |00〉〈10|1,2 + I ⊗ |10〉〈10|1,2,

HL := I ⊗ |10〉〈10|L−1,L − UL ⊗ |11〉〈10|L−1,L − U†
L ⊗ |10〉〈11|L−1,L + I ⊗ |11〉〈11|L−1,L.

(6)

Claim 3.3. The history state |η〉 is a ground state of Hfinal with an eigenvalue
of 0.

Proof. It is easy to verify that Hfinal|η〉 = 0. It remains to be noticed that for all
1 ≤ � ≤ L, H� is positive semidefinite and hence so is Hfinal.

5The state |γ0〉 is in fact the unique ground state of Hinit as will become apparent from the proof
of the spectral gap. A similar statement holds for Claim 3.3.
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3.2. Spectral gap in a subspace. Let S0 be the L + 1-dimensional subspace
spanned by |γ0〉, . . . , |γL〉. It is easy to verify the following claim.

Claim 3.4. The subspace S0 is invariant under H(s), i.e., H(s)(S0) ⊆ S0.
In this subsection, we show that the spectral gap of HS0(s), the restriction of

H to S0, is inverse polynomial in L. As mentioned in subsection 2.2, this, together
with Claim 3.4, is enough to obtain a bound on the running time of the adiabatic
algorithm.

Remark. Notice that both Hclock and Hinput are 0 on the invariant subspace S0.
This means that Theorem 3.1 holds even if we remove the terms Hclock and Hinput

from both Hinit and Hfinal. We include these terms in the Hamiltonian for the sake
of the presentation, and for consistency with the rest of the paper.

Lemma 3.5. The spectral gap of the restriction of H(s) to S0 satisfies Δ(HS0
(s)) =

Ω(L−2) for all s ∈ [0, 1].
Proof. Let us write the Hamiltonians HS0,init and HS0,final in the basis |γ0〉, . . . , |γL〉

of S0. Both Hclock and Hinput are 0 on S0 and can thus be ignored. We have the
following (L + 1) × (L + 1) matrices:

HS0,init =

⎛
⎜⎜⎜⎝

0 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎞
⎟⎟⎟⎠ ,(7)

HS0,final = 1
2
|γ0〉〈γ0| − 1

2
|γ0〉〈γ1| − 1

2
|γL〉〈γL-1| + 1

2
|γL〉〈γL|

+

L−1∑

�=1

(− 1
2
|γ�〉〈γ�−1| + |γ�〉〈γ�| − 1

2
|γ�〉〈γ�+1|)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

- 1
2

0 · · · 0

- 1
2

1 - 1
2

0
. . .

...

0 - 1
2

1 - 1
2

0
. . .

...
. . .

. . .
. . .

. . .
. . .

... 0 - 1
2

1 - 1
2

0
0 - 1

2
1 - 1

2

0 · · · 0 - 1
2

1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(8)

We now lower bound Δ(HS0(s)). We consider two cases.

The case s < 1/3. Here, HS0(s) is sufficiently close to HS0,init (whose spectral gap is
1) so we can apply the following standard lemma (see, e.g., [7, page 244]).

Lemma 3.6 (Gerschgorin’s circle theorem). Let A be any matrix with entries aij.
Consider the discs in the complex plane given by

Di =
{
z | |z − aii| ≤

∑

j �=i

|aij |
}
, 1 ≤ i ≤ n.

Then the eigenvalues of A are contained in ∪Di and any connected component of ∪Di

contains as many eigenvalues of A as the number of discs that form this component.
For s < 1/3, we have that HS0(s)1,1 < 1/6, and

∑
j �=1 HS0(s)1,j < 1/6. Moreover,

for any i �= 1, we have that HS0(s)i,i > 5/6, and
∑

j �=i HS0(s)i,j < 1/6. By the
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above lemma, we obtain that there is one eigenvalue smaller than 1/3 while all other
eigenvalues are larger than 2/3. Hence, the spectral gap is at least 1/3.

The case s ≥ 1/3. We note that HS0,final is the Laplacian of the simple random
walk [24] of a particle on a line of length L + 1. A standard result in Markov chain
theory implies Δ(HS0,final) = Ω(1/L2) [24]. For s ≥ 1/3, HS0(s) is sufficiently close
to HS0,final to apply Markov chain techniques, as we show next.

Let (α0, . . . , αL)† be the ground state of HS0(s) with eigenvalue λ. Define the
Hermitian matrix G(s) = I−HS0(s). It is easy to see that G(s) satisfies the conditions
of Fact 2.3 for all s > 0. We obtain that the largest eigenvalue μ = 1 − λ of G(s)
is positive and nondegenerate and the corresponding eigenvector (α0, . . . , αL)† has
positive entries. We can now map the matrix G(s) to a stochastic matrix P (s) as
described in subsection 2.3. The transition matrix P (s) describes a random walk on
the line of L + 1 sites (see Figure 1). Fact 2.4 implies that the limiting distribution
of P (s) is given by π = (α2

0/Z, . . . , α
2
L/Z), where Z =

∑
i α

2
i .

Pk,k−1

k − 1 k + 1k

Pk,k+1

. . .10 L. . .

Fig. 1. The random walk of P (s).

We bound the spectral gap of P (s) using the conductance bound (see subsection
2.4). To do this we need to know that π is monotone. We first show the following
claim.

Claim 3.7. For all 0 ≤ s ≤ 1, the ground state of HS0(s) is monotone, namely
α0 ≥ α1 ≥ · · · ≥ αL ≥ 0.

Proof. The case s = 0 is obvious, so assume s > 0. We first claim that the ground
state (α0, . . . , αL)† of HS0(s) = I −G(s) can be written as the limit

1

c0
lim
�→∞

(G(s)/μ)�(1, . . . , 1)†

for some constant c0 > 0. To see this, let |v0〉, . . . , |vL〉 be an orthonormal set of
eigenvectors of G(s), with corresponding eigenvalues μ0 ≥ μ1 ≥ · · · ≥ μL. By Fact
2.3, the largest eigenvalue corresponds to a unique eigenvector, and hence we have
|v0〉 = (α0, . . . , αL)†, and μ0 = μ.

The set of eigenvectors |vi〉 forms an orthonormal basis, and we can write (1, . . . , 1)†

in terms of this basis: (1, . . . , 1)† =
∑

i ci|vi〉. Now, we have that (G(s)/μ)�(1, . . . , 1)† =∑
i ci(

μi

μ )�|vi〉. By Fact 2.3 we have |μi| < μ for all i �= 0, and μ > 0. We thus have

that lim�→∞(G(s)/μ)�(1, . . . , 1)† = c0|v0〉.
It is easy to check that G(s) preserves monotonicity, namely, if G(s) is applied to

a monotone vector, the result is a monotone vector. Hence, when G(s)/μ is applied
to the monotone vector (1, . . . , 1)†, the result is a monotone vector. Thus, c0|v0〉 is
monotone. Finally, we observe that c0 > 0. This is because c0 is the inner product
between the all 1 vector, and |v0〉, whose entries are all positive by Fact 2.3. This
implies that |v0〉 is also monotone, as desired.

It follows that π is also monotone. We use this and simple combinatorial argu-
ments to prove the following claim.

Claim 3.8. For all 1/3 ≤ s ≤ 1, ϕ(P (s)) ≥ 1
6L .
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Proof. We show that for any nonempty B ⊆ {0, . . . , L}, F (B)/π(B) ≥ 1
6L . We

consider two cases. First, assume that 0 ∈ B. Let k be the smallest such that k ∈ B
but k + 1 /∈ B. Then,

F (B) ≥ πkP (s)k,k+1 = πk·
√
πk+1

μ
√
πk

G(s)k,k+1 =

√
πkπk+1

1 − λ
G(s)k,k+1 ≥ πk+1

1 − λ
G(s)k,k+1,

where the last inequality follows from the monotonicity of π. Using the definition
of G and the assumption that s ≥ 1/3 we get that G(s)k,k+1 ≥ 1/6. We also have
0 < 1−λ ≤ 1, where the second inequality follows from the fact that HS0

(s) is positive
semidefinite, and the first follows from μ > 0 which we previously deduced from Fact
2.3. Hence,

F (B)

π(B)
≥ πk+1

6π(B)
.(9)

By π(B) ≤ 1/2, we have π({k + 1, . . . , L}) ≥ 1/2. Together with π({k + 1, . . . , L}) ≤
Lπk+1 we obtain πk+1 ≥ 1/(2L). This yields the desired bound F (B)/π(B) ≥ 1/(6L).

Now assume that 0 /∈ B and let k be the smallest such that k /∈ B and k+1 ∈ B.
It is easy to see that πkP (s)k,k+1 = πk+1P (s)k+1,k. Hence, using the same argument
as before we can see that (9) holds in this case too. Since B ⊆ {k + 1, . . . , L}, we
have π({k+ 1, . . . , L}) ≥ π(B). Hence, πk+1 ≥ π(B)/L. Again, this yields the bound
F (B)/π(B) ≥ 1/(6L).

By Theorem 2.5, we have that the spectral gap of P (s) is larger than 1/(2·(6)2·L2).
By subsection 2.3, we have that Δ(HS0) ≥ μ/(2 · (6)2L2). Finally, notice that μ =
1 − λ ≥ 1

2
, because λ ≤ 〈γ0|HS0(s)|γ0〉 = s

2
≤ 1

2
.

3.3. Running time. We now complete the proof of Theorem 3.1. Note that we
have already proved something which is very close to Theorem 3.1.

Claim 3.9. Given a quantum circuit on n qubits with L gates, the adiabatic algo-
rithm with Hinit and Hfinal as defined in the previous section, with T = O(ε−δL4+2δ)
for some fixed δ > 0, outputs a final state that is within �2-distance ε of the history
state of the circuit, |η〉. The running time of the algorithm is O(T · L).

Proof. Claim 3.4 shows that S0 is invariant under H. Hence, as mentioned in sub-
section 2.2, an adiabatic evolution according to H is identical to an adiabatic evolution
according to HS0 . Using Lemma 3.5 and Theorem 2.1 (with ‖Hinit −Hfinal‖ = O(1)),
we obtain that for T as above the final state (with global phase adjusted appropriately)
is indeed ε-close in �2-norm to |η〉. By our definition, the running time of the adiabatic
algorithm is O(T · L) since ‖H(s)‖ ≤ (1 − s)‖Hinit‖ + s‖Hfinal‖ = O(L + n) = O(L).
The last equality follows from n = O(L), because each qubit is assumed to participate
in the computation (otherwise we can omit it).

In fact, one might be satisfied with this claim, which enables generating adiabat-
ically a state which is very close to |η〉, instead of our desired |α(L)〉. To see why
this might be sufficient to simulate quantum circuits, suppose for a moment that ε
is 0, and the final state is exactly |η〉. As mentioned in the introduction, we can
now measure the clock qubits of the history state, and with probability 1/L the out-
come is � = L, which means that the state of the first register is the desired state
|α(L)〉. If the measurement yields another value, we repeat the adiabatic algorithm
from scratch. To get � = L with sufficiently high probability, we repeat the process
O(L) times, which introduces an overhead factor of L. The above discussion is also
true with ε > 0, as long as it is much smaller than 1/L, the weight of |α(L)〉 in |η〉.
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However, strictly speaking, this is not sufficient to complete the proof of Theo-
rem 3.1. Indeed, the theorem as stated follows our definition of the model of adiabatic
computation, which allows one to perform one adiabatic evolution and then measure
(and possibly trace out some qubits). Classical postprocessing such as conditioning
on � being equal to L, and repeating the computation if it is not, are not allowed.
Hence, we need to adiabatically generate a state that is close to the final state of the
circuit, |α(L)〉.

This technical issue can be resolved with the following simple trick, which at
the same time allows us to avoid the overhead factor of L introduced before. We
simply add another O( 1

εL) identity gates to the original quantum circuit at the end
of its computation. This modification ensures that the history state (after tracing out
the clock qubits) is close to |α(L)〉. We then apply the adiabatic simulation to this
modified circuit. The following easy lemma makes this precise.

Lemma 3.10. Assume we can transform any given quantum circuit with L two-
qubit gates on n qubits into a k-local adiabatic computation on n+L d-dimensional
particles whose output is ε close in �2-norm to the history state of the quantum circuit
and whose running time is f(L, ε) for some function f . Then, we can transform
any given quantum circuit with L two-qubit gates on n qubits into a k-local adiabatic
computation on n+2L/ε d-dimensional particles whose output (after tracing out some
ancilla qubits) is ε close in trace distance to the final state of the circuit and whose
running time is f(2L/ε, ε/2).

Proof. Given a quantum circuit on n qubits with L gates, consider the circuit
obtained by appending to it (2

ε − 1)L identity gates. Let L′ = 2L/ε be the number of
gates in the modified circuit and let |η〉 denote its history state. By our assumption, we
can transform this modified circuit into an adiabatic computation whose output is ε/2
close in �2-norm to |η〉 and whose running time is f(L′, ε/2). Since the trace distance
between two pure states is bounded from above by the �2-distance (see, e.g., [3]), we
obtain that the output of the adiabatic computation is also ε/2 close in trace distance
to |η〉〈η|. In addition, it is easy to check that after we trace out the clock qubits from
|η〉, we are left with a state that is ε/2 close in trace distance to the final state of the
circuit. We complete the proof by applying the triangle inequality.

We can now apply this lemma on the result of Claim 3.9. This completes the
proof of Theorem 3.1, with the running time being O(ε−(5+3δ)L5+2δ).

4. Improvements and extensions. In this section we present two extensions
of the result of the previous section. We note that the techniques developed here will
be used again in section 5, where we impose additional geometrical constraints on the
system.

The first result is presented in subsection 4.1. It is related to the spectral gap
of the Hamiltonian H(s) used in section 3. We showed there that inside a preserved
subspace S0 this Hamiltonian has a nonnegligible spectral gap. This was enough for
the proof of Theorem 1.1 since the entire adiabatic evolution is performed inside this
subspace. Here, we extend this result and show that the spectral gap of H(s) in the
entire Hilbert space is also nonnegligible. The existence of a nonnegligible spectral
gap in the entire Hilbert space might have some relevance when dealing with adiabatic
computation in the presence of noise (see, e.g., [8]).

The second result is given in subsection 4.2. There, we show that Theorem
1.1 holds with 3-local Hamiltonians (rather than 5). The proof of this result uses
techniques developed in the above spectral gap proof together with some new tools.
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4.1. Spectral gap.
Lemma 4.1. For all 0 ≤ s ≤ 1, Δ(H(s)) = Ω(L−3).
Proof. Let S be the subspace of dimension (L+ 1) · 2n spanned by all legal clock

states. Observe that S is preserved by H(s), i.e., H(s)(S) ⊆ S. Hence, the eigenstates
of H(s) belong either to S or to its orthogonal subspace S⊥. We can therefore analyze
the spectrum of HS(s) and of HS⊥(s) separately.

First, due to the term Hclock and the fact that all other terms are positive semidef-
inite, the ground energy of HS⊥(s) is at least 1. Second, as we will show next using
Lemma 4.2, the spectral gap of HS(s) is Ω(L−3). To establish the same spectral gap
for H(s), it is enough to show that the ground energy of HS(s) is smaller than 1

2
,

which would mean that the spectral gap of H(s) is exactly that of HS(s). Indeed,
observe that

〈γ0|HS(s)|γ0〉 = 〈γ0|HS0(s)|γ0〉 = s/2 ≤ 1/2,

where the first equality holds because |γ0〉 ∈ S0 and the second follows from (7) and
(8). Therefore, the smallest eigenvalue of HS(s) is bounded from above by 1/2.

Lemma 4.2. Let S denote the subspace spanned by all legal clock states. Then the
ground state of HS(0) is |γ0〉, and that of HS(1) is |η〉. Moreover, for all 0 ≤ s ≤ 1,
Δ(HS(s)) = Ω(L−3).

Proof. We can write S as the direct sum of 2n orthogonal subspaces S0,S1, . . . ,S2n−1,
defined as follows. For 0 ≤ j ≤ 2n−1 and 0 ≤ � ≤ L, define |γj

� 〉 := |αj(�)〉⊗|1�0L−�〉,
where |αj(�)〉 is the state of the quantum circuit at time � if the input state corre-
sponds to the binary representation j. Note that |γ0

� 〉 = |γ�〉. The space Sj is spanned

by {|γj
0〉, . . . , |γj

L〉}. It is easy to check the following claim (see Figure 2).
Claim 4.3. The Hamiltonian HS(s) is block diagonal in the Sj’s.

HS0

HS1

HS2n−1

0

0

Fig. 2. HS(s) is block diagonal.

By Claims 3.2, 3.3, and 4.3, and Lemma 3.5, it suffices to argue that the ground
energy of HSj (s) for any j �= 0 is larger than the ground energy of HS0(s) by at
least Ω(1/L3). Essentially, this follows from the penalty given by the term Hinput

to nonzero input states. The proof, however, is slightly subtle since Hinput assigns a

penalty only to states |γj
� 〉 with � = 0.

Notice that

HSj (s) = HS0(s) + HSj ,input.

Moreover, for 1 ≤ j ≤ 2n − 1, HSj ,input is diagonal, with its top-left element at least
1 (it actually equals the number of 1s in the binary representation of j) and all other
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diagonal elements zero. Hence, if we define M as

M :=

⎛
⎜⎜⎜⎝

1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎞
⎟⎟⎟⎠ ,

then HSj ,input −M is positive definite and therefore we can lower bound the ground
energy of HSj (s) with the ground energy of HS0(s) + M . For this, we apply the
following geometrical lemma by Kitaev (Lemma 14.4 in [22]).

Lemma 4.4. Let H1, H2 be two Hamiltonians with ground energies a1, a2, respec-
tively. Suppose that for both Hamiltonians the difference between the energy of the
(possibly degenerate) ground space and the next highest eigenvalue is larger than Λ,
and that the angle between the two ground spaces is θ. Then the ground energy of
H1 + H2 is at least a1 + a2 + 2Λ sin2(θ/2).

We now apply this lemma to HS0(s) and M . By Lemma 3.5, the spectral gap of
HS0

(s) is Ω(1/L2). The spectral gap of M is clearly 1. Moreover, using Claim 3.7, we
obtain that the angle between the two ground spaces satisfies cos(θ) ≤ 1−1/L by the
monotonicity property of the ground state of HS0(s) (see Claim 3.7). It follows that
the ground energy of HSj (s) is higher by at least Ω(1/L3) than that of HS0(s).

Remark. Notice that we only used the following properties of Hinput: its restriction
to S0 is 0 and its restriction to Sj for any j �= 0 is a diagonal matrix in the basis

|γj
0〉, . . . , |γj

L〉 whose top-left entry is at least 1 and all other entries are nonnegative.
This observation will be useful in section 5.

4.2. Three-local Hamiltonian. We now show that adiabatic computation with
3-local Hamiltonians is sufficient to simulate standard quantum computations.

Theorem 4.5. Given a quantum circuit on n qubits with L two-qubit gates
implementing a unitary U , and ε > 0, there exists a 3-local adiabatic computation
AC(n+L, 2, Hinit, Hfinal, ε) whose running time is poly(L, 1

ε ) and whose output state
is ε-close (in trace distance) to U |0n〉. Moreover, Hinit and Hfinal can be computed by
a polynomial time Turing machine.

The proof of this theorem builds on techniques developed in previous subsections.

4.2.1. The Hamiltonian. Consider the Hamiltonian constructed in subsection
3.1. Notice that all terms except H� are already 3-local (some are even 2-local or 1-
local). In order to obtain a 3-local Hamiltonian, we remove two clock qubits from the
5-local terms in H� and leave only the �th clock qubit. More precisely, for 1 < � < L
define

H ′
� := I ⊗ |100〉〈100|c�−1,�,�+1 − U� ⊗ |1〉〈0|c� − U†

� ⊗ |0〉〈1|c� + I ⊗ |110〉〈110|c�−1,�,�+1.

For the boundary cases l = 1, L we define

H ′
1 := I ⊗ |00〉〈00|c1,2 − U1 ⊗ |1〉〈0|c1 − U†

1 ⊗ |0〉〈1|c1 + I ⊗ |10〉〈10|c1,2,
H ′

L := I ⊗ |10〉〈10|cL−1,L − U� ⊗ |1〉〈0|cL − U†
L ⊗ |0〉〈1|cL + I ⊗ |11〉〈11|cL−1,L.

Note that because of the terms |1〉〈0|c and |0〉〈1|c, these Hamiltonians no longer
leave the subspace S invariant. To mend this, we assign a much larger energy penalty
to illegal clock states. As we will see soon, this makes the lower part of the spectrum
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of our Hamiltonians behave essentially like in their restriction to S. Set J = ε−2L6

and define

H ′
init := Hclockinit + Hinput + J ·Hclock,

H ′
final :=

1

2

L∑

�=1

H ′
� + Hinput + J ·Hclock.

The Hamiltonian we use here is thus

H ′(s) = (1 − s)H ′
init + sH ′

final.

Essentially the same proof as that of Claim 3.2 shows that |γ0〉 is a ground state of
H ′

init. However, it turns out that |η〉 is no longer a ground state of H ′
final (the proof

of Claim 3.3 does not apply since H ′
� is no longer positive semidefinite). However, as

we shall see later, |η〉 is very close to the ground state of H ′
final.

4.2.2. The spectral gap. Our first claim is that, when restricted to S, H ′ and
H are identical.

Claim 4.6. For any 0 ≤ s ≤ 1, HS(s) = H ′
S(s).

Proof. Let ΠS be the orthogonal projection on S. Then our goal is to show that
ΠSH(s)ΠS = ΠSH ′(s)ΠS . The only difference between H(s) and H ′(s) is the factor
of J in Hclock, and that the H� terms are replaced by H ′

�. We note that HS,clock is
zero. Hence, it suffices to show that for all 1 ≤ � ≤ L,

ΠSH�ΠS = ΠSH ′
�ΠS .

For this, observe that for any 1 < � < L,

ΠS |1〉〈0|c�ΠS = |1�0L−�〉〈1�−10L−(�−1)|c = ΠS |110〉〈100|c�−1,�,�+1ΠS

and similarly for |0〉〈1|c�. A similar statement holds for � = 1, L with the right-hand
term modified appropriately.

Lemma 4.2 and Claim 4.6 imply that Δ(H ′
S(s)) = Ω(L−3). We now want to

deduce from this a lower bound on Δ(H ′(s)), without the restriction to S. For this
we use the following claim. Essentially, it says that if J is large enough, then the lower
part of the spectrum of H ′(s) is similar to that of H ′

S(s). More precisely, it shows that
the lowest eigenvalues, the second lowest eigenvalues, and the ground states of the
two Hamiltonians are close. Intuitively, this holds since the energy penalty given to
states in S⊥, the orthogonal space to S, is very high and hence any eigenvector with
low eigenvalue must be almost orthogonal to S⊥ (and hence almost inside S). We
note that a similar lemma was used in [20] in the context of QMA-complete problems.

Lemma 4.7. Let H = H1 + H2 be the sum of two Hamiltonians operating on
some Hilbert space H = S + S⊥. The Hamiltonian H2 is such that S is a zero
eigenspace and the eigenvectors in S⊥ have an eigenvalue of at least J > 2K where
K = ‖H1‖. Let a and b be the lowest and second lowest eigenvalues of HS , and let a′

and b′ be the corresponding quantities for H. Then the lowest eigenvalue of H satisfies

a− K2

J−2K ≤ a′ ≤ a and the second lowest eigenvalue of H satisfies b′ ≥ b− K2

J−2K . If,
moreover, b > a, then the ground states |ξ〉, |ξ′〉 of HS , H, respectively, satisfy

|〈ξ|ξ′〉|2 ≥ 1 − K2

(b− a)(J − 2K)
.
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Proof. First, we show that a′ ≤ a. Using H2|ξ〉 = 0,

〈ξ|H|ξ〉 = 〈ξ|H1|ξ〉 + 〈ξ|H2|ξ〉 = a

and hence H must have an eigenvector of eigenvalue at most a.
We now show the lower bound on a′. We can write any unit vector |v〉 ∈ H as

|v〉 = α1|v1〉 + α2|v2〉, where |v1〉 ∈ S and |v2〉 ∈ S⊥ are two unit vectors and α1, α2

are two nonnegative reals satisfying α2
1 + α2

2 = 1. Then we have,

〈v|H|v〉 ≥ 〈v|H1|v〉 + Jα2
2

= (1 − α2
2)〈v1|H1|v1〉 + 2α1α2Re〈v1|H1|v2〉 + α2

2〈v2|H1|v2〉 + Jα2
2

≥ 〈v1|H1|v1〉 −Kα2
2 − 2Kα2 −Kα2

2 + Jα2
2

= 〈v1|H1|v1〉 + (J − 2K)α2
2 − 2Kα2,

where we used α2
1 = 1 − α2

2 and α1 ≤ 1. Since (J − 2K)α2
2 − 2Kα2 is minimized for

α2 = K/(J − 2K), we have

〈v|H|v〉 ≥ 〈v1|H1|v1〉 − K2

J − 2K
.(10)

We obtain the required lower bound by noting that 〈v1|H1|v1〉 ≥ a.
Consider now the two-dimensional space L spanned by the two eigenvectors of H

corresponding to a′ and b′. For any unit vector |v〉 ∈ L we have 〈v|H|v〉 ≤ b′. Hence, if
L contains a vector |v〉 orthogonal to S, then we have b′ ≥ 〈v|H|v〉 ≥ J −K > K ≥ b
and we are done. Otherwise, the projection of L on S must be a two-dimensional
space. Being two-dimensional, this space must contain a vector orthogonal to |ξ〉.
Let |v〉 be a vector in L whose projection on S is orthogonal to |ξ〉. By (10), b′ ≥
〈v|H|v〉 ≥ b− K2

J−2K , as required.

Finally, let β = |〈ξ|ξ′〉|2. Then we can write |ξ〉 =
√
β|ξ′〉+

√
1 − β|ξ′⊥〉 for some

unit vector |ξ′⊥〉 orthogonal to |ξ′〉. Since |ξ′〉 is an eigenvector of H,

a = 〈ξ|H|ξ〉 = β〈ξ′|H|ξ′〉 + (1 − β)〈ξ′⊥|H|ξ′⊥〉
≥ βa′ + (1 − β)b′

≥ β
(
a− K2

J − 2K

)
+ (1 − β)

(
b− K2

J − 2K

)

= a + (1 − β)(b− a) − K2

J − 2K
.

Rearranging, we obtain the required bound.
We can now bound the spectral gap of H ′(s).
Lemma 4.8. For all 0 ≤ s ≤ 1, Δ(H ′(s)) = Ω(L−3).
Proof. We apply Lemma 4.7 by setting H2 = J ·Hclock and H1 to be the remaining

terms such that H ′(s) = H1 +H2. Note that Lemma 4.7 implies that the spectral gap
of H ′(s) is smaller than that of H ′

S(s) (which is Ω(1/L3) by Lemma 4.2) by at most
K2/(J − 2K). But it is easy to see that K = O(L), due to the fact that H1 consists
of O(L) terms, each of constant norm. The result follows since J = ε−2L6.

This shows the desired bound on the spectral gap. Before we complete the proof,
we must show that the final ground state is close to the history state.

Lemma 4.9. The ground state of H ′(1) is ε-close to |η〉.
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Proof. Apply Lemma 4.7 as in the proof of Lemma 4.8, for the case s = 1. We
obtain that the inner product squared between the ground state of H ′(1) and |η〉, is

at least 1 − δ, with δ = K2

(b−a)(J−2K)
= O(L−1ε2), where we have used K = O(L),

J = ε−2L6, and b − a = Ω(1/L3) by Lemma 4.2. This implies that the �2-distance
between the ground state of H ′(1) and |η〉 is O(ε/

√
L) ≤ ε.

We now complete the proof of Theorem 4.5. The adiabatic algorithm starts with
|γ0〉 and evolves according to H ′(s) for T = θ(ε−δL7+3δ). Such a T satisfies the
adiabatic condition (see (2)), using ‖H ′

final−H ′
init‖ = O(L). By Theorem 2.1 the final

state is ε-close in �2-distance to the ground state of H ′
final. Lemma 4.9 implies that

this state is ε-close in �2-distance to |η〉. Using the triangle inequality we note that
the output of the adiabatic computation is 2ε-close to |η〉. The running time of this
algorithm is O(T · J · L) = O(T · ε−2L7) = O(ε−(2+δ)L14+3δ).

We can now apply Lemma 3.10 to obtain a modified adiabatic computation whose
output state after tracing out the clock qubits is ε-close in trace distance to U |0n〉.
The running time is O(ε−(16+4δ)L14+3δ) for any fixed δ > 0.

5. Two-local Hamiltonians on a two-dimensional lattice. In this section
we prove Theorem 1.3. We simulate a given quantum circuit by an adiabatic evolution
of a system of 6-dimensional quantum particles arranged on a two-dimensional grid.
More precisely, we prove the following theorem.

Theorem 5.1. Given a quantum circuit on n qubits with L two-qubit gates
implementing a unitary U , and ε > 0, there exists a 2-local adiabatic computa-
tion AC(poly(n,L), 6, Hinit, Hfinal, ε) such that Hinit and Hfinal involve only nearest
neighbors on a 2-dimensional grid. Moreover, the running time of this algorithm is
poly(L, 1

ε ), and its output (after performing a partial measurement on each particle)
is ε-close (in trace distance) to U |0n〉. Finally, Hinit and Hfinal can be computed by a
polynomial time Turing machine.

As mentioned in the introduction, the main problem in proving this theorem,
and more precisely, in moving to a two-dimensional grid, is the notion of a clock. In
the constructions of the previous section, the clock is represented by an additional
register that counts the clock steps in unary representation. The terms H�, which
check the correct propagation in the �th time step, interact between the �th qubit of
the clock and the corresponding qubits on which U� operates. If we want to restrict
the interaction to nearest neighbors in two dimensions using this idea, then no matter
how the clock qubits are arranged on the grid, we run into problems interacting the
qubits with the corresponding clock qubits in a local way. The solution to this problem
lies in the way we represent the clock. Instead of using an extra register, we embed
the clock into the same particles that perform the computation by defining the notion
of a shape of a state, to be defined later. We then create a sequence of legal shapes,
and show how states can evolve from one legal shape to another.

Although the construction of this section is more involved than the ones of the
previous section, its analysis follows almost immediately from the analysis carried
out in Theorem 4.5. To achieve this, we make sure that the Hamiltonians and some
relevant subspaces are as similar as possible to those in the previous section.

5.1. Assumptions on the input circuit. To simplify the construction of our
adiabatic evolution, we first assume without loss of generality that the quantum circuit
we wish to simulate has a particular layout of its gates. Namely, it consists of R
rounds, where each round is composed of n nearest neighbor gates (some can be the
identity gate), followed by n identity gates, as in Figure 3. More specifically, the first



186 AHARONOV, van DAM, KEMPE, LANDAU, LLOYD, AND REGEV

gate in each round is a one-qubit gate applied to the first qubit. For i = 2, . . . , n, the
ith gate is a two-qubit gate applied to qubits i−1 and i. For i = n+1, . . . , 2n the ith
gate is an identity gate applied to the (2n + 1 − i)th qubit. These identity gates are
included for convenience of notation. Any circuit can be transformed to such a form
by introducing extra identity and swap gates. Let L = 2nR be the total number of
gates in the circuit so obtained. Clearly, L is at most polynomially larger than the
number of gates in the original circuit.

|0〉
|0〉
|0〉
|0〉 I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Fig. 3. The modified circuit with R = 3.

5.2. The particles of the adiabatic quantum system. The adiabatic com-
putation is performed on 6-dimensional particles, arranged on a two-dimensional
square lattice with n rows and R + 1 columns. We number the rows from 1 (top) to
n (bottom) and the columns from 0 (left) to R (right). Columns number 0 and 1 are
used to simulate the first round of the circuit. Column numbers 1 and 2 are used for
the second round of computation, and so on. We denote the six internal states of a
particle by |©〉, | ↑©〉, | ↓©〉, | ⇑©〉, | ⇓©〉, and |×©〉. These six states are divided into four
phases: the unborn phase |©〉, the first phase | ↑©〉, | ↓©〉, the second phase | ⇑©〉, | ⇓©〉,
and the dead phase |×©〉. The two states in the first phase and the two states in
the second phase correspond to computational degrees of freedom, namely to the |0〉
and |1〉 states of a qubit. We write | ↑↓©〉 to denote an arbitrary state in the subspace
spanned by | ↑©〉 and | ↓©〉. Similarly, | �©〉 denotes a state in the space spanned by | ⇑©〉
and | ⇓©〉. The phases are used to define the shape of the basis states. A shape of a
basis state is simply an assignment of one of the four phases to each particle, ignoring
the computational degrees of freedom inside the first and second phase. These shapes
will be used instead of the clock states of the previous section.

5.3. Geometrical clock. We now describe the way we represent a clock using
shapes. In the previous constructions, the space S of dimension 2n(L + 1) was the
ground space of the clock, i.e., the space spanned by legal clock states. Inside the
clock register there were L+ 1 legal clock states. Note that each such clock state can
be described, essentially, in a geometric way by the “shape” of the clock particles:
how many 1’s precede how many 0’s.

We now describe the corresponding subspaces involved in our construction for
the two-dimensional case. For each 0 ≤ � ≤ L, we have a 2n-dimensional subspace
corresponding to that clock state. Each of these L+ 1 subspaces can be described by
its shape, that is, a setting of one of the four phases to each particle. See Figure 4 for
an illustration with n = 6, R = 6. The six shapes shown correspond to clock states
� = 0, � = 4n, � = 4n + 3, � = 5n + 2, � = 6n, and � = 2nR, respectively. Notice that
each shape has exactly n particles in the first or second phase. Hence, the dimension
of the subspace induced by each shape is 2n. As � goes from 0 to L, the shape changes
from that shown in Figure 4a to that shown in Figure 4f. The locations at which the
changes occur form a snake-like pattern winding down and up the lattice, following
the layout of the gates in the input circuit (see Figure 3 for an example with R = 3).
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a)

↑↓© © © © © © ©
↑↓© © © © © © ©
↑↓© © © © © © ©
↑↓© © © © © © ©
↑↓© © © © © © ©
↑↓© © © © © © ©

b)

×© ×© ↑↓© © © © ©
×© ×© ↑↓© © © © ©
×© ×© ↑↓© © © © ©
×© ×© ↑↓© © © © ©
×© ×© ↑↓© © © © ©
×© ×© ↑↓© © © © ©

c)

×© ×© �© © © © ©
×© ×© �© © © © ©
×© ×© �© © © © ©
×© ×© ↑↓© © © © ©
×© ×© ↑↓© © © © ©
×© ×© ↑↓© © © © ©

d)

×© ×© �© © © © ©
×© ×© �© © © © ©
×© ×© �© © © © ©
×© ×© �© © © © ©
×© ×© ×© ↑↓© © © ©
×© ×© ×© ↑↓© © © ©

e)

×© ×© ×© ↑↓© © © ©
×© ×© ×© ↑↓© © © ©
×© ×© ×© ↑↓© © © ©
×© ×© ×© ↑↓© © © ©
×© ×© ×© ↑↓© © © ©
×© ×© ×© ↑↓© © © ©

f)

×© ×© ×© ×© ×© ×© ↑↓©
×© ×© ×© ×© ×© ×© ↑↓©
×© ×© ×© ×© ×© ×© ↑↓©
×© ×© ×© ×© ×© ×© ↑↓©
×© ×© ×© ×© ×© ×© ↑↓©
×© ×© ×© ×© ×© ×© ↑↓©

Fig. 4. Legal shapes of clock states for n = 6, R = 6 at different stages of the computation (see
subsection 5.3).

We now describe the legal shapes more formally.

1. The shape corresponding to clock state � = 2nr + k for 0 ≤ k ≤ n has its
r leftmost columns in the dead phase. The top k particles in the r + 1st
column are in their second phase while the bottom n − k are in the first
phase. Particles in the remaining R− r columns are all in the unborn phase.

2. The shape corresponding to clock state � = 2nr+n+k for 1 ≤ k ≤ n−1 has,
as before, its r leftmost columns in the dead phase. The r + 1st column has
its n− k topmost particles in the second phase, and its remaining k particles
in the dead phase. The r+ 2nd column has its n− k topmost particles in the
unborn phase and its remaining k particles in the first phase. All remaining
particles are in the unborn phase.

The subspace S is defined as the (L+1)2n-dimensional space spanned by all legal
shapes. As in previous sections we partition S into 2n subspaces Sj . Each subspace

Sj is spanned by L + 1 orthogonal states |γj
0〉, . . . , |γj

L〉, defined as follows. For each

0 ≤ � ≤ L and 0 ≤ j ≤ 2n − 1, the shape of |γj
� 〉 corresponds to �. The state of the

n active particles (i.e., those in either the first or second phase), when read from top
to bottom, corresponds to the state of the circuit after the first � gates are applied
to an initial state corresponding to the binary representation of j; i.e., it corresponds
to the state U� · U�−1 · · ·U1|j〉. More precisely, these particles are in a superposition
obtained by mapping this state to the state of the n active particles in the following
way: |0〉 to ↑© (or ⇑© for a second phase particle) and |1〉 to ↓© (or ⇓© for a second
phase particle). We often denote |γ0

� 〉, which corresponds to the all 0 input, by |γ�〉.
For example, |γ0〉 is shown in Figure 5.
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↑© © © © © © ©
↑© © © © © © ©
↑© © © © © © ©
↑© © © © © © ©
↑© © © © © © ©
↑© © © © © © ©

Fig. 5. The initial state.

With the risk of being somewhat redundant, let us now give an alternative descrip-
tion of the states |γj

0〉, . . . , |γj
L〉. This description is more helpful in understanding the

Hamiltonians H ′′
� which we will define shortly. Consider a state |γj

� 〉 for some � = 2rn.
The n particles in the rth column are in their first phase and their computational de-
grees of freedom correspond to the state of the circuit’s qubits at the beginning of
the rth round. Particles to the left of this column are dead, those to the right of this
column are unborn. The state |γj

�+1〉 is obtained from |γj
� 〉 by changing the topmost

particle in the rth column to a second phase particle and applying the first gate in
the rth round (a one-qubit gate) to its computational degrees of freedom. Next, the
state |γj

�+2〉 is obtained from |γj
�+1〉 by changing the second particle from above in the

rth column to a second phase particle and applying the second gate in the rth round
(a two-qubit gate) to both this particle and the one on top of it. We continue in a
similar fashion until we reach |γj

�+n〉, in which the entire rth column is in the second
phase. We refer to these steps as the downward stage.

Next, let us describe the upward stage. The state |γj
�+n+1〉 is obtained from

|γj
�+n〉 by “moving” the bottommost particle in the rth column one location to the

right. More precisely, the bottommost particle changes to the dead phase and the one
to the right of it changes to the first phase. The computational degrees of freedom
are the same in both states. This corresponds to the fact that the n + 1st gate in a
round of the circuit is the identity gate.6 Continuing in a similar fashion, we see that
the upwards stage ends in the state |γj

�+n+n〉 = |γj
2(r+1)n〉 that matches the above

description of the first state in a round.

5.4. The Hamiltonian. We now construct a two-local Hamiltonian that guar-
antees correct propagation from one γ state to the next. In other words, the Hamil-
tonian has the history state, namely the superposition over all the γ states, as its
ground state. The construction of this Hamiltonian should be more or less clear by
now, where the only subtleties are due to edge cases.

The initial and final Hamiltonians are defined as

H ′′
init := H ′′

clockinit + H ′′
input + J ·H ′′

clock,

H ′′
final :=

1

2

L∑

�=1

H ′′
� + H ′′

input + J ·H ′′
clock,

where J = ε−2 · L6. These Hamiltonians are chosen to be as similar as possible to
the corresponding Hamiltonians in previous sections. For example, H ′′

clock has as its

6We could allow arbitrary one-qubit gates here instead of identity gates. This leads to a slightly
more efficient construction but also to more cumbersome Hamiltonians.
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ground space the space of legal clock states, S. As before, it allows us to essentially
project all other Hamiltonians on S, by assigning a large energy penalty to states
with illegal shape. Also, the Hamiltonians H ′′

� (once projected to S) check correct
propagation from one step to the next. Other terms also serve similar roles as before.

Let us start with the simplest terms. Define

H ′′
input :=

n∑

i=1

(| ↓©〉〈 ↓©|)i,1.

The indices indicate the row and column of the particle on which the Hamiltonian
operates. This Hamiltonian checks that none of the particles in the leftmost column
are in | ↓©〉. Then, define

H ′′
clockinit = (I − | ↑©〉〈 ↑©| − | ↓©〉〈 ↓©|)1,1.

This Hamiltonian checks that the top-left particle is in a | ↑↓©〉 state. The remaining
terms are described in the following subsections.

5.4.1. The clock Hamiltonian. The shapes we define satisfy the following
important property: there exist two-local conditions that guarantee that a shape is
legal. This allows us to define a two-local clock Hamiltonian, H ′′

clock, whose ground
space is exactly S, the (L + 1)2n-dimensional space spanned by all legal shapes.

Table 1

Local rules for basis state to be in S.

Forbidden Guarantees that

© ↑↓©,©�©,©×© © is to the right of all other qubits

©×©, ↑↓©×©, �©×© ×© is to the left of all other qubits
©×©, ×©© © and ×© are not horizontally adjacent

↑↓© ↑↓©, ↑↓©�©,
�© ↑↓©, �©�© only one of ↑↓©, �© per row
©
�© ,

↑↓©
�© ,

×©
�© only �© above �©

↑↓©
© ,

↑↓©
�© ,

↑↓©
×© only ↑↓© below ↑↓©

©
×© ,

×©
© © and ×© are not vertically adjacent

�©
© ,

×©
↑↓© no © below �© and no ↑↓© below ×©

Claim 5.2. A shape is legal if and only if it contains none of the forbidden
configurations of Table 1.

Proof. It is easy to check that any legal shape contains none of the forbidden
configurations. For the other direction, consider any shape that contains none of
these configurations. Observe that each row must be of the form ×©∗[ ↑↓©, �©]©∗, that
is, it starts with a sequence of zero or more ×©, it then contains either ↑↓© or �©, and
then ends with a sequence of zero or more ©. Columns can be of three different
forms. Read from top to bottom, it is either �©∗ ↑↓©∗, �©∗×©∗, or ©∗ ↑↓©∗. It is now easy
to verify that such a shape must be one of the legal shapes.

Using this claim, we can define a two-local nearest-neighbor Hamiltonian that
guarantees a legal shape. For example, if the rule forbids a particle at location (i, j) in
state © to the left of a particle at location (i, j+1) in state ×©, then the corresponding
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term in the Hamiltonian is (|©, ×©〉〈©, ×©|)(i,j),(i,j+1). Summing over all the forbidden
configurations of Table 1 and over all relevant pairs of particles, we have

H ′′
clock :=

∑

r∈rules

Hr.

Note that the ground space of H ′′
clock is the (L + 1)2n-dimensional space S.

5.4.2. The propagation Hamiltonian. The choice of legal shapes has the
following important property: the shape of � and that of � + 1 differ in at most two
locations. This means that for any � and j, the shape of |γj

�−1〉 and that of |γj
� 〉 differ

in at most two locations. Moreover, if we consider the state of the n active particles in
both states we see that these differ on at most two particles, namely, those on which
the �th gate in the circuit acts. Crucially, and this is where we use our assumption
on the form of the circuit (Figure 3), the particle(s) on which the �th gate acts are
at the same location as the particle(s) whose phase changes. It is this structure that
allows us to define the Hamiltonians H ′′

� . These Hamiltonians act on two particles
and “simultaneously” advance the clock (by changing the shape) and advance the
computational state (by modifying the state of the active particles). Since |γ�〉 differs
from |γ�−1〉 in at most two adjacent lattice sites, this can be done using a two-body
nearest neighbor Hamiltonian.

The definition of H ′′
� depends on whether � is in the downward phase (i.e., is of

the form 2rn+k for 1 ≤ k ≤ n) or in the upward phase (i.e., is of the form 2rn+n+k
for 1 ≤ k ≤ n). We first define H ′′

� for the upward phase. Assume � = 2rn + n + k
for some 0 ≤ r < R, 1 < k < n and let i = n− k + 1 be the row in which |γ�−1〉 and
|γ�〉 differ. Then,

H ′′
� :=

∣∣∣ ⇑©×©
〉〈 ⇑©

×©
∣∣∣i,r
i+1,r

+
∣∣∣©↑©

〉〈©
↑©
∣∣∣i−1,r+1

i,r+1
− (| ⇑©,©〉〈×©, ↑©| + |×©, ↑©〉〈 ⇑©,©|)(i,r)(i,r+1)

+
∣∣∣ ⇓©×©

〉〈 ⇓©
×©

∣∣∣i,r
i+1,r

+
∣∣∣©↓©

〉〈©
↓©
∣∣∣i−1,r+1

i,r+1
− (| ⇓©,©〉〈×©, ↓©| + |×©, ↓©〉〈 ⇓©,©|)(i,r)(i,r+1) .

The first line corresponds to changing the state | ⇑©,©〉 into |×©, ↑©〉. The second
line is similar for | ⇓©,©〉 and |×©, ↓©〉. The purpose of the first two terms in each
line is the same as that of |100〉〈100|c and |110〉〈110|c in H� from previous sections.7

The difference is that here, to uniquely identify the current clock state, we need to
consider particles on top of each other. The remaining terms in each line correspond
to |100〉〈110|c and |100〉〈110|c in H�.

For the case k = 1, n, the definition is

H ′′
2rn+n+1 := | ⇑©〉〈 ⇑©|n,r +

∣∣∣©↑©
〉〈©

↑©
∣∣∣n−1,r+1

n,r+1
− (| ⇑©,©〉〈×©, ↑©| + |×©, ↑©〉〈 ⇑©,©|)(n,r)(n,r+1)

+ | ⇓©〉〈 ⇓©|n,r +
∣∣∣©↓©

〉〈©
↓©
∣∣∣n−1,r+1

n,r+1
− (| ⇓©,©〉〈×©, ↓©| + |×©, ↓©〉〈 ⇓©,©|)(n,r)(n,r+1) ,

H ′′
2rn+2n :=

∣∣∣ ⇑©×©
〉〈 ⇑©

×©
∣∣∣1,r
2,r

+ | ↑©〉〈 ↑©|1,r+1 − (| ⇑©,©〉〈×©, ↑©| + |×©, ↑©〉〈 ⇑©,©|)(1,r)(1,r+1)

+
∣∣∣ ⇓©×©

〉〈 ⇓©
×©

∣∣∣1,r
2,r

+ | ↓©〉〈 ↓©|1,r+1 − (| ⇓©,©〉〈×©, ↓©| + |×©, ↓©〉〈 ⇓©,©|)(1,r)(1,r+1) .

7There are other (equally good) ways to define these terms. For example, it is possible to define
them so that they both act on the rth column.
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For the downward stage, H ′′
� checks that a gate is applied correctly. For � = 2nr+k

and 1 < k < n we define

H ′′
� :=

(
0 −U�

−U†
� 0

)
+

(∣∣∣ ⇑©↑©
〉〈 ⇑©

↑©
∣∣∣ +

∣∣∣ ⇑©↓©
〉〈 ⇑©

↓©
∣∣∣ +

∣∣∣ ⇓©↑©
〉〈 ⇓©

↑©
∣∣∣ +

∣∣∣ ⇓©↓©
〉〈 ⇓©

↓©
∣∣∣
)

k−1,r

k,r

+

(∣∣∣ ⇑©↑©
〉〈 ⇑©

↑©
∣∣∣ +

∣∣∣ ⇑©↓©
〉〈 ⇑©

↓©
∣∣∣ +

∣∣∣ ⇓©↑©
〉〈 ⇓©

↑©
∣∣∣ +

∣∣∣ ⇓©↓©
〉〈 ⇓©

↓©
∣∣∣
)

k,r

k+1,r.

The last two terms are meant, as before, to replace the terms |110〉〈110|c and |100〉〈100|c.
Once again, to uniquely identify the current clock state, we need to consider parti-
cles on top of each other. The first term represents a Hamiltonian that acts on the
two particles in positions (k, r) and (k + 1, r). These particles span a 36-dimensional
space. The matrix shown above is in fact the restriction of this Hamiltonian to the
8-dimensional space spanned by

∣∣∣ ⇑©↑©
〉 ∣∣∣ ⇑©↓©

〉 ∣∣∣ ⇓©↑©
〉 ∣∣∣ ⇓©↓©

〉 ∣∣∣ ⇑©⇑©
〉 ∣∣∣ ⇑©⇓©

〉 ∣∣∣ ⇓©⇑©
〉 ∣∣∣ ⇓©⇓©

〉

(recall that U� acts on two qubits and is therefore a 4 × 4 matrix). Everywhere else
in this 36-dimensional subspace, this Hamiltonian acts trivially, i.e., is 0.

For the case k = n we slightly modify the terms that identify the clock states

H ′′
2nr+n :=

(
0 −U2nr+n

−U†
2nr+n 0

)
+

(∣∣∣ ⇑©↑©
〉〈 ⇑©

↑©
∣∣∣ +

∣∣∣ ⇑©↓©
〉〈 ⇑©

↓©
∣∣∣ +

∣∣∣ ⇓©↑©
〉〈 ⇓©

↑©
∣∣∣

+
∣∣∣ ⇓©↓©

〉〈 ⇓©
↓©
∣∣∣
)

n−1,r

n,r

+ (| ⇑©〉〈 ⇑©| + | ⇓©〉〈 ⇓©|)n,r .
For the case k = 1 we have

H ′′
2nr+1 :=

(
0 −U2nr+1

−U†
2nr+1 0

)
+ (| ↑©〉〈 ↑©| + | ↓©〉〈 ↓©|)1,r

+

(∣∣∣ ⇑©↑©
〉〈 ⇑©

↑©
∣∣∣ +

∣∣∣ ⇑©↓©
〉〈 ⇑©

↓©
∣∣∣ +

∣∣∣ ⇓©↑©
〉〈 ⇓©

↑©
∣∣∣

+
∣∣∣ ⇓©↓©

〉〈 ⇓©
↓©
∣∣∣
)

1,r

2,r,

where the first term shows the restriction an operator acting on the particle (1, r)
to the four-dimensional space spanned by | ↑©〉, | ↓©〉, | ⇑©〉, | ⇓©〉 (recall that U2nr+1 is a
one-qubit gate).

5.5. Spectral gap. The analysis of the spectral gap follows almost immediately
from that in subsection 4.2.2. The main effort is in verifying that the restriction
of each of our Hamiltonians to S is identical to the restriction of the corresponding
Hamiltonian in previous sections to S, when both are constructed according to the
modified quantum circuit of subsection 5.1. This, in fact, does not hold for H ′′

input,
whose projection is not quite the same as that of Hinput; still, it is similar enough for
the analysis in subsection 4.2.2 to hold.

Claim 5.3. H ′′
S,clockinit = HS,clockinit.

Proof. Both Hamiltonians are diagonal in the basis |γj
� 〉 with eigenvalue 0 for

� = 0 and eigenvalue 1 for any � > 0.



192 AHARONOV, van DAM, KEMPE, LANDAU, LLOYD, AND REGEV

Claim 5.4. For any 1 ≤ � ≤ L, H ′′
S,� = HS,�.

Proof. It is straightforward to verify that both Hamiltonians, when restricted to
S, are equal to

2n−1∑

j=0

[|γj
� 〉〈γj

� | + |γj
�−1〉〈γj

�−1| − |γj
� 〉〈γj

�−1| − |γj
�−1〉〈γj

� |].

For H ′′
input the situation is similar, although in this case the restriction to S is not

exactly the same. Still, the resemblance is enough for the same analysis to hold.

Claim 5.5. Both HS,input and H ′′
S,input are diagonal in the basis |γj

� 〉. Moreover,

the eigenvalue in both Hamiltonians corresponding to |γj
� 〉 for � = 0 is exactly the

number of 1’s in the binary representation of j.

Proof. Easy to verify.

The similarity between the two Hamiltonians breaks down as follows. While the
eigenvalues corresponding to |γj

� 〉 for � > 0 are 0 in HS,input, those in H ′′
S,input might

be positive (namely, for 0 ≤ � ≤ n, the eigenvalue of |γj
� 〉 is the number of 1’s in the

last n− � digits in the binary representation of j). Nevertheless, due to the remark at
the end of subsection 4.1, Lemma 4.2 holds here as well. We then get the following
lemma.

Lemma 5.6. For any 0 ≤ s ≤ 1, H ′′
S(s) has a spectral gap of Ω(L−3). Moreover,

the ground state of H ′′
S,final is |η〉.

The rest of the proof of Theorem 1.3 is essentially the same as in subsection 4.2.2.
By applying Lemma 4.7, we obtain the following lemma.

Lemma 5.7. For all 0 ≤ s ≤ 1,Δ(H ′′(s)) = Ω(L−3). Moreover, the ground state
of H ′′(1) is ε-close to |η〉.

The proof is similar to that of Lemmas 4.8 and 4.9. This enables us to adiabati-
cally generate the history state with exactly the same running time as in the three-local
case (when the number of gates is that of the modified circuit of subsection 5.1).

Finally, we would like to apply Lemma 3.10 as before. However, we cannot quite
do this due to a technical issue: our Hilbert space is no longer a tensor product of
computation qubits and clock qubits and tracing out the clock qubits is meaningless.
Nevertheless, a minor modification of that lemma still applies. We first add, say, L/ε
identity gates to the end of the (modified) circuit. Now, the adiabatic computation
produces a state close to the history state. We then measure the shape of the system
without measuring the inner computational degrees of freedom. Due to the additional
identity gates, with all but ε probability, the outcome of the measurement is a shape
� for � ≥ L. If this is the case, then the state of the system is such that the active
particles are in the final state of the circuit, as desired. This completes the proof of
Theorem 5.1.
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ON THE LIST AND BOUNDED DISTANCE DECODABILITY OF
REED–SOLOMON CODES∗

QI CHENG† AND DAQING WAN‡

Abstract. For an error-correcting code and a distance bound, the list decoding problem is to
compute all the codewords within a given distance to a received message. The bounded distance
decoding problem is to find one codeword if there is at least one codeword within the given distance,
or to output the empty set if there is not. Obviously the bounded distance decoding problem is not
as hard as the list decoding problem. For a Reed–Solomon code [n, k]q , a simple counting argument
shows that for any integer 0 < g < n, there exists at least one Hamming ball of radius n− g, which
contains at least

(n
g

)
/qg−k many codewords. Let ĝ(n, k, q) be the smallest positive integer g such

that
(n
g

)
/qg−k ≤ 1. One knows that

k − 1 ≤ ĝ(n, k, q) ≤
√
n(k − 1) ≤ n.

For the distance bound up to n − √
n(k − 1), it is known that both the list and bounded distance

decoding can be solved efficiently. For the distance bound between n−√
n(k − 1) and n−ĝ(n, k, q), we

do not know whether the Reed–Solomon code is list or bounded distance decodable; nor do we know
whether there are polynomially many codewords in all balls of the radius. It is generally believed
that the answer to both questions is no. In this paper, we prove the following: (1) List decoding
cannot be done for radius n − ĝ(n, k, q) or larger, unless the discrete logarithm over Fqĝ(n,k,q)−k is

easy. (2) Let h and g be positive integers satisfying q ≥ max(g2, (h−1)2+ε) and g ≥ ( 4
ε
+2)(h+1) for

a constant ε > 0. We show that the discrete logarithm problem over Fqh can be efficiently reduced
by a randomized algorithm to the bounded distance decoding problem of the Reed–Solomon code
[q, g − h]q with radius q − g. These results show that the decoding problems for the Reed–Solomon
code are at least as hard as the discrete logarithm problem over certain finite fields. For the list
decoding problem of Reed–Solomon codes, although the infeasible radius that we obtain is much
larger than the radius, which is known to be feasible, it is the first nontrivial bound. Our result
on the bounded distance decodability of Reed–Solomon codes is also the first of its kind. The main
tools for obtaining these results are an interesting connection between the problem of list decoding
of Reed–Solomon code, the problem of a discrete logarithm over finite fields, and a generalization
of Katz’s theorem on representations of elements in an extension finite field by products of distinct
linear factors.

Key words. list decoding algorithm, bounded distance decoding algorithm, Reed–Solomon
codes, discrete logarithm problem
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1. Introduction. An error-correcting code C over a finite alphabet Σ is an in-
jective map φ : Σk → Σn. When we need to transmit a message of k letters over a
noisy channel, we apply the map on the message first (i.e., encode the message) and
send its image (i.e., the codeword) of n letters over the channel. The Hamming dis-
tance between two sequences of letters of the same length is the number of positions
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where two sequences differ. A good error-correcting code should have a large min-
imum distance d, which is defined to be the minimum Hamming distance between
two distinct codewords in φ(Σk). A received message, possibly corrupted, but with
no more than (d − 1)/2 errors, corresponds to a unique codeword and thus may be
decoded into the original message despite errors occuring during the communication.

Error-correcting codes are widely used in practice. They are mathematically
interesting and intriguing. This subject has attracted the attention of the theoreti-
cal computer science community recently. Several major achievements in theoretical
computer science, notably the original proof of the probabilistically checkable proof
(PCP) theorem and derandomization techniques, rely heavily on the techniques found
in error-correcting codes. We refer to the survey [19] for details.

For the purpose of efficient encoding and decoding, Σ is usually set to be the
finite field Fq of q elements, and the map φ is Fq-linear. Numerous error-correcting
codes have been proposed; among them, the Reed–Solomon codes are particularly
important. They are deployed to transmit information to and from spacecraft and to
store information in optical media [22].

Notation. For a polynomial f(x) and a set S = {x1, . . . , xn}, we use (f(x))x∈S

to denote the vector obtained by evaluating f(x) at the elements in S, that is,

(f(x))x∈S = (f(x1), . . . , f(xn)).

Let S be a subset of Fq with |S| = n. The Reed–Solomon code [n, k]q is the map

from (a0, a1, . . . , ak−1) ∈ Fk
q to

(a0 + a1x + · · · + ak−1x
k−1)x∈S ∈ Fn

q .

The choice of S will not affect our results in this paper. Since any two different
polynomials with degree k− 1 can share at most k− 1 points, the minimum distance
of the Reed–Solomon code is n− k + 1.

1.1. Related works. If the radius of a Hamming ball is less than half of the
minimum distance, there is at most one codeword in the Hamming ball. Finding
the codeword is called unambiguous decoding. It can be efficiently solved (see [2])
for a simple algorithm. If we gradually increase the radius, there may be two or
more codewords lying in some Hamming balls. Can we efficiently enumerate all the
codewords in any Hamming ball of a certain radius? This is the so-called list decoding
problem. The notion was first introduced by Elias [6]. There was virtually no progress
on this problem for radius slightly larger than half of the minimum distance until
Sudan published his influential paper [18]. His result was subsequently improved;
the current best algorithm [11] solves the list decoding problem for a radius as large
as n − √

n(k − 1). The work [11] sheds new light on the list decodability of Reed–
Solomon codes. To the other extreme, if the radius is greater than or equal to the
minimum distance, there are exponentially many codewords in some Hamming balls.

The decoding problem of Reed–Solomon codes can be reformulated into the prob-
lem of curve fitting or polynomial reconstruction. In this problem, we are given n points

(x1, y1), (x2, y2), . . . , (xn, yn)

in F2
q. The goal is to find polynomials of degree k−1 that pass at least g points. In this

paper, we consider only the case when the n given points have distinct x-coordinates.
If we allow multiple occurrences of x-coordinates, the problem is NP-hard [7, Theorem
6.1], and it is not relevant to the Reed–Solomon decoding problem. If g ≥ (n+k)/2, it
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corresponds to the unambiguous decoding of Reed–Solomon codes. If g >
√
n(k − 1),

and the radius is less than n − √
n(k − 1), which is essentially the Johnson radius

[12, 10], the problem can be solved by the Guruswami–Sudan algorithm [11]. If g ≤ k,
it is possible that there are exponentially many solutions, but finding one is very easy.

It is known that any Hamming ball of the Johnson radius contains only poly-
nomially many codewords. In this paper, we study the following question: By how
much can we increase the radius before the list decoding problem or the bounded
distance decoding problem becomes infeasible? This question has been intensively
investigated for Reed–Solomon codes and other error-correcting codes. The case of
general nonlinear codes has been solved in [7], where it was proved that there exist
codes with exponentially many codewords in Hamming balls of radius slightly larger
than the Johnson radius. The case for linear codes is much harder. Some partial
results have been obtained in [9, 8], where it was proved that there exist linear codes
with superpolynomially many codewords in Hamming balls of radius close to the
Johnson radius. However, none of them apply to Reed–Solomon codes. No negative
result is known about the list decoding of Reed–Solomon codes, except for a simple
combinatorial bound given by Justesen and Hoholdt [13], which states that for any
positive integer g < n, there exists at least one Hamming ball of radius n− g, which
contains at least

(
n
g

)
/qg−k many codewords. This bound matches the intuition well.

Consider an imaginary algorithm as follows: Randomly select g points from the n
input points, and use polynomial interpolation to get a polynomial of degree at most
g − 1 which passes these g points. Then with probability 1/qg−k, for a random word
in Fn

q , the resulting polynomial has degree k − 1. The sample space has size
(
n
g

)
.

Thus heuristically, the number of codewords in Hamming balls of radius n − g is at
least

(
n
g

)
/qg−k on the average. In the same paper, Justesen and Hoholdt also gave

an upper bound for the radius of the Hamming balls containing a constant or fewer
number of codewords.

1.2. Our results. If we gradually increase g, starting from k and going toward
n, then

(
n
g

)
/qg−k will fall below 1 at some point. However, g is still very far away

from
√

n(k − 1). Let ĝ(n, k, q) be the smallest positive integer such that
(
n
g

)
/qg−k is

no greater than 1. Roughly speaking, a Hamming ball with a random center and the
radius n − ĝ(n, k, q) contains on average about one codeword. The following lemma
shows that there is a gap between ĝ(n, k, q) and

√
n(k − 1).

Lemma 1. For positive integers k < g < n, if g >
√
nk, then qg−k ≥ ng−k >

(
n
g

)
.

This implies that ĝ(n, k, q) ≤ √
nk.

For a fixed rate k/n, the radius n − ĝ(n, k, q) has a relative radius approaching
the relative distance as n approaches infinity. However, it is not known whether there
exist Reed–Solomon codes such that some Hamming balls of radius n − ĝ(n, k, q)
contain an exponential number of codewords. Then how hard is it to do list decoding
for the radius n− ĝ(n, k, q)?

Instead of trying to find a Hamming ball with a large number of codewords of
radius n − ĝ(n, k, q), we take another approach. By relating this question to the
discrete logarithm over finite fields, we show that even if there is only a small number
of codewords in every Hamming ball of this radius, the list decoding problem is still
infeasible. The discrete logarithm problem in finite field Fqm is to compute an integer
e such that t = γe, given a generator γ of a subgroup of F∗

qm and t in the subgroup.
The general purpose algorithms for solving the discrete logarithm problem are the
number field sieve and the function field sieve (for a survey see [16]). They have a
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conjectured subexponential time complexity

exp(c(log qm)1/3(log log qm)2/3)

for some constant c when q is small or m is small.
We prove that if the list decoding of the [n, k]q Reed–Solomon code is feasible

for radius n− ĝ(n, k, q), then the discrete logarithm over Fqĝ(n,k,q)−k is easy. In other
words, we prove that the list decoding is not feasible for radius n − ĝ(n, k, q) or
larger, assuming that the discrete logarithm over Fqĝ(n,k,q)−k is hard. Note that it
does not rule out the possibility that there are only polynomially many codewords
in all Hamming balls of radius n − ĝ(n, k, q), even assuming the intractability of the
discrete logarithm over Fqĝ(n,k,q)−k .

Theorem 1. If there exists an algorithm solving the list decoding problem of
radius n − ĝ(n, k, q) for the Reed–Solomon code [n, k]q in random time qO(1), then a
discrete logarithm over the finite field Fqĝ(n,k,q)−k can be computed in random time

qO(1).
Let us consider a numerical example. Set n = 1000, k = 401, q = 1201. The

unambiguous decoding algorithm can correct up to �(n− k+1)/2� = 300 errors. The
Guruswami–Sudan algorithm can correct �n−√

n(k − 1)� = �1000−√
1000 ∗ 400� =

368 errors. Can we list decode up to n−ĝ(n, k, q) = 1000−499 = 501 errors in a reason-
able amount of time? The theorem shows that if we can, then the discrete logarithm
over F120198 can be solved efficiently, which is widely regarded as unlikely at present.

When the list decoding problem is hard for certain radius, or a Hamming ball
contains too many codewords for us to enumerate all of them, we can ask for an
efficient bounded distance decoding algorithm, which needs only to output one of the
codewords in the ball, or output the empty set in case the ball does not contain any
codeword. However, we prove that the bounded distance decoding is hard as well.

Theorem 2. Let q be a prime power and h be a positive integer satisfying q ≥
max(g2, (h − 1)2+ε) and g ≥ ( 4

ε + 2)(h + 1) for any constant ε > 0. If the bounded
distance decoding problem of radius q − g for the Reed–Solomon code [q, g − h]q can
be solved in random time qO(1), the discrete logarithm problem over Fqh can be solved

in random time qO(1).
For q, g, h satisfying the conditions in the theorem,

(
q
g

)

qg−(g−h)
≥ (q/g)g

qh
=

qg−h

gg
≥ (g2)g−h

gg
= gg−2h ≥ g4h/ε.

Hence there is a Hamming ball of radius q − g containing exponentially many code-
words. It is infeasible to do list decoding under these parameters. This result has the
drawback that it can be applied only to the low rate codes, since g − h ≤ g ≤ √

q.
It is generally believed that the list decoding problem and the bounded distance

decoding for Reed–Solomon codes are computationally hard if the number of errors is
greater than n−√

n(k − 1) and less than n− k. This problem is even used as a hard
problem to build public key cryptosystems and pseudorandom generators [15]. A sim-
ilar problem, noisy polynomial interpolation [3], was proved to be vulnerable to the
attack of lattice reduction techniques, and hence is easier than originally thought. This
raises concerns about the hardness of the polynomial reconstruction problem. Our re-
sults confirm the belief that the polynomial reconstruction problem is hard for certain
parameters, under a well-studied hardness assumption in number theory, and hence
provide a guideline for selecting parameters for many protocols based on the problem.
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1.3. Techniques. We rely on the idea of index calculus to prove these two the-
orems. Our application of index calculus, however, is different from its usual applica-
tions in that we use it to prove a hardness result (a computational lower bound) rather
than a computational upper bound. We naturally come across the following question
in the proofs: In a finite field Fqh , for any α such that Fqh = Fq[α], can Fq + α
generate the multiplicative group (Fqh)∗? This interesting problem has many appli-
cations in graph theory, and it has been studied by several number theorists. Chung
[5] proved that if q > (h−1)2, then (Fqh)∗ is generated by Fq +α. Wan [21] showed a
negative result that if qh−1 has a divisor d > 1 and h ≥ 2(q logq d+logq(q+1)), then
(Fqh)∗ is not generated by Fq+α for some α. Katz [14] applied the Lang–Weil method
and showed that for every h ≥ 2 there exists a constant B(h) such that for any finite
field Fq with q ≥ B(h), any element in (Fqh)∗ can be written as a product of exactly
n = h+2 distinct elements from Fq +α. By a simple counting argument, B(h) has to
be an exponential function in h. In this paper, we use Weil’s character sum estimate
and a simple sieving to prove that if q ≥ max(g2, (h− 1)2+ε) and g ≥ ( 4

ε + 2)(h + 1)
for any constant ε > 0, then any element in (Fqh)∗ can be written as a product of
exactly g distinct elements from Fq + α. In comparison to Katz’s theorem, we use a
bigger n and manage to decrease B(h) to a polynomial function in h.

This paper is organized as follows. In section 2, we show the connection between
the decoding problem of Reed–Solomon codes and the discrete logarithm problem
over finite fields. In section 3, we present the proof of Theorem 1. In section 4, we
present the proof of Theorem 2. In section 5, we show an interesting duality between
the size of a group generated by linear factors and the list size in Hamming balls of
Reed–Solomon codes. In the appendix, we prove Lemma 1.

2. The decoding problem and the discrete logarithm. Let q be a prime
power and let Fq be the finite field with q elements. Let S be a subset of Fq of n
elements. For a positive integer g ≤ n, denote

P(S, g) = {A|A ⊆ S, |A| = g}.
Clearly, the set P(S, g) has

(
n
g

)
elements. For any A ∈ P(S, g), let

PA(x) =
∏

a∈A

(x− a).

This is a monic polynomial of degree g which splits over Fq as a product of distinct
linear factors.

Let 1 < h < g be integers. Let h(x) be an irreducible monic polynomial over Fq

of degree h. Define a map

ψ : P(S, g) → Fq[x]/(h(x))

by

ψ(A) = PA(x) (mod h(x)).

For any f(x) in Fq[x]/(h(x)) with degree at most h − 1 , if ψ−1(f(x)) is not empty,
then there exists at least one monic polynomial t(x) ∈ Fq[x] of degree g − h and one
A ∈ P(S, n) such that

f(x) + t(x)h(x) = PA(x).
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For any a ∈ A, PA(a) = 0 and t(a) = −f(a)/h(a). Recall that h(x) is irreducible over
Fq, and hence h(a) �= 0 for all a ∈ A. Since f(x) + t(x)h(x) has degree g, there are
exactly g elements in S which are the roots of f(x)+ t(x)h(x) = 0; the curve y = t(x)
passes exactly g points in the following set of n points:

{(a,−f(a)/h(a))|a ∈ S}.
For any polynomial f ∈ Fq[x] of degree at most h − 1, let Tf(x) be the set of monic
polynomials t(x) ∈ Fq[x] of degree g− h such that f(x) + t(x)h(x) = PA(x) for some
A ∈ P(S, g). Let Cf(x) be the set of codewords with distance exactly n − g to the

received word (−f(a)/h(a) − ag−h)a∈S in Reed–Solomon code [n, g − h]q. It is then
easy to prove the following lemma.

Lemma 2. There is a one-to-one correspondence between elements of Tf(x) and

Cf(x), by sending any t(x) ∈ Tf(x) to (t(a) − ag−h)a∈S.
Remark 1. According to the pigeonhole principle, there must exist a polynomial

f̂(x) such that

|ψ−1(f̂(x))| ≥ |P(S, g)|
|Fq[x]/(h(x))| =

(
n
g

)

qh
.

This provides another proof that there is a Hamming ball of radius n − g with
(ng)
qh

many codewords.
Suppose that we know f(x) and h(x), but not t(x); can we still find A? Formally

we are asking the following question.
Input: A prime power q, an irreducible polynomial h(x) over Fq of degree h, a

polynomial f(x) ∈ Fq[x], a positive integer g, and a set S ⊆ Fq.
Problem I: A list of all the subsets A ∈ P(S, g) such that

f(x) ≡ PA(x) (mod h(x)).

Problem II: One of A ∈ P(S, g) such that

f(x) ≡ PA(x) (mod h(x)).

Lemma 3. Problem I can be reduced in polynomial time to the list decoding
problem of Reed–Solomon code [n, g − h]q at radius n− g. Problem II can be reduced
in polynomial time to the bounded distance decoding problem of Reed–Solomon code
[n, g − h]q at radius n− g.

Proof. The vector (−f(a)/h(a) − ag−h)a∈S can be calculated from the input.
Using the list decoding algorithm or the bounded distance decoding algorithm, we
can compute t(x) of degree at most g − h− 1 such that t(a) = −f(a)/h(a)− ag−h at
g many a’s. We find A by factoring f(x) + (t(x) + xg−h)h(x).

If A can be found, then in the field Fq[x]/(h(x)), f(x) can be represented as a
product of elements from a small set. It is called a smooth representation with factor
bases x − S in computational number theory. The capability of finding a smooth
representation constitutes a powerful attack against hard number theory problems like
integer factorization and the discrete logarithm over finite fields. The lemma implies
that decoding Reed–Solomon codes provides a way to find a smooth representation of
any field element. Thus naturally an efficient decoding algorithm produces an attack
for the discrete logarithm over finite fields. This idea first appeared in [4], and it
provides a general framework for the following proofs.
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3. The proof of Theorem 1. Given a Reed–Solomon code [n, k]q, let h =
ĝ(n, k, q)−k. Recall that ĝ(n, k, q) is the smallest positive integer such that

(
n
g

)
/qg−k

is no greater than 1, and h is the degree of an irreducible polynomial h(x). We
show that there is an efficient algorithm for solving the discrete logarithm over Fqh =
Fq[x]/(h(x)) if there is an efficient list decoding algorithm for the Reed–Solomon code
[n, k]q with radius n− ĝ(n, k, q) = n− k − h.

Let α = x (mod h(x)). Suppose that we are given the base b(α) and that we
need to find the discrete logarithm of v(α) with respect to the base, where b and v
are polynomials over Fq of degree at most h− 1. Select any S ⊆ Fq, |S| = n. We use
the index calculus algorithm with factor bases (α− a)a∈S .

Algorithm 1.

1. Initialize an empty set of linear equations.
2. Repeat n times:

(a) Randomly select an integer i between 0 and qh−2. Compute f(x) = b(x)i

(mod h(x)).
(b) Apply the list decoding algorithm to find the list of A ∈ P(S, ĝ(n, k, q))

such that f(x) ≡ PA(x) (mod h(x)). If the list is empty, go back to 2(a).
(c) Otherwise we have relations

f(α) =
∏

a∈A1

(α− a) = · · · =
∏

a∈Al

(α− a)

for some A1, A2, . . . , Al ∈ P(S, ĝ(n, k, q)), where l is the list size. From
the relations, we obtain linear equations mod (qh − 1):

i ≡
∑

a∈A1

logb(α)(α− a) ≡ · · · ≡
∑

a∈Al

logb(α)(α− a).

Add them to the set of linear equations.
3. For all s ∈ S do:

(a) Randomly select an integer i between 0 and qh − 2. Compute f(x) =
b(x)i/(x− s) (mod h(x)).

(b) Apply the list decoding algorithm to find the list of A ∈ P(S, ĝ(n, k, q))
such that f(x) ≡ PA(x) (mod h(x)). If the list is empty, go back to 3(a).

(c) Otherwise we have relations

f(α) =
∏

a∈A1

(α− a) = · · · =
∏

a∈Al

(α− a)

for some A1, A2, . . . , Al ∈ P(S, ĝ(n, k, q)), where l is the list size. From
the relations, we obtain linear equations mod (qh − 1):

i ≡
∑

a∈A1

logb(α)(α− a) + logb(α)(α− s) ≡ · · ·

≡
∑

a∈Al

logb(α)(α− a) + logb(α)(α− s).

Add them to the set of linear equations.
4. In these equations, logb(α)(α − a), a ∈ S, are unknowns. If the system has

full rank, solve it; otherwise go back to step 2.
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5. Randomly select an integer i between 0 and qh−2. Compute f(x) = b(x)iv(x)
(mod h(x)).

6. Apply the list decoding algorithm to find a list of A ∈ P(S, g) such that f(x) ≡
PA(x) (mod h(x)). If the list is empty, go back to step 5.

7. Otherwise we have a relation

f(α) =
∏

a∈A

(α− a).

Hence

i + logb(α) v(α) =
∑

a∈A

logb(α)(α− a);

we can solve logb(α) v(α) immediately.
Now we analyze the time complexity of the algorithm. An efficient list decoding

algorithm implies the following:
1. There are only polynomially many codewords in any Hamming ball of radius

n− ĝ(n, k, q), which along with Lemma 2 implies that |ψ−1(f)| ≤ qc for any
f ∈ Fqh and a constant c. Hence

|ψ(P(S, ĝ(n, k, q)))| ≥
(

n
ĝ(n,k,q)

)

qc
≥ qĝ(n,k,q)−k

qc
=

qh

qc
.

Thus in steps 2(b), 3(b), and 6, since f(α) is a random element in F∗
qh , the

list decoding algorithm outputs a nonempty list with probability bigger than

1/qc. Note that 1
q ≤ ( n

ĝ(n,k,q))
qĝ(n,k,q)−k ≤ 1.

2. These codewords can be found in polynomial time. Each step will take poly-
nomial time. Thus all steps in the algorithm run in polynomial time.

So we only need to show the following.
Lemma 4. The linear system can yield a unique solution with high probability

after polynomially many iterations of the main loop (from step 2 to step 4).
Informally since i is picked randomly, the probability that a new equation is

linearly independent to previous ones is very high at the beginning of the algorithm.
It would not be a long time before we have an independent linear system. Solving the
system of equations gives us logb(α)(α− a) for all a ∈ S.

Proof of Lemma 4. The linear system is defined in the ring Z/(qh − 1), which is
usually not a field. We may proceed with the linear system solver. If the algorithm
encounters a zero-divisor in the ring, we can factor qh − 1. We then apply the linear
system solver to each modulus. We get the solution for the original system using
the Chinese remainder theorem. In the case that a modulus is a prime power, we
can solve the linear system modulo the prime first and use Hensel lifting to solve the
system modulo the prime power. Since qh−1 has at most h log q many distinct prime
factors, this issue will slow down the algorithm by only a polynomial factor. Now we
may assume that the linear system is defined over a finite field.

Let w = 2 log n� + 3. Let T be the set of binary vectors with length n and
weight g. For the case when the iteration of the main loop is repeated w times,
we have selected in step 2(a) nw many integers i1, i2, . . . , inw, and in step 3(a) nw
many integers inw+1, . . . , i2nw, and obtained relations for bij (α) (1 ≤ j ≤ nw) and
bij (α)/(α−a) (nw+1 ≤ j ≤ 2nw and a ∈ S). This amounts to selecting at least 2nw
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vectors from T independently. Also {logb(α)(α− s)|s ∈ S} forms a basis for the linear
system. According to the following proposition, proved in [17], we get n independent
equations with probability more than 1 − 1

2n . Note that it is not required that the
vectors be selected uniformly. This finishes the proof of Theorem 1.

Proposition 1. Let V be a vector space over a field F with dimV = n. Let T
be a finite set of vectors in V and let e1, . . . , en be a basis of V. Let w = 2 log n�+ 3.
Suppose we choose 2nw vectors u1, u2, . . . , unw, v1, v2, . . . , vnw independently from T .
Let V ′ be the subspace of V spanned by u1, u2, . . . , unw and the vectors ej + v(j−1)w+i

for j = 1, 2, . . . , n and i = 1, . . . , w. Then with probability at least 1 − 1
2n , we have

that V = V ′.

4. The proof of Theorem 2. We first prove the following number theoretic
result.

Theorem 3. Let h be a positive integer. Assume q ≥ max(g2, (h − 1)2+ε) and
g ≥ ( 4

ε + 2)(h + 1) for a constant ε > 0. Then for any α such that Fq[α] = Fqh ,
every element in F∗

qh can be written as a product of exactly g distinct factors from
{α + a|a ∈ Fq}.

Proof. We follow the method used in [21]. Fix an α such that Fq[α] = Fqh . For
β ∈ F∗

qh , let Ng(β) denote the number of solutions of the equation

β =

g∏

i=1

(α + ai), ai ∈ Fq,

where the ai’s are distinct. Permutations of ai’s are counted as different solutions.
We need to show that the number Ng(β) is always positive if q ≥ max(g2, (h− 1)2+ε)
and g ≥ ( 4

ε + 2)(h + 1).
Let G be the character group of the multiplicative group F∗

qh . That is, G is the
set of group homomorphisms from F∗

qh to C∗. The group G is a cyclic group of order

qh − 1, and thus

∑

χ∈G

χ

(
g∏

i=1

(α + ai)/β

)
=

{
qh − 1 if β =

∏
i(α + ai),

0 otherwise.

From this, we deduce

Ng(β) =
1

qh − 1

∑

ai∈Fq, ai distinct

∑

χ∈G

χ−1(β)χ

(
g∏

i=1

(α + ai)

)
.

Since the second summand is always nonnegative, a simple inclusion-exclusion sieving
implies that

Ng(β) ≥ 1

qh − 1

(
∑

ai∈Fq,1≤i≤g

−
∑

1≤i1<i2≤g

∑

ai∈Fq,ai1=ai2

)

∑

χ∈G

χ−1(β)χ

(
g∏

i=1

(α + ai)

)
.

For the nontrivial character χ, one has the well-known Weil estimate [21]
∣∣∣∣∣
∑

a∈Fq

χ(α + a)

∣∣∣∣∣ ≤ (h− 1)
√
q,
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and thus
∣∣∣∣∣

∑

ai∈Fq,1≤i≤g

g∏

i=1

χ(α + ai)

∣∣∣∣∣ ≤ (h− 1)gqg/2.

If χ2 �= 1, then for fixed i1 < i2, Weil’s estimate implies that
∣∣∣∣∣

∑

ai∈Fq,ai1
=ai2

g∏

i=1

χ(α + ai)

∣∣∣∣∣ ≤ (h− 1)g−1q(g−1)/2 ≤ (h− 1)gqg/2.

If χ2 = 1 but χ �= 1, then for fixed i1 < i2, Weil’s estimate implies that
∣∣∣∣∣

∑

ai∈Fq,ai1=ai2

g∏

i=1

χ(α + ai)

∣∣∣∣∣ ≤ q(h− 1)g−2q(g−2)/2 ≤ (h− 1)gqg/2.

Separating the trivial character from the above lower estimate for Ng(β), we deduce
that

Ng(β) ≥ qg − (
g
2

)
qg−1

qh − 1
−
(

1 +

(
g

2

))
(h− 1)gqg/2.

In order for Ng(β) > 0, it suffices to have the inequality

(
q −

(
g

2

))
qg/2−1−h >

(
1 +

(
g

2

))
(h− 1)g.

This inequality is clearly satisfied if both q > 2
(
g
2

)
+ 1 = g(g− 1) + 1 and qg/2−1−h >

(h − 1)g. These two inequalities are satisfied if we take q ≥ max(g2, (h − 1)2+ε) and
g ≥ ( 4

ε + 2)(h + 1). The theorem is proved.
Remark 2. As we should see immediately, the expression Ng(β)/g! is the number

of codewords in the Hamming ball with radius n−g and with center at (−f(a)/h(a)−
ag−h)a∈Fq

, where h(x) is the minimum polynomial of α over Fq and f(x) is the

polynomial of degree at most h − 1 representing β. Adjusting the parameters will
give us an exponential lower bound for Ng(β)/g!. For example, if q > 2

(
g
2

)
+ 2 and

g ≥ ( 4
ε + 2)(h + 1), the same proof shows that Ng(β) ≥ qg−h−1, and thus

Ng(β)

g!
≥ qg−h−1

g!
,

which is exponential for certain parameters q, g, and h.
Let q ≥ max(g2, (h − 1)2+ε) and g ≥ ( 4

ε + 2)(h + 1). Let h(x) be an irreducible
polynomial over Fq of degree h. Then Fqh = Fq[x]/(h(x)). Denote x (mod h(x))
by α. Suppose that there exists a polynomial time algorithm for bounded distance
decoding of Reed–Solomon code [q, g − h]q at radius g − q. We prove Theorem 2
by describing a polynomial time algorithm for solving the discrete logarithm of v(α)
with base b(α) in Fqh , where b and v are polynomials of degree at most h − 1. We
let S = Fq. This algorithm relies on the index calculus idea as in Algorithm 1. It is
simpler, as for any polynomial f(x) ∈ Fq[x] with degree g−h−1 or less, if we run the
bounded decoding algorithm with input word {(x,−f(x)/h(x))|x ∈ Fq} and distance
bound n− g (the answer is never empty) according to Theorem 3 and Lemma 2.
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Algorithm 2.

1. Initialize an empty set of linear equations.
2. Repeat n times:

(a) Randomly select an integer i between 0 and qh − 2.
(b) Compute b(α)i, and let f(x) = bi(x) (mod h(x)).
(c) Run the bounded distance decoding algorithm to find A = P(Fq, g) such

that

b(α)i =
∏

a∈A

(α− a).

We have

i ≡
∑

a∈A

logb(α)(α− a) (mod qh − 1).

Add it to the set of linear equations.
3. For all s ∈ S do:

(a) Randomly select an integer i between 0 and qh − 2. Let f(x) denote the
element b(x)i/(x− s) (mod h(x)).

(b) Run the bounded distance decoding algorithm to find A ∈ P(Fq, g) such
that

b(α)i/(α− s) =
∏

a∈A

(α− a).

We get

i ≡
∑

a∈A

logb(α)(α− a) + logb(α)(α− s) (mod qh − 1).

Add it to the set of linear equations.
4. In these equations, logb(α)(α − a), a ∈ S, are unknowns. If the system has

full rank, solve it; otherwise go back to step 2.
5. Apply the bounded distance decoding algorithm to find relation

v(α) =
∏

a∈A

(α− a).

Hence

logb(α) v(α) =
∑

a∈A

logb(α)(α− a).

We can essentially copy the proof of Lemma 4 to prove that we need only try
O(n log n) many i’s before we solve the discrete logarithm of v(α) with base b(α) with
probability 1 − 1

2n . It is very crucial here that we have step 3, because the system
may not have the full rank if we have only step 2. This is the case if all the Ai’s in
step 2 come from a subset of Fq. An easy consequence of Theorem 2 is as follows.
Taking ε = 2 and g = 4h + 4 in Theorem 2, we get the following corollary.

Corollary 1. Let q be a prime power and let h be a positive integer satisfying
q > max((4h + 4)2, (h − 1)4). If the bounded distance decoding problem of radius
q − 4h − 4 for the Reed–Solomon code [q, 3h + 4]q can be solved in time qO(1), the
discrete logarithm problem over Fqh can be solved in random time qO(1).
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5. Group size and list size. Let S be a subset of Fq of n elements. Let
α be an element in Fqh such that Fq[α] = Fqh and h is very small compared to
q. What is the order of the subgroup generated by α + S? This question has an
important application in analyzing the performance of the Agrawal–Kayal–Saxena
(AKS) primality testing algorithm [1]. Experimental data suggest that the order is
greater than qh/c for some absolute constant c for all |S| ≥ h log q. If it can be
proved, the space complexity of the AKS algorithm can be cut by a factor of log p
(p is the input prime whose primality certificate is sought), which will make (the
random variants of) the algorithm comparable to the primality proving algorithm
used in practice. However, the best known lower bound is (c|S|/h)h for some absolute
constant c [20]. We present an interesting duality between the group size and the list
size in Hamming balls of certain radius.

Theorem 4. Let q be a prime power. Let α be an element in the extension of
Fq with degree h. Let ωα(n) be the smallest possible order for the group generated by
α + S multiplicatively, where S ∈ Fq and |S| = n. Let ARS

q (n, d, w) be the maximum
list size in the Hamming balls of radius w in any Reed–Solomon code with block length
n and minimum distance d over Fq. For any integer k < n− h, we have

ARS
q (n, n− k, n− k − h) × ωα(n) ≥

(
n

k + h

)
.

Proof. Let ωα(n, S) be the order of the group generated by α + S, where S ∈ Fq

and |S| = n. Let h(x) be the minimum polynomial of α. Consider the mapping

ψ : P(S, k + h) → Fq[x]/(h(x)).

The range of ψ consists of elements which can be represented as products of k + h
distinct elements in α + S; thus it has cardinality at most ωα(n, S). For any element
in Fq[x]/(h(x)), the number of its preimages is at most ARS

q (n, n − k, n − k − h),
according to Lemma 2. Hence

ARS
q (n, n− k, n− k − h) × ωα(n, S) ≥ |P(S, k + h)| =

(
n

k + h

)
.

This implies the theorem.
Corollary 2. Let k, n be positive integers and q be a prime power. One of the

following statements must be true:
1. For any constant c1, there exists a Reed–Solomon code [n, k]q (n/3 < k < n/2)

and a Hamming ball of radius n − ĝ(n, k, q) containing more than c11.9
n

codewords.
2. The group generated by α+S has cardinality at least qh/c2 for some absolute

constant c2, where S ⊆ Fq and |S| = �h log q�.
To prove or disprove the first statement would solve an important open problem

about the Reed–Solomon codes. Recall that a Hamming ball with a random center
and the radius n− ĝ(n, k, q) contains on average one codeword. To prove the second
statement would give us a primality proving algorithm much more efficient in terms
of space complexity than the original AKS and its random variants, hence making
the AKS algorithm not only theoretically interesting, but also practically important.
However, at this stage we cannot figure out which one is true. What we can prove,
however, is that one of them must be true. Note that it is also possible that both
statements are true.



DECODABILITY OF REED–SOLOMON CODES 207

Proof of Corollary 2. Let k = �h log q/2�−h and n = �h log q�. Thus the rate k/n
is very close to 1/2 as q gets large. Since

(
n

�h log q/2�
)

is about 2h log q = qh = qh log q/2−k,

ĝ(n, k, q) = h log q/2+O(1). Assume the first statement is false; this means that there
exists a constant c3 such that for any Reed–Solomon code [n, k]q with n/3 < k < n/2,
the number of codewords in any Hamming ball of radius n − ĝ(n, k, q) is less than
c31.9

n. That is,

ARS
q (n, n− k − h, n− ĝ(n, k, q)) ≤ c31.9

n.

Hence the size of the group generated by α + S is at least

(
n

ĝ(n,k,q)

)

c31.9n
≥ qh+O(1)

c41.9n
=

qh−n log 1.9/ log q+O(1)

c4
≥ qh/c2 .

6. Open problems. There is a large gap between n − √
n(k − 1) and n −

ĝ(n, k, q), where we do not know whether list decoding for Reed–Solomon codes [n, k]q
is feasible or not. In Theorem 3, the condition q ≥ g2 is still quadratic. It would be
very interesting to obtain positive results with only linear condition q ≥ cg for some
positive constant c. Other interesting open questions include whether there exists
a reversal reduction which maps the list or bounded distance decoding problem of
Reed–Solomon codes for the parameters studied in the paper to discrete logarithm
over finite fields, and whether there exists a polynomial time quantum algorithm to
solve these decoding problems.

Appendix. Proof of Lemma 1. In this section, we prove Lemma 1 by showing
the following statement.

Theorem 5. There are no positive integral solutions for the inequalities

(
n

g

)
> nh,(1)

g >
√
n(g − h).(2)

We first obtain a finite range for h, g, and n.

Lemma 5. If (n, g, h) is a positive integral solution, then h < 88.

Proof. Denote g/h by α and n/h by β. From g >
√
n(g − h), we have α >√

β(α− 1). Hence α < β < α + 1 + 1
α−1

.

Recall that for any positive integer i,
√

2πi( i
e )

i ≤ i! ≤ √
2πi( i

e )
i(1 + 1

12i−1
). We

have also

(
n

g

)
=

(
βh

αh

)
≤

(
ββ

αα(β − α)β−α

)h

.

Thus ββ

αα(β−α)β−α ≥ βh, which implies

h ≤ ββ−1

αα(β − α)β−α
.
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We recall the following additional facts:
1. For x > 0, xx takes the minimum value 0.6922 . . . at x = e−1 = 0.36787944 . . . .
2. For x > 0, 1 ≤ (1 + 1

x )x ≤ e = 2.7182818284 . . . .
If α ≥ 2, then β − α ≤ 1 + 1

α−1
≤ 2. We have

h ≤ 1.45ββ−1

αα

≤ 1.45(1 + α + 1
α−1

)
(α+ 1

α−1 )

αα

≤ 1.45

(
1 + α +

1

α− 1

)( 1
α−1 )(

1 +
1

α
+

1

α(α− 1)

)α

≤ 1.45 ∗ 4 ∗
(

1 +
1

α− 1

)α−1(
1 +

1

α− 1

)

≤ 1.45 ∗ 4 ∗ e ∗ 2 < 32.

If α < 2, h ≤ 1.45ββ−1

(β−α)β−α . There are two cases. If β ≤ 3, then

h ≤ 1.452 ∗ 9 < 19.

If β > 3, then

h ≤ 1.45

(
β

β − α

)β−1

(β − α)α−1

≤ 1.45

(
β

β − 2

)β−1(
1 +

1

α− 1

)α−1

≤ 1.45 ∗
(

1 +
2

β − 2

)β−2(
1 +

2

β − 2

)
∗ e

≤ 1.45 ∗ e2 ∗ 3 ∗ e < 88.

Since α = g
h , g > h are both positive integers, and we easily have the following

corollary.
Corollary 3. α ≥ 88/87 and β − α < 88.
We are ready to prove the main theorem of this section.
Proof of Theorem 5. We claim that β < 178. If α < 89, then β < 178. If α ≥ 89,

then β − α ≤ 1 + 1/88, but n− g = (β − α)h is an integer, and h ≤ 87, so β − α ≤ 1.
This means that n− g ≤ h, and (1) cannot hold.

We verify that there is no solution by exhaustively searching for the solutions in
the finite range that h < 88, n < 178∗88 = 15664 and h < g < n in a computer.

Denote n
g−k by γ and g

g−k by δ. To prove the second part of the lemma, it suffices

to see that
(
n
g

)
=

(
γ(g−k)

δ(g−k)

) ≤ cg−k
2 for some constant c2 depending only on γ and δ.

Similarly we can show that for any constant c, the inequalities

(
n

g

)
≥ nh−c,(3)

g >
√
n(g − h)(4)

have only a finite number of positive integral solutions.
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QUANTUM WALK ALGORITHM FOR ELEMENT DISTINCTNESS∗
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Abstract. We use quantum walks to construct a new quantum algorithm for element distinctness
and its generalization. For element distinctness (the problem of finding two equal items among N
given items), we get an O(N2/3) query quantum algorithm. This improves the previous O(N3/4)
quantum algorithm of Buhrman et al. [SIAM J. Comput., 34 (2005), pp. 1324–1330] and matches the
lower bound of Aaronson and Shi [J. ACM, 51 (2004), pp. 595–605]. We also give an O(Nk/(k+1))
query quantum algorithm for the generalization of element distinctness in which we have to find k
equal items among N items.
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1. Introduction. Element distinctness is the following problem: Given numbers
x1, . . . , xN ∈ [M ], are they all distinct?

This problem has been extensively studied in both classical and quantum com-
puting. Classically, the best way to solve element distinctness is by sorting, which
requires Ω(N) queries. In the quantum setting, Buhrman et al. [14] have constructed
a quantum algorithm that uses O(N3/4) queries. Aaronson and Shi [1] have shown
that any quantum algorithm requires at least Ω(N2/3) quantum queries.

In this paper, we give a new quantum algorithm that solves element distinctness
with O(N2/3) queries to x1, . . . , xN . This matches the lower bound of [1, 5].

Our algorithm uses a combination of the following ideas: quantum search on
graphs [2] and quantum walks [30]. While each of those ideas has been used before,
the present combination is new.

We first reduce element distinctness to searching a certain graph with vertices
S ⊆ {1, . . . , N} as vertices. The goal of the search is to find a marked vertex. Both
examining the current vertex and moving to a neighboring vertex cost one time step.
(This contrasts with the usual quantum search [26], where only examining the current
vertex costs one time step.)

We then search this graph by quantum random walk. We start in a uniform
superposition over all vertices of a graph and perform a quantum random walk with
one transition rule for unmarked vertices of the graph and another transition rule for
marked vertices of the graph. The result is that the amplitude gathers in the marked
vertices and, after O(N2/3) steps, the probability of measuring the marked state is a
constant.
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We also give several extensions of our algorithm. If we have to find whether
x1, . . . , xN contain k numbers that are equal, i.e., xi1 = · · · = xik , we get a quantum
algorithm with O(Nk/(k+1)) queries for any constant1 k.

If the quantum algorithm is restricted to storing r numbers, r ≤ N2/3, then we
have an algorithm which solves element distinctness with O(N/

√
r) queries and which

is quadratically better than the classical O(N2/r) query algorithm. Previously, such
a quantum algorithm was known only for r ≤ √

N [14]. For the problem of finding k

equal numbers, we get an algorithm that uses O( Nk/2

r(k−1)/2 ) queries and stores r numbers

for r ≤ N (k−1)/k.
For the analysis of our algorithm, we develop a generalization of Grover’s algo-

rithm (Lemma 3) which might be of independent interest.

1.1. Related work. Classical element distinctness. Element distinctness
has been extensively studied classically. It can be solved with O(N) queries and
O(N logN) time by querying all the elements and sorting them. Then, any two equal
elements must be next to one another in the sorted order and can be found by going
through the sorted list.

In the usual query model (where one query gives one value of xi), it is easy to see
that Ω(N) queries are also necessary. Classical lower bounds have also been shown
for more general models (e.g., [25]).

The algorithm described above requires Ω(N) space to store all of x1, . . . , xN . If
we are restricted to space S < N , the running time increases. The straightforward

algorithm needs O(N
2

S ) queries. Yao [38] has shown that, for the model of comparison-
based branching programs, this is essentially optimal. Namely, any space-S algorithm

needs time T = Ω(N
2−o(1)

S ). For more general models, lower bounds on algorithms
with restricted space S is an object of ongoing research [10].

Related problems in quantum computing. In the collision problem, we
are given a 2-1 function f and have to find x, y such that f(x) = f(y). As shown
by Brassard, Høyer, and Tapp [17], the collision problem can be solved in O(N1/3)
quantum steps instead of Θ(N1/2) steps classically. Ω(N1/3) is also a quantum lower
bound [1, 31].

If element distinctness can be solved with M queries, then the collision problem
can be solved with O(

√
M) queries. (This connection is credited to Yao in [1].) Thus, a

quantum algorithm for element distinctness implies a quantum algorithm for collision
but not the other way around.

Quantum search on graphs. The idea of quantum search on graphs was
proposed by Aaronson and Ambainis [2] for finding a marked item on a d-dimensional
grid (a problem first considered by Benioff [11]) and other graphs with good expansion
properties. Our work has a similar flavor but uses completely different methods to
search the graph (i.e., quantum walk instead of “divide-and-conquer”).

Quantum walks. There has been a considerable amount of research on quantum
walks (surveyed in [30]) and their applications (surveyed in [6]). Applications of walks
[6] mostly fall into two classes. The first class is exponentially faster hitting times
[24, 21, 19, 29]. The second class is quantum walk search algorithms [36, 22, 8].

Our algorithm is most closely related to the second class. In this direction, Shenvi,
Kempe, and Whaley [36] have constructed a counterpart of Grover’s search [26] based
on a quantum walk on the hypercube. Childs and Goldstone [22, 23] and Ambainis,

1The big-O constant depends on k. For nonconstant k, we can show that the number of queries
is O(k2Nk/(k+1)). The proof of that is mostly technical and is omitted in this version.
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Kempe, and Rivosh [8] have used a quantum walk to produce search algorithms on
d-dimensional lattices (d ≥ 2), which is faster than the naive application of Grover’s
search. This direction is quite closely related to our work. The algorithms of [36, 22, 8]
and this paper solve different problems but all have a similar structure.

Recent developments. After the work described in this paper, the results and
ideas from this paper have been used to construct several other quantum algorithms.
Magniez, Santha, and Szegedy [32] have used our element distinctness algorithm to
give an O(n1.3) query quantum algorithm for finding triangles in a graph. Ambainis,
Kempe, and Rivosh [8] have used ideas from the current paper to construct a faster
algorithm for search on a 2-dimensional grid. Childs and Eisenberg [20] have given a
different analysis of our algorithm.

Szegedy [37] has generalized our results on a quantum walk for element distinct-
ness to an arbitrary graph with a large eigenvalue gap and cast them into the language
of Markov chains. His main result is that, for a class of Markov chains, quantum walk
algorithms are quadratically faster than the corresponding classical algorithm. An
advantage of Szegedy’s approach is that it can simultaneously handle any number of
solutions (unlike in the present paper, which has separate algorithms for the single
solution case (Algorithm 2) and multiple-solution case (Algorithm 3)).

Buhrman and Špalek [15] have used Szegedy’s result to construct an O(n5/3)
quantum algorithm for verifying if a product of two n× n matrices A and B is equal
to a third matrix C.

2. Preliminaries.

2.1. Quantum query algorithms. Let [N ] denote {1, . . . , N}. We consider the
element distinctness problem: Given numbers x1, . . . , xN ∈ [M ], are there i, j ∈ [N ],
i �= j such that xi = xj?

Element distinctness is a particular case of the element k-distinctness problem:
Given numbers x1, . . . , xN ∈ [M ], are there k distinct indices i1, . . . , ik ∈ [N ] such
that xi1 = xi2 = · · · = xik?

We call such k indices i1, . . . , ik a k-collision.
Our model is the quantum query model (for surveys on the query model, see

[7, 18]). In this model, our goal is to compute a function f(x1, . . . , xN ). For example,
k-distinctness is viewed as the function f(x1, . . . , xN ), which is 1 if there exists a
k-collision consisting of i1, . . . , ik ∈ [N ] and is 0 otherwise.

The input variables xi can be accessed by queries to an oracle X, and the com-
plexity of f is the number of queries needed to compute f . A quantum computation
with T queries is just a sequence of unitary transformations

U0 → O → U1 → O → · · · → UT−1 → O → UT .

Uj ’s can be arbitrary unitary transformations that do not depend on the input
bits x1, . . . , xN . O are query (oracle) transformations. To define O, we represent basis
states as |i, a, z〉, where i consists of 
logN� bits, a consists of 
logM� quantum bits,
and z consists of all other bits. Then, O maps |i, a, z〉 to |i, (a + xi) mod M, z〉.

In our algorithm, we use queries in two situations. The first situation is when
a = |0〉. Then, the state before the query is some superposition

∑
i,z αi,z|i, 0, z〉

and the state after the query is the same superposition with the information about
xi:

∑
i,z αi,z|i, xi, z〉. The second situation is when the state before the query is∑

i,z αi,z|i,−xi mod M, z〉 with the information about xi from a previous query. Then,
applying the query transformation makes the state

∑
i,z αi,z|i, 0, z〉, erasing the infor-

mation about xi. This can be used to erase the information about xi from a state
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∑
i,z αi,z|i, xi, z〉. We first perform a unitary that maps |xi〉 → |−xi mod M〉, obtain-

ing the state
∑

i,z αi,z|i,−xi mod M, z〉, and then apply the query transformation.
The computation starts with a state |0〉. Then, we apply U0, O, . . . , O, UT and

measure the final state. The result of the computation is the rightmost bit of the
state obtained by the measurement.

We say that the quantum computation computes f with bounded error if, for every
x = (x1, . . . , xN ), the probability that the rightmost bit of UTOxUT−1 . . . OxU0|0〉
equals f(x1, . . . , xN ) is at least 1 − ε for some fixed ε < 1/2.

To simplify the exposition, we occasionally describe a quantum computation as
a classical algorithm with several quantum subroutines of the form UtOxUt−1 . . .
OxU0|0〉. Any such classical algorithm with quantum subroutines can be transformed
into an equivalent sequence UTOxUT−1 . . . OxU0|0〉 with the number of queries being
equal to the number of queries in the classical algorithm plus the sum of numbers of
queries in all quantum subroutines.

Comparison oracle. In a different version of query model, we are allowed only
comparison queries. In a comparison query, we give two indices i, j to the oracle. The
oracle answers whether xi < xj or xi ≥ xj . In the quantum model, we can query the
comparison oracle with a superposition

∑
i,j,z ai,j,z|i, j, z〉, where i, j are the indices

being queried and z is the rest of the quantum state. The oracle then performs a
unitary transformation |i, j, z〉 → −|i, j, z〉 for all i, j, z such that xi < xj and |i, j, z〉 →
|i, j, z〉 for all i, j, z such that xi ≥ xj . In section 6, we show that our algorithms can
be adapted to this model with a logarithmic increase in the number of queries.

2.2. d-wise independence. To make our algorithms efficient in terms of run-
ning time, and to make the multiple-solution algorithm of section 5 efficient in terms
of space, we use d-wise independent functions. A reader who is interested only in the
query complexity of the algorithms may skip this subsection.

Definition 1. Let F be a family of functions f : [N ] → {0, 1}. F is d-wise
independent if, for all d-tuples of pairwise distinct i1, . . . , id ∈ [N ] and all c1, . . . , cd ∈
{0, 1},

Pr[f(i1) = c1, f(i2) = c2, . . . , f(id) = cd] =
1

2d
.

Theorem 1 (see [4]). There exists a d-wise independent family F = {fj |j ∈ [R]}
of functions fj : [N ] → {0, 1} such that

1. R = O(N�d/2�);
2. fj(i) is computable in O(d log2 N) time, given j and i.

We will also use families of permutations with similar properties. It is not known
how to construct small d-wise independent families of permutations. There are, how-
ever, constructions of approximately d-wise independent families of permutations.

Definition 2. Let F be a family of permutations on f : [n] → [n]. F is ε-
approximately d-wise independent if, for all d-tuples of pairwise distinct i1, . . . , id ∈ [n]
and pairwise distinct j1, . . . , jd ∈ [n],

Pr[f(i1) = j1, . . . , f(id) = jd] ∈
[

1 − ε

n(n− 1) · · · (n− d + 1)
,

1 + ε

n(n− 1) · · · (n− d + 1)

]
.

Theorem 2 (see [28]). Let n be an even power of a prime number. For any d ≤ n,
ε > 0, there exists an ε-approximate d-wise independent family F = {πj |j ∈ [R]} of
permutations πj : [n] → [n] such that
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1. R = O((nd2

/εd)3+o(1));
2. πj(i) is computable in O(d log2 n) time, given j and i.

3. Results and algorithms. Our main results are as follows.
Theorem 3. Element k-distinctness can be solved by a quantum algorithm with

O(Nk/(k+1)) queries. In particular, element distinctness can be solved by a quantum
algorithm with O(N2/3) queries.

Theorem 4. Let r ≥ k, r = o(N). There is a quantum algorithm that solves ele-

ment distinctness with O(max( N√
r
, r)) queries and k-distinctness with O(max( Nk/2

r(k−1)/2 ,

r)) queries, using O(r(logM + logN)) qubits of memory.
Theorem 3 follows from Theorem 4 by setting r = �N2/3 for element distinctness

and r = �Nk/(k+1) for k-distinctness. (These values minimize the expressions for the
number of queries in Theorem 4.)

Next, we present Algorithm 2, which solves element distinctness if we have a
promise that x1, . . . , xN are either all distinct or there is exactly one pair i, j, i �= j,
xi = xj (and k-distinctness if we have a promise that there is at most one set of
k indices i1, . . . , ik such that xi1 = xi2 = · · · = xik). The proof of correctness of
Algorithm 2 is given in section 4. After that, in section 5, we present Algorithm 3,
which solves the general case, using Algorithm 2 as a subroutine.

3.1. Main ideas. We start with an informal description of our main ideas. For
simplicity, we restrict our attention to element distinctness and postpone the more
general k-distinctness until the end of this subsection.

Let r = N2/3. We define a graph G with
(
N
r

)
+
(

N
r+1

)
vertices. The vertices vS

correspond to sets S ⊆ [N ] of sizes r and r+1. Two vertices vS and vT are connected
by an edge if T = S ∪ {i} for some i ∈ [N ]. A vertex is marked if S contains i, j,
xi = xj .

Element distinctness reduces to finding a marked vertex in this graph. If we find
a marked vertex vS , then we know that xi = xj for some i, j ∈ S; i.e., x1, . . . , xN are
not all distinct.

The naive way to find a marked vertex would be to use Grover’s quantum search
algorithm [26, 16]. If an ε fraction of vertices are marked, then Grover’s search finds a
marked vertex after O( 1√

ε
) vertices. Assume that there exists a single pair i, j ∈ [N ]

such that i �= j, xi = xj . For a random S, |S| = N2/3, the probability of vS being
marked is

Pr[i ∈ S; j ∈ S] = Pr[i ∈ S]Pr[j ∈ S|i ∈ S] =
N2/3

N

N2/3 − 1

N − 1
= (1 − o(1))

1

N2/3
.

Thus, a quantum algorithm can find a marked vertex by examining O( 1√
ε
) = O(N1/3)

vertices. However, to find out if a vertex is marked, the algorithm needs to query N2/3

items xi, i ∈ S. This makes the total query complexity O(N1/3N2/3) = O(N), giving
no speedup compared to the classical algorithm, which queries all items.

We improve on this naive algorithm by reusing the information from previous
queries. Assume that we just checked if vS is marked by querying all xi, i ∈ S. If
the next vertex vT is such that T contains only m elements i /∈ S, then we need only
query m elements xi, i ∈ T \ S, instead of r = N2/3 elements xi, i ∈ T .

To formalize this, we use the following model. At each moment, we are at one ver-
tex of G (the superposition of vertices in the quantum case). In one time step, we can
examine if the current vertex vS is marked and move to an adjacent vertex vT . Assume
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Algorithm 1 (one step of quantum walk).
1. Apply the transformation mapping |S〉|y〉 to

|S〉
⎛
⎝
(
−1 +

2

N − r

)
|y〉 +

2

N − r

∑

y′ /∈S,y′ �=y

|y′〉
⎞
⎠

on the S and y registers of the state in H. (This transformation is a
variant of “diffusion transformation” in [26].)

2. Map the state from H to H′ by adding y to S and changing x to a vector
of length k + 1 by introducing 0 in the location corresponding to y.

3. Query for xy and insert it into the location of x corresponding to y.
4. Apply the transformation mapping |S〉|y〉 to

|S〉
⎛
⎝
(
−1 +

2

r + 1

)
|y〉 +

2

r + 1

∑

y′∈S,y′ �=y

|y′〉
⎞
⎠

on the y register.
5. Erase the element of x corresponding to the new y by using it as the input

to query for xy.
6. Map the state back to H by removing the 0 component corresponding to

y from x and removing y from S.

that there is an algorithm A that finds a marked vertex with M moves between
vertices. Then, there is an algorithm that solves element distinctness in M + r steps
in the following way:

1. We use r queries to query all xi, i ∈ S, for the starting vertex vS .
2. We then repeat the following two operations M times:

(a) Check if the current vertex vS is marked. This can be done without any
queries because we already know all xi, i ∈ S.

(b) We simulate the algorithm A until the next move, finding the vertex
vT to which it moves from vS . We then move to vT by querying xi,
i ∈ T \ S. After that, we know all xi, i ∈ T . We then set S = T .

The total number of queries is at most M + r, consisting of r queries for the first
step and one query to simulate each move of A.

In the next sections, we will show how to search this graph by a quantum walk in
O(N2/3) steps for element distinctness and in O(Nk/(k+1)) steps for k-distinctness.

3.2. The algorithm. Let x1, . . . , xN ∈ [M ]. We consider two Hilbert spaces H
and H′. H has dimension

(
N
r

)
Mr(N − r), and the basis states of H are |S, x, y〉 with

S ⊆ [N ], |S| = r, x ∈ [M ]r, y ∈ [N ] \ S. H′ has dimension
(

N
r+1

)
Mr+1(r + 1). The

basis states of H′ are |S, x, y〉 with S ⊆ [N ], |S| = r + 1, x ∈ [M ]r+1, y ∈ S. Our
algorithm thus uses

O

((
N

r

)
Mr(N − r) +

(
N

r + 1

)
Mr+1(r + 1)

)
= O(r(logN + logM))

qubits of memory.
In the states used by our algorithm, x will always be equal to (xi1 , . . . , xir ), where

i1, . . . , ir are elements of S in increasing order.
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Algorithm 2 (single-solution algorithm).

1. Generate the uniform superposition 1√
(Nr )(N−r)

∑
|S|=r,y/∈S |S〉|y〉.

2. Query all xi for i ∈ S. This transforms the state to

1√(
N
r

)
(N − r)

∑

|S|=r,y/∈S

|S〉|y〉
⊗

i∈S

|xi〉.

3. t1 = O((N/r)k/2) times repeat:
(a) Apply the conditional phase flip (the transformation |S〉|y〉|x〉 →

−|S〉|y〉|x〉) for S such that xi1 = xi2 = · · · = xik for k distinct
i1, . . . , ik ∈ S.

(b) Perform t2 = O(
√
r) steps of the quantum walk (algorithm 1).

4. Measure the final state. Check if S contains a k-collision and answer
“there is a k-collision” or “there is no k-collision” according to the result.

We start by defining a quantum walk on H and H′ (Algorithm 1). Each step of
the quantum walk starts in a superposition of states in H. The first three steps map
the state from H to H′ and the last three steps map it back to H.

If there is at most one k-collision, we apply Algorithm 2 (t1 and t2 are c1
√
r and

c2(
N
r )k/2 for constants c1 and c2, which can be calculated from the analysis in section

4). This algorithm alternates the quantum walk with a transformation that changes
the phase if the current state contains a k-collision. We give a proof of correctness
for Algorithm 2 in section 4.

If there can be more than one k-collision, element k-distinctness is solved by
Algorithm 3, which is a classical algorithm that randomly selects several subsets of
xi and runs Algorithm 2 on each subset. We give Algorithm 3 and its analysis in
section 5.

4. Analysis of single k-collision algorithm.

4.1. Overview. The number of queries for Algorithm 2 is r for creating the

initial state and O((N/r)k/2
√
r) = O( Nk/2

r(k−1)/2 ) for the rest of the algorithm. Thus,

the overall number of queries is O(max(r, Nk/2

r(k−1)/2 )). The correctness of Algorithm 2
follows from the next theorem.

Theorem 5. Let the input x1, . . . , xN be such that xi1 = · · · = xik for exactly
one set of k distinct values i1, . . . , ik. With a constant probability, measuring the final
state of Algorithm 2 gives S such that i1, . . . , ik ∈ S.

Proof. The main ideas are as follows. We first show (Lemma 1) that the al-
gorithm’s state always stays in a (2k + 1)-dimensional subspace of H. After that
(Lemma 2), we find the eigenvalues for the unitary transformation induced by one
step of the quantum walk (Algorithm 1), restricted to this subspace. We then look at
Algorithm 2 as a sequence of the form (U2U1)

t1 with U1 being a conditional phase flip
and U2 being a unitary transformation whose eigenvalues have certain properties (in
this case, U2 is t2 steps of a quantum walk). We then prove a general result (Lemma
3) about such sequences, which implies that the algorithm finds the k-collision with
a constant probability.

Let |S, y〉 be a shortcut for the basis state |S〉 ⊗i∈S |xi〉|y〉. In our algorithm, the
|x〉 register of a state |S, x, y〉 always contains the state ⊗i∈S |xi〉. Therefore, the state
of the algorithm is always a linear combination of the basis states |S, y〉.
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We classify the basis states |S, y〉 (|S| = r, y /∈ S) into 2k + 1 types. A state
|S, y〉 is of type (j, 0) if |S ∩ {i1, . . . , ik}| = j and y /∈ {i1, . . . , ik} and of type (j, 1) if
|S ∩ {i1, . . . , ik}| = j and y ∈ {i1, . . . , ik}. For j ∈ {0, . . . , k− 1}, there are both type
(j, 0) and type (j, 1) states. For j = k, there are only (k, 0) type states. (The (k, 1)
type is impossible because, if |S∩{i1, . . . , ik}| = k, then y /∈ S implies y /∈ {i1, . . . , ik}.)

Let |ψj,l〉 be the uniform superposition of basis states |S, y〉 of type (j, l). Let H̃
be the (2k + 1)-dimensional space spanned by states |ψj,l〉.

For the space H′, its basis states |S, y〉 (|S| = r + 1, y ∈ S) can be similarly
classified into 2k + 1 types. We denote those types (j, l) with j = |S ∩ {i1, . . . , ik}|,
l = 1 if y ∈ {i1, . . . , ik}, and l = 0 otherwise. (Notice that, since y ∈ S for the space
H′, we have type (k, 1) but no type (0, 1).) Let |ϕj,l〉 be the uniform superposition

of basis states |S, y〉 of type (j, l) for space H′. Let H̃ ′ be the (2k + 1)-dimensional
space spanned by |ϕj,l〉. Notice that the transformation |S, y〉 → |S ∪ {y}, y〉 maps

|ψi,0〉 → |ϕi,0〉, |ψi,1〉 → |ϕi+1,1〉.
We claim the following.

Lemma 1. In Algorithm 1, steps 1–3 map H̃ to H̃′ and steps 4– 6 map H̃′ to H̃.
Proof. See section 4.2 for the proof.
Thus, Algorithm 1 maps H̃ to itself. Also, in Algorithm 2, step 3(a) maps |ψk,0〉 →

−|ψk,0〉 and leaves |ψj,l〉 for j < k unchanged (because |ψj,l〉, j < k are superpositions
of states |S, y〉 which are unchanged by step 3(b), and |ψk,0〉 is a superposition of states
|S, y〉 which are mapped to −|S, y〉 by step 3(b)). Thus, every step of Algorithm 2
maps H̃ to itself. Also, the starting state of Algorithm 2 can be expressed as a com-
bination of |ψj,l〉. Therefore, it suffices to analyze Algorithms 1 and 2 on subspace H̃.

In this subspace, we will be interested in two particular states. Let |ψstart〉 be the
uniform superposition of all |S, y〉, |S| = r, y /∈ S. Let |ψgood〉 = |ψk,0〉 be the uniform
superposition of all |S, y〉 with i1, . . . , ik ∈ S. |ψstart〉 is the algorithm’s starting state.
|ψgood〉 is the state we would like to obtain (because measuring |ψgood〉 gives a random
set S such that {i1, . . . , ik} ⊆ S).

We start by analyzing a single step of the quantum walk.
Lemma 2. Let U be the unitary transformation induced on H̃ by one step of the

quantum walk (Algorithm 1). U has 2k+1 different eigenvalues in H̃. One of them is
1, with |ψstart〉 being the eigenvector. The other eigenvalues are e±θ1i, . . . , e±θki with
θj = (2

√
j + o(1)) 1√

r
.

Proof. See section 4.2 for the proof.
We set t2 = 
 π

3
√
k

√
r�. Since one step of the quantum walk fixes H̃, t2 steps fix

H̃ as well. Moreover, |ψstart〉 will still be an eigenvector with eigenvalue 1. The other

2k eigenvalues become e
±i( 2π

√
j

3
√

k
+o(1))

. Thus, every of those eigenvalues is eiθ, with
θ ∈ [c, 2π − c], for a constant c independent of N and r.

Let step U1 be step 3(a) of Algorithm 2 and U2 = U t2 be step 3(b). Then, the
entire algorithm consists of applying (U2U1)

t1 to |ψstart〉. We will apply the following.
Lemma 3. Let H be a finite-dimensional Hilbert space and |ψ1〉, . . . , |ψm〉 be an

orthonormal basis for H. Let |ψgood〉, |ψstart〉 be two states in H which are superpo-
sitions of |ψ1〉, . . . , |ψm〉 with real amplitudes and 〈ψgood|ψstart〉 = α. Let U1, U2 be
unitary transformations on H with the following properties:

1. U1 is the transformation that flips the phase on |ψgood〉 (U1|ψgood〉 = −|ψgood〉)
and leaves any state orthogonal to |ψgood〉 unchanged.

2. U2 is a transformation which is described by a real-valued m × m matrix
in the basis |ψ1〉, . . . , |ψm〉. Moreover, U2|ψstart〉 = |ψstart〉 and, if |ψ〉 is
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an eigenvector of U2 perpendicular to |ψstart〉, then U2|ψ〉 = eiθ|ψ〉 for θ ∈
[ε, 2π − ε], θ �= π (where ε is a constant, ε > 0).2

Then, there exists t = O( 1
α ) such that |〈ψgood|(U2U1)

t|ψstart〉| = Ω(1). (The constant
under Ω(1) is independent of α but can depend on ε.)

Proof. See section 4.3 for the proof.
By Lemma 3, we can set t1 = O( 1

α ) so that the inner product of (U2U1)
t1 |ψstart〉

and |ψgood〉 is a constant. Since |ψgood〉 is a superposition of |S, y〉 over S satisfying
{i1, . . . , ik} ⊆ S, measuring (U2U1)

t1 |ψstart〉 gives a set S satisfying {i1, . . . , ik} ⊆ S
with a constant probability.

It remains to calculate α. Let α′ be the fraction of S satisfying {i1, . . . , ik} ⊆ S.
Since |ψstart〉 is the uniform superposition of all |S, y〉 and |ψgood〉 is the uniform

superposition of |S, y〉 with {i1, . . . , ik} ⊆ S, we have α =
√
α′ and

α′ = Pr[{i1, . . . , ik} ⊆ S] =

(
N−k
r−k

)
(
N
r

) =
r

N

k−1∏

j=1

r − j

N − j
= (1 − o(1))

rk

Nk
.

Therefore, α = Ω( rk/2

Nk/2 ) and t1 = O((Nr )k/2).
Lemma 3 might also be interesting by itself. It generalizes one of the analyses

of Grover’s algorithm [3]. Informally, the lemma says that, in a Grover-like sequence
of transformations (U2U1)

t, we can significantly relax the constraints on U2, and the
algorithm will still give a similar result. It is quite likely that such situations might
appear in the analysis of other algorithms.

For the quantum walk for element k-distinctness, Childs and Eisenberg [20] have
improved the analysis of Lemma 3 by showing that 〈ψgood|(U2U1)

t|ψstart〉 (and, hence,
the algorithm’s success probability) is 1− o(1). Their result, however, does not apply
to arbitrary transformations U1 and U2 satisfying conditions of Lemma 3.

4.2. Proofs of Lemmas 1 and 2.
Proof of Lemma 1. To show that H̃ is mapped to H̃′, it suffices to show that each

of the basis vectors |ψj,l〉 is mapped to a vector in H̃′. Consider vectors |ψj,0〉 and
|ψj,1〉 for j ∈ {0, 1, . . . , k − 1}. Fix S, |S ∩ {i1, . . . , ik}| = j. We divide [N ] \ S into
two sets S0 and S1. Let

S0 = {y : y ∈ [N ] \ S, y /∈ {i1, . . . , ik}},
S1 = {y : y ∈ [N ] \ S, y ∈ {i1, . . . , ik}}.

Since |S ∩ {i1, . . . , ik}| = j, S1 contains s1 = k − j elements. Since S0 ∪ S1 = [N ] \ S
contains N − r elements, S0 contains s0 = N − r − k + j elements. Define |ψS,0〉 =

1√
N−r−k+j

∑
y∈S0

|S, y〉 and |ψS,1〉 = 1√
k−j

∑
y∈S1

|S, y〉. Then, we have

(1) |ψj,0〉 =
1√(

k
j

)(
N−k
r−j

)
∑

S:|S|=r

|S∩{i1,...,ik}|=j

|ψS,0〉,

and similarly for |ψj,1〉 and |ψS,1〉.
Consider step 1 of Algorithm 1 applied to the state |ψS,0〉. Let |ψ′

S,0〉 be the
resulting state. Since the |S〉 register is unchanged, |ψ′

S,0〉 is some superposition of

2The requirement θ �= π is made to simplify the proof of the lemma. The lemma remains true if
θ = π is allowed. At the end of section 4.3, we sketch how to modify the proof for this case.
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states |S, y〉. Moreover, both the state |ψS,0〉 and the transformation applied to this
state in step 1 are invariant under permutation of states |S, y〉, y ∈ S0, or states |S, y〉,
y ∈ S1. Therefore, the resulting state must be invariant under such permutations
as well. This means that every |S, y〉, y ∈ S0, and every |S, y〉, y ∈ S1, has the
same amplitude in |ψ′

S,0〉. This is equivalent to |ψ′
S,0〉 = a|ψS,0〉 + b|ψS,1〉 for some

a, b. Because of (1), this means that step 1 maps |ψj,0〉 to a|ψj,0〉 + b|ψj,1〉. Steps
2 and 3 then map |ψj,0〉 to |ϕj,0〉 and |ψj,1〉 to |ϕj+1,1〉. Thus, |ψj,0〉 is mapped to a

superposition of two basis states of H̃′: |ϕj,0〉 and |ϕj+1,1〉. Similarly, |ψj,1〉 is mapped
to a (different) superposition of those two states.

For j = k, we have only one state |ψk,0〉. A similar argument shows that this

state is unchanged by step 1 and then mapped to |ϕk,0〉, which belongs to H̃′.
Thus, steps 1–3 map H̃ to H̃′. The proof that steps 4–6 map H̃′ to H̃ is

similar.
Proof of Lemma 2. We fix a basis for H̃ consisting of |ψj,0〉, |ψj,1〉, j ∈ {0, . . . ,

k−1}, and |ψk,0〉 and a basis for H̃′ consisting of |ϕ0,0〉 and |ϕj,1〉, |ϕj,0〉, j ∈ {1, . . . , k}.
Let Dε be the matrix

Dε =

( −1 + 2ε 2
√
ε− ε2

2
√
ε− ε2 1 − 2ε

)
.

Claim 1. Let U1 be the unitary transformation mapping H̃ to H̃′ induced by steps
1–3 of the quantum walk. Then, U1 is described by a block diagonal matrix

U1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

D k
N−r

0 . . . 0 0

0 D k−1
N−r

. . . 0 0

...
...

. . .
...

...
0 0 . . . D 1

N−r
0

0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠
,

where the columns are in the basis |ψ0,0〉, |ψ0,1〉, |ψ1,0〉, |ψ1,1〉, . . . , |ψk,0〉 and the rows
are in the basis |ϕ0,0〉, |ϕ1,1〉, |ϕ1,0〉, |ϕ2,1〉, . . . , |ϕk,1〉, |ϕk,0〉.

Proof. Let Hj be the 2-dimensional subspace of H̃ spanned by |ψj,0〉 and |ψj,1〉.
Let H′

j be the 2-dimensional subspace of H̃′ spanned by |ϕj,0〉 and |ϕj+1,1〉.
From the proof of Lemma 1, we know that the subspace Hj is mapped to the

subspace H′
j . Thus, we have a block diagonal matrix with 2 × 2 blocks mapping Hj

to H′
j and a 1 × 1 identity matrix mapping |ψk,0〉 to |ϕk,0〉. It remains to show that

the transformation from Hj to H′
j is D k−j

N−r
. Let S be such that |S ∩{i1, . . . , ik}| = j.

Let S0, S1, |ψS,0〉, |ψS,1〉 be as in the proof of Lemma 1.
Then, step 1 of algorithm 1 maps |ψS,0〉 to

1√
s0

∑

y∈S0

((
−1 +

2

N − r

)
|S, y〉 +

∑

y′ �=y,y′ /∈S

2

N − r
|S, y′〉

)

=
1√
s0

(
−1 +

2

N − r
+ (s0 − 1)

2

N − r

) ∑

y∈S0

|S, y〉 + s0

1√
s0

2

N − r

∑

y∈S1

|S, y〉

=

(
−1 +

2s0

N − r

)
|ψS,0〉 +

2
√
s0s1

N − r
|ψS,1〉.
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By a similar calculation, |ψS,1〉 is mapped to

(
−1 +

2s1

N − r

)
|ψS,1〉 +

2
√
s0s1

N − r
|ψS,0〉 =

(
1 − 2s0

N − r

)
|ψS,1〉 +

2
√
s0s1

N − r
|ψS,0〉.

Thus, step 1 produces the transformation D k−j
N−r

on |ψS,0〉 and |ψS,1〉. Since |ψj,0〉 and

|ψj,1〉 are uniform superpositions of |ψS,0〉 and |ψS,1〉 over all S, step 1 also produces
the same transformation D k−j

N−r
on |ψj,0〉 and |ψj,1〉. Steps 2 and 3 just map |ψj,0〉 to

|ϕj,0〉 and |ψj,1〉 to |ϕj+1,1〉.
Similarly, steps 4–6 give the transformation U2 described by the block diagonal

matrix

U2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
0 D′

1
r+1

0 . . . 0

0 0 D′
2

r+1

. . . 0

...
...

...
. . .

...
0 0 0 . . . D′

k
r+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

from H̃′ to H̃. Here, D′
ε denotes the matrix

D′
ε =

( −1 + 2ε 2
√
ε− ε2

2
√
ε− ε2 1 − 2ε

)
.

A step of the quantum walk is U = U2U1. Let V be the diagonal matrix with odd
entries on the diagonal being −1 and even entries being 1. Since V 2 = I, we have
U = U2V

2U1 = U ′
2U

′
1 for U ′

2 = U2V and U ′
1 = V U1. Let

Eε =

(
1 − 2ε 2

√
ε− ε2

−2
√
ε− ε2 1 − 2ε

)
.

Then, U ′
1 and U ′

2 are equal to U1 and U2, with every Dε or D′
ε replaced by the

corresponding Eε. We will first diagonalize U ′
1 and U ′

2 separately and then argue that
eigenvalues of U ′

2U
′
1 are almost the same as eigenvalues of U ′

2.
Since U ′

2 is block diagonal, it suffices to diagonalize each block. A 1 × 1 identity
block has eigenvalue 1. For a matrix Eε, its characteristic polynomial is λ2−(2−4ε)λ+
1 = 0 and its roots are 1− 2ε± 2

√
ε− ε2i. For ε = o(1), this is equal to e±(2+o(1))i

√
ε.

Thus, the eigenvalues of U ′
2 are 1, and e

±(2+o(1))
√

j√
r+1

i
for j ∈ {1, 2, . . . , k}. Similarly,

the eigenvalues of U ′
1 are 1, and e

±(2+o(1))
√

j√
N−r

i
for j ∈ {1, 2, . . . , k}.

To complete the proof, we use the following bound on the eigenvalues of the
product of two matrices which follows from Hoffman–Wielandt theorem in matrix
analysis [27].

Theorem 6. Let A and B be unitary matrices. Assume that A has eigenvalues
1+δ1, . . . , 1+δm, B has eigenvalues μ1, . . . , μm and AB has eigenvalues μ′

1, . . . , μ
′
m.

Then,

|μj − μ′
j | ≤

m∑

i=1

|δi|

for all j ∈ [m].
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Proof. See section 4.4 for the proof.
Let A = U ′

1 and B = U ′
2. Since |eεi − 1| ≤ |ε|, each |δi| is of order O( 1√

N−r
).

Therefore, their sum is of order O( 1√
N−r

) as well. Thus, for each eigenvalue of U ′
2,

there is a corresponding eigenvalue of U ′
2U

′
1 that differs by at most O( 1√

N−r
). The

lemma now follows from 1√
N−r

= o( 1√
r+1

).

4.3. Proof of Lemma 3. We assume that |α| < cε2 for some sufficiently small
positive constant c. Otherwise, we can just take t = 0 and get |〈ψgood|(U2U1)

t|ψstart〉| =
|〈ψgood|ψstart〉| = |α| ≥ cε2.

Consider the eigenvalues of U2. Since U2 is described by a real m×m matrix (in
the basis |ψ1〉, . . . , |ψm〉), its characteristic polynomial has real coefficients. Therefore,
the eigenvalues are 1,−1, e±iθ1 , . . . , e±iθl . From conditions of the lemma, we know
that the eigenvalue of eiπ = −1 never occurs.

Let |wj,+〉, |wj,−〉 be the eigenvectors of U2 with eigenvalues eiθj , e−iθj . Let

|wj,+〉 =
∑l

j′=1 cj,j′ |ψj′〉. Then, we can assume that |wj,−〉 =
∑l

j′=1 c
∗
j,j′ |ψj′〉. (Since

U2 is a real matrix, taking U2|wj,+〉 = eiθj |wj,+〉 and replacing every number with its

complex conjugate gives U2|w〉 = e−iθj |w〉 for |w〉 =
∑l

j=1 c
∗
j,j′ |ψj′〉.)

We write |ψgood〉 in a basis consisting of eigenvectors of U2:

(2) |ψgood〉 = α|ψstart〉 +

l∑

j=1

(aj,+|wj,+〉 + aj,−|wj,−〉).

Without loss of generality, assume that α is a positive real. (Otherwise, multiply
|ψstart〉 by an appropriate factor to make α a positive real.)

We can also assume that aj,+ = aj,− = aj , with aj being a positive real number.

(To see that, let |ψgood〉 =
∑l

j′=1 bj′ |ψj′〉. Then, bj′ are real (by the assumptions of

Lemma 3). We have 〈wj,+|ψgood〉 = aj,+ =
∑l

j′=1 bj′c
∗
j,j′ and 〈wj,−|ψgood〉 = aj,− =

∑l
j′=1 bj′(c

∗
j,j′)

∗ = (
∑l

j′=1 bj′c
∗
j,j′)

∗ = a∗j,+. Multiplying |wj,+〉 by
a∗
j,+

|aj,+| and |wj,−〉
by

aj,+

|aj,+| makes both aj,+ and aj,− equal to
aj,+a∗

j,+

|aj,+| = |aj,+|, which is a positive real.

Consider the vector

|vβ〉 = α

(
1 + i cot

β

2

)
|ψstart〉 +

l∑

j=1

aj

(
1 + i cot

−θj + β

2

)
|wj,+〉

+

l∑

j=1

aj

(
1 + i cot

θj + β

2

)
|wj,−〉.(3)

We will prove that, for some β = Ω(α), |vβ〉 and |v−β〉 are eigenvectors of U2U1,
with eigenvalues e±iβ . After that, we show that the starting state |ψstart〉 is close to
the state 1√

2
|vβ〉 + 1√

2
|v−β〉. Therefore, repeating U2U1

π
2β times transforms |ψstart〉

to a state close to i√
2
|vβ〉 + −i√

2
|v−β〉, which is equivalent to 1√

2
|vβ〉 − 1√

2
|v−β〉. We

then complete the proof by showing that this state has a constant inner product with
|ψgood〉.

We first state some bounds on trigonometric functions that will be used through-
out the proof.
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Claim 2.

1. 2x
π ≤ sinx ≤ x for all x ∈ [0, π

2
];

2. π
4x ≤ cotx ≤ 1

x for all x ∈ [0, π
4
].

We now start the proof by establishing a sufficient condition for |vβ〉 and |v−β〉
to be eigenvectors. We have |vβ〉 = |ψgood〉 + i|v′β〉, where

(4) |v′β〉 = α cot
β

2
|ψstart〉 +

l∑

j=1

aj cot
−θj + β

2
|wj,+〉 +

l∑

j=1

aj cot
θj + β

2
|wj,−〉.

Claim 3. If |v′β〉 is orthogonal to |ψgood〉, then |vβ〉 is an eigenvector of U2U1

with an eigenvalue of eiβ and |v−β〉 is an eigenvector of U2U1 with an eigenvalue of
e−iβ.

Proof. Since |v′β〉 is orthogonal to |ψgood〉, we have U1|v′β〉 = |v′β〉 and U1|vβ〉 =
−|ψgood〉 + i|v′β〉. Therefore,

U2U1|vβ〉 = α

(
−1 + i cot

β

2

)
|ψstart〉 +

l∑

j=1

aje
iθj

(
−1 + i cot

−θj + β

2

)
|wj,+〉

+

l∑

j=1

aje
−iθj

(
−1 + i cot

θj + β

2

)
|wj,−〉.

Furthermore,

1 + i cotx =
sinx + i cosx

sinx
=

ei(
π
2 −x)

sinx
,

−1 + i cotx =
− sinx + i cosx

sinx
=

ei(
π
2 +x)

sinx
.

Therefore,
(
−1 + i cot

β

2

)
= eiβ

(
1 + i cot

β

2

)
,

eiθj
(
−1 + i cot

−θj + β

2

)
=

ei(
π
2 +

θj
2 +

β
2 )

sin
−θj+β

2

= eiβ
(

1 + i cot
−θj + β

2

)

and similarly for the coefficient of |wj,−〉. This means that U2U1|vβ〉 = eiβ |vβ〉.
For |v−β〉, we write out the inner products 〈ψgood|v′β〉 and 〈ψgood|v′−β〉. Then, we

see that 〈ψgood|v′−β〉 = −〈ψgood|v′β〉. Therefore, if |ψgood〉 and |v′β〉 are orthogonal, so
are |ψgood〉 and |v′−β〉. By the argument above, this implies that |v−β〉 is an eigenvector

of U2U1 with an eigenvalue e−iβ .
Next, we use this necessary condition to bound β for which |vβ〉 and |v−β〉 are

eigenvectors.
Claim 4. There exists β such that |v′β〉 is orthogonal to |ψgood〉 and εα√

π
≤ β ≤

2.6α.
Proof. Let f(β) = 〈ψgood|v′β〉. We have

f(β) = α2 cot
β

2
+

l∑

j=1

|aj |2
(

cot
−θj + β

2
+ cot

θj + β

2

)
.
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We bound f(β) from below and above for β ∈ [0, ε
2
]. For the first term, we have

π
2β ≤ cot β

2
≤ 2

β (by Claim 2). For the second term, we have

(5) cot
−θj + β

2
+ cot

θj + β

2
= − sinβ

sin
θj+β

2
sin

θj−β
2

.

For the numerator, we have 2β
π ≤ sinβ ≤ β because of Claim 2. The denominator

can be bounded from below as follows:

sin
θj + β

2
sin

θj − β

2
≥ sin

ε

2
sin

ε

4
≥ ε2

2π2
,

with the first inequality following from θj ≥ ε and β ≤ ε
2

and the last inequality
following from Claim 2. This means

(6) α2 π

2β
− (1 − α2)π2

ε2
β ≤ f(β) ≤ α2 2

β
− 1 − α2

π
β,

where we have used ‖ψgood‖2 = |α|2+2
∑l

j=1 |aj |2 (by (2)) and ‖ψgood‖ = 1 to replace
∑l

j=1 |aj |2 with 1−α2

2
.

The lower bound of (6) implies that f(β) ≥ 0 for β = ε√
2π(1−α2)

α. The upper

bound implies that f(β) ≤ 0 for β =
√

2π√
1−α2α. Since f is continuous, it must be the

case that f(β) = 0 for some β ∈ [ ε√
2π(1−α2)

α,
√

2π√
1−α2α]. The proposition now follows

from 0 ≤ α ≤ 0.1.
Let |u1〉 =

|vβ〉
‖vβ‖ and |u2〉 =

|v−β〉
‖v−β‖ . We show that |ψstart〉 is almost a linear

combination of |u1〉 and |u2〉. Define |ψend〉 = |vend〉
‖vend‖ , where

(7) |vend〉 =

l∑

j=1

aj

(
1 + i cot

−θj
2

)
|wj,+〉 +

l∑

j=1

aj

(
1 + i cot

θj
2

)
|wj,−〉.

Claim 5.

|u1〉 = cstarti|ψstart〉 + cend|ψend〉 + |u′
1〉,

|u2〉 = −cstarti|ψstart〉 + cend|ψend〉 + |u′
2〉,

where cstart, cend are positive real numbers, and u′
1, u

′
2 satisfy ‖u′

1‖ ≤ 3β
ε and ‖u′

2‖ ≤
3β
ε for β from Claim 4.

Proof. By regrouping terms in (3), we have

(8) |vβ〉 = αi cot
β

2
|ψstart〉 + |vend〉 + |v′′β〉,

where

|v′′β〉 = α|ψstart〉 +

l∑

j=1

aji

(
cot

−θj + β

2
− cot

−θj
2

)
|wj,+〉

+

l∑

j=1

aji

(
cot

θj + β

2
− cot

θj
2

)
|wj,−〉.
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We claim that ‖v′′β‖ ≤ 3β
ε ‖vβ‖. We prove this by showing that the absolute value of

each coefficient in |v′′β〉 is at most 3β
ε times the absolute value of the coefficient of the

same eigenvector in (3). The coefficient of |ψstart〉 is α in |v′′β〉 and α(1 + i cot β
2
) in

|vβ〉. We have

∣∣∣∣α
(

1 + i cot
β

2

)∣∣∣∣ ≥ α cot
β

2
≥ α

8

πβ
,

which means that the absolute value of the coefficient of |ψstart〉 in |v′′β〉 is at most
πβ
8

times the absolute value of the coefficient in |vβ〉. For the coefficient of |wj,+〉, we
have

cot
−θj + β

2
− cot

−θj
2

=
sin β

2

sin
−θj+β

2
sin

−θj
2

.

If θj − β ≥ π
2
, then

∣∣∣∣∣
sin β

2

sin
−θj+β

2
sin

−θj
2

∣∣∣∣∣ ≤
β
2

sin π
4

sin π
4

=
β
2

1√
2

1√
2

= β ≤ β

∣∣∣∣1 + i cot
−θj + β

2

∣∣∣∣ .

If θj − β ≤ π
2
, then

∣∣∣∣∣
sin β

2

sin
−θj+β

2
sin

−θj
2

∣∣∣∣∣ =

∣∣∣∣∣
sin β

2

cos
−θj+β

2
sin

−θj
2

cot
−θj + β

2

∣∣∣∣∣

≤
β
2

1√
2

θj
π

cot

∣∣∣∣
−θj + β

2

∣∣∣∣ ≤ 3
β

ε

∣∣∣∣cot
−θj + β

2

∣∣∣∣ ,

with the first inequality following from | cos
−θj+β

2
| ≥ | cos π

4
| = 1√

2
and | sinx| =

sin |x| ≥ 2|x|
π (using Claim 2). Therefore, the absolute value of the coefficient of

|wj,+〉 in |v′′β〉 is at most 3β
ε times the absolute value of the coefficient of |wj,+〉 in

|vβ〉 (which is |aj(1+ i cot
−θj+β

2
)|). Similarly, we can bound the absolute value of the

coefficient of |wj,−〉.
By dividing (8) by ‖vβ‖, we get

|u1〉 = cstarti|ψstart〉 + cend|ψend〉 + |u′
1〉

for cstart =
α cot

β
2

‖vβ‖ , cend = ‖vend‖
‖vβ‖ , and |u′

1〉 = 1
‖vβ‖ |v′′β〉. Since ‖v′′β‖ ≤ 3β

ε ‖vβ‖, we have

‖u′
1‖ ≤ 3β

ε . The proof for u2 is similar.
Since |u1〉 and |u2〉 are eigenvectors of U2U1 with different eigenvalues, they must

be orthogonal. Therefore,

〈u1|u2〉 = −c2start + c2end + O

(
β

ε

)
= 0,

where O(βε ) denotes a term that is at most constβε in absolute value for some constant
const that does not depend on β and ε. Also,

‖u1‖2 = c2start + c2end + O

(
β

ε

)
= 1.
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These two equalities, together with cstart and cend being positive reals, imply that
cstart = 1√

2
+ O(βε ) and cend = 1√

2
+ O(βε ). Therefore,

|u1〉 =
1√
2
i|ψstart〉 +

1√
2
|ψend〉 + |u′′

1〉,

ketu2 = − 1√
2
i|ψstart〉 +

1√
2
|ψend〉 + |u′′

2〉,

with ‖u′′
1‖ = O(β/ε) and ‖u′′

2‖ = O(β/ε). This means that

|ψstart〉 = − i√
2
|u1〉 +

i√
2
|u2〉 + |w′〉,

|ψend〉 =
1√
2
|u1〉 +

1√
2
|u2〉 + |w′′〉,

where w′ and w′′ are states with ‖w′‖ = O(β/ε) and ‖w′′‖ = O(β/ε). Let t = � π
2β .

Then, (U2U1)
t|u1〉 is almost i|u1〉 (plus a term of order O(β)) and (U2U1)

t|u2〉 is
almost −i|u2〉. Therefore,

(U2U1)
t|ψstart〉 = |ψend〉 + |v′〉,

where ‖v′‖ = O(β/ε). This means that

(9) |〈ψgood|(U2U1)
t|ψstart〉| ≥ |〈ψgood|ψend〉| −O

(
β

ε

)
.

Since β ≤ 2.6α and α = cε2, we have O(β/ε) = O(ε). By choosing c to be sufficiently
small, we can make the O(β/ε) term less than 0.1ε. Then, Lemma 3 follows from the
next claim.

Claim 6.

|〈ψgood|ψend〉| ≥ min

(
1 − α2

2
,
1 − α2

4
ε

)
.

Proof. Since |ψend〉 = |vend〉
‖vend‖ , we have 〈ψgood|ψend〉 =

〈ψgood|vend〉
‖vend‖ . By definition

of |vend〉 (see (7)), 〈ψgood|vend〉 = 2
∑l

j=1 a
2
j . By (2), ‖ψgood‖2 = α2 + 2

∑l
j=1 a

2
j .

Since ‖ψgood‖2 = 1, we have 〈ψgood|vend〉 = 1− α2. Therefore, 〈ψgood|ψend〉 ≥ 1−α2

‖vend‖ .

We have ‖vend‖2 = 2
∑l

j=1 a
2
j (1 + cot2

θj
2

). Since θk ∈ [ε, 2π − ε], ‖vend‖2 ≤
2
∑l

j=1 a
2
j (1 + cot2 ε

2
) ≤ (1 + cot2 ε

2
) and

〈ψgood|ψend〉 ≥ 1 − α2

√
1 + cot2( ε

2
)
≥ 1 − α2

2 max(1, cot ε
2
)
≥ min

(
1 − α2

2
,
1 − α2

4
ε

)
.

If α is set to be sufficiently small, |〈ψgood|ψend〉| is close to 0.5ε and, together with
(9), this means that |〈ψgood|(U2U1)

t|ψstart〉| is of order Ω(ε).
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Remark. If U2 has eigenvectors with eigenvalue −1, then (2) becomes

|ψgood〉 = α|ψstart〉 +

l∑

j=1

(aj,+|wj,+〉 + aj,−|wj,−〉) + al+1|wl+1〉,

with |wl+1〉 being an eigenvector with eigenvalue −1. We also add al+1(1 − i tan β
2
)

|wl+1〉, −al+1i tan β
2
|wl+1〉, and al+1|wl+1〉 terms to the right-hand sides of (3), (4),

and (8), respectively. Claims 3, 4, 5, and 6 remain true, but proofs of the claims
require some modifications to handle the |wl+1〉 term.

4.4. Derivation of Theorem 6. In this section, we derive Theorem 6 (which
was used in the proof of Lemma 2) from the Hoffman–Wielandt inequality.

Definition 3. For a matrix C = (cij), we define its l2-norm as ‖C‖ =
√∑

i,j |c2ij |.
Theorem 7 (see [27, pp. 292]). If U is unitary, then ‖UC‖ = ‖C‖ for any C.
Theorem 8 (see [27, Theorem 6.3.5]). Let C and D be m × m matrices. Let

μ1, . . . , μm and μ′
1, . . . , μ

′
m be eigenvalues of C and D, respectively. Then,

m∑

i=1

(μi − μ′
i)

2 ≤ ‖C −D‖2.

To derive Theorem 6 from Theorem 8, let C = B and D = AB. Then, C −D =
(I − A)B. Since B is unitary, ‖C −D‖ = ‖I − A‖ (Theorem 7). Let U be a unitary
matrix that diagonalizes A. Then, U(I − A)U−1 = I − UAU−1 and ‖I − A‖ = ‖I −
UAU−1‖. Since UAU−1 is a diagonal matrix with 1+ δi on the diagonal, I−UAU−1

is a diagonal matrix with δi on the diagonal and ‖I − UAU−1‖2 =
∑m

i=1 |δi|2. By
applying Theorem 8 to I and UAU−1, we get

m∑

i=1

(μi − μ′
i)

2 ≤
m∑

i=1

|δi|2.

In particular, for every i, we have (μi − μ′
i)

2 ≤ (
∑m

i=1 |δi|2) and

|μi − μ′
i| ≤

√√√√
m∑

i=1

|δi|2 ≤
m∑

i=1

|δi|.

5. Analysis of the multiple k-collision algorithm. To solve the general case
of k-distinctness, we run Algorithm 2 several times on subsets of the input xi, i ∈ [N ].

The simplest approach is as follows. We first run Algorithm 2 on the entire input
xi, i ∈ [N ]. We then choose a sequence of subsets T1 ⊆ [N ], T2 ⊆ [N ], . . . , with Ti

being a random subset of size |Ti| = ( 2k
2k+1

)iN , and run Algorithm 2 on xi, i ∈ T1,
then on xi, i ∈ T2, and so on. It can be shown that, if the input xi, i ∈ [N ], contains
a k-collision, then with probability at least 1/2, there exists j such that xi, i ∈ Tj ,
contains exactly one k-collision. This means that running Algorithm 2 on xi, i ∈ Tj ,
finds the k-collision with a constant probability.
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Algorithm 3 (multiple-solution algorithm).

1. Let T1 = [N ]. Let j = 1.
2. While |Tj | > max(r,

√
N) repeat:

(a) Run Algorithm 2 on xi, i ∈ Tj , using memory size rj =
r|Tj |
N . Mea-

sure the final state, obtaining a set S. If there are k equal elements
xi, i ∈ S, stop, answer “there is a k-collision.”

(b) Let qj be an even power of a prime with |Tj | ≤ qj ≤ (1 + 1
2k2 )|Tj |.

Select a random permutation πj on [qj ] from a 1
N -approximately

2k logN -wise independent family of permutations (Theorem 2).
(c) Let

Tj+1 =

{
π−1

1 π−1
2 · · ·π−1

j (i), i ∈
[⌈

2k

2k + 1
qj

⌉]}
.

(d) Let j = j + 1.
3. If |Tj | ≤ r, query all xi, i ∈ Tj , classically. If k equal elements are found,

answer “there is a k-collision”; otherwise, answer “there is no k-collision.”
4. If |Tj | ≤

√
N , run Grover’s search on the set of at most Nk/2 k-tuples

(i1, . . . , ik) of pairwise distinct i1, . . . , ik ∈ Tj , searching for a tuple
(i1, . . . , ik) such that xi1 = · · · = xik . If such a tuple is found, answer
“there is a k-collision”; otherwise, answer “there is no k-collision.”

The difficulty with this solution is choosing subsets Tj . If we choose a subset of size
2k

2k+1
N uniformly at random, we need Ω(N) space to store the subset and Ω(N) time

to generate it. Thus, the straightforward implementation of this solution is efficient
in terms of query complexity but not in terms of time or space. Algorithm 3 is a more
complicated implementation of the same approach that also achieves time-efficiency
and space-efficiency.

We claim the following.
Theorem 9.

(a) Algorithm 3 uses O(r + Nk/2

r(k−1)/2 ) queries.
(b) Let p be the success probability of Algorithm 2 if there is exactly one k-

collision. For any x1, . . . , xN containing at least one k-collision, Algorithm 3
finds a k-collision with probability at least (1 − o(1))p/2.

Proof. (a) The second to last step of Algorithm 3 use at most r queries. The
last step uses O(Nk/4) queries and is performed only if

√
N ≥ r. In this case,

Nk/2

r(k−1)/2 ≥ Nk/2

N(k−1)/4 ≥ Nk/4. Thus, the last two steps use O(r + Nk/2

r(k−1)/2 ) queries, and

it suffices to show that Algorithm 3 uses O(r+ Nk/2

r(k−1)/2 ) queries in its second step (the
while loop).

Let Tj and rj be as in Algorithm 3. Then, we have |T1| = N and |Tj+1| ≤
2k

2k+1
(1 + 1

2k2 )|Tj |. The number of queries in the jth iteration of the while loop is of
the order

|Tj |k/2
r
(k−1)/2
j

+ rj =
|Tj |k/2

(|Tj |r/N)(k−1)/2
+

|Tj |r
N

=
N (k−1)/2

r(k−1)/2

√
|Tj | + |Tj |r

N
.
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The total number of queries in the while loop is of the order

∑

j

(
N (k−1)/2

r(k−1)/2

√
|Tj | + |Tj |r

N

)

≤
∞∑

j=0

((
2k

2k + 1

2k2 + 1

2k2

)j/2
Nk/2

r(k−1)/2
+

(
2k

2k + 1

2k2 + 1

2k2

)j

r

)

(10) = O

(
Nk/2

r(k−1)/2
+ r

)
.

(b) If x1, . . . , xN contain exactly one k-collision, then running Algorithm 2 on all
of x1, . . . , xN finds the k-collision with probability at least p. If x1, . . . , xN contain
more than one k-collision, we can have three cases as follows:

1. For some j, Tj contains more than one k-collision but Tj+1 contains exactly
one k-collision.

2. For some j, Tj contains more than one k-collision but Tj+1 contains no k-
collisions.

3. All Tj ’s contain more than one k-collision (until |Tj | becomes smaller than

max(r,
√
N) and the loop is stopped).

In the first case, performing Algorithm 2 on xj , j ∈ Ti+1, finds the k-collision with
probability at least p. In the second case, we have no guarantees about the probability
at all. In the third case, the last step of Algorithm 3 finds one k-collision with
probability 1.

We will show that the probability of the second case is always less than the
probability of the first case plus an asymptotically small quantity. This implies that,
with probability at least 1/2−o(1), either the first or third case occurs. Therefore, the
probability of Algorithm 3 finding a k-collision is at least (1/2− o(1))p. To complete
the proof, we show the following.

Lemma 4. Let T be a set containing a k-collision. Let Nonej be the event that
xi, i ∈ Tj, contains no k-collision and Uniquej be the event that xi, i ∈ Tj, contains
a unique k-collision. Then,

(11) Pr[Uniquej+1|Tj = T ] > Pr[Nonej+1|Tj = T ] − o

(
1

N1/4

)
,

where Pr[Uniquej+1|Tj = T ] and Pr[Nonej+1|Tj = T ] denote the conditional proba-
bilities of Uniquej+1 and Nonej+1 if Tj = T .

The probability of the first case is just the sum of probabilities

Pr[Uniquej+1 ∧ Tj = T ] = Pr[Tj = T ]Pr[Uniquej+1|Tj = T ]

over all j and T such that |T | > max(r,
√
N) and T contains more than one k-collision.

The probability of the second case is a similar sum of probabilities

Pr[Nonej+1 ∧ Tj = T ] = Pr[Tj = T ]Pr[Nonej+1|Tj = T ].

Therefore, Pr[Uniquej+1|Tj = T ] > Pr[Nonej+1|Tj = T ] + o( 1
N1/4 ) implies that

the probability of the second case is less than the probability of the first case plus a
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term of order 1
N1/4 times the number of repetitions for the while loop. The number of

repetitions is O(k logN) because |Tj+1| ≤ 2k
2k+1

(1+ 1
2k2 )|Tj | ≤ (1− 1

5k )|Tj |. Therefore,
the probability of the second case is less than the probability of the first case plus a
term of order o(k logN

N1/4 ) = o(1).
It remains to prove the lemma.
Proof of Lemma 4. We fix the permutations π1, . . . , πj−1 and let πj be chosen

uniformly at random from the family of permutations given by Theorem 2.
We consider two cases. The first case is when Tj contains many k-collisions. We

show that, in this case, the lemma is true because the probability of Nonej+1 is small
(of order o( 1

N1/4 )). The second case is when Tj contains few k-collisions. In this case,
we pick one x such that there are at least k elements i, xi = x. We compare the
following probabilities:

• Tj+1 contains no k-collisions.
• Tj+1 contains exactly one k-collision consisting of i with xi = x.

The first event is the same as Nonej+1; the second event implies Uniquej+1. We
prove the lemma by showing that the probability of the second event is at least the
probability of the first event minus a small amount. This is proven by first conditioning
on Tj+1 containing no k-collisions consisting of i with xi �= x and then comparing the
probability that less than k of i : xi = x belong to Tj+1 with the probability that
exactly k of i : xi = x belong to Tj+1.

Case 1. Tj contains at least logN pairwise disjoint sets Sl = {il,1, . . . , il,k} with
xil,1 = · · · = xil,k .

Let S = S1 ∪ S2 · · · ∪ SlogN . If event Nonej+1 occurs, then at least logN of
πjπj−1 . . . π1(i), i ∈ S, (at least one from each of sets S1, . . . , SlogN ) must belong to
{
 2k

2k+1
qj� + 1, . . . , qj}. By the next proposition, this probability is almost the same

as the probability that at least logN of k logN random elements of [qj ] belong to
{
 2k

2k+1
qj� + 1, . . . , qj}.

Claim 7. Let S ⊆ Tj, |S| ≤ 2k logN . Let V ⊆ [qj ]
|S|. Let p be the probability that

(πjπj−1 . . . π1(i))i∈S belongs to V and let p′ be the probability that a tuple consisting
of |S| uniformly random elements of [qj ] belongs to V . Then,

|p− p′| ≤ |S|2 + 1

qj
.

Proof. Let S′ = {πj−1 . . . π1(i)|i ∈ S}. Then, p is the probability that (πj(i))i∈S′

belongs to V . Let p′′ be the probability that (v1, . . . , v|S|) belongs to V for (v1, . . . , v|S|)
picked uniformly at random from among all tuples of |S| distinct elements of [qj ]. By
Definition 2, |p− p′′| ≤ 1

N .
It remains to bound |p′′ − p′|. If (v1, . . . , v|S|) is picked uniformly at random

from among tuples of distinct elements, every tuple of |S| distinct elements has a
probability 1

qj(qj−1)...(qj−|S|+1)
and the tuples of nondistinct elements have probability

0. If (v1, . . . , v|S|) is uniformly at random among all tuples, every tuple has probability
1

q
|S|
j

. Therefore,

qj(qj − 1) . . . (qj − |S|+1)

q
|S|
j

p′′ ≤ p′ ≤ qj . . . (qj − |S|+ 1)

q
|S|
j

p′′+

(
1 − qj . . . (qj − |S|+ 1)

q
|S|
j

)
,
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which implies

|p′ − p′′| ≤ 1 − qj(qj − 1) . . . (qj − |S| + 1)

q
|S|
j

.

We have

1 − qj(qj − 1) . . . (qj − |S| + 1)

q
|S|
j

≤ 1 −
(
qj − |S|

qj

)|S|
≤ 1 −

(
1 − |S|2

qj

)
=

|S|2
qj

.

The probability that, out of k logN uniformly random i1, . . . , ik logN ∈ {1, . . . , qj},
at least logN belong to {
 2k

2k+1
qj�+1, . . . , qj}, can be bounded using Chernoff bounds

[33]. Let Xl be a random variable that is 1 if il ∈ {
 2k
2k+1

qj� + 1, . . . , qj}. Let
X = X1 + · · · + Xk logN . We need to bound Pr[X ≥ logN ]. We have E[X] =
k logN · E[X1] = k

2k+1
logN − o(1) and

Pr[X ≥ logN ] <

(
e(k+1)/(2k+1)

2k+1
k

)logN

= e−0.316... logN = o

(
1

N1/4

)
,

with the first inequality following from Theorem 4.4 of [33] (Pr[X ≥ (1 + δ)E[X]] <

( eδ

(1+δ)1+δ )E[X] for X that is a sum of independent identically distributed 0-1 valued

random variables).
By combining this bound with Claim 7, the probability of Nonej+1 is

o

(
1

N1/4

)
+

(k logN)2 + 1

qj
= o

(
1

N1/4

)
,

where we used qj ≥ |Tj | ≥
√
N (otherwise, the algorithm finishes the while loop).

Case 2. Tj contains less than logN pairwise disjoint sets Sl = {il,1, . . . , il,k} with
xil,1 = · · · = xil,k .

Let S be the set of all i such that xi is a part of a k-collision among xi, i ∈ Tj .
Claim 8. |S| < 2k logN .
Proof. We first select a maximal collection of pairwise disjoint Sl. This collection

contains less than k logN elements. It remains to prove that |S − ∪lSl| < k logN .
Since the collection {Sl} is maximal, any k-collision between xi, i ∈ Tj , must

involve at least one element from ∪lSl. Therefore, for any x, S \∪lSl contains at most
k − 1 values i with xi = x. Also, there are less than logN possible x because any
k-collision must involve an element from one of the sets Sl and there are less than
logN sets Sl. This means that |S − ∪lSl| < (k − 1) logN .

Let y1, y2, . . . be an enumeration of all distinct y such that Tj contains a k-collision
i1, . . . , ik with xi1 = · · · = xik = y. Let UniqueColll be the event that Tj+1 contains
exactly one k-collision i1, . . . , ik with xi1 = · · · = xik = yl and NoColll be the event
that Tj+1 contains no such collision. The event Nonej+1 is the same as

∧
l NoColll.

The event Uniquej+1 is implied by UniqueColl1∧
∧

l>1 NoColll. Therefore, it suffices
to show

(12) Pr

[
∧

l

NoColll

]
< Pr

[
UniqueColl1 ∧

∧

l>1

NoColll

]
+

2((2k logN)2 + 1)

qj
.
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The events UniqueColll and NoColll are equivalent to the cardinality of

{
i : xi = yl, i ∈ Tj , and πj . . . π1(i) ∈

{
1, . . . ,

⌈
2k

2k + 1
qj

⌉}}

being exactly k and less than k, respectively.
By Claim 7, the probabilities of both

∧
l NoColll and UniqueColl1∧

∧
l>1 NoColll

change by at most (2k logN)2+1

N if we replace (πj . . . π1(i))i∈S with a tuple of |S| random
elements of [qj ]. Then, the events NoColll and UniqueColll are independent of events
NoColll′ and UniqueColll′ for l′ �= l. Therefore,

Pr

[
∧

l

NoColll

]
= Pr[NoColl1]

∏

l>1

Pr[NoColll],

P r

[
UniqueColl1 ∧

∧

l>1

NoColll

]
= Pr[UniqueColl1]

∏

l>1

Pr[NoColll].

This means that, to show (12) for the actual probability distribution (πj . . . π1(i))i∈S ,
it suffices to prove Pr[UniqueColl1] ≥ Pr[NoColl1] for tuples consisting of |S| random
elements.

Let I be the set of all i ∈ Tj such that xi = y1. Let m = |I|. Notice that m ≥ k
(by definition of x and I). Let Pl be the event that exactly l of πj . . . π1(i), i ∈ I,

belong to Tj+1. Then, Pr[UniqueColl1] = Pr[Pk] and Pr[NoColl1] =
∑k−1

l=0 Pr[Pl].
When πj . . . π1(i), i ∈ I, are replaced by random elements of [qj ], we have

Pr[Pl] =

(
m

l

)(
1 − 1

2k + 1

)l (
1

2k + 1

)m−l

,

P r[Pl]

Pr[Pl+1]
=

(
m
l

)
(

m
l+1

) · 1

2k + 1
· 1

1 − 1
2k+1

=
l + 1

m− l
· 1

2k
.

For l ≤ k − 1, we have l+1
m−l

1
2k ≤ k 1

2k = 1
2
. This implies Pr[Pl] ≤ 1

2k−lPr[Pk] and

k−1∑

l=0

Pr[Pl] ≤
(

k−1∑

l=0

1

2k−l

)
Pr[Pk] ≤ Pr[Pk],

which is equivalent to Pr[NoColl1] ≤ Pr[UniqueColl1].

6. Running time and other issues.

6.1. Comparison model. Our algorithm can be adapted to the model of com-
parison queries similarly to the algorithm of [14]. Instead of having the register
⊗j∈S |xj〉, we have a register |j1, j2, . . . , jr〉, where |jl〉 is the index of the lth smallest
element in the set S. Given such a register and y ∈ [N ], we can add y to |j1, . . . , jr〉 by
binary search, which takes O(logNk/(k+1)) = O(logN) queries. We can also remove
a given x ∈ [N ] in O(logN) queries by reversing this process. This gives an algorithm
with O(Nk/(k+1) logN) queries.
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6.2. Running time. So far, we have shown that our algorithm solves element k-
distinctness with O(Nk/(k+1)) queries. In this section, we consider the actual running
time of our algorithm (when nonquery transformations are taken into account).

Overview. All that we do between queries is Grover’s diffusion operator, which
can be implemented in O(logN) quantum time, and some data structure operations
on set S (for example, insertions and deletions).

We now show how to store S in a classical data structure which supports the
necessary operations in O(log4(N + M)) time. In a sufficiently powerful quantum
model, it is possible to transform these O(log4(N +M)) time classical operations into
O(logc(N + M)) step quantum computation. Then, our quantum algorithm runs in
O(Nk/(k+1) logc(N +M)) steps. We will first show this for the standard query model
and then describe how the implementation should be modified for it to work in the
comparison model.

Required operations. To implement Algorithm 2, we need the following oper-
ations:

1. Adding y to S and storing xy (step 2 of Algorithm 1);
2. removing y from S and erasing xy (step 5 of Algorithm 1);
3. checking if S contains i1, . . . , ik, xi1 = · · · = xik (to perform the conditional

phase flip in step 3(a) of Algorithm 2);
4. diffusion transforms on |x〉 register in steps 1 and 4 of Algorithm 1.

Additional requirements. Making a data structure part of a quantum algo-
rithm creates two subtle issues. First, there is the uniqueness problem. In many
classical data structures, the same set S can be stored in many equivalent ways, de-
pending on the order in which elements were added and removed. In the quantum
case, this would mean that the basis state |S〉 is replaced by many states |S1〉, |S2〉, . . . ,
which in addition to S store some information about the previous sets. This can have
a very bad result. In the original quantum algorithm, we might have α|S〉 interfering
with −α|S〉, resulting in 0 amplitude for |S〉. If α|S〉 − α|S〉 becomes α|S1〉 − α|S2〉,
there is no interference between |S1〉 and |S2〉 and the result of the algorithm will be
different.

To avoid this problem, we need a data structure in which the same set S ⊆ [N ]
is always stored in the same way, independent of how S was created.

Second, if we use a classical subroutine, it must terminate in a fixed time t. Only
then can we can replace it with an O(poly(t)) time quantum algorithm. The subrou-
tines that take time t on average (but might take longer time) are not acceptable.

Model. To implement our algorithm, we use a standard quantum circuit model,
augmented with gates for random access to a quantum memory. A random access
gate takes three inputs |i〉, |b〉, and |z〉, with b being a single qubit, z being an m-qubit
register, and i ∈ [m]. It then implements the mapping

|i, b, z〉 → |i, zi, z1 . . . zi−1bzi+1 . . . zm〉.

Random access gates are not commonly used in quantum algorithms but are neces-
sary in our case because, otherwise, simple data structure operations (for example,
removing y from S), which require O(logN) time classically, would require Ω(r) time
quantumly.

In addition to random access gates, we allow the standard one and two qubit
gates [9].

Data structure: Overview. Our data structure is a combination of a hash
table and a skip list. We use the hash table to store pairs (i, xi) in the memory and
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0

0

0

level 2

level 1

level 0

Fig. 1. A skip list with three levels.

to access them when we need to find xi for a given i. We use the skip list to keep the
items sorted in the order of increasing xi so that, when a new element i is added to
S, we can quickly check if xi is equal to any of xj , j ∈ S.

We also maintain a variable v counting the number of different x ∈ [M ] such that
the set S contains i1, . . . , ik with xi1 = · · · = xik = x.

Data structure: Hash table. Our hash table consists of r buckets, each of
which contains memory for 
logN� entries. Each entry uses O(log2 N+logM) qubits.
The total memory is, thus, O(r log3(N + M)), slightly more than in the case when
we were concerned only about the number of queries.

We hash {1, . . . , N} to the r buckets using a fixed hash function h(i) = �i·r/N+1.
The jth bucket stores pairs (i, xi) for i ∈ S such that h(i) = j in the order of increas-
ing i.

In the case when there are more than 
logN� entries with h(i) = j, the bucket
stores only 
logN� of them. This means that our data structure malfunctions. We
will show that the probability of that happening is small.

Besides the 
logN� entries, each bucket also contains memory for storing �log r
counters d1, . . . , d�log r�. The counter d1 in the jth bucket counts the number of i ∈ S

such that h(i) = j. The counter dl, l > 1, is used only if j is divisible by 2l. Then, it
counts the number of i ∈ S such that j − 2l + 1 ≤ h(i) ≤ j.

The entry for (i, xi) contains (i, xi), together with a memory for 
logN� + 1
pointers to other entries that are used to set up a skip list (described below).

Data structure: Skip list. In a skip list [35], each i ∈ S has a randomly
assigned level li between 0 and lmax = 
logN�. The skip list consists of lmax + 1
lists, from the level-0 list to the level-lmax list. The level-l list contains all i ∈ S with
li ≥ l. Each element of the level-l level list has a level-l pointer pointing to the next
element of the level-l list (or 0 if there is no next element). The skip list also uses
one additional “start” entry. This entry does not store any (i, xi) but has lmax + 1
pointers, with the level-l pointer pointing to the first element of the level-l list. An
example is shown in Figure 1.

In our case, each list is in the order of increasing xi. (If several i have the same xi,
they are ordered by i.) Instead of storing an address for a memory location, pointers
store the value of the next element i ∈ S. Given i, we can find the entry for (i, xi) by
computing h(i) and searching the h(i)th bucket.

Given x, we can search the skip list as follows:
1. Traverse the level-lmax list until we find the last element ilmax with xilmax

< x.
2. For each l = lmax−1, lmax−2, . . . , 0, traverse the level-l list, starting at il+1,

until we find the last element il with xil < x.
The result of the last stage is i0, the last element of the level-0 list (which contains
all i ∈ S) with xi0 < x. If we are given i and xi, a similar search can find the last
element i0 which satisfies either xi0 < xi or xi0 = xi and i0 < i. This is the element
which would precede i if i were inserted into the skip list.
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It remains to specify the levels li. The level li is assigned to each i ∈ [N ] before
the beginning of the computation and does not change during the computation. li is
equal to j with probability 1/2j+1 for j < lmax and probability 1/2lmax for j = lmax.

The straightforward implementation (in which we choose the level independently
for each i) has the drawback that we have to store the level for each N possible i ∈ [N ],
which requires Ω(N) time to choose the levels and Ω(N) space to store them. To avoid
this problem, we define the levels using lmax functions h1, h2, . . . , hlmax : [N ] → {0, 1}.
i ∈ [N ] belongs to level l (for l < lmax) if h1(i) = · · · = hl(i) = 1 but hl+1(i) = 0.
i ∈ [N ] belongs to level lmax if h1(i) = · · · = hlmax

(i) = 1. Each hash function
is picked uniformly at random from a d-wise independent family of hash functions
(Theorem 1) for d = 
4 log2 N + 1�.

In the quantum case, we augment the quantum state by an extra register holding
|h1, . . . , hlmax〉. The register is initialized to a superposition in which every basis
state |h1, . . . , hlmax〉 has an equal amplitude. The register is then used to perform
transformations dependent on h1, . . . , hlmax

on other registers.
Operations: Insertion and deletion. To add i to S, we first query the value

xi. Then, we compute h(i) and add (i, xi) to the h(i)th bucket. If the bucket already
contains some entries, we may move some of them so that, after inserting (i, xi),
the entries are still in the order of increasing i. We then add 1 to the counter d1

for the h(i)th bucket and the counter dl for the (
h(i)
2l �2l)th bucket, for each l ∈

{2, . . . , �log r}. We then update the skip list as follows:
1. Run the search for the last element before i (as described earlier). The search

finds the last element il before i on each level l ∈ {0, . . . , lmax}.
2. For each level l ∈ {0, . . . , li}, let jl be the level-l pointer of il. Set the level-l

pointer of i to be equal to jl and the level-l pointer of il to be equal to i.
After the update is complete, we use the skip list to find the smallest j such that

xj = xi and then use level-0 pointers to count if the number of j : xj = xi is less than
k, exactly k, or more than k. If there are exactly k such j, we increase v by 1. (In this
case, before adding i to S, there were k−1 such j and, after adding i, there are k such
j. Thus, the number of x such that S contains i1, . . . , ik with xi1 = · · · = xik = x has
increased by 1.)

An element i can be deleted from S by running this procedure in reverse.
Operations: Checking for k-collisions To check for k-collisions in set S, we

just check if v > 0.
Operations: Diffusion transform. As shown by Grover [26], the following

transformation on |1〉, . . . , |n〉 can be implemented with O(log n) elementary gates:

(13) |i〉 →
(
−1 +

2

n

)
|i〉 +

∑

i′∈[n],i′ �=i

2

n
|i′〉.

To implement our transformation in step 4 of Algorithm 1, we need to implement a
1–1 mapping f between S and {1, . . . , |S|}. Once we have such a mapping, we can
carry out the transformation |y〉 → |f(y)〉 by |y〉|0〉 → |y〉|f(y)〉 → |0〉|f(y)〉, where
the first step is a calculation of f(y) from y and the second step is the reverse of a
calculation of y from f(y). Then, we perform the transformation (13) on |1〉, . . . , ||S|〉
and then apply the transformation |f(y)〉 → |y〉, mapping {1, . . . , |S|} back to S.

The mapping f can be defined as follows. f(y) = f1(y) + f2(y), where f1(y) is
the number of items i ∈ S that are mapped to buckets j, j < h(y), and f2(y) is the
number of items y′ ≤ y that are mapped to bucket h(y). It is easy to see that f is a
1–1 mapping from S to {1, . . . , |S|}. f2(y) can be computed by counting the number
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of items in bucket h(y) in time O(logN). f1(y) can be computed as follows:
1. Let i = 0, l = �log r, s = 0.
2. While l ≥ 0 repeat:

(a) If i + 2l < y, add dl from the (i + 2l)th bucket to s; let i = i + 2l.
(b) Let l = l − 1.

3. Return s as f1(y).
The transformation in step 1 of Algorithm 1 is implemented, using a similar 1–1

mapping f between [N ] \ S and {1, . . . , N − |S|}.
Uniqueness. It is easy to see that a set S is always stored in the same way. The

values i ∈ S are always hashed to buckets by h in the same way and, in each bucket,
the entries are located in the order of increasing i. The counters counting the number
of entries in the buckets are uniquely determined by S. The structure of the skip list
is also uniquely determined, once the functions h1, . . . , hlmax are fixed.

Guaranteed running time. We show that, for any S, the probability that
lookup, insertion, or deletion of some element takes more than O(log4(N +M)) steps
is very small. We then modify the algorithms for lookup, insertion, or deletion so that
they abort after c log4(N + M) steps and show that this has no significant effect on
the entire quantum search algorithm. More precisely, let

|ψt〉 =
∑

S,y,h1,...,hlmax

αt
S,y|ψS,h1,...,hlmax

〉|y〉|h1, . . . , hlmax
〉

be the state of the quantum algorithm after t steps (each step being the quantum
translation of one data structure operation), using quantum translations of the perfect
data structure operations (which do not fail but may take more than c log4 N steps).
Here, |ψS,h1,...,hlmax

〉 stands for the basis state corresponding to our data structure
storing S and xi, i ∈ S, using the hash functions h1, . . . , hlmax . (Notice that the
amplitude αi

S,y is independent of h1, . . . , hlmax , since h1, . . . , hlmax are all equally
likely.)

We decompose |ψt〉 = |ψgood
t 〉+|ψbad

t 〉, with |ψgood
t 〉 consisting of (S, h1, . . . , hlmax),

for which the next operation successfully completes in c log4(N + M) steps, and
|ψbad

t 〉 consisting of (S, h1, . . . , hlmax), for which the next operation fails to complete
in c log4(N + M) steps. Let |ψ′

t〉 be the state of the quantum algorithm after t steps
using the imperfect data structure algorithms, which may abort. The next lemma is
an adaptation of a “hybrid argument” by Bennett et al. [12] to our context.

Lemma 5.

‖ψt − ψ′
t‖ ≤

t∑

t′=1

2‖ψbad
t′ ‖.

Proof. The proof is by induction. It suffices to show that

‖ψt − ψ′
t‖ ≤ ‖ψt−1 − ψ′

t−1‖ + 2‖ψbad
t ‖.

To prove that, we introduce an intermediate state |ψ′′
t 〉, which is obtained by

applying the perfect transformations in the first t − 1 steps and the transformation
that may fail in the last step. Then,

‖ψt − ψ′
t‖ ≤ ‖ψt − ψ′′

t ‖ + ‖ψ′′
t − ψ′

t‖.
The second term, ‖ψ′′

t − ψ′
t‖, is the same as ‖ψt−1 − ψ′

t−1‖ because the states |ψ′′
t 〉

and |ψ′
t〉 are obtained by applying the same unitary transformation (quantum trans-

lation of a data structure transformation which may fail) to states |ψt−1〉 and |ψ′
t−1〉,
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respectively. To bound the first term, ‖ψt − ψ′′
t ‖, let Up and Ui be the unitary trans-

formations corresponding to perfect and imperfect version of the tth data structure
operation. Then, |ψt〉 = Up|ψt−1〉 and |ψ′

t〉 = Ui|ψt−1〉. Since Up and Ui differ only for
(S, h1, . . . , hlmax), for which the data structure operation does not finish in c log4 N ,
steps, we have

‖ψt − ψ′
t‖ = ‖Up|ψt−1〉 − Ui|ψt−1〉‖ = ‖Up|ψbad

t−1〉 − Ui|ψbad
t−1〉‖ ≤ 2‖ψbad

t−1‖.
Lemma 6. For every t, ‖ψbad

t ‖ = O( 1
N1.5 ).

Proof. We assume that there is exactly one k-collision xi1 = · · · = xik . (If there
are no k-collisions, the checking step at the end of Algorithm 2 ensures that the answer
is correct. The case with more than one k-collision reduces to the case with exactly
one k-collision because of the analysis in section 5.)

By Lemma 1, every basis state |S, x〉 of the same type has equal amplitude.
Also, all h1, . . . , hlmax have equal probabilities. Therefore, it suffices to show that,
for any fixed s = |S ∩ {i1, . . . , ik}| and t = |{x} ∩ {i1, . . . , ik}|, the fraction of
|S, x, h1, . . . , hlmax〉 for which the operation fails is at most 1

N3 .
There are two parts of the update operation which can fail as follows:
1. The hash table can overflow if more than 
logN� elements i ∈ S have the

same h(i) = h.
2. The update or lookup in the skip list can take more than c log4 N steps.

For the first part, let s = |S ∩ {i1, . . . , ik}|. If more than 
logN� elements i ∈ S
have h(i) = j, then at least 
logN�− s of them must belong to [N ] \ {i1, . . . , ik}. We
now show that, for a random set S ⊆ [N ] \ {i1, . . . , ik}, |S| = r − s, the probability
that more than 
logN� − s of i ∈ S satisfy h(i) = j is small.

We introduce random variables X1, . . . , Xr−s with Xl = 1 if h maps the lth

element of S to j. We need to bound X = X1 + · · · + Xr−s. We have N/r−s
N−k ≤

E[Xl] ≤ N/r
N−k , which means that E[Xl] = 1

r + O( 1
N ). (Here, we are assuming that k

is a constant. s is also a constant because s ≤ k.) Therefore, E[X] = (r − s)E[Xl] =
1 + o(1).

The random variables Xl are negatively correlated: if one or more Xl’s are equal
to 1, then the probability that other variables Xl′ are equal to 1 decreases. Therefore
(see [34]), we can apply Chernoff bounds to bound Pr[X > logN − s]. By using the

bound Pr[X ≥ (1 + δ)E[X]] < ( eδ

(1+δ)1+δ )E[X] [33, 34], we get

Pr[X > logN − s] <
elogN−s−1

(logN − s)logN−s
= o

(
1

N4

)
.

For the second part, we consider the time required for insertion of a new element.
(Removing an element requires the same time because it is done by running the inser-
tion algorithm in reverse.) Adding (i, xi) to the (h(i))th bucket requires comparing i
to entries already in the bucket and, possibly, moving some of the entries so that they
remain sorted in the order of increasing i. Since a bucket contains O(logN) entries
and each entry uses log2(N + M) bits, this can be done in O(log3(N + M)) time.
Updating counters dl requires O(logN) time for each of the O(log r) = O(logN)
counters.

To update the skip list, we first need to compute h1(i), . . . , hlmax
(i). This is the

most time consuming step, requiring O(d log2 N) = O(log3 N) steps for each of the
lmax = 
logN� functions hl. The total time for this step is O(log4 N). We then need
to update the pointers in the skip list. We show that for any fixed S, y (and random
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h1, . . . , hlmax
), the probability that updating the pointers in the skip list takes more

than c log4 N steps is small.
Each time we access a pointer in the skip list, it may take O(log2 N) steps because

a pointer stores the number i of the next entry and, to find the entry (i, xi) itself,
we have to compute h(i) and search the h(i)th bucket, which may contain logN
entries, each of which uses logN bits to store i. Therefore, it suffices to show that
the probability of a skip list operation accessing more than c log2 N pointers is small.

We show that by proving that at most d = 4 logN +1 pointer accesses are needed
on each of the logN + 1 levels l. We first consider level 0. Let j1, j2, . . . be the
elements of S ordered so that xj1 ≤ xj2 ≤ xj3 . . . (and, if xjl = xjl+1

for some j,
then jl < jl+1). If the algorithm requires more than d pointer accesses on level 0, it
must be the case that, for some i′, ji′ , . . . , ji′+d−1 are all at level 0. That is equivalent
to h1(ji′) = h1(ji′+1) = · · · = h1(ji′+d−1) = 0. Since h1 is d-wise independent, the
probability that h1(ji′) = · · · = h1(ji′+d−1) = 0 is 2−d < N−4.

For level l (0 < l < lmax), we first fix the hash functions h1, . . . , hl. Let j1, j2, . . .
be the elements of S for which h1, . . . , hl are all 1, ordered so that xj1 ≤ xj2 ≤
xj3 . . . . By the same argument, the probability that the algorithm needs d or more
pointer accesses on level l is the same as the probability that hl+1(ji′) = · · · =
hl+1(ji′+d−1) = 0 for some i′, and this probability is at most 2−d < N−4. For level
lmax, we fix hash functions h1, . . . , hlmax−1 and notice that i is on level lmax whenever
hlmax

(i) = 1. The rest of the argument is as before, with hlmax
(ji′) = hlmax

(ji′+1) =
· · · = hlmax(ji′+d−1) = 1 instead of h1(ji′) = h1(ji′+1) = · · · = h1(ji′+d−1) = 0.

Since there are logN + 1 levels and r elements of S, the probability that the
algorithm spends more than k− 1 steps on one level for some element of S is at most

O( |S| logN
N4 ) = O( 1

N3 ).
Therefore, ‖ψbad

t ‖2 = O( 1
N3 ) and ‖ψbad

t ‖ = O( 1
N1.5 ), proving the lemma.

By Lemmas 5 and 6, the distance between the final states of the ideal algorithm
(where the data structures never fail) and the actual algorithm is of order O( r

N3/2 ) =

O( 1
N1/2 ). This also means that the probability distributions obtained by measuring

the two states differ by at most O( 1
N1/2 ) in variational distance [13]. Therefore, the

imperfectness of the data structure operations does not have a significant effect.
Implementation in the comparison model. The implementation in the com-

parison model is similar, except that the hash table stores only i instead of (i, xi).

7. Open problems.
1. Time-space trade-offs. Our optimal O(N2/3)-query algorithm requires

space to store O(N2/3) items.
How many queries do we need if the algorithm’s memory is restricted to

r items? Our algorithm needs O( N√
r
) queries, and this is the best known.

Curiously, the lower bound for deterministic algorithms in the comparison

query model is Ω(N
2

r ) queries [38], which is quadratically more. This suggests
that our algorithm might be optimal in this setting as well. However, the only
lower bound is the Ω(N2/3) lower bound for algorithms with unrestricted
memory [1].

2. Optimality of k-distinctness algorithm. While element distinctness is
known to require Ω(N2/3) queries, it is open whether our O(Nk/(k+1)) query
algorithm for k-distinctness is optimal.

The best lower bound for k-distinctness is Ω(N2/3) by the following argu-
ment. We take an instance of element distinctness x1, . . . , xN and transform



238 ANDRIS AMBAINIS

it into k-distinctness by repeating every element k−1 times. If x1, . . . , xN are
all distinct, there is no k equal elements. If there are i, j such that xi = xj

among the original N elements, then repeating each of them k− 1 times cre-
ates 2k − 2 equal elements. Therefore, solving k-distinctness on (k − 1)N
elements requires at least the same number of queries as solving distinctness
on N elements (which requires Ω(N2/3) queries).

3. Quantum walks on other graphs. A quantum walk search algorithm
based on similar ideas can be used for the Grover search on grids [8, 22].
What other graphs can quantum walks–based algorithms search? Is there a
graph-theoretic property that determines if quantum walk algorithms work
well on this graph?

References [8] and [37] have shown that, for a class of graphs, the per-
formance of a quantum walk depends on certain expressions consisting of a
graph’s eigenvalues. In particular, if a graph has a large eigenvalue gap, a
quantum walk search performs well [37]. A large eigenvalue gap is, however,
not necessary, as shown by quantum search algorithms for grids [8, 37].
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Abstract. We present an O(lg lgn)-competitive online binary search tree, improving upon the
best previous (trivial) competitive ratio of O(lgn). This is the first major progress on Sleator and
Tarjan’s dynamic optimality conjecture of 1985 that O(1)-competitive binary search trees exist.
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1. Introduction. Binary search trees (BSTs) are one of the most fundamental
data structures in computer science. Despite decades of research, the most funda-
mental question about BSTs remains unsolved: What is the asymptotically best BST
data structure? This problem is unsolved even if we focus on the case where the BST
stores a static set and does not allow insertions and deletions.

1.1. Model. To make precise the notion of “asymptotically best BST,” we now
define the standard notions of BST data structures and dynamic optimality. Our
definition is based on the one by Wilber [Wil89], which also matches the one used
implicitly by Sleator and Tarjan [ST85].

BST data structures. We consider BST data structures supporting only searches
on a static universe of keys {1, 2, . . . , n}. We consider only successful searches, which
we call accesses. The input to the data structure is thus a sequence X, called the
access sequence, of keys x1, x2, . . . , xm chosen from the universe.

A BST data structure is defined by an algorithm for serving a given access xi,
called the BST access algorithm. The BST access algorithm has a single pointer to
a node in the BST. At the beginning of an access to a given key xi, this pointer is
initialized to the root of the tree, a unit-cost operation. The algorithm may then per-
form any sequence of the following unit-cost operations such that the node containing
xi is eventually the target of the pointer.

1. Move the pointer to its left child.
2. Move the pointer to its right child.
3. Move the pointer to its parent.
4. Perform a single rotation on the pointer and its parent.

Whenever the pointer moves to or is initialized to a node, we say that the node is
touched. The time taken by a BST to execute a sequence X of accesses to keys
x1, x2, . . . , xm is the number of unit-cost operations performed, which is at least the
number of nodes it touches, which in turn is at least m. There are several possible
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variants of this definition that can be shown to be equivalent up to constant factors.
For example, in one such variant, the pointer begins a new operation where it finished
the previous operation, rather than at the root [Wil89].

An online BST data structure augments each node in a BST with additional
data. Every unit-cost operation can change the data in the new node pointed to
by the pointer. The access algorithm’s choice of the next operation to perform is
a function of the data and augmented data stored in the node currently pointed
to. In particular, the algorithm’s behavior depends only on the past. The amount of
augmented information at each node should be as small as possible. For example, red-
black trees use one bit [CLRS01, Chapter 13], and splay trees do not use any [ST85].
Any online BST that uses only O(1) augmented words per node has a running time in
the RAM model dominated by the number of unit-cost operations in the BST model.

Optimality. Given any particular access sequence X, there is some BST data
structure that executes it optimally. Let OPT(X) denote the number of unit-cost
operations made by this fastest BST data structure for X. In other words, OPT(X)
is the fastest any offline BST can execute X, because the model does not restrict how
a BST access algorithm chooses its next move; thus in particular it may depend on
future accesses. Here we suppose that the offline BST can start from the best possible
BST storing the n keys, in order to further minimize cost. This supposition does not
reduce OPT(X) by more than an additive O(n), because any BST can be rotated
into any other at such a cost; thus starting with a particular BST would increase the
cost by at most a constant factor assuming m ≥ c n for a sufficiently large constant c.

Standard balanced BSTs establish that OPT(X) = O(m lg n). As noted above,
OPT(X) ≥ m. Wilber [Wil89] proved that OPT(X) = Θ(m lg n) for some classes of
sequences X.

An online BST data structure is dynamically optimal if it executes all sequences
X in time O(OPT(X)). It is not known whether such a data structure exists. More
generally, an online BST data structure is c-competitive if it executes all sufficiently
long sequences X in time at most cOPT(X).

The goal of this line of research is to design a dynamically optimal (i.e., O(1)-
competitive) online BST data structure that uses O(1) augmented bits per node. The
result would be a single, asymptotically best BST data structure.

1.2. Previous work. Much of the previous work on the theory of BSTs centers
around splay trees of Sleator and Tarjan [ST85]. Splay trees are an online BST data
structure that use a simple restructuring heuristic to move the accessed node to the
root. Splay trees are conjectured in [ST85] to be dynamically optimal. This conjecture
remains unresolved.

Upper bounds. Several upper bounds have been proved on the performance of
splay trees: the working-set bound [ST85], the static finger bound [ST85], the se-
quential access bound [Tar85], and the dynamic finger bound [CMSS00, Col00]. These
bounds show that splay trees execute certain classes of access sequences in o(m lg n)
time, but they all provide O(m lg n) upper bounds on access sequences that actually
take Θ(m) time to execute on splay trees. There are no known upper bounds on any
BST that are superior to these splay tree bounds. Thus, no BST is known to be
better than O(lg n)-competitive against the offline optimal BST data structure.

There are several related results in different models. The unified structure [Iac01,
BD04] has an upper bound on its runtime that is stronger than all of the proved
upper bounds on splay trees. However, this structure is not a BST data structure, it
is augmented with additional pointers, and it too is no better than O(lg n)-competitive
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against the offline optimal BST data structure.

Lower bounds. Information theory proves that any online BST data structure
costs Ω(m lg n) on an average access sequence, but this fact does not lower bound
the offline execution of any particular access sequence X. There are two known lower
bounds on OPT(X) in the BST model, both due to Wilber [Wil89]. Neither bound is
simply stated; both are complex functions of X, computable by efficient algorithms.
We use a variation on the first bound extensively in this paper, described in detail in
section 2 and proved in the appendix.

Optimality. Several restricted optimality results have been proved for BSTs. The
first result is the “optimal BST” of Knuth [Knu71]. Given an access sequence X over
the universe {1, 2, . . . , n}, let fi be the number of accesses in X to key i. Optimal
BSTs execute X in the entropy bound O

(∑n
i=1 fi lg(1+ m

fi
)
)
. This bound is expected

to be O(OPT(X)) if the accesses are drawn independently at random from a fixed
distribution matching the frequencies fi. The bound is not optimal if the accesses are
dependent or not random. Originally, these trees required the f values for construc-
tion, but this requirement is lifted by splay trees, which share the asymptotic runtime
of the older optimal trees.

The second result is key-independent optimality [Iac05]. Suppose Y = 〈y1, y2, . . . ,
ym〉 is a sequence of accesses to a set S of n unordered items. Let b be a uniform
random bijection from S to {1, 2, . . . , n}. Let X = 〈b(x1), b(x2), . . . , b(xm)〉. The key-
independent optimality result proves that splay trees, and any data structure with
the working-set bound, execute X in time O(E[OPT(X)]). In other words, if key
values are assigned arbitrarily (but consistently) to unordered data, splay trees are
dynamically optimal. This result uses the second lower bound of Wilber [Wil89].

The third result [BCK03] shows that there is an online BST data structure whose
search cost is O(OPT(X)) given free rotations between accesses. This data structure
is heavily augmented and uses exponential time to decide which BST operations to
perform next.

1.3. Our results. In summary, while splay trees are conjectured to be O(1)-
competitive for all access sequences, no online BST data structure is known to have
a competitive factor better than the trivial O(lg n), no matter how much time or
augmentation they use to decide the next BST operation to perform. In fact, no
polynomial-time offline BST is known to exist either. (Offline and with exponential
time, one can of course design a dynamically optimal structure by simulating all
possible offline BST structures that run in time at most 2m lg n to determine the best
one, before executing a single BST operation.)

We present Tango, an online BST data structure that is O(lg lg n)-competitive
against the optimal offline BST data structure on every access sequence. Tango uses
O(lg lg n) bits (less than one word) of augmentation per node, and the bookkeeping
cost to determine the next BST operation is constant amortized.

1.4. Overview. Our results are based on a slight variation of the first lower
bound of Wilber [Wil89], called the interleave lower bound. This lower bound is
computed with the aid of a static perfect binary search tree P . By simulating the
execution of the access sequence X on the perfect tree P but counting only some of
the unit-cost operations performed, we obtain a lower bound on the runtime of X on
any BST data structure (including those that change by rotations). Specifically, the
bound counts the number of “interleaves,” i.e., switches from accessing the left subtree
of a node in P to accessing the right subtree of that node, or vice versa. Section 2
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defines the lower bound precisely, and the appendix gives a proof. Our results show
that this lower bound is within an O(lg lg n) factor of being tight against the offline
optimal; we also show in section 3.5 that the lower bound is no tighter in the worst
case.

Tango simulates the behavior of the lower-bound tree P using a tree of balanced
BSTs (but represented as a single BST). Specifically, before any access, we can con-
ceptually decompose P into preferred paths where, at each node, a path proceeds to
the child subtree that was most recently accessed. Other than a startup cost of O(n),
the interleave lower bound is the sum, for each access, of the number of edges that con-
nect different preferred paths. The Tango BST matches this bound up to an O(lg lg n)
factor by representing each preferred path as a balanced BST, called an auxiliary tree.
Because the perfect tree P has height O(lg n), each auxiliary tree contains O(lg n)
nodes; thus it costs O(lg lg n) to visit each preferred path. The technical details are
in showing how to maintain the auxiliary trees as the preferred paths change, con-
ceptually using O(1) split and concatenate operations per change, while maintaining
the invariant that at all times the entire structure is a single BST sorted by key.
Overall, the Tango BST runs any access sequence X in O((OPT(X)+n) (1+ lg lgn))
time, which is O(OPT(X) (1+ lg lgn)) provided m = Ω(n). Section 3 gives a detailed
description and analysis of Tango.

The Tango BST is similar to link-cut trees of Sleator and Tarjan [ST83, Tar83].
Both data structures maintain a tree of auxiliary trees, where each auxiliary tree
represents a path of a represented tree (in Tango, the lower-bound tree P ). Some
versions of link-cut trees also define the partition into paths in the same way as
preferred paths, except that the represented tree is dynamic. The main distinction is
that Tango is a BST data structure, and therefore the “tree of auxiliary trees” must
be stored as a single BST sorted by key value. In contrast, the auxiliary trees in link-
cut trees are sorted by depth, making it easier to splice preferred paths as necessary.
We show that this difficulty is surmountable with only a little extra bookkeeping.

1.5. Further work. Since the conference version of this paper [DHIP04], Wang,
Derryberry, and Sleator [WDS06] have developed a variant of Tango trees, called the
multi-splay tree, in which auxiliary trees are splay trees. (Interestingly, this idea is also
used in one version of link-cut trees [Tar83].) In this variant, they establish O(lg lg n)-
competitiveness, an O(lg n) amortized time bound per operation, and an O(lg2 n)
worst-case time bound per operation. Furthermore, they generalize the lower-bound
framework and data structure to handle insertions and deletions on the universe of
keys.

We note that a more complicated but easier-to-analyze variant of Tango executes
any access sequence X in O

(
(OPT(X) + n) (1 + lg lgn

OPT(X)/n )
)

time, which is always

O(n lg n). The variant also achieves O(lg n) worst-case time per operation. Namely,
we can replace the auxiliary tree data structure with a balanced BST supporting
search, split, and concatenate operations in the worst-case dynamic finger bound,
O(1+lg r) worst-case time, where r is 1 plus the rank difference between the accessed
element and the previously accessed element. For example, one such data structure
maintains the previously accessed element at the root and has subtrees hanging off
the spine with size roughly exponentially increasing with distance from the root.
Following the analysis in section 3.4, the cost of accessing an element in the tree of
auxiliary trees then becomes O

(∑k
i=1(1+lg ri)

)
, where r1, r2, . . . , rk are the numbers

of nodes along the k preferred paths we visit; thus r1 + r2 + · · · + rk = Θ(lgn). This
cost is maximized up to constant factors when r1 = r2 = · · · = rk = Θ

(
lgn
k

)
, for
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a cost of O
(
k(1 + lg lgn

k )
)
. Because k = O(lg n), we obtain an O(lg n) worst-case

time bound per access. Summing over all accesses, the k’s sum to the interleave lower
bound plus an O(n) startup cost, so the total cost is maximized up to constant factors
when each access cost is approximately equal, for a total cost of O

(
(OPT(X)+n) (1+

lg lgn
OPT(X)/n )

)
.

2. Interleave lower bound. The interleave bound is a lower bound on the time
taken by any BST data structure to execute an access sequence X, dependent only
on X. The particular version of the bound that we use is a slight variation of the
first bound of Wilber [Wil89]. (Specifically, our lower-bound tree P has a key at
every node, instead of just at the leaves, we also fix P to be the complete tree for the
purposes of upper bounds, and our bound differs by roughly a factor of two because
we do not insist that the search algorithm brings the desired element to the root.)
Our lower bound is also similar to lower bounds that follow from partial sums in the
semigroup model [HF98, PD06]. Given the similarity to previous lower bounds, we
just state the bound in this section, and delay the proof to the appendix.

We maintain a perfect binary tree, called the lower-bound tree P , on the keys
{1, 2, . . . , n}. (If n is not one less than a power of two, the tree is complete, not
perfect.) This tree has a fixed structure over time.

For each node y in P , define the left region of y to consist of y itself plus all nodes
in y’s left subtree in P , and define the right region of y to consist of all nodes in y’s
right subtree in P . The left and right regions of y partition y’s subtree in P and are
temporally invariant. For each node y in P , we label each access xi in the access
sequence X by whether xi is in the left or right region of y, discarding all accesses
outside y’s subtree in P . The amount of interleaving through y is the number of
alternations between “left” and “right” labels in this sequence. The interleave bound
IB(X) is the sum of these interleaving amounts over all nodes y in P .

The exact statement of the lower bound is as follows.
Theorem 2.1. IB(X)/2−n is a lower bound on OPT(X), the cost of the optimal

offline BST that serves access sequence X.

3. BST upper bound.

3.1. Overview of the Tango BST. We now define a specific BST access al-
gorithm, called Tango. Let Ti denote the state of the Tango BST after executing the
first i accesses x1, x2, . . . , xi. We define Ti in terms of an augmented lower-bound
tree P .

As in the interleave lower bound, P is a perfect binary tree on the same set of
keys, {1, 2, . . . , n}. We augment P to maintain, for each internal node y of P , a
preferred child of either the left or the right, specifying whether the last access to a
node within y’s subtree in P was in the left or right region of y. In particular, because
y is in its left region, an access to y sets the preferred child of y to the left. If no node
within y’s subtree in P has yet been accessed (or if y is a leaf), y has no preferred
child. The state Pi of this augmented perfect binary tree after executing the first i
accesses x1, x2, . . . , xi is determined solely by the access sequence, independent of the
Tango BST.

The following transformation converts a state Pi of P into a state Ti of the Tango
BST. Start at the root of P and repeatedly proceed to the preferred child of the
current node until reaching a node without a preferred child (e.g., a leaf). The nodes
traversed by this process, including the root, form a preferred path. We compress
this preferred path into an “auxiliary tree” R. (Auxiliary trees are BSTs defined in
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section 3.2.) Removing this preferred path from P splits P into several pieces; we
recurse on each piece and hang the resulting BSTs as child subtrees of the auxiliary
tree R.

The behavior of the Tango BST is now determined: At each access xi, the state
Ti of the Tango BST is given by the transformation described above applied to Pi.
We have not yet defined how to efficiently obtain Ti from Ti−1. To address this
algorithmic issue, we first describe auxiliary trees and the operations they support.

3.2. Auxiliary tree. The auxiliary tree data structure is an augmented BST
that stores a subpath of a root-to-leaf path in P (in our case, a preferred path), but
ordered by key value. With each node we also store its fixed depth in P . Thus, the
depths of the nodes in an auxiliary tree form a subinterval of [0, lg(n + 1)). We call
the shallowest node the top of the path, and the deepest node the bottom of the path.
We require the following operations of auxiliary trees:

1. searching for an element by key in an auxiliary tree;
2. cutting an auxiliary tree into two auxiliary trees, one storing the path of all

nodes of depth at most a specified depth d, and the other storing the path of
all nodes of depth greater than d;

3. joining two auxiliary trees that store two disjoint paths where the bottom of
one path is the parent of the top of the other path.

We require that all of these operations take time O(lg k), where k is the total number
of nodes in the auxiliary tree(s) involved in the operation. Note that the requirements
of auxiliary trees (and indeed their solution) are similar to Sleator and Tarjan’s link-
cut trees [ST83, Tar83]; however, auxiliary trees have the additional property that
the nodes are stored in a BST ordered by key value, not by depth in the path.

An auxiliary tree is implemented as an augmented red-black tree. In addition
to storing the key value and depth, each node stores the minimum and maximum
depth over the nodes in its subtree. This auxiliary data can be trivially maintained
in red-black trees with a constant-factor overhead; see, e.g., [CLRS01, Chapter 14].

The additional complication is that the nodes which would normally lack a child
in the red-black tree (e.g., the leaves) can nonetheless have child pointers which point
to other auxiliary trees. In order to distinguish auxiliary trees within this tree-of-
auxiliary-trees decomposition, we mark the root of each auxiliary tree.

Recall that red-black trees support search, split, and concatenate in O(lg k) time
[CLRS01, Problem 13-2]. In particular, this allows us to search in an augmented tree
in O(lg k) time. We use the following specific forms of split and concatenate phrased
in terms of a tree-of-trees representation instead of a forest representation:

1. Split a red-black tree at a node x: Rearrange the tree so that x is at the root,
the left subtree of x is a red-black tree on the nodes with keys less than x,
and the right subtree of x is a red-black tree on the nodes with keys greater
than x.

2. Concatenate two red-black trees whose roots are children of a common node x:
Rearrange x’s subtree to form a red-black tree on x and the nodes in its
subtree.

Both operations do not descend into marked nodes, where other auxiliary trees begin,
treating them as external nodes (i.e., ignoring the existence of marked subtrees but
preserving the pointers to them automatically during rotations). It is easy to phrase
existing split and concatenate algorithms in this framework.

Now we describe how to support cut and join using split and concatenate.
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Fig. 1. Implementing cut with split, mark, and concatenate.

To cut an augmented tree A at depth d, first observe that the nodes of depth
greater than d form an interval of key space within A. Using the augmented maximum
depth of each subtree, we can find the node � of minimum key value that has depth
greater than d in O(lg k) time, by starting at the root and repeatedly walking to the
leftmost child whose subtree has maximum depth greater than d. Symmetrically, we
can find the node r of maximum key value that has depth greater than d. We also
compute the predecessor �′ of � and the successor r′ of r.

With the interval [�, r], or equivalently the open interval (�′, r′), defining the range
of interest, we manipulate the trees using split and concatenate as shown in Figure 1.
First we split A at �′ to form two subtrees B and C of �′ corresponding to key ranges
(−∞, �′) and (�′,∞). (We skip this step, and the subsequent concatenate at �′, if
�′ = −∞.) Then we split C at r′ to form two subtrees D and E of r′ corresponding
to key ranges (�′, r′) and (r′,∞). (We skip this step, and the subsequent concatenate
at r′, if r′ = ∞.) Now we mark the root of D, effectively splitting D off from the
remaining tree. The elements in D have keys in the range (�′, r′), which is equivalent
to the range [�, r], which are precisely the nodes of depth greater than d. Next we
concatenate at r′, which to the red-black tree appears to have no left child; thus the
concatenation simply forms a red-black tree on r′ and the nodes in its right subtree.
Finally we concatenate at �′, effectively merging all nodes except those in D. The
resulting tree therefore has all nodes of depth at most d.

Joining two augmented trees A and B is similar, except that we unmark instead
of mark. First we determine which tree stores nodes of depth larger than all nodes
in the other tree by comparing the depths of the roots of A and B. Suppose by
relabeling that A stores nodes of larger depth. Symmetric to cuts, observe that the
nodes in B have key values that fall in between two adjacent keys �′ and r′ in A. We
can find these keys by searching in A for the key of B’s root. Indeed, if we split A at
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�′ and then r′ (skipping a split and the subsequent concatenate in the case of ±∞),
the marked root of B becomes the left child of r′. Then we unmark the root of B,
concatenate at r′, and then concatenate at �′. The result is a single tree containing
all elements from A and B.

3.3. Tango algorithm. Now we describe how to construct the new state Ti of
the BST given the previous state Ti−1 and the next access xi. The access algorithm
follows a normal BST walk in Ti−1 toward the query key xi. Accessing xi changes
the necessary preferred children to make a preferred path from the root to xi, sets
the preferred child of xi to the left, and does not change any other preferred children.
Except for the last change to xi’s preferred child, the points of change in preferred
children correspond exactly to where the BST walk in Ti−1 crosses from one aug-
mented tree to the next, i.e., where the walk visits a marked node. Thus, when the
walk visits a marked node x, we cut the auxiliary tree containing the parent of x,
cutting at a depth one less than the minimum depth of nodes in the auxiliary tree
rooted at x, and then we join the resulting top path with the augmented tree rooted
at x. Finally, when we reach xi, we cut its auxiliary tree at the depth of xi and join
the resulting top path with the auxiliary tree rooted at the preceding marked node
of xi.

3.4. Analysis.

Lemma 3.1. The running time of an access xi is O((k + 1) (1 + lg lgn)), where
k is the number of nodes whose preferred child changes during access xi.

Proof. The running time consists of two parts: the cost of searching for xi and
the cost of rearranging the structure from state Ti−1 into state Ti.

The search visits a root-to-xi path in Ti−1, which we partition into subpaths
according to the auxiliary trees visited. The transition between two auxiliary trees
corresponds one-to-one to the edge between a node and its nonpreferred child in the
root-to-xi path in P , at which a node’s preferred child changes because of this access.
Thus the search path in Ti−1 partitions into at most k+1 subpaths in k+1 auxiliary
trees. The cost of the search within a single auxiliary tree is O(lg lg n) because each
auxiliary tree stores O(lg n) elements, corresponding to a subpath of a root-to-leaf
path in P . Therefore the total search cost for xi is O((k + 1) (1 + lg lgn)).

The update cost is the same as the search cost up to constant factors. For each
of the at most k + 1 auxiliary trees visited by the search, we perform one cut and
one join, each costing O(lg lg n). We also pay O(lg lg n) to find the preceding marked
node of xi. The total cost is thus O((k + 1) (1 + lg lgn)).

Define the interleave bound IBi(X) of access xi to be the interleave bound on the
prefix x1, x2, . . . , xi of the access sequence minus the interleave bound on the shorter
prefix x1, x2, . . . , xi−1. In other words, the interleave bound of access xi is the number
of additional interleaves introduced by access xi.

Lemma 3.2. The number of nodes whose preferred child changes from left to right
or from right to left during an access xi is equal to the interleave bound IBi(X) of
access xi.

Proof. The preferred child of a node y in P changes from left to right precisely
when the previous access within y’s subtree in P was in the left region of y and the
next access xi is in the right region of y. Symmetrically, the preferred child of node y
changes from right to left precisely when the previous access within y’s subtree in P
was in the right region of y and the next access xi is in the left region of y. Both of
these events correspond exactly to interleaves. Note that these events do not include
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when node y previously had no preferred child and the first node within y’s subtree
in P is accessed.

Theorem 3.3. The running time of the Tango BST on a sequence X of m ac-
cesses over the universe {1, 2, . . . , n} is O((OPT(X)+n) (1+lg lgn)), where OPT(X)
is the cost of the offline optimal BST servicing X.

Proof. Lemma 3.2 states that the total number of times a preferred child changes
from left to right or from right to left is at most IB(X). There can be at most n
first preferred child settings (i.e., changes from no preferred child to a left or right
preference). Therefore the total number of preferred child changes is at most IB(X)+
n. Combining this bound with Lemma 3.1, the total cost of Tango is O((IB(X)+n+
m) (1+ lg lgn)). On the other hand, Lemma 2.1 states that OPT(X) ≥ IB(X)/2−n.
A trivial lower bound on all access sequences X is that OPT(X) ≥ m. Therefore, the
running time of Tango is O((OPT(X) + n) (1 + lg lgn)).

Corollary 3.4. When m = Ω(n), the running time of the Tango BST is
O(OPT(X) (1 + lg lgn)).

3.5. Tightness of approach. Observe that we cannot hope to improve the
competitive ratio beyond Θ(lg lgn) using the current lower bound. At each moment
in time, the preferred path from the root of P contains lg(n + 1) nodes. Regardless
of how the BST is organized, one of these lg(n+ 1) nodes must have depth Ω(lg lgn),
which translates into a cost of Ω(lg lgn) for accessing that node. On the other hand,
accessing any of these nodes increases the interleave bound by at most 1. Suppose we
access node x along the preferred path from the root of P . The preferred children do
not change for the nodes below x in the preferred path, nor do they change for the
nodes above x. The preferred child of only x itself may change, in the case that the
former preferred child was the right child, because we defined the preferred child of a
just-accessed node x to be the left child. In conclusion, at any time, there is an access
that costs Ω(lg lg n) in any fixed BST data structure, yet increases the interleave lower
bound by at most 1, resulting in a ratio of Ω(lg lgn).

Appendix. Proof of interleave lower bound. In this appendix, we prove
Theorem 2.1. We assume a fixed but arbitrary BST access algorithm, and argue that
the time it takes is at least the interleave bound. Let Ti denote the state of this
arbitrary BST after the execution of accesses x1, x2, . . . , xi.

Consider the interleaving through a node y in P . Define the transition point for
y at time i to be the minimum-depth node z in the BST Ti such that the path from
z to the root of Ti includes a node from the left region of y and a node from the right
region of y. (Here we ignore nodes not from y’s subtree in P .) Thus the transition
point z is in either the left or the right region of y, and it is the first node of that
type seen along this root-to-node path. Intuitively, any BST access algorithm applied
both to an element in the left region of y and to an element in the right region of y
must touch the transition point for y at least once.

First we show that the notion of transition point is well-defined.
Lemma A.1. For any node y in P and any time i, there is a unique transition

point for y at time i.
Proof. Let � be the lowest common ancestor of all nodes in Ti that are in the left

region of y. Because the lowest common ancestor of any two nodes in a binary search
tree has a key value nonstrictly between these two nodes, � is in the left region of y.
Thus � is the unique node of minimum depth in Ti among all nodes in the left region
of y. Similarly, the lowest common ancestor r of all nodes in Ti in the right region of
y is in the right region of y and has the lowest depth among all such nodes. Also, the
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lowest common ancestor in Ti of all nodes in the left and right regions of y must be
in either the left or right region of y (because they are consecutive in key space), and
among such nodes it must be the unique node of minimum depth, so it must be either
� or r (whichever has smaller depth). Assume by symmetry that it is �, so that � is
an ancestor of r. Thus r is a transition point for y in Ti, because the path in Ti from
the root to r visits at least one node (�) from the left region of y in P , and visits only
one node (r) from the right region of y in P because it has minimum depth among
such nodes. Furthermore, any path in Ti from the root must visit � before any other
node in the left or right region of y, because � is an ancestor of all such nodes, and
similarly it must visit r before any other node in the right region of y because it is an
ancestor of all such nodes. Therefore r is the unique transition point for y in Ti.

Second we show in the following lemma that the transition point is “stable,” not
changing until it is accessed.

Lemma A.2. If the BST access algorithm does not touch a node z in Ti for all i
in the time interval [j, k], and z is the transition point for a node y at time j, then z
remains the transition point for node y for the entire time interval [j, k].

Proof. Define � and r as in the proof of the previous lemma, and assume by
symmetry that � is an ancestor of r in Tj , so that r is the transition point for y at
time j. Because the BST access algorithm does not touch r, it does not touch any
node in the right region of y, and thus r remains the lowest common ancestor of these
nodes. On the other hand, the algorithm may touch nodes in the left region of y,
and in particular the lowest common ancestor � = �i of these nodes may change with
time (i). Nonetheless, we claim that �i remains an ancestor of r. Because nodes in
the left region of y cannot newly enter r’s subtree in Ti, and y is initially outside this
subtree, some node �′i in the left region of y must remain outside this subtree in Ti.
As a consequence, the lowest common ancestor ai of �′i and r cannot be r itself, so
it must be in the left region of y. Thus �i must be an ancestor of ai, which is an
ancestor of r, in Ti.

Next we prove that these transition points are different over all nodes in P ,
enabling us to charge to them.

Lemma A.3. At any time i, no node in Ti is the transition point for multiple
nodes in P .

Proof. Consider any two nodes y1 and y2 in P , and define �j and rj in terms of
yj as in the proof of Lemma A.1. Recall that the transition point for yj is either �j
or rj , whichever is deeper. If y1 and y2 are not ancestrally related in P , then their
left and right regions are disjoint from each other; thus �1 and r1 are distinct from �2
and r2, and hence the transition points for y1 and y2 are distinct. Otherwise, suppose
by symmetry that y1 is an ancestor of y2 in P . If the transition point for y1 is not
in y2’s subtree in P (e.g., it is y1, or it is in the left or right subtree of y1 in P while
y2 is in the opposite subtree of y1 in P ), then it differs from �2 and r2 and thus the
transition point for y2. Otherwise, the transition point for y1 is the lowest common
ancestor of all nodes in y2’s subtree in P , and thus it is either �2 or r2, whichever is
less deep. On the other hand, the transition point for y2 is either �2 or r2, whichever
is deeper. Therefore the two transition points differ in all cases.

Finally we prove that the interleave bound is a lower bound.

Theorem 2.1. IB(X)/2−n is a lower bound on OPT(X), the cost of the optimal
offline BST that serves access sequence X.

Proof. Instead of counting the entire cost incurred by the (optimal offline) BST, we
just count the number of transition points it touches (which can be only smaller). By
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Lemma A.3, we can count the number of times the BST touches the transition point
for y, separately for each y, and then sum these counts. Define � and r as in the proof
of Lemma A.1, so that the transition point for y is always either � or r, whichever is
deeper. Consider a maximal ordered subsequence xi1 , xi2 , . . . , xip of accesses to nodes
that alternate between being in the left and right regions of y. Thus p is the amount of
interleaving through y. Assume by symmetry that the odd accesses xi2j−1

are nodes
in the left region of y, and the even accesses xi2j are nodes in the right region of y.
Consider each j with 1 ≤ j ≤ �p/2�. Any access to a node in the left region of y must
touch �, and any access to a node in the right region of y must touch r. Thus, for both
accesses xi2j−1 and xi2j to avoid touching the transition point for y, the transition
point must change from r to � in between, which by Lemma A.2 requires touching
the transition point for y. Thus the BST access algorithm must touch the transition
point for y at least once during the time interval [i2j−1, i2j ]. Summing over all j, the
BST access algorithm must touch the transition point for y at least �p/2� ≥ p/2 − 1
times. Summing over all y, the amount p of interleaving through y adds up to the
interleave bound IB(X); thus the number of transition points touched adds up to at
least IB(X)/2 − n.
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[PD06] M. Pǎtraşcu and E. D. Demaine, Logarithmic lower bounds in the cell-probe model,

SIAM J. Comput., 35 (2006), pp. 932–963.
[ST83] D. D. Sleator and R. E. Tarjan, A data structure for dynamic trees, J. Comput.

System Sci., 24 (1983), pp. 362–391.
[ST85] D. D. Sleator and R. E. Tarjan, Self-adjusting binary search trees, J. ACM, 32

(1985), pp. 652–686.
[Tar83] R. E. Tarjan, Linking and cutting trees, in Data Structures and Network Algorithms,

CBMS-NSF Regional Conf. Ser. in Appl. Math. 44, SIAM, Philadelphia, 1983,
pp. 59–70.



DYNAMIC OPTIMALITY—ALMOST 251

[Tar85] R. E. Tarjan, Sequential access in splay trees takes linear time, Combinatorica, 5
(1985), pp. 367–378.

[WDS06] C. C. Wang, J. Derryberry, and D. D. Sleator, O(log logn)-competitive dynamic
binary search trees, in Proceedings of the 17th Annual ACM-SIAM Symposium on
Discrete Algorithms, Miami, 2006, pp. 374–383.

[Wil89] R. Wilber, Lower bounds for accessing binary search trees with rotations, SIAM J.
Comput., 18 (1989), pp. 56–67.



SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 37, No. 1, pp. 252–266

ALGEBRAS WITH POLYNOMIAL IDENTITIES AND COMPUTING
THE DETERMINANT∗

STEVE CHIEN† AND ALISTAIR SINCLAIR‡

Abstract. In 1991, Nisan proved an exponential lower bound on the size of an algebraic branch-
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setting, in which there are no nontrivial relationships between the matrix entries. By contrast, when
the matrix entries commute there are polynomial size ABPs for the determinant. This paper extends
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efficient computation of the determinant. The key to our approach is a characterization of noncom-
mutative algebras by means of the polynomial identities that they satisfy. Extending Nisan’s lower
bound framework, we find that any reduction in complexity compared to the free algebra must arise
from the ability of the identities to reduce the rank of certain naturally associated matrices. Using
results from the theory of algebras with polynomial identities, we are able to show that none of the
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1. Introduction. All known polynomial time algorithms for computing the de-
terminant of a matrix appear to rely on the fact that multiplication in the underlying
field (in which the matrix entries reside) is commutative. How hard is it to compute
the determinant in a noncommutative setting? This question is motivated by the
broader aim of understanding the computational power of commutativity [18, 21],
as well as by recent algorithmic applications of determinants over noncommutative
algebras to approximating the permanent [3, 5].

In a landmark paper [18], Nisan pioneered the study of noncommutative com-
putation. His main result was an exponential lower bound (of the form Ω(2n)) for
the size of any algebraic branching program (ABP) that computes the determinant
of an n × n matrix, viewed as a formal algebraic expression whose indeterminates
{x11, x12, . . . , xnn} do not commute. Since the determinant can be computed by an
ABP of size O(n3) in the commutative setting [9, 16, 17, 23], this provides intrigu-
ing evidence of the computational power of commutativity.1 Very recently, the ABP
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1Nisan in fact stated his result in terms of formula size, rather than ABP complexity. His
exponential lower bound on ABP size translates directly to a similar bound on formula size, which
he contrasted with the fact that the determinant can be computed by a formula of size nO(log n) in
the commutative setting.
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model has been used by Raz and Shpilka [21] to give an efficient deterministic algo-
rithm for polynomial identity testing over noncommutative formulas.

The main limitation of Nisan’s result, and of the ABP model as used to date, is
that it is restricted to the free algebra F〈x11, . . . , xnn〉 over a field F, in which not only
does commutativity fail to hold, but there is no interesting structure at all (i.e., no
nontrivial relations hold between the indeterminates). However, it remains quite con-
ceivable that, in some specific noncommutative algebra (e.g., the quaternion algebra),
the determinant can be computed efficiently. It seems important that any compari-
son of commutative and noncommutative computation consider all noncommutative
algebras, not only the free algebra.

In this paper, we address this issue by proposing a framework that allows the alge-
bras to have much more structure than the free algebra, without being commutative.
We characterize an algebra over F by the polynomial identities that it satisfies. In
this view, commutative F-algebras (when F has characteristic 0) are characterized by
the polynomial identity x1x2 − x2x1 = 0. By contrast, the free algebra F〈x1, x2, . . .〉
satisfies no nontrivial identities. Adding polynomial identities (without including the
commutative identity) creates a spectrum of algebras between these two extremes.
The study of polynomial identities has been an active topic in algebra for the past
fifty years (see the book [7] for a survey). Our aim is to use the machinery of that
field to study the power of noncommutativity in a manner that is more sensitive to
the structure of the algebra; in particular, lower bounds for algebras that admit a rich
class of identities give more compelling evidence for the importance of commutativity
than that provided by Nisan’s result.

Our first step is to extend Nisan’s lower bound framework for ABPs, based on
the combinatorial structure of the monomials of the function being computed, as
expressed in the rank of certain naturally associated matrices. This simple step leads
to a useful tool for comparing the ABP complexities in the free algebra and in the
algebra of interest: essentially, any reduction in complexity corresponds to an ability
of the polynomial identities to reduce the rank of the associated matrices.

We then go on to apply this framework to obtain exponential lower bounds for the
ABP complexity of the determinant over a range of natural noncommutative algebras.
The first class we consider are matrix algebras, whose elements are d × d matrices
over a field F. This is probably the most natural and most widely studied family
of noncommutative algebras and has also arisen in connection with approximating
the permanent [3, 5]. It is known [1] that the algebra of d × d matrices satisfies the
symmetric polynomial identity s2d(x1, . . . , x2d) = 0, where sk(x1, . . . , xk) is defined

to be
∑

σ sgn(σ)
∏k

i=1 xσi, with the sum ranging over all k-permutations σ. Thus
s2 is the commutative identity, and sk for k > 2 can be viewed as higher-order
generalizations of commutativity. Our first main result is an exponential ABP lower
bound for the determinant over any nontrivial matrix algebra.

Theorem 1.1. Any ABP for computing the determinant of an n×n matrix whose
entries belong to the algebra of d×d matrices, d ≥ 2, over a field F of characteristic 0
has size at least 2n.

We then go on to apply the above result, together with some additional obser-
vations, to deduce a similar lower bound for computing the determinant over several
other classes of noncommutative algebras. These results are summarized in the fol-
lowing theorem.

Theorem 1.2. The same lower bound as in Theorem 1.1 holds for ABPs com-
puting the determinant over any of the following algebras:
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1. the algebra of d×d upper triangular matrices over a field F of characteristic 0,
for any d ≥ 2;

2. the quaternion algebra, and indeed all higher Clifford algebras;2

3. the group algebra of any finite, nonabelian group G over any algebraically
closed field F of characteristic 0 (i.e., the algebra whose elements are F-vectors
indexed by group elements, with multiplication inherited from the group).

To conclude this introduction, we briefly mention some related work on lower
bounds for the determinant and permanent in other restricted models of computation.
In addition to the noncommutative case studied here and in [18], exponential lower
bounds are known for other restricted models including formulas of depth 3 (over
finite fields) [10, 11] and various restricted classes of multilinear formulas [19, 21].
In a recent breakthrough, Raz [20] obtained a superpolynomial bound (of the form
nΩ(log n)) on the size of an arbitrary multilinear formula for the permanent or the
determinant (over any field). By contrast, the best known lower bound for the size of
general arithmetic formulas for the determinant is Ω(n3) [12].

The remainder of the paper is organized as follows. In section 2 we provide
necessary background on ABPs and polynomial identities. In section 3 we review
Nisan’s framework for lower bounds based on rank and extend it to general algebras
with polynomial identities. We apply this framework to obtain an exponential lower
bound for matrix algebras (Theorem 1.1) in section 4, and for several other algebras (as
enumerated in Theorem 1.2) in section 5. We conclude in section 6 with a discussion
of some limitations of our results and some suggestions for future work.

2. Background.

2.1. Algebras with polynomial identities. Let F be a field and A an asso-
ciative algebra over F, or an F-algebra (i.e., A is a vector space over F together with
a distributive multiplication operation). Note that we will always assume that mul-
tiplication in A is associative, but it need not be commutative. We also assume the
existence of a multiplicative unity. Familiar examples of F-algebras are the following:

1. F〈X〉, the free algebra over F generated by a countable set of indeterminates
X = {x1, x2, . . .}, corresponding to all polynomials with coefficients in F in
which no nontrivial relationships exist between the indeterminates;

2. F[X], the standard polynomial ring over F, corresponding to polynomials
over F in which the indeterminates commute;

3. the matrix algebra Matd(F), consisting of all d× d matrices with entries in F;
4. for any group G, the group algebra FG, whose elements are vectors of the form∑

g∈G cgg with cg ∈ F, with multiplication defined by (
∑

g∈G agg)(
∑

h∈G bhh)

=
∑

k∈G

∑
g,h:gh=k(agbh)k.

We now introduce the central concept of polynomial identities, which we shall use
to characterize different F-algebras. We shall limit our treatment to the essentials;
for more background on this topic, see the monograph [7].

Definition 2.1. Let A be any algebra over F. A polynomial z(x1, . . . , xm) ∈
F〈X〉 is a polynomial identity of A if and only if z(a1, . . . , am) = 0 for all a1, . . . , am ∈
A.

It is well known (see, e.g., [7]) that the set of all polynomial identities of a given
algebra A forms a T-ideal of F〈X〉, i.e., a two-sided ideal that is closed under all

2See, e.g., [14] for a definition. These algebras were used in [5] in connection with approximating
the permanent.
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endomorphisms of A.3 Thus if z(x1, . . . , xm) is an identity of A, then substitution for
each of the xi by an arbitrary element of F〈X〉 also yields an identity. We denote this
T-ideal by T (A). We say that a set of identities B ⊆ T (A) is a basis or generating
set of T (A) if every element of T (A) can be expressed as a linear combination of the
form

∑

�

α�z�(g1�, . . . , gm�)β�,

with z� ∈ B and α�, β�, gi� ∈ F〈X〉.
For example, the free algebra F〈X〉 has no nontrivial identities, while any com-

mutative algebra over a field F of characteristic 0 has a generating set consisting of
the single identity x1x2 − x2x1. The study of polynomial identities has been an ac-
tive topic in algebra for the past fifty years (see [7] for a survey), but it remains an
important open problem to find (minimal) generating sets for most widely studied
algebras.4 A celebrated theorem of Amitsur and Levitzki [1] says that the matrix
algebra Matd(F) satisfies the identity s2d, where sk is defined as

sk(x1, . . . , xk) =
∑

σ∈Sk

sgn(σ)

k∏

i=1

xσi

and is known as the standard identity of degree k. (Note that the commutative identity
x1x2 − x2x1 is the standard identity s2; the standard identities can be viewed as
natural, progressively weaker generalizations of commutativity.) Moreover, Matd(F)
satisfies no identities of lower degree. For d = 2 (the 2 × 2 matrix algebra), it has
been shown relatively recently by Drensky [6] that if F has characteristic 0, then s4

together with the Hall identity

h(x1, x2) = [[x1, x2]
2, x1]

(where [a, b] denotes the “commutator” ab− ba) forms a minimal generating set. This
fact will be crucial to the present paper. Generating sets (let alone minimal ones) for
Matd(F) are not known for any d > 2; indeed, this remains one of the central open
questions in the area of polynomial identities. (See [4] for recent computer-assisted
efforts in this direction.) Note, however, that any identity satisfied by Matd(F) for
d > 2 is also satisfied by Mat2(F) (but not conversely).

Two other facts about polynomial identities will be useful later as well. First,
if F has characteristic 0, then for any F-algebra A the T-ideal T (A) of polynomial
identities of A has a generating set consisting entirely of multilinear identities. (See
[7, Proposition 4.2.3] for a proof; a polynomial f(x1, . . . , xn) is considered multilinear
if xi has degree 1 in each monomial of f for all 1 ≤ i ≤ n.) Second, if z is a polyno-
mial identity of A, then each homogeneous component of z (where the homogeneous
component of z of degree k is the polynomial consisting of all terms in z whose total
degree is k) is itself an identity; this follows from a slight variation of the proof of
Proposition 4.2.3(i) in [7].

3Indeed, there is a 1-1 correspondence between the T-ideals of F〈X〉 and the varieties of algebras
satisfying a given set of polynomial identities.

4It is known that any algebra over a field of characteristic 0 has a finite generating set for its
polynomial identities [13].
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Fig. 1. (a) An ABP that computes x2
1 + 2x1x2 + x2

2 over R〈X〉 and (b) an ABP that computes
the same function over R.

2.2. Algebraic branching programs. ABPs were introduced by Nisan [18] as
an algebraic analogue of standard (arithmetic) branching programs.

Definition 2.2. An algebraic branching program (ABP) is a directed acyclic
graph with one source and one sink. The vertices of the graph are partitioned into
levels numbered from 0 to d (the degree of the ABP), and edges may go only from
level i to level i + 1. The source is the only vertex at level 0, and the sink is the
only vertex at level d. Each edge is labeled with a homogeneous linear polynomial in
indeterminates xi (i.e., a function of the form

∑
i cixi, with coefficients ci ∈ F). The

size of an ABP is the number of vertices.
An ABP computes the degree-d homogeneous polynomial in F〈X〉 that is the

sum, over all paths from the source to the sink, of the product of the linear functions
associated with the edges along that path. Figure 1(a) shows a toy example of a
branching program that computes f(x1, x2) = x2

1 + 2x1x2 + x2
2 in R〈X〉. Note that

the order of multiplication is important and follows the order of the paths.
For a homogeneous polynomial f ∈ F〈X〉 over n variables x1, . . . , xn, the branch-

ing program complexity B(f) is defined as the size of a smallest ABP that computes f .
(We shall see in the next section that B(f) = 4 for the above polynomial f , and so
the ABP in Figure 1(a) is optimal.)

We stress that the original concepts of ABPs and branching program complexity
refer to computation in the free algebra F〈X〉, where there are no nontrivial relations
among the indeterminates xi. However, we can generalize them rather naturally to
describe computation over any F-algebra A, as stated in the following definition.

Definition 2.3. An ABP computes a function f(x1, . . . , xn) over A if and only
if, for all substitutions of the indeterminates xi by values ai ∈ A, the output of the
ABP is f(a1, . . . , an).

The branching program complexity of f over an algebra A will be denoted by
BA(f) and is defined as the size of the smallest ABP that computes f over A. (The
unadorned notation B(f) is reserved for the free algebra complexity of f .)

Note that in a specific algebra A, branching programs may be able to take ad-
vantage of polynomial identities in A to reduce the complexity of computing some
functions. As an example, suppose we are working over the real numbers R (viewed
trivially as an R-algebra). Then the branching program shown in Figure 1(b) com-
putes the same toy polynomial f as above by making use of the identity x1x2 − x2x1

to instead compute the equivalent polynomial x2
1 + x1x2 + x2x1 + x2

2. Clearly since f
has degree 2, this ABP must be optimal, and so BR(f) = 3.
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Although it is not a major concern of this paper, we note that the measure B(f)
can be related to other measures such as formula size F (f). For example, for any
homogeneous polynomial f of degree d, we have (see [18])

B(f) ≤ d(F (f) + 1), F (f) ≤ (nB(f))O(log d).

2.3. ABPs for the determinant. We conclude this section by discussing ABPs
in the context of the determinant function, which will be our main application. The
determinant of an n× n matrix with entries x11, . . . , xnn is defined by

detn(x11, . . . , xnn) =
∑

σ∈Sn

sgn(σ)

n∏

i=1

xi,σi.

As explained in the introduction, we are interested in the branching program com-
plexity of detn (as a function of n) over various F-algebras A. Nisan showed in [18]
that B(detn) = 2n over the free (real) algebra R〈X〉. Recall that this algebra is non-
commutative and indeed has no interesting structure. At the other extreme, we may
consider the situation in which we are working over a commutative algebra, such as
R itself. In this setting there exist polynomial size ABPs for detn, as the following
theorem states.

Theorem 2.4. Let A be any commutative algebra over a field F. Then

BA(detn) ≤ O(n3).

Note that some well-known determinant algorithms, such as Gaussian elimina-
tion, cannot be formulated as ABPs. However, there are a number of polynomial time
combinatorial algorithms (e.g., [9, 16, 17, 23]) that can be used to prove Theorem 2.4.
For completeness, and because it was not originally phrased as an ABP, we provide
in the appendix a sketch of one of these, due to Mahajan and Vinay [16].

In the remainder of the paper, our goal will be to understand the complexity of
computing the determinant in algebras between these two extremes.

3. A framework for lower bounds. In [18] Nisan introduced a characteriza-
tion of the ABP complexity B(f) (over the free algebra F〈X〉) in terms of the ranks of
certain matrices describing the combinatorial structure of the monomials of f . In this
section we first briefly describe Nisan’s framework and then extend it to computation
over general F-algebras.

Let f(x1, . . . , xn) be a homogeneous polynomial of degree d. For each 0 ≤ k ≤ d,
Mk(f) denotes an nk × nd−k matrix with entries in F as follows. Each row of Mk(f)
corresponds to an (ordered) monomial of degree k, and each column corresponds to
a monomial of degree d − k; the matrix entry at position (xi1 · · ·xik , xj1 · · ·xjd−k

) is
the coefficient of the combined monomial xi1 · · ·xikxj1 · · ·xjd−k

in f .
The following theorem gives a precise relationship between B(f) and the matri-

ces Mk(f).
Theorem 3.1 (Nisan [18]). Let f ∈ F〈X〉 be any homogeneous polynomial of

degree d. Then

B(f) =
d∑

k=0

rank(Mk(f)).

By applying this theorem to the determinant function, Nisan shows that B(detn) =
2n. (Indeed, this result applies to any polynomial that is weakly equivalent to the de-
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terminant, where two polynomials f and g are weakly equivalent if for each monomial
in f there exists a monomial in g consisting of the same variables—possibly in a dif-
ferent multiplicative order and with a different nonzero coefficient—and vice versa.
The permanent is an example of such a function.)

We now extend Nisan’s results to handle not just F〈X〉 but all F-algebras for
fields F of characteristic 0. In particular, we characterize BA(f) in terms of the
polynomial identities of A as follows.

Theorem 3.2. Let F be a field of characteristic 0, f ∈ F〈X〉 be a homogeneous
polynomial of degree d, and A be any F-algebra. Then if f /∈ T (A) (i.e., if f is not
identically zero over A), the ABP complexity of f over A is given by

BA(f) = inf
z(·)≡0

B(f + z) = inf
z(·)≡0

d∑

k=0

rank(Mk(f + z)),

where the infimum is over the zero polynomial and all degree-d homogeneous polyno-
mial identities z of A.

Proof. The upper bound on BA(f) is immediate from Definition 2.3. For the
lower bound, let P be a branching program that computes f(x1, . . . , xn) over A. By
definition P computes a homogeneous formal polynomial g ∈ F〈X〉; we need to show
that g is of the form f + z for some homogeneous degree-d polynomial identity z
of A.

This is almost immediate. Since P computes f over A, we have by definition
that f(a1, . . . , an) = g(a1, . . . , an) for all instantiations ai ∈ A. Hence if we define the
function z(x1, . . . , xn) = g(x1, . . . , xn)−f(x1, . . . , xn), we have that z(a1, . . . , an) = 0
for all ai ∈ A, and thus z is either the zero polynomial or a polynomial identity. But
z = g−f with f, g homogeneous; therefore, recalling from section 2.1 that each of the
homogeneous components of z is also a polynomial identity and using the assumption
that f is not itself an identity, we may conclude that z is in fact homogeneous of
degree d. Since P computes g = f + z, we are done.

The second equality in the theorem is a direct application of Nisan’s result (The-
orem 3.1).

We can see a very simple application of this general framework by referring to
the examples in Figure 1, where we are computing f(x1, x2) = x2

1 + 2x1x2 + x2
2. For

the case of the free algebra R〈X〉, we apply Nisan’s theorem and find that

M0(f) =
x2

1 x1x2 x2x1 x2
2

1
(

1 2 0 1
) , M1(f) = x1

x2

x1 x2(
1 2
0 1

)
,

M2(f) =
x2

1

x1x2

x2x1

x2
2

1⎛
⎜⎜⎝

1
2
0
1

⎞
⎟⎟⎠
,

which implies B(f) = rank(M0(f)) + rank(M1(f)) + rank(M2(f)) = 1 + 2 + 1 = 4.
Hence the ABP shown in Figure 1(a) is minimal.

When working over R rather than R〈X〉, we can add the identity z(x1, x2) =
x2x1 − x1x2 to obtain g(x1, x2) = f(x1, x2) + z(x1, x2) = x2

1 + x1x2 + x2x1 + x2
2.
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We then observe that

M0(g) =
x2

1 x1x2 x2x1 x2
2

1
(

1 1 1 1
) , M1(g) = x1

x2

x1 x2(
1 1
1 1

)
,

M2(g) =
x2

1

x1x2

x2x1

x2
2

1⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠
,

and so the ABP complexity of f over R is BR(f) ≤ 1 + 1 + 1 = 3. Since this is
clearly minimal (f has degree 2), equality must hold and we confirm that the ABP
in Figure 1(b) is optimal.

In principle, then, given any function f , we can compare its branching program
complexity over any given algebra A to its free algebra complexity by determining all
of the polynomial identities of A and checking if any of them are able to reduce the
rank of the matrices Mk(f).

3.1. General algebraic branching programs. It is a consequence of the ABP
model that the only identities we need to consider in Theorem 3.2 are homogeneous (of
the same degree as f). This might be seen as a weakness of our framework, as one may
conceivably be able to exploit nonhomogeneous identities to reduce the complexity
of f . (The ABP model is fully general for computation in the free algebra, for if f is
homogeneous then there is no advantage in allowing the ABP to be nonhomogeneous.)
We conclude this section by observing that, even allowing nonhomogeneous ABPs (for
a homogeneous function f), we can obtain the bound

B̂A(f)2 ≥ C inf
z(·)≡0

B(f + z)(1)

for a universal constant C, where B̂ is the size of the smallest general ABP that
computes f over A, and the infimum is over the zero polynomial and all homogeneous
identities z of degree d. Thus at the cost of a square we can assume all identities are
homogeneous. Since our lower bounds will be exponential, this square will affect only
the constant in the exponent.

We prove (1) as follows. First consider a generalized setting for Theorem 3.2, in
which the ABP model is extended in a natural way to allow computation of nonhomo-
geneous polynomials. This is done by allowing the edge labels to be arbitrary linear
polynomials (including constants) and dropping the requirement that the graph be
leveled. Arguing exactly as in the proof of Theorem 3.2, we have that for any homo-
geneous f of degree d,

B̂A(f) = inf
ẑ(·)≡0

B̂(f + ẑ),(2)

where B̂ denotes the smallest general ABP that computes a particular function and
the infimum is over the zero polynomial and all identities ẑ (not necessarily homoge-
neous) of A. However, recall from section 2.1 that for any such ẑ, its homogeneous
components are also identities; thus, in particular, the degree-d homogeneous compo-
nent of f + ẑ is of the form f + z, where z is homogeneous of degree d.

Now, given a (general) ABP of size s and depth � for a function g, it is not hard
to construct (see [21, Lemma 2.2]) for each d, a (standard) ABP of size O(s�) that
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computes the degree-d homogeneous component of g. Thus there is an ABP of size
O(s�) = O(s2) that computes f + z. Combining this with (2) yields (1), as claimed.

4. Computing the determinant over matrix algebras. As mentioned ear-
lier, Nisan [18] showed that the ABP complexity of the determinant over the free
algebra5

F〈X〉 satisfies

B(detn) = 2n.(3)

In this section we prove a similar lower bound for a much wider class of noncommu-
tative algebras, namely, for all matrix algebras over any field of characteristic 0. This
is Theorem 1.1 from the introduction, which we restate here.

Theorem 4.1. For any d ≥ 2, the ABP complexity of computing the determinant
over the d× d matrix algebra over any field F of characteristic 0 is given by

BMatd(F)(detn) = 2n.

Proof. We observe that Nisan proves (3) via Theorem 3.1, by showing that each
of the matrices Mk(detn) has rank exactly

(
n
k

)
. (This actually follows rather easily

as the matrices have a very special form.) Following our generalized framework of
Theorem 3.2, our task is to show that, for any homogeneous, degree-n polynomial
identity z of the matrix algebra Matd(F), the rank of Mk(detn+z) remains at least

(
n
k

)
.

In other words, we have to show that no identity of the matrix algebras can reduce
the rank of Mk(detn). Note that since any polynomial identity of Matd(F) for d > 2 is
also an identity for Mat2(F), it is sufficient to show this for the identities of Mat2(F).

In fact, for each value of k, we will examine only a submatrix of Mk(detn + z)
and show that this submatrix already contains

(
n
k

)
linearly independent rows. We

define our submatrix as follows: for each subset S = {a1, . . . , ak} of size k, 1 ≤
a1 < · · · < ak ≤ n, we keep those rows that correspond to monomials of the form∏k

j=1 xσj,aσj for all permutations σ ∈ Sk; for each such subset, we assume that its
rows are contiguous in the submatrix. Similarly, for each subset S′ = {bk+1, . . . , bn}
of size n − k, 1 ≤ bk+1 < · · · < bn ≤ n, we keep those columns that correspond

to monomials of the form
∏n−k

j=1 xk+σj,bk+σj
for all permutations σ ∈ Sn−k; these

columns are also assumed to be contiguous. Hence each pair of subsets (S, S′) defines
a “block” of size k! × (n− k)! in the submatrix.

We will denote this submatrix M̃k(detn + z) and also denote by M̃k(detn) and

M̃k(z) the submatrices created by restricting Mk(detn) and Mk(z) to the same sets

of rows and columns. Note that M̃k(detn + z) = M̃k(detn) + M̃k(z).

We now analyze the structure of M̃k(detn) and M̃k(z) in each of the (S, S′)
blocks. Note that S and S′ correspond naturally to two sets of variables, Γ(S) =
{x1a1 , . . . , xkak

} and Γ(S′) = {xk+1,bk+1
, . . . , xnbn}, and that a nonzero entry in

an (S, S′) block corresponds to a monomial whose variables are exactly those in

Γ(S) ∪ Γ(S′). The analysis of M̃k(detn) is straightforward: if S and S′ are disjoint

(equivalently, if their union is [n]), then the (S, S′) block in M̃k(detn) will contain
a single nonzero entry (either 1 or −1 in position (x1a1 . . . xkak

, xk+1bk+1
. . . xnbn));

otherwise, it is entirely zero.
The key to the rest of the proof is the following claim about the structure of M̃k(z).

5In fact, Theorem 3.2 shows that Nisan’s lower bound also holds for any algebra (over a field of
characteristic 0) that does not satisfy any polynomial identities.
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Claim 4.2. For any z ∈ T (Mat2(F)), the sum of the entries of M̃k(z) in any
(S, S′) block is zero.

Before proving the claim, we use it to complete the proof of the theorem. We
can think of M̃k(detn + z) as a large matrix divided into an

(
n
k

)× (
n
k

)
grid of (S, S′)

blocks. In this grid, there is a diagonal of (S, S′) blocks whose entries sum to ±1,
but all other (S, S′) blocks have an entry sum of 0. From this it is easy to see that

rank(M̃k(detn + z)) ≥ (
n
k

)
; indeed, by a sequence of elementary row and column

operations we can arrange that the top left corner entry of each block is equal to the
sum of the entries in that block, which means that M̃k(detn +z) contains the identity
matrix of dimension

(
n
k

)
as an induced submatrix. Hence its rank is at least

(
n
k

)
, as

required.
To conclude, we supply the proof of the above claim.
Proof of Claim 4.2. Recall from section 2.1 that any z ∈ T (Mat2(F)) must be a

sum of identities generated by the standard identity

s4(x1, x2, x3, x4) =
∑

σ∈S4

sgn(σ)

4∏

i=1

xσi

and the Hall identity in two variables

h(x1, x2) = [[x1, x2]
2, x1],

as these form a basis for T (Mat2(F)). In fact, we will prove a stronger version of
the claim by allowing z to take on a more general form. Notice that both s4 and
h can be generated by the polynomial t(x1, x2, x3, x4) = [x1, x2][x3, x4] (though t
is itself not an identity); specifically, s4(x1, x2, x3, x4) is the sum of six terms of the
form t(xi1 , xi2 , xi3 , xi4) with appropriate signs,6 while h(x1, x2) = t(x1, x2, x1, x2)x1−
x1t(x1, x2, x1, x2). Hence any identity z in T (Mat2(F)) can be written in the form

z =
∑

�

α�t(g1�, g2�, g3�, g4�)β�,

where α�, β�, gi� ∈ F〈X〉. Furthermore, since t is multilinear, we can assume without
loss of generality that α�, β�, and gi� are all monomials. (Note also that, since we
assume that z is homogeneous of degree n, the sum of the degrees of these monomials
must be n.)

We now show that for each �, the sum of the entries of Mk(α�t(g1�, g2�, g3�, g4�)β�)
is zero over any (S, S′) block. We do this by showing that any nonzero entry in an
(S, S′) block is canonically canceled by another entry in the same block. Suppose
α�t(g1�, g2�, g3�, g4�)β� is nonzero somewhere in an (S, S′) block. Then the set of
variables used in α�, β�, and gi� is exactly Γ(S) ∪ Γ(S′). Furthermore, there exists
some ordering of g1� and g2�, and of g3� and g4� (without loss of generality, say g1�, g2�

and g3�, g4�), such that the first k variables of the resulting monomial α�g1�g2�g3�g4�β�

are exactly those in Γ(S) and the last n−k variables are exactly those in Γ(S′). This
implies that (1) the variables used in α�, g1�, and g2� are contained in Γ(S), or (2) the
variables used in g3�, g4�, and β� are contained in Γ(S′). ((1) holds if α�, g1�, and g2�

contain at most k variables in total, and (2) holds if g3�, g4�, and β� contain at most
n − k variables in total; note that both may hold.) If the former is true, then the

6s4(x1, x2, x3, x4) = t(x1, x2, x3, x4) + t(x2, x3, x1, x4) − t(x1, x3, x2, x4) − t(x2, x4, x1, x3) +
t(x1, x4, x2, x3) + t(x3, x4, x1, x2).
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reordering g2�g1�g3�g4� produces the same nonzero entry with opposite sign elsewhere
in the same block. Otherwise, the reordering g1�g2�g4�g3� has the same effect.

This finishes the proof of the claim and the theorem.
Remark. As with Nisan’s original result for F〈X〉, our theorem also holds for all

polynomials that are weakly equivalent to detn (as defined just after Theorem 3.1),
using a similar proof.

5. Other noncommutative algebras. In this section we combine our result
for matrix algebras in the previous section with some additional observations to obtain
similar lower bounds for several other important classes of noncommutative algebras,
as claimed in Theorem 1.2 of the introduction.

5.1. Upper triangular matrices. Let UMatd(F) denote the set of d × d up-
per triangular matrices over a field F. Clearly UMatd(F) is a subalgebra of Matd(F).
It turns out (see [7, Theorem 5.2.1(i)]) that the single identity t(x1, x2, x3, x4) =
[x1, x2][x3, x4] used in the proof of Theorem 4.1 is actually a generating set for
UMat2(F). Therefore, that proof actually establishes that the ABP complexity of
the determinant is exponentially large even over UMatd(F), a stronger result.

Theorem 5.1. For any d ≥ 2, the ABP complexity of computing the determinant
over the algebra of d × d upper triangular matrices over any field F of characteristic
0 is given by

BUMatd(F)(detn) = 2n.

5.2. Group algebras. Let G be a finite group. The group algebra of G over
a field F, denoted FG, consists of elements of the form

∑
g∈G cgg for cg ∈ F, with

addition defined in the natural way. Multiplication is defined according to the group
operation, namely (

∑
g∈G agg)(

∑
h∈G bhh) =

∑
k∈G

∑
g,h:gh=k(agbh)k. We will now

combine our result for matrix algebras in the previous section with some elementary
representation theory to prove an exponential lower bound on the ABP complexity
of computing the determinant over any noncommutative group algebra, whenever F

is algebraically closed and of characteristic 0.
Theorem 5.2. Let G be a finite nonabelian group, and F an algebraically closed

field of characteristic 0. The ABP complexity of computing the determinant over the
group algebra FG is given by

BFG(detn) = 2n.

Proof. We show that if G is nonabelian, then any polynomial identity satisfied by
FG is also satisfied by Matd(F) for some d ≥ 2. A direct application of Theorem 4.1
then yields our result.

A classical fact from group representation theory (see, e.g., [22, Theorem 9]) tells
us that, since G is finite and nonabelian, it must have an irreducible representation of
degree at least 2; i.e., there exists a homomorphism ρ : G → GLd(F) for some d ≥ 2
such that the image of G, {ρ(g) : g ∈ G}, has no nontrivial invariant subspaces in F

d.
We can now apply the following result of Burnside (see, e.g., [15]).
Lemma 5.3 (Burnside). Let H be a group of invertible d × d matrices over an

algebraically closed field F. Then H has no nontrivial invariant subspaces in F
d if

and only if H contains d2 linearly independent matrices, i.e., if and only if the F-span
of H in Matd(F) is Matd(F) itself.

From this we see that the induced homomorphism on algebras ρ̂ : FG → Matd(F)
is surjective, and therefore any polynomial identity satisfied by FG also must be
satisfied by Matd(F).
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5.3. The quaternion and Clifford algebras. One of the most familiar ex-
amples of a noncommutative algebra is that of Hamilton’s quaternions. This is a
real algebra of dimension four, with basis elements {1, i, j, k} and defining relations
i2 = j2 = k2 = −1 and ij = k = −ji. We can again apply our result on Mat2(F) to
deduce an exponential lower bound for computing the determinant of a quaternion
matrix.

Theorem 5.4. Let H denote the quaternion algebra. Then

BH(detn) = 2n.

Proof. We invoke the useful fact that if F has characteristic 0, the polynomial
identities of an F-algebra do not change when the base field F is extended. This fact
is folklore, but according to Drensky [8] can be traced back to [24, Lemma 2.3]. Since
both H and Mat2(R) become Mat2(C) when the base field is extended from R to
C, we deduce that T (H) = T (Mat2(R)); i.e., the quaternion algebra satisfies exactly
the same identities as the 2 × 2 matrices. The theorem now follows directly from
Theorem 4.1.

This theorem can be immediately extended to all higher Clifford algebras, as
defined, e.g., in [14]. The first three Clifford algebras are CL1 = R, CL2 = C, and
CL3 = H; the mth Clifford algebra CLm has dimension 2m−1 over the reals and is
isomorphic to either Matd(F) or Matd(F) ⊕ Matd(F) for some d and F = R, C, or H.
(A more operational definition is given in [5]. Note that we are abusing notation here
because H is not a field.) We need only note that CLm is contained in CLm+1 for all
m ≥ 1, and therefore T (CLm+1) ⊆ T (CLm). Thus each CLm for m ≥ 3 inherits the
lower bound for BH(detn) given in Theorem 5.4. Indeed, Theorem 5.4 extends to any
real noncommutative semisimple algebra, since by virtue of Wedderburn’s structure
theorem any such algebra is isomorphic to a direct sum of matrix algebras over R,C,
and H.

Our results on Clifford algebras are relevant to recent proposals that reduce ap-
proximating the permanent of an n×n 0, 1-matrix A to computing the determinant of
a related matrix Â, obtained by replacing the 1-entries of A by suitable random matri-
ces. For example, Barvinok [3] has shown that if detn(Â) can be efficiently computed

when each nonzero entry of Â is chosen independently from a standard Gaussian dis-
tribution over a high-dimensional real matrix algebra, then we obtain a polynomial
time approximation algorithm for the permanent of A within ratio (1 + ε)n for arbi-
trarily small ε > 0. More recently, Chien, Rasmussen, and Sinclair [5] showed that if

we can compute detn(Â) efficiently when each nonzero entry of Â is an independent,
uniformly random basis element of the Clifford algebra CLm with m = O(log n), then
we have a fully polynomial randomized approximation scheme for the permanent.

Our results indicate that any attempt to implement these approaches will either
require a determinant algorithm that cannot be cast as an ABP, or will need to use
special statistical properties of the random matrix Â.

6. Discussion. As stated in the introduction, our main goal in this work is to
better understand the nature of noncommutative computation and the role played
by commutativity in the design of efficient algebraic algorithms. We have used the
determinant as a vehicle for these investigations. In this final section, we briefly
discuss some limitations of our results and some ideas for further work.

6.1. Limitations. Our current results do not fully describe the computational
power of commutativity in computing determinants. While there remain some non-
commutative F-algebras A over which we have yet to determine BA(detn), a more
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important limitation derives from the ABP model. As currently defined, an ABP sees
an algebra only in terms of its polynomial identities and cannot exploit any additional
structure it may have. We now show two examples of this: Barvinok’s symmetrized
determinant and the Dieudonné determinant.

For an n × n matrix A over an F-algebra A, the symmetrized determinant [3] is
defined as sdetn(A) = 1

n!

∑
σ∈Sn

∑
τ∈Sn

sgn(σ)sgn(τ)
∏n

i=1 aσi,τi. Thus sdetn can be
viewed as the average of the standard (Cayley) determinant detn over all n! possible
row orderings and is in fact weakly equivalent to detn. Therefore, for (say) A =
Mat2(R) (so that the entries of A are 2 × 2 real matrices), Theorem 4.1 implies
BA(sdetn) ≥ 2n; however, Barvinok has shown that sdetn can in fact be computed in
polynomial time.7 The key idea used is to operate on the four entries of each 2 × 2
matrix separately, something an ABP cannot do.

If A is a matrix over a division algebra A (such as the quaternion algebra), we can
define the Dieudonné determinant Ddetn of A (see, e.g., [2]). This can be computed in
polynomial time using Gaussian elimination, which is made possible by the presence
of inverses in A. While Ddetn(A) and detn(A) are not equal in general, they are
similar enough for Ddetn(A) to be useful in the permanent estimators discussed in
section 5.3 (see [5]). Here, it is the ability to do division that takes us outside the
ABP model.

Note that neither of these examples shows that the standard determinant detn
can be efficiently computed over a specific noncommutative algebra; however, they do
demonstrate the importance of considering more general models of computation.

6.2. Some open questions. Within the ABP model discussed in this paper,
a number of open questions suggest themselves. First, it would be interesting to
complete our picture of which noncommutative algebras, if any, allow for polynomial-
sized ABPs for the determinant. While our approach thus far appears ad hoc in
that we have focused on specific examples of algebras, there may not in fact be too
many classes of polynomial identities that we still need to examine. Note that our
analysis of the degree-4 polynomial identity t(x1, x2, x3, x4) = [x1, x2][x3, x4] already
covers a large spectrum of identities. We feel that an important gap here in both
our understanding and our proof technique is the effect of polynomial identities of
degree 3, such as the standard identity s3, on the rank of the matrices Mk. Second,
it would be interesting to extend our investigation of the role of commutativity to
functions other than the determinant.

Another interesting set of issues concerns the ABP model itself. To what extent
can one strengthen the model while retaining similar lower bounds for determinant
computation over (say) matrix algebras? One natural extension would allow an ABP
computing over a matrix algebra to access the individual components of its input
matrices; as we saw above, this is helpful in computing the symmetrized determinant
sdetn (though we do not know what happens for detn itself). Similarly, in algebras
with involution (such as the Clifford algebras), we might allow an ABP to use the
involutions of its input variables. More ambitiously, we might consider more general
models of computation, such as those capable of implementing Gaussian elimination.

Appendix. An O(n3)-size ABP for the determinant over commutative
algebras. As claimed in Theorem 2.4, we sketch without proof an ABP of size O(n3)
for computing the determinant of an n × n matrix A = (aij) over any commutative
algebra A, based on an algorithm of Mahajan and Vinay [16].

7More generally, if A is of finite dimension r, then sdetn can be computed in time O(nr+3) [3].
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We first think of A as a weighted directed graph in which the vertices are la-
beled 1, . . . , n and each edge (i, j) has weight aij . A closed walk on this graph is a
path (v1, . . . , vk) (starting from v1 and reaching vk before returning to v1 along edge
(vk, v1)) in which v1 appears only once and is the vertex with smallest label on the
path (also called the head). A closed walk sequence is an ordered sequence of closed
walks whose total length is n and whose heads are in strictly increasing order. The
weight of a closed walk sequence is the product of the weights of the edges it contains.

Let Cn denote the set of all closed walk sequences, and for each C ∈ Cn, let w(C)
denote the weight of C and sgn(C) = (−1)n+k, where k is the number of closed walks
in C. Note that the sum of sgn(C)w(C) over only those closed walk sequences that
are cycle covers of the graph is exactly the determinant of A. Moreover, Mahajan
and Vinay show that in fact detn(A) =

∑
C∈Cn

sgn(C)w(C), where the sum is over all
closed walk sequences. The proof of this fact relies on commutativity of the matrix
entries aij to ensure that the contributions of closed walk sequences that do not
correspond to cycle covers cancel. (Cancellations occur between closed walk sequences
in which the same edges appear but in different orders.) Mahajan and Vinay then
give a simple dynamic programming algorithm for computing this sum, which can be
interpreted as an ABP as follows.

The ABP has depth n. A vertex at level i, 1 ≤ i ≤ n− 1, is labeled with a triple
(p, h, v) with p ∈ {0, 1}, h ∈ {1, . . . , n}, and v ∈ {1, . . . , n}. The function computed at
such a vertex (i.e., the function computed by the ABP having this vertex as its sink) is
the sum of the weights of all valid length-i prefixes of closed walk sequences in which
the parity of the number of closed walks completed so far is p, the head of the walk
currently being constructed is h, and the current end vertex of this walk is v. There
are edges going from level i to level i+1 as follows. Vertex (p, h, v) at level i < n−1 is
connected to all valid (p, h, u) at level i+1 by an edge with label xvu (corresponding to
extending the current walk to vertex u), and to all valid (1−p, h′, h′) by an edge with
label xvh (corresponding to completing the current closed walk and starting a new one
with head h′). Finally, vertex (p, h, v) at level n−1 is connected to the sink (the only
vertex at level n) by an edge with label (−1)n+p+1xvh (corresponding to completing
the last closed walk and incorporating the sign of the closed walk sequence). This
ABP has size O(n3) (O(n2) vertices at each of O(n) levels), and it is straightforward
to check that it computes the above sum over all closed walk sequences.
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Abstract. We show that finding small solutions to random modular linear equations is at least
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1. Introduction. Lattice problems have received considerable attention as a
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independent lattice vectors in an arbitrary lattice of length within a polynomial (in
n) factor from the shortest such set.1 This problem in turn is related, using standard
techniques, to various other lattice problems, such as approximating the length of the
shortest nonzero lattice vector in the worst case, within factors polynomial in n.

No polynomial time algorithm is known to solve any of these worst-case prob-
lems, so it is reasonable to conjecture that the problems are hard for any polynomial
approximation factor. Still, since the problems get easier and easier as the factor
increases, it is theoretically interesting and practically important to determine the
smallest factors for which the hardness of approximating these lattice problems in
the worst case implies that the function fA is one-way on the average. The factors
implicit in Ajtai’s proof are rather large: [9] estimates all these factors to be larger
than n8. In subsequent developments the factors have been improved, leading to the
currently best known results of Micciancio [21]: the subset-sum function fA is hard
to invert (in fact, even collision resistant) on the average, provided that any of the
following problems is hard in the worst case:

• computing a set of n linearly independent lattice vectors in an n-dimensional
lattice of length within a factor2 of Õ(n2.5) from the shortest such set;

• approximating the length of the shortest nonzero vector in an n-dimensional
lattice within a factor of Õ(n3);

• approximating the covering radius of an n-dimensional lattice within a factor
of Õ(n2.5);

• finding a lattice vector within distance at most Õ(n2.5) times the covering
radius from any given target point.

Micciancio [21] also showed that the above factors can be further reduced by
√
n if

certain sequences of “almost perfect” easily decodable lattices exist, and conjectured a
reduction achieving factors as low as Õ(n1.5). In a recent work of Regev [24], a similar
result was shown based on worst-case instances of a problem known as the Õ(n1.5)-
unique shortest vector problem. This problem is a special case of the shortest vector
problem in which the lattices have a special structure (namely, their shortest vector is
unique, in the sense that the next shortest linearly independent vector is longer than
the shortest nonzero vector by Õ(n1.5)). Although the connection factor Õ(n1.5) is
better than the factors of [21], a major drawback of the reduction in [24] is that the
unique shortest vector problem is potentially easier to solve than the shortest vector
problem; in fact, it is not even known to be NP-hard for small constant approximation
factors.3

Our results. We substantially improve all of the above results and prove that
the subset-sum function fA is hard to invert (and collision resistant) on the average
provided any of the following problems is hard in the worst case:

• computing a set of n linearly independent lattice vectors in an n-dimensional
lattice of length within a factor of Õ(n) from the shortest such set;

• approximating the length of the shortest nonzero vector in an n-dimensional
lattice within a factor of Õ(n);

1The length of a finite set of vectors is defined as the length of the longest vector in the set. The
problem can be defined with respect to any norm, but the Euclidean norm is the most common.

2A function g(n) is in Õ(f(n)) if there exist constants a, c ≥ 0 such that g(n) ≤ af(n) logc f(n)
for all sufficiently large n.

3The main result of [24] is a lattice-based encryption scheme. This encryption scheme, as is
the one in the original work of Ajtai and Dwork [3], is also based on the unique shortest vector
problem. Constructing an encryption scheme based on other lattice problems such as the shortest
vector problem is a major open problem.
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• approximating the covering radius of an n-dimensional lattice within a factor
of Õ(n);

• finding a lattice vector within distance at most Õ(n) times the covering radius
from any given target point.

In other words, the connection factor is Õ(n) for all four lattice problems. This proves
Micciancio’s conjecture [21] and in fact provides even better connection factors. Our
results are significant for two reasons:

• On the technical side, we present a new approach to worst-case to average-case
reductions for lattice problems, based on the use of Gaussian measures. The
results in [21] were making an essentially optimal use of previous reduction
techniques; the results presented in this paper require some new techniques
that might be of independent interest. Another important technical contri-
bution of this paper is the study of Gaussian distributions on lattices. These
issues are discussed in subsection 1.1.

• On the theoretical side, our improvements bring us closer to factors for which
lattice problems are not known to be in NP ∩ coNP. This is discussed in
subsection 1.2.

1.1. Our techniques.

The reduction. In this paper, as in previous work [2, 12, 9, 21, 24], we consider
the problem of reducing worst-case instances of lattice approximation problems (e.g.,
finding short lattice vectors) to the problem of finding small solutions to random
linear equations with coefficients in Z

n
q . So, in order to perform such a reduction, one

needs to sample (almost uniformly at random) the group Z
n
q in a way that is somehow

related to an underlying lattice problem (for an arbitrary lattice) as we now explain.
The core of the reduction is a (polynomial time) sampling procedure that allows us to
draw pairs consisting of a group element and a corresponding short “offset” vector (not
necessarily in the lattice) having the following property: any (integer) solution to the
homogeneous linear equation defined by the group elements maps the corresponding
short offset vectors to a vector in the underlying lattice. The length of the resulting
lattice vector depends on the size of the integer solution used to combine the short
offset vectors. If we can find a small solution to the group equation (e.g., using the
average-case oracle), then we can find a short lattice vector, essentially solving the
underlying lattice problem. We remark that for the average-case oracle to work, the
coefficients of the equation must be distributed almost uniformly at random in the
group.

The above high level approach to worst-case to average-case reduction is common
to all works, including this paper. The difference is in the way group elements (and
corresponding short offset vectors) are sampled. Essentially all previous works were
based on the following approach: given an arbitrary lattice L(B), consider a suffi-
ciently large region of space C which is approximately equal to a hypercube of size �
(with vertices in L(B)). Then divide each side into q equal parts. This results in qn

subcubes of size �/q, each corresponding to a group element in Z
n
q . Next we sample

lattice points from L(B)∩C and for each sample consider the corresponding subcube
and offset within the subcube (e.g., with respect to the center of the subcube). If
each subcube contains approximately the same number of lattice points, then the
induced distribution on group elements is almost uniform over Z

n
q . The correctness

of the reduction is based on the following two important properties of the sampling
procedure:

• Each subregion should be small enough so that the offset vectors are short,
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and the final output of the reduction is a short lattice vector.
• Each subregion should be large enough so that the number of lattice points in

each region is about the same and the chosen group element is almost uniform
in Z

n
q .

These two contradicting requirements end up determining the connection factor ob-
tained by the reduction.

In this paper we develop a new technique to generate random group elements
that does not require starting from a large hypercube C. Instead of considering large
regions of space and counting the number of lattice points in them, we simply start
from a lattice point and add some Gaussian noise to it. Our goal is to use an amount
of noise sufficiently large so that the resulting point (which does not belong to the
lattice in general) is distributed almost uniformly in space.

Technically, we pick a random noise vector with a Gaussian distribution, and
reduce it modulo the basis of the lattice, to obtain a vector distributed almost uni-
formly at random over the fundamental parallelepiped of the lattice. Next we divide
the fundamental parallelepiped into qn equal regions and use each of them to rep-
resent a group element in Z

n
q . Notice that none of the regions contains any lattice

point. Notice also that using this approach, it is not important that the regions have
a nice (approximately hypercubic) shape: since all regions have the same volume, a
reduced noise vector distibuted almost uniformly over the fundamental parallelepiped
will induce an almost uniform distribution over Z

n
q .

As an additional remark, we point out that the previous best reductions produced
group elements whose distribution is only moderately close to uniform. In order
to get almost uniformly distributed group elements, they generated a small (super-
logarithmic) number of group elements and added them all up. Our technique avoids
this complication since it directly gives group elements whose distribution is extremely
close to uniform, and does not require adding up many samples. We believe that this
fact, together with the fact that we do not need to start from a large cube, allows us
to obtain a much cleaner and simpler reduction. The ideas and techniques presented
in this paper have been recently used in [22] to obtain analogous improvements and
simplifications for similar results about cyclic lattices.

Gaussian distributions. The use of Gaussian distributions in the study of lattices
is standard in mathematics (see, for example, [5]). In computer science, they have
recently been used in [8, 24, 1]. In [1], for example, Gaussian distributions are used
to prove that certain lattice problems are in coNP.

We believe that a large part of our technical contribution is in the study of these
Gaussian distributions. We start by defining the smoothing parameter of a lattice, a
new lattice parameter with the following fundamental property:4 if one picks a noise
vector from a Gaussian distribution with radius at least as large as the smoothing
parameter and reduces the noise vector modulo the fundamental parallelepiped of
the lattice, then the resulting distribution is very close to uniform. We then relate
this parameter to standard lattice parameters such as the length of the shortest dual
vector and the length of the shortest set of independent vectors. The proof of the
former is based on a lemma by Banaszczyk [5], while the proof of the latter is, to the
best of our knowledge, novel.

We then go on to consider the discrete Gaussian distribution on a lattice. Let

4The actual definition of smoothing parameter involves the dual lattice and is rather technical.
Here we state only a fundamental property of the smoothing parameter that conveys the intuition
behind our definition. See Definition 3.1 for the actual definition.
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c be any point in space. Let y be obtained by adding to c a vector chosen from a
Gaussian distribution whose size is at least the smoothing parameter of the lattice.
Then, consider the distribution of y conditioned on it being in the lattice (this will be
made rigorous later). This distribution is illustrated in Figure 1. Essentially, it is a
Gaussian distribution around c restricted to the lattice. Interestingly, we prove that
this distribution behaves in many respects like the (continuous) Gaussian distribution
around c. For example, its center is very close to c, and its average square distance
from c is also very close to that of the continuous Gaussian distribution. From these
two facts we can derive relatively easily all the properties needed for the worst-case
to average-case reduction.

1.2. Complexity of lattice problems. Since many lattice problems are NP-
hard to approximate within small factors, connections between the average-case and
worst-case complexity of lattice problems can be regarded as progress toward the am-
bitious goal of constructing one-way functions based on the assumption that P �= NP.
Unfortunately, there is still a big gap between factors for which lattice problems are
known to be NP-hard and those known to imply the existence of one-way functions.
The strongest known hardness result (for the problems considered in this paper) is
the NP-hardness of approximating the length of the shortest linearly independent set
within any constant and, under the stronger assumption NP � DTIME(2polylog(n)),

within 2(log n)1−ε

for any ε > 0 [6]. For the shortest vector problem, hardness

within any constant approximation factor or factors of the form 2(log n)1/2−ε

(for
any ε > 0) has been shown [16] under the assumption5 that NP �= RP or NP �⊆
BPTIME(2polylog(n)), respectively. No hardness result (under deterministic or proba-
bilistic reductions) is currently known for the covering radius problem, although the
problem is conceivably hard. (See [14] for further discussion of the complexity of the
covering radius problem.)

Beside the fact that all known hardness results are only for subpolynomial approx-
imation factors, all three problems have been shown to be in coAM for O(

√
n/ log n)

approximation factors [11, 14] (see also [1, 14] where the problems are shown to be in
coNP for O(

√
n) factors), giving evidence6 that the problems are not NP-hard within

such factors. Still, one might conjecture that some of these problems are NP-hard to
approximate for factors close to

√
n/ log n, say, n1/2−ε for any ε > 0.

The results in this paper, showing that there exist hard-on-average problems based
on the inapproximability of lattice problems within Õ(n), bring us closer to factors of
O(

√
n), below which the lattice problems are not known to be in coNP, and therefore

may be NP-hard. However, it is not clear how our techniques can be used to obtain
factors below Õ(n).

2. Preliminaries.

General. For any real x, �x� denotes the largest integer not greater than x. For
a vector x = (x1, . . . , xn) we define �x� as (�x1�, . . . , �xn�). We write log for the

5No true NP-hardness result (i.e., under deterministic polynomial time reductions) is currently
known for SVP even in its exact version. However, [19] showed that if a certain number theoretic
conjecture on the distribution of square-free smooth numbers holds true, then SVP is NP-hard (under
deterministic polynomial time Karp reductions) for any factor γ <

√
2.

6Specifically, since the first two problems are in NP even in their exact version, they cannot be
NP-hard to approximate within O(

√
n/ logn) (resp. O(

√
n)) unless NP ⊆ coAM (resp. NP = coNP.)

For the covering radius problem the situation is more complicated because the exact version of the
problem is not known to be in NP. See [11, 1] for further discussion of the implications of these
results.
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logarithm to the base 2, and logq when the base q is any number possibly different
from 2. We use ω(f(n)) to denote the set of functions growing faster than c · f(n) for
any c > 0. A function ε(n) is negligible if ε(n) < 1/nc for any c > 0 and all sufficiently
large n.

The n-dimensional Euclidean space is denoted R
n. We use bold lower case let-

ters (e.g., x) to denote vectors, and bold upper case letters (e.g., M) to denote
matrices. The ith coordinate of x is denoted xi. For a set S ⊆ R

n, x ∈ R
n,

and a ∈ R, we let S + x = {y + x : y ∈ S} denote the translate of S by x, and
aS = {ay : y ∈ S} denote the scaling of S by a. The Euclidean norm (also known
as the �2 norm) of a vector x ∈ R

n is ‖x‖ = (
∑

i x
2
i )

1/2, and the associated distance
is dist(x,y) = ‖x − y‖. The distance function is extended to sets in the custom-
ary way: dist(x, S) = dist(S,x) = miny∈S dist(x,y). We often use matrix notation
to denote sets of vectors. For example, matrix S ∈ R

n×m represents the set of n-
dimensional vectors {s1, . . . , sm}, where s1, . . . , sm are the columns of S. We denote
by ‖S‖ the maximum length of a vector in S. The linear space spanned by a set
of m vectors S is denoted span(S) = {∑i xisi : xi ∈ R for 1 ≤ i ≤ m}. For
any set of n linearly independent vectors S, we define the half-open parallelepiped
P(S) = {∑i xisi : 0 ≤ xi < 1 for 1 ≤ i ≤ n}. Finally, we denote by B the closed
Euclidean ball of radius 1 around the origin, B = {w ∈ R

n : ‖w‖ ≤ 1}.
Statistical distance. Statistical distance is a measure of distance between two

probability distributions and is a convenient tool in the analysis of randomized algo-
rithms and reductions. Here we define it and state some simple facts that will be used
in the rest of the paper. These facts are easily verified; for more details the reader is
referred to [23, Chapter 8].

Definition 2.1. We define the statistical distance between two discrete random
variables X and Y over a (countable) set A as

Δ(X,Y ) =
1

2

∑

a∈A

|Pr{X = a} − Pr{Y = a}|.

Similarly, for two continuous random variables X and Y over R
n with probability

density functions T1 and T2, respectively, the statistical distance is defined as

Δ(X,Y ) =
1

2

∫

Rn

|T1(r) − T2(r)|dr.

One important fact that we use is that the statistical distance cannot increase by
applying a (possibly randomized) function f , i.e.,

(1) Δ(f(X), f(Y )) ≤ Δ(X,Y );

see, e.g., [23]. In particular, this implies that the acceptance probability of any algo-
rithm on inputs from X differs from its acceptance probability on inputs from Y by
at most Δ(X,Y ). Another useful property of the statistical distance is the following.
Let X1, . . . , Xk and Y1, . . . , Yk be two lists of totally independent random variables.
Then

Δ((X1, . . . , Xk), (Y1, . . . , Yk)) ≤
k∑

i=1

Δ(Xi, Yi).
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Lattices. We now describe some basic definitions related to lattices. For a more
in-depth discussion, see [23]. An n-dimensional lattice is the set of all integer combi-
nations

{
n∑

i=1

xibi : xi ∈ Z for 1 ≤ i ≤ n

}

of n linearly independent vectors b1, . . . ,bn in R
n.7 The set of vectors b1, . . . ,bn

is called a basis for the lattice. A basis can be represented by the matrix B =
[b1, . . . ,bn] ∈ R

n×n having the basis vectors as columns. The lattice generated by
B is denoted L(B). Notice that L(B) = {Bx : x ∈ Z

n}, where Bx is the usual
matrix-vector multiplication.

For any lattice basis B and point x, there exists a unique vector y ∈ P(B) such
that y − x ∈ L(B). This vector is denoted y = x mod B, and it can be computed in
polynomial time given B and x. The dual of a lattice Λ is the set

Λ∗ = {x : ∀y ∈ Λ 〈x,y〉 ∈ Z}
of all vectors that have integer scalar product (〈x,y〉 =

∑
i xiyi) with all lattice

vectors. The dual of a lattice is a lattice, and if Λ = L(B) is the lattice generated by
basis B, then B∗ = (BT )−1 is a basis for the dual lattice, where BT is the transpose of
B. A sublattice of L(B) is a lattice L(S) such that L(S) ⊆ L(B). The determinant of
a lattice det(L(B)) is the (n-dimensional) volume of the fundamental parallelepiped
P(B) and is given by |det(B)|.

The minimum distance of a lattice Λ, denoted λ1(Λ), is the minimum distance
between any two distinct lattice points, and equals the length of the shortest nonzero
lattice vector:

λ1(Λ) = min{dist(x,y) : x �= y ∈ Λ}
= min{‖x‖ : x ∈ Λ \ {0}} .

This definition can be generalized to define the ith successive minimum as the smallest
λi such that λiB contains i linearly independent lattice points:

λi(Λ) = min{r : dim(span(Λ ∩ rB)) ≥ i}.
Another important constant associated to a lattice is the covering radius ν(Λ), defined
as

ν(Λ) = max
x∈Rn

{dist(x,Λ)}.

We often abuse notation and write λ1(B) instead of λ1(L(B)) and similarly for other
lattice parameters.

Lattice problems. We consider the following lattice problems. For simplicity, we
consider some of our problems in their promise version.8 It is easy to see that a

7Strictly speaking, this is the definition of a full-rank lattice. Since only full-rank lattices are
used in this paper, all definitions are restricted to the full-rank case.

8Promise problems are a generalization of decision problems where one is asked whether a given
input satisfies one of two mutually exclusive properties. Unlike decision problems, these two proper-
ties are not necessarily exhaustive. The problem is, under the promise that the given input satisfies
one of the two conditions, to tell which of the two properties is satisfied. If the input satisfies neither
property, then any answer is acceptable.
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solution to any of the promise problems below implies a solution to the corresponding
optimization problem (that is, the problem that asks for an approximation to the
corresponding lattice parameter, e.g., λ1). The reader is referred to [23] for further
discussion of these lattice problems. The following definitions are parameterized by
a positive (and typically monotone) real valued function γ : Z

+ → R
+ of the lattice

dimension.
Definition 2.2 (shortest vector problem). An input to GapSVPγ is a pair

(B, d), where B is an n-dimensional lattice basis and d is a rational number. In Yes

inputs λ1(B) ≤ d and in No inputs λ1(B) > γ(n) · d.
Definition 2.3 (closest vector problem). An input to GapCVPγ is a triple

(B, t, d), where B is an n-dimensional lattice basis, t is a target vector, and d is a
rational number. In Yes inputs dist(t,L(B)) ≤ d and in No inputs dist(t,L(B)) >
γ(n) · d.

Definition 2.4 (covering radius problem). An input to GapCRPγ is a pair
(B, d), where B is an n-dimensional lattice basis and d is a rational number. In Yes

inputs ν(B) ≤ d and in No inputs ν(B) > γ(n) · d.
The remaining lattice problems are given in their search version.
Definition 2.5 (shortest independent vectors problem). An input to SIVPγ is

an n-dimensional lattice basis B. The goal is to output a set of n linearly independent
lattice vectors S ⊂ L(B) such that ‖S‖ ≤ γ(n) · λn(B), where ‖S‖ is the maximum
length of a vector in S.

A generalization of SIVP is the following somewhat less standard lattice problem.
Definition 2.6 (generalized independent vectors problem). An input to GIVP

φ
γ

is an n-dimensional lattice basis B. The goal is to output a set of n linearly indepen-
dent lattice vectors S ⊂ L(B) such that ‖S‖ ≤ γ(n) · φ(B).

In the above, φ denotes any arbitrary function on lattices. Choosing φ = λn

results in the SIVP. In this paper, we usually take φ to be the smoothing parameter,
defined in the next section.

Definition 2.7 (guaranteed distance decoding). An input to GDD
φ
γ is an n-

dimensional lattice basis B and a target point t. The goal is to output a lattice point
x ∈ L(B) such that dist(t,x) ≤ γ(n) · φ(B).

In this problem, we usually take φ = ν to be the covering radius of the lattice.
Notice that for any lattice basis B and target t ∈ R

n, there is always a lattice
point within distance ν(B) of t. The GDD

ν
γ problem can be seen as a variant of

the CVP in which the quality of the solution is measured with respect to the worst
possible distance maxx∈Rn dist(x,L(B)) instead of the distance of the given target
dist(t,L(B)).

Gaussian measures. For any vectors c,x and any s > 0, let

ρs,c(x) = e−π‖(x−c)/s‖2

be a Gaussian function centered in c scaled by a factor of s. The total measure
associated to ρs,c is

∫
x∈Rn ρs,c(x)dx = sn. Therefore, we can define the (continuous)

Gaussian distribution around c with parameter s by its probability density function

∀x ∈ R
n, Ds,c(x) =

ρs,c(x)

sn
.

It can be seen that the expected square distance from c of a vector chosen from this
distribution is ns2/(2π). So, intuitively, one can think of Ds,c as a sphere of radius

s
√
n/(2π) centered around c.
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Notice that Ds,c can be expressed as the sum of n orthogonal 1-dimensional Gaus-
sian distributions, and each of them can be efficiently approximated with arbitrary
precision using standard techniques. Thus, the distribution Ds,c can be efficiently
approximated. For simplicity, in this paper we work with real numbers and assume
we can sample from Ds,c exactly. In practice, when only finite precision is available,
Ds,c can be approximated by picking a fine grid and choosing points from the grid
with probability approximately proportional to Ds,c. All our arguments can be made
rigorous by selecting a sufficiently fine grid.

When c and s are not specified, we assume that they are the origin and 1, respec-
tively. Functions are extended to sets in the usual way; e.g., ρs,c(A) =

∑
x∈A ρs,c(x)

for any countable set A.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A discrete Gaussian distribution.

For any vector c, real s > 0, and lattice Λ, define the probability distribution
DΛ,s,c over Λ by

∀x ∈ Λ, DΛ,s,c(x) =
Ds,c(x)

Ds,c(Λ)
=

ρs,c(x)

ρs,c(Λ)
.

We refer to DΛ,s,c as a discrete Gaussian distribution (see Figure 1) and as before,
we sometimes omit s or c. We will later use the following connection between Ds,c

and DΛ,s,c: if x is distributed according to Ds,c and we condition on x ∈ Λ, the
conditional distribution of x is DΛ,s,c. To see why this is true, recall that our vector
x is in fact chosen from some very fine grid;9 then, the probability of obtaining some
grid point x in a sample from Ds,c is very close to αDs,c(x), where α is the volume
of one cell in our grid, whereas the probability of x ∈ Λ is very close to αDs,c(Λ). All
our arguments can be made rigorous by working with a fine enough grid.

We will show that for a large enough s, DΛ,s,c behaves in many respects like the
continuous Gaussian distribution Ds,c. In particular, vectors distributed according to
DΛ,s,c have an average value very close to c and expected squared distance from c
very close to s2n/2π (for vectors chosen from Ds,c, these quantities are exactly c and
s2n/2π). In fact, we define a new lattice parameter that tells us how big s has to be in
order for this to happen. We name this parameter the smoothing parameter. We then
relate this parameter to other lattice parameters such as the length of the shortest
vector in the dual lattice and the length of the shortest maximal set of independent
vectors.

9Although not needed in this paper, one can also define the conditional probability on the
continuous random variables directly. This requires some care as it involves conditioning on an
event of probability zero.
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Fourier transform. We briefly review some of the important properties of the
Fourier transform. For a more precise and in-depth treatment, see, e.g., [10]. The

Fourier transform of a function h : R
n �→ R is defined by ĥ(w) =

∫
Rn h(x)e−2πi〈x,w〉dx.

From the definition we can obtain several useful formulas; first, if h is defined by
h(x) = g(x + v) for some function g and vector v, then

(2) ĥ(w) = e2πi〈v,w〉ĝ(w).

Similarly, if h is defined by h(x) = e2πi〈x,v〉g(x) for some function g and vector v,
then

(3) ĥ(w) = ĝ(w − v).

Also, if we denote by hu the derivative of h in the direction of some unit vector u,
then its Fourier transform is

(4) ĥu(w) = 2πi〈u,w〉 · ĥ(w).

Another important fact is that the Gaussian is its own Fourier transform, i.e., ρ̂ = ρ.
More generally, for any s > 0 it holds that ρ̂s = snρ1/s. We use the following
formulation of the Poisson summation formula.

Lemma 2.8. For any lattice Λ and any10 function f : R
n → C, f(Λ) =

det(Λ∗)f̂(Λ∗), where f̂ denotes the Fourier transform of f .

An immediate application of the Poisson summation formula is the fact that the
Gaussian measure ρs,c(Λ) is maximized when the center is a lattice point c ∈ Λ.

Lemma 2.9. For any lattice Λ, positive real s > 0, and vector c, ρs,c(Λ) ≤ ρs(Λ).

Proof. Using Lemma 2.8 twice and (2) we get

ρs,c(Λ) = det(Λ∗)ρ̂s,c(Λ∗)

= det(Λ∗)
∑

y∈Λ∗

ρ̂s,c(y)

= det(Λ∗)
∑

y∈Λ∗

e−2πi〈c,y〉ρ̂s(y)

≤ det(Λ∗)
∑

y∈Λ∗

ρ̂s(y) = ρs(Λ),

where we used that ρ̂s = snρ1/s is a positive function.

We will also use the following lemma by Banaszczyk.

Lemma 2.10 (see [5, Lemma 1.5]). For any c > 1/
√

2π, n-dimensional lattice Λ,
and vector v ∈ R

n,

ρ(Λ \ c√nB) < Cn · ρ(Λ),(5)

ρ((Λ + v) \ c√nB) < 2Cn · ρ(Λ),(6)

where C = c
√

2πe · e−πc2 < 1.

10For this formula to hold, f needs to satisfy certain niceness assumptions. These assumptions
always hold in our applications. See [10] for more details.
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Sum of independent vectors. We conclude this section with a simple lemma which
will be used in section 5 to bound the length of the sum of Gaussian random variables.
The lemma essentially shows that when summing m independent random variables,
the expected length of the sum grows with

√
m and not m. (As an example to

illustrate the use of the lemma, consider the case ε = 0 and z = (1, . . . , 1).)
Lemma 2.11. Let v1, . . . ,vm be m vectors chosen independently from probability

distributions V1, . . . , Vm such that Exp[‖vi‖2] ≤ l and ‖Exp[vi]‖2 ≤ ε for every i =
1, . . . ,m. Then, for any z ∈ R

m, the expected squared norm of
∑

vizi is at most
Exp[‖∑m

i=1 vizi‖2] ≤ (l + ε ·m)‖z‖2.
Proof. By linearity of expectation and inequality

∑
i |zi| ≤

√
m‖z‖, we get

Exp
[∥∥∥
∑

i

vizi

∥∥∥
2]

=
∑

i,j

zizj Exp[〈vi,vj〉]

=
∑

i

z2
i Exp[‖vi‖2] +

∑

i �=j

zizj〈Exp[vi],Exp[vj ]〉

≤ ‖z‖2l +
(∑

i

|zi|
)2

ε

≤ ‖z‖2(l + εm).

3. The smoothing parameter. In this section we define a new lattice param-
eter related to Gaussian measures on lattices. We name it the smoothing parameter.

Definition 3.1. For an n-dimensional lattice Λ, and positive real ε > 0, we
define its smoothing parameter ηε(Λ) to be the smallest s such that ρ1/s(Λ

∗\{0}) ≤ ε.
Notice that ρ1/s(Λ

∗ \ {0}) is a continuous and strictly decreasing function of s
such that lims→0 ρ1/s(Λ

∗ \ {0}) = ∞ and lims→∞ ρ1/s(Λ
∗ \ {0}) = 0. Thus, the

parameter ηε(Λ) is well defined for any ε > 0, and ε �→ ηε(Λ) is the inverse function of
s �→ ρ1/s(Λ

∗ \ {0}). In particular, ηε(Λ) is also a continuous and strictly decreasing
function of ε.

In this paper we are mostly interested in sequences of lattices Λn (in increasing
dimension n) and the corresponding smoothing parameters ηε(n)(Λn), where ε(n) is
some negligible function of n. Thus, ηε(n)(Λn) is the smallest s such that a Gaussian
measure on the dual lattice Λ∗

n with parameter 1/s gives all but a negligible amount
of its weight to the origin for some negligible function ε(n) of the lattice dimension.

The motivation for this definition (and the name “smoothing parameter”) is pre-
sented in Lemma 4.1. Intuitively, it says that if we start from a uniformly random
lattice point in Λ and perturb it by a Gaussian of radius ηε(Λ), then the resulting
distribution is ε/2 close to uniform on the entire space.11,12 The next two lemmas
relate the smoothing parameter to some standard lattice parameters.

Lemma 3.2. For any n-dimensional lattice Λ, ηε(Λ) ≤ √
n/λ1(Λ

∗), where ε =
2−n.

Proof. We use Lemma 2.10 with c = 1 and C =
√

2πe · e−π < 1/4. By separating
the right hand side of (5) as the sum over points in

√
nB and over points outside

√
nB

11In fact, no uniform probability distribution can be defined over a lattice (or other countably
infinite set) or over the entire space. Formally, in order to define this property we follow [18] and
capture the intuition of “starting from a random lattice point” by working modulo the lattice. See
section 4 for details and [18] for more motivations and explanations about working modulo the lattice.

12In fact, a stronger property holds: at any point, the density function of the resulting distribution
is within (1 ± ε) of that of the uniform distribution. Moreover, it can be shown that this stronger
property is equivalent to the assumption s ≥ ηε(B).
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and rearranging, we obtain that for any lattice Λ,

ρ(Λ \ √nB) <
Cn

1 − Cn
ρ(Λ ∩√

nB).

Now, let s be such that s >
√
n/λ1(Λ

∗). We have

ρ1/s(Λ
∗\{0}) = ρ(sΛ∗\{0}) = ρ(sΛ∗\√nB) <

Cn

1 − Cn
ρ(sΛ∗∩√nB) =

Cn

1 − Cn
< 2−n,

where we used that the shortest vector in sΛ∗ is longer than
√
n, and therefore sΛ∗ \√

nB = sΛ∗ \ {0} and sΛ∗ ∩√
nB = {0}.

Lemma 3.3. For any n-dimensional lattice Λ and positive real ε > 0,

ηε(Λ) ≤
√

ln(2n(1 + 1/ε))

π
· λn(Λ).

In particular, for any superlogarithmic function ω(log n), there exists a negligible func-
tion ε(n) such that ηε(Λ) ≤√

ω(log n) · λn(Λ).

Proof. Let s =
√

ln(2(1+1/ε)n)

π ·λn(Λ). Our goal is to show that ρ1/s(Λ
∗ \{0}) ≤ ε.

The idea is to show that for any vector v ∈ Λ of length at most λn(Λ), almost all
the contribution to ρ1/s(Λ

∗) comes from those points in Λ∗ that lie on the hyperplane
orthogonal to v. Therefore, if we take n linearly independent vectors of length at
most λn(Λ), almost all the contribution to ρ1/s(Λ

∗) must come from the intersection
of the corresponding hyperplanes, which is simply the origin. Details follow.

Let v1, . . . ,vn be a set of n linearly independent vectors in Λ each of length at
most λn(Λ). Without loss of generality, we can assume that each vi is primitive; i.e.,
for any k > 1, vi/k is not in Λ. Define the set Si,j ⊆ Λ∗ as the set of all points
in Λ∗ whose inner product with vi is j ∈ Z. Note that for any fixed i, the Si,j ’s
form a partition of Λ∗, and that each Si,j is a translation of Si,0. Moreover, since
v1, . . . ,vn ∈ Λ are linearly independent, any nonzero vector in Λ∗ must have a nonzero
integer inner product with at least one of them, and hence Λ∗ \ {0} =

⋃
i(Λ

∗ \ Si,0).
For any index i let ui = vi/‖vi‖2 be a vector of length 1/‖vi‖ ≥ 1/λn(Λ) in the

same direction as vi. For all j,

ρ1/s(Si,j) = e−π‖jsui‖2

ρ1/s(Si,j − jui).

Now, Si,j − jui is simply a shift of the set Si,0. In other words, there exists some
vector w (which is orthogonal to ui) such that Si,j − jui = Si,0 − w. Therefore, by
Lemma 2.9,

ρ1/s(Si,j − jui) = ρ1/s(Si,0 − w) = ρ1/s,w(Si,0) ≤ ρ1/s(Si,0).

Using ‖ui‖ ≥ 1/λn(Λ) and the bound
∑

j �=0 x
−j2 ≤ 2

∑
j>0 x

−j = 2/(x−1) (valid for
all x > 1), we get

ρ1/s(Λ
∗ \ Si,0) =

∑

j �=0

ρ1/s(Si,j)

≤
∑

j �=0

e−π(s/λn)2j2ρ1/s(Si,0)

≤ 2

eπ(s/λn)2 − 1
ρ1/s(Si,0)

=
2

eπ(s/λn)2 − 1
(ρ1/s(Λ

∗) − ρ1/s(Λ
∗ \ Si,0)).
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Solving for ρ1/s(Λ
∗ \ Si,0), we get

ρ1/s(Λ
∗ \ Si,0) ≤ 2

eπ(s/λn)2 + 1
ρ1/s(Λ

∗).

Since ρ is positive,

ρ1/s(Λ
∗ \ {0}) ≤

∑

i

ρ1/s(Λ
∗ \ Si,0) ≤ 2n

eπ(s/λn)2 + 1
ρ1/s(Λ

∗).

Finally, using ρ1/s(Λ
∗) = 1 + ρ1/s(Λ

∗ \ {0}) and solving for ρ1/s(Λ
∗ \ {0}), we get

ρ1/s(Λ
∗ \ {0}) ≤ 2n

eπ(s/λn)2 + 1 − 2n
<

2n

eπ(s/λn)2 − 2n
= ε

by our choice of s.

4. Properties of Gaussian distributions. In this section we prove several
properties of Gaussian distributions related to lattices. Our first lemma below justifies
the name given to the smoothing parameter.

Lemma 4.1. For any s > 0, c ∈ R
n, and lattice L(B), the statistical dis-

tance between Ds,c mod P(B) and the uniform distribution over P(B) is at most
1
2
ρ1/s(L(B)∗ \ {0}). In particular, for any ε > 0 and any s ≥ ηε(B), the statistical

distance is at most

Δ(Ds,c mod P(B), U(P(B))) ≤ ε/2.

Proof. Let Y be the density function of the distribution over P(B) defined by
(Ds,c mod P(B)):

Y (x) =
1

sn

∑

y∈L(B)

ρs,c(x + y) =
1

sn
ρs,c−x(L(B)).

By (2), the Fourier transform of ρs,c−x at point w is e2πi〈x−c,w〉snρ1/s(w). Hence,
using Lemma 2.8,

Y (x) = det(L(B)∗)
∑

w∈L(B)∗

e2πi〈x−c,w〉ρ1/s(w)

= det(L(B)∗)

⎛
⎝1 +

∑

w∈L(B)∗\{0}
e2πi〈x−c,w〉ρ1/s(w)

⎞
⎠ .

The density function of the uniform distribution over P(B) is U(x) = 1/vol(P(B)) =
det(L(B)∗). Therefore the statistical distance between Y and U is

Δ(Y,U) =
1

2

∫

x∈P(B)

|Y (x) − U(x)|dx

≤ 1

2
vol(P(B)) · max

x∈P(B)
|Y (x) − det(L(B)∗)|

=
1

2
vol(P(B)) · det(L(B)∗) · max

x∈P(B)

∣∣∣∣∣∣

∑

w∈L(B)∗\{0}
e2πi〈x−c,w〉ρ1/s(w)

∣∣∣∣∣∣

≤ 1

2
· ρ1/s(L(B)∗ \ {0}),
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where the last inequality follows by the triangle inequality (and can in fact be replaced
by an equality).

Our second lemma shows that when s is large enough, some statistical properties
of the discrete Gaussian distribution DΛ,s,c are very close to those of the continuous
Gaussian distribution Ds,c.

Lemma 4.2. For any n-dimensional lattice Λ, point c ∈ R
n, unit vector u, and

reals 0 < ε < 1, s ≥ 2ηε(Λ),

∣∣∣∣∣ Exp
x∼DΛ,s,c

[〈x − c,u〉]
∣∣∣∣∣ ≤

εs

1 − ε
,

∣∣∣∣∣ Exp
x∼DΛ,s,c

[〈x − c,u〉2] − s2

2π

∣∣∣∣∣ ≤
εs2

1 − ε
.

Proof. For any positive real s > 0, define Λ′ = Λ/s, c′ = c/s. Notice that, for
any x,

Pr{DΛ,s,c = sx} =
ρs,c(sx)

ρs,c(Λ)
=

ρc′(x)

ρc′(Λ′)
= Pr{DΛ′,c′ = x};

i.e., the distribution DΛ,s,c is equal to DΛ′,c′ scaled by a factor of s. Therefore, it is
enough to prove the lemma for s = 1. The general case follows by scaling the lattice
by a factor of s.

In the rest of the proof, we assume s = 1. We want to estimate the quantity
Expx∼DΛ,c

[〈x − c,u〉j ] for j = 1, 2. Without loss of generality, assume that u is the
vector (1, 0, . . . , 0), and define the functions

gj(x) = (x1 − c1)
j · ρc(x),

where x1 and c1 denote the first coordinate of x and c, respectively. Notice that

Exp
x∼DΛ,c

[〈x − c,u〉j ] = Exp
x∼DΛ,c

[(x1 − c1)
j ] =

gj(Λ)

ρc(Λ)
.

Applying Poisson’s summation formula (Lemma 2.8) to the numerator and denomi-
nator, the above fraction can be rewritten as

(7) Exp
x∼DΛ,c

[〈x − c,u〉j ] =
det(Λ∗) · ĝj(Λ∗)
det(Λ∗) · ρ̂c(Λ∗)

=
ĝj(Λ

∗)
ρ̂c(Λ∗)

.

The Fourier transform ρ̂c is easily computed using (2):

ρ̂c(y) = ρ(y)e−2πi〈y,c〉.

In particular, ρ̂c(0) = 1, |ρ̂c(y)| = ρ(y), and

(8) |ρ̂c(Λ
∗)| =

∣∣∣∣∣∣
1 +

∑

y∈Λ∗\{0}
ρ̂c(y)

∣∣∣∣∣∣
≥ 1 − ρ(Λ∗ \ {0}) ≥ 1 − ε,

where the last inequality uses ηε(Λ) ≤ 1
2
≤ 1.
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We evaluate the Fourier transform ĝj (for j = 1, 2) as follows. For any j ≥ 0, let

ρ(j)
c (x) =

(
∂

∂x1

)j

ρc(x)

be the jth partial derivative of ρc(x) with respect to x1. It is easy to see that

ρ(1)
c (x) = −2π(x1 − c1)ρc(x),

ρ(2)
c (x) = (4π2(x1 − c1)

2 − 2π)ρc(x).

Taking linear combinations of the previous equations, we can express the gj functions
as

g1 = − 1

2π
ρ(1)
c ,

g2 =
1

4π2
ρ(2)
c +

1

2π
ρc.

Using ρ̂
(j)
c (y) = (2πiy1)

j ρ̂c(y) (see (4)) and the linearity of the Fourier transform, we
get

ĝ1(y) = −iy1ρ̂c(y),(9)

ĝ2(y) =

(
1

2π
− y2

1

)
ρ̂c(y).(10)

We are now ready to evaluate expression (7). For j = 1, using (9) and (8), we get
∣∣∣∣∣ Exp
x∼DΛ,c

[〈x − c,u〉]
∣∣∣∣∣ ≤

∑
y∈Λ∗ |y1| · |ρ̂c(y)|

1 − ε
.

We use |y1| ≤
√‖y‖2 ≤ e‖y‖

2/2 and |ρ̂c(y)| = ρ(y) to bound the numerator:
∑

y∈Λ∗

|y1||ρ̂c(y)| =
∑

y∈Λ∗\{0}
|y1| · ρ(y)

≤
∑

y∈Λ∗\{0}
e‖y‖

2/2 · e−π‖y‖2

≤
∑

y∈Λ∗\{0}
e−π‖y/2‖2

= ρ2 (Λ∗ \ {0}) ≤ ε,

where the last inequality uses ηε(Λ) ≤ 1
2
. This completes the proof for j = 1.

For j = 2, combining (7), (8), (10), and |ρ̂c(y)| = ρ(y), we get
∣∣∣∣∣ Exp
x∼DΛ,c

[〈x − c,u〉2] − 1

2π

∣∣∣∣∣ =
|∑y∈Λ∗ y2

1 · ρ̂c(y)|
ρ̂c(Λ∗)

≤
∑

y∈Λ∗ y2
1 · ρ(y)

1 − ρ(Λ∗ \ {0}) .

This time we use y2
1 ≤ ‖y‖2 ≤ e‖y‖

2

to bound the numerator:
∑

y∈Λ∗

y2
1 · ρ(y) ≤

∑

y∈Λ∗\{0}
e‖y‖

2 · e−π‖y‖2 ≤
∑

y∈Λ∗\{0}
e−π‖y/2‖2

= ρ2 (Λ∗ \ {0}) ≤ ε.
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As a corollary, we obtain the following lemma.
Lemma 4.3. For any n-dimensional lattice Λ, vector c ∈ R

n, and reals 0 < ε < 1,
s ≥ 2ηε(Λ), we have

∥∥∥ Exp
x∼DΛ,s,c

[x − c]
∥∥∥

2

≤
(

ε

1 − ε

)2

s2n,

Exp
x∼DΛ,s,c

[‖x − c‖2] ≤
(

1

2π
+

ε

1 − ε

)
s2n.

Proof. Take any orthonormal basis u1, . . . ,un. Using Lemma 4.2, we get

∥∥∥ Exp
x∼DΛ,s,c

[x − c]
∥∥∥

2

=

n∑

i=1

(
Exp

x∼DΛ,s,c

[〈x − c,ui〉]
)2

≤ ns2 ·
(

ε

1 − ε

)2

and

Exp
x∼DΛ,s,c

[‖x − c‖2] =

n∑

i=1

Exp
x∼DΛ,s,c

[〈x − c,ui〉2] ≤ ns2 ·
(

1

2π
+

ε

1 − ε

)
.

The remaining lemmas describe some additional properties of the discrete Gaus-
sian distribution. These lemmas are used only in our GapSVP result of subsection
5.4.

Lemma 4.4. For any n-dimensional lattice Λ, vector c ∈ R
n, and reals 0 < ε < 1,

s ≥ ηε(Λ), we have

Pr
x∼DΛ,s,c

{‖x − c‖ > s
√
n} ≤ 1 + ε

1 − ε
· 2−n.

Proof. As in the proof of Lemma 4.2, it is enough to prove the lemma for s = 1.
We can write

Pr
x∼DΛ,c

{‖x − c‖ >
√
n} =

ρ((Λ − c) \ √nB)

ρc(Λ)
.

By Lemma 2.10 with c = 1, the numerator is at most 2−nρ(Λ). By the Poisson
summation formula (Lemma 2.8),

ρc(Λ) = det(Λ∗)ρ̂c(Λ
∗)

= det(Λ∗)
∑

y∈Λ∗

ρ̂c(y)

= det(Λ∗)
∑

y∈Λ∗

e−2πi〈c,y〉ρ̂(y)

= det(Λ∗)(1 + δ),

where |δ| ≤ |ρ(Λ∗\{0})| ≤ ε. Therefore ρc(Λ) ≥ det(Λ∗)(1−ε), ρ(Λ) ≤ det(Λ∗)(1+ε),
and 2−nρ(Λ)/ρc(Λ) ≤ 2−n 1+ε

1−ε .
Lemma 4.5. Let Λ be an n-dimensional lattice, c,v be two points in R

n, 0 < ε <
1, and s ≥ ηε(Λ) such that dist(v,Λ∗) ≥ √

n/s. Then,

∣∣∣ Exp
x∼DΛ,s,c

[e2πi〈x,v〉]
∣∣∣ ≤ 1 + ε

1 − ε
· 2−n.
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Proof. Define Λ′ = Λ/s, c′ = c/s, and v′ = sv. As in the proof of Lemma 4.2, the
distribution DΛ,s,c is equal to DΛ′,c′ scaled by a factor of s. Therefore, it is enough
to prove the lemma for the case s = 1.

Define the function

g(x) = e2πi〈x,v〉 · ρc(x)

and notice that

Exp
x∼DΛ,c

[e2πi〈x,v〉] =
g(Λ)

ρc(Λ)
.

Applying Poisson’s summation formula (Lemma 2.8) to the numerator and denomi-
nator, the above fraction can be rewritten as

(11) Exp
x∼DΛ,c

[e2πi〈x,v〉] =
det(Λ∗) · ĝ(Λ∗)
det(Λ∗) · ρ̂c(Λ∗)

=
ĝ(Λ∗)
ρ̂c(Λ∗)

.

As in the proof of Lemma 4.2, we have ρ̂c(y) = ρ(y)e−2πi〈y,c〉 and |ρ̂c(Λ
∗)| ≥

1 − ρ(Λ∗ \ {0}). By (3), the Fourier transform of g is given by

ĝ(y) = ρ̂c(y − v) = ρ(y − v)e−2πi〈y−v,c〉.

Combined with (11), we obtain
∣∣∣∣∣ Exp
x∼DΛ,c

[e2πi〈x,v〉]

∣∣∣∣∣ ≤
ρ(Λ∗ − v)

1 − ρ(Λ∗ \ {0}) .

Since dist(v,Λ∗) ≥ √
n, Lemma 2.10 with c = 1 implies that

ρ(Λ∗ − v) ≤ 2−nρ(Λ∗) = 2−n(1 + ρ(Λ∗ \ {0})),
so we have

∣∣∣∣∣ Exp
x∼DΛ,c

[e2πi〈x,v〉]

∣∣∣∣∣ ≤ 2−n 1 + ρ(Λ∗ \ {0})
1 − ρ(Λ∗ \ {0}) .

Using the lemma, we obtain the following easy corollary.
Corollary 4.6. Let Λ be an n-dimensional lattice, w, c,v ∈ R

n, 0 < ε < 1, and
s ≥ ηε(Λ) such that dist(v,Λ∗) ≥ √

n/s. Then,

∣∣∣ Exp
x∼DΛ,s,c

[cos(2π〈x + w,v〉)]
∣∣∣ ≤ 1 + ε

1 − ε
· 2−n.

Proof.
∣∣∣ Exp
x∼DΛ,s,c

[cos(2π〈x + w,v〉)]
∣∣∣ =

∣∣∣�
(

Exp
x∼DΛ,s,c

[e2πi〈x+w,v〉]
)∣∣∣

≤
∣∣∣ Exp
x∼DΛ,s,c

[e2πi〈x+w,v〉]
∣∣∣

=
∣∣∣ Exp
x∼DΛ,s,c

[e2πi〈x,v〉]
∣∣∣.
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5. Worst-case to average-case connection. In this section we show that if
various lattice problems are hard to solve in the worst case, then a certain compu-
tational problem is hard to solve on the average. We start in subsection 5.1 with a
description of the average-case problem. We then describe our reductions. Follow-
ing [21, 22], the reductions are performed in two steps. First, in subsection 5.2, we
present a reduction from an intermediate worst-case lattice problem to the average-
case problem. This is the core of our proof. Then, in subsection 5.3, we show that
the intermediate worst-case lattice problem is at least as hard as various other com-
putational problems on lattices, such as SIVP and GapCRP. We remark that the
intermediate worst-case problem is introduced to present the worst-case to average-
case reduction in a simpler setting where the worst-case algorithm makes a single call
to the average-case oracle. This allows for a cleaner and simpler probabilistic analy-
sis, and it is well worth the effort of introducing one additional and perhaps artificial
problem. Work prior to [21, 22] reduced standard worst-case lattice problems (like
SIVP) directly to the average-case problem by making (polynomially) many random
calls to the average-case oracle, resulting in an overall more complex probabilistic
argument.

In subsection 5.4 we present our reduction from GapSVPÕ(n) to the average-
case problem. The proof of this result requires some additional machinery and relies
on the results proved in subsections 5.2 and 5.3 as well as techniques from [1]. We
remark that a weaker result can be derived directly from the results in subsection 5.3.
Namely, using standard reductions between lattice problems (see [23, Theorem 7.12]),
our Õ(n) approximation to SIVP immediately implies an Õ(n2) approximation to
GapSVP. Hence, subsection 5.4 is needed only in order to reduce the approximation
factor to Õ(n).

5.1. The average-case problem. Our average-case problem is the problem of
finding small nonzero solutions to random linear systems of modular equations.

Definition 5.1. The small integer solution problem SIS (in the �2 norm) is as
follows: given an integer q, a matrix A ∈ Z

n×m
q , and a real β, find a nonzero integer

vector z ∈ Z
m \ {0} such that Az = 0 mod q and ‖z‖ ≤ β.

Equivalently, the SIS problem asks to find a vector z ∈ Λq(A)\{0} with ‖z‖ ≤ β,
where

Λq(A) = {z ∈ Z
m : Az = 0 mod q}

is the set of all integer solutions to the system of linear equations modulo q defined
by matrix A.

In the definition of SIS it is implicitly assumed that a solution of length ‖z‖ ≤
β exists (for otherwise the problem is trivially hard). The following lemma gives
sufficient conditions under which SIS instances are guaranteed to have a solution.

Lemma 5.2. For any q, A ∈ Z
n×m
q , and β ≥ √

mqn/m, the SIS instance (q,A, β)
admits a solution; i.e., there exists a vector z ∈ Z

m \ {0} such that Az = 0 mod q
and ‖z‖ ≤ β.

Proof. The proof is by the pigeonhole principle. Consider all vectors z ∈ Z
m with

coordinates in {0, . . . , qn/m}. There are more than qn such vectors, and hence there
must exist two such vectors z1 �= z2 for which Az1 = Az2 mod q. Then, z1 − z2 �= 0
satisfies A(z1 − z2) = 0 mod q and, moreover, ‖z1 − z2‖ ≤ √

mqn/m since all its
coordinates are between −qn/m and qn/m.

We want to study the average-case complexity of the SIS problem when β ≥√
mqn/m satisfies the condition in Lemma 5.2 and SIS instances (q,A, β) are guaran-
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teed to have a solution. In order to define probability ensembles over SIS instances, it
is convenient to use the number of equations n as a security parameter and consider
families of SIS instances indexed by functions q(n), m(n), and β(n) that express the
other parameters in terms of n.

Definition 5.3. For any functions q(n), m(n), and β(n), let

SISq,m,β = {(q(n), U(Z
n×m(n)

q(n)
), β(n))}n

be the probability ensemble over SIS instances (q(n),A, β(n)), where A is chosen
uniformly at random among all n×m(n) integer matrices modulo q(n). When β(n) =√

m(n)q(n)n/m(n) is the bound specified in Lemma 5.2, the parameter β(n) is often
omitted, and we simply write SISq,m.

Notice that for the instances of SISq,m,β to be of size polynomial in n, the number
of variables must be a polynomially bounded function m(n) = nO(1), but q(n) and
β(n) can be exponentially large. However, we will be mostly interested in instances
where q(n) and β(n) are also polynomially bounded functions of the security parame-
ter n. Moreover, we typically choose values of q and m satisfying q(n)n/m(n) = O(1),
so that β(n) =

√
m(n)q(n)n/m(n) = O(

√
m(n)). In the next two subsections we show

that for an appropriate choice of parameters q,m, and β, solving SISq,m,β on the
average is as hard as solving worst-case instances of several standard lattice problems
such as SIVP and GapCRP. The reduction from GapSVP is shown in subsec-
tion 5.4. For technical reasons, in that reduction we need to consider a variant of the
SIS problem, defined below, which extends SIS with the additional requirement that
the solution vector must contain at least one odd coordinate.

Definition 5.4. The SIS
′ problem (in the �2 norm) is as follows: given an

integer q, a matrix A ∈ Z
n×m
q , and a real β, find an integer vector z ∈ Z

m \2Z
m such

that Az = 0 mod q and ‖z‖ ≤ β.
The distribution ensemble SIS

′
q,m,β = {(q(n),A, β(n))}n is defined analogously

to SISq,m,β by choosing matrix A ∈ Z
n×m(n)

q(n)
uniformly at random. Similarly, when

β(n) =
√
m(n)q(n)n/m(n), we omit the parameter β and simply write SIS

′
q,m. Clearly,

any solution to SIS
′
q,m,β is also a solution to SISq,m,β because 0 /∈ Z

m \ 2Z
m. The

next lemma shows that when the modulus q(n) is odd, SIS
′
q,m,β is not any harder

than SISq,m,β .
Lemma 5.5. For any odd integer q ∈ 2Z + 1 and SIS

′ instance I = (q,A, β), if
I has a solution as an instance of SIS, then it also has a solution as an instance of
SIS

′. Moreover, there is a polynomial time algorithm that on input a solution to an
SIS instance I, outputs a solution to the same SIS

′ instance I.
Proof. Assume q is odd, and let z be a solution to SIS instance (q,A, β); i.e.,

assume z ∈ Z
m \{0}, Az = 0 mod q, and ‖z‖ ≤ β. Compute the largest power i such

that 2i divides all the coordinates of z, and output z/2i. Since z is nonzero, i is well
defined and can be easily computed. Moreover, z/2i has at least one odd coordinate,
and since the modulus q(n) is odd, z/2i satisfies A(z/2i) = 0 mod q.

We end this subsection with two simple observations on the average-case hardness
of SIS. These observations are not used in the following subsections and can be safely
skipped at first reading.

First, observe that for any A, Λq(A) forms a lattice. Therefore, the SIS problem
is closely related to the shortest vector problem (SVP) on lattices of the form Λq(A).
More specifically, finding shortest nonzero vectors in a random lattice Λq(A) is at
least as hard as solving SISq,m on the average. So, all our results can be formulated
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as reductions from solving various lattice problems (including GapSVPγ for factors

γ(n) = Õ(n)) in the worst case to solving SVP on the average (for random lattices
of the form Λq(A)).

Next, we observe that SIS can be reduced to the problem of finding collisions
for an appropriately defined family of hash functions. For any q(n),m(n), and d(n),
define the family of functions

Hq,m,d = {fA : {0, . . . , d(n) − 1}m(n) → Z
n
q(n) | A ∈ Z

n×m(n)

q(n)
},

where n is a security parameter and fA(x) = Ax mod q(n). A typical choice of
parameters is q(n) = nO(1), d(n) = 2, and m(n) > n log2 q(n) = Θ(n log n). A
collision is a pair of distinct inputs x �= y (both in the domain {0, . . . , d(n) − 1}m(n)

of fA) that are mapped to the same output fA(x) = fA(y). Notice that if m(n) >
n logd(n) q(n), then the domain {0, . . . , d(n) − 1}m(n) is larger than the range Z

n
q(n)

,
and, by the pigeonhole principle, the functions fA are guaranteed to have collisions
(x,y). We argue that these collisions are computationally hard to find when A is
chosen at random. Observe that if (x,y) is a collision for fA, then z = x − y ∈
Λq(A) \ {0} is a nonzero lattice vector of length at most β(n) = (d(n) − 1)

√
m(n).

So, finding collisions on the average when A is chosen uniformly at random is at
least as hard as solving random instances of SISq,m,β for the same value of q(n) and

m(n), and β(n) = (d(n) − 1)
√
m(n). This gives collision resistant hash functions

that are provably secure based on the worst-case intractability assumption of lattice
approximation problems (e.g., SIVPγ , GapCRPγ , GapSVPγ) for approximation

factors γ(n) = Õ(n) almost linear in the dimension of the lattice.

5.2. Incremental guaranteed distance decoding. In this section we show
that solving SIS on the average with nonnegligible probability is at least as hard as
solving worst-case instances of the following IncGDD problem (originally introduced
in [22] in a slightly different form). We remind the reader that we introduce IncGDD

for the sole purpose of simplifying the worst-case to average-case reduction. In par-
ticular, we will show that IncGDD can be solved (in the worst case) by making a
single call to the average-case SIS oracle, resulting in a simpler probabilistic analysis
compared to reductions that make several oracle calls. In the next subsection we show
that several other more interesting lattice problems (like SIVP and GapCRP) can be
solved in the worst case by making many calls to an IncGDD oracle. Although these
reductions require the solution of several IncGDD instances, they are conceptually
easier to analyze because they are standard worst-case to worst-case reductions.

Definition 5.6 (incremental guaranteed distance decoding). An input to the
problem IncGDD

φ
γ,g is an n-dimensional lattice basis B, a set of n linearly indepen-

dent vectors S ⊂ L(B), a target point t, and a real r > γ(n) · φ(B). The goal is to
output a lattice vector s ∈ L(B) such that ‖s − t‖ ≤ (‖S‖/g) + r.

In other words, the IncGDD problem asks to find a lattice vector within distance
(‖S‖/g) + r from the given target. One possible choice of parameters is, for example,
g = 4, γ(n) =

√
n/2, and φ = λn. Often, ‖S‖ is much larger than r, so the dominant

part in the distance bound is ‖S‖/g, or ‖S‖/4 for our choice of parameters. Notice
that using the nearest plane algorithm [4] one can always find (in polynomial time)
a lattice point within distance (

√
n/2)‖S‖ from any target. Here we are trying to

do much better than that. However, it is not always possible to find a lattice vector
within distance ‖S‖/4 of a given target vector: for example, consider the integer
lattice Z

n generated by the identity matrix B = I. If we choose the set S = I and
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the target point t = (1/2, . . . , 1/2), then there is no lattice point at distance strictly
less than

√
n/2 = (

√
n/2)‖S‖ from the target. The r term in the distance bound

of the IncGDD problem is introduced to guarantee the existence of a solution. For
example, using the above choice of parameters, we get r > γ(n)φ(B) = (

√
n/2)λn(B),

and a lattice point within this distance always exists by the nearest plane algorithm.
To summarize, one can think of IncGDD as asking to find a lattice point within
distance roughly ‖S‖/g from the target, provided that ‖S‖ is not too small.

We now give a high-level overview of the reduction. Our goal is to reduce worst-
case instances of IncGDD to random instances of SIS. In other words, we want to
solve an IncGDD instance (B,S, t, r) with the help of an oracle F that on input
a random matrix A, returns with nonnegligible probability a short nonzero integer
vector z such that Az = 0. To fix some parameters, assume that we want to reduce
IncGDD with, say, g = 4 (we ignore γ and φ in this discussion) to SIS with q(n) = n4,
m(n) = n log n, and β(n) = n (it is easy to check that for large enough n, this
choice satisfies the conditions in Lemma 5.2). For now, let us make two simplifying
assumptions: the target vector t is the origin 0, and S = B. Although the former
assumption makes the IncGDD instance trivial (0 ∈ L(B) is always a solution), it
helps in explaining the main ideas in the reduction. We will later indicate how to
avoid these assumptions.

With these assumptions in place, we can describe a simplified form of the reduc-
tion. At the core of the reduction is a sampling procedure S. This procedure generates
a pair (c,y), where c is distributed uniformly in P(B) and y ∈ L(B) is a lattice vec-
tor close to c. The reduction starts by applying the sampling procedure m times to
obtain m pairs (c1,y1), . . . , (cm,ym). We then partition the parallelepiped P(B) into
qn smaller parallelepipeds, naturally corresponding to elements of Z

n
q . For each ci, let

c̃i be the “lower-left” corner of the parallelepiped of ci, that is, c̃i = B�q ·B−1ci�/q.
Notice that the distance between ci and c̃i is at most n‖B‖/q = ‖B‖/n3. Next,
let ai ∈ Z

n
q be the group element corresponding to the parallelepiped that contains

ci. More precisely, we define ai = �q · B−1ci� mod q. Since each ci is uniformly
distributed in P(B), each ai is uniformly distributed in Z

n
q . We can therefore ap-

ply the oracle F to the matrix A = [a1, . . . ,am] to find a small combination of the
ai that sums to zero in Z

n
q . That is, we find a vector z such that Az = 0 and

‖z‖1 ≤ √
m‖z‖2 ≤ √

mβ ≤ n2. Crucially, the same combination applied to c̃i yields
a lattice vector: if we denote by C̃ the matrix [c̃1, . . . , c̃m], we see that C̃z ∈ L(B).
We complete the argument by noting that the vector Cz is close to both C̃z and Yz
(where C and Y are defined similarly to C̃). Since the latter two vectors are lattice
vectors, we obtain that (C̃−Y)z is a lattice vector close to 0, as required. In slightly
more detail, it turns out that the dominant part in the distance between C̃z and Yz
is typically that between Cz and C̃z. By a triangle inequality, this distance is at most
‖z‖1‖B‖/n3 ≤ ‖B‖/n � ‖B‖/4; hence we obtain a solution to IncGDD.

Let us indicate how to avoid the two simplifying assumptions we have made.
First, IncGDD asks not for a lattice vector close to the origin but for a lattice vector
close to a given target t. This is taken care of by modifying the sampling procedure
so that it outputs a pair (c,y), where y is close to c + t′ (instead of c) where t′ is
now an input to the sampling procedure. By carefully choosing the vectors t′ used
in each of the m applications of the sampling procedure, we can guarantee that with
some reasonable probability, the output of the reduction will be a vector close to t.
The second issue to consider is that in general, S is not equal to B and, typically,
‖S‖ � ‖B‖. This is taken care of by first mapping the vectors ci to the parallelepiped
P(S) and then partitioning P(S) into qn smaller parallelepipeds, as we did before
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with P(B). This makes the dominant distance roughly ‖S‖/q, as required. The
mapping requires some care, as we want to map the uniform distribution over P(B)
to the uniform distribution over P(S). Finally, let us mention that although we have
ignored so far the distance between Cz and Yz, this distance ends up determining
the approximation factor achieved by the reduction. Because of this, in the reduction
below we will make an effort to give a good bound on this distance.

We can now describe the reduction in more detail. We start with the sampling
procedure S. This procedure takes as input a lattice B and two additional parameters
t and s. Provided s is not too small, the output of the procedure is a pair of vectors
(c,y) with the following properties. The distribution of c is very close to uniform on
P(B). The vector y is a lattice vector distributed according to a discrete Gaussian
distribution with parameter s around t + c. Since s is typically small, we can think
of the procedure as outputting a uniform vector c ∈ P(B) and a lattice vector y close
to c + t.

Lemma 5.7 (sampling lemma). There is a probabilistic polynomial time algorithm
S(B, t, s) that on input an n-dimensional lattice B ∈ R

n×n, a vector t ∈ R
n, and a

real s ≥ ηε(B) (for some ε > 0), outputs a pair of vectors (c,y) ∈ P(B)×L(B) such
that

• the distribution of vector c is within statistical distance Δ(c, U(P(B))) ≤ ε/2
from the uniform distribution over P(B);

• for any ĉ ∈ P(B), the conditional distribution of y given c = ĉ is DL(B),s,(t+ĉ).
Proof. The sampling procedure S(B, t, s) is the following:

1. Generate a noise vector r with probability density Ds,t.
2. Output c = −r mod P(B) and y = r + c.

For the first property, notice that by Lemma 4.1 and s ≥ ηε(B), the statistical distance
between the distribution of c and the uniform distribution is at most

Δ(c, U(P(B))) = Δ(−Ds,t mod P(B), U(P(B)))

= Δ(Ds,−t mod P(B), U(P(B)))

≤ ε/2.

For the second property, fix any ĉ ∈ P(B). Then, by definition, the distribution of
r + ĉ is Ds,t+ĉ. Conditioning on c = ĉ is the same as conditioning on r + ĉ ∈ L(B).
As discussed in section 2, the distribution of r + ĉ conditioned on r + ĉ ∈ L(B) is
DL(B),s,t+ĉ, as required.

Next, we describe a procedure which we call the combining procedure A. This
procedure is the heart of the worst-case to average-case reduction. It maps the vectors
ci to vectors in the parallelepiped P(S) and group elements ai, and then applies the
oracle F . At first reading, we suggest skipping the proof of the lemma and jumping
directly to Theorem 5.9.

Lemma 5.8 (combining procedure). There is a probabilistic polynomial time
oracle algorithm AF (B,S,C, q) that on input an n-dimensional lattice B ∈ R

n×n, a
full-rank sublattice S ⊂ L(B), m vectors C = [c1, . . . , cm] ∈ P(B)m, and a positive
integer q, makes a single oracle call F(A) = z (with A ∈ Z

n×m
q ) and outputs a vector

x ∈ R
n such that
• if the input matrix C ∈ P(B)m is distributed uniformly at random, then the

query matrix A ∈ Z
n×m
q is also uniformly distributed;

• if the oracle’s answer z = F(A) is in Λq(A), then the output vector x belongs
to the lattice L(B);

• the distance between the output vector x and Cz is at most
√
mn‖S‖ · ‖z‖/q.
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Proof. The procedure AF (B,S,C, q) is the following (see also the box labelled
AF in Figure 2).

1. Generate m uniformly random lattice vectors vi ∈ L(B) mod
P(S) (this can be done using standard techniques; see for ex-
ample [21, Proposition 2.9]).

2. Define the matrix W = [w1, . . . ,wm], where wi = vi + ci mod
P(S) for all i = 1, . . . ,m.

3. Define the query A = [a1, . . . ,am], where ai = �q ·S−1wi� ∈ Z
n
q

for all i = 1, . . . ,m.
4. Invoke the oracle F on input A to obtain an integer vector

z = F(A).
5. Output the vector x = (C − W + SA/q)z.

We now prove the first property. We start by noting that if c is uniformly dis-
tributed in P(B) and v is chosen uniformly from the vectors in L(B) mod P(S),
then c + v mod P(S) is distributed uniformly in P(S). This holds since the sets
(v + P(B)) mod P(S) for all v ∈ L(B) mod P(S) form a partition of P(S) into sets
of equal volume. Thus, we see that if C ∈ P(B)m is distributed uniformly, then W
is distributed uniformly in P(S)m. From this, it easily follows that A is distributed
uniformly in Z

n×m
q , as required.

We now prove the second property. Assume z ∈ Λq(A), and consider the output
vector

x = (C − W + SA/q)z =
m∑

i=1

(ci − wi)zi + S(Az/q).

Notice that for any i = 1, . . . ,m the vector

ci − wi = ((ci + vi) − wi) − vi

belongs to the lattice L(B) because ci+vi ≡ wi modulo L(S) ⊆ L(B) and vi ∈ L(B).
Also, Az/q is an integer vector because Az = 0 mod q. This proves that x belongs
to the lattice L(B) because it is an integer linear combination of lattice vectors.

For the third property, we bound the distance between x and Cz as follows:

‖x − Cz‖ =

∥∥∥∥∥

m∑

i=1

(wi − (S/q)ai)zi

∥∥∥∥∥

=
1

q

∥∥∥∥∥S
m∑

i=1

(ui − �ui�)zi
∥∥∥∥∥ ,

where ui = qS−1wi. Since for each i, all entries of ui − �ui� are bounded by 1, the
vector

∑m
i=1(ui − �ui�)zi has all entries bounded by

∑
i |zi| ≤

√
m‖z‖. It follows by

the triangle inequality that

∥∥∥∥∥S
m∑

i=1

(ui − �ui�)zi
∥∥∥∥∥ ≤ n

√
m‖z‖‖S‖

and ‖x − Cz‖ ≤ n
√
m‖z‖‖S‖/q.

We are now ready to reduce IncGDD to SIS using the procedures S and A from
the previous lemmas. In Theorem 5.9, all parameters are implicitly assumed to have
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Fig. 2. A diagram of the worst-case to average-case reduction.

bit-size polynomial in the security parameter, i.e., g(n), q(n) = 2n
O(1)

. In fact, in
most of the applications of this theorem considered in this paper, the parameters will
be smaller, typically polynomial in n. For example, one can take, say, g = 8 to be a
constant, q(n) = n3 (or any other sufficiently large polynomial), m(n) = n log n, and
β(n) =

√
m(n)q(n)n/m(n) = 8

√
n log n the bound from Lemma 5.2 so that SISq,m,β

is guaranteed to admit a solution. It is easy to check that q(n) satisfies the condition
in the theorem below, yielding approximation factor γ(n) = β(n)

√
n = 8n

√
log n =

O(n
√

log n).

Theorem 5.9. For any function g(n) > 0, polynomially bounded functions
m(n), β(n) = nO(1), negligible function ε(n) = n−ω(1), and q(n) ≥ g(n)n

√
m(n)β(n),

there is a probabilistic polynomial time reduction from solving IncGDD
ηε
γ,g for γ(n) =

β(n)
√
n on n-dimensional instances in the worst case to solving SISq,m,β on the av-

erage with nonnegligible probability.

Proof. Many of our parameters depend on n; for notational convenience, we often
omit this dependency and write m instead of m(n), and similarly for γ, β, g, q, ε, and
δ. Let F be an oracle that solves SISq,m,β on the average. In other words, we assume
that on input a uniformly random matrix A ∈ Z

n×m
q , the oracle call F(A) returns

a nonzero vector z ∈ Λq(A) of length at most ‖z‖ ≤ β with some nonnegligible
probability δ(n) = n−O(1).

On input an IncGDD
ηε
γ,g instance (B,S, t, r), the reduction performs the following

operations (see Figure 2 for a high-level overview). The goal of the first step is to
“guess” how to choose the vectors ti given to the sampling procedure. As we shall
see later, with reasonable probability, this guess causes the output of the reduction
to be a lattice vector close to t.

1. Pick an index j ∈ M = {1, . . . ,m} and integer α ∈ B =
{−β, . . . ,−1, 1, . . . , β} uniformly at random. For each i ∈ M ,
define the vector

ti =

{ −t/α if i = j,
0 otherwise.

2. For each i = 1, . . . ,m, compute the pair

(ci,yi) = S(B, ti, 2r/γ)

using the sampling procedure of Lemma 5.7, each time with
independent randomness.

3. Define the matrices C = [c1, . . . , cm] and Y = [y1, . . . ,ym].
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4. Finally, call the combining algorithm AF (B,S,C, q) = x using
F as an oracle, and output the vector s = x − Yz, where z =
F(A) is the answer returned by F to A’s query A.

We want to bound from below the success probability of the reduction, i.e., the
probability that the output vector s satisfies s ∈ L(B) and ‖s − t‖ ≤ (‖S‖/g) + r.
We start by finding some “good” values for j and α. To this end, consider the
output z′ = F(A′) of the oracle on a uniformly random input A′ ∈ Z

n×m
q . For each

j′ ∈ M,α′ ∈ B denote by δj′,α′ the probability that this output z′ satisfies

(z′j′ = α′) ∧ (z′ ∈ Λq(A
′) \ {0}) ∧ (‖z′‖ ≤ β).

Since any nonzero vector z ∈ Z
m with ‖z‖ ≤ β must have at least one coordinate in

the set B,

∑

j′∈M,α′∈B

δj′,α′ ≥ δ.

Hence, there must exist some j′ ∈ M,α′ ∈ B for which δj′,α′ ≥ δ/2βm and is thus
nonnegligible. In the rest of the proof we consider the execution of the reduction for
any fixed values of j and α and show that its success probability is at least δj,α/3, up
to a negligible term. In particular, for j = j′, α = α′, the reduction is successful with a
nonnegligible probability. This would complete the proof since the event j = j′, α = α′

happens with probability 1/2βm, which is nonnegligible.
So in the rest of the proof, fix some values of j and α. Let H be the event

H
def
= (zj = α) ∧ (z ∈ Λq(A) \ {0}) ∧ (‖z‖ ≤ β),(12)

where A and z are the random variables that appear in the reduction. In other words,
H is the event that oracle F is successful and the values j and α satisfy the desired
condition zj = α. We now show that the input C to the combining procedure is very
close to uniform and that this implies that H happens with probability very close to
δj,α. We will later see that conditioned on H, the reduction succeeds with probability
1/3.

Each column ci of C is chosen by running the sampling algorithm S(B, ti, s) =
(ci,yi) for some vector ti ∈ R

n and s = 2r/γ > 2ηε(B). It follows from Lemma 5.7
that for each i, the statistical distance between ci and the uniform distribution over
P(B) is at most ε/2. Since the vectors ci are independent, we have

Δ(C, U(P(B)m)) ≤
m∑

i=1

Δ(ci, U(P(B))) ≤ εm/2.(13)

By Lemma 5.8, on input a uniformly random matrix C′ ∈ P(B)m, the distribution
of the query A ∈ Z

n×m
q asked by AF (B,S,C′, q) is also uniform. Therefore, on

a uniform input C′, the vector z = F(A) obtained by the combining procedure
satisfies the conditions in (12) with probability δj,α. By (13) and the properties of
the statistical distance, it follows that the event H holds with probability at least
δj,α − εm/2, which is δj,α up to a negligible term.

To complete the proof, we show that the success probability of the reduction
conditioned on H is at least 1/3. We in fact show the stronger fact that the success
probability of the reduction is at least 1/3 conditioned on any fixed values of C,
the oracle query A, and the answer z = F(A) for which H is satisfied. So in the
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following, fix some j, α, C, A, and z for which zj = α, z ∈ Λq(A) \ {0} and ‖z‖ ≤
β. In particular, if we define T = [t1, . . . , tm], we get Tz = −t. We know from
Lemma 5.8 that the vector x = AF (B,S,C, q) belongs to the lattice L(B) and is
within distance n

√
m‖z‖‖S‖/q ≤ ‖S‖/g from Cz. We also know from Lemma 5.7

that the vectors yi are distributed independently according to DL(B),s,(ci+ti), where
s = 2r/γ > 2ηε. Since x and y1, . . . ,ym are all lattice vectors and z ∈ Z

m, it also
holds that s = x−Yz belongs to the lattice L(B). We need to compute the probability
that ‖s − t‖ ≤ (‖S‖/g) + r. By the triangle inequality,

‖s − t‖ ≤ ‖x − Cz‖ + ‖(C − Y)z − t‖ ≤ ‖S‖
g

+ ‖(Y − (C + T))z‖.

Thus, all we have to do is to bound the probability that ‖(Y − (C + T))z‖ ≤ r. By
Lemma 4.3, since each vector yi is distributed according to DL(B),s,(ci+ti), we have

Exp[‖yi − (ci + ti)‖2] ≤
(

1

2π
+

ε

1 − ε

)
s2n

and

‖Exp[yi − (ci + ti)]‖2 ≤
(

ε

1 − ε

)2

s2n.

Since the vectors y1, . . . ,ym are chosen independently, we can apply Lemma 2.11 and
get

Exp

⎡
⎣
∥∥∥∥∥

m∑

i=1

(yi − (ci + ti))zi

∥∥∥∥∥

2
⎤
⎦ ≤

(
1

2π
+

ε

1 − ε
+

(
ε

1 − ε

)2

m

)
‖z‖2s2n

≤ ‖z‖2s2n

6

for all sufficiently large n. Finally, using ‖z‖ ≤ β, s = 2r/γ, and γ = β
√
n, we get

Exp[‖(Y − (C + T))z‖2] ≤ ‖z‖2s2n

6
≤ 2

3
r2

and, by Markov inequality, we get

Pr{‖(Y − (C + T))z‖ > r} = Pr{‖(Y − (C + T))z‖2 > r2} ≤ 2

3
.

This proves that the conditional probability of ‖s − t‖ ≤ (‖S‖/g) + r is at least 1/3
and completes the proof.

5.3. Other worst-case problems. In section 5.2 we have shown that solving
SIS on the average is at least as hard as solving IncGDD in the worst case. In this
section we prove that solving SIS on the average is at least as hard as solving many
other standard lattice problems, such as SIVP and GapCRP. These results are
obtained as corollaries to Theorem 5.9 using straightforward worst-case to worst-case
reductions among lattice problems. We now describe three such reductions. The first
two are taken from [22] and for completeness, we include a sketch of their proof.

Lemma 5.10. For any γ(n) ≥ 1 and any φ, there exists a reduction from GIVP
φ
8γ

to IncGDD
φ
γ,8.
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Proof. Given a basis B, our goal is to construct a set of n linearly independent
vectors S of length ‖S‖ ≤ 8γ(n)φ(B). We do this by an iterative process. Initially,
we set S = B. At each step, we identify the longest vector in S, say si. We then take
t to be a vector orthogonal to s1, . . . , si−1, si+1, . . . , sn of length ‖S‖/2. We apply the
IncGDD oracle with the instance (B,S, t, ‖S‖/8). If it fails, we abort and output S.
Otherwise, we obtain a lattice vector u within distance at most (‖S‖/8) + ‖S‖/8 =
‖S‖/4 from t. Notice that ‖u‖ ≤ 3‖S‖/4 and that it is linearly independent from the
vectors in s1, . . . , si−1, si+1, . . . , sn. We then replace si with u and repeat the process.

Notice that when the oracle call fails, it must be the case that ‖S‖/8 ≤ γ(n)φ(B),
and hence ‖S‖ ≤ 8γ(n)φ(B), as required. Moreover, it is not difficult to argue that
this procedure terminates after a polynomial number of steps. For instance, one can
note that log Πi‖si‖ decreases by a constant at each step, and that its initial value is
polynomial in the input size.

Lemma 5.11. For any γ(n) ≥ 1 and any φ, there exists a reduction from GDD
φ
3γ

to IncGDD
φ
γ,8.

Proof. Given a basis B and a vector t, our goal is to find a lattice vector within
distance 3γ(n)φ(B) of t. First, we apply the reduction in Lemma 5.10 to obtain a
set S of n linearly independent vectors of length at most ‖S‖ ≤ 8γ(n)φ(B). We then
search for a value r for which an oracle call with (B,S, t, r/2) fails but an oracle
call with (B,S, t, r) succeeds. Since the former oracle call fails, it must be the case
that r ≤ 2γ(n)φ(B). The latter oracle call yields a lattice vector within distance
‖S‖/8 + r ≤ γ(n)φ(B) + 2γ(n)φ(B) = 3γ(n)φ(B), as required.

Lemma 5.12. For any γ(n), there exists a randomized reduction from GapCRPγ

to GDD
λn

γ/4.

Proof. Let (B, d) be an instance of GapCRPγ . The reduction picks a point

t ∈ P(B) uniformly at random and then calls the GDD
λn

γ/4 oracle with the instance

(B, t) to obtain a lattice vector x ∈ L(B) within distance (γ/4)λn(B) from the target
t. If ‖t − x‖ ≤ γd/2, then we accept; otherwise we reject. If ν(B) ≤ d, then

‖t − x‖ ≤ γλn(B)/4 ≤ γν(B)/2 ≤ γd/2,

where we use that for any lattice Λ, ν(Λ) ≥ λn(Λ)/2 [23, Theorem 7.9]. So, Yes

instances are always accepted. On the other hand, assume that ν(B) > γd. In [14]
it is shown that a random t chosen as above satisfies dist(t,L(B)) ≥ ν(B)/2 with
probability at least 1/2. Hence, dist(t,L(B)) > γd/2 with probability 1/2, and No

instances are rejected with probability 1/2.
By combining these reductions with Theorem 5.9, we obtain several useful corol-

laries. The first relates GIVP to SIS and we give it here in its most general form, as
it will later be used in the GapSVP reduction.

Corollary 5.13. For any polynomially bounded functions β(n),m(n) = nO(1),
any negligible function ε(n), and any q(n) ≥ 8n

√
m(n)β(n), there is a probabilis-

tic polynomial time reduction from solving GIVP
ηε
γ in the worst case with γ(n) =

8β(n)
√
n to solving SISq,m,β on the average with nonnegligible probability.

For the remaining corollaries, it is helpful to specialize Theorem 5.9 to the SISq,m

problem where solutions are guaranteed to exist. This is done by choosing β(n) =√
m(n)q(n)n/m(n). Observe that for this value of β, we have that the condition

q(n) ≥ g(n)n
√
m(n)β(n) is equivalent to q(n) ≥ (g(n)nm(n))1+n/(m(n)−n).

Corollary 5.14. For any function g(n) > 0, polynomially bounded function
m(n) = nO(1), negligible function ε(n) = n−ω(1), and q(n) ≥ (g(n)nm(n))1+n/(m(n)−n),
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there is a probabilistic polynomial time reduction from solving IncGDD
ηε
γ,g for γ(n) =√

nm(n) · q(n)n/m(n) on n-dimensional instances in the worst case to solving SISq,m

on the average with nonnegligible probability.
We continue with some other connections. For simplicity, from now on we consider

a specific choice of parameters. Other choices can be handled similarly.
Theorem 5.15. For any m(n) = Θ(n log n), there exists some q(n) = O(n2 log n)

and γ(n) = O(n
√

log n) such that for any negligible function ε(n), solving SISq,m on
the average with nonnegligible probability is at least as hard as solving any of the
following worst-case problems:

• GIVP
ηε
γ ,

• GDD
ηε
γ .

Proof. Notice that for any m(n) = Θ(n log n) there exists a q(n) = O(n2 log n)
that satisfies the conditions in Corollary 5.14 with g(n) = 8 a constant. This yields
a solution to IncGDD

ηε

γ,8 for some γ(n) = O(n
√

log n). It remains to apply Lem-
mas 5.10 and 5.11.

Theorem 5.16. For any m(n) = Θ(n log n) there exists a q(n) = O(n2 log n)
such that for any function γ(n) = ω(n log n), solving SISq,m on the average with
nonnegligible probability is at least as hard as solving any of the following worst-case
problems:

• SIVPγ (or equivalently, GIVP
λn
γ ),

• GDD
λn
γ ,

• GapCRPγ .

Proof. Let α(n) be any function (e.g., α(n) =
√

γ(n)/n log n) such that α(n) =
ω(1) and γ(n) = ω(α(n)n log n). By Lemma 3.3, there exists a negligible ε(n) for
which ηε(Λ) ≤ α(n)

√
log nλn(Λ) holds for any lattice. Hence, the first two claims

follow from Theorem 5.15 for some approximation factor O(α(n)n log n) < γ(n). The
third claim follows from the second claim together with Lemma 5.12.

We complete this section with a discussion of nonadaptive reductions. These
are reductions in which the oracle queries do not depend on the answers to previous
queries and hence can be performed all at once. It is known that unless the polynomial
hierarchy collapses, no average-case problem can be shown to be NP-hard under non-
adaptive reductions. See [7] and references therein for a more accurate description of
these results. Here, we observe that our reductions can be made nonadaptive with
only a slight worsening of the approximation factors obtained.

Lemma 5.17. For any functions g(n), γ(n) such that γ(n) < nc for some c > 0,
there exists a nonadaptive reduction from GDD

λn

γ′ to IncGDD
λn
γ,g, where γ′(n) =

(2n/g(n)) + 2γ(n).
Proof. Given a lattice B and a target t, we want to find a lattice vector close

to t. Using the LLL lattice reduction algorithm [17], we can efficiently compute a
basis S of L(B) such that ‖S‖ ≤ 2nλn(B). Let λ̃n = ‖S‖/2n and notice that λ̃n ≤
λn(B) ≤ 2nλ̃n. The reduction then calls the IncGDD oracle on input (B,S, t, 2i · λ̃n)
for i = 0, 1, . . . , �n + c log n� and outputs the lattice vector closest to t among the
vectors returned.

Let i be the smallest index such that 2iλ̃n > γ(n)λn(B). Such an i exists since
2n+c lognλ̃n = nc ·2nλ̃n > γ(n)λn(B). Notice that 2iλ̃n ≤ 2γ(n)λn(B). It follows that
the lattice vector returned by the IncGDD oracle on input (B,S, t, 2iλ̃n) is within
distance

‖S‖
g(n)

+ 2iλ̃n ≤ 2nλn(B)

g(n)
+ 2γ(n)λn(B) =

(
2n

g(n)
+ 2γ(n)

)
λn(B)
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from the target t, as required.
Lemma 5.18. For any γ(n), there exists a nonadaptive reduction from SIVPγ to

GDD
λn

γ/4
√
n
.

Proof. Let B be some instance of SIVPγ . Using the LLL lattice reduction
algorithm [17], we can efficiently compute a basis S of the same lattice such that
‖S‖ ≤ 2nλn(B). Notice that if γ ≥ 2n, we can simply output S, so in the following
assume γ < 2n. Let λ̃n = 2−n−1‖S‖ and notice that 2λ̃n ≤ λn(B) ≤ 2n+1λ̃n. Let
e1, . . . , en be some orthonormal set of vectors. The reduction calls the GDD

λn

γ/4
√
n

oracle on input (B, 2iλ̃nej) for i = 0, . . . , 2n−1 and j = 1, . . . , n. For i = 0, . . . , 2n−1,
let Si denote the set of n vectors returned by the oracle on queries corresponding to i.
Among the sets Si that contain n linearly independent vectors, the reduction outputs
the one that minimizes ‖Si‖. We need to prove that there exists an index i such that
the vectors Si are linearly independent and ‖Si‖ ≤ γλn(B).

Let i ∈ {0, . . . , 2n − 1} be the smallest index such that 2iλ̃n > γλn(B)/4. No-
tice that such an i exists and that 2iλ̃n ≤ γλn(B)/2. Each column of Si is within
distance γλn(B)/4

√
n from the corresponding vector 2iλ̃nej . Since the length of the

latter is strictly greater than γλn(B)/4, it follows that the columns of Si are linearly
independent (see, e.g., [20]). Finally, by the triangle inequality, each vector in Si has
length at most

2iλ̃n + γλn(B)/4
√
n ≤ γλn(B)/2 + γλn(B)/4

√
n ≤ γλn(B).

Theorem 5.19. There exist functions q(n) = 2O(n) and m(n) = nO(1) such
that for any function α(n) = ω(

√
log n), solving SISq,m on the average with non-

negligible probability is at least as hard (via nonadaptive reductions) as solving any of
the following worst-case problems:

• GDD
λn
γ for some γ(n) = O(n1.5α(n)),

• GapCRPγ for some γ(n) = O(n1.5α(n)),
• SIVPγ for some γ(n) = O(n2α(n)).

Proof. By Lemma 3.3, we can choose a negligible function ε(n) such that for any
lattice Λ, ηε(Λ) ≤ α(n)λn(Λ). Let q(n) = n32n, m(n) = n2, and g(n) = 2n/4. Notice
that this choice satisfies the hypothesis in Corollary 5.14. Moreover, notice that
the reduction in Theorem 5.9 is nonadaptive since it makes only one oracle query.
Therefore, by Corollary 5.14, there is a nonadaptive reduction from solving worst-
case instances of IncGDD

ηε
γ,g with γ(n) ≤ 4n1.5 to solving SISq,m on the average

with nonnegligible probability. By our choice of ε, this is also a reduction from
IncGDD

λn

γ′,g, where γ′(n) = γ(n)α(n).
The first claim follows from Lemma 5.17. The second claim follows directly from

the first together with Lemma 5.12. The only thing to notice is that the reduction
in that lemma is nonadaptive since it makes only one oracle call. The third follows
similarly with the use of Lemma 5.18.

5.4. Shortest vector problem. In this subsection we reduce GapSVP to
SIS

′. Let us first recall Hoeffding’s inequality [15], which states the following. Let
X1, . . . , XN be N independent random variables, such that for all i, Xi ∈ [a, b]. Then
SN =

∑
i Xi satisfies

(14) Pr{SN ≥ Exp[SN ] + Nε} ≤ e−Nε2/(b−a)2 .

We will also need the following lemma from [1]. For completeness, we include its proof
in the appendix.
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Lemma 5.20 (see [1, Lemma 6.2]). Let σ,K, � be some positive numbers and let
D be a distribution on R

n such that for any fixed unit vector u,

Exp
w∼D

[〈u,w〉2] ≤ �2

and, moreover,

Pr
w∼D

{‖w‖ ≥ K�} ≤ σ.

Let W = [w1, . . . ,wN ] be a matrix obtained by picking each column independently
at random according to distribution wi ∼ D. Then, with probability at least 1 −
e−N/K4

(4
√
nK2)n − Nσ (over the choice of matrix W) the maximum eigenvalue of

the n× n matrix WWT is at most 3N�2.
We now define a variant of the closest vector problem that will be used as an

intermediate step in our reduction from GapSVP to SIS
′.

Definition 5.21. An input to GapCVP
′
γ is a triple (B, t, d), where B is an

n-dimensional lattice basis, t is a target vector, and d is a rational number. In Yes

inputs dist(t,L(B)) ≤ d. In No inputs λ1(B) > γ(n) · d and for any odd k ∈ Z,
dist(kt,L(B)) > γ(n) · d.

The difference between GapCVP
′ and the standard problem GapCVP is that

when the target is far from the lattice, it also holds that any odd multiple of the target
is far and the minimum distance of the lattice is large. In [13] it is shown that there
is a polynomial time reduction from GapSVPγ to GapCVPγ . We observe that the
reduction given in [13] is also a reduction from GapSVPγ to GapCVP

′
γ , as shown

in the following lemma.
Lemma 5.22. For any approximation factor γ(n), there is a polynomial time

reduction from GapSVPγ to GapCVP
′
γ .

Proof. In [13] it is shown that for any γ, there is a deterministic Cook re-
duction from GapSVPγ to GapCVPγ (see also [23]). Here we observe that the
same reduction can be used as a reduction from GapSVPγ to GapCVP

′
γ . To see

this, it suffices to know that on input GapSVPγ instance (B, d), all the GapCVPγ

calls made by the reduction have the form (Bi,bi, d), where B = [b1, . . . ,bn] and
Bi = [b1, . . . ,bi−1, 2bi,bi+1, . . . ,bn]. Moreover, the reduction outputs Yes if and
only if any of the calls is answered Yes. Since GapCVPγ and GapCVP

′
γ have

the same set of Yes instances, if the reduction is guaranteed to output Yes given
a GapCVPγ oracle (e.g., when the input is a Yes instance), then it outputs Yes

also when given access to a GapCVP
′
γ oracle. Now, let us consider the case when

the input (B, d) is a No instance, and therefore all calls made by the reduction
would receive a No answer from a GapCVPγ oracle. Notice that for any odd inte-
ger k, dist(kbi,L(Bi)) = dist(bi,L(Bi)) because 2bi ∈ L(Bi). Moreover, λ1(Bi) ≥
λ1(B) > γd. So, if (Bi,bi, d) is a No instance of GapCVPγ , then it is also a No

instance of GapCVP
′
γ . Therefore all calls made by the reduction receive a No answer

by the GapCVP
′
γ oracle as well, and the final output of the reduction is No.

We now show how to solve GapCVP
′
γ in the worst case given access to an oracle

that solves SIS
′ on the average. By Lemma 5.22 this also implies a reduction from

GapSVPγ to SIS
′ (or SIS when the modulus q is odd).

Theorem 5.23. For any polynomially bounded functions β(n),m(n), q(n) =
nO(1), with q(n) ≥ 4

√
m(n)n1.5β(n) and γ(n) = 14π

√
nβ(n), there is a probabilis-

tic polynomial time reduction from solving GapCVP
′
γ in the worst case to solving

SIS
′
q,m,β on the average with nonnegligible probability.
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In particular, for any m(n) = Θ(n log n), there exist q(n) = O(n2.5 log n) and
γ(n) = O(n

√
log n), such that solving SIS

′
q,m on the average is at least as hard as

solving GapSVPγ in the worst case.
Proof. We adopt the notation of Theorem 5.9 and omit the dependence on n

for the parameters m, γ, β, q, ε, and δ. Let F be an oracle solving SIS
′
q,m,β on the

average with nonnegligible probability δ. Namely, F is an oracle that on input a
random matrix A ∈ Z

n×m
q returns a vector z = F(A) ∈ Λq(A) \ 2Z

m of length at
most β with probability δ. Notice that since 0 /∈ Λq(A) \ 2Z

m, oracle F also solves
SISq,m,β with probability at least δ. We want to use F to solve GapCVP

′
γ . The main

idea is to use the NP verifier for (the complement of) GapCVP presented in [1] as a
routine for solving GapCVP

′. To be able to do this, we need to be able to generate a
good witness to that verifier. Such a witness is given by a set of short vectors sampled
from the discrete Gaussian distribution in the dual lattice. Luckily, we can generate
such a witness by using the sampling procedure and the combining procedure given
in subsection 5.2 (together with F). In fact, to be able to use these procedures, we
need a reasonably short set of linearly independent vectors S. We obtain such a set
by using Corollary 5.13.13

We start by describing the NP verifier of [1]. For our purposes, it is best to think
of this NP verifier as an algorithm, call it V. The input to V consists of a lattice B,
a vector t, a number d > 0, and a sequence of vectors W = [w1, . . . ,wN ] in L(B)∗,
where N = n3m3. The algorithm V(B, t, d,W) performs the following three tests:

(a) Check that for all i = 1, . . . , N , wi ∈ L(B)∗.
(b) Check that fW(t) < 1/2, where fW is the function

fW(x) =
1

N

N∑

i=1

cos(2π〈x,wi〉).

(c) Check that the largest eigenvalue of the n × n positive semidefinite matrix
WWT is at most N/(2πd)2.

If all three tests are satisfied, then V outputs Yes; otherwise it outputs No. It is
shown in [1] that if dist(t,L(B)) ≤ d then V(B, t, d,W) is guaranteed to output No

(for any matrix W), while if dist(t,L(B)) > c
√
nd (for some absolute constant c),

then there exists a matrix W that makes V output Yes.
We now describe our GapCVP

′ reduction. From now on, fix ε(n) = 2−n. First,
using Corollary 5.13 (with F as an oracle), we obtain a set of n linearly independent
vectors S in L(B)∗ such that ‖S‖ ≤ 8β

√
nηε(B

∗). Define

s =
2
√
n

γd
.

Consider the following procedure W(B,S):
1. Run the sampling procedure S(B∗,0, s) of Lemma 5.7 on input

a basis B∗ of the dual lattice L(B)∗. This procedure is run
m times to generate m pairs of vectors (ci,yi) and define the
matrices C = [c1, . . . , cm] and Y = [y1, . . . ,ym].

2. Run the combining procedure AF (B∗,S,C, q) of Lemma 5.8
with the oracle F . Let A be the query asked by A, and z =
F(A) the answer returned by the oracle.

13We remark that we could also use any polynomially longer set S with only a minor effect on
our results.
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3. If z is not a valid solution to SIS
′ instance (q,A, β), then W

aborts the computation with no output. Otherwise, let x be the
vector returned by A, and output the vector w = x − Yz.

We apply W(B,S) nN/δ times, each time with independent randomness. If the
number of nonaborting runs of W is less than N , then the reduction terminates
immediately with output Yes. Otherwise, let W = [w1, . . . ,wN ] be the vectors
returned by the first N nonaborting runs of W, and call V(B, t, d,W). If V says Yes,
the reduction outputs No; otherwise, the reduction outputs Yes. This completes the
description of the reduction.

By the properties of V, it is clear that whenever dist(t,L(B)) ≤ d, the reduction
correctly outputs Yes (either because the number of nonaborting runs of W is less
than N , or because V(B, t, d,W) outputs No). For completeness, let us sketch the
proof that V outputs No whenever dist(t,L(B)) ≤ d. Assume that the distance of
t from L(B) is at most d and assume that tests (a) and (c) are satisfied. We show
that test (b) must fail, and therefore V outputs No. First, by the definition of fW
and the assumption that test (a) accepts, we have that fW is periodic modulo L(B).
Moreover, since the largest eigenvalue of WWT is bounded by N/(2πd)2, we have
that ‖WTx‖2 ≤ N‖x‖2/(2πd)2 for any vector x. Let τ(t) denote the lattice vector
closest to t. Notice that ‖t − τ(t)‖ ≤ d. Since fW is periodic modulo the lattice,
fW(t) = fW(t − τ(t)). It thus suffices to prove that fW(t − τ(t)) ≥ 1/2. Using the
inequality cosx ≥ 1 − x2/2 (valid for any x ∈ R) we get

fW(t − τ(t)) =
1

N

N∑

i=1

cos(2π〈t − τ(t),wi〉)

≥ 1 − 4π2

2N

N∑

i=1

〈t − τ(t),wi〉2

= 1 − 2π2

N
‖WT (t − τ(t))‖2

≥ 1 − ‖t − τ(t)‖2

2d2
≥ 1

2
.

It remains to show that the reduction outputs the correct answer when the input
is a No instance, i.e., when λ1(B) > γd and dist(kt,L(B)) > γd for any odd k ∈ Z.
In order for our reduction to output No, two conditions must be satisfied: at least N
calls to W succeed and V outputs Yes. Let us first show that after n · N/δ calls to
W, we obtain at least N vectors with high probability. By Lemma 3.2, we have that

(15) ηε(B
∗) ≤

√
n

λ1(B)
<

√
n

γd
=

s

2

and hence s satisfies s > 2ηε(B
∗). Therefore, by Lemma 5.7, the pairs (ci,yi) com-

puted by the sampling procedure S(B∗,0, s) satisfy that ci is within distance ε/2 from
the uniform distribution. It follows that C is within distance mε/2 from the uniform
distribution over P(B∗)m. Hence, by Lemma 5.8, the query A given to the oracle by
the combining procedure AF (B∗,S,C, q) is within negligible distance εm/2 from the
uniform distribution, and the oracle returns a vector z such that z ∈ Λq(A)\2Z

m and
‖z‖ ≤ β with probability at least δ − εm/2 > δ/2 for all sufficiently large n. Thus,
the probability that out of n ·N/δ calls to W fewer than N are successful is at most
N(1 − δ/2)n/δ ≤ Ne−n/2 < 2−n/2.
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It remains to show that V outputs Yes with high probability. The proof of this
is based on [1]. However, in [1], it is only shown that there exists a good matrix W
that makes V output Yes. Here, we have to argue that the W given by W is good
with high probability.

First, we observe that test (a) is always satisfied since W(B,S) is guaranteed
to output vectors in L(B)∗. Indeed, x,y1, . . . ,ym ∈ L(B)∗, and hence x − Yz also
belongs to the lattice L(B)∗. In the rest of the proof, we show that tests (b) and
(c) are satisfied with high probability. To this end, notice that each vector w in W
is distributed independently according to the distribution D defined as the output of
W(B,S) conditioned on a nonaborting run.

Consider test (b). Our goal is to show that Pr{fW(t) ≥ 1/2} is small. Below, we
will show that

∣∣∣Exp
w

[cos(2π〈t,w〉)]
∣∣∣ ≤ 2−n+1,(16)

where w is distributed according to D. By Hoeffding’s bound (14), this would imply

that fW(t) ≥ 1/2 with probability at most e−N( 1
2−Exp[fW(t)])2/4 ≤ e−N( 1

2−2−n+1)2/4 =
2−Ω(N). We now prove (16). We in fact show that it is true even when we condition
on any fixed values of C, A, and z ∈ Λq(A)\2Z

m. Furthermore, we condition on any
fixed values of y1, . . . ,yj−1,yj+1, . . . ,ym, where j is some index for which zj is odd.
Notice that the only randomness left is in yj , which, by Lemma 5.7, is distributed
according to DL(B)∗,s,cj

. Hence, a sample w = x−Yz can be written as −zj(ŵ+yj)
for some fixed vector ŵ. Notice that

cos(2π〈t,w〉) = cos(2π〈t,−zj(ŵ + yj)〉) = cos(2π〈−zjt, ŵ + yj〉).

By Corollary 4.6, (15), and dist(−zjt,L(B)) > γd = 2
√
n/s, we obtain

∣∣∣Exp
yj

[cos(2π〈t,w〉)]
∣∣∣ =

∣∣∣Exp
yj

[cos(2π〈ŵ + yj ,−zjt〉)]
∣∣∣ ≤ 1 + ε

1 − ε
· 2−n ≤ 2−n+1.

In the rest of the proof we show that test (c) is satisfied with high probability. We
do this by applying Lemma 5.20 with � = 2sβ, N = n3m3, σ = N2−n(1 + ε)/(1 − ε),
K =

√
n ·m, and the distribution D. Assuming the hypothesis in that lemma holds,

we get that the maximum eigenvalue of matrix WWT is bounded by

3N�2 = 12Ns2β2 =
48Nnβ2

γ2d2
<

N

(2πd)2

except possibly with probability

e−N/K4

(4
√
nK2)n + Nσ ≤ (4e−mn1.5m)n + N22−n+1 ≤ 2−n/2.

Therefore, the probability that test (c) fails is exponentially small. It remains to check
that the hypothesis of Lemma 5.20 is satisfied, i.e., that

(17) Pr
w
{‖w‖ ≥ 2

√
n ·msβ} ≤ σ

and for any unit vector u,

(18) Exp
w

[〈u,w〉2] ≤ 4s2β2.
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In the following, we show that (17) and (18) are true even when we condition on any
fixed values of C, A, and z. The only randomness left is in y1, . . . ,ym where each yi

is distributed according to DL(B)∗,s,ci
.

We first prove (17). We can write a vector w produced by W as

w = x − Yz = (x − Cz) − (Y − C)z.

By Lemma 5.8 and (15), the norm of the first term is at most

‖x − Cz‖ ≤
√
mn‖S‖ · ‖z‖

q

≤ 8
√
m · n1.5ηε(B

∗) · β2

q

≤ 2βηε(B
∗) < sβ

with probability 1. By Lemma 4.4, for every i, the probability that ‖yi − ci‖ > s
√
n

is at most 2−n(1 + ε)/(1− ε) = σ/N . Hence, by union bound and triangle inequality,
the norm of the second term is bounded by

‖(Y − C)z‖ ≤ s
√
n

m∑

i=1

|zi| ≤ s
√
n
√
mβ

with probability at least 1−σ. It follows that with probability at least 1−σ the norm
of w is bounded by sβ +

√
nmsβ < 2

√
nmsβ for all sufficiently large n, proving (17).

Next, we prove (18). Fix some unit vector u and let us bound the expected value

of 〈u,w〉2. Using the inequality (a − b)2 ≤ 2a2 + 2b2 (valid for all a, b ∈ R), we can
write

〈u,w〉2 = (〈u,x − Cz〉 − 〈u, (Y − C)z〉)2
≤ 2〈u,x − Cz〉2 + 2〈u, (Y − C)z〉2
≤ 2‖x − Cz‖2 + 2〈u, (Y − C)z〉2.

Using Lemma 4.2, we obtain that for all i = 1, . . . ,m,

|Exp[〈u,yi − ci〉]| ≤ εs

1 − ε
,(19)

Exp[〈u,yi − ci〉2] ≤
( 1

2π
+

ε

1 − ε

)
s2.(20)

Using (19), (20), and Lemma 2.11 with vi = 〈u,yi − ci〉 as 1-dimensional vectors, we
obtain

Exp[〈u, (Y − C)z〉2] = Exp

⎡
⎣
(

m∑

i=1

〈u,yi − ci〉zi
)2
⎤
⎦

≤
((

1

2π
+

ε

1 − ε

)
s2 +

(
ε

1 − ε

)2

s2m

)
‖z‖2

≤
(

1

2π
+

ε

1 − ε
+

(
ε

1 − ε

)2

m

)
s2β2

≤ s2β2.

Using this bound in the expression for Exp[〈u,w〉2] we get that

Exp[〈u,w〉2] < 2(sβ)2 + 2(sβ)2 = 4s2β2.
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Appendix. Proof of Lemma 5.20. The largest eigenvalue of W · WT is at
most 3N�2 if and only if

1

N

N∑

i=1

〈u,wi〉2 ≤ 3�2

for all unit vectors u ∈ R
n. In the following, we show that this condition is satisfied

with the desired probability. Let ξ : R
n → R

n be the function defined by ξ(x) = x if
‖x‖ ≤ K� and ξ(x) = 0 otherwise. Clearly, for any unit vector u,

Exp
w∼D

[〈u, ξ(w)〉2] ≤ Exp
w∼D

[〈u,w〉2] ≤ �2.

Moreover, the random variable 〈u, ξ(w)〉2 takes values in the interval [0, (K�)2].
Hence, Hoeffding’s inequality (14) implies that for any unit vector u, a sequence
of samples w1, . . . ,wN from D satisfies

(21)
1

N

N∑

i=1

〈u, ξ(wi)〉2 ≤ 2�2

with probability at least 1 − e−N/K4

.
Consider an ε-net A on the unit sphere with parameter ε = 1

2
K−2, i.e., a set of

points A such that any point on the unit sphere is within distance ε from some point
in A. It is possible to construct such nets of size at most (2

√
n/ε)n. For instance, let

C be [−1, 1]n, i.e., the n-dimensional cube of edge length 2. Notice that C contains
the unit sphere. Partition C into (2

√
n/ε)n small cubes of edge length ε/

√
n. For

each small cube that intersects the n-dimensional sphere, choose any point in the
intersection and include it in A. It is easy to see that the collection of these points
constitutes an ε-net on the sphere, because any point in the sphere belongs to one of
the small cubes, and the diameter of each small cube is exactly ε.

We now apply the union bound on the set of all unit vectors u in A. It follows
that (21) holds with probability at least 1 − e−N/K4

(4
√
nK2)n for all u in the net A

simultaneously.
Next, we show that if (21) holds for all u ∈ A, then a slightly weaker version of

it holds for all unit vectors. Consider an arbitrary unit vector u′. Let u ∈ A be the
closest point to u′ in A. Notice that ‖u − u′‖ ≤ ε. Thus,

∣∣∣∣∣
1

N

N∑

i=1

〈u′, ξ(wi)〉2 − 1

N

N∑

i=1

〈u, ξ(wi)〉2
∣∣∣∣∣ ≤

1

N

N∑

i=1

|〈u′ − u, ξ(wi)〉〈u′ + u, ξ(wi)〉|

≤ 2εmax
i

‖ξ(wi)‖2 ≤ 2ε(K�)2 = �2.

This yields that with probability at least 1− e−N/K4

(4
√
nK2)n over the choice of the

wi’s it holds that

1

N

N∑

i=1

〈u, ξ(wi)〉2 ≤ 2�2 + �2 = 3�2

for all unit vectors u. It remains to note that with probability at least 1 − Nσ,
ξ(wi) = wi for all i.
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A POLYNOMIAL TIME ALGORITHM FOR COMPUTING AN
ARROW–DEBREU MARKET EQUILIBRIUM FOR LINEAR

UTILITIES∗

KAMAL JAIN†

Abstract. We provide the first polynomial time exact algorithm for computing an Arrow–
Debreu market equilibrium for the case of linear utilities. Our algorithm is based on solving a convex
program using the ellipsoid algorithm and simultaneous diophantine approximation. As a side result,
we prove that the set of assignments at equilibrium is convex and the equilibrium prices themselves
are log-convex. Our convex program is explicit and intuitive, which allows maximizing a concave
function over the set of equilibria. On the practical side, Ye developed an interior point algorithm
[Lecture Notes in Comput. Sci. 3521, Springer, New York, 2005, pp. 3–5] to find an equilibrium based
on our convex program. We also derive separate combinatorial characterizations of equilibrium
for Arrow–Debreu and Fisher cases. Our convex program can be extended for many nonlinear
utilities and production models. Our paper also makes a powerful theorem (Theorem 6.4.1 in [M.
Grotschel, L. Lovasz, and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, 2nd
ed., Springer-Verlag, Berlin, Heidelberg, 1993]) even more powerful (in Theorems 12 and 13) in the
area of geometric algorithms and combinatorial optimization. The main idea in this generalization
is to allow ellipsoids to contain not the whole convex region but a part of it. This theorem is of
independent interest.

Key words. polynomial time algorithms, economics, market equilibrium, convex set
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1. Introduction. We present the first polynomial time algorithm to compute
the exact general market equilibrium for the linear utility case, thereby settling
an open problem posed by Papadimitriou [35] and by Deng, Papadimitriou, and
Safra [10]. A version of the problem was first formulated by a French economist,
Leon Walras, in 1874 [37]. In this model, every person in an entire population has an
initial endowment of divisible goods. Furthermore, every person in the population has
a utility function for consuming goods. Every person sells the initial endowment and
then buys an optimal bundle of goods with the entire revenue; i.e., the market clears.
Walras asked whether a price can be assigned to every good so that this is possible.
Such a price vector, if it exists, is called general market equilibrium. An answer was
given by two Nobel laureates, Arrow and Debreu, in 1954 [2]. They showed that when
the utility functions are concave then under some mild conditions a general market
equilibrium always exists [2]. Their proof is nonconstructive and does not suggest any
polynomial time algorithm for finding a general market equilibrium.

Fisher was the first to consider the computability of equilibrium prices (see [3]).
Independent of Walras’ work, Fisher defined another model, which is a special case
of the Walras model, in 1891. In his model there are two kinds of people, producers
and consumers. Consumers have money and utility functions for goods. Producers
have initial endowments of goods and want to earn money. The equilibrium prices
are defined as the assignment of prices to goods so that, when every consumer buys

∗Received by the editors March 9, 2005; accepted for publication (in revised form) January 20,
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an optimal bundle, then the market clears; i.e., all the money is spent and all the
goods are sold. If money is also considered a commodity, then it is easy to see that
the Fisher model is a special case of the Walras model; hence, the Arrow–Debreu
theorem [2] also implies the existence of a market equilibrium for the Fisher model
for the case of concave utilities.

Although the Walras and Fisher models seem very close, there are some funda-
mental differences between them. The Walras model suggests that money has no
intrinsic value except that it is a scale to measure the value of a good. The Fisher
model, on the other hand, assumes the value of the money. The Fisher model can also
be viewed as a generalization of the concept of demand and supply curves, where de-
mand is a decreasing function of prices and supply is an increasing function of prices; a
point where they meet is called an equilibrium. On the other hand, the Walras model
allows the demand to be an increasing function of income as well as a decreasing
function of prices. In practice, at a macro level, when the prices increase, the demand
decreases. But then the incomes also increase, because consumers and producers (i.e.,
workers in the global economy system) are the same, which has an increasing effect on
demand. This feedback feature of the Walras model not only makes it more realistic
but also puts it at a much higher difficulty level than the Fisher model. This is also
evident from the results obtained about the Fisher model.

Eisenberg and Gale [17] gave a constructive proof using the variational method for
the Fisher model in the case of linear utilities. Their proof shows that the equilibrium
assignment is the one which maximizes the product of utilities obtained by every dollar
of the buyers. This gives a convex function which is minimized at the equilibrium.
This implies a polynomial time (approximation) algorithm, in the sense of numerical
computing, i.e., polynomial in the input size and log(1/ε), where ε is the precision in
computation. The first exact algorithm was recently developed by Devanur et al. [12].
None of these algorithms is strongly polynomial time.

There was no polynomial time algorithm known for the Walras model, although
the problem has been studied extensively and many heuristics have been developed
using the Lemke method, Newton method, primal-dual method, convex programming,
and various other techniques in numerical optimization (see, e.g., [15, 36, 14, 18]).
Deng, Papadimitriou, and Safra [10] gave polynomial time algorithms for a bounded
number of agents or goods and asked the question for the general case. The importance
of polynomial time computational results for computing equilibria was also mentioned
earlier in [34].

Recently two1 approximation schemes have been developed for the Walras model
[25, 20, 13]. The first scheme [25] also works for some nonlinear utility functions
for those instances which satisfy the condition of gross substitutability (i.e., if the
price of some good is raised, then the demand of other goods can only increase). An
approximation scheme was also developed by Newman and Primak [33] by running
the algorithm Ellipsoid on an infinite linear program. The inequalities of the infinite
linear program were given by Arrow, Block, and Hurwicz [1] and hold for a very general
class of utility functions satisfying gross substitutability. We refer readers to [6] to
get further details and pointers on this approach. Approximation schemes developed
in [25, 20, 13] interpret the approximation factor in a physical sense. On the other
hand, the sense of approximation in [33] was not clear. One reason is that the linear
inequalities used by [33] have both positive and negative coefficients, with their signs
not clear a priori. We again refer the readers to [6] for a physical interpretation of the

1[13] is a simple variation of [25].
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approximation in [33]. In some sense these approximation schemes [33, 25, 20, 13] are
pseudoapproximation, because they do not guarantee that an equilibrium is nearby.

In this paper we propose a mathematical program for the Walras model for the
case of linear utilities. We show that the program is valid for nonlinear utilities too.
The program is simple and does not have complicated constraints like “optimality
of the bundles purchased” and/or nonlinear constraints like “money spent equals
money earned.” Instead these constraints follow from the feasibility of the program.
In general, constraints written do not seem to have simple economic interpretations,
which probably is the reason that they were not discovered so far. For the case of linear
utilities, they do have some economic interpretation, and also the program can be
turned into at least two different convex programs. For linear utilities, [7] reports that
one of the convex programs in this paper also exists in the Russian literature [32]. Our
programs turn out to be convex for some cases of nonlinear utilities too. We show that
all the general market equilibria are feasible points of this convex program and vice
versa; hence, a general market equilibrium can be obtained using the ellipsoid method
and simultaneous diophantine approximation. This leads us to develop Theorems
12 and 13, which make a powerful geometric algorithm even more powerful. These
theorems are about general convex programs and not restricted to game theory.

Our convex program is explicitly given and can easily be converted into an opti-
mization program. Using this convex program, Ye [38] developed computationally
efficient interior point algorithms for computing market equilibria. Besides com-
putability, we get some insight into the structure of the equilibrium itself. Our convex
program shows that the set of all the equilibrium assignments is convex. It also shows
that the set of all the equilibrium prices on a logarithmic scale is convex too. Indeed,
algorithms via convex programs have distinct theoretical advantages. Almost any
known basic fact about the Fisher model with linear utilities can be easily observed
from the Eisenberg–Gale convex program. Convexity, which gives dual interpretation
to prices, is one of them. Uniqueness of equilibrium utilities and prices, rationality of
prices, proportionate fairness of the equilibrium [31], and combinatorial characteriza-
tion (Theorem 11) are some others. Eisenberg and Gale’s program gives the fastest
known algorithm [38] for the problem. Their convex program can be generalized for
homogeneous concave utilities [16] and homogeneous quasi-concave utilities [29] too.
As shown in many thought experiments in [38], their convex program is quite nat-
ural and implies a proof of the Arrow–Debreu case by using a fixed point theorem.
Furthermore, this convex program allows Jain, Vazirani, and Ye [29] to define equilib-
rium for a production model with some economies of scales in production. Note that,
in general, the Arrow–Debreu theorem breaks down as soon as we have any kind of
economies of scale. We do not deal with production in this paper. The ideas in this
paper are extended to production setting in [26].

Indeed most of these features are also shared by our convex program in this
paper. The only main difference is that the Eisenberg–Gale convex program gives a
constructive proof of the existence of an equilibrium, whereas our convex program does
not. The fact that no constructive proof has been developed for the Arrow–Debreu
theorem in the last half century hints toward an intrinsic difficulty of the model.
Intuitively, one reason that the use of a fixed point theorem cannot be done away
with easily is the two-sided feedback of prices—demand decreases with prices, whereas
income increases, which in turn has positive effect on demand. We are not aware of
any other problem where the only proof of existence is via fixed point theorems and
yet a polynomial time algorithm is successfully developed. Existence of taxes in selfish
routing in [8] was one of them. Using a straightforward linear program, [19] proposed
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a fairly simple extension of this result and its various generalizations.
In other related work, [26] generalizes the results in this paper to include pro-

duction planning constraints, and [5] generalizes the results in this paper to include
utility functions with constant elasticity of substitution (CES). An ongoing work [30]
extends the convex programs to include quasi-concave functions. We conjecture that
our convex program remains convex for the utility functions satisfying the gross sub-
stitution property. One reason for this conjecture is that the set of equilibria is known
to be convex for the utility functions satisfying the gross substitution property [1, 6].
The convexity is proved via an infinite linear program, which may not allow effi-
cient interior point methods. An advantage of our approach is that we get explicit
polynomial sized convex programs.

Finally, we would like to close this section by emphasizing the need for efficient
computational results in economics of equilibria, not only for the development of
computer science but for the development of economics itself. If a Turing machine
cannot compute something, then an exonomic system cannot compute that thing
either. An economic system, by converging at an equilibrium, is also computing it.
Note that under the “rationality of agents” assumption, an economic system is a
collection of Turing machines, which is equivalent to a single Turing machine itself.
If equilibria are not computable with a Turing machine, then it is unlikely that an
economic system will be able to compute them either.2 Hence, a lack of computational
results decreases the applicability of the equilibrium itself. In this regard, computing
a Nash equilibrium was a big open question, which was recently resolved in [9, 4] in
the negative. Approximating it with a nontrivial factor is still a big open problem.

2. Model. There are n people in the system. They each have some initial en-
dowment of divisible goods. Without loss of generality (in the linear utility case) we
can assume that each person has only one good, which is different from the goods
which other people have.3 Further, by simple scaling, we can assume that each person
has only one unit of good. Each person also has a linear utility function. For the ith
person we denote this utility function by

∑
j uijxij , where xij is the amount of good j

consumed by i. To be able to keep full precision in digital computers we assume that
each uij is an integer. Each person maximizes her utility by buying an optimal bundle
of goods, disregarding any supply constraint, with the revenue made by selling her
own endowment. The classical Arrow–Debreu [2] theorem says that there is a price
vector, (p1, p2, . . . , pn), not all equal to zero, such that the buying and selling can be
done at the prices in (p1, p2, . . . , pn) in such a way that the market clears.4 This price
vector is called general market equilibrium.

Without loss of generality we assume that everybody likes something; that is, for
every i there is a j such that uij > 0. If somebody does not like anything, then the
price of her good can be anything and she can be given any bundle. Again without

2If one believes that an economic system could compute something which a Turing machine
could not, then the need for studying economic systems from a computational point of view is even
greater, because in this case an economic system is also a computation which violates the Church–
Turing thesis! Quantum mechanics is the only violation known to the Church–Turing thesis, hence
justifiably being extensively studied from a computational point of view.

3Because if a person has multiple goods, then one can create clones of the person, each with
one good, having the same utility function. If two persons have the same good, then name them
differently. That these goods are the same can be reflected in the utility functions by always giving
them the same utility coefficient.

4“Market clears” means that no good has smaller supply than demand, and demand could be
smaller than supply only for zero priced goods. Note that “market clears” is a redundant phrase
here because of the optimality condition being placed on each buyer.
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loss of generality we assume that every good is liked by somebody; that is, for every
j there is an i such that uij > 0. If some good is not liked by anybody, then its price
must be zero. So not much to discover about its price. These assumptions we make
only for convenience.

In the next two sections we assume that for every proper subset, S, of persons
(i.e., neither empty nor everybody) there is a person, i, outside S, who likes some good
possessed by S; i.e., uij > 0 for some i /∈ S and some j ∈ S. (This assumption also
implies our previous assumption that everybody likes something.) This assumption
implies that all the equilibrium prices are nonzero. If not, then consider S as the
set of persons having the zero priced good. Then somebody outside S will demand
infinite quantity of something possessed by S. This assumption is not without loss of
generality. Thus, we will justify this assumption after the next two sections.

3. Nonconvex program. In this section we give a nonconvex program which
has all and only general market equilibria as feasible points:

∀j :
∑

i

xij = 1,

∀i, j : xij ≥ 0,

∀i, j :
uij

pj
≤

∑
k uikxik

pi
,

∀i : pi > 0.(1)

The first two lines of this program say that xij are feasible assignments. The third
line says that the goods purchased by i by spending pi (which is her revenue) have the
highest utility. The fourth line says that the prices are nonzero. The Arrow–Debreu
theorem guarantees only that at least one price is nonzero, but our assumption before
the section makes all the prices nonzero. It is easy to see that any general market
equilibrium will satisfy all the lines of this nonconvex program. We claim that, in
fact, the converse is also true.

Theorem 1. The feasible region of nonconvex program (1) has all and only
general market equilibria.

Proof. It is clear that all the market equilibria satisfy the program. So we need
to show only that any feasible point is a market equilibrium. Line 3 of the program,
when multiplied with xijpj , gives

∀i, j : uijxij ≤
∑

k uikxik

pi
xijpj .

When we add these inequalities for all j we get

∀i :
∑

j

uijxij ≤
∑

k uikxik

pi

∑

j

xijpj .

Note that our assumption that everybody likes something implies that
∑

k uikxik is
not zero. Thus the inequality above, after a simplification, gives

∀i : pi ≤
∑

j

xijpj .

When we add these inequalities for all i we get
∑

i

pi ≤
∑

i

∑

j

xijpj .
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When we interchange the order of summation on the right-hand side, we get

∑

i

pi ≤
∑

j

pj
∑

i

xij .

Note that the second summation on the right-hand side is 1, so we get

∑

i

pi ≤
∑

j

pj .

This should have been an equality, which means that all the inequalities added to
obtain this must have been equalities. This implies two facts, which we are writing
as lemmas to be used in the later sections. The theorem follows from the following
two lemmas.

Lemma 2. Every feasible point of the nonconvex program (1) satisfies the con-
straint of money earned equals money spent for every user; i.e.,

∀i : pi =
∑

j

xijpj .

Lemma 3. Every feasible point of the nonconvex program (1) satisfies that the
money of every person is spent optimally; i.e., whenever xij > 0, the corresponding
constraint on the third line of the program is tight.

In the section addressing the nonlinear utility case, section 7, we will show that
Theorem 1 still holds.

4. Solving nonconvex program (1). We will solve the nonconvex program (1)
by converting it into a convex program. Note that the third line constraints of the
program are not convex. After cross-multiplying, a constraint has the product of
variables on one side and a linear variable on the other. In general these constraints
are nonconvex.

Also, note that the third line of nonconvex program (1) is useful only when uij > 0.
So we can rewrite the third line as

∀i, j such that uij > 0 :
uij

pj
≤

∑
k uikxik

pi
,

which in turn can rewritten as

∀i, j such that uij > 0 :
pi
pj

≤
∑

k uikxik

uij
.

Now we construct a directed graph, G, with the n persons as the set of vertices.
We draw an edge from i to j when uij > 0. (i and j may be the same vertex; in
that case the edge is a loop.) We assign two kinds of weight to each edge, ij. The
first is denoted by w, and the second is denoted by LOGw. For an edge from i to

j, w(ij) =
∑

k uikxik

uij
and LOGw(ij) = log(w(ij)). By Farka’s lemma, nonconvex

program (1) is feasible if and only if the product of wij is at least 1 over any cycle of
the graph, G. In other words we have the following theorem.

Theorem 4. Nonconvex program (1) is feasible if and only if there is no negative
cycle in G with respect to the weight function LOGw.

Proof. The problem of finding an equilibrium assignment is finding those xij ’s for
which there is a feasible solution of nonconvex program (1). Suppose that we have
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a feasible assignment of goods to people, i.e., values for variables xij ’s satisfying the
first two sets of constraints of nonconvex program (1). We want to find out whether
there exists a feasible assignment of values to price variables satisfying the last two
sets of constraints in nonconvex program (1). Since xij ’s are given, they form the
coefficients of a linear program whose variables correspond to prices. We can apply
Farka’s lemma to write conditions on the coefficients (i.e., on assignment variables)
which allow a feasible solution to price variables. The best way to do this is to take
the logarithm of the third set of inequalities and assume that the variables are log(p)
and not p. The theorem now easily follows from Farka’s lemma.

This theorem is similar in flavor to the “no-negative-cycle” theorem for the clas-
sical problem of minimum cost flow. In fact, nondeterministically this has the same
functionality too. It tells us when an assignment is an equilibrium assignment. A
flow is minimum cost if there is no negative cycle. Similarly, an assignment of goods
is an equilibrium solution if there is no negative cycle. This analogy gives hope of a
combinatorial algorithm for the general equilibrium problem. Later in the paper we
will see that the theorem holds for the concave utility functions too.

Theorem 4 also gives us the following convex program for the general equilibrium
problem, which again makes it a functional theorem for computational purposes:

∀j :
∑

i

xij = 1,

∀i, j : xij ≥ 0,

For every cycle, C, of G :
∏

ij∈C

w(ij) ≥ 1.(2)

Remark. Prices do not appear in this convex program. In this sense this convex
program is a generalization of the Eisenberg–Gale convex program [17].

The separation oracle for the last set of inequalities can be derived using an
algorithm for finding a negative cycle in a graph. Using the usual inequality of the
arithmetic mean as at least the geometric mean, the last set of inequalities can also
be converted into an infinite number of linear equalities as follows.

In the following program we denote by α a vector of nonnegative real numbers.
The number of coordinates will be clear by the context. A subscripted α will denote
a coordinate of α.

∀j :
∑

i

xij = 1,

∀i, j : xij ≥ 0,

For every cycle, C, of G and for every α:

1

|C|
∑

ij∈C

w(ij)

αij
≥

(
1∏

ij∈C αij

) 1
|C|

.(3)

Lemma 5. Convex program (2) is equivalent to linear program (3).
Proof. Note that the third set of inequalities of the linear program follows from the

third set of inequalities of the convex program, using the inequality of the arithmetic
mean and geometric mean.5 So we need only show the converse. Suppose that one of

5For nonnegative numbers the arithmetic mean is never smaller than the geometric mean.
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the inequalities on the third line of the convex program is violated by an assignment
vector x∗ of x∗

ij . We show that x∗ violates one of the inequalities of the linear program
too.

Suppose that the inequality corresponding to a cycle C is violated; i.e., we have

∏

ij∈C

w∗(ij) < 1,

where w∗ denotes the value of the weight function at x∗. We claim that the inequality
of the linear program corresponding to the same cycle and α = w∗ is violated too.
Indeed, the left-hand side is 1 when evaluated at x∗, whereas the right-hand side is
bigger than 1. This also shows that the convex program (2) is indeed convex.

The following corollary follows from the above theorem using Theorem 12 or 13.

Corollary 6. The Ellipsoid algorithm finds a market equilibrium in polynomial
time.

Proof. Eaves [15] showed that the problem of finding a market equilibrium with
linear utilities can be written as a linear complementarity program. This implies that
there is a market equilibrium with rational numbers of polynomial sized denominator.
The proof then follows from Theorem 12 or 13.

Corollary 7. The set of all possible assignments of goods to people (xij vari-
ables) at equilibria is convex.

For the purpose of using an Ellipsoid algorithm, linear program (3) does not offer
any advantage over the convex program (2). But a linear program can be useful for
designing primal-dual algorithms. The infinite size of the linear program should not
be a concern in designing a primal-dual algorithm. In the past, exponential sized
linear programs were used for designing primal-dual algorithms. A cleverly designed
primal-dual algorithm identifies a polynomial number of dual variables to be used.

Convex program (2) is of exponential size, and if it is converted into a linear
program, then it is of infinite size. So convex program (2) is not suitable for devel-
oping more efficient interior point methods. In the next section we develop a new
polynomial size convex program, which gives a promising hope of developing interior
point methods.

5. Convex program. Note that we need to write the third line in the non-
convex program (1) for only those i and j’s for which uij > 0. Further note that this
implies that

∑
k uikxik > 0. We already have that pi, pj > 0. So we can take the log

of the whole set of inequalities to get

∀i, j such that uij > 0 : log(pi) − log(pj) ≤ log

(∑
k uikxik

uij

)
.

We substitute every log(pi) with a new variable LOGpi. We then get

∀i, j such that uij > 0 : LOGpi − LOGpj ≤ log

(∑
k uikxik

uij

)
.

Note that log is a concave function; i.e., log(x+y
2

) ≥ log(x)+log(y)

2
. This means that

if two feasible points satisfy the above inequality, then their average will also satisfy
the inequality. So the equivalent convex program that we get for the nonconvex
program (1) is
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∀j :
∑

i

xij = 1,

∀i, j : xij ≥ 0,

∀i, j such that uij > 0 :

LOGpi − LOGpj ≤ log

(∑
k uikxik

uij

)
.(4)

Theorem 8. Nonconvex program (1) is equivalent to convex program (4).
Corollary 9. The set of all possible equilibrium prices, on a logarithmic scale

(i.e., variables LOGpi), is convex.

6. General case. In the model section we made an assumption that for every
proper subset, S, of persons there are an i /∈ S and j ∈ S such that uij > 0.
This assumption is not without loss of generality. We will justify the assumption in
this section. In this section we show that even without this assumption there is an
equilibrium consisting of only nonzero prices. Hence, convex program (4) remains
valid and gives all such equilibria. We also give a way to find other equilibria where
some of the prices are zero.

We draw the nonzero liking graph of the problem. This graph has a node for every
person in the economy. There is a directed edge from i to j whenever uij > 0. If i and
j are the same, then we put a loop on i. If this graph is disconnected, i.e., there is a
proper subset S such that there is no edge between S and S̄ (S complement), then S
and S̄ can be considered separate economies. One can write the convex programs of
two separate economies together and call it a convex program for the joint economy.
So we assume that the graph is connected.

If the graph is strongly connected, then it satisfies the assumption and we are
done. Else we compute the strongly connected component decomposition of the
graph. First, write the convex program for the equilibria of each component. For
each component we know that equilibrium prices are all nonzero. Now consider the
underlying acyclic structure on the strongly connected components. We say that a
component, S1, is lower than another component, S2, if there is an edge from S1 to
S2. Take the transitive closure of this lower relation. This will be a partial order.
Again denote it by lower. Note that if S1 is lower than S2, then S2 is not lower than
S1. Hence if the goods in S1 are nonzero priced, then they cannot move from S1 to
S2. On the other hand, if goods are heavily priced in S2, then they cannot move from
S2 to S1 either. So we find nonzero equilibria for each component. If S1 is lower than
S2, then we scale up the prices in S2 by a huge number, so that every person in S1

likes something in S1 in comparison with anything in S2. Hence all the prices are
nonzero. For all such equilibrium vectors we can write the convex program (4).

In case one wants to allow zero prices, then note that only a lower ideal can have
zero prices. So take any lower ideal and set the zero prices for these. For rest of the
economy write the convex program (4). Also note that the corollaries in the previous
two sections remain valid whenever they are meaningful.

7. Nonlinear utilities. In this section we explore the case when the utility
functions are nonlinear but concave. We assume that the utility functions are differ-
entiable.6 Let ui(xi) be the utility function of i, where xi is her consumption vector.

6If the utility functions are not differentiable, then it may be possible to use subdifferentials
instead of differentials.
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We assume that ui is concave, i.e.,

ui(xi) + ui(yi)

2
≤ ui

(
xi + yi

2

)
,

for every consumption vector xi and yi. Let uij(xi) be the partial derivative of ui at
point xi with respect to the consumption of the jth good (consumption of the jth
good by the ith person is denoted by xij .). Now replace the uij in the nonconvex
program (1) by uij(xi), where xi = (xi1, xi2, . . . , xin). For brevity, uij(xi) is written
as uij , since the argument is understood by the context. Now we claim that the
nonconvex program (1) is valid for the nonlinear utility’s case too.

Theorem 10. The feasible region of nonconvex program (1) has all and only
general market equilibria even if utilities are general differentiable concave functions.

Proof. First, fix a price vector. At this price whatever a person can potentially
buy is a convex set. However, the person will buy that bundle of goods which will
maximize her utility. Since the utility function is concave, any local minimum will
also be a global minimum, or more generally, the set of maximum utility bundles is a
convex set. The conditions of local minima are straightforward; the marginal utility
per unit of additional money for all the consumed goods is the same, and for other
goods it is no bigger.

This time we will prove the harder part first, i.e., that every feasible solution of
the nonconvex program (1) is an equilibrium point. Note that we did not use the fact
that uij is constant when we proved Lemmas 2 and 3. So these lemmas are still valid.
Hence the harder side of the theorem follows.

Now we want to prove the easier side. In the linear case, the third line constraints,
which represented optimally, were obvious. This time we will also have to use an
additional fact that the “money earned is equal to money spent” at the equilibrium.
We know that for every i, whenever xij > 0, marginal utility per unit of money is the
same; i.e., for every i, the quantity

uij

pj
is the same whenever xij > 0. Since xij > 0,

we can say that
xijuij

xijpj
is the same. Add all the numerators and denominators together

and note that the denominator is pi by the “money earned equal to money spent”
constraint. Hence the easier part of the theorem also follows.

The above theorem shows that the nonconvex program (1) remains valid. In fact,
program (4) is still valid too, but it may not always be convex. For some utility
functions, e.g., if the utility of the ith person is

∑
j

√
xij , then the program (4) is

convex. Another interesting case is if the utility of the ith person is
∑

j log(1 + xij);

then also the program (4) is convex. The program is convex for
∑

j
xij

1+xij
too. One

example where the program is not convex is
∑

j(1−e−xij ). So a natural open question
is when is program (4) convex. We think that the answer includes the utility functions
with the weak gross substitutability property. Unlike in the Fisher case, the answer
does not include the homogeneous utility function [21].7 Gjerstad in [21] gave an
example with homogeneous utilities in which the set of market equilibria is not even
connected.

It is worth mentioning that program (4) simplifies for the Fisher case. In the
Fisher case we do not need to take logs. One can analogously prove that the following
program (5) characterizes equilibria in the Fisher case even for nonlinear utilities. It
is convex for linear utilities:8

7Homogeneous function of degree d means that if the bundle is scaled by a factor α, the utility
is scaled by a factor αd.

8Note the second line of constraints. The left-hand side is constant. In general, the product of
nonnegative linear functions bigger than a constant is a convex constraint.
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∀j :
∑

i

xij = 1,

∀i, j : miuij ≤ pj
∑

k

uikxik,

∑

j

pj ≤
∑

i

mi,

∀i, j : xij ≥ 0,

∀j : pj ≥ 0.(5)

xij has the same meaning as in the program (4). Here mi is the amount of money
the ith buyer has. pj is a variable for the price of good j.

8. Toward combinatorial algorithms. The algorithm in this paper is neither
combinatorial nor strongly polynomial. As discussed in the introduction algorithms,
using convex programming has many theoretical advantages. Convex programs help
us understand the problem by revealing basic structures of the problem. The convex
program in section 5 is no different. It also leads to an efficient practical algorithm
using interior point methods [38]. And as shown in Theorem 4, the convex programs
in this paper also lead to a combinatorial characterization of the equilibria. This
combinatorial characterization is somewhat passive. When we discover a negative
cycle the characterization does not tell us how to fix it. On the other hand, a negative
cycle in a minimum cost flow problem tells us how to decrease the cost of flow.

We have such a characterization for the Fisher model using Eisenberg and Gale’s
linear program [17]. This characterization may help us develop a strongly polynomial
combinatorial algorithm or a strongly polynomial time algorithm for the Fisher model.
The following theorem, which is an active characterization of equilibria in the Fisher
model, may play a role. This characterization tells us not only when an assignment
is not in equilibrium, but also how to fix it. To our knowledge there is no other
combinatorial characterization known for the equilibria in the Fisher model that can
tell us when an assignment is in equilibrium. The algorithm in [12] neither uses nor
implies any combinatorial characterization for the problem.

Theorem 11. In the Fisher model, consider an assignment xij’s from goods to
buyers. xij is an equilibrium if and only if there does not exist a good j and two
buyers i and i′ such that i has a nonzero quantity of good j, and when i gives a
sufficiently small but nonzero quantity of good j to i′, then the product of Umi

i U
mi′
i′

increases, where Ui and Ui′ are the utilities of i and i′, and mi and mi′ are their
initial endowments of money.

Proof. The Eisenberg–Gale approach maximizes the
∑

i mi log(
∑

j uijxij) over
all feasible allocations denoted by variables xij ’s. Therefore, the forward direction of
the theorem is immediately implied by the Eisenberg–Gale convex program [17].

For the reverse direction let x be the assignment which is not in equilibrium. Let
us say that x′ is the assignment in equilibrium. So Eisenberg and Gale’s objective
function is higher at x′ than x. Consider the straight line segment between x and x′.
Let z = x′ −x. Let ε ∈ [0, 1]. The Eisenberg–Gale objective function on any point on
this line segment is

∑

i

mi log

(
∑

j

uij (xij + εzij)

)
.
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Note that the Eisenberg–Gale objective function is strictly concave. So its value
is strictly higher at positive ε than at ε = 0. So its derivative at ε = 0 is positive.

∑

i

mi

∑
j uijzij∑

j uijxij
> 0.

Let wij = miuij/
∑

j′ uij′xij′ . Note that wij does not depend upon z. The above
inequality can then be written as

∑
i

∑
j wijzij . We construct a bipartite graph with

i’s on one side and j’s on the other. For every zij > 0, we draw an edge from i to
j with (fractional) multiplicity zij . For every zij < 0, we draw an edge from j to
i with (fractional) multiplicity −zij . Note that the bipartite graph is Eulerian on
the right-hand side; i.e., the sum of zij ’s on edges incoming to a node is the same
as the sum of zij ’s on edges outgoing from the node. This property implies with a
simple inductive proof that the above graph can be decomposed into graphs with two
edges i′j and ji with the same multiplicity. This means that the weight function,
i.e.,

∑
i

∑
j wijzij , can be written as a positive combination of the weight function on

these two edge graphs. This implies that there is at least one two-edge graph with
positive weight function. Let one such graph be i′j and ji, i.e., wi′j − wij > 0. Note
that since zij is negative, i has some positive quantity of good j. Consider another
assignment y which is obtained by x by giving all of i’s good j to i′. Now consider the
line segment between x and y. Let us consider the derivative of the Eisenberg–Gale
objective function in the direction of x to y. This derivative is positive at x. There
are two cases. The first is that the derivative remains positive on this line segment;
in this case we move to assignment y. The other case is that the derivative is zero
somewhere on the line segment, say at y′. In that case we move to y′. In both cases
we prove the theorem.

9. Generalized convex feasibility testing algorithm via ellipsoid and si-
multaneous diophantine approximation. This section generalizes Theorem 6.4.1
in Grotschel, Lovasz, and Schrijver’s book [22]. The theorem says “The strong
nonemptiness problem for well-described polyhedra, given by a strong separation or-
acle,9 can be solved in oracle-polynomial time.”

The theorem makes an assumption of well-described polyhedra which is not true
for our convex program or for the Eisenberg–Gale convex program. Well-described
polyhedra means that any facet of the polyhedra can be encoded with binary encoded
length φ. This implies that the coefficients used to describe a facet are rational
numbers with binary encoded length φ. This also implies that the corner points of
the polyhedra also use rational numbers with binary encoded length polynomial in φ
and n, the dimension of the space. Binary encoded length of a rational number is the
sum of the binary encoded lengths of the numerator and the denominator.

The assumption of well-described polyhedra goes naturally with the theorem.
Given a point outside the convex-set, the well-described polyhedra assumption guar-
antees that a hyperplane with small binary encoded length will exist. This may not
be true in case the polyhedra is not well described. In the proof of the next theorem
we will do away with this assumption by letting the convex set be partly outside the

9Strong separation oracle means that if the point lies outside the convex set, then a separating
hyperplane could be found where the point lies on one side of the hyperplane and the convex set
lies either on the hyperplane or on the other side. Strong separation oracles are different than weak
separation in the sense that the point is allowed to be on the side of the convex set but not too far
away from the hyperplane.
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ellipsoids constructed. Usually ellipsoid algorithms keep the convex set completely
inside of any ellipsoid constructed during the execution.

Theorem 12. Given a convex set via a strong separation oracle with a guarantee
that the set contains a point with binary encoding length at most φ, a point in the
convex set can be found in polynomial time.

Proof. In the proof we assume that the convex set contains a point with binary
encoded length φ, and then we find a point in the convex set. If our algorithm fails,
that means the promise that the convex set contains a point with binary encoded
length φ is false, so the algorithm responds with this answer.

We assume that we do not accidentally hit a point of the given convex set. If
we do, we will stop the algorithm and output the answer. Otherwise, consider the
box [−2φ, 2φ]n. This box has all the rational points with encoded length φ. Let C be
the intersection of this box with the given convex set. A strong separation oracle for
the given convex set also implies a strong separation oracle for C. Additionally C is
bounded. So we can start with an ellipsoid containing the box. This ellipsoid contains
C too. We run the ellipsoid algorithm until the volume of the ellipsoid falls below
1/(22nφn!). At this point we know that the set of the rational points of encoded length
φ in the ellipsoid is not full dimensional.10 Thus there is a hyperplane of dimension
n−1 which contains all the rational points of the ellipsoid with binary encoded length
φ. If we can find this hyperplane (call it H), then we will consider the convex set C
to intersect with H.11 This is one lower dimensional problem and hence by induction
we prove the theorem. So now we focus on finding H.

H can be represented by a linear equation. Lemma 6.2.4 in [22] shows that the
binary encoded length of H is at most 3n2φ. By multiplying the equation for H by a
common denominator, we may assume that the binary encoded length of H is 3n3φ.

Let us continue with the ellipsoid algorithm until the volume of the ellipsoid falls
below V . We will determine the value of V later. This means that half of the shortest
axis of the ellipsoid is at most nV 1/n; this is estimated by taking a simple lower bound
of (r/n)n on the volume of an n-sphere of radius r. Let us denote the center of the
ellipsoid by v and the unit vector parallel to the shortest axis by w. The hyperplane
H ′ defined by equation w · x = w · v is an exponentially good approximation of H,
where · denotes the inner product or dot product. Let u be any point in the ellipsoid;
then we have

|w · u− w · v| = |w · (u− v)| ≤ nV
1
n .

To recover H from H ′, let us use simultaneous diophantine approximation (Theo-
rem 5.3.19 in [22]) to approximate the vector (w,w ·v) by an integer numerator vector
(p, π) and a common denominator q, where p has n dimensions and π has one. Let
us denote the relative error in the above equation by ε, 0 < ε < 1. Theorem 5.3.19
in [22] says that this can be achieved in polynomial time by choosing the parameters
such that

1 ≤ q < 2n
2

ε−n,

|wiq − pi| < ε and |w · v − π| < ε.

10A rational point of binary encoded length φ has denominator at most 2φ. The difference between
two different rational numbers of denominator at most 2φ is at least 2−2φ. The volume of a right-
angled simplex with unit length edges is 1/(n!). Hence 1/(22nφn!) is the volume of the right-angled
simplex with edges 2−2φ.

11Note that we may lose some part of the convex set outside the subsequent ellipsoids. This is
the reason that we do not need the assumption of a well-described polyhedron.
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Now let us take a vector z of binary encoding length φ in the ellipsoid. We have

|p · z − π| ≤ |qw · z − qw · v| + ε (‖z‖1 + 1) ≤ q|w · z − w · v| + εn2φ

< 2n
2

ε−nnV
1
n + εn2φ.

Separately let us argue that |p · z − π| either is zero or has a lower bound. Note
that both p and π are integral and z has denominator at most 2φ, so the common
denominator of |p · z − π| is at most 2(n+1)φ. Thus |p · z − π| is either zero or at least
2−(n+1)φ. Let us choose ε so that

εn2φ <
1

2 2(n+1)φ
, i.e., ε <

1

2n2(n+2)φ
.

Let us choose

ε =
1

4n2(n+2)φ
.

With this choice of ε, let us choose V so that

2n
2

ε−nnV
1
n <

1

2 2(n+1)φ
, i.e., V <

(
εn

2n2(n+1)φ+n2

)n

.

We can choose

V =
1

2(n+1)3(φ+1)nn2+n
.

This volume is only exponentially small, not superexponentially; i.e., the exponent
of two in the denominator is a polynomial in n and linear in φ, so the ellipsoid
algorithm will achieve this volume in time polynomial in n and linear in φ. Note
that the formula for the center of the next ellipsoid could give a center with irrational
coordinates. We do the usual trick of shifting the center to a suitable close rational
point and simultaneously expanding the ellipsoid by a small factor. Even after these
changes, the volume of the sequence of ellipsoids shrinks at an exponential rate.

Theorem 13. Given a convex set by a strong separation oracle and a prescribed
precision φ, there is an oracle-polynomial time and φ-linear time algorithm which does
one of the following:

• concludes that there is no point in the convex set with binary encoded length
at most φ,

• produces a point in the convex set with binary encoded length at most P (n)φ,
where P (n) is a polynomial.

Note that P (n) is a sort of approximation factor, which is an artifact of the expo-
nential approximation factor in the simultaneous diophantine approximation. Finding
an algorithm with P (n) = 1 or a matter of fact P (n) = O(1) should be a challenging
problem.

10. Discussion about primal-dual for Fisher setting market equilibria.
In computational economics primal-dual-type algorithms are frequently used. Some
recent examples are [27, 12, 28]. The word “type” is used because these algorithms are
not similar to traditional linear programming based primal-dual algorithms. There
is no duality theory used in these papers. [27] does not use any convex program
(although, in hindsight, there is a convex program similar to the Eisenberg–Gale
convex program). The situation of [12] is the same as [27]; [12] does not use any
convex program, though again in hindsight there is a convex program. [28] uses a
convex program but does not really use any duality theorem.
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The reason computational economics frequently uses primal-dual-type algorithms
is because “auction” is a primal-dual-type algorithm, although found by economists
for the purpose of economics. In this regard even the auction-based algorithms by
Garg and Kapoor [20] are primal-dual-type algorithms. These recent uses of primal-
dual-type algorithms for problems having a convex program in hindsight makes one
wonder whether there is a primal-dual schema for convex programs. Jain formally
asked the question of developing a primal-dual schema for convex programs in general
and Fisher setting market equilibria in particular [24].
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Abstract. In this paper we show a reduction from the Unique Games problem to the problem
of approximating MAX-CUT to within a factor of αGW +ε for all ε > 0; here αGW ≈ .878567 denotes
the approximation ratio achieved by the algorithm of Goemans and Williamson in [J. Assoc. Com-
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Stablest is still open, although [E. Mossel, R. O’Donnell, and K. Oleszkiewicz, Proceedings of the
46th Annual IEEE Symposium on Foundations of Computer Science, 2005, pp. 21–30] contains a
proof of an asymptotic version of it. Our techniques extend to several other two-variable constraint
satisfaction problems. In particular, subject to the Unique Games Conjecture, we show tight or
nearly tight hardness results for MAX-2SAT, MAX-q-CUT, and MAX-2LIN(q). For MAX-2SAT
we show approximation hardness up to a factor of roughly .943. This nearly matches the .940 ap-
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1. Introduction. The main result in this paper is a bound on the approxima-
bility of the MAX-CUT problem which matches the approximation ratio achieved
by the well-known Goemans–Williamson algorithm [27]. The proof of this hardness
result relies on the Unique Games Conjecture of Khot [39]. We also rely critically on
a theorem we call Majority Is Stablest, which was introduced as a conjecture in the
original version of this paper. For the convenience of the reader, we will now briefly
describe these two tools; formal statements appear in sections 3 and 4.

Unique Games Conjecture (roughly). Given a bipartite graph G, a large constant
size set of labels [M ], and a permutation of [M ] written on each edge, consider the
problem of trying to find a labeling of the vertices of G from [M ] so that each edge
permutation is “satisfied,” i.e., is consistent with the labeling. The conjecture is that
if M is a large enough constant, then it is NP-hard to distinguish instances which are
99% satisfiable from instances which are 1% satisfiable.

Majority Is Stablest theorem (roughly). Let f be a boolean function which is
equally often 0 or 1. Suppose the string x is picked uniformly at random and the
string y is formed by flipping each bit of x independently with probability η; we call
Pr[f(x) = f(y)] the noise stability of f . The theorem states that among all f in
which each coordinate has o(1) “influence,” the Majority function has the highest
noise stability, up to an additive o(1).

We add in passing that the name Majority Is Stablest is a bit of a misnomer
in that almost all balanced boolean (weighted) threshold functions are equally noise
stable (see Theorem 4). We also note that the Majority Is Stablest theorem has inter-
esting applications outside of this work—to the economic theory of social choice [35]
for example—and has already proven useful for other PCP-based inapproximability
results [15]. In section 6.3 we mention interesting generalizations of the Majority
Is Stablest theorem for q-ary functions, q > 2, which are relevant for hardness of
approximation and are not resolved in full.

Despite the fact that our hardness result for MAX-CUT relies on the unproven
Unique Games Conjecture, we feel it is interesting for several reasons. First, in our
opinion it is remarkable that the Unique Games Conjecture should yield a tight hard-
ness of approximation ratio for MAX-CUT, and that indeed the best factor should
be the peculiar number αGW. It is intriguing that the precise quantity αGW should
arise from a noise stability property of the Majority function, and certainly there was
previously little evidence to suggest that the Goemans–Williamson algorithm might
be optimal.

Another reason we believe our result is interesting is related to this last point.
Since the Goemans–Williamson algorithm was published a decade ago, there has
been no algorithmic progress on approximating MAX-CUT. Since H̊astad’s classic
inapproximability paper [33] from two years later, there has been no progress on the
hardness of approximating MAX-CUT, except for the creation of a better reduction
gadget [56]. As one of the most natural and simple problems to have resisted match-
ing approximability bounds, we feel MAX-CUT deserves further investigation and
analysis. In particular, we think that regardless of the truth of the Unique Games
Conjecture, this paper gives interesting insight into the geometric nature of MAX-
CUT. Indeed, insights we have gleaned from studying the MAX-CUT problem in this
light have motivated us to give new positive approximation results for variants of
other 2-variable CSPs such as MAX-2SAT; see section 9.

Finally, instead of viewing our result as relying on the unproven Unique Games
Conjecture, we can view it as being an investigation into the truth of the Unique
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Games Conjecture. Indeed, our hardness results for both MAX-CUT and for two-
variable linear equations modulo q provide explicit parameters for which the Unique
Games Conjecture, if true, must hold. (Note that both problems are Unique Games
themselves.) Thus our work gives a target for algorithmic attacks on the Unique
Games Conjecture, which if passed will refute it.

Indeed, works subsequent to the original version of this paper have provided ap-
proximation algorithms for the Unique Games problem [55, 30, 11] improving on
Khot’s original algorithm [39]. In particular, in [11] Charikar, Makarychev, and
Makarychev gave a semidefinite programming-based approximation algorithm for
Unique Games whose approximation factor nearly matches our hardness bound for
MAX-2LIN(q). The current situation is therefore that any improvement in the ap-
proximation factors for either MAX-CUT or for the more general MAX-2LIN(q) will
refute the Unique Games Conjecture.

1.1. Overview of the paper. In section 2 we describe the MAX-CUT problem
and discuss its history. We then state the Unique Games Conjecture in section 3
and discuss very recent algorithm results for the problem. The Majority Is Stablest
problem is discussed in section 4, along with its generalization to q-ary domains,
q ≥ 2. We discuss the geometric aspects of MAX-CUT and their connection with the
Majority Is Stablest result and the Goemans–Williamson approximation algorithm
in section 5. Our main results are stated in section 6. Section 7 is devoted to some
technical definitions, preliminaries, and Fourier analytic formulas. In section 8 we
prove our main theorem on the hardness of approximating MAX-CUT, based on the
Unique Games Conjecture. In section 9 we investigate the approximability of other
binary 2-CSPs, such as MAX-2SAT. In section 10 we prove some special cases of the
Majority Is Stablest theorem that are of independent interest, with proofs simpler
than those in [47]. Finally, section 11 is devoted to extending our techniques to the
q-ary domain; we prove some results about noise stability in this domain and then
prove our Unique Games-hardness results for MAX-q-CUT and MAX-2LIN(q) and
MAX-q-CUT.

2. About MAX-CUT. The MAX-CUT problem is a classic and simple com-
binatorial optimization problem: Given a graph G, find the size of the largest cut
in G. By a cut we mean a partition of the vertices of G into two sets; the size of
the cut is the number of edges with one vertex on either side of the partition. One
can also consider a weighted version of the problem in which each edge is assigned a
nonnegative weight and the goal is to cut as much weight as possible.

MAX-CUT is NP-complete (indeed, it is one of Karp’s original NP-complete
problems [38]), and so it is of interest to try to find polynomial time approximation
algorithms. For maximization problems such as MAX-CUT, we say an algorithm
gives an α-approximation if it always returns an answer which is at least α times
the optimal value; we also often relax this definition to allow randomized algorithms
which in expectation give α-approximations. Crescenzi, Silvestri, and Trevisan [12]
have shown that the weighted and unweighted versions of MAX-CUT have equal
optimal approximation factors (up to an additive o(1)), and so we pass freely between
the two problems in this paper.

The trivial randomized algorithm for MAX-CUT—put each vertex on either side
of the partition independently with equal probability—is a 1/2-approximation, and
this algorithm is easy to derandomize; Sahni and Gonzalez [50] gave the first 1/2-
approximation algorithm in 1976. Following this some (1/2 + o(1))-approximation
algorithms were given, but no real progress was made until the breakthrough 1994
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paper of Goemans and Williamson [27]. This remarkable work used semidefinite
programming to achieve an αGW-approximation algorithm, where the constant αGW ≈
.878567 is the trigonometric quantity

αGW = min
0<θ<π

θ/π

(1 − cos θ)/2
.

The minimizing choice of θ here is the solution of θ = tan(θ/2), namely θ∗ ≈
2.33 ≈ 134◦, and αGW = 2

π sin θ∗ . The geometric nature of Goemans and Williamson’s
algorithm might be considered surprising, but as we shall see, this geometry seems to
be an inherent part of the MAX-CUT problem.

On the hardness of approximation side, MAX-CUT was proved MAX-SNP hard
[49], and Bellare, Goldreich, and Sudan [3] explicitly showed that it was NP-hard to
approximate MAX-CUT to any factor higher than 83/84. The hardness factor was
improved to 16/17 ≈ .941176 by H̊astad [33] via a reduction from MAX-3LIN using
a gadget of Trevisan et al. [56]. This stands as the current best hardness result.

Despite much effort and many improvements in the approximation guarantees of
other semidefinite programming based algorithms, no one has been able to improve
on the algorithm of Goemans and Williamson. Although the true approximation
ratio of Goemans and Williamson was proved to be not more than αGW [37, 20] and
the integrality gap of their semidefinite relaxation was also proved to be αGW [20],
there appears on the face of it to be plenty of possibilities for improvement. Adding
triangle constraints and other valid constraints to the semidefinite program has been
suggested, alternate rounding schemes have been proposed, and local modification
heuristics that work for special graphs have been proven (see, e.g., [27, 19, 18, 37,
57, 17, 20]). And of course, perhaps a completely different algorithm altogether can
perform better. Several papers have either explicitly [18] or implicitly [20] given the
problem of improving on αGW as an important research goal.

However, in this paper we show that approximating MAX-CUT to within any
factor larger than αGW will in fact overturn the Unique Games Conjecture.

3. About the unique games conjecture. MAX-CUT belongs to the class of
constraint satisfaction problems on 2 variables (2-CSPs). In a k-CSP we are given
a set of variables and a set of constraints, where each constraint depends on exactly
k variables. The goal is to find an assignment to the variables so as to maximize
the number of constraints satisfied. In the case of MAX-CUT, the vertices serve as
variables and the edges as constraints. Every constraint says that two certain variables
should receive different boolean values.

Proving inapproximability results for a k-CSP is equivalent to constructing a k-
query PCP with a specific acceptance predicate. Usually the so-called Label Cover
problem is a starting point for any PCP construction. Label Cover is a 2-CSP where
the variables range over a large (non-boolean) domain. Usually, inapproximability
results for boolean CSPs are obtained by encoding assignments to Label Cover vari-
ables via a binary code and then running PCP tests on the (supposed) encodings.
This approach has been immensely successful in proving inapproximability results for
k-CSPs with k ≥ 3 (see, for example, [33, 51, 31]). However, the approach gets stuck
in the case of 2-CSPs. We seem to have no techniques for constructing boolean 2-
query PCPs, and the bottleneck seems to be the lack of an appropriate PCP “outer
verifier.”

Khot suggested the Unique Games Conjecture in [39] as a possible direction for
proving inapproximability results for some important 2-CSPs, such as Min-2SAT-
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Deletion, Vertex Cover, Graph-Min-Bisection, and MAX-CUT. This conjecture as-
serts the hardness of the “Unique Label Cover” problem.

Definition 1. The Unique Label Cover problem, L(V,W,E, [M ], {σv,w}(v,w)∈E),
is defined as follows: Given is a bipartite graph with left-side vertices V , right-side
vertices W , and a set of edges E. The goal is to assign one “label” to every vertex of
the graph, where [M ] is the set of allowed labels. The labeling is supposed to satisfy
certain constraints given by bijective maps σv,w : [M ] → [M ]. There is one such map
for every edge (v, w) ∈ E. A labeling “satisfies” an edge (v, w) if

σv,w(label(w)) = label(v).

The optimum OPT of the Unique Label Cover problem is defined to be the maximum
fraction of edges satisfied by any labeling.

The Unique Label Cover problem is a special case of the Label Cover problem.
It can also be stated in terms of 2-Prover-1-Round Games, but the Label Cover
formulation is easier to work with. The Unique Games Conjecture asserts that this
problem is hard.

Unique Games Conjecture: For any η, γ > 0, there exists a constant M =
M(η, γ) such that it is NP-hard to distinguish whether the Unique Label Cover problem
with label set of size M has optimum at least 1 − η or at most γ.

The Unique Games Conjecture asserts the existence of a powerful outer verifier
that makes only two queries (albeit over a large alphabet) and has a very specific
acceptance predicate: for every answer to the first query, there is exactly one answer
to the second query for which the verifier would accept, and vice versa. Once we have
such a powerful outer verifier, we can possibly construct a suitable inner verifier and
prove the desired inapproximability results. Typically, though, the inner verifier will
need to rely on rather deep theorems about the Fourier spectrum of boolean functions,
e.g., the theorem of Bourgain [8] or of Friedgut [23].

The Unique Games Conjecture was used in [39] to show that Min-2SAT-Deletion
is NP-hard to approximate within any constant factor. The inner verifier is based
on a test proposed by H̊astad [32] and on Bourgain’s theorem. It is also implicit in
this paper that the Unique Games Conjecture with an additional “expansion-like”
condition on the underlying bipartite graph of the Label Cover problem would imply
that Graph-Min-Bisection is NP-hard to approximate within any constant factor.
Khot and Regev [40] showed that the conjecture implies that Vertex Cover is NP-
hard to approximate within any factor less than 2. The inner verifier in their paper is
based on Friedgut’s theorem and is inspired by the work of Dinur and Safra [16], which
showed 1.36 hardness for Vertex Cover. In the present paper we continue this line of
research, showing an inner verifier that together with the Unique Games Conjecture
yields a tight hardness result for MAX-CUT. Our inner verifier relies critically on the
Majority Is Stablest theorem.

Algorithmic results for Unique Label Cover. It is natural to ask how the function
M(η, γ) in the Unique Games Conjecture can behave. Lower bounds on M are ob-
tained by giving algorithms for Unique Label Cover. Several very recent results have
provided such algorithms. Most relevant for this paper is the algorithm of [11], which
has the following behavior for Unique Label instances with label set of size q: For any
constant η > 0, on instances with optimum 1 − η it satisfies roughly a (1/q)η/(2−3η)

fraction of edges, up to lower order powers of q. Also, for η = 1/ log q, it seems to
satisfy an Ω(1) fraction of edges.
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4. About the Majority Is Stablest problem. To state the Majority Is Sta-
blest problem, we need some definitions. For convenience we regard the boolean values
as −1 and 1 rather than 0 and 1. Thus a boolean function is a map f : {−1, 1}n →
{−1, 1}. We will often generalize to the case of functions f : {−1, 1}n → R. In all of
what follows, we consider the set of strings {−1, 1}n to be a probability space under
the uniform distribution.

First, we recall the well-known notion of “influence,” introduced to computer
science in [4] and studied even earlier in economics.

Definition 2. Let f : {−1, 1}n → R. Then the influence of xi on f is defined by

Infi(f) = E
(x1,...,xi−1,xi+1,...,xn)

[Varxi [f ]] .

(Note that for f : {−1, 1}n → {−1, 1},

Infi(f) = Pr
x∈{−1,1}n

[f(x) �= f(x1, . . . ,−xi, . . . xn)].)

Instead of picking x at random, flipping one bit, and seeing if this changes the
value of f , we can instead flip a constant fraction (in expectation) of the bits. This
leads to the study of “noise sensitivity,” pioneered in computer science by [34, 33, 5].

Definition 3. Let f : {−1, 1}n → R and let −1 ≤ ρ ≤ 1. The noise stability
of f at ρ is defined as follows: Let x be a uniformly random string in {−1, 1}n and
let y be a “ρ-correlated” copy; i.e., pick each bit yi independently so that E[xiyi] = ρ.
Then the noise stability is defined to be

Sρ(f) = Ex,y[f(x)f(y)].

(Note that for f : {−1, 1}n → {−1, 1} we have Sρ(f) = 2 Prx,y[f(x) = f(y)] − 1.)
We may now state the Majority Is Stablest theorem. This result was presented as

a strongly believed conjecture in the original version of this paper. It has recently been
proved in [47]. Informally, the theorem says that among all balanced boolean functions
with small influences, the Majority function has the highest noise stability. Note that
the assumption of small influences is necessary since the “dictator” function f(x) = xi

provably has the highest noise stability among all balanced boolean functions for every
ρ. Note that when n tends to infinity, the noise stability at ρ of the n-bit Majority
function approaches (1− 2

π arccos ρ) (this fact was stated in a paper of Gulibaud from
the 1960’s [29] and is ultimately derived from the central limit theorem plus a result
from an 1890’s paper of Sheppard [52]). Thus we have the formal statement of the
theorem.

Majority Is Stablest theorem: Fix ρ ∈ [0, 1). Then for any ε > 0 there is
a small enough δ = δ(ε, ρ) > 0 such that if f : {−1, 1}n → [−1, 1] is any function
satisfying E[f ] = 0 and Infi(f) ≤ δ for all i = 1 . . . n, then

Sρ(f) ≤ 1 − 2
π arccos ρ + ε.

In the remainder of this section, we shall describe why the Majority Is Stablest
theorem is relevant for MAX-CUT inner verifiers.

As described in the previous section, inapproximability results for many problems
are obtained by constructing a tailor-made PCP; usually, the PCP is obtained by
composing an “outer verifier” (almost always a Label Cover problem) with an “inner
verifier.” As mentioned, the outer verifier for our reduction is the Unique Label Cover
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problem. As for the inner verifier, it is always application-specific and its acceptance
predicate is tailor-made for the problem at hand, in our case MAX-CUT.

A codeword test is an essential submodule of an inner verifier. It is a probabilistic
procedure for checking whether a given string is a codeword of an error-correcting
code, most commonly the “Long Code” (see [3]).

Definition 4. The Long Code over domain [n] is a binary code in which the
message space is in fact the set of truth tables of boolean functions f : {−1, 1}n →
{−1, 1}. The codeword encoding the “message” i ∈ [n] is given by the ith dictator
function; i.e., the function f(x1, x2, . . . , xn) = xi.

A codeword test for the Long Code can often be extended to a full-fledged inner
verifier. So in the following, we will focus only on a Long Code test. The choice of
the test is determined by the problem at hand, in our case MAX-CUT. The test must
read two bits from a Long Code and accept iff the values read are distinct. Note
that a legal Long Code word, i.e., a dictator, is the truth table of a boolean function
in which one coordinate has influence 1. Let us say that a function f is far from
being a Long Code if all the coordinates have o(1) influences (note that this is not
a standard notion of being far from a codeword but rather a notion tailored for our
proof technique).

We expect the following from a codeword test: a correct Long Code word passes
the test with probability c (called the “completeness” parameter of the test), whereas
any function far from being a Long Code passes the test with probability at most s
(called the “soundness” parameter). Once we construct a full-fledged inner verifier,
the ratio s/c will be the inapproximability factor for MAX-CUT.

The Long Code test. As mentioned before, our Long Code test will need to take
a boolean function f : {−1, 1}n → {−1, 1}, pick two inputs x and y, and check that
f(x) �= f(y). In fact, our test will be precisely a “noise stability” test for some fixed
noise rate ρ; i.e., x will be chosen uniformly at random and y will be formed by
flipping each bit of x independently with probability 1

2
− 1

2
ρ. Here ρ will be a value

between −1 and 0, and therefore y is a highly noisy version of x, or alternatively, a
moderately noisy version of −x. Thus (at least for legal Long Code words) we expect
f(x) to be quite anticorrelated with f(y); i.e., it should pass the test with relatively
high probability. Recalling Definition 3, we see that the probability a given function
f passes our test is precisely 1

2
− 1

2
Sρ(f).

A legal Long Code word, i.e., a dictator function, has noise stability precisely ρ,
and thus the completeness of the Long Code test is c = 1

2
− 1

2
ρ. The crucial aspect of

our test is the analysis of the soundness parameter.

This is where the Majority Is Stablest theorem comes in. Suppose f : {−1, 1}n →
{−1, 1} is any function that is far from being a Long Code word. By a simple trick
(see Proposition 5), we can show that the Majority Is Stablest theorem (which is
stated only for ρ ≥ 0) implies that for ρ < 0 the noise stability of f at ρ is at least
1 − 2

π arccos ρ (a negative number). Hence it follows that functions that are far from
being a Long Code pass the test with probability at most s = 1

2
− 1

2
(1− 2

π arccos ρ) =
(arccos ρ)/π.

Choosing ρ < 0 as we please, this leads to an inapproximability ratio of

s

c
= min

−1<ρ<0

(arccos ρ)/π
1
2
− 1

2
ρ

= min
0≤θ≤π

θ/π

(1 − cos θ)/2
= αGW,

precisely the Goemans–Williamson constant.
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4.1. History of the Majority Is Stablest problem. There has been a long
line of work in the analysis of boolean functions studying the noise sensitivity of
functions and the associated Fourier-theoretic quantities (some examples, roughly in
chronological order: [34, 9, 53, 24, 54, 10, 23, 5, 7, 8, 25, 35, 46, 48, 14]). Building on
the intuition gathered from this past work, we were motivated to make the Majority
Is Stablest conjecture in the original version of the paper. We discuss these relevant
previous results below.

The Majority and weighted majority (or balanced threshold) functions have al-
ways played an important role in the study of noise sensitivity of boolean functions.
This family of functions is, in a sense, the set of all “uniformly noise-stable” functions.
In [5], it is shown that a family of monotone functions is asymptotically noise sensitive
iff it is asymptotically orthogonal to the family of balanced threshold functions; by
asymptotically noise sensitive functions it is meant those that have Sρ(f) = o(1) for
any constant ρ.

Stated in terms of Fourier coefficients (see section 7.2), the Majority Is Stablest
theorem says that among all “nonjunta-like” functions, the one which has most Fourier
mass on the lower levels is the Majority function. This is because Sρ(f) is just a
weighted sum of the squared Fourier coefficients of f , where coefficients at level k
have weight ρk. Some strong evidence in favor of the Majority Is Stablest theorem
was given by Bourgain [8], who showed that nonjunta functions f have their Fourier

tails
∑

|S|>k f̂(S)2 lower bounded by k−1/2−o(1). As Bourgain noted, the Majority
function has precisely this tail decay, and thus his theorem is “basically” optimal. In
other words, Majority has the “least” Fourier weight on higher levels and therefore
the “most” Fourier weight on lower levels.

The expression S−1/3(f) played a central role in a Fourier-theoretic approach to
the Condorcet paradox and Arrow’s theorem given by Kalai [35]. This expression
determines the probability of an “irrational outcome” in a certain voting scheme.
Much of [35] is devoted to the study of S−1/3(f), and in particular, it is conjectured
there (Conjecture 5.1) that for “transitive” functions, which have the property that

all influences are the same, the sum
∑

|S|≤k f̂(S)2 is maximized by the Majority

function for all k. Although this conjecture turns out to be false [47], the corollaries
of the conjecture in [35] are implied by the fact that Majority is the stablest transitive
function, and this is a consequence of the Majority Is Stablest theorem.

Finally, in [48] it was shown that Majority is essentially the maximizer for another
noise stability problem, namely maximizing the kth norm of Tρf , where Tρ is the
Bonami–Beckner operator (see section 7) among balanced functions f for large k and
n = ∞.

In the original version of this paper, when Majority Is Stablest was still a con-
jecture, some special cases of the problem were proven. Since these proofs are much
simpler than those in [47], and since the proofs have already proven to be of indepen-
dent interest (see [44] for use of all three), we have included these partial results in
section 10.

4.2. Generalizations to the q-ary domain. Our methods can also be used
to obtain hardness results for constraint satisfaction problems over variables ranging
over larger domains [q]. In the q-ary regime we need a multivalued analogue of the
Majority Is Stablest theorem. Before we can formulate the appropriate analogue, we
need to specify what we mean by “q-ary functions” and also to define the notions of
noise stability and influences for them.

The obvious generalization of a boolean function to the q-ary regime would be a
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function of the form f : [q]n → [q]. However, as we did for boolean functions, we will
consider a continuous relaxation of the range. Specifically, define

Δq =
{

(x1, . . . , xq) ∈ [0, 1]q :
∑

xi = 1
}
,

which can be thought of as the space of probability distributions over [q]. We will
consider functions f : [q]n → Δq; this generalizes functions f : [q]n → [q] if we identify
the elements a ∈ [q] in f ’s range with the points (0, . . . , 0, 1, 0, . . . , 0) ∈ Δq.

Definition 5. Let − 1
q−1

≤ ρ ≤ 1 and let x and y be [q]n-valued random variables.

We say that x and y are a ρ-correlated pair if x is uniformly distributed on [q]n, and
y is formed from x by choosing each yi so that Pr[yi = a] = δ{xi=a}ρ + 1−ρ

q for each
a, independently for each i. Note that for 0 ≤ ρ ≤ 1, it is equivalent to say that each
coordinate yi is independently chosen to be xi with probability ρ and is a uniformly
random element of [q] otherwise.

Definition 6. Let f : [q]n → Δq and let − 1
q−1

≤ ρ ≤ 1. The noise stability of f
at ρ is defined to be

Sρ(f) = E
x,y

[〈f(x), f(y)〉],

where x and y are a ρ-correlated pair. Equivalently, we may define the noise stability
of functions g : [q]n → R via

Sρ(g) = E
x,y

[g(x)g(y)],

and then denoting by f i the ith coordinate projection of f , we have Sρ(f) =
∑n

i=1 Sρ(f
i).

We remark that when f ’s range is simply [q] (as embedded in Δq), the quantity
Sρ(f) is simply the probability that f(x) = f(y) when x and y are a ρ-correlated pair.

The definition of influences is very similar to that in the boolean case.
Definition 7. Let f : [q]n → Δq. For 1 ≤ i ≤ n, the influence of the ith

coordinate on f is defined to be

Infi(f) = E
x1,...,xi−1,xi+1,...,xn

[Varxi [f(x1, . . . , xn)]],

where Var[f ] denotes E[〈f, f〉] − 〈E[f ],E[f ]〉.
We say that f : [q]n → Δq is “balanced” if E[f i] = 1/q for each i. The most

obvious generalization of the Majority function to the q-ary domain is the Plurality
function, which on input x ∈ [q]n outputs the most common value for xi (tie-breaking
is unimportant). It is natural to ask whether a “Plurality Is Stablest” theorem holds.
This question is still open, and we present it as a conjecture. For this purpose, define

PlurStab(q, ρ) = lim
n→∞ Sρ(Pluralityn,q).

The limit in the formula above indeed exists, and there appears to be no closed formula
for it; however, we provide an exact description of it in Theorem 7 in section 6.

Plurality Is Stablest Conjecture: Fix q ≥ 2 and − 1
q−1

≤ ρ ≤ 1. Then for

any ε > 0 there is a small enough δ = δ(ε, ρ, q) such that if f : [q]n → [q] is any
balanced q-ary function with Infi(f) ≤ δ for all i = 1 . . . n, then

Sρ(f) ≤ PlurStab(q, ρ) + ε.



328 S. KHOT, G. KINDLER, E. MOSSEL, AND R. O’DONNELL

Note that in the case q = 2, Sheppard’s formula gives PlurStab(2, ρ) = 1 −
2
π arccos ρ, which is the noise stability of Majority; there is also a closed formula for
q = 3 [28, 13]. For large values of q, we give asymptotics which hold up to a 1 + oq(1)
factor in section 6. For the reader’s convenience, we remark here that

PlurStab(q, ρ) = Θ̃
(
(1/q)(1−ρ)/(1+ρ)

)
.

Although we do not have Plurality Is Stablest, a result of [47] generalizing Ma-
jority Is Stablest serves us almost equally well. This result bounds the stability of a
function in terms of the behavior of correlated Gaussians. To state it, we need one
more definition.

Definition 8. Let μ ∈ [0, 1] and ρ ∈ [0, 1]. Let X and Y denote normal random
variables with mean 0 and covariance matrix

(
1 ρ
ρ 1

)
. We define

Λρ(μ) = Pr[X ≥ t and Y ≥ t],

where t is chosen so that Pr[X ≥ t] = μ.
MOO theorem: Fix q ≥ 2 and ρ ∈ [0, 1). Then for any ε > 0 there is a small

enough δ = δ(ε, ρ, q) > 0 such that if f : [q]n → [0, 1] is any function satisfying
E[f ] = μ and Infi(f) ≤ δ for all i = 1 . . . n, then

Sρ(f) ≤ Λρ(μ) + ε.

As a result we have that the noise stability of any balanced f : [q]n → Δq is
essentially at most qΛρ(1/q). We give the asymptotics of this quantity in section 6,
and they are extremely close to those of PlurStabρ(q); in particular, they are the same
up to a constant multiplicative factor.

5. On the geometry of MAX-CUT. We shall now try to explain (non-
rigorously) the connection between the Majority Is Stablest theorem and the geo-
metric picture that arises from the Goemans–Williamson algorithm. But before go-
ing further, let us first note that the approximation ratio achieved by Goemans and
Williamson arises as the solution of a trigonometric minimization problem, which in
turn originates from a geometric setting. To obtain a matching inapproximability
constant, it seems essential to introduce some similar geometric structure. Such a
structure is present in the construction of our Long Code test, although it is implicit
only in the actual proofs.

For the purposes of the following explanation, let us consider the n-dimensional
discrete cube {−1, 1}n as a subset of the n-dimensional Euclidean unit sphere (we
normalize the Euclidean norm accordingly). The Majority Is Stablest theorem essen-
tially states that the discrete cube is a good approximation of the sphere in a certain
sense.

The Goemans–Williamson algorithm. We start with a brief description of how
the approximation ratio αGW arises in the Goemans–Williamson algorithm. To find
a large cut in a given graph G = (V,E) with n vertices, the Goemans–Williamson
algorithm embeds the graph in the unit sphere of R

n, identifying each vertex v ∈ V
with a unit vector xv on the sphere. The embedding is selected such that the sum

(1)
∑

(u,v)∈E

1

2
− 1

2
〈xu,xv〉,
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involving the inner products of vectors associated with the endpoints of edges of G,
is maximized. The maximum sum bounds from above the size of the maximum cut,
since the size of every cut can be realized by associating all the vertices from one side
of the cut with an arbitrary point x on the sphere, and associating all other vertices
with −x.

Once the embedding is set, a cut in G is obtained by choosing a random hyper-
plane through the origin and partitioning the vertices according to the side of the
hyperplane on which their associated vectors fall. For an edge (u, v) in G, the proba-
bility that u and v lie on opposite sides of the random cut is proportional to the angle
between xu and xv. More precisely, letting ρ = 〈xu,xv〉 denote the inner product
between the vectors associated with u and v, the probability that the edge (u, v) is
cut is (arccos ρ)/π.

The approximation ratio αGW of the Goemans–Williamson algorithm is obtained
by noting that

(2) αGW = min
−1≤ρ≤1

(arccos ρ)/π
1
2
− 1

2
ρ

≈ .878567

is the smallest ratio possible between the probability of an edge being cut and its
contribution to (1). Hence the expected size of the cut obtained by the Goemans–
Williamson algorithm is at least an αGW-fraction of (1), and therefore it is also at
least an αGW-fraction of the maximum cut in G.

Cutting the sphere. In [20], Feige and Schechtman considered the graph Gρ whose
vertices are all the vectors on the unit sphere and in which two vertices are connected
by an edge in Gρ iff their inner product is roughly ρ (we do not get into the precise
details). It is shown in [20] that in this graph the largest cut is obtained by any
hyperplane through the origin. (To state this rigorously, one should define appropriate
measures, etc., but let us remain at a simplistic level for this discussion.) Such a
hyperplane cuts an (arccos ρ)/π-fraction of the edges in the graph.

Restricting to the cube. We would like to consider an edge-weighted graph Hρ

which is, in a nonrigorous sense, the graph induced by Gρ on the discrete hypercube.
For two vectors x,y on the discrete cube, we define the weight of the edge (x,y) to
be

Pr[X = x and Y = y],

where X and Y are ρ-correlated random elements of the discrete cube. The graph
Hρ resembles Gρ in the sense that almost all the edge weight in Hρ is concentrated
on edges (x,y) for which 〈x,y〉 ≈ ρ; we call such edges typical edges. Let us examine
how good Hρ is as an “approximation” of the graph Gρ.

Note that the structure of Hρ is very reminiscent of our Long Code test, mentioned
above. To make the similarity even clearer, note that a cut C in Hρ immediately
defines a boolean function fC over the discrete cube. It is easy to observe that the
size of C (namely the sum of weights of the edges that are cut) is exactly the noise
stability of fC—i.e., the acceptance probability of the Long Code test with parameter
ρ when applied to fC .

The size of the cut. So how large can the size of C be? If C is determined by
a random hyperplane, then a typical edge is cut with probability about (arccos ρ)/π.
The expected size of such a cut is therefore roughly the same as the weight of the
maximal cut in Gρ (when the total weight of the edges in Gρ is normalized to 1).
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There are, however, cuts in Hρ whose weight is larger than (arccos ρ)/π. For
example, one can partition the vertices in Hρ according to their first coordinate,
taking one side of the cut C to be the set of vectors in the discrete cube whose first
coordinate is 1 and the other side of C to be the set of vectors whose first coordinate
is −1; note that this is the cut defined by the hyperplane which is perpendicular to
the first coordinate. When interpreted as a function, C corresponds to the function
fC(x) = x1; i.e., it is a correct Long Code word. One can easily observe that the
size of C is 1

2
− 1

2
ρ—i.e., it is exactly the completeness of the Long Code test with

parameter ρ.

The Majority Is Stablest theorem comes in. The size of one-coordinate cuts in
Hρ is larger than the best cuts achievable in Gρ. The Majority Is Stablest theorem
implies, however, that essentially those are the only special cases, and that all other
cuts in Hρ are no larger than the maximum cut in Gρ. That is, it implies that unless
fC depends significantly on one of the coordinates, then the size of C is at most
(arccos ρ)/π + ε. Stated formally, Proposition 5 in section 7.3 says the following.

Proposition. For any ρ ∈ (−1, 0] and any ε > 0 there is a small enough
δ = δ(ε, ρ) > 0 such that if C is a cut in Hρ such that Infi(fC) ≤ δ for every i, then
the size of C is at most (arccos ρ)/π + ε

6. Our results. In this section we formally state our main results.

6.1. Hardness for MAX-CUT and 2-bit CSPs. Our main result regarding
MAX-CUT is the following.

Theorem 1. Assume the Unique Games Conjecture. Then for every constant
−1 < ρ < 0 and ε > 0, it is NP-hard to distinguish instances of MAX-CUT that are at
least ( 1

2
− 1

2
ρ)-satisfiable from instances that are at most ((arccos ρ)/π+ ε)-satisfiable.

In particular, choosing ρ = ρ∗, where

ρ∗ = argmin
−1<ρ<0

(arccos ρ)/π
1
2
− 1

2
ρ

≈ −.689,

implies that it is NP-hard to approximate MAX-CUT to within any factor greater
than the Goemans–Williamson constant αGW ≈ .878567.

Recall that the main result of Goemans and Williamson [27] is an algorithm which,
given instances of MAX-CUT with fractional optimum at least 1

2
− 1

2
ρ (where ρ ≤ ρ∗),

outputs a solution with value at least (arccos ρ)/π−ε (where ε > 0 can be an arbitrarily
small constant). Thus our Unique Games-hardness theorem precisely matches the
algorithmic guarantee of Goemans and Williamson for all −1 < ρ ≤ ρ∗. For ρ very
close to −1, by considering the Taylor expansion arccos ρ = π/2 − ρ− ρ3/6 − · · · , we
have the following corollary.

Corollary 1. Assume the Unique Games Conjecture. Then for all sufficiently
small η > 0, it is NP-hard to distinguish instances of MAX-CUT that are at least
(1 − η)-satisfiable from instances that are at most (1 − (2/π)

√
η)-satisfiable.

We prove Theorem 1 in section 8.
In section 9 we apply our techniques for other 2-bit CSPs besides MAX-CUT. In

particular we prove the following.
Theorem 2. Assume the Unique Games Conjecture. Then it is NP-hard to

approximate MAX-2SAT to within any factor greater than β, where

β = min
π
2 ≤θ≤π

2 + (2/π)θ

3 − cos θ
≈ .943.
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The proof of Theorem 2 actually implies that MAX-2SAT is hard to approximate
to within any factor greater than β, even if restricted to instances where each variable
appears equally often positively and negatively (see section 9 for more details). We
show that for this restricted problem, called Balanced-MAX-2SAT, the approximation
bound β is tight; i.e., it can be approximated to within any factor smaller than β.

Theorem 3. Balanced-MAX-2SAT is polynomial-time approximable to within
any factor smaller than β.

6.2. Special cases of the Majority Is Stablest theorem. Some special cases
of the Majority Is Stablest theorem are of independent interest.

First, it should be noted that the Majority function is not a “unique” optimizer,
in the sense that every weighted threshold that does not depend largely on any one
coordinate is equally noise-stable.

Theorem 4. Let f : {−1, 1}n → {−1, 1} be any balanced threshold function,
namely of the form f(x) = sgn(a1x1 + · · ·+ anxn). Let δ = maxi {Infi(f)}. Then for
all ρ ∈ [−1, 1],

Sρ(f) = 1 − 2
π arccos ρ±O(δ(1 − |ρ|)−3/2).

It is also of interest to consider the case where ρ tends to zero. It is easy to see
that in this case the Majority Is Stablest theorem implies that the weight of a boolean
function on the first level of its Fourier transform is essentially bounded by 2/π. We
give an easy and direct proof of this fact.

Theorem 5. Suppose f : {−1, 1}n → [−1, 1] satisfies Infi(f) ≤ δ for all i. Then

∑

|S|=1

f̂(S)2 ≤ 2
π + Cδ ,

where C = 2(1 −√2/π).
We also can give a direct proof of an improved version of Theorem 5 which depends

on the mean of f ; as the mean becomes small enough, this result approaches a result
of Talagrand [54] (which states that for every function f : {−1, 1}n → {−1, 1} with

Pr[f = 1] = p ≤ 1/2 it holds that
∑

|S|=1 f̂(S)2 ≤ O(p2 log(1/p))).
Theorem 6. Let φ be the Gaussian density function and Φ be the Gaussian

distribution function. Let U(x) = φ(Φ−1(x)) : [0, 1] → [0, 1/
√

2π] denote the so-called
“Gaussian isoperimetric function.”

Suppose f : {−1, 1}n → [−1, 1] satisfies Infi(f) ≤ δ for all i. Letting μ =
1
2

+ 1
2
E[f ], we have

∑

|S|=1

f̂(S)2 ≤ 4 (U(μ) + ε)
2
,

where the error term ε is given by

ε = max{1,
√
|Φ−1(μ)|} ·O(

√
δ).

This theorem is sharp up to the error term, as can be observed by considering re-
strictions symmetric threshold functions with various thresholds (see, e.g., [45] or [44]
for explicit computations). Note that for x small, U(x) ∼ x

√
2 ln(1/x); this is why

our result is comparable with Talagrand’s.
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6.3. Larger domains: q-ary functions. In this section we state our results for
q-ary functions and for q-ary constraint satisfaction problems. We will be concerned
with two such 2-CSPs. The first is MAX-q-CUT, the problem of partitioning a graph
into q parts so as to maximize the number of edges between parts. The second is
MAX-2LIN(q): Given an integer q ≥ 2, the MAX-2LIN(q) problem is to maximize
the number of satisfied equations in a given system of linear equations modulo q, where
exactly two variables appear in each equation. See section 11.1 for formal definitions.

Stability estimates. Our hardness results are based in part on the following anal-
ysis of the noise stability of q-ary functions, as discussed in section 4. We first obtain
an exact analytic expression for the noise stability of the plurality function.

Theorem 7. Fix q and − 1
q−1

≤ ρ ≤ 1. Then

lim
n→∞ Sρ(Pluralityn) = qI(q, ρ),

where I(q, ρ) is defined as follows: Let (U1, V1), . . . , (Uq, Vq) be a set of q independent
and identically distributed (i.i.d.) normal vectors with mean 0 and covariance matrix(

1 ρ
ρ 1

)
; then

I(q, ρ) = Pr

[
U1 = max

1≤i≤q
Ui, V1 = max

1≤i≤q
Vi

]
.

Further, the quantity I(q, ρ) is precisely equal the key quantity called I(ρ) (with q = k)
in Frieze and Jerrum’s paper on MAX-q-CUT [26] (see also [13]).

As a corollary of Theorem 7, and a result of de Klerk, Pasechnik, and Warners
[13] (see also [26]) which gives the asymptotics of I(q, ρ), we obtain the following.

Corollary 2. For every fixed 0 ≤ ρ < 1, we have

(3) PlurStab(q, ρ) ∼
( 1

q − 1

)(1−ρ)/(1+ρ)

(4π ln(q − 1))−ρ/(1+ρ) Γ(1/(1 + ρ))2

(1 − ρ2)1/2
,

where the ∼ indicates that the ratio of the two sides is 1 as q → ∞, and Γ is the
gamma function.

Since we do not have the Plurality Is Stablest Conjecture, we cannot actually use
Corollary 2 in our hardness results. Instead we use the MOO theorem, which is stated
in terms of the function Λρ(μ) (recall Definition 8); therefore we need bounds on its
asymptotics. Slightly improving the estimate from Lemma 11.1 of [13], we have the
following.

Proposition 1. Denote by φ the Gaussian density function φ(x) = 1√
2π

e−x2/2,

and let N(x) =
∫∞
x

φ denote the Gaussian tail probability function. For any 0 ≤ μ <
1/2, let t > 0 be the number such that N(t) = μ. Then for all 0 ≤ ρ ≤ 1,

(4) Λρ(μ) ≤ (1 + ρ) · φ(t)

t
·N
(
t
√

1−ρ
1+ρ

)
.

Note that in the case μ = 1/2, Λρ(1/2) = 1
2
(1− 2

π arccos ρ), and the case μ > 1/2
can be easily reduced to the case μ < 1/2. Also, it is relatively easy to see that the
right-hand side of (4) becomes a lower bound on Λρ(μ) if the (1+ρ) factor is removed.

In fact, we are mainly interested in the case where μ → 0 (t → ∞). In this case, it
turns out that (4) holds as an equality up to a 1+ oμ(1) factor (even if ρ is a function
of μ). This yields the following.

Corollary 3. Let μ → 0 and let t = t(μ) be defined as in Proposition 1. Then
the following hold:
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1. For any ρ = ρ(μ), 0 < ρ < 1,

Λρ(μ)
μ→0∼ (1 + ρ) · μ ·N

(
t
√

1−ρ
1+ρ

)

(where by “∼” we mean that the ratio between the two sides tends to one).
2. If 0 < ρ < 1 is fixed, then

Λρ(μ)
μ→0∼ μ2/(1+ρ)

(
4π ln

(
1

μ

))−ρ/(1+ρ)
(1 + ρ)3/2

(1 − ρ)1/2
.

3. For any fixed 0 < η < 1,

qΛ1−η(1/q) ≤ (1/q)
η/(2−η)

.

4. For any λ = λ(q) ∈ (0, 1), let ρ = 1 − λ
ln q . Then

qΛρ(1/q) ≤ 1 −
√

2/π ·
√
λ + oλ→0(1) + oq→∞(1).

Part 2 of Corollary 3 is due de Klerk, Pasechnik, and Warners [13]. It implies
that qΛρ(1/q) and PlurStabρ(q) have the same asymptotics as q tends to infinity, up
to a small multiplicative constant. The other statements of Corollary 3 are proven in
section 11.3.

Hardness results. We now move to stating our hardness results for q-ary domains.
For MAX-q-CUT we show that assuming the Unique Games Conjecture, it is impos-
sible to essentially improve on the approximation ratios for MAX-q-CUT achieved by
Frieze and Jerrum [26] by more than an additive ε.

Theorem 8. Assume the Unique Games Conjecture. Then for every ε > 0 it
is NP-hard to distinguish (1 − ε)-satisfiable instances of MAX-q-CUT from instances
that are at most (1 − 1/q + (2 ln q)/q2 + O(ln ln q)/q2)-satisfiable.

Our hardness result for MAX-2LIN(q) is formulated in terms of Λq(μ), discussed
above.

Theorem 9. Assume the Unique Games Conjecture. Then for every q ≥ 2,
ρ ∈ [0, 1], and ε > 0, given an instance of MAX-2LIN(q), it is NP-hard to distinguish
between the case where it is at least (ρ + 1

q (1 − ρ) − ε)-satisfiable and the case where

it is at most (qΛρ(
1
q ) + ε)-satisfiable. Furthermore, this holds even for instances in

which all equations are of the form xi − xj = c.
Using the asymptotics of Λρ(μ) given above in Corollary 3, we have the following.
Corollary 4. Assume the Unique Games Conjecture. Then for every fixed

η > 0 there exists q0 = q0(η) such that for every fixed q > q0 the following holds.
Given an instance of MAX-2LIN(q), it is NP-hard to distinguish between the case
where the instance is at least (1 − η)-satisfiable and the case where it is at most
(1/q)η/(2−η)-satisfiable.

Corollary 5. Assume the Unique Games Conjecture, and let λ = λ(q) ∈ (0, 1).
Given an instance of MAX-2LIN(q), it is NP-hard to distinguish between the case
where the instance is at least (1 − λ

ln q )-satisfiable and the case where it is at most
s-satisfiable, where

s = 1 −
√

2/π ·
√
λ + oλ→0(1) + oq→∞(1).

Note that MAX-2LIN(q) is itself essentially an instance of Unique Label Cover,
except for the fact that the variable/equation structure need not be bipartite. But
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in fact, it is easy to observe that the “nonbipartite” version of the Unique Games
Conjecture is equivalent to the usual Unique Games Conjecture [41] (up to a factor of
2 in the soundness). Hence Theorem 9 and its corollaries may be viewed as concerning
the allowable parameter tradeoffs in the Unique Games Conjecture. In particular,
Corollary 4 implies the following.

Corollary 6. The Unique Games Conjecture holds iff it holds as follows: For
every η > 0 and label set size q (sufficiently large as a function of η), it is NP-hard to
distinguish whether the Unique Label Cover problem with label set size q has optimum
at least 1 − η or at most (1/q)η/(2−η).

(The factor of 2 lost in soundness from passing to a bipartite version can be
absorbed since the soundness obtained in the proof of Corollary 4 is actually stronger
by a factor of (log q)Ω(1).)

Recently, a result of Charikar, Makarychev, and Makarychev [11] showed that
the parameters in Corollary 6 are almost optimal. They give an algorithm for Unique
Label Cover with label set size q that, given an instance with optimum (1−η), outputs
an assignment which satisfies at least a (1/q)η/(2−3η)-fraction of the constraints.

7. Definitions and technical preliminaries. In this section we give some
definitions and make some technical observations concerning the Majority Is Stablest
theorem, reducing it to a form which is useful for our MAX-CUT reduction.

7.1. MAX-CUT and MAX-2SAT. For the majority of this paper, we will be
concerned with the MAX-CUT problem; we will also later consider the MAX-2SAT
problem. We give the formal definitions of these problems below.

Definition 9 (MAX-CUT). Given an undirected graph G = (V,E), the MAX-
CUT problem is that of finding a partition C = (V1, V2) which maximizes the size of
the set (V1 × V2)∩E. Given a weight function w : E → R

+, the weighted MAX-CUT
problem is that of maximizing

∑

e∈(V1×V2)∩E

w(e).

Definition 10 (MAX-2SAT). An instance of the MAX-2SAT problem is a set
of boolean variables and a set of disjunctions over (exactly) two literals each, where a
literal is either a variable or its negation. The problem is to assign the variables so
that the number of satisfied literals is maximized. Given a nonnegative weight function
over the set of disjunctions, the weighted MAX-2SAT problem is that of maximizing
the sum of weights of satisfied disjunctions.

As we noted earlier, [12] implies that the achievable approximation ratios for the
weighted versions of the above two problems are the same, up to an additive o(1), as
the approximation ratios of the respective nonweighted versions. Hence in this paper
we freely work with the weighted version.

7.2. Analytic notions. In this paper we treat the bit TRUE as −1 and the bit
FALSE as 1; we consider functions f : {−1, 1}n → R and say a function is boolean-
valued if its range is {−1, 1}. The domain {−1, 1}n is viewed as a probability space
under the uniform measure and the set of all functions f : {−1, 1}n → R as an inner
product space under 〈f, g〉 = E[fg]. The associated norm in this space is given by
‖f‖2 =

√
E[f2].

Fourier expansion. For S ⊆ [n], let χS denote the parity function on S, χS(x) =∏
i∈S xi. It is well known that the set of all such functions forms an orthonormal



INAPPROXIMABILITY OF MAX-CUT AND OTHER 2-CSPs 335

basis for our inner product space, and thus every function f : {−1, 1}n → R can be
expressed as

f =
∑

S⊆[n]

f̂(S)χS .

Here the real quantities f̂(S) = 〈f, χS〉 are called the Fourier coefficients of f and
the above is called the Fourier expansion of f . Plancherel’s identity states that
〈f, g〉 =

∑
S f̂(S)ĝ(S) and in particular, ‖f‖2

2 =
∑

S f̂(S)2. Thus if f is boolean-

valued, then
∑

S f̂(S)2 = 1, and if f : {−1, 1}n → [−1, 1], then
∑

S f̂(S)2 ≤ 1. We
speak of f ’s squared Fourier coefficients as weights, and we speak of the sets S being
stratified into levels according to |S|. So for example, by the weight of f at level 1 we

mean
∑

|S|=1 f̂(S)2.

The Bonami–Beckner operator. For any ρ ∈ [−1, 1] we define the Bonami–Beckner
operator Tρ, a linear operator on the space of functions {−1, 1}n → R, by Tρ(f)(x) =
E[f(y)], where each coordinate yi of y is independently chosen to be xi with prob-
ability 1

2
+ 1

2
ρ and −xi with probability 1

2
− 1

2
ρ. It is easy to check that Tρ(f) =∑

S ρ|S|f̂(S)χS . It is also easy to verify the following relation between Tρ and the
noise stability (see Definition 3).

Proposition 2. Let f : {−1, 1}n → R and ρ ∈ [−1, 1]. Then

Sρ(f) = 〈f, Tρf〉 =
∑

S⊆[n]

ρ|S|f̂(S)2.

The following identity is a well-known one, giving a Fourier analytic formula for
the influences of a coordinate on a function (see Definition 2).

Proposition 3. Let f : {−1, 1}n → R. Then for every i ∈ [n],

(5) Infi(f) =
∑

S�i

f̂(S)2.

Once we have the Fourier analytic formula for the influence, we can consider the
contribution to the influence of characters of bounded size.

Definition 11. Let f : {−1, 1}n → R and let i ∈ [n]. The k-degree influence of
coordinate i on f is defined by

Inf≤k
i (f) =

∑

S�i
|S|≤k

f̂(S)2.

7.3. Different forms of the Majority Is Stablest theorem. Recall the Ma-
jority Is Stablest theorem (proved in [47]).

Majority Is Stablest theorem: Fix ρ ∈ [0, 1). Then for any ε > 0 there is
a small enough δ = δ(ε, ρ) > 0 such that if f : {−1, 1}n → [−1, 1] is any function
satisfying

E[f ] = 0, and

Infi(f) ≤ δ for all i = 1 . . . n,

then

Sρ(f) ≤ 1 − 2
π arccos ρ + ε.
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In the MAX-CUT reduction we need a slightly altered version of the Majority Is
Stablest theorem. First, we can replace influences by low-degree influences.

Proposition 4. The Majority Is Stablest theorem remains true if the assumption

that Infi(f) ≤ δ for all i is replaced by the assumption that Inf≤k′

i (f) ≤ δ′, where δ′

and k′ are universal functions of ε and ρ.
Proof. Fix ρ < 1 and ε > 0. Choose γ such that ρk(1− (1− γ)2k) < ε/4 for all k.

Let δ be chosen such that if Infi(g) ≤ δ for all i, then Sρ(g) ≤ 1 − 2
π arccos ρ + ε/4.

Choose δ′ = δ/2 and k′ such that (1 − γ)2k
′
< δ′.

Let f be a function satisfying Inf≤k′

i (f) ≤ δ′ and let g = T1−γf . Note that

Infi(g) ≤
∑

S:i∈S,|S|≤k′

f̂(S)2 + (1 − γ)2k
′ ∑

S:i∈S,|S|≤k′

f̂(S)2 < δ′ + δ′ = δ

for all i.
It now follows that Sρ(g) ≤ 1 − 2

π arccos ρ + ε/4 and therefore

Sρ(f) = Sρ(g) +
∑

S

(ρ|S|(1 − (1 − γ)|S|))f̂(S)2 < 1 − 2
π arccos ρ + 3ε/4.

Second, we need to treat the case of negative ρ.
Proposition 5. The Majority Is Stablest theorem is true “in reverse” for ρ ∈

(−1, 0]. That is, Sρ(f) ≥ 1− 2
π arccos ρ−ε, and furthermore, the assumption E[f ] = 0

becomes unnecessary.
Proof. Let f : {−1, 1}n → [−1, 1] satisfy Infi(f) ≤ δ for all i. Let g be the odd part

of f , g(x) = (f(x) − f(−x))/2 =
∑

|S| odd f̂(S)xS . Then E[g] = 0, Infi(g) ≤ Infi(f)

for all i, and Sρ(f) ≥ Sρ(g) = −S−ρ(g), which exceeds −(1 − 2
π arccos ρ + ε) by the

Majority Is Stablest theorem applied to g.
Combining the above two propositions, we get the result that will be used in our

reduction from Unique Label Cover to 2-bit CSPs.
Proposition 6. Fix ρ ∈ (−1, 0]. Then for any ε > 0 there is a small enough

δ = δ(ε, ρ) > 0 and a large enough k = k(ε, ρ) such that if f : {−1, 1}n → [−1, 1] is
any function satisfying

Inf≤k
i (f) ≤ δ for all i = 1 . . . n,

then

Sρ(f) ≥ 1 − 2
π arccos ρ− ε.

8. Reduction from Unique Label Cover to MAX-CUT. In this section
we prove Theorem 1.

8.1. The PCP. We construct a PCP that reads two bits from the proof and
accepts iff the two bits are unequal. The completeness and soundness are c and
s, respectively. This implies that MAX-CUT is NP-hard to approximate within any
factor greater than s/c. The reduction from the PCP to MAX-CUT is straightforward
and can be considered standard: Let the bits in the proof be vertices of a graph and
the tests of the verifier be the edges of the graph. The {−1, 1} assignment to bits
in the proof corresponds to a partition of the graph into two parts, and the tests for
which the verifier accepts correspond to the edges cut by this partition.
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The completeness and soundness properties of the PCP rely on the Unique Games
Conjecture and the Majority Is Stablest theorem. The Unique Label Cover instance
given by the Unique Games Conjecture serves as the PCP outer verifier. The sound-
ness of the Long Code-based inner verifier is implied by the Majority Is Stablest
theorem.

Before we explain the PCP test, we need some notation. For x ∈ {−1, 1}M and
a bijection σ : [M ] → [M ], let x ◦ σ denote the string (xσ(1), xσ(2), . . . , xσ(M)). For x,
μ ∈ {−1, 1}M , let xμ denote the M -bit string that is the coordinatewise product of x
and μ.

The PCP verifier is given the Unique Label Cover instance L(V,W,E, [M ],
{σv,w}(v,w)∈E) given by the Unique Games Conjecture. Using a result from [40], we
may assume the bipartite graph is regular on the V side, so that choosing a uniformly
random vertex v ∈ V and a random neighbor w of v yields a uniformly random edge
(u,w). We assume that the Unique Label Cover instance is either (1 − η)-satisfiable
or at most γ-satisfiable, where we will choose the values of η and γ to be sufficiently
small later. The verifier expects as a proof the Long Code of the label of every vertex
w ∈ W . The verifier is parameterized by ρ ∈ (−1, 0).

The PCP verifier for MAX-CUT with parameter −1 < ρ < 0.
• Pick a vertex v ∈ V at random and two of its neighbors w,w′ ∈ W at random.

Let σ = σv,w and σ′ = σv,w′ be the respective bijections for edges (v, w) and
(v, w′).

• Let fw and fw′ be the supposed Long Codes of the labels of w and w′,
respectively.

• Pick x ∈ {−1, 1}M at random.
• Pick μ ∈ {−1, 1}M by choosing each coordinate independently to be 1 with

probability 1
2

+ 1
2
ρ < 1

2
and −1 with probability 1

2
− 1

2
ρ > 1

2
.

• Accept iff

fw(x ◦ σ) �= fw′((x ◦ σ′)μ).

8.2. Completeness. It is easy to see that the completeness of the verifier is at
least (1 − 2η)( 1

2
− 1

2
ρ). Assume that the Label Cover instance has a labeling that

satisfies a 1 − η fraction of edges. Take this labeling and encode the labels via Long
Codes. We will show that the verifier accepts with probability at least (1−2η)( 1

2
− 1

2
ρ).

With probability at least 1 − 2η, both the edges (v, w) and (v, w′) are satisfied
by the labeling. Let the labels of v, w,w′ be i, j, j′ ∈ [M ], respectively, so that by the
acceptance condition σ(j) = i = σ′(j′). The functions fw, fw′ are the Long Codes of
j, j′, respectively. Hence

fw(x ◦ σ) = xσ(j) = xi, fw′((x ◦ σ′)μ) = xσ′(j′)μj′ = xiμj′ .

Thus the two bits are unequal (and the test accepts) iff μj′ = −1, which happens with
probability 1

2
− 1

2
ρ.

8.3. Soundness. We prove soundness in the contrapositive direction, as is usual
in PCP proofs: Assume that some supposed Long Codes fw cause the PCP verifier
to accept with probability at least (arccos ρ)/π + ε. We use Fourier methods to “list-
decode” the Long Codes and extract a labeling for the Unique Label Cover instance
that satisfies some γ′ = γ′(ε, ρ) fraction of its edges. Since this constant does not
depend on the Label Cover label set size M , we can take M large enough in the
Unique Games Conjecture to get soundness γ < γ′, as required.
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We first analyze the probability of acceptance for the PCP verifier by arithmetiz-
ing it as follows:

Pr[acc] = E
v,w,w′,x,μ

[
1

2
− 1

2
fw(x ◦ σ)fw′((xμ) ◦ σ′)

]
((xμ) ◦ σ′ has the same distrib.

as (x ◦ σ′)μ)

=
1

2
− 1

2
· E
v,x,μ

[
E

w,w′
[fw(x ◦ σ)fw′((xμ) ◦ σ′)]

]

=
1

2
− 1

2
· E
v,x,μ

[
E
w

[fw(x ◦ σ)] · E
w′

[fw′((xμ) ◦ σ′)]
]

(using independence of

w and w′)

=
1

2
− 1

2
· E
v,x,μ

[gv(x)gv(xμ)]

(
where we define gv(z) = E

w∼v
[fw(z ◦ σv,w)]

)

=
1

2
− 1

2
· E
v
[Sρ(gv)].(6)

(The reader may think of gv as “polling” v’s neighbors w on its labeling.) Now if
Pr[acc] ≥ (arccos ρ)/π + ε, then for at least an ε/2 fraction of v ∈ V ,

Sρ(gv) ≤ 1 − 2
π arccos ρ− ε.

We say that such a vertex v is “good.” For every good v, we apply the Majority
Is Stablest theorem in the guise of Proposition 6 to conclude that gv has at least one
coordinate, say j, with k-degree influence at least δ. We shall give the label j to v.
In this way, all good v ∈ V are labeled. For a good v, since Inf≤k

j (gv) ≥ δ, we have
(7)

δ ≤
∑

S�j
|S|≤k

ĝv(S)2 =
∑

S�j
|S|≤k

E
w

[f̂w(σ−1(S))]2 ≤
∑

S�j
|S|≤k

E
w

[f̂w(σ−1(S))2] = E
w

[
Inf≤k

σ−1(j)(fw)
]
.

For every w ∈ W , define the set of candidate labels for w to be

Cand[w] = {i ∈ [M ] : Inf≤k
i (fw) ≥ δ/2}.

Since
∑

i Inf≤k
i (fw) ≤ k, we conclude that |Cand[w]| ≤ 2k/δ. Inequality (7) implies

that for every good v, at least a δ/2 fraction of neighbors w of v have Inf≤k

σ−1
v,w(j)

(f) ≥
δ/2, and therefore σ−1(j) ∈ Cand[w]. Now we label each vertex w ∈ W by choosing a
random element of Cand[w] (or any label if this set is empty). It follows that among
the set of edges adjacent to good vertices v, at least a (δ/2)(δ/2k)-fraction is satisfied
in expectation. Thus it follows that there is labeling for all vertices which satisfies a
γ′ = (ε/2)(δ/2)(δ/2k) fraction of all edges. This completes the proof of soundness.

8.4. Completion of the proof of Theorem 1. We have just shown how to
reduce Unique Label Cover instances to MAX-CUT instances with completeness ( 1

2
−

1
2
ρ)(1 − 2η) and soundness (arccos ρ)/π + ε, where η and ε can be made arbitrarily

small. The main statement of Theorem 1 follows by slightly modifying ρ to move the
completeness correction (1 − 2η) into the soundness correction ε. This result implies
a hardness of approximation factor of

arccos(ρ)/π
1
2
− 1

2
ρ

+ ε
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for any constant −1 < ρ < 0 and ε > 0; choosing ρ = ρ∗ as stated in the theorem
yields the desired hardness factor αGW + ε.

9. Other 2-bit CSPs. The same method used to prove hardness of approxi-
mation for MAX-CUT can be used to give improved hardness of approximation for
another important 2-bit CSP, namely MAX-2SAT. Recall that the input to a MAX-
2SAT problem is a collection of clauses, i.e., disjunctions, of at most two variables;
the goal is to find an assignment that satisfies as many clauses as possible.

The natural inner verifier test for MAX-2SAT is this: with probability 1/2 test
fw(x ◦ σ) ∨ fw′((x ◦ σ′)μ); with probability 1/2 test −fw(x ◦ σ) ∨ −fw′((x ◦ σ′)μ). It
is easy to check that this leads to an acceptance probability of 3

4
− 1

4
Sρ(gv) in place

of (6). The dictator passes this test with probability 3
4
− 1

4
ρ; the Majority Is Stablest

theorem implies that no function with small low-degree influences can pass this test
with probability exceeding 3

4
− 1

4
(1 − 2

π arccos ρ) + ε. This leads to a hardness of
approximation ration of

(8) β = min
−1<ρ<0

3
4
− 1

4
(1 − 2

π arccos ρ)
3
4
− 1

4
ρ

≈ .943943.

This is our Theorem 2.
Note that β is smaller than the best unconditional hardness factor known for

MAX-2SAT, 21/22 ≈ .954545, due to H̊astad [33] (using the gadget of Bellare, Gol-
dreich, and Sudan [3]); as well, the best algorithm known for MAX-2SAT, due to
Lewin, Livnat, and Zwick [43], achieves an approximation ratio of .9401 which is close
to and smaller than β.

Our methodology does not seem to improve the hardness factors for other 2-bit
CSPs beyond αGW. Consider the MAX-2ConjSAT problem, in which the input is a
collection of conjunctions of (at most) two variables and the goal is to satisfy as many
conjunctions as possible. The natural inner verifier test is this: with probability 1/2
test fw(x ◦σ)∧ fw′((x ◦σ′)μ); with probability 1/2 test −fw(x ◦σ)∧−fw′((x ◦σ′)μ).
This leads to an acceptance probability of 1

4
− 1

4
Sρ(gv). By the Majority Is Stablest

theorem, we get the same hardness of approximation for MAX-2ConjSAT as we do for
MAX-CUT, αGW, since ( 1

4
− 1

4
(1− 2

π arccos ρ))/( 1
4
− 1

4
ρ) = ((arccos ρ)/π)/( 1

2
− 1

2
ρ). In

some sense this may not be surprising since the best algorithm known for this problem
([43] again) already achieves an approximation ratio of .8740, which is nearly αGW. In
fact, the same paper achieves .8740 even for the most general problem, MAX-2CSP,
in which arbitrary 2-bit constraints are allowed.

Motivated by these results, we are led to conjecture that MAX-2SAT is polynomial-
time approximable to within any factor less than β and that MAX-2CSP, MAX-
DICUT, MAX-2ConjSAT, etc. are all polynomial-time approximable to within any
factor less than αGW. We will now show that these bounds are achievable for a slight
weakening of the problems.

Definition 12. Given a 2-bit CSP, by its balanced version we mean the problem
with the restriction that every input instance {C1, . . . , Cm} has the following property:
for each i = 1 . . . n, the expected number of constraints satisfied when xi is set to 1
and the other variables are set uniformly at random is equal to the expected number
of constraints satisfied when xi is set to −1 and the other variables are set uniformly
at random.

As an example, Balanced-MAX-2SAT is the MAX-2SAT problem with the addi-
tional constraint that each variable appears positively and negatively in equally many
clauses (in the weighted case, with equal total weight).
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We contend that the balanced versions of 2-bit CSPs ought to be equally hard
as their general versions; the intuition is that if more constraints are expected to be
satisfied if xi is set to, say, 1 rather than −1, it is a “free hint” that the xi should be
set to TRUE. Note that the reductions we suggest from Unique Label Cover to MAX-
2SAT, MAX-2ConjSAT, etc. produce balanced instances, and thus we get the same
hardness of approximation bounds, β and αGW, for the balanced problems (conditional
on the two conjectures).

We can prove unconditionally that Balanced-MAX-2SAT is polynomial-time ap-
proximable to within any factor less than β, and that MAX-2CSP, MAX-DICUT,
MAX-2ConjSAT, MAX-2LIN, etc. are all polynomial-time approximable to within
any factor less than αGW. By way of illustration, we prove Theorem 3.

Proof. The algorithm is essentially the same as that used by Goemans and
Williamson. The input is a collection of clauses C of the form (y ∨ z), where y = rixi

and z = rjxj for some variables xi and xj and signs ri and rj . Arithmetizing each
clause with −1∨−1 = 1, −1∨1 = 1, 1∨−1 = 1, 1∨1 = 0, we get 3

4
− 1

4
y− 1

4
z− 1

4
y ·z.

Thus we have the objective function

OBJ =
∑

C=(y∨z)

3
4
− 1

4
y − 1

4
z − 1

4
y · z.

The condition that the instance is balanced is precisely equivalent to the condition
that the linear terms cancel out. (This holds true by definition for all balanced 2-bit
CSP problems.) Thus in fact

OBJ =
∑

C=(y∨z)

3
4
− 1

4
y · z.

Hence the optimum value of the Balanced-MAX-2SAT instance is

OPT = max OBJ subject to xi ∈ {−1, 1} for all i.

Following Goemans and Williamson we directly relax this to a semidefinite program
by replacing xi with a high-dimensional vector vi, subject to vi · vi = 1, and solving;
in polynomial time we can find a solution {vi} which achieves SDP − ε, where SDP
denotes the optimal value of the semidefinite program. We now round by picking r to
be a random Gaussian vector and setting xi = sgn(r ·vi). Recalling from [27] that this
gives E[xi · xj ] = 1 − 2

π arccos(vi · vj), we have for any clause (y ∨ z) = (rixi ∨ rjxj),

E[ 3
4
− 1

4
(rixi) · (rjxj)] = 3

4
− 1

4
(1 − 2

π arccos(rivi · rjvj)) ≥ β( 3
4
− 1

4
(rivi · rjvj)),

where we have used the definition of β and the fact that it is unchanged if we let
ρ range over [−1, 1]. It follows that E[OBJ] ≥ βSDP ≥ βOPT, and the proof is
complete.

10. Special cases of the Majority Is Stablest theorem. In this section
we describe special cases of the Majority Is Stablest theorem which are of particular
interest and have elementary proofs.

We will need the following versions of the central limit theorem with error bounds:
the first is a multidimensional version from [6, Corollary 16.3]; the second is the
(nonuniform) version of the Berry–Esseen theorem [21].

Theorem 10. Let X1, . . . ,Xn be independent random variables taking values in
R

k satisfying
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• E[Xj ] = 0, j = 1 . . . n;
• n−1

∑n
j=1 Cov(Xj) = V , where Cov denotes the variance-covariance matrix;

• λ is the smallest eigenvalue of V, and Λ is the largest eigenvalue of V ;
• ρ3 = n−1

∑n
j=1 E[|Xj |3] < ∞.

Let Qn denote the distribution of n−1/2(X1 + · · · + Xn), let Φ0,V denote the dis-
tribution of the k-dimensional Gaussian with mean 0 and variance-covariance matrix
V , and let η = Cλ−3/2ρ3n

−1/2, where C is a certain universal constant.
Then for any Borel set A,

|Qn(A) − Φ0,V (A)| ≤ η + B(A),

where B(A) is the following measure of the boundary of

A : B(A) = 2 sup
y∈Rk

Φ0,V ((∂A)η
′
+ y),

where η′ = Λ1/2η and (∂A)η
′
denotes the set of points within distance η′ of the topo-

logical boundary of A.
Theorem 11 (Berry–Esseen). Let X1, . . . , Xn be a sequence of independent ran-

dom variables satisfying E[Xj ] = 0 for all j, (
∑n

j=1 E[X2
j ])1/2 = σ, and

∑n
j=1 E[|Xj |3]

= ρ3. Let Q = σ−1(X1 + · · ·+Xn), let F denote the cumulative distribution function
of Q, F (x) = Pr[Q ≤ x], and let Φ denote the cumulative distribution function of a
standard normal random variable. Then

sup
x

(1 + |x|3)|F (x) − Φ(x)| ≤ O(ρ3/σ
3).

In particular, if A is any interval in R, |Pr[Q ∈ A] − Pr[N(0, 1) ∈ A]| ≤ O(ρ3/σ
3).

10.1. Weighted majorities. In this subsection we prove Theorem 4, which
makes the point that the Majority function is not unique as a noise stability max-
imizer, in the sense that all weighted majority functions with small influences have
the same noise stability, i.e., 1 − 2

π arccos ρ.
Theorem 4 follows from the following two propositions.
Proposition 7. Let f : {−1, 1}n → {−1, 1} be any balanced threshold function,

f(x) = sgn(a1x1 + · · · + anxn),1 where
∑

a2
i = 1. Let δ = max{|ai|}. Then for all

ρ ∈ [−1, 1],

Sρ(f) = 1 − 2
π arccos ρ±O(δ(1 − |ρ|)−3/2).

Proposition 8. Let f : {−1, 1}n → {−1, 1} be any balanced threshold func-
tion, f(x) = sgn(a1x1 + · · · + anxn), where

∑
a2
i = 1. Let δ = max{|ai|}. Then

maxi {Infi(f)} ≥ Ω(δ).
We prove the two propositions below.
Proof of Proposition 7. Since f is antisymmetric, we need only to prove the

result for ρ ∈ [0, 1]. Let x and y be ρ-correlated uniformly random strings, and let
Xj = ajxj , Yj = ajyj , and Xj = (Xj , Yj) ∈ R

2. Let Qn denote the distribution of
X1 + · · · + Xn = n−1/2(

√
nX1 + · · · + √

nXn). Since Sρ(f) = 2 Pr[f(x) = f(y)] − 1,
we are interested in computing 2Qn(A++∪A−−)−1, where A++ denotes the positive
quadrant of R

2 and A−− denotes the opposite quadrant.

1Without loss of generality we assume the linear form is never 0.
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We shall apply Theorem 10. We have E[Xj ] = 0 for all j. We have Cov(
√
nXj) =

na2
i [ 1ρ

ρ
1
], and thus V = n−1

∑
Cov(

√
nXj) = [ 1ρ

ρ
1
]. The eigenvalues of V are λ = 1−ρ

and Λ = 1+ρ. Since |√nXj | is
√

2n |ai| with probability 1, ρ3 = n−1
∑

E[|√nXj |3] =
23/2n1/2

∑ |ai|3 ≤ 23/2n1/2δ. Thus η = O(1)δ(1−ρ)−3/2 and η′ = (1+ρ)1/2η = O(η).
It is well known (see, e.g., [1, equation 26.3.19]) that Φ0,V (A++) = Φ0,V (A−−) =

1/2 − (1/2π) arccos(ρ), and it is easy to check that B(A++ ∪ A−−) = O(η′). Thus
by Theorem 10 we get Qn(A++ ∪ A−−) = 1 − (arccos ρ)/π ± O(η), and the theorem
follows.

Proof of Proposition 8. Let C be the constant hidden in the O(·) in the final
part of the Berry–Esseen theorem, Theorem 11. For simplicity, we assume that C is
a positive integer. We prove Proposition 8 first in the case where

(9) 1 − 100C2δ2 ≥ 1/4,

namely, where δ is smaller than some constant.
We may assume without loss of generality that δ = a1 ≥ a2 ≥ · · · ≥ an ≥ 0.

Letting Xi denote the random variable aixi, we will prove that Inf1(f) ≥ Ω(δ) by
proving that

(10) Pr[|X2 + · · · + Xn| ≤ δ] ≥ Ω(δ).

Let m = 100C2 + 2. We will split into two cases, depending on the magnitude
of am. In either case, we shall apply the Berry–Esseen theorem to the sequence
Xm, . . . , Xn. We have

σ =

⎛
⎝

n∑

j=m

E[Xj ]
2

⎞
⎠

1/2

=

⎛
⎝

n∑

j=m

a2
j

⎞
⎠

1/2

≥ (1−(m−2)δ2)1/2 ≥ (1−100C2δ2)1/2 ≥ 1/2,

where we have used (9). We also have ρ3 =
∑n

j=m E[|Xj |3] ≤ ∑n
j=m amE[X2

j ] =

amσ2, and so the error term in the conclusion of the theorem, O(ρ3/σ
3), is at most

Cam/σ ≤ 2Cam.
Case 1. am ≤ 1

10C δ. In this case, by the Berry–Esseen theorem we have that

Pr[Xm + · · · + Xn ∈ [0, δ]] ≥ Φ([0, δ]) − 2Cam ≥ δφ(δ) − δ/5 ≥ .04δ,

where we have used the fact that φ(δ) ≥ .24 for δ ≤ 1. On the other hand, since
a2, . . . , am−1 are all at most δ, it is easy to fix particular signs yi ∈ {−1, 1} such that∑m−1

i=2 aiyi ∈ [−δ, 0]. These signs occur with probability 2−m+2, which is at least

2−100C2

. Thus with probability at least .04 · 2−100C2

δ = Ω(δ) both events occur, and
|X2 + · · · + Xn| ≤ δ as desired.

Case 2. am ≥ 1
10C δ. In this case, we apply the Berry–Esseen theorem to the

interval [−10Cδ, 10Cδ] and merely use the fact that am ≤ δ. We conclude that

Pr[Xm + · · · + Xn ∈ [−10Cδ, 10Cδ]] ≥ Φ([−10Cδ, 10Cδ]) − 2Cδ

≥ 20Cδ · φ(10Cδ) − 2Cδ ≥ 20Cδ · 1√
2π

(
1 − (10Cδ)2

2

)
− 2Cδ ≥ 4Cδ,

where we have used (9) in the last step to infer 1 − (10Cδ)2/2 ≥ 5/8. Given Xm +
· · · + Xn = t ∈ [−10Cδ, 10Cδ], it is easy to choose particular signs y2, . . . , ym−1 such

that t +
∑m−1

i=2 aiyi ∈ [−δ, δ]. This uses the fact that each ai is at least 1
10C δ, and
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hence
∑m−1

i=2 ai ≥ 100C2 1
10C δ ≥ 10Cδ; it also uses the fact that each ai is at most

δ. Once again, these signs occur for x2, . . . , xm−1 with probability at least 2−100C2

.

Thus |X2 + · · · + Xn| ≤ δ happens with probability at least 4C2−100C2

δ = Ω(δ), as
desired.

Let us now deal with the case where 1−100C2δ2 < 1
4
, namely, where δ >

√
3

20C . Let
m be the first index for which |am| ≤ c

C5
, where c is a small enough global constant

to be chosen later. If such an m does not exist, we set m = n + 1.
We prove below that

(11) Pr

[∣∣∣∣∣

n∑

i=m

Xi

∣∣∣∣∣ ≤ δ

]
≥ Pr

[∣∣∣∣∣

n∑

i=m

Xi

∣∣∣∣∣ ≤
√

3

20C

]
> Ω(1).

Since by the choice of m it must be bounded from above by a global constant, (11)
implies (10) by arguments similar to those used in Case 1 above and thus completes
the proof.

If
√|∑n

m a2
i | ≤

√
3

40C , (11) follows immediately from Chernoff’s inequality. Other-
wise, we use the Berry–Esseen theorem to obtain that

Pr

[∣∣∣∣∣

n∑

i=m

Xi

∣∣∣∣∣ ≤
√

3

20C

]

≥ Pr

[
|∑n

i=m Xi|√∑n
i=m a2

i

≤
√

3

20C

]

≥ Pr

[
|N(0, 1)| ≤

√
3

20C

]
− C ·

( n∑

i=m

|a3
i |
)
·
(40C√

3

)3

(using Berry–Esseen)

≥ Ω

(
1

C

)
− Ω(C4) · c

C5

(
since

n∑

m

|ai|3 ≤ am ·
n∑

m

|ai|2 ≤ |am|
)

≥ Ω

(
1

C5

)
(for c small enough).

This completes the proof.

10.2. Bounds for the weight on the first level. Applying the Majority Is
Stablest theorem for extremely small ρ, it follows that functions with small influences
have no more weight at level 1 than Majority has, namely, 2

π (up to o(1)). This fact,
stated in Theorem 5, has a very elementary proof which also provides a better bound
on the additive term corresponding to the maximal influence.

Proof of Theorem 5. Let � denote the linear part of f , �(x) =
∑n

i=1 f̂({i})xi. We

have that |f̂({i})| ≤ Infi(f) ≤ δ for all i. Now
∑

|S|=1 f̂(S)2 = ‖�‖2
2 and

‖�‖2
2 = 〈f, �〉
≤ ‖f‖∞‖�‖1

≤ ‖�‖1.

Since all of �’s coefficients are small, smaller than δ, we expect � to behave like a
Gaussian with mean zero and standard deviation ‖�‖2; such a Gaussian has L1-norm
equal to

√
2/π‖�‖2. Several error bounds on the central limit theorem exist to this
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effect; the sharpest is a result of König, Schütt, and Tomczak-Jaegermann [42] which
implies that ‖�‖1 ≤√2/π‖�‖2 + (C/2)δ. Thus

‖�‖2
2 ≤
√

2/π‖�‖2 + (C/2)δ;

hence ‖�‖2 ≤√1/2π +
√

1/2π + Cδ/2 and therefore ‖�‖2
2 ≤ 2/π + Cδ.

In the following we improve the bound on the weight of the first level for not
necessarily balanced functions with low influences. This result should be compared
to the following theorem of Talagrand [54].

Theorem 12 (Talagrand). Suppose f : {−1, 1}n → {−1, 1} satisfies Pr[f = 1] =
p ≤ 1/2. Then

∑

|S|=1

f̂(S)2 ≤ O(p2 log(1/p)).

Proof. It will be more convenient to work with the [0, 1] valued function g =
1
2

+ 1
2
f and prove that

∑
|S|=1 ĝ(S)2 ≤ (U(μ) + max{1,√|Φ−1(μ)|}O(

√
δ))2. Note

that μ = E[g]. We will assume without loss of generality that μ ≥ 1/2 (otherwise
look at 1

2
− 1

2
f).

Let τ denote (
∑

|S|=1 ĝ(S)2)1/2. As in the proof of Theorem 5, we let � be the

linear part of g, and we know that all of �’s coefficients are at most δ/2. The function
L = �/τ =

∑
S ĝ(S)χS/τ is a sum of independent random variables XS = ĝ(S)χS/τ .

Clearly, E[XS ] = 0 for all S. Moreover,
∑

S E[X2
S ] = 1 and

∑
S E[X3

S ] ≤ maxS |XS | ≤
δ/(2τ).

Now τ2 = 〈g, �〉 and therefore τ = 〈g, L〉. We will show below that

(12) τ = 〈g, L〉 ≤ U(μ) + max{1, |Φ−1(μ)|}O(δ/τ).

Multiplying by τ implies that

(
τ − U(μ)

2

)2

≤ U2(μ)

4
+ max{1, |Φ−1(μ)|}O(δ),

which in turn implies that

τ ≤ U(μ) + max{1,
√
|Φ−1(μ)|}O(

√
δ).

Finally, we will conclude that

τ2 ≤
(
U(μ) + max{1,

√
|Φ−1(μ)|}O(

√
δ)
)2

.

We now prove (12). Let t be a number such that Pr[L > t] = μ. Since g is a [0, 1]
valued function, it follows that 〈g, L〉 ≤ E[1L>tL].

Letting F denote the cumulative distribution function of L, the Berry–Esseen
theorem implies that supx(1 + |x|3)|F (x) − Φ(x)| ≤ O(δ/τ). In particular, |Pr[L >
t] − Pr[N(0, 1) > t]| ≤ O(δ/(τ(1 + t3)), and hence

(13) |μ− Φ(−t)| ≤ O

(
δ

τ(1 + t3)

)
.

Note that the function U satisfies

U ′(x) = φ′(Φ−1(x)) · ((Φ−1(x))′) = −Φ−1(x)φ(Φ−1(x))
1

φ(Φ−1(x))
= −Φ−1(x).
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Therefore U ′′(x) = −1/φ(Φ−1(x)) = −1/U(x). It follows that U is concave.
We now estimate U(μ) − φ(t). Since U ′ is a monotone function, it follows that

|U(μ) − φ(t)| = |U(Φ(−t)) − U(μ)| ≤ |Φ(−t) − μ|max{|U ′(Φ(−t))|, |U ′(μ)|}(14)

≤ max{|t|,Φ−1(μ)}O(δ/(τ(1 + t3))) ≤ max{1, |Φ−1(μ)|}O(δ/τ).

Further,

〈g, L〉 ≤ E[1L>tL] = tPr[L > t] +

∫ ∞

t

Pr[L > x] dx

= tPr[L > t] +

∫ ∞

t

Pr[N(0, 1) > x] dx +

∫ ∞

t

(F (x) − Φ(x)) dx

= tμ− tΦ(−t) + φ(t) +

∫ ∞

t

(F (x) − Φ(x)) dx

≤ φ(t) + |t| · |μ− Φ(−t)| +
∫ ∞

t

|F (x) − Φ(x)| dx

≤ φ(t) +
|t|

1 + |t|3O
(
δ

τ

)
+ O

(
δ

τ

)∫ ∞

t

1

(1 + |x|3) dx (by (13) and Berry–Esseen)

= φ(t) + O

(
δ

τ(1 + t2)

)
(by (14))

≤ U(μ) + max{1, |Φ−1(μ)|}O
(
δ

τ

)
,

which proves (12) as needed.

11. Constraint satisfaction problems over [q]. So far in this paper, we have
mostly focused on 2-CSPs in which the variables are binary—i.e., take values in the
alphabet {−1, 1}. The exception is the Unique Label Cover problem, which can be
thought of as a 2-CSP where the set of values a variable can take is very large. In
this section we develop our techniques for 2-CSPs over large alphabets, specifically
the alphabet [q] = {1, 2, . . . , q} for q ≥ 2. We will be concerned in particular with the
MAX-2LIN(q) and MAX-q-CUT (i.e., approximate graph q-coloring) problems, and
we will mostly be interested in the asymptotics when q → ∞.

11.1. Γ-MAX-2LIN(q) and MAX-q-CUT. The MAX-q-CUT problem is a
natural generalization of MAX-CUT; its formal definition is as follows.

Definition 13 (MAX-q-CUT). Given a weighted graph G = (V,W ), where W :
V × V → R+, the MAX-q-CUT problem is that of finding a partition of V into q
sets V1, . . . , Vq in such a way as to maximize the weight of edges between the different
parts,

∑
i �=j

∑
v∈Vi,w∈Vj

W (v, w).

The MAX-2LIN(q) problem is defined as follows.
Definition 14 (MAX-2LIN(q)). Given a system of m linear equations mod q

each having at most two variables, along with nonnegative weights w1, . . . , wm for
these equations, the MAX-2LIN(q) problem is to find an assignment to the variables
maximizing the total weight of satisfied equations.

Observe that the MAX-2-CUT problem can be viewed as a special case of the
MAX-2LIN(2) problem, by associating the vertices with variables and the edges with
equations xu − xv = 1. However, for larger q, MAX-q-CUT is more naturally viewed
as a special case of the problem of finding assignments for 2-variable linear inequations
mod q.
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The best approximation algorithm for MAX-q-CUT was obtained by Frieze and
Jerrum in [26]; this paper gives a (1 − 1/q + 2(ln q)/q2)-approximation. The best
NP-hardness result known is due to Kann et al. [36], who proved that (1− 1/(34q))-
approximating is hard. As for the approximability of MAX-2LIN(q), the best al-
gorithm known was given very recently by Charikar, Makarychev, and Makarychev
in [11], as discussed in subsection 6.3 (their algorithm is actually for the more general
problem of not-necessarily-bipartite Unique Label Cover with label size q). When
the optimal fraction of satisfiable constraints is 1 − η, their semidefinite program-
ming algorithm produces a solution satisfying about a fraction (1/q)η/(2−3η). The
best known NP-hardness results come from a recent work of Feige and Reichman [22].
They show that it is NP-hard to approximate MAX-2LIN(q) to within a factor of
1/qβ for some universal constant β > 0; however, this hardness is located at a gap of
ε vs. ε/qβ . In particular, given an instance with optimum fraction 1 − η, Feige and
Reichman can show only that it is NP-hard to find a solution with value 1 − Cη for
some relatively small constant C > 1. Thus with current knowledge, given a (1 − η)-
satisfiable instance, we do not know whether one can satisfy almost all the constraints
in polynomial time, or whether it is impossible to go beyond a very small fraction of
them.

A special case of the MAX-2LIN(q) problem which seems somewhat easier al-
gorithmically [11, 2] occurs when all the equations in the instance are of the form
xi − xj = cij .

Definition 15 (Γ-MAX-2LIN(q)). Γ-MAX-2LIN(q) is the special case of MAX-
2LIN(q) in which each equation is of the form xi − xj = cij.

Our hardness results hold even for Γ-MAX-2LIN(q). The Γ notation is essentially
from H̊astad [33]; we use it because our results actually hold equally well for the
problem of satisfying equations of the form xix

−1
j = cij over any fixed abelian group

Γ of order q, not just Zq.

11.2. Analytic notions. We would like to generalize our notions of noise sta-
bility, influences, and Fourier expansions to q-ary functions, f : [q]n → [q]. Some of
the definitions below were already given in subsection 4.2, but we repeat them here
for clarity and convenience.

The way we treat the finite set [q] in the domain and in the range of q-ary functions
will be different. In the domain, [q] and [q]n will be treated simply as finite probability
spaces under the uniform measure, with no extra structure. In the range, we would
like to embed [q] into a larger space. Recall that for boolean function we identified
the range with the two points −1, 1 ∈ R and then considered relaxed functions taking
values in their convex hull. In the q-ary case we identify the elements of [q] with the
standard basis vectors in R

q. A relaxed q-ary function will thus map [q]n into the
simplex which is the convex hull of these vectors.

Definition 16. Let Δq denote the (q − 1)-dimensional simplex naturally em-
bedded in R

q, i.e., the convex hull of the q standard basis vectors. We call functions
f : [q]n → Δq relaxed q-ary functions.

We will also define the notion of a balanced function.
Definition 17. A function f : [q]n → [q] is called balanced if it obtains each

value i ∈ [q] in its range equally often. A relaxed function f : [q]n → Δq is called
balanced if E[f(x)] = (1/q, . . . , 1/q).

Since a relaxed q-ary function f maps [q]n into R
q, it can be viewed as a vector

f = (f1, . . . , fq) of real-valued functions over [q]n. We define the noise stability both
for real-valued and Δq-valued functions.
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Definition 18. Let − 1
q−1

≤ ρ ≤ 1 and let x and y be [q]n-valued random
variables. We say that x and y are a ρ-correlated pair if x is uniformly distributed on
[q]n, and y is formed from x by choosing each yi so that Pr[yi = a] = δ{xi=a}ρ + 1−ρ

q
for each a, independently for each i. Note that for 0 ≤ ρ ≤ 1, it is equivalent to say
that each coordinate yi is independently chosen to be xi with probability ρ and is a
uniformly random element of [q] otherwise.

Definition 19. Let f : [q]n → Δq and let − 1
q−1

≤ ρ ≤ 1. The noise stability of
f at ρ is defined to be

Sρ(f) = E
x,y

[〈f(x), f(y)〉],

where x and y are a ρ-correlated pair. Equivalently, we may define the noise stability
of functions g : [q]n → R via

Sρ(g) = E
x,y

[g(x)g(y)]

and then denoting by f i the ith coordinate projection of f , we have Sρ(f) =
∑n

i=1 Sρ(f
i).

We remark that when f ’s range is simply [q] (as embedded in Δq), the quantity
Sρ(f) is simply the probability that f(x) = f(y) when x and y are a ρ-correlated pair.
For example, the noise stability at ρ of a dictator function f : [q]n → [q] is equal to
ρ + 1

q (1 − ρ).

The definition of influences is very similar to that in the boolean case.
Definition 20. Let f : [q]n → Δq. For 1 ≤ i ≤ n, the influence of the ith

coordinate on f is defined to be

Infi(f) = E
x1,...,xi−1,xi+1,...,xn

[Varxi [f
i(x1, . . . , xn)]],

where Var[f ] denotes E[〈f, f〉] − 〈E[f ],E[f ]〉.
The space X of all functions f : [q]n → R

d (we use either d = q or d = 1) is an
inner product space with inner product

〈f, g〉 = Ex[〈f(x), g(x)〉]
and associated norm denoted ‖ · ‖. Given x ∈ [q]n, write xS for {xi : i ∈ S}. It is well
known that X can be written as an orthogonal sum of spaces X = ⊕S⊂[n]XS , where

XS denotes the space of all functions f : [q]n → R
d such that

• f(x) depends only on xS for all x, and
• f is orthogonal to all functions in the spaces XS′ for S′

� S.
Thus we can write any f : [q]n → R

q as

(15) f(x) =
∑

S⊂[n]

fS(x),

where fS(x) is the projection of f onto the space XS . Parseval’s identity holds for
this expansion:

‖f‖2
2 =

∑

S⊆[n]

‖fS‖2
2.

For − 1
q−1

≤ ρ ≤ 1, we can define the Bonami–Beckner operator on X in the obvious

way, Tρ(f)(x) = Ey[f(y)], where y is ρ-correlated to x. We have that if f : [q]n → Δq,
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then Tρf also has range Δq, and that if f is balanced, then so too is Tρf . We also
have that Sρ(f) = 〈f, Tρf〉. The formula for noise stability from Proposition 2 holds
in this setting:

(16) Sρ(f) =
∑

S⊆[n]

ρ|S|‖fS‖2
2;

this follows from the following easy proposition, familiar from the boolean case.

Proposition 9.

Tρ(f) =
∑

S⊆[n]

ρ|S|fS .

Proof. It is easy to see that for each x, (Tρf)(x) is a polynomial in ρ. Therefore
it suffices to prove the claim for 0 ≤ ρ ≤ 1. Clearly, Tρ is linear, and therefore it
suffices to show that if f ∈ XS , then Tρf = ρ|S|f . From the definition of the space
XS , it follows that for every subset S′

� S and for every vector of values z of size |S′|
it holds that E[f(y) | yS′ = z] = 0. Now for 0 ≤ ρ ≤ 1,

Tρf(x) =
∑

S′⊂S

ρ|S
′|(1 − ρ)|S|−|S′| · E[f(y) | yS′ = xS′ ] = ρ|S|f(x),

as needed.

In a similar fashion, it is easy to verify that a formula similar to (5) holds in the
q-ary case:

Infi(f) =
∑

S�i

‖fS‖2
2.

Finally, we define low degree influences as in Definition 11.

Proposition 10. Let f : [q]n → R
d and k ≥ 1. Then we define

Inf≤k
i (f) =

∑

S�i
|S|≤k

‖fS‖2
2.

11.3. Stability estimates. In this subsection we analyze the plurality function
and give estimates on Λρ(μ), proving Theorem 7, Proposition 1, and Corollary 3.
We also prove some other estimates on Λρ(μ) for very small ρ parameters that are
required for our MAX-q-CUT reduction. We begin with the proof of Theorem 7.

Proof of Theorem 7. Suppose we choose x ∈ [q]n at random and let y be a ρ-
correlated copy of x. For each i ∈ [q], let ui denote the number of coordinates in
x taking the value i, and let vi denote the number of coordinates of y taking the
value i. We wish to apply the multidimensional central limit theorem (specifically,
Theorem 10) to calculate the stability of plurality, which is given by

qPr
[
u1 ≥ max

1≤i≤q
ui and v1 ≥ max

1≤i≤q
vi

]

= qPr

[
n−
∑

i≥2

ui ≥ max
2≤i≤q

ui and n−
∑

i≥2

vi ≥ max
2≤i≤q

vi

]
.
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Let us define the following vectors in R
q−1: let e2, . . . , eq denote the q−1 unit vectors,

let r denote the vector (1/q, . . . , 1/q), let r1 denote the 0 vector, and let ri = ei − r
for i = 2 . . . q. Consider random variables (Xi,Yi) taking values in R

2q−2 where

(17) Pr[(Xi,Yi) = (ra, rb)] =
ρ

q
δ{a=b} +

1 − ρ

q2
.

Note that (u2, . . . , uq, v2, . . . , vq) = nr +
∑n

i=1(Xi,Yi), where (Xi,Yi) are the i.i.d.
random variables given in (17) and that the vectors (Xi, Yi) have mean 0. Writing A
for the (q− 1)× (q− 1) matrix given by Ai,j = δ{i=j}/q− 1/q2, the covariance matrix
V of (Xi,Yi) is given by

V =

(
1 ρ
ρ 1

)
⊗A =

(
A ρA
ρA A

)
.

Thus the eigenvalues of V are 1/q, 1/q2, ρ/q, and ρ/q2. Finally, the third norm of
(Xi,Yi) is at most 4. We may thus apply Theorem 10 to obtain

lim
n→∞Pr

[
u1 ≥ max

1≤i≤q
ui and v1 ≥ max

1≤i≤q
vi

]

= Pr

[
−

q∑

i=2

Ni ≥ max
2≤i≤q

Ni and −
q∑

i=2

Mi ≥ max
2≤i≤q

Mi

]
,

where (Ni,Mi)
q
i=2 is a normal vector with covariance matrix V . Letting N1 =

−∑q
i=2 Ni and M1 = −∑q

i=2 Mi, we see that (N1, . . . , Nq,M1, . . . ,Mq) is a zero

mean normal vector with covariance matrix
(

1 ρ
ρ 1

) ⊗ B, where B is the q × q matrix

given by Bi,j = δ{i=j}/q − 1/q2. Finally, let (U1, V1), . . . , (Uq, Vq) be a collection of

i.i.d. mean zero normal vectors in R
2, where (Ui, Vi) has the covariance matrix

(
1 ρ
ρ 1

)
.

It is then easy to see that (Nq, . . . , Nq,Mq, . . . ,Mq) has the same covariance matrix
as the normal vector

√
q

q − 1

⎛
⎝U1 − 1

q

q∑

j=1

Uj , . . . , Uq − 1

q

q∑

j=1

Uj , V1 − 1

q

q∑

j=1

Vj , . . . , Uq − 1

q

q∑

j=1

Vj

⎞
⎠ .

Since both vectors are normal, they have the same distribution. Hence the stability
of Plurality is given by

qPr
[
M1 = max

1≤j≤q
Mj and N1 = max

j
Nj

]
= qPr

[
U1 = max

1≤j≤q
Uj and V1 = max

j
Vj

]
,

and this completes the proof of Theorem 7.
Let us now move to discussing estimates of Λρ(μ), proving Proposition 1.
Proof of Proposition 1. The proof of Lemma 11.1 in [13] gives

(18) Λρ(μ) =
1

2π
√

1 − ρ2 · t2 exp

(
− t2

1 + ρ

)∫ ∞

0

∫ ∞

0

exp(−g(u, v)) du dv,

where

g(u, v) =
u + v

1 + ρ
+

(u− v)2 + 2(1 − ρ)uv

2(1 − ρ2)t2
.
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Since the range of integration is u, v ≥ 0, we have g(u, v) ≥ h(u, v), where

h(u, v) =
u + v

1 + ρ
+

(u− v)2

2(1 − ρ2)t2
.

We can therefore replace g by h in the integral and get

(19)∫ ∞

0

∫ ∞

0

exp(−g(u, v)) du dv ≤
∫ ∞

0

∫ ∞

0

exp(−h(u, v)) du dv

=
√

2π(1 + ρ)
√

1 − ρ2 · t · exp

(
1 − ρ

1 + ρ
· t

2

2

)
·N
(
t
√

1−ρ
1+ρ

)
,

where the integral computation follows straightforwardly after the change of variables
r = u + v, s = u− v. Combining (18) and (19) completes the proof.

Proposition 1 leads to the asymptotic estimates stated in Corollary 3.
Proof of Corollary 3. Part 1 follows simply from the well-known fact that N(t) ∼

φ(t)/t as t → ∞. As a side note, it is simple to see from its definition that μ ·
N(t
√

(1 − ρ)/(1 + ρ)) is a lower bound on Λρ(μ). Part 2 of the Corollary is Lemma 11.1
of de Klerk, Pasechnik, and Warners [13]. Parts 3 and 4 follow straightforwardly from
part 1; the bound written in part 3 actually neglects an additional negative power of
ln q for simplicity.

Finally, our hardness result for MAX-q-CUT requires the following more careful
analysis of Λρ(μ) in the case that ρ is very small.

Proposition 11. Let μ > 0 be small and let 0 < ρ ≤ 1
ln3(1/μ)

. Then

Λρ(μ) ≤ μ

(
μ + ρ · 2μ ln

(
1

μ

)
·
(
1 + O

(
ln ln(1/μ)

ln(1/μ)
+ ln ln(1/ρ)

ln(1/μ)

)))
.

Proof. Recall that Λρ(μ) = Pr[X ≥ t,X ′ ≥ t], where X is a standard Gaussian,

X ′ = ρX +
√

1 − ρ2 Y with Y an independent standard Gaussian, and t = N−1(μ).
(We use the functions φ and N from Proposition 1.) The probability that X ≥ t is
μ, and so we need to show that

(20) Pr[X ′ ≥ t | X ≥ t] ≤ μ + ρ · 2μ ln

(
1

μ

)
·
(
1 + O

(
ln ln(1/μ)

ln(1/μ)
+ ln ln(1/ρ)

ln(1/μ)

))
.

Let us first estimate

Pr[X ′ ≥ t | X = t(1 + α)]

for 1/ ln(1/μ) ≤ α ≤ ln(1/ρ). We have

Pr[X ′ ≥ t | X = t(1 + α)] = Pr[ρX +
√

1 − ρ2 Y ≥ t | X = t(1 + α)]

≤ Pr[Y ≥ (t− ρt(1 + α))/
√

1 − ρ2]

≤ Pr[Y ≥ t− ρt(1 + 2α)],

where we have used that ρ ≤ 1/ ln(1/μ) ≤ α. Now Pr[Y ≥ t − β] ≤ Pr[Y ≥
t] + βφ(t − β) = μ + βφ(t − β). We can upper bound φ(t − β) by expanding its
definition and using the well-known fact φ(t) ≤ tN(t)+O(1/t2) along with N(t) = μ.
With our particular β = ρt(1 + 2α) we get that

φ(t− β) ≤ tμ(1 + O(1/ ln(1/μ))),
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where this also uses α ≤ log(1/ρ) and ρ ≤ 1/ ln3(1/μ). We thus conclude that

(21) Pr[X ′ ≥ t | X = t(1 + α)] ≤ μ + ρ · 2μ ln(1/μ) · (1 + O(α)),

where we have also used t ≤√2 ln(1/μ) and α ≥ 1/ ln(1/μ).

Our next task is to estimate Pr[X ≥ t(1 + α) | X ≥ t]. This is quite straightfor-
ward using N(x) ∼ φ(x)/x and N(t) = μ; the result is that

(22) Pr[X ≥ t(1 + α) | X ≥ t] ≤ (Cμ2 ln(1/μ))α

for some universal constant C < ∞ (where we used α ≥ 1/ ln(1/μ)).

Set δ = A( ln ln(1/μ)

ln(1/μ)
+ ln ln(1/ρ)

ln(1/μ)
) and K = B ln(1/ρ)

ln(1/μ)
> 1, where A and B are large

universal constants to be chosen later. They will be chosen so that δ < K (this is
possible because ρ ≤ 1/ ln3(1/μ)). Write γ = Pr[(1 + δ)t ≤ X ≤ (1 + K)t | X ≥ t].
We estimate

Pr[X ′ ≥ t | X ≥ t] ≤ (1 − γ) Pr[X ′ ≥ t | t ≤ X ≤ t(1 + δ)]

+ γ Pr[X ′ ≥ t | (1 + δ)t ≤ X ≤ (1 + K)t]

+ Pr[X > (1 + K)t | X ≥ t].

Since it is clear that Pr[X ′ ≥ t | X ∈ [a, b]] ≤ Pr[X ′ ≥ t | X = b], we can use (21) to
bound the sum of the first two terms by

μ + ρ · 2μ ln(1/μ)(1 + O(δ)) + γ ·O(Kρ · μ ln(1/μ)).

The third term, and also γ, are bounded using (22). This gives an overall bound of

Pr[X ′ ≥ t | X ≥ t] ≤ μ + ρ · 2μ ln(1/μ)(1 + O(δ)) + (Cμ2 ln(1/μ))δ

·O(Kρ · μ ln(1/μ)) + (Cμ2 ln(1/μ))K .

It is now relatively easy to check that we can take A and B large enough so that the
above quantity is bounded as in (20), completing the proof. (One can take A so that
the third term above is smaller than B · ρμ ln ln 1

ρ and then take B large enough so

that both K > δ and the last term is smaller than ρ · μ ln(1/μ) · δ.)
Proposition 11 leads to a lower bound on the stability of a q-ary function with

noise ρ = − 1
q−1

.

Proposition 12. For any q ≥ 2, there is a small enough δ = δ(q) > 0, such that
any function f : [q]n → Δq with Infi(f) ≤ δ for all i = 1, . . . , n satisfies

S− 1
q−1

(f) ≥ 1/q − (2 ln q)/q2 − C · (ln ln q)/q2,

where C < ∞ is a universal constant.

Proof. Let f i : [q]n → [0, 1] denote the ith coordinate function of f and let
μi = E[f i]. Then
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S− 1
q−1

(f i) = ‖f i
∅‖2

2 − 1
q−1

∑

|S|=1

‖f i
S‖2

2 + ( 1
q−1

)2
∑

|S|=2

‖f i
S‖2

2 − · · ·

≥ ‖f i
∅‖2

2 − 1
q−1

∑

|S|=1

‖f i
S‖2

2 − ( 1
q−1

)2
∑

|S|=2

‖f i
S‖2

2 − · · ·

= 2μ2
i − S 1

q−1
(f i).

Choosing δ to be small enough as function of q, we obtain from the MOO theorem
that S 1

q−1
(f i) ≤ Λ 1

q−1
(μi) + ε, where ε is, say, 1/q3. It thus suffices to prove that

(23)

q∑

i=1

[
2μ2

i − Λ 1
q−1

(μi)
]+

≥ 1/q − (2 ln q)/q2 −O(ln ln q)/q2.

(Here the notation x+ means x if x ≥ 0, 0 otherwise.) We prove this using Proposi-
tion 11 and the fact that

∑
μi = 1. We will first carry out the estimates assuming

that all μi’s satisfy 1
q−1

≤ 1
ln3(1/μi)

.

Suppose that μi ≥ (1/q)1/10 for some i. Proposition 11 implies in this case
that Λ 1

q−1
(μi) ≤ μ2

i + O(μ1/10), and so the ith summand already contributes at

least .5μ2
i ≥ .5(1/q)1/5 to the sum in (23), and so the inequality there holds. We may

therefore assume that all μi’s are at most (1/q)1/10. With this in hand, Proposition 11
tells us that Λ 1

q−1
(μi) ≤ F (μi), where

F (μi) = μ2
i +

1

q − 1
· 2μ2

i ln

(
1

μi

)
·
(

1 + C
ln ln q

ln q

)

and C < ∞ is some universal constant. Thus

(24)

q∑

i=1

[
2μ2

i − Λ 1
q−1

(μi)
]+

≥
q∑

i=1

(2μ2
i − F (μi)).

It is not hard to check that 2μ2
i − F (μi) is a convex function of μi so long as μi is

at most a certain universal constant smaller than 1 (which it is when q is sufficiently
large, since all μi’s are at most (1/q)1/10). Using

∑q
i=1 μi = 1, we conclude that the

right-hand side of (24) is minimized when all μi’s are equal to 1/q, in which case it
equals 1/q − (2 ln q)/q2 −O(ln ln q)/q2; thus (23) is verified.

Finally, we consider the possibility that not all μi’s satisfy 1
q−1

≤ 1
ln3(1/μi)

. In

this case, some of the term-by-term inequalities going into (24) may no longer hold.
For such inequalities, though, the left-hand side term is always nonnegative and the
right-hand side term is exponentially small in a power of q. Hence (24) still holds up
to an additive term exponentially small in q, which is negligible; thus the argument
above is unaffected.

11.4. Hardness results for MAX-q-CUT and Γ-MAX-2LIN(q). This sec-
tion is devoted to the proofs of Theorems 8 and 9. The proofs are similar to that of
Theorem 1 in section 8, and so we omit some details.

As a preliminary technical step, we need the analogue of Proposition 4 for the
MOO theorem and for Proposition 12.
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Proposition 13. Both the MOO theorem and Proposition 12 remain true if the

assumption that Infi(f) ≤ δ for all i is replaced by the assumption that Inf≤k′

i (f) ≤ δ′,
where δ′ and k′ are universal functions of ε and ρ.

Proof (sketch). The proof is essentially the same as that of Proposition 4; one
requires the following facts:

∑

i

Inf≤k
i (f) ≤ k,

∑

|S|>k

‖(T1−γf)S‖2
2 ≤ (1 − γ)2k,

which indeed hold for q-ary functions f : [q]n → [0, 1], as can easily be seen from the
facts in subsection 7.2.

We will also need to define the q-ary analogue of the Long Code.
Definition 21 (q-ary Long Code). The q-ary Long Code of an element i ∈ [M ]

is the q-ary function f : [q]M → [q] defined by f(x) = xi.

Hardness of MAX-q-CUT. We now begin the reduction from Unique Label Cover
to MAX-q-CUT. As mentioned, the reduction is similar to the one in section 8; the
main difference is that we use q-ary Long Codes and we fix ρ to be − 1

q−1
. As in

section 8, we start with a given instance L(V,W,E, [M ], {σv,w}) of Unique Label
Cover, and construct an instance of MAX-q-CUT, presented here as a PCP verifier.

The PCP verifier for MAX-q-CUT.
• Pick a vertex v ∈ V at random and two of its neighbors w,w′ ∈ W at random.

Let σ = σv,w and σ′ = σv,w′ be the respective bijections for edges (v, w) and
(v, w′).

• Let fw and fw′ be the supposed q-ary Long Codes of the labels of w and w′,
respectively.

• Pick (x, y) ∈ [q]M to be a (− 1
q−1

)-correlated pair; in other words, pick x ∈
[q]M uniformly at random and form y by choosing each yi independently to
be a uniformly random element of [q] \ {xi}.

• Accept iff

fw(x ◦ σ) �= fw′(y ◦ σ′).

Completeness. If the Unique Label Cover instance has a (1−η)-satisfying assign-
ment, then the PCP verifier accepts the Long Code encoding of this assignment with
probability at least 1 − 2η. This is because whenever the PCP verifier chooses edges
(v, w) and (v, w′) that are properly labeled, the verifier accepts with probability 1.
The Unique Games Conjecture allows us to take η to be an arbitrarily small positive
constant.

Soundness. Our goal is to show that if the PCP verifier accepts with probability
exceeding 1 − 1/q + (2 ln q)/q2 + O(ln ln q)/q2, then we can derive an assignment for
the Unique Label Cover instance that satisfies at least some γ′ = γ′(q) fraction of its
edges, independent of the label set size M .

As in section 8, we analyze the soundness by writing the success probability of
the PCP in terms of the noise stability of certain averages of the fw’s. (We view these
supposed Long Codes fw : [q]n → [q] as having the relaxed range Δq.) If the noise
stability is large, the MOO theorem implies the existence of influential coordinates,
which in turn are used to derive an assignment for the Unique Label Cover instance.
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The probability that the PCP verifier accepts is given by

Pr[acc] = E
v,w,w′,x,y

[1 − 〈fw(x ◦ σ), fw′(y ◦ σ′)〉]

= 1 − E
v,x,y

[
E

w,w′
[〈fw(x ◦ σ), fw′(y ◦ σ′)〉]

]

= 1 − E
v,x,y

[
〈E
w

[fw(x ◦ σ)],E
w′

[fw′(y ◦ σ′)]〉
]

(using independence of w and w′)

= 1 − E
v,x,y

[〈gv(x), gv(y)〉
] (

where we define gv(z) = E
w∼v

[fw(z ◦ σv,w)]

)

= 1 − E
v

[
S− 1

q−1
(gv)
]
.

We now proceed as in the proof of Theorem 1, using Proposition 12 in place of
the Majority Is Stablest theorem. In particular, writing ε = (ln ln q)/q2, we have
that if Pr[acc] ≥ 1 − 1/q + (2 ln q)/q2 + (C + 1) · (ln ln q)/q2, then there is some ε/2
fraction of “good” v’s with S− 1

q−1
(gv) ≤ 1/q− (2 ln q)/q2 − (C +1/2) · (ln ln q)/q2. By

Proposition 12 such gv’s must have large low-degree influential coordinates, which we
can use as Label Cover labels for their v’s.

The remainder of the soundness proof is just as it is in the proof of Theorem 1 in
section 8. The only difference arises in the analogue of (7) and is essentially notational;
we replace this line with

δ ≤
∑

S�j
|S|≤k

‖(gv)S‖2
2 =

∑

S�j
|S|≤k

‖E
w

[(fw)σ−1(S)]‖2
2

≤
∑

S�j
|S|≤k

E
w

[‖(fw)σ−1(S)‖2
2] = E

w

[
Inf≤k

σ−1(j)(fw)
]
.

With this proof of soundness in hand, the proof of Theorem 8 is now complete.

Hardness of MAX-2LIN(q). We move on to our hardness result for Γ-MAX-
2LIN(q) and the proof of Theorem 9. The proof is very similar to the one we gave for
MAX-q-CUT; the only new technique is the use of the old PCP trick of folding.

Definition 22 (additive folding). Let f : [q]M → [q], where the [q] in the domain
is viewed as Zq, the integers mod q. We say that f is folded if for every c ∈ Zq and
x ∈ (Zq)

M it holds that f(x + (c, c, . . . , c)) = f(x) + c.

Our PCP verifier for Γ-MAX-2LIN(q) will be able to assume that all the supposed
q-ary Long Codes fw with which it works are folded. This can be done by only making
queries fw(x) when x1 = 0, and simulating other queries using the assumption that the
function is folded. In other words, to query fw(x1, . . . , xn) the verifier instead queries
f(0, x2−x1, . . . , xn−x1) and computes the value f(0, x2−x1, . . . , xn−x1)−x1. Note
that Long Code functions (dictators) are folded, and that a folded q-ary function must
be balanced.

We now give our verifier for Γ-MAX-2LIN(q), parameterized by 0 < ρ < 1. Given
an instance of Unique Label Cover, it proceeds as follows.
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The PCP verifier for Γ-MAX-2LIN(q) with parameter 0 < ρ < 1.
• Pick a vertex v ∈ V at random and two of its neighbors w,w′ ∈ W at random.

Let σ = σv,w and σ′ = σv,w′ be the respective bijections for edges (v, w) and
(v, w′).

• Let fw and fw′ be the folded supposed q-ary Long Codes of the labels of w
and w′, respectively.

• Pick (x, y) ∈ [q]M to be a ρ-correlated pair.
• Accept iff fw(x ◦ σ) = fw′(y ◦ σ′), i.e., iff fw(x ◦ σ) − fw′(y ◦ σ′) = 0.

This verifier indeed yields a distribution over 2-variable linear equations mod q
of the form “xi − xj = c”; note that since the verifier ensures the functions fw are
folded, the acceptance predicates fw(x ◦σ)− fw′(y ◦σ′) = 0 will really be of the form
(fw(x′) − x′

1) − (fw′(y′) − y′1) = 0.
Analysis of this PCP verifier’s completeness and soundness proceeds very much

as it did in the previous proofs. The completeness is at least (1− 2η) times the noise
stability at ρ of a q-ary Long Code function, i.e., (1− 2η)(ρ+ 1

q (1− ρ)). Soundness is
again analyzed by arithmetizing the PCP verifier’s acceptance probability, which in
this case yields

Pr[acc] = E
v
[Sρ(gv)].

The functions gv : [q]M → Δq are balanced, being the averages of folded and thus
balanced fw’s. Hence their q projection functions (gv)

i : [q]M → [0, 1] all have mean
equal to 1

q . We may thus use the MOO theorem directly (instead of Proposition 12)

and bound soundness by qΛρ(
1
q ) + ε. This completes the proof of Theorem 9.
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RANGE-EFFICIENT COUNTING OF DISTINCT ELEMENTS IN A
MASSIVE DATA STREAM∗
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Abstract. Efficient one-pass estimation of F0, the number of distinct elements in a data stream,
is a fundamental problem arising in various contexts in databases and networking. We consider range-
efficient estimation of F0: estimation of the number of distinct elements in a data stream where each
element of the stream is not just a single integer but an interval of integers. We present a randomized
algorithm which yields an (ε, δ)-approximation of F0, with the following time and space complexi-
ties (n is the size of the universe of the items): (1) The amortized processing time per interval is
O(log 1

δ
log n

ε
). (2) The workspace used is O( 1

ε2
log 1

δ
logn) bits. Our algorithm improves upon a pre-

vious algorithm by Bar-Yossef, Kumar and Sivakumar [Proceedings of the 13th ACM–SIAM Sympo-
sium on Discrete Algorithms (SODA), 2002, pp. 623–632], which requires O( 1

ε5
log 1

δ
log5 n) process-

ing time per item. This algorithm can also be used to compute the max-dominance norm of a stream
of multiple signals and significantly improves upon the previous best time and space bounds by Cor-
mode and Muthukrishnan [Proceedings of the 11th European Symposium on Algorithms (ESA), Lec-
ture Notes in Comput. Sci. 2938, Springer, Berlin, 2003, pp. 148–160]. This algorithm also provides
an efficient solution to the distinct summation problem, which arises during data aggregation in
sensor networks [Proceedings of the 2nd International Conference on Embedded Networked Sensor
Systems, ACM Press, New York, 2004, pp. 250–262, Proceedings of the 20th International Conference
on Data Engineering (ICDE), 2004, pp. 449–460].
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1. Introduction. One of the most significant successes of research on data
stream processing has been the efficient estimation of the frequency moments of a
stream in one-pass using limited space and time per item. An especially important
aggregate is the number of distinct elements in a stream, which is often referred to as
the zeroth frequency moment and denoted by F0. The counting of distinct elements
arises in numerous applications involving a stream. For example, most database query
optimization algorithms need an estimate of F0 of the data set [HNSS95]. In network
traffic monitoring, this can be used to compute the number of distinct web pages re-
quested from a web site or the number of distinct source addresses among all Internet
protocol (IP) packets passing through a router. Further, the computation of many
other aggregates of a data stream can be reduced to the computation of F0.

In most data stream algorithms in the literature the following model is studied:
Each element in the stream is a single item (which can be represented by an integer),
and the algorithm needs to process this item “efficiently,” both with respect to time
and space; i.e., the time taken to process each element should be small, and the total
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workspace used should be small. Many algorithms have been designed in this model
to estimate frequency moments [AMS99, GT01, BYJK+02, CK04] and other aggre-
gates [FKSV02, DGIM02, CDIM02, AJKS02, Mut05, BBD+02] of massive data sets.

However, in many cases it is advantageous to design algorithms which work on a
more general data stream, where each element of the stream is not a single item but
a list of items. In a stream of integers, this list often takes the form of an interval
of integers. To motivate this requirement for processing intervals of integers, we give
some examples below.

Bar-Yossef, Kumar, and Sivakumar [BYKS02] formalize the concept of reductions
between data stream problems and demonstrate that, in many cases, reductions natu-
rally lead to the need for processing a list of items quickly, much faster than processing
them one by one. They consider the problem of estimating the number of triangles
in a graph G, where the edges of G arrive as a stream in an arbitrary order. They
present an algorithm that uses a reduction from the problem of computing the number
of triangles in a graph to the problem of computing the zeroth and second frequency
moments (denoted F0 and F2, respectively) of a stream of integers. However, for each
edge e in the stream, the reduction produces a list of integers, and the size of each
such list could be as large as n, the number of vertices in the graph. If one used
an algorithm for F0 or F2 which processed these integers one by one, the processing
time per edge would be Ω(n), which is prohibitive. Thus, this reduction needs an
algorithm for computing F0 and F2 which can handle a list of integers efficiently, and
such an algorithm is called list-efficient. In many cases, including the above, these
lists are simply intervals of integers, and an algorithm which can handle such intervals
efficiently is called range-efficient.

Another application of such list-efficient and range-efficient algorithms is in aggre-
gate computation over sensor networks [NGSA04, CLKB04]. The goal here is to com-
pute the sum (or average) of a stream of sensor observations. However, due to multi-
path routing of data, the same observation could be repeated multiple times at a node,
and the sum should be computed over only distinct elements of the stream. This leads
to the distinct summation problem defined below, which was studied by Considine et
al. [CLKB04] and Nath et al. [NGSA04]. Given a multiset of items M = {x1, x2, . . . },
where xi = (ki, ci), compute

∑
distinct(ki,ci)∈M ci. The distinct summation problem

can be reduced to F0 computation as follows: For each xi = (ki, ci), generate a list
li of ci distinct but consecutive integers such that for distinct xi’s the lists li do not
overlap, but if element xi reappeared, the same list li would be generated. An F0

algorithm on this stream of li’s will give the distinct summation required, but the
algorithm should be able to efficiently process a list of elements. Each list li is a range
of integers, so this needs a range-efficient algorithm for F0.

Yet another application of range-efficient algorithms for F0 is in computing the
max-dominance norm of multiple data streams. The concept of the max-dominance
norm is useful in financial applications [CM03] and IP network monitoring [CM03].
The max-dominance norm problem is as follows: Given k streams of m integers each,
let
ai,j , i = 1, 2, . . . , k, j = 1, 2, . . . ,m, represent the jth element of the ith stream.
The max-dominance norm is defined as

∑m
j=1 max1≤i≤k ai,j . Assume for all ai,j ,

1 ≤ ai,j ≤ n. In section 5 we show that the computation of the max-dominance
norm can be reduced to range-efficient F0 and derive efficient algorithms using this
reduction.

The above examples illustrate that range-efficient computation of F0 is a funda-
mental problem, useful in diverse scenarios involving data streams. In this paper, we
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present a novel algorithm for range-efficient computation of F0 of a data stream that
provides the current best time and space bounds. It is well known [AMS99] that exact
computation of the F0 of a data stream requires space linear in the size of the input
in the worst case. In fact, even deterministically approximating F0 using sublinear
space is impossible. For processing massive data streams, it is clearly infeasible to use
space linear in the input size. Thus, we focus on designing randomized approximation
schemes for range-efficient computation of F0.

Definition 1. For parameters 0 < ε < 1 and 0 < δ < 1, an (ε, δ)-estimator for
a number Y is a random variable X such that Pr[|X − Y | > εY ] < δ.

1.1. Our results. We consider the problem of range-efficient computation of
F0, defined as follows. The input stream is R = r1, r2, . . . , rm, where each stream
element ri = [xi, yi] ⊂ [1, n] is an interval of integers xi, xi + 1, . . . , yi. The length of
an interval ri could be any number between 1 and n. Two parameters, 0 < ε < 1 and
0 < δ < 1, are supplied by the user.

The algorithm is allowed to view each element of the stream only once and has
a limited workspace. It is required to process each item quickly. Whenever the user
desires, it is required to output the F0 of the input stream, i.e., the total number of
distinct integers contained in all the intervals in the input stream R. For example, if
the input stream was [1, 10], [2, 5], [5, 12], [41, 50], then F0 = |[1, 12] ∪ [41, 50]| = 22.

We present an algorithm with the following time and space complexities:
• the amortized processing time per interval is O(log 1

δ log n
ε );

• the time to answer a query for F0 at anytime is O(1);
• the workspace used is O( 1

ε2 log 1
δ log n) bits.

Prior to this work, the most efficient algorithm for range-efficient F0 computation
was by Bar-Yossef, Kumar, and Sivakumar [BYKS02] and took O( 1

ε5 log 1
δ log5 n)

processing time per interval and O( 1
ε3 log 1

δ log n) space. Our algorithm performs
significantly better with respect to time and better with respect to space.

Extensions to the basic algorithm. The basic algorithm for range-efficient
F0 can be extended to the following more general scenarios:

• It can process a list of integers that is in an arithmetic progression as efficiently
as it can handle an interval of integers.

• The algorithm can also be used in the distributed streams model, where the
input stream is split across multiple parties and F0 has to be computed on
the union of the streams observed by all the parties.

• If the input consists of multidimensional ranges, then the algorithm can be
made range-efficient in every coordinate [BYKS02].

Our algorithm is based on random sampling. The set of distinct elements in the
stream is sampled at an appropriate probability, and this sample is used to determine
the number of distinct elements. The random sampling algorithm is based on the
algorithm of Gibbons and Tirthapura [GT01] for counting the number of distinct
elements in a stream of integers; however, their algorithm [GT01] was not range-
efficient.

A key technical ingredient in our algorithm is a novel range sampling algorithm,
which can quickly determine the size of a sample resulting from an interval of integers.
Using this range sampling algorithm, an interval of integers can be processed by the
algorithm much faster than processing them one by one, and this ultimately leads to
a faster range-efficient F0 algorithm.

1.2. Applications. As a result of the improved algorithm for range-efficient
F0, we obtain improved space and time bounds for dominance norms and distinct



362 A. PAVAN AND SRIKANTA TIRTHAPURA

summation.%newpage

Dominance norms. Using a reduction to range-efficient F0, which is elaborated
on in section 5, we derive an (ε, δ)-approximation algorithm for the max-dominance
norm with the following performance guarantees:

• the workspace in bits is O((logm + log n) 1
ε2 log 1

δ );
• the amortized processing time per item is O(log a

ε log 1
δ ), where a is the value

of the item being processed;
• the worst-case processing time per item is O((log logn log a) 1

ε2 log 1
δ ).

In prior work, Cormode and Muthukrishnan [CM03] gave an (ε, δ)-approxi-
mation algorithm for the max-dominance norm. Their algorithm uses space
O((log n + l 1ε logm log logm) 1

ε2 log 1
δ ) and spends O((log a logm) 1

ε4 log 1
δ ) time to pro-

cess each item, where a is the value of the current element. Our algorithm performs
better spacewise and significantly better timewise.

Distinct summation and data aggregation in sensor networks. Our al-
gorithm also provides improved space and time bounds for the distinct summation
problem, through a reduction to the range-efficient F0 problem. Given a multiset of
items M = {x1, x2, . . . }, where each xi is a tuple (ki, ci), where ki ∈ [1,m] is the
“type” and ci ∈ [1, n] is the “value.” The goal is to compute S =

∑
distinct(ki,ci)∈M ci.

In distinct summation, it is assumed that a particular type is always associated with
the same value. However, the same (type, value) pair can appear multiple times in
the stream. This reflects the setup used in sensor data aggregation, where each sensor
observation has an identifier and a value, and the same observation may be trans-
mitted to the sensor data “sink” through multiple paths. The sink should compute
aggregates such as the sum and average over only distinct observations.

We provide an (ε, δ)-approximation for the distinct summation problem with the
following guarantees:

• the amortized processing time per item is O(log 1
δ log n

ε );
• the time to answer a query is O(1);
• the workspace used is O((logm + log n) 1

ε2 log 1
δ ) bits.

Considine et al. [CLKB04] and Nath et al. [NGSA04] present alternative algo-
rithms for the distinct summation problem. Their algorithms are based on the al-
gorithm of Flajolet and Martin [FM85] and assume the presence of an ideal hash
function, which produces completely independent random outputs on different in-
puts. However, their analysis does not consider the space required to store such a
hash function. Moreover, it is known that hash functions that generate completely
independent random values on different inputs cannot be stored in limited space.

Our algorithm does not make an assumption about the availability of ideal hash
functions. Instead, we use a hash function which can be stored using limited space
but generates only pairwise-independent random numbers. We note that Alon, Ma-
tias, and Szegedy [AMS99] provide a way to replace the hash functions used in the
Flajolet–Martin algorithm [FM85] by pairwise-independent hash functions. However,
the F0 algorithm by Alon, Matias, and Szegedy [AMS99] is not range-efficient. If the
hash functions introduced by Alon, Matias, and Szegedy [AMS99] were used in the
algorithms in [CLKB04, NGSA04], there still is a need for a range sampling function
similar to the one we present in this paper.

Counting triangles in a data stream. As described above, the problem of
counting triangles in a graph that arrives as a stream of edges can be reduced to
range-efficient computation of F0 and F2 on a stream of integers. Our range-efficient
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F0 algorithm provides a faster solution to one of the components of the problem.
However, due to the high complexity of the range-efficient algorithm for F2, this
is not sufficient to obtain an overall reduction in the runtime of the algorithm for
counting triangles in graphs. There is recent progress on the problem of counting
triangles by Buriol et al. [BFL+06] (see also Jowhari and Ghodsi [JG05]), who give
an algorithm through direct random sampling, without using the reduction to F0 and
F2. The algorithm by Buriol et al. is currently the most efficient solution to this
problem and has a space complexity proportional to the ratio between the number of
length 2 paths in the graph and the number of triangles in the graph and an expected
update time O(log |V | · (1 + s · |V |/|E|)), where s is the space requirement and V and
E are the vertices and the edges of the graph, respectively.

1.3. Related work. Estimating F0 of a data stream is a very well studied prob-
lem, because of its importance in various database and networking applications. It is
well known that computing F0 exactly requires space linear in the number of distinct
values, in the worst case. Flajolet and Martin [FM85] gave a randomized algorithm
for estimating F0 using O(log n) bits. This assumed the existence of certain ideal
hash functions, which we do not know how to store in small space. Alon, Matias, and
Szegedy [AMS99] describe a simple algorithm for estimating F0 to within a constant
relative error which worked with pairwise-independent hash functions and also gave
many important algorithms for estimating other frequency moments Fk, k > 1 of a
data set.

Gibbons and Tirthapura [GT01] and Bar-Yossef et al. [BYJK+02] present algo-
rithms for estimating F0 to within arbitrary relative error. Neither of these algo-
rithms is range-efficient. The algorithm by Gibbons and Tirthapura used random
sampling; its space complexity was O( 1

ε2 log 1
δ log n), and processing time per element

was O(log 1
δ ). The space complexity of this algorithm was improved by Bar-Yossef

et al. [BYJK+02], who gave an algorithm with better space bounds, which are the
order of the sum of O(log n) and poly( 1

ε ) terms rather than their product, but at the
cost of increased processing time per element.

Indyk and Woodruff [IW03] present a lower bound of Ω(logn + 1
ε2 ) for the space

complexity of approximating F0, thus narrowing the gap between known upper and
lower bounds for the space complexity of F0. Since the F0 problem is a special case
of the range-efficient F0 problem, these lower bounds apply to range-efficient F0,
too. Thus our space bounds of O((logm+log n) 1

ε2 log 1
δ ) compare favorably with this

lower bound, showing that our algorithms are near optimal spacewise. However an
important metric for range-efficient F0 is the processing time per item, for which no
useful lower bounds are known.

The work of Feigenbaum et al. [FKSV02] on estimating the L1-difference be-
tween streams also has the idea of reductions between data stream algorithms and
uses a range-efficient algorithm in their reduction. Bar-Yossef, Kumar, and Sivaku-
mar [BYKS02] mention that their notion of reductions and list-efficiency were in-
spired by the above-mentioned work of Feigenbaum et al. The algorithm for the
L1-difference [FKSV02] is not based on random sampling but relies on quickly sum-
ming many random variables. They develop limited independence random variables
which are range summable, while our sampling-based algorithm makes use of a range
sampling technique. Further work on range summable random variables includes
Gilbert et al. [GKMS03], Reingold and Naor (for a description see [GGI+02]), and
Calderbank et al. [CGL+05].

There is much other interesting work on data stream algorithms. For an overview,
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the reader is referred to the excellent surveys in [Mut05, BBD+02].

Organization of this paper. The rest of the paper is organized as follows:
Section 2 gives a high level overview of the algorithm for range-efficient F0. Section 3
gives the range sampling algorithm, its proof, and analysis of complexity. Section 4
presents the algorithm for computing F0 using the range sampling algorithm as the
subroutine. Section 5 gives extensions of the basic algorithm to distributed streams
and the computation of dominance norms.

2. A high level overview. Our algorithm is based on random sampling. A
random sample of the distinct elements of the data stream is maintained at an appro-
priate probability, and this sample is used in finally estimating the number of distinct
elements in the stream. A key technical ingredient is a novel range sampling algo-
rithm, which quickly computes the number of integers in a range [x, y] which belong
to the current random sample. The other technique needed to make random sampling
work here is adaptive sampling (see Gibbons and Tirthapura [GT01]), where the sam-
pling probability is decreased every time the sample overflows. The range sampling
algorithm, when combined with adaptive random sampling, yields the algorithm for
range-efficient estimation of F0.

2.1. A random sampling algorithm for F0. At a high level, our random
sampling algorithm for computing F0 follows a similar structure to the algorithm
by Gibbons and Tirthapura [GT01]. We first recall the main idea of their random
sampling algorithm. The algorithm keeps a random sample of all the distinct elements
seen so far. It samples each element of the stream with a probability P , while making
sure that the sample has no duplicates. Finally, when an estimate is asked for F0, it
returns the size of the sample, multiplied by 1/P . However, the value of P cannot
be decided in advance. If P is large, then the sample might become too big if F0 is
large. On the other hand, if P is too small, then the approximation error might be
very high if the value of F0 was small. Thus, the algorithm starts off with a high
value of P = 1 and decreases the value of P every time the sample size exceeds a
predetermined maximum sample size, α.

The algorithm maintains a current sampling level � which determines a sampling
probability P�. The sampling probability P� decreases as level � increases. Initially,
� = 0, and � never decreases. The sample at level �, denoted S(�), is determined by a
hash function S(·, �) for � = 0, 1, . . . , �max, where �max is some maximum level to be
specified later.

When item x is presented to the algorithm, if S(x, �) = 1, then x is stored in
the sample S(�), and it is not stored otherwise. Each time the size of S(�) exceeds α
(i.e., an overflow occurs), the current sampling level � is incremented, and an element
x ∈ S(�) is placed in S(� + 1) only if S(x, � + 1) = 1. We will always ensure that
if S(x, � + 1) = 1, then S(x, �) = 1. Thus S(� + 1) is a subsample of S(�). Finally,
anytime an estimate of the number of distinct elements is asked for, the algorithm

returns |S(�)|
P�

, where � is the current sampling level. We call the algorithm described
so far as the single-item algorithm.

2.2. Range efficiency. When each element of the stream is an interval of items
rather than a single item, the main technical problem is to quickly figure out how
many points in this interval belong in the sample. More precisely, if � is the current
sampling level and an interval ri = [xi, yi] arrives, it is necessary to know the size of
the set {x ∈ ri|S(x, �) = 1}. We call this the range sampling problem.

A naive solution to range sampling is to consider each element x ∈ ri individually
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and check if S(x, �) = 1, but the processing time per item would be Θ(yi −xi), which
could be as much as Θ(n). We show how to reduce the time per interval significantly,
to O(log(yi − xi)) operations.

The range-efficient algorithm simulates the single-item algorithm as follows: When
an interval ri = [xi, yi] arrives, the size of the set {x ∈ ri|S(x, �) = 1} is computed.
If the size is greater than zero, then ri is added to the sample; otherwise, ri is dis-
carded. If the number of intervals in the sample becomes too large, then the sampling
probability is decreased by increasing the sampling level from � to � + 1. When
such an increase in sampling level occurs, every interval r in the sample such that
{x ∈ r|S(x, � + 1) = 1} is empty is discarded.

Finally, when an estimate for F0 is asked for, suppose the current sample is the
set of intervals S = {r1, . . . , rk} and � is the current sampling level. The algorithm
returns |T |/P�, where T = {x ∈ ri | ri ∈ S, S(x, �) = 1}.

2.2.1. Hash functions. Since the choice of the hash function is crucial for
the range sampling algorithm, we first precisely define the hash functions used for
sampling. We use a standard 2-universal family of hash functions [CW79]. First
choose a prime number p between 10n and 20n, and then choose two numbers a, b at
random from {0, . . . , p − 1}. Define hash function h : {1, . . . , n} → {0, . . . , p − 1} as
h(x) = (a · x + b) mod p.

The two properties of h that are important to the F0 algorithm are as follows:
1. For any x ∈ {1, . . . , n}, h(x) is uniformly distributed in {0, . . . , p− 1}.
2. The mapping is pairwise independent.

For x1 �= x2 and y1, y2 ∈ {0, . . . , p− 1},
Pr[(h(x1) = y1) ∧ (h(x2) = y2)] = Pr[h(x1) = y1] · Pr[h(x2) = y2].

For each level � = 0, . . . , 	log n
, we define the following:
• Region R� ⊂ {0, . . . , p− 1}:

R� =
{

0, . . . ,
⌊ p

2�

⌋
− 1

}
.

• For every x ∈ [1, n], the sampling function S(x, �) is defined as
S(x, �) = 1 if h(x) ∈ R� and S(x, �) = 0 otherwise.

• The sampling probability at level � is denoted by P�. For all x1, x2 ∈ [1, n],
Pr[S(x1, �) = 1] = Pr[S(x2, �) = 1], and we denote this probability by P�.
Since h(x) is uniformly distributed in {0, . . . , p− 1}, we have P� = |R�|/p.

2.2.2. Range sampling. During range sampling, the computation of the num-
ber {x ∈ ri|S(x, �) = 1} reduces to the following problem: Given numbers a, b, and p
such that 0 ≤ a, b < p, function f : [1, n] → [0, p − 1] is defined as f(x) = (a · x + b)
mod p. Given intervals [x1, x2] ⊂ [1, n] and [0, q] ⊂ [0, p−1], quickly compute the size
of the set {x ∈ [x1, x2]|f(x) ∈ [0, q]}.

Note that n could be a large number, since it is the size of the universe of integers
in the stream. We present an efficient solution to the above problem. Our solution is
a recursive procedure which works by reducing the above problem to another range
sampling problem but over a significantly smaller range, whose length is less than
half the length of the original range [x1, x2]. Proceeding thus, we get an algorithm
whose time complexity is O(log(x2 −x1)). Our range sampling algorithm might be of
independent interest and may be useful in the design of other range-efficient algorithms
for the data stream model.

The algorithms for computing F0 found in [AMS99, GT01, BYJK+02] use hash
functions defined over GF (2m), which are different from the ones that we use. Bar-
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Yossef et al. [BYKS02], in their range-efficient F0 algorithm, use the Toeplitz family
of hash functions [Gol97], and their algorithm uses specific properties of those hash
functions.

3. Range sampling algorithm. In this section, we present a solution to the
range sampling problem, its correctness, and time and space complexities. The al-
gorithm RangeSample(ri = [xi, yi], �) computes the number of points x ∈ [xi, yi] for
which h(x) ∈ R�, where h(x) = (ax + b) mod p. This algorithm is later used as
a subroutine by the range-efficient algorithm for F0, which is presented in the next
section:

RangeSample([xi, yi], �) =
∣∣∣
{
x ∈ [xi, yi]|h(x) ∈

[
0,
⌊ p

2�

⌋
− 1

]}∣∣∣ .

Note that the sequence h(xi), h(xi + 1), . . . , h(yi) is an arithmetic progression
over Zp (Zk is the ring of integers modulo k) with a common difference a. Thus, we
consider the following general problem.

Problem 1. Let M > 0, 0 ≤ d < M , and 0 < L ≤ M . Let S = 〈u =
x1, x2, . . . , xn〉 be an arithmetic progression over ZM with common difference d, i.e,
xi = (xi−1 + d) mod M . Let R be a region of the form [0, L − 1] or [−L + 1, 0].
Compute |S ∩R|.

We first informally describe the idea behind our algorithm for Problem 1 and then
go on to the formal description. For this informal description, we consider only the
case R = [0, L− 1].

We first define a total order among the elements of Zm. Observe that an element
of Zm has infinitely many representations. For example, if x ∈ Zm, then x, x+m,x+
2m, . . . are possible representations of x. For x ∈ Zm, the standard representation of
x is the smallest nonnegative integer std(x) such that x ≡ std(x) in Zm. If x and y
are two elements of Zm, then we say x < y if std(x) is less than std(y) in the normal
ordering of integers. We say x > y if std(x) �= std(y) and x �< y. In the rest of the
paper, we use the standard representation for elements over Zm. Given an element
x ∈ Zm, we define −x as m− x.

3.1. Intuition. Divide S into subsequences S0, S1, . . . , Sk, Sk+1 as follows: S0 =
〈x1, x2, . . . , xi〉, where i is the smallest natural number such that xi > xi+1. The
subsequences Sj , j > 0 are defined inductively. If Sj−1 = 〈xt, xt+1, . . . , xm〉, then
Sj = 〈xm+1, xm+2, . . . , xr〉, where r is the smallest number such that r > m + 1 and
xr > xr+1; if no such r exists, then xr = xn. Note that if Sj = 〈xt, xt+1, . . . , xm〉 then
xt < d and xt, xt+1, . . . , xm are in ascending order. Let fj denote the first element of
Sj , and let ej denote the last element of Sj .

We treat the computation of |S0 ∩ R| and |Sk+1 ∩ R| as special cases and now
focus on the the computation of |Si∩R| for 1 ≤ i ≤ k. Let L = d×q+r, where r < d.
Note that the values of q and r are unique. We observe that, for each i ∈ [1, k], it is
easy to compute the number of points of Si that lie in R. More precisely we make
the following observation.

Observation 1. For every i ∈ [1, k], if fi < r, then |Si ∩ R| = 	L
d 
 + 1, else

|Si ∩R| = 	L
d 
.

Thus Problem 1 is reduced to computing the size of the following set:

{i | 1 ≤ i ≤ k, fi ∈ [0, r − 1]} .

The following observation is critical.
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Observation 2. The sequence 〈f1, f2, . . . , fk〉 forms an arithmetic progression over
Zd.

We show in Lemma 2 that the common difference of this sequence is d − r′,
where r′ = Mmod d. Thus, we have reduced the original problem (Problem 1) with
a common difference of d to a smaller problem, whose common difference is d − r′.
However, this reduction may not always be useful since d − r′ may be not be much
smaller than d. However, we now show that it is always possible to get a reduction
to a subproblem with a significantly smaller common difference.

We can always view any arithmetic progression over Zd with common difference
d − r′ as an arithmetic progression with common difference −r′. The next crucial
observation is as follows.

Observation 3. At least one of d − r′ or r′ is less than or equal to d/2, and we
can choose to work with the smaller of d− r′ or r′.

Thus, we have reduced Problem 1 to a smaller problem, whose common difference
is at most half the common difference of Problem 1. Proceeding thus, we get a
recursive algorithm whose time complexity is logarithmic in d.

3.2. Formal description. We start with the following useful lemmas.
Lemma 1. If R = [0, L− 1], then for 1 ≤ i ≤ k,

|Si ∩R| =

{ 	L
d 
 + 1 if fi ∈ [0, r − 1],
	L
d 
 if fi /∈ [0, r − 1].

If R = [−L + 1, 0], then

|Si ∩R| =

{ 	L
d 
 + 1 if ei ∈ [−r + 1, 0],
	L
d 
 if ei /∈ [−r + 1, 0].

Note that each fi is less than d, and so we can view the fi’s as elements over Zd.
Below we show that the fi’s form an arithmetic progression over Zd.

Lemma 2. Let M = d×q′+r′, where r′ < d. Then, for 1 ≤ i < k, fi+1 = (fi−r′)
mod d.

Proof. Recall that Si = 〈fi, fi + d, . . . , ei〉 and M − d ≤ ei ≤ M − 1. We have two
cases.

If fi < r′, then ei = fi + q′ × d. Thus

fi+1 = (ei + d) mod M

= (fi + q′ × d + r′ + d− r′) mod M

= (fi + M + (d− r′)) mod M

= (d− (r′ − fi)) mod M.

Since fi+1 is less than d, the final expression for fi+1 can be written in Zd as
follows: fi+1 = (fi + (d− r′)) mod d = (fi − r′) mod d.

In the second case, if fi ≥ r′, then ei = (fi + (q′ − 1) × d) mod M . Thus,
fi+1 = (fi + q′ × d) mod M = (fi − r′) mod M.

Since fi+1 is less than d, the above can be written in Zd as fi+1 = (fi − r′)
mod d.

Note that similar to the fi’s, the ei’s are also restricted to having a value in a
range of length d, since M − 1 ≥ ei ≥ M − d. However, the ei’s do not directly form
an arithmetic progression over Zd. Thus, we define a function map : {M −d,M −d+
1, . . . ,M − 1} → Zd such that map(ei)’s form an arithmetic progression over Zd.
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Definition 2. For M − d ≤ x < M , map(x) = M − x− 1.
We now present the following lemma for map(ei)’s, which is similar to Lemma 2.

We omit the proof since it is similar to the proof of Lemma 2.
Lemma 3. Let M = d × q′ + r′, where r′ < d. Then, for 1 < i ≤ k, map(ei) =

(map(ei−1) + r′) mod d.
Next we argue that, for our purposes, any arithmetic progression with common

difference −r′ can be viewed as a different arithmetic progression with common differ-
ence r′. Let T = 〈y1, y2, . . . , yk〉 be an arithmetic progression over Zt with a common
difference −s, i.e.,

yi = (yi−1 − s) mod t.

Let R be of the form [0, L−1] or [−L+1, 0]. Define R′ as follows: if R = [0, L−1],
then R′ = [−L + 1, 0], else R′ = [0, L− 1].

Lemma 4. Let T ′ = 〈y′1, y′2, . . . , y′k〉 be an arithmetic progression over Zt defined
as y′1 = −y1, and for 1 < i < k, y′i = (y′i−1 + s) mod t. Then,

|T ∩R| = |T ′ ∩R′|.
Proof. If y1 − ks = x mod t, then −y1 + ks = −x mod t. Thus x ∈ R if and

only if −x ∈ R′.

3.2.1. Description of the algorithm. Now we describe our algorithm for
Problem 1.

Procedure Hits(M , d, u, n, R).
Precondition: R is of the form [0, L − 1] or [−L + 1, 0], where L ≤ M , and
u < M, d < M.
Goal: Compute |S ∩R|, where

S = 〈u, (u + d) mod M, . . . , (u + n× d) mod M〉.
1. (a) If n = 0, then Return 1 if u ∈ R, else Return 0.

(b) Let S = S0, S1, . . . , Sk, Sk+1. Compute k.
(c) Hits0 ← |S0 ∩R|. Hitsk+1 ← |Sk+1 ∩R|.
(d) If d = 1, then

Return Hits0 + Hitsk+1 + (L× k).
2. Compute r and r′ such that L = d × q + r, r < d and M = d × q′ + r′ and

r′ < d.
3. If R = [0, L− 1], then

3.1. Compute f1, where f1 is the first element of S1.
3.2. unew ← f1, Mnew ← d, nnew ← k.
3.3. If d− r′ ≤ d/2, then Rnew ← [0, r − 1] and dnew ← d− r′.

Comment: In this case, we view the fi’s as arithmetic progression over
Zd with common difference d− r′.

3.4. High = Hits(Mnew, dnew, unew, nnew, Rnew).
Comment: By making a recursive call to Hits, we are computing High,
the cardinality of the set {i | fi ∈ [0, r − 1], 1 ≤ i ≤ k}.

3.5. If d − r′ > d/2 (so r′ ≤ d/2), then unew ← −f1, dnew ← r′, and
Rnew ← [−r + 1, 0].
Comment: In this case we consider the fi’s as an arithmetic progression
over Zd with common difference −r′.

3.6. High = Hits(Mnew, dnew, unew, nnew, Rnew).
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3.7. Low ← (k − High). Return

Hits0 + Hitsk+1 +

(
High ·

(⌊
L

d

⌋
+ 1

))
+

(
Low ·

⌊
L

d

⌋)
.

4. If R = [−L + 1, 0] then
4.1. Compute e1 and map(e1), where e1 is the last element of S1.
4.2. unew ← map(e1),Mnew ← d, nnew ← k.
4.3. If r′ ≤ d/2, then Rnew ← [0, r − 1], and dnew ← r′.

Comment: In this case we view map(ei)’s as an arithmetic progression
over Zd with common difference r′.

4.4. High = Hits(Mnew, dnew, unew, nnew, Rnew).
4.5. If r′ > d/2 (so d − r′ ≤ d/2), then unew ← −map(e1), dnew ← d − r′,

and Rnew ← [−r + 1, 0].
Comment: In this case we view map(ei)’s as an arithmetic progression
over Zd with common difference −r′.

4.7. High = Hits(Mnew, dnew, unew, nnew, Rnew).
4.8. Low ← (k − High). Return

Hits0 + Hitsk+1 +

(
High ·

(⌊
L

d

⌋
+ 1

))
+

(
Low ·

⌊
L

d

⌋)
.

3.3. Correctness of Hits.
Theorem 1. Given M,d, u, n,R, Algorithm Hits correctly computes the solution

to Problem 1.
Proof. We first consider the case R = [0, L − 1]. It is easy to verify that when

d = 1 or when n = 0 the algorithm correctly computes the answer. Note that

|S ∩R| = |S0 ∩R| + |Sk+1 ∩R| +
i=k∑

i=1

|Si ∩R|.

Step 1 correctly computes |S0 ∩ R| and |Sk+1 ∩ R|. By Lemma 1, for 1 ≤ i ≤ k,
|Si ∩ R| is 	L

d 
 + 1 if fi ∈ [0, r − 1] and is 	L
d 
 if fi /∈ [0, r − 1]. Let High denote

the number of fi’s for which fi ∈ [0, r − 1]. Given the correct value of High, the
algorithm correctly computes the final answer in step 3.4.

Thus the goal is to show that the algorithm correctly computes the value of High.
Let T = 〈f1, . . . , fk〉. At this point, the algorithm considers two cases.

If d−r′ ≤ d/2, then the algorithm is required to compute the number of elements
in T that lie in [0, r − 1]. By Lemma 2, T is an arithmetic progression over Zd, with
common difference d− r′. The starting point of this progression is f1; the number of
elements in the progression is k. Thus the algorithm makes a correct recursive call to
Hits.

If d− r′ > d/2, then by Lemma 2 T is an arithmetic progression over Zd with the
common difference −r′. The algorithm is required to compute |T ∩ [0, r − 1]|.

Define a new sequence T ′ = 〈f ′
1, f

′
2, . . . , f

′
k〉 over Zd as follows: f ′

1 = −f1 and
f ′
i+1 = (f ′

i + r′) mod d, 1 ≤ i ≤ k − 1. By Lemma 4,

|T ∩ [0, r − 1]| = |T ′ ∩ [−r + 1, 0]|.

Thus the algorithm makes the correct recursive call in step 3.4 to compute |T ′∩ [−r+
1, 0]| which equals |T ∩ [0, r − 1]|.
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Thus the algorithm correctly computes S ∩ R when R is of the form [0, L − 1].
Correctness for the case when R is of the form [−L + 1, 0] follows similarly.

3.4. Complexity of Hits. For the time complexity, we assume that all arith-
metic operations in Zk, including addition, multiplication, and division, take unit
time.

Theorem 2. The time complexity of Hits(M,d,u,n,R) is O(min{log d, log n}),
and the space complexity is O(logM + log n).

Proof. Time complexity: It is clear that steps 1 and 2 can be completed using
a constant number of operations. The algorithm makes a recursive call in step 3 or
4. Also, it is clear that dnew ≤ d/2. Thus if we parametrize the running time of the
algorithm with d, then

T (d) = T (dnew) + O(1)

≤ T (d/2) + O(1) = O(log d).

We can get a better bound on the running time as follows: The input parameters
to the recursive procedure are M , d, u, n, R. When the recursive procedure is called,
the parameters are Mnew = d, dnew ≤ d/2, nnew ≤ �n · d/M�.

In every recursive call except (perhaps) the first, it must be true that d ≤ M/2.
Thus, in every recursive call except for the first, nnew ≤ n/2. If we parametrize the
running time on n, then the total time of the algorithm is O(log(n)).

Space complexity: Whenever the Hits algorithm makes a recursive call, it needs
to store values of a constant number of local variables such as Hits0, Hitsk+1, n, etc.
Since M dominates u, d, and L, each time the algorithm makes a recursive call, it
needs O(log n + logM) of stack space. Since the depth of the recursion is no more
than logn, the total space needed is O(log n · (log n+ logM)). We can further reduce
the space by a careful implementation of the recursive procedure as follows.

In general Hits(p1, p2, . . . , p5) = β + γ Hits(p′1, p
′
2, . . . , p

′
5), where β and γ are

functions of p1, . . . , p5. This is a tail-recursive procedure, which can be implemented
without having to allocate space for a new stack for every recursive call and without
having to tear down the stack upon a return. Thus, the total space can be reduced
to O(log n + logM).

4. Algorithm for range-efficient F0. We now describe the complete algorithm
for estimating F0, using the range sampling algorithm as a subroutine. We then
present its correctness and time and space complexities.

From section 2, recall the following notation: The input stream is r1, r2, . . . , rm,
where each stream element ri = [xi, yi] ⊂ [1, n] is an interval of integers xi, xi +
1, . . . , yi. Integer p is a prime number between 10n and 20n. For each level � =
0, . . . , �log p�, the following hold:

1. R� = {0, . . . , 	 p
2� 
 − 1}.

2. For every x ∈ [1, n], the sampling function at level �, S(x, �), is defined as
S(x, �) = 1 if h(x) = 1 and S(x, �) = 0 otherwise.

3. The sampling probability at level � is P� = |R�|/p.
4.1. Algorithm description. A formal description of the algorithm appears in

Figure 1. The algorithm does not directly yield an (ε, δ)-estimator for F0 but instead
gives an estimator which is within a factor of ε of F0 with a constant probability.
Finally, by taking the median O(log 1

δ ) of such estimators, we get an (ε, δ)-estimator.

The random sample. The algorithm maintains a sample S of the intervals seen
so far. S is initially empty. The maximum size of S is α = 60

ε2 intervals. The algorithm



DISTINCT ELEMENTS IN DATA STREAMS 371

Initialization.
1. Choose a prime number p such that 10n ≤ p ≤ 20n, and choose two numbers

a, b at random from {0, . . . , p− 1}.
2. S ← φ.
3. � ← 0.

When a new interval ri = [xi, yi] arrives:
1. If ri intersects with any interval in S, then

(a) While there is an interval r ∈ S such that r ∩ ri �= φ,
i. S ← S − r;
ii. ri ← ri ∪ r.

(b) S ← S ∪ ri.
2. Else If RangeSample(ri, �) > 0, then

(a) S ← S ∪ {ri} // insert into sample;
(b) While (|S| > α) // overflow,

i. � ← � + 1.
If � > �log p�, then // maximum level

// reached, algorithm fails
return;

ii. S ← {r ∈ S|RangeSample(r, �) > 0}.

When an estimate for F0 is asked for: Return
∑

r∈S RangeSample(r, �)/P�

Fig. 1. The range-efficient F0 algorithm using the range sampling algorithm as a subroutine.

also has a current sampling level �, which is initialized to 0. We maintain the following
invariants for the random sample S.

Invariant 1. All the intervals in S are disjoint.
Invariant 2. Every interval in S has at least one element selected into the sample

at the current sampling level.

When a new interval ri = [xi, yi] arrives. The algorithm first checks if ri
intersects with any currently existing interval in S. If so, it deletes all the intersecting
intervals from S, merges all of them with ri to form a single interval, and inserts the
resulting interval into S. If ri does not intersect with any currently existing interval,
it calls the range sampling subroutine to determine if any point in [xi, yi] belongs in
S at level �. If yes, then the whole interval is stored in the sample.

Overflow. It is possible that after adding a new element to the sample, the
size of S exceeded α. In such a case, the algorithm increases its sampling level and
subsamples the elements of the current sample into the new level. This subsampling
is repeated until either the size of the sample becomes less than α or the maximum
sampling level is reached (i.e., � = �log p�).

Estimating F0. When an estimate is asked for, the algorithm uses the range
sampling routine to determine the size of the current sample and returns this value
boosted by 1/P�, where � is the current sampling level.

4.2. Proof of correctness. The proof follows a parallel structure to the proof
by Gibbons and Tirthapura [GT01]. We give the complete correctness proof here
because the hash functions used here are different from those in [GT01] and also for
the sake of completeness.

Fact 1. For any � ∈ [0, . . . , �log p�], 1/2�+1 ≤ P� ≤ 1/2�.
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Fact 2. For any � ∈ [0, . . . , �log p�], the random variables {S(x, �)|x ∈ [1, n]} are
all pairwise independent.

Lemma 5. Invariants 1 and 2 are true before and after the processing of each
interval in the stream.

Proof. We prove by induction on the number of intervals that have been processed.
The base case is clear, since S is initialized to φ. Suppose a new interval r arrives.
If r intersects with any interval already in S, then our algorithm clearly maintains
Invariant 1, and it can be verified that Invariant 2 also holds. If r does not intersect
with any element already in S, then it is included in the sample if and only if r has at
least one element which would be sampled at the current sampling level. This ensures
that Invariant 2 is maintained. It can be easily verified that the steps taken to handle
an overflow also maintain the invariants.

Let random variable Z denote the result of the algorithm. We analyze the al-
gorithm by looking at the following hypothetical process. This process is useful for
us only to visualize the proof and is not executed by the algorithm. The stream of
intervals R is “expanded” to form the stream I of the constituent integers. For each
interval [xi, yi] ∈ I, the integer stream I consists of xi, xi + 1, . . . , yi.

Let D(I) denote the set of all distinct elements in I. We want to estimate F0 =
|D(I)|. Each element in D(I) is placed in different levels as follows. All the elements
of D(I) are placed in level 0. An element x ∈ D(I) is placed in every level � > 0
such that S(x, �) = 1. For level � = 0 . . . �log p�, let X� denote the number of distinct
elements placed in level �.

Lemma 6. E[X�] = F0P�, and V ar[X�] = F0P�(1 − P�).
Proof. By definition, X� =

∑
x∈D(I) S(x, �). Thus, E[X�] =

∑
x∈D(I) E[S(x, �)] =

|D(I)|P� = F0P�. Because the random variables {S(x, �)|x ∈ D(I)} are all pairwise
independent (Fact 2), the variance of their sum is the sum of their variances, and the
expression for the variance follows.

Let �∗ denote the smallest integer � ≥ 0 such that X� ≤ α. Let �′ denote the level
at which the algorithm finally ends.

Lemma 7. The algorithm returns Z = X�′/P�′ and �′ ≤ �∗.
Proof. We first show that �′ ≤ �∗. If the algorithm never increased its sampling

level, then �′ = 0 and thus �′ ≤ �∗ trivially. Suppose �′ ≥ 1. Thus the algorithm
must have increased its sampling level from �′ − 1 to �′. The increase in level must
have been due to an overflow, and the number of (disjoint) intervals at level �′ − 1
must have been more than α. Since, due to Invariant 2, each interval in the sample
at level �′ − 1 has at least one point x such that S(x, �′ − 1) = 1, it must be true that
X�′−1 > α, and similarly it follows that X� > α for any � < �′. However, by definition
of �∗, it must be true that X�∗ ≤ α. Thus it must be true that �∗ ≥ �′.

Next, we show that the algorithm returns X�′/P�′ . Consider the set S′ = {x ∈
D(I)|S(x, �′) = 1}. Consider some element x ∈ S′. Integer x must have arrived as a
part of some interval r ∈ R. Either r must be in S (if r did not intersect with any
range already in the sample and was not later merged with any other interval), or
there must be an interval r′ ∈ S such that r ⊂ r′. In both cases, x is included in
S. Further, because of Invariant 1, x will be included in exactly one interval in S
and will be counted (exactly once) as a part of the sum

∑
r∈S RangeSample(r, �′).

Conversely, an element y such that S(y, �′) = 0 will not be counted in the above sum.
Thus, the return value of the algorithm is exactly |S′|/P�, which is X�′/P�′ .

Define a level � to be good if X�/P� is within ε relative error of F0. Otherwise,
level � is bad. For each � = 0, . . . , �log p�, let B� denote the event that level � is bad,
and let T� denote the event that the algorithm stops at level �.
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Theorem 3.

Pr {Z ∈ [(1 − ε)F0, (1 + ε)F0]} ≥ 2/3.

Proof. Let P denote the probability that the algorithm fails to produce a good
estimate. This happens if any of the following is true:

• The maximum level max = �log p� is reached.
• The level at which the algorithm stops is a bad level, i.e., only for some
� ∈ {0, . . . , �log p� − 1}, T� and B� are both true.

Thus

P = Pr[Tmax] +

max−1∑

�=0

Pr[T� ∧B�].

Let �m denote the lowest numbered level � such that E[X�] < α/2. We prove that
�m exists and 0 ≤ �m < max.

Using Lemma 6, we first note that E[Xmax] = PmaxF0. Using Fact 1 and max =
�log p�, we get Pmax ≤ 1/p. Since F0 ≤ n, we get E[Xmax] ≤ n/p ≤ 1/10; since p is
a prime number between 10n and 20n:

(1) E[Xmax] ≤ 1

10
.

Since α = 60/ε2, we have E[Xmax] < α/2. Thus �m exists.
Next, we argue that �m < max. By definition of �m, E[X�m−1] = P�m−1F0 ≥ α/2.

From Fact 1, we know that P�m−1 ≤ 4P�m . Thus, E[X�m ] = P�mF0 ≥ (1/4)α/2 =
60ε2/8 > 7:

(2) E[X�m ] > 7.

From (1) and (2), we have �m < max.
We now bound P as

P = Pr[Tmax] +

max−1∑

�=�m+1

Pr[T� ∧B�] +

�m∑

�=0

Pr[T� ∧B�]

≤ Pr[Tmax] +

max−1∑

�=�m+1

Pr[T�] +

�m∑

�=0

Pr[B�]

≤
max∑

�=�m+1

Pr[T�] +

�m∑

�=0

Pr[B�].

In Lemma 8 we show that
∑�m

�=0 Pr[B�] < 16/60, and in Lemma 9 we show that∑max
�=�m+1 Pr[T�] < 1/30. Putting them together, the theorem is proved.

Lemma 8.

∑�m
�=0 Pr[B�] < 16/60.

Proof. Let μ� and σ� denote the mean and standard deviation of X�, respectively.
Then,

Pr[B�] = Pr |X� − μ�| ≥ εμ�.

Using Chebyshev’s inequality, Pr |X� − μ�| ≥ tσ� ≤ 1
t2 and substituting t = εμ�

σ�
,

we get

(3) Pr[B�] ≤ σ2
�

ε2μ2
�

.
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Substituting values from Lemma 6 into (3), we get

Pr[B�] ≤ 1 − P�

ε2P�F0

<
1

F0ε2P�
.

Thus,

�m∑

�=0

Pr[B�] =
1

F0ε2

�m∑

�=0

1

P�
.

From Fact 1, we have 1/P� ≤ 2�+1. Thus, we have

�m∑

�=0

Pr[B�] ≤ 1

F0ε2

�m∑

�=0

2�+1 <
1

F0ε2
2�m+2.

By definition, �m is the lowest numbered level � such that E[X�] < α/2. Thus,
F0P�m−1 = E[X�m−1] ≥ α/2. Using Fact 1, we get F0/2

�m−1 ≥ α/2. It follows that

�m∑

�=0

Pr[B�] ≤ 4

ε2
2�m

F0

≤ 4

ε2
4

α
<

16

60

by using α = 60
ε2 .

Lemma 9.

∑max
�=�m+1 Pr[T�] < 1/30.

Proof. Let Ps =
∑max

�=�m+1 Pr[T�]. We see that Ps is the probability that the
algorithm stops in level �m + 1 or greater. This implies that at level �m there were
at least α intervals in the sample S. Invariant 2 implies that there were at least α
elements sampled at that level, so that X�m ≥ α.

Ps ≤ Pr[X�m ≥ α]

= Pr
[
X�m − μ�m ≥ α− α

2

]

≤ σ2
�m

α2(1/2)
2
.

From Lemma 6, we get σ2
�m

< E[X�m ] < α/2. Using this in the above expression,
we get

Ps ≤ 2

α
=

2ε2

60
<

1

30
.

The last inequality is obtained by using ε < 1.

4.3. Time and space complexity. In this section we prove bounds on the time
and space complexity of the algorithm.

Lemma 10. The space complexity of the range-efficient (ε, δ)-estimator for F0 is

O( log 1/δ logn
ε2 ).

Proof. The workspace required is the space for the sample S plus the workspace
for the range sampling procedure RangeSample. Sample S contains α intervals,
where each interval can be stored using two integers, thus taking 2 logn bits of space.
The workspace required by the range sampling procedure is O(log n) bits, so that the
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total workspace is O(α log n + log n) = O( log n
ε2 ). Since the we need to run O(log 1/δ)

instances of this algorithm, the total space complexity is O( log 1/δ logn
ε2 ). We note that

the space complexity is identical to that of the single-item case, where each data item
is a single number instead of a range.

As noted in section 3, we assume that arithmetic operations, including addition,
multiplication, and division, in Zk take unit time.

Lemma 11. The amortized time taken to process an interval r = [x, y] by the
range-efficient (ε, δ)-estimator for F0 is O(log (n/ε) log 1/δ).

Proof. The time to handle a new interval r = [x, y] consists of three parts:
1. time for checking if r intersects any interval in the sample;
2. time required for range sampling (from Theorem 2 this is O(log(y−x)), which

is always O(log n), and perhaps is much smaller than Θ(logn)).
3. time for handling an overflow in the sample.

We now analyze the time for the first and third parts.

First part. This is the time to check if the interval intersects any of the O(1/ε2)
intervals already in the sample and to merge them, if necessary. This takes O(1/ε2)
time if done naively. This can be improved to O(log (1/ε)) amortized time as follows:
Since all the intervals in S are disjoint, we can define a linear order among them in
the natural way. We store S in a balanced binary search tree T (S) augmented with
in-order links. Each node of T (S) is an interval, and by following the in-order links,
we can get the sorted order of S. When a new interval r = [x, y] arrives, we first
search for the node in T (S) which contains x. There are three cases possible:

(a) Interval r does not intersect any interval in S. In this case, r is inserted into
the tree, which takes O(log (1/ε)) time.

(b) Interval r intersects some interval in S, and there is an interval t ∈ S which
contains x. In such a case, by following the in-order pointers starting from t, we can
find all the intervals that intersect r. All these intervals are merged together with
r to form a single new interval, say r′. We delete all the intersecting intervals from
T (S), and insert r′ into T (S). Since each interval is inserted only once and is deleted
at most once, the time spent in finding and deleting each intersecting interval can be
charged to the insertion of the interval. Thus, the amortized time for handling r is
the time for searching for x plus the time to insert r′. Since |S| = O(1/ε2), this time
is O(log (1/ε)).

(c) Interval r intersects some intervals in S, but none of them contain x. This is
similar to case (b).

Third part. This is the time for handling an overflow, subsampling to a lower
level. For each change of level, we will have to apply the range sampling subroutine
O(1/ε2) times. Each change of level selects roughly half the the number of points
belonging in the previous level into the new level. However, since each interval in
the sample may contain many points selected in the current level, it is possible that
more than one level change may be required to bring the sample size to less than α
intervals.

However, we observe that the total number of level changes (over the whole data
stream) is less than �log p� with high probability, since the algorithm does not reach
level �log p� with high probability. Since log p = Θ(logn), the total time taken by level

changes over the whole data stream is O( log2 n
ε2 log 1

δ ). If the length of the data stream
dominates the above expression, then the amortized cost of handling the overflow is
O(1).
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Thus, the amortized time to handle an interval r = [x, y] per instance of the algo-
rithm is O(log(y−x)+ log (1/ε)). Since there are O(log 1/δ) instances, the amortized
time per interval is O(log ((y − x)/ε) log 1/δ) which is also O(log (n/ε) log 1/δ).

It follows that the worst-case processing time per item is O( log2 n
ε2 log 1

δ ). If our
focus was on optimizing the worst-case processing time per item, then we could reduce

the above to O( log log n log(y−x)

ε2 log 1
δ ) by changing levels using a binary search rather

than sequentially when an overflow occurs.
Lemma 12. The algorithm can process a query for F0 in O(1) time.
Proof. We first describe how to process a query for F0 in O(log 1/δ) time. At

first glance, it seems necessary to apply the range sampling procedure on α intervals
and compute the sum. However, we can do better as follows: With each interval in S,
store the number of points in the interval which are sampled at the current sampling
level. This is first computed either when the interval was inserted into the sample or
when the algorithm changes levels. Further, the algorithm also maintains the current
value of the sum

∑
r∈S RangeSample(r, �)/P�, where � is the current level and S is

the current sample. This sum is updated every time a new interval is sampled or when
the algorithm changes level. The above changes do not affect the asymptotic cost of
processing a new item. Given this, an F0 query can be answered for each instance of
the algorithm in constant time. Since it is necessary to compute the median of many
instances of the algorithm, the time to answer an F0 query is O(log 1/δ).

Given that O(log 1/δ) is asymptotically less than the time required to process a
new interval, the algorithm can always update the estimate of F0 while processing a
new interval, without affecting the asymptotic cost of processing an interval. If such
an estimate of F0 is maintained continuously, then a query for F0 can be answered in
O(1) time.

5. Applications and extensions.

5.1. Dominance norms. We recall the problem here. Given input I consist-
ing of k streams of m positive integers each, let ai,j , i = 1, . . . k, j = 1 . . .m, rep-
resent the jth element of the ith stream. The max-dominance norm is defined as∑m

j=1 max1≤i≤k ai,j . We can reduce the max-dominance norm of I to range-efficient
F0 of a stream O derived as follows: Let n denote an upper bound on ai,j . For each
element ai,j ∈ I, the interval [(j − 1)n, (j − 1)n + ai,j − 1] is generated in O. It is
easy to verify the following fact.

Fact 3. The max-dominance norm of I equals the number of distinct elements
in O.

Note that the elements of stream O can take values in the range [0, nm − 1].
Using the range-efficient algorithm on O, the space complexity is now O(1/ε2(logm+
log n) log 1/δ). Since the length of the interval in O corresponding to ai,j ∈ I is ai,j ,
from section 4.3 it follows that the amortized time complexity of handling item ai,j
is O(log

ai,j

ε log 1
δ ) and the worst-case complexity is O(

log log n log ai,j

ε2 log 1
δ ).

As shown below, our algorithm for dominance norms can easily be generalized to
the distributed context.

5.2. Distributed streams. In the distributed streams model [GT01], the data
arrives as k independent streams, where for i = 1 . . . k stream i goes to party i. Each
party processes its complete stream and then sends the contents of their workspace
to a common referee. Similar to one-round simultaneous communication complex-
ity, there is no communication allowed between the parties themselves. The ref-
eree is required to estimate the aggregate F0 over the union of all the data streams



DISTINCT ELEMENTS IN DATA STREAMS 377

1 to k. The space complexity is the sum of the sizes of all messages sent to the
referee.

The range-efficient F0 algorithm can be readily adapted to the distributed streams
model. All the parties share a common hash function h, and each party runs the
above-described (single party) algorithm on its own stream, targeting a sample size
of cα intervals. Finally, each party sends its sample to the referee.

It is possible that samples sent by different parties are at different sampling prob-
abilities (or, equivalently, are at different sampling levels). The referee constructs a
sample of the union of the streams by subsampling each stream to the lowest sampling
probability across all the streams. By our earlier analysis, each individual stream is at
a sampling probability which will likely give good estimates. Thus the final sampling
probability will also give us an (ε, δ)-estimator for F0. The space complexity (total

space used across all nodes) of this scheme is O(k log 1/δ logn
ε2 ), where k is the number

of parties, and the time per item is the same as in the single stream algorithm.

5.3. Range-efficiency in every coordinate. If each data point is a vector of
dimension d rather than a single integer, then a modified definition of range-efficiency
is required. One possible definition was given by [BYKS02], range-efficiency in ev-
ery coordinate, and this proved to be useful in their reduction from the problem of
computing the number of triangles in graphs to that of computing F0 and F2 of an
integer stream.

For vectors of dimension d, define a jth coordinate range (a1, . . . , aj−1, [aj,s, aj,e],
aj+1, . . . , ad) to be the set of all vectors x̂ with the ith coordinate xi = ai for i �= j
and xj ∈ [aj,s, aj,e]. An algorithm is said to be range-efficient in the jth coordinate if
it can handle a jth coordinate in a range-efficient manner.

The F0 algorithm can be made range-efficient in every coordinate in the following
way: We first find a mapping g between a d-dimensional vector a = (a1, a2 . . . ad)
(where for all i = 1 . . . d, ai ∈ [0,m− 1]) and the one-dimensional line as follows:

g(a1, a2, . . . ad) = md−1a1 + md−2a2 + · · · + m0ad.
Fact 4. Function g has the following properties:
• g is an injective function.
• A jth coordinate range (a1, . . . , aj−1, [aj,s, aj,e], aj+1, . . . , ad) maps to an

arithmetic progression g(y1), . . . , g(yn), where yi ∈ (a1, . . . , aj−1, [aj,s, aj,e],
aj+1, . . . , ad).

Because of the above, the number of distinct elements does not change when we
look at the stream g(x) rather than stream x. Because of Fact 4 and since the range-
efficient F0 algorithm can handle an arithmetic sequence of integers rather than just
intervals, it follows that the algorithm can be made range-efficient in every coordi-
nate.

Assuming the arithmetic operations on the integers that were mapped to take
O(d) time, the amortized processing time per item is O(d log 1

δ

(
log n + 1

ε2

)
), and the

time for answering a query is O(d log 1/δ). The workspace used is O(d 1
ε2 log 1

δ log n).
Finally, we note that the algorithm presented in this paper can handle streams in

which each data item is an arithmetic progression rather than a range of consecutive
integers. Let [xi, yi] be a data item that represents an arithmetic progression xi, xi +
c, x1 + 2c, . . . yi. Now the range sample algorithm must compute the following:

RangleSample([xi, yi], �) =
∣∣∣
{
x ∈ [xi, yi] | h(x) ∈

[
0,
⌊ p

2�

⌋
− 1

]}∣∣∣ .
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Now the sequence h(xi), h(xi + c), . . . , h(yi) forms an arithmetic progression over
Zp with a common difference ac, instead of common difference a. The range sampling
algorithm described in section 3 can handle this case.
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1. Introduction. The computational theory of pseudorandomness has been one
of the most fertile grounds for the interplay between cryptography and computational
complexity. This interplay began when Blum, Micali, and Yao (BMY) [10, 50], moti-
vated by applications in cryptography, placed the study of pseudorandom generators
(PRGs) on firm complexity-theoretic foundations. They gave the first satisfactory
definition of PRGs along with constructions meeting that definition. Their notion
quickly acquired a central position in cryptography, but it turned out that the utility
of PRGs was not limited to cryptographic applications. In particular, Yao [50] showed
that they could also be used for derandomization—efficiently converting randomized
algorithms into deterministic algorithms. PRGs and their generalization, pseudoran-
dom functions [21], also found a variety of other applications in complexity theory
and the theory of computation (e.g., [43, 49]).

Focusing on derandomization, Nisan and Wigderson (NW) [41] proposed a weak-
ening of the BMY definition of PRGs which still suffices for derandomization. The
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benefit was that such NW-type PRGs could be constructed under weaker assumptions
than the BMY ones (circuit lower bounds for exponential time rather than the exis-
tence of one-way functions).1 Thus, a long body of work developed around the task of
constructing increasingly efficient NW-type PRGs under progressively weaker assump-
tions. One of the highlights of this line of work is the construction of Impagliazzo and
Wigderson [33] implying that P = BPP, i.e., the class of lanuages decidable in poly-
nomial time equals the class of languages decidable in probabilistic polynomial time
(BPP), under the plausible assumption that E = DTIME(2O(n)) has a problem of cir-
cuit complexity 2Ω(n). More recently, the work on NW-type PRGs has also been found
to be intimately related to randomness extractors [48] and has been used to prove
complexity-theoretic results which appear unrelated to derandomization (e.g., [31]).

While allowing remarkable derandomization results such as the Impagliazzo–
Wigderson result mentioned above, NW-type PRGs have not previously found ap-
plications in cryptography (for reasons mentioned below). In this work, we show
that a stronger form of NW-type PRGs, namely, ones fooling nondeterministic cir-
cuits [2, 35, 38, 47], do have cryptographic applications. Using such PRGs (which can
be constructed under plausible complexity assumptions), we

1. construct witness-indistinguishable (WI) “NP-proofs” (i.e., one-message2

proof systems, with a deterministic verifier strategy, and no shared random
string or other setup assumptions) for every language in NP, assuming the
existence of trapdoor permutations;

2. construct noninteractive bit-commitment schemes from any one-way function.
Thus, each of these results requires two assumptions—the circuit complexity assump-
tion for the NW-type PRG (roughly, that E has a function of nondeterministic circuit
complexity 2Ω(n)) and a “cryptographic” assumption (one-way functions or trapdoor
permutations).

Result 1 is the first construction of WI NP-proofs under any assumption whatso-
ever and shows that interaction is not necessary to achieve secrecy in proof systems. It
is obtained by derandomizing the ZAP construction of Dwork and Naor [15]. We note
that Dwork and Naor [15] themselves also constructed one-message WI proofs that
are nonuniform in the sense that the prover and verifier require a polynomial-length
string to be hardwired in advance as a nonuniform advice. Those can be viewed as
“NP/poly proofs.”

Result 2 is not the first construction of noninteractive commitment schemes but is
based on assumptions that appear incomparable to previous ones (which were based
on the existence of one-to-one one-way functions). We obtain this result by deran-
domizing the Naor’s interactive bit-commitment scheme [39].

These two examples suggest that NW-type PRGs (and possibly other “noncryp-
tographic” tools from the derandomization literature) are actually relevant to the
foundations of cryptography, and it seems likely that other applications will be found
in the future.

1Here and throughout this paper, when we say that assumption X is weaker than assumption
Y, we mean that Y is known to imply X, but X is not known to imply Y. Strictly speaking, the
assumptions for NW-type generators are weaker only in this sense when considering generators of
the same stretch (and when fooling nonuniform circuits). In this paper, the NW-type generators we
use have a much greater stretch than the BMY-type generators we use, and hence the assumptions
are incomparable.

2We use “messages” rather than “rounds,” as the latter is sometimes used to refer to a pair of
messages.
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NW-type generators fooling nondeterministic circuits. The most impor-
tant difference between BMY-type and NW-type PRGs is that BMY-type PRGs are
required to fool even circuits with greater running time than the generator, whereas
NW-type PRGs are allowed greater running time than the adversarial circuit. Typ-
ically, a BMY-type PRG must run in some fixed polynomial time (say, nc) and fool
all polynomial-time circuits (even those running in time, say, n2c). In contrast, an
NW-type PRG may run in time nO(c) (e.g., n3c) in order to fool circuits running
in time n2c. BMY-type PRGs are well suited for cryptographic applications, where
the generator is typically run by the legitimate parties and the circuit corresponds to
the adversary (who is always allowed greater running time). In contrast, NW-type
PRGs seem noncryptographic in nature. Nevertheless we are able to use them in
cryptographic applications. The key observation is that, in the protocols we con-
sider, (some of) the randomness is used to obtain a string that satisfies some fixed
property which does not depend on the adversary (or its running time). Hence, if
this property can be verified in some fixed polynomial time, we can obtain the string
using an NW-type PRG of a larger fixed polynomial running time. We then elimi-
nate the randomness entirely by enumerating over all possible seeds. This is feasi-
ble because NW-type generators can have logarithmic seed length. Also, we show
that in our specific applications this enumeration does not compromise the protocol’s
security.

In the protocols we consider, the properties in question do not seem to be verifi-
able in polynomial time. However, they are verifiable in nondeterministic polynomial
time. So we need to use a PRG that fools nondeterministic circuits. Fortunately,
it is possible for an NW-type PRG to fool nondeterministic circuits, as realized by
Arvind and Köbler [2] and Klivans and van Melkebeek [35].3 Indeed, a sequence of
works have constructed such PRGs under progressively weaker complexity assump-
tions [2, 35, 38, 47]. (Recently, these assumptions were all shown to be equivalent [46].)
Our results make use of the Miltersen–Vinodchandran construction [38] (which gives
only a “hitting set generator” (HSG) rather than a PRG, but this suffices for our
applications) and its “uniform analogue” from [29].

WI NP-proofs. In order to make zero-knowledge proofs possible, the seminal
paper of Goldwasser, Micali, and Rackoff [27] augmented the classical notion of an NP
proof with two new ingredients—interaction and randomization. Both were viewed
as necessary for the existence of zero-knowledge proofs, and indeed it was proven
by Goldreich and Oren [25] that without either, zero-knowledge proofs exist only for
trivial languages (those in BPP). The role of interaction was somewhat reduced by
the introduction of “noninteractive” zero-knowledge (NIZK) proofs [9, 8], but those
require a shared random string selected by a trusted third party, which can be viewed
as providing a limited form of interaction. Given the aforementioned impossibility
results [25], reducing the interaction further seems unlikely. Indeed, a truly nonin-
teractive proof system, in which the prover sends a single proof string to the verifier,
seems to be inherently incompatible with the intuitive notion of “zero knowledge”:
from such a proof, the verifier gains the ability to prove the same statement to others.

Despite this, we show that for a natural weakening of zero knowledge, namely,
WI [17], the interaction can be completely removed (under plausible complexity as-
sumptions). Recall that a WI proof system for a language L ∈ NP is an interactive

3It is impossible for a BMY-type PRG to fool nondeterministic circuits, as such a circuit can
recognize outputs of the PRG by guessing the corresponding seed and evaluating the generator to
check. Some attempts to bypass this difficulty can be found in [45].
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proof system for L that leaks no knowledge about which witness is being used by the
prover (as opposed to leaking no knowledge at all, as in zero-knowledge proofs) [17].
WI suffices for a number of the applications of zero knowledge [17] and also is a very
useful intermediate step in the construction of zero-knowledge proofs [16].

Several prior results show that WI proofs do not require the same degree of inter-
action as zero-knowledge proofs. Feige and Shamir [17] constructed three-message WI
proofs for NP (assuming the existence of one-way functions), whereas the existence of
three-message zero-knowledge proofs is a long-standing open problem. More recently,
the ZAPs of Dwork and Naor [15] achieved witness indistinguishability with just two
messages (assuming trapdoor permutations), whereas this is known to be impossible
for zero knowledge [25]. As mentioned earlier, Dwork and Naor also showed that the
interaction could be further reduced to one message at the price of nonuniformity (i.e.,
if the protocol can use some nonuniform advice of polynomial length); they interpret
this as evidence that “proving a lower bound of two [messages] is unlikely.”

We construct one-message WI proofs for NP in the “plain model,” with no use of a
shared random string or nonuniformity. Our proof system is obtained by derandomiz-
ing the verifier in the ZAPs of Dwork and Naor [15] via an NW-type generator against
nondeterministic circuits. The prover, however, remains probabilistic polynomial time
given a witness for membership. Since our verifier is deterministic, we actually obtain
a standard NP proof system with the WI property. More precisely, for any language
L ∈ NP with associated NP-relation R, we construct a new NP-relation R′ for L. The
relation R′ has the property that one can efficiently transform any witness with respect
to R into a distribution of new witnesses with respect to R′, such that the distributions
originating from different witnesses of R are computationally indistinguishable.

Converting Arthur–Merlin (AM) proof systems to NP proof systems was actu-
ally one of the original applications of NW-type generators versus nondeterministic
circuits [2, 35]. The novelty in our result comes from observing that this conversion
preserves the WI property.

The randomness requirements of zero-knowledge proofs have been examined in
previous works. Goldreich and Oren [25] showed that only languages in BPP have
zero-knowledge proofs in which either the prover or verifier is deterministic. Thus De
Santis, Di Crescenzo, and Persiano [12, 13, 14] have focused on reducing the number
of random bits. Specifically, under standard “cryptographic” assumptions, they con-
structed NIZK proofs with a shared random string of length O(nε+log(1/s)) and two-
message WI proofs (actually, ZAPs) in which the verifier uses only O(nε + log(1/s))
random bits, where ε > 0 is any constant and s is the soundness error. They posed
the existence of one-message WI proofs for NP as an open problem. One of their main
observations in [14] is that combinatorial methods for randomness-efficient error reduc-
tion, such as pairwise independence and expander walks, preserve WI. As mentioned
above, we make crucial use of an analogous observation about NW-type generators.

Noninteractive bit-commitment schemes. Bit-commitment schemes are one
of the most basic primitives in cryptography, used pervasively in the construction
of zero-knowledge proofs [24] and other cryptographic protocols. Informally, a bit-
commitment scheme is a two-stage protocol between two interacting parties, the
sender and the receiver. In the commitment stage, the sender commits to a secret bit
b. In the decommitment stage, the sender decommits by revealing the bit b together
with an additional secret key that enables the receiver to verify that b is consistent
with the commitment stage. The commitment stage alone must not reveal any infor-
mation about b. This is called the hiding property. In addition, we require that the
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commitment be binding ; i.e., the sender should not be able to successfully decommit
to more than one value.

Here we focus on perfectly (or statistically) binding and computationally hiding
bit-commitment schemes; i.e., even computationally unbounded senders should not
be able to decommit to different values, but the hiding property holds only against
efficient (probabilistic polynomial-time) receivers. Noninteractive bit-commitment
schemes, in which the commitment phase consists of a single message from the sender
to the receiver, are generally preferred over interactive schemes. There is a simple
construction of noninteractive bit-commitment schemes from any one-to-one one-way
function [7, 50, 23]. From general one-way functions, the only known construction of
bit-commitment schemes, namely, Naor’s protocol [39] with the PRG construction of
[30], requires interaction.

We show how to use an NW-type PRG against nondeterministic circuits to remove
the interaction in Naor’s protocol, yielding noninteractive bit-commitment schemes
under assumptions that appear incomparable to the existence of one-to-one one-way
functions. In particular, ours is a “raw hardness” assumption, not requiring hard
functions with any structure such as being one-to-one.

From a different perspective, our result shows that noncryptographic assump-
tions (nondeterministic circuit lower bounds for E) can reduce the gap between
one-way functions and one-to-one one-way functions. In particular, a noninterac-
tive bit-commitment scheme gives rise to a “partially one-to-one one-way function”:
a polynomial-time computable function f(x, y) such that x is uniquely determined
by f(x, y) and x is hard to compute from f(x, y) (for random x, y). It would be
interesting to see if this can be pushed further to actually construct one-to-one
one-way functions from general one-way functions under a noncryptographic
assumption.

Perspective. The assumption used in the construction of NW-type generators
is a strong one, but it seems to be plausible (see section 2.6). Perhaps its most
significant feature is that it is very different than the assumptions typically used
in cryptography (e.g., it is a worst-case assumption); nevertheless, our results show
it has implications in cryptography. In our first result, we use it to demonstrate the
plausibility of one-message WI proofs for all of NP, which will hopefully lead to efficient
constructions for specific problems based on specific assumptions. As for our second
result, the plausibility of noninteractive commitment schemes was already established
more convincingly based on one-to-one one-way functions [7]. What we find interesting
instead is that a noncryptographic assumption can imply new relationships between
basic cryptographic primitives and in particular reduce the gap between one-way
functions and one-to-one one-way functions.

2. Preliminaries. Let X be a random variable taking values in a finite set T .
We write x ← X to indicate that x is selected according to X. For a finite set S,
we write x ← S to indicate that x is selected uniformly amongst all the elements
of S.

We write neg(n) to denote a negligible function, namely, one that vanishes more
quickly than any inverse polynomial. That is, for all c ∈ N, neg(n) < n−c for all
sufficiently large n. We write poly(n) to denote any polynomially bounded function;
i.e., poly(n) ≤ nc for some c ∈ N and for all sufficiently large n.

By probabilistic polynomial time (PPT), we refer to probabilistic algorithms that
run in strict polynomial time. A nonuniform PPT algorithm is a pair (A, z̄), where
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z̄ = z1, z2, . . . is an infinite series of strings where |zn| = poly(n) and A is a PPT
algorithm that receives pairs of input of the form (x, z|x|). (The string zn is called the
advice string for A for inputs of length n.) Nonuniform PPT algorithms are equivalent
to families of polynomial-sized Boolean circuits.

The statistical difference between two random variables A and B over {0, 1}n is
defined as

Δ(A,B)
def
= max

T⊆{0,1}n
|Pr[A ∈ T ] − Pr[B ∈ T ]| =

1

2

∑

x∈{0,1}n

|Pr[A ∈ T ] − Pr[B ∈ T ]|.

We say that distributions A and B are ε-close if Δ(A,B) ≤ ε.
Let I be a set of strings. A probability ensemble of a sequence of random variables

indexed by I is denoted as {Ax}x∈I . Two probability ensembles {Ax}x∈I and {Bx}x∈I

are computationally indistinguishable on I ⊆ {0, 1}∗ if, for every PPT D, there exists
a negligible function μ such that for all x ∈ I

∣∣∣Pr [D(x,Ax) = 1] − Pr [D(x,Bx) = 1]
∣∣∣ ≤ μ(|x|).

We say that {Ax}x∈I and {Bx}x∈I are nonuniformly computationally indistinguish-
able if the above holds for all nonuniform PPT D. Similarly, we say that {Ax}x∈I

and {Bx}x∈I are statistically indistinguishable if the above holds for all functions D
(instead of only PPT). Equivalently, {Ax}x∈I and {Bx}x∈I are statistically indistin-
guishable iff Ax and Bx are μ(|x|)-close for some negligible function μ and all x ∈ I.
Sometimes we will refer to ensembles indexed by natural numbers n, e.g., {An} and
{Bn}, in which case we apply the above definitions with x = 1n. That is, we allow
the distinguisher running time poly(n, |An|) and require the distinguishing gap to be
negligible in n.

2.1. Nondeterministic computations. A significant advantage of NW-type
generators that we will use is that they can fool nondeterministic circuits, because
even if such a circuit can guess the seed, it does not have enough time to evaluate the
generator on it.

We define a nondeterministic circuit to be a (nonuniform) Boolean circuit that
has the additional power of nondeterminism.

Definition 2.1. A nondeterministic Boolean circuit C(x, y) is a circuit that
takes x as its primary input and y as a witness. For each x ∈ {0, 1}∗, we define
C(x) = 1 if there exists a witness y such that C(x, y) = 1.

A conondeterministic Boolean circuit C(x, y) is a circuit that takes x as its pri-
mary input and y as a witness. For each x ∈ {0, 1}∗, we define C(x) = 0 if there
exists a witness y such that C(x, y) = 0.

Denote SN(f) to be the minimal sized nondeterministic circuit computing f .
Nondeterministic and conondeterministic algorithms can be defined in a similar

fashion, with the nonuniform circuit C being replaced by a uniform algorithm. Natu-
rally, we measure the running time of a nondeterministic algorithm A(x, y) in terms
of the first input x. Therefore NP and coNP are the classes of languages decidable
by polynomial-time nondeterministic algorithms and conondeterministic algorithms,
respectively.

Definition 2.2. A nondeterministic algorithm A(x, y) is a uniform algorithm
that takes x as its primary input and y as a witness. For each x ∈ {0, 1}∗, we define
A(x) = 1 if there exists a witness y such that A(x, y) = 1.
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Likewise, a conondeterministic algorithm A(x, y) is a uniform algorithm that
takes x as its primary input and y as a witness. For each x ∈ {0, 1}∗, we define
A(x) = 0 if there exists a witness y such that A(x, y) = 0.

A nondeterministic (or conondeterministic) algorithm A is said to run in time
t(n) if, for every x and y, the running time of A(x, y) is at most t(|x|).

2.2. Interactive proofs. An interactive proof is an interactive protocol in which
a prover (with unlimited computational powers) tries to convince a probabilistic
polynomial-time verifier of the validity of a certain statement. Since interactive pro-
tocols are probabilistic, the soundness and completeness criteria are also probabilistic.
The formal definition of interactive proofs follows.

Definition 2.3 (interactive proofs [3, 27]). An interactive protocol (P, V ) is
called an interactive proof system for a language L if the following conditions hold.

1. Efficiency: On common input x, the number and total length of messages
exchanged between P and V are bounded by a polynomial in |x|, and V is a
PPT machine.

2. Completeness: If x ∈ L, then Pr[(P, V )(x) = 1] ≥ 2
3
.

3. Soundness: If x /∈ L, then for any P ∗, Pr[(P ∗, V )(x) = 1] ≤ 1
3
.

The class of languages possessing interactive proofs is denoted as IP.
We say that an interactive proof system has perfect completeness if the complete-

ness condition holds with probability 1 instead of 2
3
. We say that a system has perfect

soundness if the soundness condition holds with probability 0 instead of 1
3
.

An interactive proof system is called a public-coin if the verifier’s messages consist
only of random strings and acceptance is computed as a deterministic polynomial-
time function of the interaction’s transcript. An interactive proof system that is not
a public-coin is called a private-coin.

The number of rounds in an interactive proof is the total number of messages
exchanged in the interaction (i.e., both prover messages and verifier messages). A
proof system with one round is called noninteractive.

2.3. The class AM. The class AM [3] has two equivalent formulations. The first
is as the class of languages with constant-message interactive proofs. The second is
as the class of languages decidable by polynomial-time probabilistic nondeterministic
algorithms. Formally, a probabilistic nondeterministic algorithm A(x, r, y) takes a
random input r in addition to its regular input x and nondeterministic input y. We
say A computes a function f if the following two conditions hold.

1. If f(x) = 1, then Prr[∃yA(x, r, y) = 1] = 1.
2. If f(x) = 0, then Prr[∃yA(x, r, y) = 1] ≤ 1/2.

Then AM is the class of languages decidable by such algorithms A(x, r, y) run-
ning in time poly(|x|). The equivalence of the two definitions of AM is due to
[3, 28, 18]. More generally, AMTIME(t(n)) denotes the class of languages that
are decided by probabilistic nondeterministic algorithms running in time t(n), and
[i.o.–AMTIME](t(n)) denotes the class of languages that are decided by probabilistic-
time t(n) nondeterministic algorithms for infinitely many input lengths. Formally, we
say L ∈ [i.o.–AMTIME](t(n)) if there exists an algorithm A running in time t(n) such
that for infinitely many n ∈ N, the following two conditions hold for all x of length n.

1. If x ∈ L, then Prr[∃yA(x, r, y) = 1] = 1.
2. If x /∈ L, then Prr[∃yA(x, r, y) = 1] ≤ 1/2.

Note that the above definition of [i.o.–AMTIME](t(n)) is slightly nonstandard in
the sense that infinitely often complexity classes are often defined in the following
manner: If C is a complexity class, then io–C is the class of all languages L such that
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there exists a language L′ ∈ C such that L∩{0, 1}n = L′ ∩{0, 1}n for infinitely many
n ∈ N. Observe that io–AMTIME(t(n)) ⊆ [i.o.–AMTIME](t(n)). Discussions about
the subtle difference between these two classes can be found in [29].

2.4. PRGs. A PRG is a deterministic algorithm G : {0, 1}� → {0, 1}m, with
� < m. PRGs are used to convert a short random string into a longer string that
looks random to any efficient observer.

Definition 2.4 (PRG). We say that G : {0, 1}� → {0, 1}m is a (s, ε)-PRG
against circuits if, for all circuits C : {0, 1}m → {0, 1} of size at most s, it holds that
|Pr[C(G(U�)) = 1] − Pr[C(Um) = 1]| < ε, where Uk denotes the uniform distribution
over {0, 1}k.

BMY-type versus NW-type generators. As mentioned above, there are two
main types of PRGs: the BMY-type [10, 50] and the NW-type [41] generator. Both
can be defined for a wide range of parameters, but here we focus on the “classic”
settings that we need. A BMY-type generator is the standard kind of PRG used in
cryptography.

Definition 2.5 (BMY-type generators). A function G =
⋃

m Gm : {0, 1}� →
{0, 1}m is a BMY-type PRG with seed length � = �(m) if G is computable in time
poly(�) and, for every constant c, Gm is a (mc, 1/mc)-PRG against circuits for all
sufficiently large m.

Note that a BMY-type generator is required to have running time that is a fixed
polynomial but must fool circuits whose running time is an arbitrary polynomial.
Hástad et al. [30] proved that BMY-type PRGs with seed length �(m) = mδ for every
δ > 0 exist iff one-way functions exist.

NW-type generators differ from BMY-type generators most significantly in the
fact that the generator has a greater running time than the circuits it fools.

Definition 2.6 (NW-type generators). A function G =
⋃

m Gm : {0, 1}� →
{0, 1}m is an NW-type PRG with seed length � = �(m) if G is computable in time
2O(�) and Gm is a (m2, 1/m2)-PRG against circuits for all m.4

We will be interested in the “high end” NW-type generators, which have seed
length �(m) = O(logm) and thus have a running time which is a fixed polynomial in
m. The running time of such a generator, though polynomial, is allowed to be greater
than the size of the circuits it fools. Impagliazzo and Wigderson [33] proved that such
a generator exists if E = DTIME(2O(n)) has a function of circuit complexity 2Ω(n).
Note that when the seed length is � = O(logm), all 2� seeds can be enumerated in
time poly(m), and hence the generator can be used for complete derandomization. In
particular, the existence of such a generator implies that BPP = P.

2.5. Hitting set generators. A HSG is a deterministic algorithm H(1m, 1s)
that outputs a set of strings of length m. HSGs are weaker notions of PRGs.

Definition 2.7 (HSGs). We say that H is an ε-HSG against circuits if, for
every m, s ∈ N and circuit C : {0, 1}m → {0, 1} of size at most s, the following holds:

Pr[C(Um) = 1] > ε =⇒ ∃y ∈ H(1m, 1s) such that C(y) = 1.

HSGs against nondeterministic and conondeterministic circuits are defined analo-
gously, replacing circuits with nondeterministic and conondeterministic circuits, re-
spectively. In addition, we say that H is an ε-HSG against conondeterministic uniform

4One can replace m2 in this definition with any fixed polynomial in m.
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algorithms if, for every time-constructible function s(·) and every conondeterministic
uniform algorithm A : {0, 1}∗ → {0, 1} running in time at most s(m) on inputs of
length m, only the following holds for all sufficiently large m:

Pr[A(Um) = 1] > ε =⇒ ∃y ∈ H(1m, 1s(m)) such that A(y) = 1.

The construction of a one-message WI proof system in section 3 requires a HSG
against conondeterministic circuits. However, we will need only a (weaker) HSG
against conondeterministic uniform algorithms for the construction of a noninteractive
commitment scheme in section 4.

Definition 2.8. We say HSG H(1m, 1s) is efficient if its running time is poly-
nomial in m and s.

Note that the running time of an efficient HSG, though a fixed polynomial, can be
greater than the size of the circuits it fools. Hence, the HSGs defined correspond to
NW-type generators. Furthermore, observe that a PRG G : {0, 1}� → {0, 1}m fooling
circuits of size s gives rise to a HSG, by taking the set of outputs of G over all seeds.
The HSG will be efficient if G is computable in time poly(s,m) and has logarithmic
seed length � = O(logm + log s). In this sense HSGs are weaker than PRGs. Indeed,
HSGs can be directly used to derandomize algorithms with one-sided error (i.e., RP
algorithms), whereas PRGs can be used to derandomize circuits with two-sided error
(BPP algorithms). Since the error in AM proof systems can be made one-sided [18],
i.e., the existence of an efficient 1/2-HSG against conondeterministic circuits implies
that AM = NP.

The first constructions of efficient HSG (in fact PRGs) against conondetermi-
nistic circuits was given by Arvind and Köbler [2]. Their construction was based on
the assumption that there are languages in E that are hard on average for nondeter-
ministic circuits of size 2Ω(n). Klivans and van Melkebeek [35] gave a construction
based on a worst-case hardness assumption, namely, the existence of languages in
E that are worst-case circuits of size 2Ω(n) even with oracle gates for Satisfiability
(SAT). Miltersen and Vinodchandran [38] managed to relax the hardness condition
to nondeterministic circuits (but obtained only a HSG rather than a PRG). We state
the main result of Miltersen and Vinodchandran [38].

Theorem 2.9 (see [38]).5 If there exists a function f ∈ E such that SN(f) =
2Ω(n), then there exists an efficient 1/2-HSG against conondeterministic circuits. In
particular, under this assumption AM = NP.

Shaltiel and Umans [47] subsequently extended Theorem 2.9 in two ways: First,
they obtained a PRG rather than a HSG. Second, they obtained analogous results
for a quantitatively weaker assumption (e.g., when the SN(f) is only superpolynomial
rather than exponential) yielding correspondingly less efficient generators. However,
we will not need these extensions in our paper.

Uniform HSGs. Gutfreund, Shaltiel, and Ta-Shma [29] extended Theorem 2.9
to give a HSG against conondeterministic uniform algorithms from uniform hard-
ness assumptions. They used the same HSG as Miltersen and Vinodchandran but
augmented the analysis.

5Miltersen and Vinodchandran [38] actually use a seemingly weaker assumption, needing a func-
tion only of exponential “single-valued” nondeterministic circuit complexity. But, it was recently
shown in [46] that all of the assumptions used in this line of work [2, 35, 38] are in fact equivalent.
In addition, [38] presented the HSG as a (1 − δ)-HSG for δ = 2m

γ
/2m, but it can be converted into

a 1/2-HSG using dispersers as done implicitly in their paper.
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Theorem 2.10 (see [29]). If E � io-AMTIME(2δn) for some δ > 0, then an
efficient 1/2-HSG against conondeterministic uniform algorithms exists.

The assumption used in Theorem 2.10 is weaker than the assumption used in
Theorem 2.9 since nonuniformity can be used to replace randomness.

2.6. Discussions.

Are the assumptions reasonable? Our two results rely on the existence of
HSGs as constructed in Theorems 2.9 and 2.10, which in turn make assumptions
about E containing functions of high nondeterministic complexity. In our opinion,
these assumptions are plausible. The two most common reasons to believe a hardness
assumption are empirical evidence and philosophical (or structural) considerations.
The widely held P �= NP assumption is supported by both. Empirically, much effort
has been invested into finding efficient algorithms for NP problems. Philosophically,
it seems unlikely that proofs should always be as easy to find as they are to verify.
Other hardness assumptions, such as the hardness of factoring, are supported mainly
by empirical evidence. Some, like E � NP (equivalently, EXP �= NP), are supported
mainly by philosophical considerations: it seems unlikely that it should always be
possible to prove the correctness of exponentially long computations with polynomial-
sized proofs. The assumptions of Theorems 2.9 and 2.10 are natural strengthenings
of this assumption, where we extend NP both by letting the running time grow from
polynomial to subexponential and by allowing nonuniformity or randomization.

How do we find the function f? Once we accept the existence of some func-
tion f ∈ E such that SN(f) = 2Ω(n), can we find a specific function f satisfying that
condition? The answer is yes. It is not hard to show that if there exists a function
f satisfying the condition of Theorem 2.9, then every function that is E-complete
via linear-time reductions also satisfies that condition. In particular, we can take the
bounded halting function BH(·) defined as follows: BH(M,x, t) = 1 if the Turing
machine M outputs 1 on input x after at most t steps (where t is given in binary
form), and BH(M,x, t) = 0, otherwise.

3. WI NP-proofs. In this section we use efficient HSGs against conondeter-
ministic circuits to derandomize the ZAP construction of Dwork and Naor [15] and to
obtain a noninteractive WI proof system for any language in NP. We call this an “NP
proof system” because it consists of a single message from the prover to the verifier,
as is the case in the trivial NP proof of simply sending the witness to the verifier.

As in the trivial NP proof system, our verifier algorithm will be deterministic.
Our prover algorithm, however, will be probabilistic to make our proof system WI. It
remains open as to whether a probabilistic prover strategy is necessary to achieve the
WI property. We stress that our proof system is in the plain model, without assump-
tions of a shared random string or nonuniformity. As far as we know, this is the first
noninteractive proof system for NP in the plain model that satisfies a secrecy property.

3.1. Definitions.

Witness relation. Let W ⊆ {0, 1}∗ × {0, 1}∗ be a relation. Define W (x) =
{w | (x,w) ∈ W} and L(W ) = {x | ∃w such that (x,w) ∈ W}. If w ∈ W (x), then
we say that w is a witness for x. Recall that the class NP is the class of languages
L such that L = L(W ) for a relation W that is decidable in time polynomial in the
first input. If L = L(W ) is an NP language, then we say that W is a witness relation
corresponding to L.
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Efficient provers. Recall the notion of interactive proofs as defined in sec-
tion 2.2. Let L be an NP language with witness relation W . We say that an interactive
proof for L has an efficient prover if the honest prover strategy can be implemented
by a PPT algorithm given w ∈ W (x) as auxiliary input. In this paper we will be
interested only in interactive proofs for NP that have efficient provers.

NP proof systems. An NP proof system is an interactive proof system that
is degenerate in that it (a) consists of only a single message from the prover to the
verifier, (b) satisfies both perfect completeness and perfect soundness, and (c) has a
deterministic verifier. The prover, however, is allowed to be PPT given a witness of
membership. Because the verifier is deterministic, an NP proof system for a language
L induces a witness relation W corresponding to L by setting W (x) to contain all the
prover messages accepted by the verifier.

WI. We recall the notion of WI, as defined by Feige and Shamir [17].
Definition 3.1 (WI, [17]). Let L be an NP language with witness relation WL.

Let (P, V ) be a proof system for L, where P is an efficient (PPT) prover that gets a
witness as auxiliary input.

We say that (P, V ) is WI if, for every nonuniform polynomial-time verifier V ∗,
every x ∈ L, and every w,w′ ∈ WL(x), the interaction of V ∗ with P (w) is compu-
tationally indistinguishable from its interaction with P (w′). That is, the ensembles
{outputV ∗(P (w), V ∗)(x)}x∈L,w,w′∈WL(x) and {outputV ∗(P (w′), V ∗)(x)}x∈L,w,w′∈WL(x)

are (nonuniformly) computationally indistinguishable, where outputV ∗(P (w), V ∗)(x)
is a random variable denoting the output of V ∗ after interacting with P when both
receive common input x and P receives the witness w as a private auxiliary input.
Without loss of generality, V ∗ outputs its view of the interaction, which consists of
its coin tosses and the messages exchanged.

Feige and Shamir also proved that WI is closed under concurrent composition [17].
We will need only the special case of parallel composition, defined as follows: For an
interactive proof system (P, V ) and a polynomial m, we define the m-fold parallel exe-
cution (Pm(w), Vm)(x) to be the protocol whereby Pm and Vm execute m(|x|) parallel
copies of (P (w), V )(x) with each party using independent coin tosses in each execu-
tion. Here “parallel” means that the ith message for each of the m(|x|) executions
are all sent simultaneously. Note that, while the honest parties are defined to behave
independently in each of the m(|x|) executions, an adversary need not do so. In-
deed, this is why zero knowledge is not preserved under parallel composition [22, 17].
Nevertheless, WI is maintained.

Theorem 3.2 ([17]). If (P, V ) is WI, then (Pm, Vm) is WI for every polyno-
mial m.

ZAPs. A ZAP [15] is a two-message public-coin interactive proof system that is
WI. Dwork and Naor proved the following theorem.

Theorem 3.3 (see [15]). If (nonuniformly secure) trapdoor permutations exist,6

then every language in NP has a ZAP.
We note that the construction of ZAPs by [15] is actually based on the weaker

assumption that NIZK (in the shared random string model) systems exist for every
language in NP. Thus, our construction can also be based on this weaker assumption.

6We refer the reader to [19, sect. 2.4.4] for the definition of trapdoor permutations. Actually, the
definition we use is what is called by Goldreich [20, App. C.1] an enhanced trapdoor permutation
collection. Such a collection is known to exist based on the hardness of factoring assumption (by a
minor modification of the Rabin function [42] as noted in [20, App. C.1]).



DERANDOMIZATION IN CRYPTOGRAPHY 391

3.2. Our result. The main theorem of this section follows.
Theorem 3.4. Assume that there exists an efficient 1/2-HSG against conon-

deterministic circuits and that (nonuniformly secure) trapdoor permutations exist.
Then every language in NP has a WI NP-proof system.

3.3. Proof of Theorem 3.4. We prove Theorem 3.4 by converting the ZAPs
for languages in NP into WI NP-proof systems. Let L be an NP language with witness
relation WL, and let (P, V ) be the ZAP for L. We denote the first message in a ZAP
(the verifier’s random coins sent to the prover) by r, and we denote the second message
(sent by the prover to the verifier) by π. We let �(n) denote the length of the verifier’s
first message in a proof for statements of length n. Let x ∈ {0, 1}n \ L. We say that
r ∈ {0, 1}�(n) is sound with respect to x if there does not exist a prover message π
such that the transcript (x, r, π) is accepting. The statistical soundness of the ZAP
scheme implies that, for every x ∈ {0, 1}n \ L, the probability that r ← {0, 1}�(n) is
sound with respect to x is very high, and in particular it is larger than 1

2
.

Our construction is based on the following observation. Let q(n) be a polynomial
that bounds the running time of the honest ZAP verifier in a proof of statements of
length n. For every x ∈ {0, 1}n \ L, there exists a conondeterministic circuit Cx of
size less than p(n) < q(n)2 that outputs 1 iff a string r is sound with respect to x. We
stress that the time to verify the soundness of a string r depends only on the running
time of the honest verifier (in our case it is p(n)).

On input r, the circuit Cx will output 1 if there does not exist a prover message π
such that the transcript (x, r, π) is accepting, and it will output 0 otherwise. Note that
Pr[Cx(U�(n)) = 1] > 1

2
. Since H is a 1/2-HSG against conondeterministic circuits, we

have that, for every x ∈ {0, 1}n\L, there exists r ∈ H(1�(n), 1p(n)) such that Cx(r) = 1.
In other words, for every x ∈ {0, 1}n \L, there exists a string r ∈ H(1�(n), 1p(n)) such
that r is sound with respect to x.

Our construction is as follows.

Protocol 3.5. One-message WI NP-proof for L ∈ NP.
On common input x ∈ {0, 1}n and auxiliary input w for the prover,
such that (x,w) ∈ WL, do the following.
Prover’s Message

1. Compute (r1, . . . , rm)
def
= H(1�(n), 1p(n)).

2. Using the auxiliary input (witness) w and the ZAP
prover algorithm, compute, for every i ∈ [1,m], a
string πi that is the prover’s response to the verifier’s
message ri in a ZAP proof for x.

3. Send to verifier (π1, . . . , πm).
Verifier’s Test

1. Compute (r1, . . . , rm)
def
= H(1�(n), 1p(n)).

2. Given prover’s message (π1, . . . , πm), run the ZAP
verifier on the transcript (x, ri, πi) for every i ∈ [1,m].

3. Accept if the ZAP verifier accepts all these tran-
scripts.

Note that Protocol 3.5 is indeed a one-message system with a deterministic ver-
ifier, and it satisfies the perfect completeness property. Thus, to prove Theorem 3.4,
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we need to prove that it has perfect soundness and is WI.
Lemma 3.6. Protocol 3.5 is a perfectly sound proof system for L.
Proof. Let x /∈ L, with |x| = n. Since H is a HSG, there exists an ri ∈

H(1�(n), 1p(n)) that is sound with respect to x. This means that no prover’s mes-
sage πi will make the ZAP verifier accept the transcript (x, ri, πi). Therefore, no
string π = (π1, . . . , πm) will make the verifier of Protocol 3.5 accept.

Lemma 3.7. Protocol 3.5 is a WI proof system for L.
Proof. This follows from the fact that the prover algorithm of Protocol 3.5 simply

invokes m times the prover algorithm for the ZAP on m different verifier messages.
Since the m-fold parallel composition of the ZAP is also WI (by Theorem 3.2), it
follows that Protocol 3.5 is WI. More precisely, the output (or view) of the verifier
after an execution of Protocol 3.5, where the prover uses witness w, can be simulated
perfectly by a cheating verifier V ∗

m that sends the m-tuple of messages (r1, . . . , rm) =
H(1�(n), 1p(n)) in the m-fold parallel composition (Pm(w), V ∗

m). Since the output of
V ∗
m is computationally indistinguishable for any two witnesses used by the prover Pm,

so is the output of the verifier in Protocol 3.5.

3.4. Applications of noninteractive WI proofs.

One-out-of-two oblivious transfer. As an application of ZAPs, Dwork and
Naor [15] constructed a three-message one-out-of-two oblivious transfer (OT) protocol
based on the quadratic residuosity assumption.7 Informally, an OT protocol consists
of two parties, a sender and a receiver. The sender has two secret input bits b0 and
b1. The goal of the receiver is to select an input bit of the sender without letting the
sender know which bit it has selected. The goal of the sender is to allow the chooser
to learn only its selected input bit.

The first two rounds of the Dwork–Naor OT protocol consist of a ZAP (two-
message WI proof) of a certain NP statement. Replacing the ZAP with our WI
NP-proofs, we prove that same NP statement in only one message, thus allowing for
a two-message OT with the same security properties.

We begin with the formal definition of OT that we use. We use the notation
outputS(S(b0, b1; rS), R(c, rR)) to represent the output of sender S (on inputs b0 and
b1 and private randomness rS) after interacting with receiver R (on inputs the choice
bit c and private randomness rR). Both parties are also given the security parameter
k, but we omit it from the notation. We define outputR(S(b0, b1; rS), R(c, rR)) in an
analogous manner.

Definition 3.8. A one-out-of-two OT protocol (with security parameter k) con-
sists of a polynomial-time sender S and a polynomial-time receiver R, satisfying the
following conditions.

1. Completeness: For all b0, b1, c ∈ {0, 1}, we have the following condition:
PrrS ,rR [outputR(S(b0, b1; rS), R(c, rR)) = bc] > 1 − neg(k).

2. Computational privacy of receiver: For all PPT cheating S∗, we have that
outputS∗(S∗, R(0; rR)) is computationally indistinguishable from
outputS∗(S∗, R(1; rR)).

3. Statistical privacy of sender: For every deterministic receiver strategy R∗,
one of the two following conditions holds:
(a) for every b ∈ {0, 1}, outputR∗(S(0, b; rS), R∗) is statistically indistin-

guishable from outputR∗(S(1, b; rS), R∗), or

7For further information on the quadratic residuosity assumption, we refer the reader to [26,
sect. 2.5.1].



DERANDOMIZATION IN CRYPTOGRAPHY 393

(b) for every b ∈ {0, 1}, outputR∗(S(b, 0; rS), R∗) is statistically indistin-
guishable from outputR∗(S(b, 1; rS), R∗).

Condition 3.8 intuitively says that the receiver obtains no information about at
least one of the sender’s inputs. Unlike simulation-based definitions, however, it does
not guarantee that a cheating receiver “knows” which of the two inputs it is learning.
Similar definitions have been used in previous works on OT with few rounds.

As mentioned above, we obtain a two-message OT protocol by using noninterac-
tive WI proofs in the Dwork–Naor [15] protocol. The computational assumptions we
make are the existence of a HSG against conondeterministic circuits and the quadratic
residuosity assumption, the latter being inherited from [15]. (We can drop the assump-
tion of trapdoor permutations in Theorem 3.4, because it is implied by the quadratic
residuosity assumption.) The formal theorem is stated below.

Theorem 3.9. Suppose that there exists an efficient 1/2-HSG against conon-
deterministic circuits and that the quadratic residuosity assumption holds. Then there
exists a two-message one-out-of-two OT protocol.

There are two points that we would like to note. First, our protocol does not
use any public key. If we allow the sender to publish a public key, the Dwork–Naor
OT protocol can be reduced to two messages by having the sender S publish the
random string of the ZAP in the public key (this random string corresponds to the
first message of the ZAP).

Second, there were several previous constructions of two-message OT protocols
satisfying similar security properties as Definition 3.8. Naor and Pinkas [40] and
Aiello, Ishai, and Reingold [1] independently constructed two-message OT protocols
based on the decisional Diffie–Hellman (DDH) assumption. Recently and indepen-
dently of our work, Kalai [34] constructed two-message OT protocols based on a
variant of “smooth projective hash families” [11].

Weak zero knowledge. The standard notions of zero knowledge require at
least three rounds of interaction for languages outside BPP [25, 4]. Subsequent to
this work, Barak and Pass [6] proposed a weak form of zero-knowledge protocols for
all languages in NP that consist only of a single round, i.e., a single message from the
prover to the verifier. Like our one-message WI, their prover is randomized, and their
verifier is deterministic. Their construction of such protocols utilizes noninteractive
WI proofs, as constructed in this paper. The properties achieved are weaker in the
following sense: The weak zero-knowledge condition allows the simulator to run in
quasi-polynomial time instead of polynomial time, and the computational soundness
is guaranteed only against uniform PPT cheating provers.

4. Noninteractive bit commitment. Bit-commitment schemes are basic
primitives in cryptography. Informally, a bit-commitment scheme is a protocol that
consists of two interacting parties, the sender and the receiver. The first step of the
protocol involves the sender giving the receiver a commitment to a secret bit b. In
the next step, the sender decommits the bit b by revealing a secret key. The commit-
ment alone (without the secret key) must not reveal any information about b. This
is called the hiding property. In addition, we require that the commitment to b be
binding ; i.e., the sender should not be able to decommit to a different bit b̄. Note
that, given a bit-commitment scheme, a string-commitment scheme can be obtained
by independently committing to the individual bits of the string (cf. [19]).

In an interactive bit-commitment scheme, the sender and the receiver are allowed
to interact during the commitment and decommitment steps. The formal definition
of an interactive bit-commitment scheme can be found in [19]. Often, however, nonin-



394 BOAZ BARAK, SHIEN JIN ONG, AND SALIL VADHAN

teractive bit-commitment schemes are preferred or even crucial. For these, a simpler
definition can be given.

Definition 4.1 (noninteractive bit commitment). A noninteractive bit-commit-
ment scheme is a polynomial-time algorithm S which takes a bit b ∈ {0, 1} and a
random key K ← {0, 1}poly(k), where k is the security parameter, and outputs a
commitment C = S(b;K). The algorithm S must satisfy the following two conditions:

1. Binding: There do not exist keys K and K ′ such that S(0;K) = S(1;K ′).
2. Hiding: The commitments to 0 and 1 are computationally indistinguish-

able. This means that the probability distributions {S(0;K)}K←{0,1}poly(k)

and {S(1;K)}K←{0,1}poly(k) are computationally indistinguishable by PPT al-
gorithms.

We say that a bit-commitment scheme is nonuniformly secure if the probability dis-
tributions {S(0;K)}K←{0,1}poly(k) and {S(1;K)}K←{0,1}poly(k) are nonuniformly com-
putationally indistinguishable. This means that even nonuniform polynomial-sized
circuits cannot distinguish between a commitment to 0 and a commitment to 1.

There is a well-known construction by Blum [7] of a noninteractive bit-commit-
ment scheme based on any one-to-one one-way function (using the function’s hard-core
predicate [50, 23]). Naor [39] gave a construction of an interactive bit-commitment
scheme based on any one-way function (using PRGs [30]).

For completeness, we briefly describe a noninteractive bit-commitment protocol
based on any one-to-one one-way function. First, note that a one-to-one one-way
function can be transformed into another one-to-one one-way function with an as-
sociated hard-core predicate [50, 23]. Then, let f be a one-to-one one-way function,
and let h be the hard-core predicate for f . A commitment to a bit b ∈ {0, 1} is just
〈f(K), h(K) ⊕ b〉, where K is a randomly chosen key. The injectivity property of f
seems crucial to guarantee the binding property of the commitment scheme.

4.1. Our result. The main result of this section is the following theorem.
Theorem 4.2. Assume that there exists an efficient 1/2-HSG against conon-

deterministic uniform algorithms. Then, noninteractive bit-commitment schemes ex-
ist iff one-way functions exist.

The first condition is true if E � [i.o.–AMTIME](2Ω(n)), by Theorem 2.10. We
stress that the assumption of an efficient 1/2-HSG against conondeterministic uniform
algorithms is sufficient, even if one wants to obtain a commitment scheme that is
nonuniformly secure (i.e., commitments that are indistinguishable by polynomial-sized
circuits). However, to get such schemes it will be necessary to assume that the one-way
function is secure against nonuniform polynomial-sized circuits.

If we assume that the one-way function is only secure against uniform PPT adver-
saries, then we obtain commitment schemes secure against (uniform) PPT algorithms.

Our result is incomparable to the previous results on bit-commitment schemes.
This is because the assumptions used in constructing our noninteractive commitments
are on one hand stronger than Naor’s [39], which only requires one-way functions, but
Naor’s scheme is interactive. On the other hand, our assumptions seem incomparable
to assuming the existence of one-to-one one-way functions.

“Raw” hardness versus hardness with structure. Note that unlike assum-
ing the existence of one-to-one one-way functions, we do not assume in Theorem 4.2
that there exists a hard function with a particular structure. Rather, we assume only
that there exist functions with “raw hardness” (i.e., a one-way function and a function
in E with high AM-complexity).

Even if one is told that one-to-one one-way functions exist, it is necessary to
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know a particular one-to-one one-way function to instantiate Blum’s noninteractive
commitment scheme. In contrast, we can construct a single noninteractive commit-
ment scheme that is secure as long as there exists a one-way function and a function
f ∈ E \ [i.o.–AMTIME](2Ω(n)). This is because we can instantiate our scheme with
a universal one-way function8 [36] and a function that is E-complete via linear-time
reductions such as the function BH(·) (see the discussion in section 2.6).

4.2. Proof of Theorem 4.2. Our construction is based on derandomizing
Naor’s [39] interactive bit-commitment scheme using a HSG.

Let G : {0, 1}k → {0, 1}3k be a BMY-type PRG computable in time kd for some
constant d. Such a generator can be constructed based on any one-way function [30].
Naor [39] gave the following protocol for an interactive bit-commitment scheme, based
on the existence of such a generator.

Protocol 4.3. Interactive bit-commitment scheme [39].
Input to receiver R: 1k, where k is the security parameter.
Input to sender S: 1k and a bit b ∈ {0, 1}.
Commitment stage:

R: Select a random r ← {0, 1}3k, and send r to S.
S: Select a random s ← {0, 1}k. If b = 0, send α = G(s)

to R. Else if b = 1, send α = G(s) ⊕ r to R.
Decommitment stage:

S: Reveal s and b.
R: Accept if b = 0 and α = G(s), or b = 1 and α =

G(s) ⊕ r.

Observe that when the sender commits to 0, the sender’s message α is distributed
according to G(Uk). When the sender commits to 1, α is distributed according to
G(Uk) ⊕ r. The following lemma shows that Protocol 4.3 has the hiding property.

Lemma 4.4 (hiding property). For every r ∈ {0, 1}3k, the distributions G(Uk)
and G(Uk) ⊕ r are computationally indistinguishable.9

Proof. For any efficient adversary A, the pseudorandomness of G guarantees that

|Pr[A(G(Uk)) = 1] − Pr[A(U3k) = 1]| < ε

and, for any given r ∈ {0, 1}3k,

|Pr[A(G(Uk) ⊕ r) = 1] − Pr[A(U3k) = 1]| < ε′,

where ε and ε′ are negligible. Hence, by the triangle inequality,

|Pr[A(G(Uk) ⊕ r) = 1] − Pr[A(G(Uk)) = 1]| < ε + ε′ = neg(k).

This shows that no efficient adversary can distinguish between G(Uk) and
G(Uk) ⊕ r.

8The construction of such a universal one-way function can also be found in [19, sect. 2.4.1]. It
uses the observation that if there exists a one-way-function, then there exists a one-way function
that is computable in time n2.

9To be exact, the condition of the lemma (“for every r”) holds for nonuniform computational
indistinguishability (assuming that G is a PRG against nonuniform circuits). For the uniform setting,
the lemma still holds if the string r comes from any polynomial-time sampleable distribution. That
is, r ← R(1k), where R is a PPT algorithm.
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Define a string r ∈ {0, 1}3k to be good for G if, for all s, s′ ∈ {0, 1}k, we have
G(s) �= G(s′) ⊕ r. We have the following lemma.

Lemma 4.5 (binding property). The probability Prr←{0,1}3k [r is good] ≥ 1 −
2−k.

Proof. Note that G(s) �= G(s′) ⊕ r iff G(s) ⊕ G(s′) �= r. The total number
of pairs (s, s′), with s, s′ ∈ {0, 1}k, is 22k. For each pair, only one r is not good,
namely, r = G(s) ⊕ G(s′). Hence, the number of r ∈ {0, 1}3k which are not good is
at most 22k. This implies that the fraction of good r ∈ {0, 1}3k is at least 1− 22k/23k

= 1 − 2−k.
If the receiver selected a good r in the first step of the commitment stage of

Protocol 4.3, then there do not exist s, s′ ∈ {0, 1}k such that G(s) = G(s′)⊕ r, so no
commitment α can be opened as both a 0 and 1. The probability of selecting a good
r is high; hence, Protocol 4.3 is binding.

Our noninteractive bit-commitment scheme. Observe that the only inter-
action involved in Protocol 4.3 is in the receiver sending a random r ∈ {0, 1}3k to the
sender. However, one can see that the receiver does not have to send a random string,
and it is enough to send a good string. This is because a good string r will make the
distributions G(Uk) and G(Uk) ⊕ r disjoint. As we show in the proof of Lemma 4.8,
testing whether r is good can be done by a (uniform) conondeterministic algorithm
running in time at most 3kd. Since the fraction of good r’s is large, an efficient HSG
against conondeterministic algorithms H can be used to select a candidate list of r’s
such that at least one element r ∈ H is good. Thus, our protocol will be obtained
by running the sender of Naor’s protocol on each r in the hitting set. The resulting
protocol follows.

Protocol 4.6. Noninteractive bit-commitment scheme.
Input to receiver R: 1k, where k is the security parameter.
Input to sender S: 1k and a bit b ∈ {0, 1}.
Commitment stage:

1. Compute
(
r1, . . . , rp(k)

) def
= H(13k, 13kd

).

2. Choose s1, . . . , sp(k) at random from {0, 1}k.
3. If b = 0, send α = 〈G(s1), . . . , G(sp(k))〉.

If b = 1, send α = 〈G(s1) ⊕ r1, . . . , G(sp(k)) ⊕ rp(k)〉.
Decommitment stage:

S reveals b and 〈s1, . . . , sp(k)〉. R accepts if either of the
following holds:

1. The bit b = 0 and α = 〈G(s1), . . . , G(sp(k))〉.
or

2. The bit b = 1 and α = 〈G(s1) ⊕ r1, . . . , G(sp(k)) ⊕
rp(k)〉.

To show that Protocol 4.6 constitutes a bit-commitment scheme (and hence to
prove Theorem 4.2), we prove the following two lemmas.

Lemma 4.7. Protocol 4.6 has the hiding property of Definition 4.1.
Proof. By Lemma 4.4, we know that for an r ∈ {0, 1}3k generated by a polynomial-

time algorithm, the distributions G(Uk) and G(Uk)⊕ r are computationally indistin-
guishable. Furthermore given r, the distributions G(Uk) and G(Uk)⊕r are polynomial-
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time sampleable. Hence, by a hybrid/statistical-walk argument, the distributions

〈G(U1
k ), G(U2

k ), . . . , G(U
p(k)

k )〉 and 〈G(U1
k )⊕ r1, G(U2

k )⊕ r2, . . . , G(U
p(k)

k )⊕ rp(k)〉 are

computationally indistinguishable for
(
r1, r2, . . . , rp(k)

)
= H(13k, 13kd

).
Lemma 4.8. Protocol 4.6 has the binding property of Definition 4.1.
Proof. Define the conondeterministic (uniform) algorithm A such that A(r) = 1

if, for all s, s′ G(s) ⊕ G(s′) �= r. Note that A(r) = 1 iff r is good. Therefore
Pr[A(U3k) = 1] ≥ 1 − 2−k > 1/2. In addition, the running time of A (on inputs of

length k) is bounded by 3kd. Hence, there exists an ri ∈ H(13k, 13kd

) such that, for
all s, s′ G(s)⊕G(s′) �= ri. Therefore, there do not exist s1, . . . , sp(k) and s′1, . . . , s

′
p(k)

such that

〈G(s1), . . . , G(sp(k))〉 = 〈G(s′1) ⊕ r1, . . . , G(s′p(k)) ⊕ rp(k)〉.
In other words, no commitment α can be opened as both a 0 and 1. Thus, Protocol 4.6
is perfectly binding.

If one-way functions exists, then PRGs exist [30] and hence noninteractive bit-
commitment schemes exist. Conversely, noninteractive bit-commitment schemes (as
in Definition 4.1) imply the existence of one-way functions [32]. These facts, together
with Lemmas 4.7 and 4.8, establish Theorem 4.2.

4.3. Partially one-to-one one-way functions. Another interpretation of our
result is closing the gap between one-to-one and general one-way functions under a
“noncryptographic” assumption.

Definition 4.9. A function f = ∪kfk : {0, 1}k × {0, 1}k → {0, 1}∗ is a partially
one-to-one one-way function if the following hold:

1. Easy to evaluate: f can be evaluated in polynomial time.
2. Partially one-to-one: If f(x, y) = f(x′, y′), then x = x′.
3. Hard to invert: For every PPT algorithm A, the probability of inversion

Pr
[
A(1k, f(X,Y )) = X

]
is negligible in k, where the probability is taken over

X and Y chosen independent and uniformly from {0, 1}k, and the coin tosses
of A.

Lemma 4.10. Partially one-to-one one-way functions exist iff noninteractive bit-
commitment schemes exist.

Proof. If f is a partially one-to-one one-way function, we can obtain a noninterac-
tive bit-commitment scheme using the Goldreich–Levin hardcore bit [23]. Specifically,
define Commit(b;x, y, r) = (f(x, y), r, 〈x, r〉 ⊕ b), where 〈·, ·〉 denotes inner product
mod 2.

If a noninteractive bit-commitment scheme exists, we can obtain a partially one-
to-one one-way function by first converting the bit-commitment scheme to a string-
commitment scheme (by committing independently to each bit) and then defining
f(x, y) = Commit(x; y). (The fact that x and y may be of different lengths is inconse-
quential and can be fixed by padding.)

Thus, a restatement of Theorem 4.2 is the following.
Corollary 4.11. Assume that there exists an efficient 1/2-HSG against conon-

deterministic uniform algorithms. Then one-way functions imply partially one-to-one
one-way functions.

5. Future work. Given the two examples we have presented here, it is natural to
look for more applications of NW-type generators (and related notions in complexity
theory) to cryptography. In parallel to this work, Barak, Lindell, and Vadhan [4] have
used NW-type generators to obtain negative results about zero-knowledge proofs.



398 BOAZ BARAK, SHIEN JIN ONG, AND SALIL VADHAN

To facilitate the search for additional applications, we summarize the properties of
the protocols (ZAPs and Naor’s bit commitment) that enabled our derandomizations
to work.

1. In order for the protocol to be secure, the random string r need satisfy only
some fixed property that depends on only the algorithms of the “honest par-
ties.” In particular, it should be possible to verify this property by a nonde-
terministic algorithm that runs in a fixed polynomial time. (Algorithms even
higher in the polynomial hierarchy can also be derandomized under stronger
complexity assumptions [35].)

2. The protocol must remain secure under parallel repetition (with multiple
choices of r, at least one of which satisfies the property above).

Another intriguing question is whether it can be shown that under a “noncryp-
tographic” assumption, one-way functions imply truly one-to-one one-way functions
(rather than just partially one-to-one one-way functions).

Finally, given our plausibility result, it is natural to look for additional construc-
tions of nontrivial one-message WI proofs. Either constructions for specific prob-
lems based on specific assumptions or general constructions for all of NP based on
alternative assumptions would be interesting. In addition to complexity-theoretic as-
sumptions, it may also be useful to use assumptions from number theory, such as the
extended Riemann hypothesis, which has been used for derandomization in the past
(e.g., [37]).

Acknowledgments. We thank Oded Goldreich and the anonymous SIAM J.
Comput. and CRYPTO 2003 reviewers for helpful comments.
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Abstract. A malleable task is a computational unit that may be executed on any arbitrary
number of processors, whose execution time depends on the amount of resources allotted to it. This
paper presents a new approach for scheduling a set of independent malleable tasks which leads to a

worst case guarantee of 3
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+ ε for the minimization of the parallel execution time for any fixed ε > 0.
The main idea of this approach is to focus on the determination of a good allotment and then to
solve the resulting problem with a fixed number of processors by a simple scheduling algorithm. The
first phase is based on a dual approximation technique where the allotment problem is expressed as
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1. Introduction. The implementation of applications on parallel and distributed
systems requires sophisticated algorithms for scheduling the tasks of the parallel pro-
grams. There exists a very large literature addressing this problem. It corresponds
to determining a date for each task to start its execution together with a processor
location. Usually, the tasks correspond to indivisible pieces of the application that are
executed sequentially on a processor. The standard communication model for schedul-
ing the tasks of a parallel program is the delay model introduced by Rayward-Smith
[21] for UET-UCT (unit execution times and unit communication times) task graphs
and extended by Papadimitriou and Yannakakis [18]. In this model, the communica-
tions between tasks executed on different processors are considered explicitly by the
time for transferring a message between them. The communication times between
tasks within the same processor are neglected. The scheduling UET-UCT problem is
known to be NP-hard in the strong sense [21], and it is not approximable within a
factor of 5/4 of the optimum by any polynomial algorithm [10], unless P = NP. The
best known approximation result is due to Hanen and Munier [8], whose algorithm is
within a factor of 7/3 of the optimum for small communication delays. Among the
various possible approaches, the most commonly used is to consider the tasks of the
program at the finest level of granularity and apply some adequate clustering heuris-
tics to reduce the relative communication overhead [22, 6, 17]. The main drawback
of such an approach is that the communications are taken into account explicitly:
they are expressed assuming a model of the underlying architecture of the system. A
good alternative is to consider the malleable tasks model (denoted MT), where the
communication times are considered implicitly by a function representing the parallel
execution time with the penalty due to the management of the parallelism (commu-
nication, synchronization, etc.). A malleable task is a computational unit which may
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be executed on several processors with a running time that depends on the number
of processors allotted to it.

In this paper, we are interested in scheduling a set of n independent malleable
tasks on a multiprocessor system composed of m identical processors. An instance
of the problem is a set T = {T1, . . . , Tn} of tasks, together with a set of n functions
ti : p → ti,p which represents the processing time of task Ti when executed on p
processors. A solution (scheduling) consists in finding for each task Ti a starting time
sti and a subset Pi of the processors to execute it, with the following constraints.

• Task Ti starts its execution simultaneously on all the processors of Pi and
occupies them without interruption until its completion time Ci = sti+ti,|Pi|.

• A processor executes at most one task at a time.
A task will be represented as a rectangle in the Gantt chart. This study is restricted to
algorithms that provide consecutive processors. It is clear that the optimal allotment
could use processors that are not consecutive. However, since we make use of a lower
bound of the true optimum in our proof of the approximation bound, we see that this
restriction does not have a substantial impact on what results can be achieved.

The objective is to minimize the makespan defined as the maximum comple-
tion time over all the tasks. Our main contribution is to propose a new method for
scheduling independent monotonic malleable tasks. The analysis leads to a perfor-
mance guarantee of 3

2
+ε for any constant ε > 0, in time O(nm log(n/ε)). This bound

improves all existing practical results for solving this problem. Such a method should
be used as a basis for other scheduling problems like MT with precedence constraints
or multiobjective scheduling analysis.

The organization of this paper is the following: we first briefly survey related work
and recall the model of MT and its main properties. Then, we discuss the principle
of our approach and present the algorithm and analyze its performance guarantee.

2. Preliminaries on malleable tasks.

2.1. Related work. The problem of scheduling independent malleable tasks
has been extensively studied in the last decade. Among other reasons, interest in
this problem was motivated by the problem of scheduling jobs in batch processing.
Classical scheduling problems (i.e., with sequential tasks) are a particular case of the
MT scheduling, and hence their complexity results apply directly to MT problems. It
implies that scheduling independent MT is an NP-hard problem [5], in the ordinary
sense if m is fixed. Du and Leung [4] studied more precisely the complexity for
MT scheduling problems, establishing that the problem with arbitrary precedence
constraints is strongly NP-hard for 2 processors, and scheduling independent MT is
strongly NP-hard for 5 processors.

Srinivasa Prasanna and Musicus [20] developed an approach based on optimal
control theory for a continuous version of malleable tasks, leading to optimal solution
assuming the same particular parallel time function for all the tasks.

Jansen and Porkolab [11] proposed a polynomial approximation scheme based on
a linear programming formulation for scheduling independent malleable tasks. The
complexity of the scheme, although linear in the number of tasks, is high indepen-
dently of the accuracy of the approximation due to an exponential factor in the num-
ber of processors. Thus, even though the result is of great theoretical interest, this
algorithm cannot be considered for a practical use.

We are interested in efficient, low complexity heuristics with a good performance
guarantee. Most previous work is based on a two-phase approach proposed by Turek,
Wolf, and Yu [24]. The basic idea is to select first an allotment (the number of
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processors allotted to each task) and in a second step to solve the resulting non-
malleable scheduling problem, which is a classical scheduling problem of multiproces-
sor tasks. As far as the makespan criterion is concerned, this problem is related to a
2-dimensional strip-packing problem [1, 3, 12] for independent tasks. It is clear that
applying an approximation of guarantee λ for the nonmalleable problem on the allot-
ment of an optimal solution provides the same guarantee λ for the malleable problem
if ever an optimal allotment can be found. Two complementary ways for solving the
problem have been proposed, focusing either on the allotment (first phase) or on the
scheduling (second phase).

• Turek, Wolf, and Yu proposed a polynomial selection algorithm for the al-
lotment problem such that any λ-approximation algorithm of complexity
O(f(n,m)) for the nonmalleable (multiprocessor) problem can be adapted
into a λ-approximation algorithm of complexity O(mnf(n,m)) for the mal-
leable problem. Ludwig [13, 14] improved the complexity of the allotment
selection in the special case of monotonic tasks. Based on this result and on
the 2-dimensional strip-packing algorithm of guarantee 2 proposed by Stein-
berg [23], he presented a 2-approximation algorithm for scheduling indepen-
dent MT. The power of this approach is also its main limitation: any im-
provement in the approximation of the strip-packing problem directly applies
to the MT problem, but the performance guarantee of the approach is limited
by the best known result for strip-packing.

• The other way corresponds to choosing an allotment such that the resulting
nonmalleable problem is not a general instance of strip-packing, and hence
better specific approximation algorithms can be applied. Using Knapsack as
an auxiliary problem for the selection of the allotment, this technique leads
to a (

√
3 + ε)-approximation for monotonic tasks [16].

We focus in this paper on the second approach and show how a (3
2

+ ε)-approxi-
mation algorithm can be obtained for any ε > 0. The basic idea is to determine an
allotment such that the tasks can be partitioned into two shelves of respective heights
d and d/2 for some deadline d to be determined.

2.2. Notation and basic properties. The aim of this work is to construct an
MT schedule for a set of n independent malleable tasks that minimizes the maximum
completion time over all the m processors. Recall that we assume that a processor can
compute only one task at a time (no time sharing) and that the number of processors
dedicated to a task remains constant during all its execution. In addition we are
looking for nonpreemptive schedules with contiguous allocation, which means that for
each task the set of the subscripts of the processors allotted to it is an interval of [1,m].
Their performance guarantee is established with respect to an optimal solution, which
may be contiguous or not.

2.2.1. Monotonic assumptions. We define the work function wi of a task Ti,
which corresponds to its computational area in the Gantt chart representation of a
schedule, as wi : p �→ wi,p = p × ti,p for p ≤ m. According to the usual behavior
of parallel programs, we will assume that the tasks are monotonic: allocating more
processors to a task decreases its execution time and increases its work.

Definition 2.1 (monotony).
• The time monotony is achieved by a set of tasks T when ti is a decreasing

function for any task Ti.
• The work monotony is achieved by a set of tasks T when wi is an increasing

function for any task Ti.
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A set of tasks is monotonic if the two previous conditions are fulfilled.
Notice that an instance of the MT problem can always be transformed to fulfill the

time monotony property, replacing the functions ti by t′i : p �→ min{ti,q|q = 1, . . . , p}.
This transformation does not affect the optimal solution of the scheduling.

Due to cache effects or scheduling anomalies described by Graham [7], the work
monotony cannot be asserted for all the applications. However, it is a quite reasonable
hypothesis, which is expected for most large actual parallel applications, mainly due
to the communication overhead. From the parallel computing point of view, this
monotonic assumption may be interpreted by the well-known Brent’s lemma [2], which
states that the parallel execution of a task achieves some speedup if it is large enough,
but does not lead to superlinear speedups.

We give below one useful definition for the presentation of our algorithm, together
with two basic properties implied by the monotonic behavior of the tasks.

Definition 2.2 (canonical number of processors). Given a real number h, we
define for each task Ti its canonical number of processors γ(i, h) as the minimal num-
ber of processors needed to execute task Ti in time at most h. If Ti cannot be executed
in time less than h on m processors, we set by convention γ(i, h) = +∞.

Notice that if the set of tasks is monotonic, the canonical number of processors
can be found in time O(logm) by bisection search. In addition wi,γ(i,h) is also the
minimal work area needed to execute Ti in time less than h.

Property 1. Given a real number h, if γ(i, h) < +∞, the execution time of task
Ti on its canonical number of processors satisfies the inequality

h ≥ ti,γ(i,h) >
γ(i, h) − 1

γ(i, h)
h.

Proof. For short let us denote by p the canonical number of processors of task Ti

for the given deadline h. If p = 1, the inequality is clearly satisfied. Otherwise the
monotonic behavior of the tasks implies that wi,p ≥ wi,p−1, i.e., p × ti,p ≥ (p − 1) ×
ti,p−1. By definition of the canonical number of processors, ti,p−1 > h, which proves
Property 1.

As a corollary, if the canonical number of processors is at least 2 for a task, we
have the following simplified property.

Property 2. Given a real number h, if γ(i, h) ∈ [2,m], we have

2ti,γ(i,h) ≥ ti,γ(i,h)−1 > h ≥ ti,γ(i,h) >
1

2
h.

3. Description of the scheduling algorithm.

3.1. Principle. The principle of the algorithm is to use the dual approximation
technique [9]. A λ-dual approximation algorithm for the MT scheduling problem takes
a real number d as an input and

• either delivers a schedule of length at most λd, or
• answers correctly that there exists no schedule of length at most d.

Ludwig and Tiwari [14] proposed a lower bound ω that can be computed in time
O(mn log n) such that the optimal makespan d∗ verifies ω ≤ d∗ ≤ 2ω. Hence a λ-dual
approximation running in time f(n,m) can be converted, by bisection search, in a
λ(1 + ε)-approximation running in time O(mn log n+ log(1/ε)f(n,m)) for any ε > 0.

We are interested in this article in finding a 3/2-dual approximation. Let d be the
current real number input for our dual approximation. In the following we assert that
an MT schedule of length lower than d exists: thus we have to show how it is possible
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to build a schedule of length at most 3d/2. The idea of the algorithm is to partition
the set of tasks into two shelves, one of height d and the other of height d/2. Since
the tasks are independent in both shelves, the scheduling strategy is straightforward
after the allotment of the tasks has been determined and yields directly a solution of
length at most 3d/2. The main problem we face is to choose the tasks in each shelf
in order to obtain a feasible solution. The way to determine the partition will be
described in section 3.5.

3.2. Structure of an optimal schedule. To take advantage of the dual ap-
proximation paradigm, we have to make explicit the consequences of our assumption
that there exists a schedule of length at most d. We state below some straightforward
properties of such a schedule. They should give the insight for the construction of our
solution.

Remark 1. In an optimal solution, the execution time of each task is at most d,
and the total work is at most md.

Remark 2. In an optimal solution, if there exist two successive tasks (i.e., tasks
executed successively on a common processor), at least one of these tasks has an
execution time at most d/2.

The basic idea of the solution that we propose comes from the analysis of the shape
of an optimal schedule. From Remark 2 the tasks whose execution times are strictly
greater than d/2 do not use more than m processors, and hence can be executed
concurrently. The other tasks can be executed in time at most d/2. Thus, we are
looking for a schedule in two shelves: S1 of height d and S2 of height d/2.

3.3. Algorithm. Starting from the idea of constructing a schedule in two shelves,
we sketch below the main steps of the dual approximation algorithm; the full details
follow in the next sections. The input consists in a set of tasks (T ), the number of
processors (m), and a guess of the optimal makespan (d).

3/2 Dual Approximation (T , m, d)
1. Determine the set TS = {Ti|ti,1 ≤ d/2} of tasks whose

sequential time is at most d/2. Compute WS =
∑

Ti∈TS
ti,1.

2. Search for an allotment for T \TS such that

• the total work is at most md−WS,
• each task has an execution time at most d,
• the tasks whose execution times are strictly greater

than d/2 require at most m processors altogether.

If such an allotment does not exist, return NO.

3. Convert the allotment into a feasible 2-Shelves schedule

of length at most 3d/2 by calling algorithm BuildFeasible

(see section 3.6).

4. Insert the set of tasks TS in the schedule using a greedy

algorithm (see section 3.4) and return YES and the

schedule.

Sections 3.4–3.6 detail the implementation of these steps. Steps 1 and 4, presented
together in section 3.4, simply mean that we can forget about sufficiently small tasks
to build the 2-Shelves schedule. They can be implemented in time complexity O(nm).

Step 2 is the critical point of the algorithm. It consists in choosing a first allotment
that fulfills some properties to be a good candidate for the 2-Shelves schedule. We need
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m

S1

3/2d

S2

d

m

S1

3/2d

S2

d

Fig. 3.1. A 2-Shelves schedule for T \TS (left) and the final schedule after the insertion of tasks
of TS (right).

an oracle to either find such an allotment or deliver a certificate that no schedule of
length at most d exists.

This oracle is implemented in time O(nm) using a knapsack formulation of the
problem described in section 3.5.

Finally section 3.6 presents the algorithm BuildFeasible which applies several
simple transformations to the initial allotment in order to build a feasible schedule
with two shelves of respective heights d and d/2. Its time complexity is also in O(nm),
which leads to an overall complexity in O(nm) for the dual approximation scheme.

3.4. Forgetting about small tasks. Recall that we are looking for an MT
schedule of length at most 3d/2, assuming that there exists a schedule of length at
most d. Since we are interested in an approximation of the optimal solution, we can
“forget” about some small tasks which do not affect the final performance of the
algorithm. These small tasks are the set TS of the tasks whose sequential execution
time is at most d/2. Let us denote by WS the sum of the execution times of TS . We
remark that WS is a lower bound of the work area of execution of TS in any feasible
schedule.

Lemma 3.1. If there exists a 2-Shelves schedule of length 3d/2 for T \TS with
a work area at most md − WS , then an MT schedule of length at most 3d/2 can be
derived for T in time O(nm).

Proof. Consider a 2-Shelves schedule composed of shelves S1 and S2. We can
modify the starting time of the tasks of S2, which is currently d, to require that they
all finish exactly at time 3d/2. It creates on each processor an idle time interval
between the completion of the tasks of S1 and the starting of the tasks of S2. We
define the load of a processor as the sum of the execution times of the tasks computed
by it. By definition the load is equal to 3d/2 minus the length of the idle time interval
on the processor. Now consider the following algorithm to schedule the tasks of TS
(see Figure 3.1):

• Consider the tasks in an arbitrary order TS = {T1, . . . , Tk}.
• Allocate task Ti to the least loaded processor, at the earliest possible date.

Update its load.

The only problem that may occur is that a task Ti cannot be completed before the
tasks of S2. But at each step, the least loaded processor has a load at most d;
otherwise it would contradict the fact that the total work area of the tasks is bounded
by md. Hence, the idle time interval on this processor has a length at least d/2 and
can contain the task Ti.



SCHEDULING INDEPENDENT MONOTONIC MALLEABLE TASKS 407

3.5. Partitioning the tasks into two shelves. In this section, we detail how
to fill both shelves S1 and S2 by specifying an initial allotment of processors for the
tasks. According to Lemma 3.1, we assume that only tasks with a sequential execution
time strictly greater than d/2 remain in T .

In order to obtain a 2-Shelves schedule, we look for an allotment satisfying the
following three constraints:

(C1) The total work area of the allotment is at most W = md−WS .
(C2) The set T1 of tasks with an execution time strictly greater than d/2 in the

allotment uses a total of at most m processors. These tasks are intended to
be scheduled in S1.

(C3) The set T2 of tasks with an execution time at most d/2 in the allotment uses
a total of at most m processors. These tasks are intended to be scheduled in
S2.

Such an allotment clearly defines a 2-Shelves schedule of length at most 3d/2 which
would allow us to build a solution for the MT problem according to Lemma 3.1.
Unfortunately, we have no certitude on the existence of such an allotment. Therefore,
we relax the allotment problem looking for a solution which verifies only constraints
(C1) and (C2), but might violate (C3).

Due to the monotonic assumption, we have only two allotments to consider for a
task. If it is selected to belong to T1, clearly γ(i, d) is a dominant allotment; otherwise
γ(i, d/2) is. According to Remark 1, we note that γ(i, d) is at most m for all the tasks.
To determine if such a relaxed allotment exists, we can solve the following optimization
problem:

find W ∗ = min
T1⊆T

⎛
⎝
∑

i∈T1

wi,γ(i,d) +
∑

i/∈T1

wi,γ(i,d/2)

⎞
⎠

under the constraint
∑

i∈T1

γ(i, d) ≤ m.

This problem is in fact a well-known knapsack problem. Let us recall it briefly:
given a set of n items, each one associated to an integral weight ωi and a profit vi,
and a knapsack with a total weight capacity W , find a subset of the tasks which
can be contained by the knapsack with the maximal profit. This problem is NP-
hard [5]; however, it admits [15, 19] a pseudopolynomial algorithm, using dynamic
programming, that solves it exactly in time complexity in O(nW ).

Here, imagine that all the tasks are initially allotted to their canonical number of
processors to respect the d/2 threshold. The problem is then to determine the set T1

using at most m processors such that the total weight is minimal. Hence, the profit
of an item-task will correspond to the work saving obtained by executing the task
just to respect the threshold d instead of d/2, i.e., vi = wi,γ(i,d/2) − wi,γ(i,d). The
weight of an item-task will be its canonical number of processors needed to respect
the threshold d, ωi = γ(i, d), while the capacity W of the knapsack is m. Using this
notation, the problem can be rewritten as the following knapsack problem:

find W ∗ =
∑

i∈T
wi,γ(i,d/2) − max

T1⊆T

∑

i∈T1

vi

under the constraint
∑

i∈T1

ωi ≤ m.
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If the work area W ∗ is greater than W = md−WS , then there exists no solution
with a makespan at most d, and the algorithm answers “NO” to the dual approxi-
mation. Otherwise, we will describe in detail in the next section how to construct a
feasible solution with a makespan at most 3d/2. Lemma 3.2 establishes the correctness
of this dual approximation.

Lemma 3.2. Assuming that there exists a schedule of length at most d, the
knapsack formulation of the problem delivers an allotment satisfying constraints (C1)
and (C2) in time O(nm).

Proof. Consider an optimal schedule. As already noted, the total work of tasks of
TS in this schedule is at least WS ; hence the remaining tasks occupy an area bounded
by W = md−WS . The allotment of the optimal solution partitions these tasks into
two sets T ′

1 and T ′
2 , where T ′

1 groups the tasks with execution time strictly greater
than d/2. By definition any task Ti is allotted to at least γ(i, d) processors if it
belongs to T ′

1 , and at least γ(i, d/2) processors if it belongs to T ′
2 . Finally, as a direct

consequence of Remark 2, the tasks of T ′
1 use at most m processors. It follows that

T ′
1 is a feasible solution for the knapsack procedure, with a resulting work area at

most W. By definition it implies that the optimum W ∗ of the knapsack procedure is
at most W.

3.6. Satisfying constraint (C3). Starting from the allotment found by the
knapsack procedure, we can construct a solution with the tasks of T1 in S1 and the
others, T2 = T \T1, in S2. No more than m processors are used to schedule the tasks in
S1, but it may happen that more than m processors are needed in S2. We then apply
three possible transformations that will reduce this number to less than m. These
transformations are applied until the resulting schedule becomes a feasible solution
on m processors. These transformations modify the shape of the 2-Shelves solution
we are looking for, creating a new area S0 whose processors are continuously busy in
the time interval [0, d], as depicted in Figure 3.2. The three transformations are the
following (note that these transformations can be applied in any order):

(1) If a task T in S1 has an execution time at most 3d/4 and is allotted to p > 1
processors, allocate T to p− 1 processors in S0.

(2) If T and T ′ in S1 have an execution time lower than 3d/4 and are each allotted
to 1 processor, allocate T and T ′ to the same processor in S0. A special case
happens if T is the only remaining sequential task of execution time at most
3d/4.

(3) Let q denote the number of idle processors in S1. If there exists a task Ti in
S2 whose execution time on q processors is bounded by 3d/2, allocate Ti on
γ(i, 3d/2) processors. According to the resulting execution time, Ti is either
scheduled in S0 if t ≥ d or in S1 otherwise.

Finally, the algorithm to build a feasible solution of length at most 3d/2 is the
following:

Algorithm BuildFeasible

• Start from the solution delivered by the Knapsack,

S0 = ∅, S1 = T1, S2 = T2.

• While the solution is not feasible

apply one of the transformations (1), (2), or (3).

The end of the section is devoted to the proof of Lemma 3.3.
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Fig. 3.2. The 2-Shelves schedule obtained from the allotment phase (left) and the final schedule
given by BuildFeasible (right) with the new area S0.

Lemma 3.3. The algorithm BuildFeasible delivers a feasible schedule of length
at most 3d/2 in time complexity O(nm).

Notice that the transformations ensure by construction that the makespan re-
mains bounded by 3d/2 at each step of the algorithm (for transformation (1), this
is a direct consequence of Property 2). In addition, a transformation never increases
the number of processors allotted to a task. Due to the monotony, it asserts that the
total work area of the schedule remains bounded by W = md − WS at any step of
BuildFeasible.

Let m0 be the number of processors used to schedule the tasks of set S0 in the
final solution. We denote by m′ = m−m0 the remaining processors for the 2-Shelves
schedule composed of S1 and S2. By construction any processor in S0 completes after
deadline d, which implies a work area greater than m0d. Since the total work area
is bounded by W, it is straightforward to remark that the total work area of tasks
in S1 and S2 is bounded by m′d −WS . In addition the set S1 requires less than m′

processors for the concurrent execution of its tasks. Hence, to prove Lemma 3.3, we
are going to show that while the second shelf S2 requires more than m′ processors, one
of the three transformations can be applied. It is clear that the schedule restricted
to S1 and S2 on m′ processors, if feasible, verifies the conditions of application of
Lemma 3.1. Thus, we can conclude that the algorithm is a 3/2-dual approximation.

3.6.1. Algorithm BuildFeasible delivers a feasible schedule. Suppose
that none of the transformations can be applied to the current schedule. We have
to prove that this solution is feasible, i.e., requires at most m processors, which is
equivalent by construction to proving that S2 requires at most m′ processors.

Let q be the number of idle processors in the first shelf S1. Assume for the sake
of contradiction that the second shelf S2 requires m2 > m′ processors. We have the
following structure for the current schedule:

1. The total work area of tasks in S1 ∪ S2 is bounded by W ′ = m′d−WS .
2. Any task in S1 has a duration strictly greater than 3d/4, except possibly one

sequential task whose execution time can be in the range ]d/2, 3d/4].
3. Any task in S2 has a duration strictly greater than d/4.
4. Any task in S2 has a work area greater than 3qd/2, and hence is allotted to

at least 3q + 1 processors.
The second point is a direct consequence of the fact that neither transformation (1)
nor (2) can be applied. The third point is a corollary of Property 2: since any task of
T \TS has a sequential execution time strictly greater than d/2, all the tasks in S2 are
allotted to γ(i, d/2) ≥ 2 processors. The last point comes from the fact that, due to
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transformation (3), any task in S2 has a duration greater than 3d/2 when allotted to
q processors. Due to the monotonic assumption, the task’s current work is at least its
work on q processors, which is strictly greater than q(3d/2). In particular, we have
3qti,3q ≥ wi,q > q(3d/2), which implies that the time duration on 3q processors is
strictly greater than d/2. Thus by definition γ(i, d/2) > 3q.

To obtain a contradiction to the assumption that the current schedule is not a
feasible solution, we will derive some lower bounds of the work area in S1 and S2 which
will contradict the fact that their sum is bounded by m′d. We start by giving the lower
bound used for the tasks in S1, together with a very simple first lower bound for S2.

Lemma 3.4. If the schedule is not feasible, the overall work area W1 of S1 is
greater than 3d(m′−q)/4, while the overall work area W2 of S2 is at least d(m′+1)/4.

Proof. The lower bound on W2 is straightforward, since any task in S2 has an
execution time strictly greater than d/4, and the tasks of S2 use at least m′ + 1
processors. The same argument holds for W1 if no sequential task of duration at most
3d/4 exists in the shelf. Otherwise let T be this unique task, with a sequential time
t in the range ]d/2, 3d/4].

Let us first establish that T cannot be the only task scheduled in S1. Indeed,
assume for the sake of contradiction that it is the case. If there is no idle processor in
S1 (q = 0), we simply have m′ = 1. Hence at least W1 > d/2 while the lower bound
on S2 can be rewritten as W2 > d/2. It contradicts the fact that W1 +W2 is bounded
by m′d = d. If there exist some idle processors, then we have q = m′ − 1 > 0.
As S2 contains at least one task, W2 > 3qd/2 = 3(m′ − 1)d/2. We obtain m′d >
d/2 + 3(m′ − 1)d/2 = (3m′ − 2)d/2, which implies 2 > m′, contradicting q > 0.

Hence, at least another task T ′ is partially scheduled in S1 together with T .
Since transformation (2) cannot be applied, task T ′ has an execution time t′ strictly
greater than 3d/2− t. Thus, considering the processor executing T ′ and the processor
executing T , their average load is strictly greater than 3d/4. Since any other non-idle
processor is occupied by a task in S1 with an execution time greater than 3d/4, we
obtain W1 > 3(m′ − q)/4.

To conclude that a nonfeasible schedule leads to a contradiction, we distinguish
between two cases, depending on whether or not there exist some idle processors in S1.
Case 1. Assume q = 0. In this case Lemma 3.4 leads directly to a contradiction.

Indeed we have m′d ≥ W1 + W2 > 3m′d/4 + (m′ + 1)d/4 > m′d.
Case 2. Assume q > 0. We need a more accurate lower bound on W2 to complete the

proof. Let k be the number of tasks in S2. By construction we have

W2 =
∑

i∈S2

wi,γ(i,d/2).

We can express the work of each task in two different ways. First, using the
fact that this work is greater than 3qd/2, we obtain

W2 >
3

2
qdk.(3.1)

Second, due to monotony, the work of each task Ti when allotted on fewer
processors never increases: wi,γ(i,d/2) ≥ wi,γ(i,d/2)−1. By definition, the ex-
ecution time on γ(i, d/2) − 1 processors is strictly greater than d/2, which
implies that wi,γ(i,d/2)−1 > (γ(i, d/2) − 1)d/2. We have

W2 >

(
∑

i∈S2

γ

(
i,
d

2

)
− k

)
d

2
≥ 1

2
(m′ + 1 − k)d.(3.2)
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Using the lower bound established in Lemma 3.4 on W1 we can rewrite the upper
bound m′d on the total work area as W2 < m′d/4 + 3qd/4. Using (3.1), we obtain

6qk < m′ + 3q ⇔ 3q(2k − 1) < m′.

Using (3.2), we get

2(m′ + 1 − k) < m′ + 3q ⇔ m′ < 3q + (2k − 2).

By transitivity we obtain the following strict inequality:

3q(2k − 1) < 3q + (2k − 2) ⇔ 3q(2k − 2) < (2k − 2) ⇔ (3q − 1)(k − 1) < 0.

But both k and q are greater than 1, which contradicts the previous inequality. This
concludes the proof of Lemma 3.3 by contradiction.

3.6.2. Time complexity of BuildFeasible. We finally establish the time
complexity of the algorithm. Each of the three transformations either moves a task
from S2 to S1 or S0, or from S1 to S0. Hence at most two transformations can be
applied to any task. Let N be the number of tasks to deal with in our problem, after
the elimination of the “small” tasks of TS . If we look at the time complexity of each
of the three transformations at a step of the algorithm, we have the following:

• The first two transformations can be implemented in time complexity O(N)
by a simple scan of the tasks in S1.

• Transformation (3) can also be implemented in time O(N) scanning the tasks
of S2. The determination of γ(i, 3d/2) for the elected task Ti can be computed
in time O(logm) by a bisection search.

Since at most 2N transformations can be applied, algorithm BuildFeasible has an
overall complexity in O(N2 + N logm). To obtain a time complexity in O(nm),
simply notice that N is bounded by both n and 2m: indeed any of the N tasks
has a sequential execution time greater than d/2 for a total work bounded by md.
Monotony implies that N ≤ 2m.

4. Conclusion. We have presented in this paper a new algorithm for scheduling
a set of independent malleable tasks. It improves significantly the best bound known
at this time, with a performance guarantee of 3

2
+ ε for any ε > 0 in time complexity

O(nm log(n/ε)). The basic idea was to focus on the first phase of allotment using a
knapsack formulation of the problem.

The natural continuation of this work is to study the scheduling of other structures
of precedence graphs with malleable tasks. We believe that a similar analysis in two
phases with a sophisticated allotment algorithm should lead to good approximation
algorithms.

Another promising feature of MT is its intrinsic hierarchical behavior which should
help in developing good scheduling algorithms for cluster computing. This issue is
under investigation.
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QUANTUM ALGORITHMS FOR THE TRIANGLE PROBLEM∗

FRÉDÉRIC MAGNIEZ† , MIKLOS SANTHA† , AND MARIO SZEGEDY‡

Abstract. We present two new quantum algorithms that either find a triangle (a copy of
K3) in an undirected graph G on n nodes, or reject if G is triangle free. The first algorithm uses
combinatorial ideas with Grover Search and makes Õ(n10/7) queries. The second algorithm uses
Õ(n13/10) queries and is based on a design concept of Ambainis [in Proceedings of the 45th IEEE
Symposium on Foundations of Computer Science, 2004, pp. 22–31] that incorporates the benefits of
quantum walks into Grover Search [L. Grover, in Proceedings of the Twenty-Eighth ACM Symposium
on Theory of Computing, 1996, pp. 212–219]. The first algorithm uses only O(logn) qubits in its
quantum subroutines, whereas the second one uses O(n) qubits. The Triangle Problem was first
treated in [H. Buhrman et al., SIAM J. Comput., 34 (2005), pp. 1324–1330], where an algorithm
with O(n +

√
nm) query complexity was presented, where m is the number of edges of G.

Key words. 05C85, 68R10, 68W99

AMS subject classifications. quantum algorithm, query complexity, triangle problem, quan-
tum walk

DOI. 10.1137/050643684

1. Introduction. Quantum computing is an extremely active research area (for
introductions, see, e.g., [22, 20]), where a growing trend is the study of quantum
query complexity. The quantum query model was implicitly introduced by Deutsch
[15], Deutsch and Jozsa [16], Simon [25], and Grover [18], and explicitly by Beals et al.
[9]. In this model, as in its classical counterpart, we pay for accessing the oracle (the
black box), but unlike in the classical case, the machine can use the power of quantum
parallelism to make queries in superpositions. While no significant lower bounds are
known in quantum time complexity, the black box constraint sometimes enables us
to prove such bounds in the query model.

For promise problems quantum query complexity indeed can be exponentially
smaller than the randomized query complexity; a prominent example for that is the
Hidden Subgroup Problem [25, 17]. On the other hand, Beals et al. [9] showed that for
total functions the deterministic and the quantum query complexities are polynomially
related. In this context, a large axis of research pioneered by Grover [18] was developed
around search problems in unstructured, structured, or partially structured databases.

The classical query complexity of graph properties has made its fame through the
notoriously hard evasiveness conjecture of Aanderaa and Rosenberg [24] which states
that every nontrivial and monotone boolean function on graphs whose value remains
invariant under the permutation of the nodes has deterministic query complexity
exactly

(
n
2

)
, where n is the number of nodes of the input graph. Though this conjecture
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is still open, an Ω(n2) lower bound has been established by Rivest and Vuillemin [23].
In randomized bounded error complexity the general lower bounds are far from the
conjectured Ω(n2). The first nonlinear lower bound was shown by Yao [30]. For a
long time Hajnal’s Ω(n4/3) bound [19] was the best, until it was slightly improved

in [13] to Ω(n4/3 log1/3 n). The question of the quantum query complexity of graph
properties was first raised in [11], where it is shown that in the exact case an Ω(n2)
lower bound still holds. In the bounded error quantum query model, the Ω(n2) lower

bound does not hold anymore in general. An Ω(n2/3 log1/6 n) lower bound, first
observed by Yao [31], can be obtained combining Ambainis’ technique [4] with the
above randomized lower bound.

We address the Triangle Problem in this setting. In a graph G, a complete
subgraph on three vertices is called a triangle. In this write-up we study the following
oracle problem:

Triangle

Oracle Input: The adjacency matrix f of a graph G on n nodes.
Output: A triangle if there is any, otherwise reject.

Triangle has been studied in various contexts, partly because of its relation to matrix
multiplication [3]. Its quantum query complexity was first raised in [12], where the
authors show that in the case of sparse graphs the trivial (that is, using Grover Search)
O(n3/2) upper bound can be improved. Their method breaks down when the graph
has Θ(n2) edges.

The quantum query complexity of Triangle as well as of many of its kins with
small one-sided certificate size is notoriously hard to analyze, because one of the main
lower bounding methods breaks down near the square root of the instance size [27,
21, 32, 26]: If the 1-certificate size of a boolean function on N boolean variables is K,
then even the most general variants [8, Theorem 4], [5], [21] of Ambainis’ quantum
adversary technique [4] can prove only a lower bound of Ω(

√
NK). Indeed only the

Ω(n) lower bound is known for Triangle, which, because of the remark above, cannot
be improved using any quantum adversary technique (N = n2 and K = 3). Problems
with small certificate complexity include various collision type problems such as the
2-1 Collision Problem and the Element Distinctness Problem. The first polynomial
lower bound for the 2-1 Collision Problem was shown by Aaronson and Shi [1] using
the polynomial method of Beals et al. [9]. For the Element Distinctness Problem, a
randomized reduction from the 2-1 Collision Problem gives Ω(n2/3).

In this paper we present two different approaches that give rise to new upper
bounds. First, using combinatorial ideas, we design an algorithm for Triangle

(Theorem 3.5) whose quantum query complexity is Õ(n10/7). Surprisingly, its quan-
tum parts consist in only Grover Search subroutines. Indeed, Grover Search coupled
with the Szemerédi lemma [28] already gives an o(n3/2) bound. We exploit this fact
using a simpler observation that leads to the Õ(n10/7) bound. Moreover, our algo-
rithm uses only small quantum memory, namely O(log n) qubits (and O(n2) classical
bits). Then, we generalize the new elegant method used by Ambainis [6] for solving
the Element Distinctness Problem in O(n2/3), to solve a general Collision Problem
by a dynamic quantum query algorithm (Theorem 4.1). The solution of the general
Collision Problem will be used in our second algorithm for Triangle. As an inter-
mediate step, we introduce the Graph Collision Problem, which is a variant of the
Collision Problem, and solve it in Õ(n2/3) query complexity (Theorem 4.4). Whereas
a reduction of Triangle to the Element Distinctness Problem does not give a better
algorithm than O(n3/2), using a recursion of our dynamic version of Ambainis’ method
we prove the Õ(n13/10) query complexity for Triangle (Theorem 4.5). We end by
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generalizing this result for finding the copy of any given graph (Theorem 4.6) and
then for every graph property with small 1-certificates (Corollary 4.7).

2. Preliminaries.

2.1. Query model. In the query model of computation each query adds one to
the complexity of an algorithm, but all other computations are free. The state of the
computation is represented by three registers, the query register x, the answer register
a, and the work register z. The computation takes place in the vector space spanned
by all basis states |x, a, z〉. In the quantum query model the state of the computation
is a complex combination of all basis states which has unit length in the norm l2.

The query operation Of maps the basis state |x, a, z〉 into the state |x, a⊕ f(x), z〉
(where ⊕ is bitwise XOR). Nonquery operations are independent of f . A k-query
algorithm is a sequence of (k + 1) operations (U0, U1, . . . , Uk), where Ui is unitary.
Initially the state of the computation is set to some fixed value |0, 0, 0〉, and then the
sequence of operations U0, Of , U1, Of , . . . , Uk−1, Of , Uk is applied.

2.2. Notation. We denote the set {1, 2, . . . , n} by [n]. A simple undirected
graph is a set of edges G ⊆ {(a, b) | a, b ∈ [n]; a �= b} with the understanding that

(a, b)
def
= (b, a). Let t(G) denote the number of triangles in G. The complete graph

on a set ν ⊆ [n] is denoted by ν2. The neighborhood of a v ∈ [n] in G is denoted by
νG(v), and it is defined by νG(v) = {b | (v, b) ∈ G}. We denote |νG(v)| by degG v.
For sets A,B ⊆ [n] let G(A,B) = {(a, b) | a ∈ A; b ∈ B; (a, b) ∈ G}.

The following function will play a major role in our proof. We denote the number
of paths of length 2 from a ∈ [n] to b ∈ [n] in G with t(G, a, b): t(G, a, b) = |{x |
(a, x) ∈ G; (b, x) ∈ G}|. For a graph G ⊆ [n]2 and an integer k ≥ 0, we define
G〈k〉 = {(a, b) ∈ [n]2 | t(G, a, b) ≤ k}.

2.3. Quantum subroutines. We will use a safe version of Grover Search [18],
namely Safe Grover Search(t), based on t iterations of Grover Search and followed by
a checking process for markedness of output instances.

Fact 2.1. Let c > 0. Safe Grover Search(Θ(c logN)) on a database of N items
has quantum query complexity O(c

√
N logN), and it always rejects if there is no

marked item; otherwise it finds a marked item with probability at least 1 − 1
Nc .

For quantum walks on graphs we usually define two operators: coin flip and shift.
The state of the walk is held in a pair of registers, the node and the coin. The coin flip
operator acts only on the coin register and is the identity on the node register. The
shift operation changes only the node register, but it is controlled by the content of
the coin register (see [29, 2, 7]). Often the coin flip is actually the diffusion operator.

Definition 2.2 (diffusion over T ). Let T be a finite set. The diffusion operator
over T is the unitary operator on the Hilbert space CT that acts on a basis element
|x〉, x ∈ T as: |x〉 
→ −|x〉 + 2

|T |
∑

y∈T |y〉.
In [6] a new walk is described that plays a central role in our result. Let S be a

finite set of size n. The node register holds a subset A of S of size either r or r+1 for
some fixed 0 < r < n, and the coin register holds an element x ∈ S. Thus the basis
states are of the form |A〉|x〉, where we also require that if |A| = r, then x �∈ A, and
if |A| = r + 1, then x ∈ A. We also call the node register the set register.

Quantum Walk.

1. Diffuse the coin register over S −A.
2. Add x to A.
3. Diffuse the coin register over A.
4. Remove x from A.
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Ambainis [6] showed that, inside some specific stable subspaces, Θ(
√
r) iterations

of Quantum Walk can play the role of the diffusion over {(A, x) : A ⊂ S, |A| = r, x �∈
S}. This nice result leads to a more efficient Grover Search for some problems such
as the Element Distinctness Problem [6]. We will describe this in a general setting in
section 4.1.

3. Combinatorial approach.

3.1. Preparation. The algorithm presented here is based on three combinato-
rial observations. Throughout this section we do not try to optimize logn factors and
we will hide time in the Õ notation. The first observation is based on the amplitude
amplification technique of Brassard et al. [10].

Lemma 3.1. For any known graph E ⊆ [n]2, a triangle with at least one edge in
E can be detected with Õ(

√
E +

√
n|G ∩ E|) queries and probability 1 − 1

n .
Perhaps the most crucial observation to the algorithm is the following simple one.
Lemma 3.2. For every v ∈ [n], using Õ(n) queries, we either find a triangle in

G or verify that G ⊆ [n]2 \ νG(v)2 with probability 1 − 1
n3 .

Proof. We query all edges incident to v classically using n − 1 queries. This
determines νG(v). With Safe Grover Search we find an edge of G in νG(v)2 if there is
any.

This lemma, with the observation that hard instances have to be dense, already
enables us to show that the quantum query complexity of Triangle is o(n3/2), using
the Szemerédi lemma [28]. However, another fairly simple observation can help us to
decrease the exponent.

Lemma 3.3. Let 0 < ε < 1, k = �4nε log n�, and let v1, v2, . . . , vk be ran-
domly chosen from [n] (with no repetitions). Let G′ = [n]2 \ ∪k

i=1νG(v)2. Then

Prv1,v2,...,vk
(G′ ⊆ G〈n1−ε〉) > 1 − 1

n .
Let us first remind the reader about the following lemma that is useful in many

applications.
Lemma 3.4. Let X be a fixed subset of [n] of size pn and Y be a random subset

of [n] of size qn, where p + q < 1. Then the probability that X ∩ Y is empty is

(1 − pq)n(1±O(p3+q3+1/n)).
Proof. The probability we are looking for is estimated using the Stirling formula

as
(
n(1−p)

nq

)
(
n
nq

) =
[n(1 − p)]![nq]![n(1 − q)]!

[nq]![n(1 − p− q)]!n!

=

√
(1 − p)(1 − q)

1 − p− q

[
(1 − p)1−p(1 − q)1−q

(1 − p− q)1−p−q

]n
(1 ± o(1))

= (1 − pq)n(1±O(p3+q3+1/n)).

Proof of Lemma 3.3. Consider now a fixed edge (a, b) such that t(G, a, b) ≥ n1−ε.
The probability that (a, b) ∈ G′ is the same as the probability that the set X =
{x ∈ [n] : (x, a) ∈ G and (x, b) ∈ G} is disjoint from the random set {v1, v2, . . . , vk}.
Notice that |X| = t(G, a, b). By Lemma 3.4 we can now estimate this probability as,
for sufficiently large n,

(
1 − 4nε log n

n
× n1−ε

n

)n(1+o(1))

=

(
1 − 4 log n

n

)n(1+o(1))

< e−3 log n = n−3.
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Then the lemma follows from the union bound, since the number of possible edges
(a, b) is at most n2.

3.2. Algorithm and analysis. We now describe our algorithm where all searches
are done using Safe Grover Search. We delay details of Step 6 for a while.

Combinatorial Algorithm(ε, δ, ε′).
1. Let k = �4nε log n�.
2. Randomly choose v1, . . . , vk from [n] (with no repetition).
3. Compute every νG(vi).
4. If G∩ νG(vi)

2 �= ∅, for some i, then output the triangle induced by vi.
5. Let G′ = [n]2 \ ∪i(νG(vi)

2).
6. Classify the edges of G′ into T and E such that

– T contains only O(n3−ε′) triangles,
– E ∩G has size O(n2−δ + n2−ε+δ+ε′).

7. Search for a triangle in G among all triangles inside T .
8. Search for a triangle of G intersecting with E.
9. Output a triangle if it is found; otherwise reject.

Theorem 3.5. Combinatorial Algorithm(ε, δ, ε′) rejects with probability one if
there is no triangle in G; otherwise, it returns a triangle of G with probability 1−O( 1

n ).

Moreover, it has query complexity Õ(n1+ε + n1+δ+ε′ +
√
n3−ε′ +

√
n3−min(δ,ε−δ−ε′)).

With ε = 3
7
, ε′ = δ = 1

7
this gives Õ(n1+ 3

7 ) for the total number of queries.

We require every probabilistic step to be correctly performed with probability
1 − O( 1

n3 ), so that the overall probability of a correct execution is 1 − O( 1
n ), using

the union bound and since the number of such steps is at most O(n2). Thus we
will always assume that an execution is correct. Since an incorrect execution might
increase the query complexity of the algorithm, we also assume there is a counter so
that the algorithm rejects and stops when a threshold is exceeded. This threshold is
defined as the maximum of query complexities over all correct executions.

The main step of Combinatorial Algorithm is step 6, which we implement in the
following way.

Classification(G′, δ, ε′).
1. Set T = ∅, E = ∅.
2. While G′ �= ∅ do

(a) While there is an edge (v, w) ∈ G′ s.t. t(G′, v, w) < n1−ε′ ,
add (v, w) to T , and delete it from G′.

(b) Pick a vertex v of G′ with nonzero degree and decide
1. low degree hypothesis: |νG(v)| ≤ 10 × n1−δ;
2. high degree hypothesis: |νG(v)| ≥ 1

10
× n1−δ.

(c) If Hypothesis 1, add all edges (v, w) of G′ to E and delete them
from G′.

(d) If Hypothesis 2, then
i. Compute νG(v);
ii. If G∩νG(v)2 �= ∅, output the triangle induced by v and stop;
iii. Add all edges in G′(νG(v), νG′(v)) to E and delete them from

G′.

In step 2(b), we use an obvious sampling strategy:
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Set a counter C to 0. Query �nδ� random edge candidates from v×[n].
If there is an edge of G among them, add one to C. Repeat this
process K = c0 log n times, where c0 is a sufficiently large; constant.
Accept the low degree hypothesis if by the end C < K/2; otherwise
accept the large degree hypothesis.

Observe that one could use here a quantum procedure based on Grover Search. Since
the cost of this step is negligible from that of others, this would not give any better
bound.

Fact 3.6. When c0 is large enough in Step 2(b),

1. the probability that degG(v) > 10 × n1−δ and the low degree hypothesis is
accepted is O( 1

n3 );
2. the probability that degG(v) < 1

10
× n1−δ and the high degree hypothesis is

accepted is O( 1
n3 ).

Proof. Indeed, using Lemma 3.4, considering a single round of sampling, the prob-
ability that our sample set does not contain an edge from G even though degG(v) >
10 × n1−δ is, for sufficiently large n,

(
1 − 10n1−δ

n
× nδ

n

)n(1+o(1))

=

(
1 − 10

n

)n(1+o(1))

< 0.1.

Similarly, the probability that our sample set contains an edge from G even though
degG(v) < 1

10
× n1−δ is

1 −
(

1 − n1−δ

10n
× nδ

n

)n(1+o(1))

= 1 −
(

1 − 1

10n

)n(1+o(1))

< 0.2.

Now for K = c0 log n rounds, where c0 is large enough, the Chernoff bound gives
the claim.

Lemma 3.7. If G ⊆ G′ ⊆ G〈n1−ε〉, then Classification(G′, ε′, δ) outputs the desired
partition (T,E) of G with probability 1−O( 1

n ) and has query complexity Õ(n1+δ+ε′).

Proof of Theorem 3.5. Clearly, if there is no triangle in the graph, the algorithm
rejects since the algorithm outputs a triplet only after checking that it is a triangle in
G. Therefore the correctness proof requires us only to calculate the probability with
which the algorithm outputs a triangle, if there is any, and the query complexity of
the algorithm.

Assume that the execution is without any error. Using the union bound, we can
indeed upper bound the probability of incorrect execution by O( 1

n ).

By Lemma 3.2, we already know that the construction of G′ requires Õ(nε × n)
queries. Moreover, either G ⊆ G′ or a triangle is found, with probability 1 − O( 1

n ).

From Lemma 3.3, we also know that G′ ⊆ G〈n1−ε〉, with probability 1 −O( 1
n ).

Assume that G′ lends all its edges to T and E; that is, no triangle is found at the
end of Classification. Since G ⊆ G′, every triangle in G either has to be contained
totally in T or has to have a nonempty intersection with E. Using Lemma 3.7, we
know that the partition (T,E) is correct with probability 1 − O( 1

n ). Assume this
is the case. T is a graph that is known to us, and so we can find out if one of
these triangles belongs to G with Õ(

√
n3−ε′) queries, using Safe Grover Search. By

Lemma 3.1, the complexity of finding a triangle in G that contains an edge from E is
Õ(n +

√
n3−min(δ,ε−δ−ε′)).
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From the analysis we conclude that the total number of queries is upper bounded
by

Õ
(
n1+ε + n1+δ+ε′ +

√
n3−ε′ +

√
n3−min(δ,ε−δ−ε′)

)
.

In the rest of this section we prove Lemma 3.7 using a sequence of facts. Then
the proof derives directly. For the query complexity, we detail the analysis using
Fact 3.8. Only steps 2(b) and 2(d) of Classification have nonzero query complexity.
As explained before, step 2(b) can be implemented with query complexity Õ(nδ), and
it is iterated at most n times. Step 2(d) has three substeps, with only the first two
having nonzero query complexity. The first has query complexity O(n), and the second

can be implemented using Safe Grover Search with query complexity Õ(
√
n2) = Õ(n).

Using Fact 3.8, we upper bound the number of iterations of step 2(d) by O(nδ+ε′),
which gives a total amount of queries in Õ(n1+δ+ε′).

Fact 3.8. During a correct execution, there are at most O(nδ+ε′) iterations of
step 2(d).

Proof. We will estimate the number of executions of step 2(d) by lower bounding
|G′(A,A′)|, where A = νG(v) and A′ = νG′(v). For each x ∈ A we have t(G′, v, x) ≥
n1−ε′ ; otherwise in step 2(a) we would have classified (v, x) into T . A triangle (v, x, y)
contributing to t(G′, v, x) contributes with the edge (x, y) to G′(A,A′). Two different
triangles (v, x, y) and (v, x′, y′) can give the same edge in G′(A,A′) only if x = y′ and
y = x′. Thus,

(3.1) |G′(A,A′)| ≥ 1

2

∑

x∈νG(v)

t(G′, v, x) ≥ |A|n1−ε′

2
.

Since we executed step 2(d) only under the large degree hypothesis on v, if the
hypothesis is correct, the right-hand side of (3.1) is at least 1

10
× n1−δ × n1−ε′/2 =

Ω(n2−δ−ε′). Since G′ has at most
(
n
2

)
edges, it can execute step 2(d) at most O(nδ+ε′)

times.
Fact 3.9. During a correct execution, there are at most O(n) iterations of

step 2(c).
Proof. We claim that each vertex is processed in step 2(c) at most once. Indeed,

if a vertex v gets into step 2(c), its incident edges are all removed, and its degree in
G′ becomes 0, making it ineligible for being processed in step 2(c) again.

Now we state that T contains O(n3−ε′) triangles using the following quite general
fact.

Fact 3.10. Let H be a graph on [n]. Assume that a graph T is built by a process
that starts with an empty set and at every step either discards some edges from H or
adds an edge (a, b) of H to T for which t(H, a, b) ≤ τ holds. For the T created by the
end of the process we have t(T ) ≤ (

n
2

)
τ .

Proof. Let us denote by T [i] the edge of T that T acquired when it was in-
cremented for the ith time, and let us use the notation Hi for the current ver-
sion of H before the very moment when T [i] = (ai, bi) was copied into T . Since

{T [i], T [i + 1], . . . } def
= T i ⊆ Hi, we have t(T i, ai, bi) ≤ t(Hi, ai, bi) ≤ τ. Now the fact

follows from t(T ) =
∑

i t(T
i, ai, bi) ≤

(
n
2

)
τ, since i can go up to at most

(
n
2

)
.

Fact 3.11. During a correct execution, E ∩G has size O(n2−δ + n2−ε+δ+ε′).
Proof. In order to estimate E ∩ G observe that we added edges to E only in

steps 2(c) and 2(d). In each execution of step 2(c), we added at most 10n1−δ edges
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to E, and we had O(n) such executions (Fact 3.9) that give a total of O(n2−δ) edges.
The number of executions of step 2(d) is O(nδ+ε′) (Fact 3.8). Our task is now to
bound the number of edges of G that each such execution adds to E.

We estimate |G∩G′(A,A′)| from the A′ side, where A = νG(v) and A′ = νG′(v).

This is the only place where we use the fact that G′ ⊆ G〈n1−ε〉: For every x ∈ A′

we have t(G, v, x) ≤ n1−ε. On the other hand, when y ∈ A and x ∈ A′, every edge
(y, x) ∈ G′ creates a (v, x)-based triangle. Thus

|G ∩G′(A,A′)| ≤ |A′|n1−ε ≤ n2−ε.

Therefore the total number of edges of G step 2(d) contributes to E is n2−ε+δ+ε′ .
In conclusion,

|G ∩ E| ≤ O(n2−δ + n2−ε+δ+ε′).

4. Quantum Walk approach.

4.1. Dynamic quantum query algorithms. The algorithm of Ambainis in [6]
is somewhat similar to the brand of classical algorithms, where a database is used
(as in heapsort) to quickly retrieve the value of those items needed for the run of
the algorithm. Of course, this whole paradigm is placed into the context of query
algorithms. We shall define a class of problems that can be tackled very well with the
new type of algorithm. Let S be a finite set of size n and let 0 < k < n.

k-Collision

Oracle Input: A function f which defines a relation C ⊆ Sk.
Output: A k-tuple (a1, . . . , ak) ∈ C if it is nonempty; otherwise reject.

By carefully choosing the relation C, k-Collision can be a useful building block
in the design of different algorithms. For example, if f is the adjacency matrix of a
graph G, and the relation C is defined as “being an edge of a triangle of G,” then the
output of Collision yields a solution for Triangle with O(

√
n) additional queries

(Grover Search for the third vertex).

Unique k-Collision: The same as k-Collision with the promise
that |C| = 1 or |C| = 0.

The type of algorithm we study will use a database D associating some data D(A)
to every set A ⊆ S. From D(A) we would like to determine if Ak∩C �= ∅. We expedite
this using a quantum query procedure Φ with the property that Φ(D(A)) rejects if
Ak ∩ C = ∅ and, otherwise, both accepts and outputs an element of Ak ∩ C, which is
a collision. When operating with D, the following three types of costs are incurred,
all measured in the number of queries to the oracle f .

Setup cost s(r): The cost to set up D(A) for a set of size r.
Update cost u(r): The cost to update D for a set of size r, i.e., moving from D(A) to

D(A′), where A′ results from A by adding an element, or moving from D(A′′)
to D(A), where A results from A′′ by deleting an element.

Checking cost c(r): The query complexity of Φ(D(A)) for a set of size r.

Next we describe the algorithm of Ambainis [6] in general terms. The algorithm
has three registers |A〉|D(A)〉|x〉. The first is called the set register, the second the
data register, and the last the coin register.
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Generic Algorithm(r,D,Φ).

1. Create the state
∑

A⊂S:|A|=r |A〉 in the set register.
2. Set up D on A in the data register.
3. Create a uniform superposition over elements of S − A in the coin

register.
4. Do Θ(n/r)k/2 times:

(a) If Φ(D(A)) accepts, then do the phase flip; otherwise do nothing
(b) Do Θ(

√
r) times Quantum Walk, updating the data register.

5. If Φ(D(A)) rejects, then reject; otherwise output the collision given by
Φ(D(A)).

Theorem 4.1 (see [6]). Generic Algorithm solves Unique k-Collision with
some positive constant probability and has query complexity

O(s(r) + (nr )k/2 × (c(r) +
√
r × u(r))).

Moreover, it turns out that, when Unique k-Collision has no solution, Generic
Algorithm always rejects, and when Unique k-Collision has a solution c, Generic
Algorithm outputs c with probability p = Ω(1) which depends only on k, n, and r.
Thus using quantum amplification, one can modify Generic Algorithm to an exact
quantum algorithm.

Corollary 4.2. Unique k-Collision can be solved with probability 1 in quan-
tum query complexity

O(s(r) + (nr )k/2 × (c(r) +
√
r × u(r))).

One can make a random reduction from Collision to Unique Collision if the
definition on Φ is slightly generalized. We add to the input of the checking procedure a
relation R ⊆ Sk which restricts the collision set C to C ∩R. The reduction goes in the
standard way using a logarithmic number of randomly chosen relations R, and hence
an additional logarithmic factor appears in the complexity. If the collision relation
is robust in some sense, one can improve this reduction by removing the log factors
(see, for example, the reduction used by Ambainis in [6]).

Corollary 4.3. Collision can be solved in quantum query complexity

Õ(s(r) + (nr )k/2 × (c(r) +
√
r × u(r))).

The tables below summarize the use of the above formula for various problems
(Graph Collision(G) is defined in section 4.2).

Problem Collision relation
Element

distinctness (u, v) ∈ C iff u �= v and f(u) = f(v)
Graph

Collision(G) (u, v) ∈ C iff f(u) = f(v) = 1 and (u, v) ∈ G

Triangle (u, v) ∈ C iff there is a triangle (u, v, w) in G

Setup cost Update cost Checking cost
Problem s(r) u(r) c(r)
Element

distinctness r 1 0
Graph

Collision(G) r 1 0

Triangle O(r2) r O(r2/3
√
n)
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4.2. Graph Collision Problem. Here we deal with an interesting variant of
Collision which will be also useful for finding a triangle. The problem is parametrized
by some graph G on n vertices which is given explicitly.

Graph Collision(G)

Oracle Input: A boolean function f on [n] which defines the relation
C ⊆ [n]2 such that C(u, u′) if and only if f(u) = f(u′) = 1 and
(u, u′) ∈ E.
Output: A pair (u, u′) ∈ C if it is nonempty; otherwise reject.

Observe that an equivalent formulation of the problem is to decide if the set of vertices
of value 1 form an independent set in G.

Theorem 4.4. Graph Collision(G) can be solved with positive constant prob-
ability in quantum query complexity Õ(n2/3).

Proof. We solve Graph Collision(G) using Corollary 4.3, with S = [n] and
r = n2/3. For every U ⊆ [n] we define D(U) = {(v, f(v)) : v ∈ U} and let Φ(D(U)) =
1 if there are u, u′ ∈ U that satisfy the required property. Observe that s(r) = r,
u(r) = 1, and c(r) = 0. Therefore we can solve the problem in quantum query
complexity Õ(r + n

r (
√
r)) which is Õ(n2/3) when r = n2/3.

4.3. Triangle Problem.

Theorem 4.5. Triangle can be solved with positive constant probability in
quantum query complexity Õ(n13/10).

Proof. We use Corollary 4.3, where S = [n], r = n2/3, and C is the set of triangle
edges. We define D for every U ⊆ [n] by D(U) = G|U , and Φ by Φ(G|U ) = 1 if a
triangle edge is in G|U . Observe that s(r) = O(r2) and u(r) = r. We claim that
c(r) = Õ(

√
n× r2/3).

To see this, let U be a set of r vertices such that G|U is explicitly known, and let v
be a vertex in [n]. We define an input oracle for Graph Collision(G|U) by f(u) = 1
if (u, v) ∈ E. The edges of G|U which together with v form a triangle in G are the
solutions of Graph Collision(G|U). Therefore finding a triangle edge, if it is in
G|U , can be done in quantum query complexity Õ(r2/3) by Theorem 4.4. Now using
quantum amplification [10], we can find a vertex v, if it exists, which forms a triangle
with some edge of G|U , using only Õ(

√
n) iterations of the previous procedure, and

with a polynomially small error (which has no influence in the whole algorithm).

Therefore, we can solve the problem in quantum query complexity Õ(r2+ n
r (
√
n×

r2/3 +
√
r × r)) which is Õ(n13/10) when r = n3/5.

4.4. Monotone graph properties with small certificates. Let now consider
the property of having a copy of a given graph H with k > 3 vertices. Using directly
Ambainis’ algorithm, one gets an algorithm whose query complexity is Õ(n2−2/(k+1)).
In fact we can improve this bound to Õ(n2−2/k). Note that only the trivial Ω(n) lower
bound is known. This problem was independently considered by Childs and Eisen-
berg [14] whenever H is a k-clique. Beside the direct Ambainis algorithm, they ob-
tained an Õ(n2.5−6/(k+2)) query algorithm. For k = 4, 5, this is faster than the direct
Ambainis algorithm, but slower than ours.

Theorem 4.6. Finding in a graph a copy of a given graph H, with k > 3 vertices,
can be done with quantum query complexity Õ(n2−2/k).

Proof. We follow the structure of the proof of Theorem 4.5. We distinguish an
arbitrary vertex of H. Let d be the degree of this vertex in H.

We say that a vertex v and a set K of (k − 1) vertices of G are H-compatible
if the subgraph induced by K ∪ {v} in G contains a copy of H, in which v is the
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distinguished vertex. We also say that the set K is an H-candidate when there exists
a vertex v such that v and K are H-compatible. Our algorithm will essentially find a
set that contains an H-candidate.

We define an instance of (k − 1)-Collision, where S = [n] and C is the set of
H-candidates. We define D for every U ⊆ [n] by D(U) = G|U , and Φ by Φ(G|U ) = 1
if U contains an H-candidate. Again s(r) = O(r2) and u(r) = r. We now claim that
c(r) = Õ(

√
n× rd/(d+1)).

The checking procedure uses a generalization of Graph Collision to d-ary re-
lations. If some vertex v of G is fixed, then we say that a subset W ⊆ U of size d
is in relation if there exists W ⊆ K ⊆ U such that v and K are H-compatible in G,
and v is connected to every vertex of W . Following the arguments of the proof of
Theorem 4.4 (where the function f takes the value 1 on a vertex u ∈ U if (u, v) is
an edge in G), we find a d-collision in quantum query complexity Õ(rd/(d+1)) when
it exists. The checking procedure searches for a vertex v for which this generalized
Graph Collision has a solution using a standard Grover Search.

The overall parametrized query complexity is therefore

Õ

(
r2 +

(n
r

)(k−1)/2 (√
n× rd/(d+1) +

√
r × r

))
.

By optimizing this expression (that is, by balancing the first and third terms), it
turns out that the best upper bound does not depend on d. Precisely, the expression
is optimal with r = n1−1/k, which gives the announced bound. However, one can
imagine a different algorithm for the checking procedure where the choice of d might
be crucial.

To conclude, note that once a set U of size r that contains an H-candidate is found,
one can obtain a copy of H in G in the complexity of the checking cost c(r).

We conclude by extending this result for monotone graph properties which might
have several small 1-certificates.

Corollary 4.7. Let ϕ be a monotone graph property whose 1-certificates have
at most k > 3 vertices. Then deciding ϕ and producing a certificate whenever ϕ is
satisfied can be done with quantum query complexity to the graph in Õ(n2−2/k).
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Abstract. The modular group plays an important role in many branches of mathematics. We
show that the membership problem for the modular group is decidable in polynomial time. To this
end, we develop a new syllable-based version of the known subgroup-graph approach. The new
approach can be used to prove additional results. We demonstrate this by using it to prove that
the membership problem for a free group remains decidable in polynomial time when elements are
written in a normal form with exponents.
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1. Introduction. In this paper, a unimodular matrix is a 2 × 2 integer matrix
with determinant 1. The multiplicative group of unimodular matrices is known as
SL2(Z), the special linear group of 2×2 matrices over the ring of integers. The modular
group PSL2(Z), the projective special linear group of 2 × 2 matrices over integers,
is the quotient of the group SL2(Z) modulo the congruence relation that equates a

matrix
(a b
c d

)
with its negative

(−a −b
−c −d

)
. The modular group has numerous equivalent

characterizations in various parts of mathematics [2, section 1]. In particular, it is the
group of complex fractional linear transformations z �→ az+b

cz+d with integer coefficients
and ad− bc = 1.

Recall the membership problem for a group G: given elements h1, . . . , hn and
w, determine whether w belongs to the subgroup H generated by h1, . . . , hn. This
presumes a fixed representation form for group elements. In the case of the modular
group, group elements are represented by unimodular matrices. A matrix and its
negative represent the same group element. The entries are written in the standard
decimal notation. The size of an entry is the length of its decimal notation, and the
size of a unimodular matrix is the sum of the sizes of the four entries.

Remark 1.1 (uniformity). The membership problem above is sometimes called
uniform because the subgroup H is not fixed. The problem of deciding whether a given
element w of the group G belongs to a fixed subgroup H is called the membership
problem for H in G. We restrict attention to uniform membership problems and will
not use the adjective “uniform.”

The membership problem for the modular group, more exactly its bounded ver-
sion, was raised by Gurevich [4], who was looking for a hard-on-average [6, 3] alge-
braic NP problem with a natural probability distribution on the instances. In the
bounded version of the membership problem for a group G, in addition to a tuple
(h1, . . . , hn, w), one is given a positive integer B in the unary notation; the question
becomes whether w is a product of at most B of the elements hi and their inverses.
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After examining the bounded membership problem for the modular group (with an
appropriate natural probability distribution), Gurevich conjectured that the problem
is not hard on average.

In [2], Cai et al. proved that the bounded membership problem for the modular
group is indeed polynomial time on average. They also proved that the unbounded
membership problem for the modular group is polynomial time on average. Further-
more, consider the variant of the membership problem definition in which “subgroup”
is replaced with “submonoid.” The subgroup membership problem can be seen as a
special case of the submonoid membership problem where the set {h1, . . . , hm} is
closed under inverses. Cai et al. proved that both, bounded and unbounded, sub-
monoid membership problems for the modular group are polynomial time on average
[2, Theorem 1.1]. All their proofs are constructive: the desired decision procedures
are exhibited. In this paper, the proofs are constructive as well.

Proviso 1.2. In this paper, all proofs of the existence of algorithms are construc-
tive. The desired algorithms are exhibited.

As far as the worst-case analysis is concerned, Cai et al. established that the two
submonoid membership problems are NP-hard. The bounded membership problem
for the modular group was proved NP-hard in [1]. More precisely, it is the group
SL2(Z) that is called the modular group in [4, 1], and it is the bounded membership
problem for SL2(Z) that is proved NP-hard in [1]. But the same proof establishes also
the NP-hardness of the bounded membership problem for PSL2(Z).

Theorem 1.3 (main). The membership problem for the modular group is decid-
able in polynomial time.

Group membership problems tend to be undecidable [7]. The modular group is
atypical from that point of view. It is curious also that, in the case of the modular
group, the unbounded membership problem is easier than the bounded one.

We do not try to optimize the decision algorithm and minimize its running time.
This gives us freedom to ignore various details, most importantly the details related
to various data structures. It is clear though that the algorithm is feasible.

To solve the membership problem for the modular group, we develop a new version
of the subgroup-graph approach of combinatorial group theory. The subgroup-graph
approach, also known as the folding method, was originated by Stallings [10]. It was
employed and developed further in particular by Kapovich and Miasnikov [5] and
Schupp [9]. Our version of the approach is combinatorial. The closest version in the
literature is that of Kapovich and Miasnikov [5].

The subgroup graph in question is really a finite automaton, in general nonde-
terministic. We call it a subgroup recognizer or simply a recognizer. We call our
approach the syllabic recognizer approach or simply the syllabic approach. It is based
on the notion of a syllable. A recognizer reads words one syllable at a time. Another
distinctive feature of our approach is that we fold paths rather than edges.

In section 2, we introduce syllabic representations of abstract groups and explain
the basics of the syllabic approach. A syllabic presentation of an abstract group G
with a fixed finite set of generators is given by means of four items. First, there is
a finite alphabet with letters representing the generators and possibly some auxiliary
symbols. Second, there is a set of strings in the given alphabet. These strings are
called syllables. Finite concatenations of syllables are called words. The words with
the concatenation operation form a semigroup. Third, there is an involution on the
syllables called the inverse operation. It extends to words in the obvious way. Finally,
there is a congruence relation on the word semigroup with the inverse operation such
that the quotient algebra is isomorphic to G. Notice that words are strings in the given
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alphabet. Accordingly the size of a word is the length of the string. Often it suffices
to describe the syllables, and the rest of the syllabic representation becomes obvious.

Example 1.4 (standard and succinct free groups). Consider the case in which G
is a free group and the fixed set of generators consists of the free generators of G. The
standard representation of G is obtained when the syllables have the form a or a−1,
where a is a free generator. Another, exponentially more succinct representation of
G is obtained when the syllables have the form ai, where a is a free generator and i is
a nonzero integer in decimal notation. For brevity we will speak about standard free
groups and succinct free groups meaning free groups in the standard representation
and free groups in the succinct representation, respectively.

Proviso 1.5 (the free group). We will study finitely generated free groups with
at least two free generators. The number of free generators will play an insignificant
role. To simplify terminology, we fix some integer ≥ 2 and restrict attention to that
particular free group.

The membership problem for the standard free group is decidable in polynomial
time [8, 7]. We construct a new decision algorithm for the problem in section 2. The
purpose of this is twofold: to illustrate the syllabic approach on a simple example and
to produce a proof template for sections 3–5.

In section 3 we prove that the membership problem for the free group remains
feasible when we go from the standard representation to the succinct.

Theorem 1.6 (succinct free group). The membership problem for the succinct
free group is decidable in polynomial time.

But the proof of polynomial time decidability is much harder in the case of the
succinct representation. One reason for this is that the number of syllables is infinite.
Another reason is that the classical edge-folding technique used in the standard case
is utterly inadequate in the succinct case. Instead we have to fold paths.

What has all this to do with the membership problem for the modular group?
The bridge is the following well-known fact [8, section 1.4, Exercises 18–24]. Recall
that, in the notation of combinatorial group theory, 〈g | gn〉 is a cyclic group of order
n with generator g.

Proposition 1.7 (modular group as a free product). The modular group is
isomorphic to the free product 〈s | s2〉 ∗ 〈t | t3〉.

Example 1.8 (standard 〈s | s2〉 ∗ 〈t | t3〉 and succinct 〈s | s2〉 ∗ 〈t | t3〉). We
give two syllabic representations of the group G = 〈s | s2〉 ∗ 〈t | t3〉 with the set s, t
of generators. (The symbols s, t allude to “second” and “third,” respectively.) The
standard representation of G is obtained when the syllables are s, t, t−1. Another,
exponentially more succinct representation of G is obtained when the syllables are s,
(ts)nt, and (t−1s)nt−1, where n is a natural number in decimal notation. For brevity
we will speak about the standard 〈s | s2〉 ∗ 〈t | t3〉 and the succinct 〈s | s2〉 ∗ 〈t | t3〉
meaning 〈s | s2〉 ∗ 〈t | t3〉 in the standard representation and 〈s | s2〉 ∗ 〈t | t3〉 in the
succinct representation, respectively.

In section 4, we prove that the membership problem for the standard 〈s | s2〉 ∗
〈t | t3〉 is decidable in polynomial time. The proof sheds some light on the membership
problem for the modular group but is not too useful all by itself.

Ideas and the terminology of sections 2–4 are used in the crucial section 5, where
we study the succinct 〈s | s2〉 ∗ 〈t | t3〉.

Theorem 1.9 (succinct 〈s | s2〉 ∗ 〈t | t3〉). The membership problem for the
succinct 〈s | s2〉 ∗ 〈t | t3〉 is decidable in polynomial time.

The proof closely follows that of Theorem 1.6, but new difficulties arise. The
main new difficulty is related to the fact that the role of free generators is played by
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the string ts. This fake free generator is not atomic: it is the concatenation of t and
s. The atomicity of free generators was implicitly used in the proof of Theorem 1.6.

The main theorem is finally proved in section 6 where we give a polynomial time
reduction of the membership problem for the modular group to that for the succinct
〈s | s2〉 ∗ 〈t | t3〉. That reduction is relatively simple and is essentially independent
from the preceding sections.

The syllabic approach can be used to prove additional results. But this is a topic
for separate papers. Here we focus on the modular group.

The intended audience for this paper is computer scientists rather than group
theorists. Accordingly we do not presume the knowledge of group theory.

2. Syllabic recognizer approach: Basics and illustration. We explain the
basics of the syllabic recognizer approach and illustrate the approach by constructing
a new decision algorithm for the membership problem for the free group in standard
presentation. The construction is used as a template for generalization in sections
3–5.

2.1. Syllabic presentations of groups. The peculiarity of combinatorial/
geometric group theory, in comparison to abstract group theory, is that one has to
deal not only with group elements but also with their representations. The standard
group presentation form employs generators and relators [8, 7]. We introduce a new
group presentation form.

Definition 2.1 (syllabic group presentation). Let G be a group with a fixed
finite set of generators. A syllabic presentation of G with fixed generators is given by
means of four items: a finite alphabet, a set of syllables, an involution on syllables
called the inverse operation, and an equality relation on the semigroup of words built
from the syllables. We describe the four items in greater detail.

• Alphabet: The symbols of the alphabet split into two categories. First, there
are letters that represent the fixed generators, one letter per generator. We
call them original letters. We call the remaining symbols auxiliary. The
symbols of the alphabet are linearly ordered.

• Syllables: Syllables are strings in the alphabet described above. We reserve the
Greek letter σ to denote syllables. The number of syllables may be finite or
infinite. Finite concatenations of syllables are called words. The empty string
1 is a word. The words with the concatenation operation form a semigroup
called the word semigroup. It is in fact a monoid.

• Inverse operation: The inverse operation takes a syllable σ to another sylla-
ble σ−1. It is an involution, so that (σ−1)−1 = σ. We extend the inverse
operation to words in the obvious way: (σ1σ2 . . . σk)

−1 = σ−1
k . . . σ−1

2 σ−1
1 .

• Equality: The equality relation is a congruence of the word semigroup with
the inverse operation. In other words, it respects the concatenation operation
as well as the inverse operation:

(x1 = y1) ∧ (x2 = y2) −→ x1y1 = x2y2,

x1 = y1 −→ x−1
1 = y−1

1

for all words x1, x2, y1, y2. It is required that the quotient algebra is isomorphic
to G. So two words are equal if they denote the same element of G.

Finally, notice that words are strings in the given alphabet. Accordingly the size, or
length, of a word is the number of (the occurrences of) alphabet symbols in the word.
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Remark 2.2 (equality vs. identity). Thus we have two competing relations on
words. One is the identity of words as strings in the given alphabet, and the other
is the equality of words (as names for the group elements). Notice that we saw the
distinction between identity and equality already, in the very beginning of the In-
troduction, when we recalled the definition of PSL2(Z). Elements of PSL2(Z) are
modular matrices, but every matrix is equated with its negative. For our purposes,
it is convenient to use an equality relation that is different from the identity relation.
We use a word as a name for a group element, and we don’t have to mention the
corresponding equivalence class of words all the time. But there is an obvious awk-
wardness in calling distinct words equal, and so we will have to be careful to avoid a
confusion.

In the rest of this subsection we consider the free group in the standard presen-
tation.

Definition 2.3 (standard free group). The standard free group is the free group
in the following syllabic presentation.

• Alphabet: The alphabet consists of original letters denoting the free genera-
tors and one auxiliary symbol −1. The alphabet is linearly ordered in some
way; it will play no role what order it is exactly.

• Syllables: Syllables are strings of the form a or a−1, where a is an original
letter and −1 is the auxiliary symbol.

• Inverses: Syllables a and a−1 are the inverses of each other.
• Equality: It is the least congruence for the word semigroup with the inverse

operation such that xx−1 ∼ 1 for every word x.
It is easy to see that the quotient of the word semigroup over the equality relation

is indeed isomorphic to the free group.
A combinatorial characterization of the equality relation. If a word x = x1σσ

−1x2,
we say that the word x1x2 is obtained from x by a single cancellation. (Recall that σ
ranges over syllables.) It is easy to see that words w1 and w2 are equal if and only if
there is a sequence of words x0, . . . , x� such that x0 is w1, x� is w2, and for every pair
xi, xi+1 of successive words, one is obtained from the other by a single cancellation.

Definition 2.4 (reduced words). A word w is reduced if no successive syllables
of w form an inverse pair.

Lemma 2.5 (word reduction).

1. Every word w is equal to a unique reduced word. That reduced word is called
the reduct of w.

2. There is a polynomial-time word reduction algorithm that transforms any
word w to its reduct.

These facts are well known [8, 7] and relatively easy to verify.

2.2. Recognizers and the construction algorithm.

2.2.1. Recognizers: Definitions.
Definition 2.6 (recognizer). A recognizer R is a nondeterministic finite state

automaton with the input alphabet Σ subject to the following conditions:
• Numerical states: The states are positive integers.
• Finiteness: R has only finitely many transitions.
• Reversibility: For every transition (u, σ, v), from state u on input symbol σ

to state v, there is an inverse transition (v, σ−1, u).
• Cyclicity: The initial state is the only final (or accepting) state.
• Connectivity: For every state u, there is a string s of input symbols such that

the computation of R on s ends at u.
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Remark 2.7 (numerical states). What objects can serve as states of a recognizer?
Algebraically speaking, the nature of the states is of no importance. Algorithmically
speaking, it is important to have a reasonable representation of the states. We will
use in particular the fact that the states are linearly ordered.

Definition 2.8 (recognizer’s size). The size of a positive integer n is the size of
the standard decimal representation of n. The size of a transition (u, σ, v) is the sum
of the sizes of the three components. The size of the recognizer is the sum of the sizes
of its transitions.

Intuitively the size of the recognizer is the number of characters in a reasonable
representation of recognizers. The fact that we care only that our algorithms are
polynomial time gives us a large freedom in defining the sizes. We could have used
the unary notation for the states.

Definition 2.9 (recognizer’s subgroup). The initial state is also called the origin
and is denoted o. The language recognized by R, that is, the set of words accepted by
R, is denoted L(R). It is easy to see that L(R) is closed under concatenation and
under the inverse operation. Define Γ(R) to be the set of group elements w such that
the word w is in L(R). It is easy to see that Γ(R) is a subgroup of G. We will say
that R recognizes Γ(R).

Definition 2.10 (equivalence of recognizers). Recognizers R1 and R2 are equiv-
alent if Γ(R1) = Γ(R2).

2.2.2. A graph-theoretic view of recognizers. A recognizer R over Σ can
be viewed as a directed graph with a distinguished vertex o, the origin, where every
edge is labeled with an element of Σ and parallel edges are allowed. If e is an edge
with start-vertex u, end-vertex v, and label σ, then the triple (u, σ, v) is the profile of
e. It is required that

- R has finitely many vertices and edges;
- R is strongly connected so that there is a path from any vertex u to any other

vertex v;
- different edges have different profiles so that the profile of an edge identifies

it uniquely; and
- for every edge e = (u, σ, v), there is an inverse edge e−1 = (v, σ−1, u).

We will use both the automata-theoretic terminology as well as the graph-theoretic
terminology. Some graph-theoretic terms are used in different ways by different au-
thors. To fix some graph-theoretic terminology, we give the following definitions.

Definition 2.11 (paths). A path is a sequence 〈e1, e2, . . . , e�〉 of edges such that
the start-vertex of ei+1 is the end-vertex of ei. We do not distinguish between an edge
e and the single-edge path formed by e. Consider a path

π = 〈(u0, σ1, u1), (u1, σ2, u2), . . . , (u�−1, σ�, u�)〉.
The vertex sequence of π is 〈u0, u1, . . . , u�〉. The vertices ui with 0 < i < � are
internal. The string σ1σ2 . . . σ� is the label of π, and the triple (u0, σ1σ2 . . . σ�, u�) is
the profile of π. We use the + sign to indicate the concatenation of paths; if a path
π1 has 7 edges and a path π2 has 11 edges, then the path π1 + π2 has 18 edges.

While every edge is uniquely determined by its profile, this is not necessarily true
for paths. For example, you may have different paths 〈(u0, aa, u1), (u1, a, u2)〉 and
〈(u0, a, v), (v, aa, u2)〉 with the profile (u0, aaa, u2).

Definition 2.12 (branches, cycles, and nooses). Consider a path π = 〈e1, . . . , e�〉
with vertex sequence 〈u0, u1, . . . , u�〉, and assume that the nonfinal vertices u0, u1, . . . ,
u�−1 of π are all distinct.
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- π is a branch if the final vertex u� differs from all nonfinal ones.
- π is a cycle at u0 if the final vertex coincides with the start-vertex u0.
- π is a noose if the final vertex coincides with an internal vertex ui.

If π is a noose and u� = ui, then π splits into the loop 〈ei+1, . . . , e�〉 and the tail
〈e1, . . . , ei〉 of the noose.

Definition 2.13 (path segments). If u, v are vertices on a path π and if there is
a contiguous segment of π with initial vertex u and final vertex v, then π[u, v] is the
shortest of such segments.

Definition 2.14 (disjoint paths). Paths π0 and π1 are internally disjoint if no
internal vertex of πi occurs on π1−i. Further, paths π0 and π1 are disjoint off a vertex
set U if all vertices that occur on both paths belong to U . If π0 and π1 are disjoint off
{ν}, we say that they are disjoint off the vertex ν.

2.2.3. Construction algorithm.
Lemma 2.15 (construction). There exists a polynomial-time construction algo-

rithm that, given arbitrary words h1, h2, . . . , hm, constructs a recognizer R such that
Γ(R) is the subgroup generated by the group elements h1, . . . , hm.

Proof. The desired recognizer R is a bouquet of m cycles labeled with h1, . . . , hm

and having only the initial state o in common. The desired algorithm is this. Start
with a naked origin vertex o. For each generator hj , put a cycle Cj with profile
(o, hj , o) around o. If hj = σ1 . . . σn and Cj = 〈(u0, σ, u1), . . . , (un−1, σn, un)〉, where
u0 = un = o and the internal vertices are new, then for each existing edge (u, σ, v),
create an inverse edge (v, σ−1, u). That completes the construction of R.

It is easy to see that L(R) is the least set of words that contains h1, h2, . . . , hm

and is closed under concatenation and the inverse operation.
Example 2.16. Suppose that G is the standard free group, a, b, and c are free

generators of G, m = 2, h1 = ab, and h2 = c−1b. Then R consists of three vertices
and eight edges. There is a unique a-labeled edge from o to a nonorigin vertex u. Call
the other nonorigin vertex v. Then the edges are

(o, a, u), (u, b, o), (o, c−1, v), (v, b, o)

and the inverses of these four edges. R accepts any concatenation x1x2 . . . x�, where
every xi ∈ {h1, h2, h

−1
1 , h−1

2 }. In particular, R accepts (ab)(c−1b)−1 = ac.
Remark 2.17 (nondeterministic algorithms). When we claim that there is a

polynomial-time algorithm, we mean a deterministic algorithm, of course. But the
algorithm described in the proof of the construction lemma is nondeterministic, and
so the description is incomplete. What is missing is how to determinize the con-
struction described in the proof. This easy task is left to the reader. The inessential
nondeterminism of that sort allows us to simplify proofs and will be used over and
over again.

2.3. Membership criterion and the reading algorithm for the standard
free group. In this section, we deal only with the standard free group. In particular
the notion of fat will be redefined again and again as we deal with other syllabically
presented groups.

Definition 2.18 (fat). Let R be a recognizer. For every syllable σ and every
vertex v, FatR(σ, v) = max(0, i − 1), where i is the number of σ-edges from v. The
subscript is omitted when the context uniquely defines the recognizer.

A recognizer is deterministic if and only if every Fat(σ, v) = 0.
Remark 2.19 (deterministic recognizers). When is a nondeterministic finite state

automaton deterministic? There are two common definitions in the literature. The
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stricter definition requires that, for every label and every state u, there is exactly one
transition with that label from that state. The more liberal definition requires only
that, for every label and every state, there is at most one transition with that label
from that state. We adopt the more liberal definition.

Lemma 2.20 (membership criterion). Let R be a deterministic recognizer and
w a word. The group element w belongs to Γ(R) if and only if R accepts the reduct
of w.

Proof. If R accepts the reduct of w, then by the recognizer’s subgroup definition
in section 2.2, the group element w belongs to Γ(R).

Now suppose that the group element w belongs to Γ(R) so that R accepts at least
one word equal to w. Consider a shortest word w0 equal to w and accepted by R,
and let π be the accepting run. The word w0 is reduced. Otherwise π has the form

π1 + 〈(u1, σ, v), (v, σ
−1, u2)〉 + π2.

Since Fat(σ−1, v) = 0, we have u1 = u2. Accordingly π1 + π2 is a run that accepts a
word equal to w that is shorter than w0, which contradicts the choice of w0.

Lemma 2.21 (reading). There is a polynomial-time algorithm (called the reading
algorithm below) that, given a deterministic recognizer R and a word w, determines
whether the group element w ∈ Γ(R).

Proof. Use the word reduction algorithm of section 2.1 to compute the reduct w0

of w. By the membership criterion in section 2.3, Γ(R) contains the group element w
if and only if R accepts w0.

To determine whether R accepts w0, run R on w0. Let w0 = σ1 . . . σ� and v0 = o.
If, after reading an initial segment σ1 . . . σi of w0, R arrives to a state vi without an
outgoing edge labeled with σi+1, then R rejects w0. If R reads all of w0 and winds
up at a vertex v�, then R accepts w0 if and only v� is o.

In the remaining part of this section, we construct a polynomial-time algorithm
that transforms any recognizer to an equivalent deterministic recognizer.

2.4. Vertex identification and edge folding. We return to consider the
general situation. Recall that if H is a subgroup of G and g ∈ G, then the set
Hg = {hg : h ∈ H} is a (right) coset of the subgroup H.

Lemma 2.22. Let R be a recognizer and H = Γ(R). For every two paths (o, x, v)
and (o, y, v) from the origin to the vertex v, Hx = Hy.

Proof. The concatenation of (o, x, v) and (v, y−1, o) is an accepting run on xy−1,
so xy−1 ∈ H and Hx = Hy.

The lemma and the fact that, for every v, there is a path from o to v lead us to
the following definition.

Definition 2.23 (vertex’s coset). Let R be a recognizer R and H = Γ(R) and
v be a vertex of G. Coset(v) is the set Hw, where w is the label of any path from o
to v.

Lemma 2.24 (coset stability). For any path (u,w, v), Coset(v) = (Coset(u))w.
Proof. Let π be a path (o, x, u) and ρ be the given path (u,w, v). Then π + ρ

is a path with profile (o, xw, v). We have Coset(v) = H(xw) = (Hx)w =
(Coset(u))w.

Example 2.16 (continuation). Because of paths (o, a, u) and (u, b, o), we have
Coset(u) = Ha = Hb−1. Because of paths (o, c−1, v) and (v, b, o), we have Coset(v) =
Hc−1 = Hb−1. In particular Coset(u) = Coset(v).

Definition 2.25 (morphisms). Let R,S be recognizers with vertex sets U, V ,
respectively, operating on the same input alphabet Σ. A morphism from R to S is a
function μ : U → V satisfying the following conditions.
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• V = {μ(u) : u ∈ U}, and μ(oR) = oS.
• S has an edge (v1, σ, v2) if and only if R has an edge (u1, σ, u2) with μ(u1) = v1

and μ(u2) = v2.
• If μ(u1) = μ(u2), then Coset(u1) = Coset(u2).

Lemma 2.26 (morphism lemma). If there is a morphism from a recognizer R to
a recognizer S, then Γ(R) = Γ(S).

Proof. Let H = Γ(R), I = Γ(S), and μ be a morphism from R to S. To simplify
notation, μ(u) is denoted u′. Any accepting run (o, w, o) of R gives rise to an accepting
run (o′, w, o′) of S. Thus L(R) ⊆ L(S) and H ⊆ I. Furthermore, any run (o, w, u) of
R gives rise to an accepting run (o′, w, u′) of S. Thus,

Coset(u) = Hw =⇒ Coset(u′) = Iw.

To prove the other inclusion, it suffices to establish the opposite implication:

Coset(v′) = Iw =⇒ Coset(v) = Hw.

Indeed suppose that w ∈ I. Then Coset(o′) = Iw. Hence H = Coset(o) = Hw and
w ∈ H.

We prove the implication by induction on the number � of edges in a shortest
path π from o′ to v′. The case � = 0 is trivial. Suppose that � > 0 so that the label
of π has the form xσ and Coset(v′) = Ixσ. We prove that Coset(v) = Hxσ. Since μ
is a morphism, the penultimate vertex on π has the form u′ for some R-vertex u. We
have Coset(u′) = Ix and, by the induction hypothesis, Coset(u) = Hx. Since μ is a
morphism, there is an edge (u0, σ, v0) with u′

0 = u′ and v′0 = v′. We have

Coset(v) = Coset(v0) = (Coset(u0))σ

= (Coset(u))σ = (Hx)σ = H(xσ).

The first equality is by the morphisms definition, and the second equality is by the
coset stability lemma.

Definition 2.27 (vertex identification). Let R be a recognizer with vertices U ,
and let v1, v2 be two vertices of R such that Coset(v1) = Coset(v2). To identify v1 and
v2 in R means to construct a recognizer S with vertices (U − {v1, v2})∪ {v}, where v
is different from any vertex in (U − {v1, v2}), such that the map

μ(u) =

{
v if u = v1 or v = v2,

u otherwise

is a morphism from R to S.
It is easy to see that the desired S exists and is unique up to isomorphism. Let

σ be any label u, be any vertex in (U −{v1, v2}), and i, j range over {1, 2}. S has an
edge (u, σ, v) if and only if R has an edge of the form (u, σ, vi). S has an edge (v, σ, u)
if and only if R has an edge of the form (vi, σ, u). And S has a loop v, σ, v if and only
if R has an edge of the form (vi, σ, vj).

Remark 2.28 (vertex identification). There are several ways to implement S.
One can remove v1, v2 and replace them with a fresh vertex v. One can remove one
of vertices v1, v2 and use the remaining one as v. Our preferred way to implement S
is this: view v1 and v2 as two names of the same vertex in S.

Lemma 2.29 (vertex identification). The identification of vertices u, v such that
Coset(u) = Coset(v) produces an equivalent recognizer.
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Proof. Use the vertex identification claim and the morphism lemma.
Example 2.16 (continuation). Consider a recognizer S with two vertices o, v′ and

six edges:

(o, a, v′), (v′, a−1, o), (o, b−1, v′), (v′, b, o), (o, c−1, v′), (v′, c, o).

Since Coset(u) = Coset(v), there is a homomorphism μ of R onto D1 such that
μ(u) = μ(v) = v′. By the previous lemma, S is a recognizer for H. Note that S
accepts ac while R does not.

Full vertex identification, when all vertices with the same coset are identified,
reduces any recognizer R to a recognizer S where distinct vertices have different
cosets. By the morphism lemma, Γ(S) = Γ(R). Further, S is deterministic. Indeed
suppose that we have edges (u, σ, v1) and (u, σ, v2) in S. By the coset stability lemma,
Coset(v1) = (Coset(u))σ = Coset(v2), and so v1 = v2. But notice that the question
of whether Hw1 is equal to Hw2 is equivalent to the question of whether w1w

−1
2 ∈ H

which is an instance of the membership problem, the problem we want to solve in the
first place. We need to get around this difficulty.

If R is a recognizer and (u, a, v1), (u, a, v2) are edges in R, then by the coset sta-
bility lemma, Coset(v1) = (Coset(u))a = Coset(v2) in R. This justifies the following
definition.

Definition 2.30 (edge folding). Let (u, σ, v1) and (u, σ, v2) be edges in a recog-
nizer. To fold edges (u, σ, v1) and (u, σ, v2) is to identify the vertices v1 and v2.

Lemma 2.31 (edge folding). Folding edges does not change the recognizer sub-
group.

Proof. Use the vertex identification lemma.
Example 2.16 (continuation). S is obtained from R by folding edges (o, b−1, u)

and (o, b−1, v) together.

2.5. Fat reduction algorithm for the standard free group. In this section,
we deal exclusively with the standard free group.

Lemma 2.32 (fat reduction). There is a polynomial-time fat reduction algorithm
that transforms any recognizer R into an equivalent deterministic recognizer.

Proof. The desired algorithm repeatedly folds distinct edges of the current recog-
nizer with the same start-vertex u and the same label a until the recognizer becomes
deterministic. By the edge-folding lemma, the recognizer subgroup does not change.
It is easy to see that the algorithm works in polynomial time.

The question arises whether the reducer makes all possible vertex identifications.
Lemma 2.33. Let R be a deterministic recognizer for H. If (o, x, u) and (o, y, v)

are paths with Hx = Hy, then u = v.
It follows that distinct vertices of R have distinct cosets.
Proof. Induction on n = |x| + |y|. The basis of induction, when n = 0, is trivial.

Assume that n > 0. Without loss of generality, x and y are reduced. Indeed, suppose
that one of them, say x, is not reduced. Then x has the form x1σσ

−1x2. By the
determinacy of R, there is a path (o, x1x2, u). We have Hx1x2 = Hx = Hy. By the
induction hypothesis, u = v.

If x = 1 so that u = o, then Hy = H1 = H so that the group element y belongs
to H. By the membership criterion, R accepts y, and so v = o = u. The case y = 1
is similar. Thus we can assume that neither word is empty.

Let x = x′σ, y = y′τ , and let u′, v′ be the penultimate vertices in the paths (o, x, u)
and (o, y, v), respectively. If σ = τ , then Hx′ = Hxσ−1 = Hyσ−1 = Hyτ−1 = Hy′,
and so u′ = v′. Since R is deterministic, u = v. So we may assume that σ �= τ . Then
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the word xy−1 is reduced. Also xy−1 ∈ H because Hx = Hy. So there is a cycle at
o with label xy−1. Since R is deterministic, there is a path (u, y−1, o), and therefore
there is a path (o, y, u). Since R is deterministic, the path (o, y, u) coincides with the
path (o, y, v), and so u = v.

2.6. Membership problem for the standard free group.
Theorem 2.34. There is a polynomial-time decision algorithm for the member-

ship problem for the free group G. More explicitly, there is an algorithm such that
(i) given words h1, . . . , hm and w representing elements of G, the algorithm de-

cides whether the subgroup H generated by h1, . . . , hm contains w, and
(ii) the algorithm runs in time polynomial in |h1| + · · · + |hm| + |w|.
Proof. Use the construction algorithm of section 2.2 to construct a recognizer

R1 for H. Use the fat reduction algorithm of section 2.5 to transform R1 into an
equivalent deterministic recognizer R2 for H. Finally, use the reading algorithm of
section 2.3 to check whether w ∈ H. Since the three algorithms are polynomial time,
the decision algorithm is polynomial time as well.

3. Succinct free group. We introduce an exponentially more succinct repre-
sentation of the elements of the free group and show that the membership problem
remains polynomial-time decidable.

3.1. Succinct free group: Definition and word reduction.
Definition 3.1 (succinct free group). The succinct free group is the free group

in the following syllabic presentation.
• Alphabet: The alphabet consists of original letters denoting the free generators

and 11 auxiliary symbols 0, 1, . . . , 9, and −. The alphabet is linearly ordered
in some way; it will play no role in what order it is exactly.

• Syllables: Syllables are strings of the form ai, where a is an original letter
and i is a nonzero integer in decimal notation.

• Inverses: Syllables ai and aj are the inverses of each other if i + j = 0. To
distinguish the representation of the free group from the standard representa-
tion, the new words will be called exponent words, and the old words will be
called unary words. Any exponent word w expands in the obvious way to a
unary word called the unary expansion of w. For example, a−3

1 a5
2 expands to

a−1
1 a−1

1 a−1
1 a2a2a2a2a2.

• Equality: Exponent words are equal if their unary expansions are equal in the
standard free group.

Obviously the quotient of the word semigroup over the equality relation is iso-
morphic to the free group.

Definition 3.2 (reduced exponent words). An exponent word w = ap1

1 ap2

2 · · · apk

k

is reduced if every ai+1 differs from ai.
Lemma 3.3 (exponent word reduction).

1. Every exponent word w is equal to a unique reduced exponent word. That
reduced exponent word is called the reduct of w.

2. There is a polynomial-time exponent word reduction algorithm that trans-
forms any word w to its reduct.

Proof. We describe the desired algorithm. If there are neighboring syllables ai, aj

with the same base a, do the following. If j = −i, then remove the substring aiaj ;
otherwise, replace the substring aiaj with the syllable ai+j . Keep doing this until the
exponent word is reduced.
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3.2. Vertex creation and membership criterion.
Definition 3.4 (edges). An edge e of the form (u, ai, v) is an a-edge. We assign

to e the sign of i, so that e is positive (respectively, negative) if i is so. The length of
e is the number of syllables in the unary expansion of its label ai, so that the length
of an edge is exponentially larger than the size of its label.

Definition 3.5 (edge splitting). We define how to split an edge e = (u1, x, u2)
into two edges of lengths n1 and n2, respectively. It is presumed that n1 and n2 are
positive integers such that n1 + n2 = n. Let x1 be the prefix of x of length n1 and let
x2 be the corresponding suffix. Add a new vertex v and edges

(u1, x1, v), (v, x
−1
1 , u1), (v, x2, u2), (u2, x

−1
2 , v),

and remove edges e and e−1.
Definition 3.6 (vertex creation). We define how to create a new vertex on a

path π = 〈e1, . . . , ei〉 at distance n from the initial vertex u0. It is presumed that

Length(〈e1, . . . , ei〉) < n < Length(〈e1, . . . , ei+1)〉
for some i. Split ei+1 into two edges of lengths n − Length(〈e1, . . . , ei〉) and
Length(〈e1, . . . , ei+1〉) − n.

Lemma 3.7 (vertex creation). The creation of a new vertex preserves the recog-
nizer subgroup and the amount of fat.

Proof. It suffices to prove that splitting an edge preserves the recognizer subgroup.
Suppose that R is the given recognizer and a new recognizer S is obtained from R by
splitting an edge e of R into edges e1 and e2. Note that 〈e1, e2〉 is a path with the
profile of e. The amount of fat at the new vertex is 0, and the amount of fat at any
old vertex does not change, so Fat(R) = Fat(S).

If w ∈ L(R) and π is an accepting run of R on w, replace every occurrence of e in
π with 〈e1, e2〉, and replace every occurrence of e−1 in π with 〈e−1

2 , e−1
1 〉. The result

is an accepting run of S on a word equal to w. Suppose that w ∈ L(S), and let π be
an accepting run of S on w. The new vertex can occur only in the context 〈e1, e2〉,
which can be replaced by e, or in the context 〈e−1

2 , e−1
1 〉, which can be replaced

by e−1. The result of the replacements is an accepting run of R on a word equal
to w.

Definition 3.8 (paths). The length of a path π is the sum of the lengths of its
edges. For every original letter a, an a-path is a nonempty path composed of a-edges.
A positive a-path is composed of positive a-edges, and a negative a-path is composed
of negative a-edges. A partisan a-path is a positive or negative a-path.

In addition to the standard notion of acceptance, will we need a more liberal one.
Definition 3.9 (quasi transitions). Suppose that π is a path with profile (u, x, v).

If x is equal to a syllable or to 1, then π is a quasi transition and the syllable or the
empty word 1 is the quasi label of π. If τ is the quasi label of π, then (u, τ, v) is the
quasi profile of π.

Every a-path π is a quasi transition. If Label(π) = ai1ai2 . . . aik , then the quasi
label of π is aj , where j = i1 + · · · + ik.

Example 3.10. If q1, q2 are paths

〈(o, a2, u1), (u2, a
−3, u2), (u3, a

5, u3)〉,
〈(u3, b

−7, u4), (u4, b
11, u5), (u5, b

−13, o)〉,
respectively, then q1 is a quasi transition from o to u3 with quasi-label a4, and q2 is a
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quasi transition from u3 to o with quasi-label b−9. According to the paths definition
in section 2.2, the labels of q1 and q2 are a2a−3a5 and b−7b11b−13, respectively.

Definition 3.11 (quasi runs). A sequence Q of quasi-transitions q1, . . . , q� is a
quasi run if the initial vertex of q1 is o, every qi+1 starts at the final state of qi, and
the final vertex of q� is o. The label of Q is the concatenation of the quasi labels of the
constituent quasi transitions. The concatenation q1 + · · · + q� of the paths q1, . . . , q�
is the associate run of Q.

Our definition of quasi runs is narrow in the sense that the initial state o is the
start and end of any quasi run. We will not need more general quasi-runs.

Corollary 3.12 (quasi-run labels). Let Q be a quasi run and π be the associate
run. Then π is an accepting run, and the label of π is equal, as a group element, to
the label of Q.

Definition 3.13 (tolerance). A recognizer tolerates an exponent word w if there
is a quasi run with label w.

Example 2.16 (continuation). The recognizer tolerates a4b−9. This is witnessed
by the sequence Q = 〈q1, q2〉. The concatenation q1 + q2 of the paths q1, q2 is the run

(o, a2, u1), (u2, a
−3, u2), (u3, a

5, u3), (u3, b
−7, u4), (u4, a

11, u5), (u5, a
−13, o)

that accepts the word a2a−3a5b−7b11b−13 equal to a4b−9 in G.
Lemma 3.14 (membership criterion). Consider a recognizer R, and let w be an

exponent word. The following are equivalent:
1. The group element w belongs to Γ(R).
2. R tolerates the reduct of w.

Proof.
2 → 1: Suppose that R tolerates w. Then w is the label of a quasi run of Q.

By the quasi-run labels corollary, the associate run of Q is accepting, and its label is
equal to w. Therefore w ∈ Γ(R).

1 → 2: Suppose that the group element w belongs to Γ(R). Without loss of
generality, w �= 1. By the recognizer’s subgroup definition in section 2.2, R accepts
an exponent word w′ equal to w. Since every accepting run is also a quasi run, R
tolerates w′. Let Q = 〈q1, . . . , q�〉 be a quasi run with the fewest number of quasi
transitions that tolerates an exponent word w0 equal to w. Due to the choice of
Q, every quasi label (qi) is a syllable (rather than 1). Accordingly w0 has the form
ap1

1 . . . ap�

� . We show that w0 is reduced.
If w0 is not reduced, then ai+1 = ai for some i. Let Q′ be the quasi run obtained

from Q by replacing 〈qi, qi+1〉 with a single quasi-transition qi + qi+1. The label of Q′

is equal to w0 but has fewer syllables, which contradicts the choice of Q.

3.3. Reading algorithm.
Definition 3.15 (fat). Let R be a recognizer. For every original letter a and

every vertex v,
• FatR(a+, v) = max(0, p − 1), where p is the number of positive a-edges from
v;

• FatR(a−, v) = max(0, n− 1), where n is the number of negative a-edges from
v;

• FatR(a, v) = max(0, p− 1) + max(0, n− 1);
• FatR(v) =

∑
a FatR(a, v) and Fat(R) =

∑
v Fat(v).

The subscript is omitted if the context uniquely defines the recognizer.
Definition 3.16 (lean recognizers). A recognizer is lean if, for every original

letter a and every vertex v, there is at most one positive a-edge and at most one
negative a-edge coming from v.
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Obviously, lean recognizers are deterministic. However deterministic recognizers
are not necessarily lean. A deterministic recognizer may have two positive a-edges
coming from the same vertex if their labels are distinct syllables. Recall that inputs
are syllables, not letters.

Lemma 3.17 (partisan quasi transitions).
(A) If a lean recognizer R tolerates a reduced exponent word w, then there is a

quasi-run Q with label w such that every constituent quasi transition of Q is
partisan.

(B) Let R be a lean recognizer. For any state u and syllable aj, there is at most
one partisan quasi-transition q from u with quasi-label aj.

(C) There is a polynomial-time algorithm that, given a lean recognizer R, a state
u of R, and a syllable aj, determines whether there exists a partisan quasi-
transition q from u with quasi-label aj and, if yes, finds an appropriate q.

Proof. (A) Suppose that R tolerates a reduced exponent word w = ap1

1 · · · apk

k .
By the tolerance definition, there is a quasi run with label w. Let Q be a quasi-run
〈q1, . . . , qk〉 with label w such that the associate run of Q is as short as possible. If
some qi is not partisan, then it has successive ai-edges e, and f of different signs.
The end-vertex of e has outgoing ai-edges e−1 and f . Since R is lean, e−1 = f , and
therefore both edges can be removed from qi without changing the quasi profile of q.
This contradicts the choice of Q.

(B) Assume that j > 0; the case j < 0 is similar. By contradiction assume that
there exist distinct partisan quasi transitions with the same quasi-label aj from u.
Then we have two distinct positive a-paths of the same length from the same vertex
u. Since neither path can be a prefix of the other, there is a vertex v where the
two paths branch out. Then there are two distinct positive a-edges from v, which
contradicts the leanness of R.

(C) We describe the desired algorithm. Assume j > 0; the case j < 0 is similar.
Let u0 = u. Due to the fact that R is lean, for any nonnegative integer k, there is at
most one positive a-path πk of the form

〈(u0, a
p1 , u1), (u1, a

p2 , u2), . . . , (uk−1, a
pk , uk)〉.

Let k be the least number such that Length(πk) ≥ j or else πk does not exist. If
Length(πk) = j, then πk is the desired quasi transition; otherwise, the desired quasi
transition does not exist.

From the complexity point of view, one may worry about the case in which the
vertices ui are not distinct. In such a case, consider the very first vertex repetition
on πk. Let ui be the first πk vertex on the loop, � = Length(πk[u0, ui]), and m be the
length of the loop. The problem reduces to the case without vertex repetition where
ui plays the role of u0 and (j − �) mod m plays the role of j.

Lemma 3.18 (reading). There is a polynomial-time reading algorithm that, given
a lean recognizer R and an exponent word w, determines whether the group element
w belongs to Γ(R).

Proof. Use the exponent word reduction algorithm of section 3.1 to compute
the reduct w0 = ap1

1 . . . apk

k of w. By the membership criterion of section 3.2, Γ(R)
contains the group element w if and only if R tolerates w0. We need to determine
whether there is a quasi-run Q with label w0.

By the partisan quasi-transitions lemma, part (A), we may restrict attention to
quasi-runs Q = 〈q1, . . . , qk〉 such that every qi is partisan. By part (B) of the same
lemma, there is at most one such Q. Let A be the algorithm of part (C) of the same
lemma.
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The reading algorithm iterates A and has at most k rounds. Assume that the
reading algorithm has performed i rounds and in the process has constructed an initial
segment 〈q1, . . . , qi〉 of the desired quasi-run Q. The assumption trivially holds in case
i = 0. If i = 0, let u0 = o; otherwise, let ui be the end-vertex of qi.

In case i < k, the reading algorithm starts round i+1 by applying A to R, ui, and
a
pi+1

i+1 . If A determines that there is no partisan quasi transition with a quasi label
from ui with a label of the form a

pi+1

i+1 , then the desired quasi-run Q does not exist.
Otherwise let qi+1 be the partisan quasi transition constructed by A.

In case i = k, the desired quasi-run Q exists if and only uk = o.
In the remaining part of this section, we construct a polynomial-time algorithm

that transforms any recognizer to an equivalent lean recognizer.

3.4. Path folding. In section 2 we used edge folding to reduce a recognizer to
a lean one. Now the situation is more involved, and edge folding is not going to do
the job. Instead we will be folding paths.

Recall the branches, cycles, and nooses definition in section 2.2, and fix an original
letter a.

Definition 3.19 (impasse). A nonempty partisan a-path is an impasse if it is
a branch and its end-vertex has no outgoing a-edges of the sign of π.

Definition 3.20 (closed path). A nonempty partisan a-path is closed if it is an
impasse, a cycle, or a noose.

Lemma 3.21 (closed path). Every a-edge e1 gives rise to a closed partisan a-path
π = 〈e1, . . . , ek〉 that continues e1. Furthermore, there is an algorithm that constructs
such a path in a time polynomial in the recognizer’s size.

Proof. The desired algorithm is iterative; we describe one round of it. Suppose
that we have already an a-path 〈e1, . . . , ei〉 with vertex sequence 〈u0, . . . , ui〉. If
ui ∈ {u0, . . . , ui−1} or if ui has no outgoing a-edge of the same sign as e1, then
halt. Otherwise let ei+1 be the lexicographically first a-edge from ui of the same sign
as e1.

As usual g.c.d.(m,n) is the greatest common divisor of positive integers m and
n. Define m = n mod ∞ to be equivalent to m = n.

Definition 3.22 (two-path divisor). For i = 1, 2, let πi be a branch or cycle of
length �i. We define the divisor as follows:

Div(π1, π2) =

⎧
⎪⎨
⎪⎩

∞ if π1, π2 are branches,

�i if πi is a cycle and π3−i is a branch,

g.c.d.(�1, �2) if π1, π2 are cycles.

Definition 3.23 (entanglement). Suppose that π and ρ are nonempty partisan
a-paths of the same sign and with the same initial vertex ν, and suppose that either
path is a branch or a cycle. The two paths are entangled if there exist vertices u and
v on π and ρ, respectively, such that u �= v and

Length(π[ν, u]) = Length(ρ[ν, v]) mod Div(π, ρ).

Otherwise the two paths are disentangled.
Corollary 3.24 (entanglement algorithm). There is a polynomial-time algo-

rithm that, given a recognizer and two paths π and ρ as in the entanglement definition,
determines whether they are entangled. Furthermore, if the paths are entangled, then
the algorithm produces vertices u and v witnessing the entanglement and identifies
them.



440 YURI GUREVICH AND PAUL SCHUPP

We omit the pretty obvious proof.
Lemma 3.25 (entanglement). If π and ρ are entangled and vertices u and v

witness the entanglement, then the identification of u and v does not change the
recognizer subgroup.

Proof. Let d = Div(π, ρ), k = Length(π[ν, u]), � = Length(ρ[ν, v]), and H =
Coset(ν). We assume that π and ρ are positive; the negative case is similar. By the
coset stability lemma in section 2.4, Coset(u) = Hak, and Coset(v) = Ha�. By the
vertex identification lemma in section 2.4, it suffices to prove that Hak = Ha�. Since
u and v witness the entanglement, we have k = � mod d.

Case 1: Both paths are branches. Then k = �, and therefore Hak = Ha�.
Case 2: One of the paths is a branch, and the other is a cycle. Without loss of

generality, π is a circle, and ρ is a branch. Then Hak = H, and � = p · k for some
integer p. Then Ha� = H(ak)p = H = Hak.

Case 3: Both paths are cycles. Then Hak = Ha� = H. Since d = g.c.d.(k, �),
there are integers i and j such that ik+j� = d, and so Had = H(ak)i(a�)j = H. Since
k = � mod d, there is an integer p such that k = pd + �. Then Hak = H(ad)pa� =
Ha�.

Recall the disjoint paths definition in section 2.2.
Definition 3.26 (path folding). Suppose that π and ρ are nonempty partisan

a-paths such that
• they have the same sign and the same start-vertex ν,
• either path is a branch or a cycle,
• Length(π) ≥ Length(ρ) if both paths are branches, and
• Length(π) = Div(π, ρ) if both paths are cycles.

To fold ρ into π, execute the following folding algorithm:
1. Apply the entanglement algorithm to π and ρ. If the number of vertices is

reduced, then halt. Otherwise the paths are disentangled.
2. For each v on ρ, create a new vertex v′ on π such that

Length(π[ν, v′]) = Length(ρ[ν, v]) mod Div(π, ρ)

unless π has a vertex at this position already.
3. Identify every clone v′ with its original v.
4. Remove all edges of ρ and their inverses.

One of our referees suggested “path merging” instead of “path folding.”
Remark 3.27 (path folding). Concerning stage 2 of the folding algorithm, con-

sider the case in which π has a vertex u such that Length(π[ν, u]) = Length(ρ[ν, v])
mod Div(π, ρ). Since π and ρ are disentangled (otherwise we would not arrive at stage
2), we have u = v. Assume that π and ρ are internally disjoint. Then vertex v is
an extreme vertex on both paths. Consider the scenario in which v differs from the
initial vertex ν. Then v is the final vertex of both π and ρ, both π and ρ are branches,
and Length(π) = Length(π[ν, u]) = Length(ρ[ν, v]) = Length(ρ).

Lemma 3.28 (path folding). Let π and ρ be as in the path folding definition.
Folding ρ into π preserves the recognizer subgroup. If the algorithm halts at stage
1, then the number of vertices of the recognizer decreases. Otherwise the number of
vertices is unchanged, and the (amount of) fat changes as follows.

(BB) Suppose that π and ρ are branches of lengths m and n, respectively.
If m = n, then the fat decreases by 2.
If m > n and ρ is an impasse, then the fat decreases by 1.
If m > n but ρ is not an impasse, then the fat does not change.
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(CB) Suppose that π is a cycle and ρ is a branch.
If ρ is an impasse, then the fat decreases by 1;
otherwise, the fat does not change.

(CC) Suppose that π and ρ are cycles. Then the fat decreases by 2.
Proof. We consider only the case in which π and ρ are positive; the case in which

they are negative is similar.
Let R be the given recognizer, and for p ≤ 4, let Rp be the recognizer obtained

from R by executing p stages of the folding algorithm, so that R0 = R. Let the vertex
sequence of π be 〈u0, . . . , uk〉. Let ρ = 〈f1, . . . , f�〉 and the vertex sequence of ρ be
〈v0, . . . , v�〉. Let d = Div(π, ρ). The case in which π and ρ are entangled is obvious.
Assume that π and ρ are disentangled. Then nothing happens at stage 1, and so
R1 = R0.

First we note that the vertices of R4 are those of R1. Indeed all vertices v′j created
at stage 2 are identified with the respective vertices vj at stage 3; thus, the vertices
of R3 are those of R1. And the vertices do not change at stage 4.

Second we show that Γ(R4) = Γ(R). By the vertex creation lemma, Γ(R2) =
Γ(R1). By the vertex identification lemma of section 2.4, Γ(R3) = Γ(R2). It remains
to show that Γ(R4) = Γ(R3). Let nj = Length(π[v0, vj ]), rj = nj mod d, and
v′0 = u0. It suffices to show that for every edge fj of ρ, R4 has a path Pj with the
profile of fj . Indeed, suppose we have the desired paths Pj . Recall that the profile of
a path includes not only the label but also the initial and final vertices, so the desired
paths Pj match up appropriately to simulate ρ. It is easy to see that, for every vertex
v, Coset(v) computed in R3 is the same as the one computed in R4.

The profile of fj is (vj−1, a
p, vj), where p = nj − nj−1. In scenario (BB), the

desired path Pj is π[v′j−1, v
′
j ]. In scenarios (CB) and (CC), p = d · q + (rj+1 − rj) for

some q. The desired path Pj starts at v′j−1 and ends at v′j . If rj ≤ rj+1, then π does
q full revolutions around π. If rj > rj+1, then q > 0, and π does q− 1 full revolutions
around π.

Finally we prove the claims about the fat. By the vertex creation lemma,
Fat(R2) = Fat(R1). Thus we need to examine only the evolution of the fat from
R2 to R4. Furthermore, it suffices to examine the evolution of the numbers Fat(a, vj).
Indeed, this will account for the vertices v′j identified with the corresponding vertices
vj at stage 3. If a vertex v of R2 differs from any vj , v

′
j , then the immediate vicinity

of v does not change. If an original letter b �= a, then Fat(b, vj) does not change. The
reason is that, upon the creation, the vertex v′j has no b-edges adjacent to it. As a
result the identification of vj with v′j creates no b-fat.

If 0 < j < �, then Fat(a, vj) does not change from R2 to R4. Indeed, as a result
of identification with v′j , the vertex vj acquires one outgoing positive a-edge and one
outgoing negative a-edge at stage 3, but then, at stage 4, it loses one outgoing positive
a-edge, namely, fj+1, and one outgoing negative a-edge, namely, f−1

j .
The vertex v0 does not acquire any outgoing edges at stage 3, and thus neither

Fat(a+, v0) nor Fat(a−, v0) increase at stage 3. It loses one positive outgoing edge,
namely, f0 at stage 4, and so Fat(a+, v0) decreases by 1 from R2 to R4. It does not
lose any negative outgoing edge in scenarios (BB) or (CB), and so Fat(a−, v0) does
not change in scenarios (BB) and (CB). Since v0 = v� in scenario (CC), it remains to
examine only the evolution of the numbers Fat(a+, v�) and Fat(a−, v�) in the three
scenarios.

(BB) In this scenario, we first suppose that m = n. Since π and ρ are disentangled,
uk = v� . The vertex v� does not acquire any outgoing edges at stage 3 and loses only
one outgoing edge, namely, the negative edge f−1

l , at stage 4. Thus Fat(a+, v�)
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does not change, and Fat(a−, v�) decreases by 1. To summarize, Fat(a+, v0) and
Fat(a−, v�) decrease by 1 while Fat(a−, v0) and Fat(a+, v�) do not change. Hence
Fat(R4) = Fat(R2) − 2.

Second we suppose that m > n. At stage 3, v� acquires one positive and one
negative outgoing edge. At stage 4, v� loses no outgoing positive edges but loses f−1

� .
Thus Fat(a−, v�) does not change. If ρ is not an impasse, then Fat(a+, v�) increases
by 1; otherwise, Fat(a+, v�) remains zero throughout the process. We summarize. If
ρ is an impasse, then Fat(a+, v0) decreases by 1 while Fat(a−, v0), Fat(a+, v�), and
Fat(a−, v�) do not change, so that Fat(R4) = Fat(R2)−1. If ρ is not an impasse, then
Fat(a+, v0) decreases by 1, Fat(a+, v�) increases by 1, and Fat(a−, v0) and Fat(a−, v�)
do not change, so that Fat(R4) = Fat(R2).

(CB) This scenario is similar to the case m > n of scenario (BB). Let us just
point out that the vertex v� does not occur on π in R. Indeed suppose the opposite.
Since π and ρ are internally disjoint and uk = u0, we have v� = u0 = v0. But then ρ
is a cycle which contradicts scenario (CB).

(CC) In this scenario, v0 = v�, and thus Fat(a+, v�) decreases by 1. Fat(a−, v�)
does not change at stage 3 and decreases by 1 at stage 4 because f−1

� is removed.
To summarize, the overall change in the fat is this: both Fat(a+, v�) and Fat(a−, v�)
decrease by 1. Thus Fat(R4) = Fat(R2) − 2.

3.5. Weight reduction algorithm.
Definition 3.29 (recognizer weight). The weight of a recognizer R is a pair

(i, j) of natural numbers where i is the number of vertices of R and j = Fat(R).
The weights are ordered lexicographically with the number of vertices being the more
significant component.

Lemma 3.30 (weight reduction). There is a polynomial-time weight reduction
algorithm that reduces any recognizer to an equivalent lean recognizer.

Proof. We construct an iterative algorithm that transforms the given recognizer
by means of path folding; the algorithm halts when the recognizer is lean. By the
folding lemma, the algorithm preserves the recognizer subgroup.

We describe one round of the algorithm and show that the weight decreases at
each round. It will be obvious that the algorithm is polynomial time.

If the current recognizer R is lean, halt. Otherwise find a quadruple (a, ξ, e1, f1),
where a is an original letter, ξ is a vertex with Fat(a, ξ) > 0, and e1 and f1 are two
a-edges from ξ of the same sign. It could be the lexicographically first such quadruple,
for example. We consider only the case in which e1 and f1 are positive; the case in
which they are negative is similar. Use the algorithm of the closed paths lemma to
construct closed a-paths E and F continuing the e1 and e2, respectively. We consider
first the cases in which E and F are disjoint off ξ and then the other cases.

Part 1: Assume that E and F are disjoint off ξ.
Case 1: E and F are cycles.
If the cycles are of different lengths, let π be the shorter one; otherwise, let π be

either of the cycles. Let ρ be the other cycle, m = Length(π), and n = Length(ρ). If
m divides n, fold ρ into π. Otherwise, let d be the greatest common divisor of m and
n. Create a positive single-edge a-cycle λ of length d at ξ. Then fold π into λ, and
let π′ be the resulting cycle of length d. Then fold ρ into π′.

To examine the evolution of weight, we apply scenario (CC) of the folding lemma
to the following two subcases.

First suppose that m divides n. If π and ρ are entangled, then the number of ver-
tices drops. Otherwise the number of vertices is unchanged, but the fat decreases by 2.
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Second suppose that m does not divide n. If π′ and ρ are entangled, then the
number of vertices drops. Suppose that π′ and ρ are disentangled. With the creation
of λ, the vertex ξ acquires one outgoing positive a-edge and one outgoing negative
a-edge, so that the fat increases by 2. The folding of π into λ decreases the fat by 2.
The folding of ρ into π′ decreases the fat by 2. Altogether the fat decreases by 2.

Case 2: One of the paths E and F is a cycle, and the other is an impasse.
Fold the impasse into the cycle. By scenario (CB) of the folding lemma, this

decreases the recognizer weight.
Case 3: One of the paths E and F is a cycle, and the other is a noose.
Let π be the cycle, ρ be the noose, and v be the end-vertex of ρ. Fold the tail

of ρ into π, and let π′ be the resulting cycle. Note that v occurs on π′. By scenario
(CB) of the folding lemma, this does not increase the recognizer weight. If the weight
dropped, then finish the round. Otherwise let π′′ be the cycle at v obtained from π′

by redefining the initial vertex as v. The loop of ρ is another cycle at v. Clearly the
two cycles at v are disjoint off ξ. Proceed as in case 1.

Case 4: E and F are impasses.
If the impasses are of different length, let π be the longer one; otherwise, let π be

either of the impasses. Let ρ be the other impasse. Fold ρ into π. By scenario (BB)
of the folding lemma, this decreases the recognizer weight.

Case 5: One of the paths E and F is an impasse, and the other is a noose.
Let π be the impasse, ρ the noose, τ the tail of ρ, λ the loop of ρ, m = Length(π),

and n = Length(τ). If m ≤ n, then fold π into τ ; by scenario (BB) of the folding
lemma, this decreases the weight. Suppose that m > n. Then fold τ into π, and let π′

be the resulting impasse. By the folding and weight corollary, this does not increase
the weight. If the weight decreases, finish the round. Otherwise let v be the final
vertex of τ and π′′ be the suffix π′ with initial vertex v. Obviously, λ is a cycle at v,
π′′ is an impasse with initial vertex v, and the two paths are disjoint off v. Proceed
as in case 2.

Case 6: E and F are nooses.
Let π be the noose with a shorter tail. If the two tails are of the same length, let

π be either noose. Let ρ be the other noose and u be the final vertex of π. Fold the
tail of π into the tail of ρ, and let R′ be the resulting recognizer. By the folding and
weight corollary, Weight(R′) ≤ Weight(R). If Weight(R′) < Weight(R), finish the
round. Otherwise let π′ be the loop of π and ρ′ be the suffix of ρ with initial vertex
u. π′ is a cycle at u, ρ′ is either a cycle at u or a noose with initial vertex u, and the
two paths are disjoint. If ρ′ is a cycle, proceed as in case 1. If ρ′ is a noose, proceed
as in case 3.

Part 2: Assume that E and F are not disjoint off ξ.
Case 7: At least one of the paths E and F is a cycle.
Let π be the cycle or one of the two cycles, and let ρ be the maximal initial

segment of the other path that is internally disjoint from π. The final vertex v of ρ
splits π into two segments π1 = π[ξ, v] and π2 = π[v, ξ]. Without loss of generality,
we may assume Length(π1) ≥ Length(ρ); otherwise, swap π1 and ρ in the remainder
of this case. Let m = Length(π1) and n = Length(ρ).

Fold ρ into π1, and let R′ be the resulting recognizer. If the weight decreases, then
end the current round of the algorithm. Suppose that the weight does not decrease.
Then, by the folding lemma, m > n. We have two internally disjoint cycles at v in
R′. One is formed by the suffix of length m − n of π1. The other is formed by the
concatenation of π2 and the prefix of length n of π1. Proceed as in case case 1.

Case 8: At least one of the paths E and F is a noose.
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Let τ be a noose or one of the two nooses, τ1 and τ2 be the tail and loop of τ ,
respectively, and v be the final vertex of τ1. Recall that every path P gives rise to a
reverse path P−1. Let π be the cycle τ−1

2 at v. By an argument similar to the proof
of the closed path lemma, there is a closed path ρ that continues the path τ−1

1 . Thus
we have two closed paths, π and ρ, sharing the same initial vertex v and having the
same sign (that is both positive or both negative). If π and ρ are internally disjoint,
proceed according to the appropriate case of part 1. Otherwise proceed as in case 7.

Case 9: Both E and F are impasses.
Let F1 be the maximal initial segment of F disjoint from E. The final vertex

v of F1 splits E into the prefix E1 = E[ξ, v] and the corresponding suffix E2. If
Length(E1) ≥ Length(F1), let π = E1 and ρ = F1; otherwise, let π = F1 and ρ = E1.
Let m = Length(π) and n = Length(ρ). Fold ρ into π. If the recognizer weight
decreases, then finish the round of the algorithm. Suppose that the weight does not
decrease. Then, by the folding lemma, m > n. We have two internally disjoint closed
paths of the same sign with initial vertex v. One is the cycle formed by a suffix of
length m−n of π. The other is the impasse E2. Proceed as in case 2. This completes
the proof of the lemma.

3.6. The theorem. We restate the free groups with elements in exponent nor-
mal form theorem formulated in section 1.

Theorem 3.31. There is a polynomial-time decision algorithm for the member-
ship problem for the succinct free group. More explicitly, there is an algorithm such
that

(i) given exponent words h1, . . . , hm and w, the algorithm decides whether the
subgroup H generated by h1, . . . , hm contains w, and

(ii) the algorithm runs in time polynomial in |h1| + · · · + |hm| + |w|.
Proof. Use the construction algorithm of section 2.2 to produce a recognizer R1

for H. Then use the weight reduction algorithm of section 3.5 to transform R1 into a
lean recognizer R2. Finally use the reading algorithm of section 3.3 to check whether
the group element w belongs to H. Since all the constituent algorithms are polynomial
time, the decision algorithm is polynomial time.

4. The free product of (ZZZ/2ZZZ) and (ZZZ/3ZZZ). This auxiliary section aims to
clarify certain aspects of the membership problem for the modular group unrelated
to the matrix representation of the modular group.

In the notation of combinatorial group theory, 〈g | gn〉 is a cyclic group of order n
with generator g. It is isomorphic to the additive group Z/nZ of integers modulo n.
The modular group is isomorphic to the free product (Z/2Z)∗(Z/3Z); see [8] for a clear
explanation of this fact. We use the syllabic recognizer approach to give a polynomial
time decision procedure for the membership problem for the group 〈s | s2〉 ∗ 〈t | t3〉
in the following presentation.

Definition 4.1 (standard 〈s | s2〉 ∗ 〈t | t3〉). Standard 〈s | s2〉 ∗ 〈t | t3〉 is the
free group in the following syllabic presentation.

• Alphabet: The alphabet consists of original letters s, t and one auxiliary symbol
−1. The alphabet is linearly ordered in some way; it will play no role in what
order it is exactly.

• Syllables: Syllables are s, t, and t−1. The Greek letter ε is reserved to range
over {1,−1}, so that tε is always either t or t−1.

• Inverses: Syllables t and t−1 are the inverses of each other, and s is its own
inverse.
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• Equality: It is the least congruence for the word semigroup with the inverse
operation such that ss = 1, tt−1 = 1, t−1t = 1, tt = t−1, and t−1t−1 = t.

It is easy to see that the quotient of the word semigroup is indeed isomorphic
to 〈s | s2〉 ∗ 〈t | t3〉. Consider the five equalities that appear in the definition of the
equality relation. Reading each of the five equalities from left to right gives us five
different reduction steps. It is easy to see that any two words w1, w2 are equal if and
only if there is a witness sequence of words x0, x1, . . . , x� such that x0 = w1, x� = w2

and, for every two successive words xi, xi+1, one is obtained from the other by a single
reduction step.

A word w is reduced if it does not contain any of the “forbidden” contiguous
substrings ss, tt−1, t−1t, tt, or t−1t−1. The group G in consideration is the quotient
of W with respect to the equality relation.

Lemma 4.2 (word reduction).

1. For every word w, there is a unique reduced word equal to w. The reduced
word is the reduct of w.

2. There is a polynomial-time word reduction algorithm that, given a word w,
produces the reduct of w.

We omit the proof of this well-known fact.
Definition 4.3 (irregular paths). There are two kinds of irregular paths.
• An s-irregular path has the form 〈(u0, s, u1), (u1, s, u2)〉, where u0 �= u2.
• An t-irregular path has the form 〈(u0, t, u1), (u1, t, u2), (u2, t, u3)〉, where u0 �=
u3.

Definition 4.4 (regular recognizers). A recognizer without irregular paths is
regular.

Lemma 4.5 (irregular paths). The identification of the end-vertices of an irreg-
ular path produces an equivalent recognizer.

Proof. Due to the vertex identification lemma of section 2.4, it suffices to show
that the end-vertices of the given irregular path π have the same associated coset.
To this end we use the coset stability lemma of section 2.4. If π has the form
〈(u, s, u1), (u1, s, v)〉, then Coset(v) = Coset(u)ss = Coset(u). And if π has the form
〈(u, t, u1), (u1, t, u2), (u2, t, v)〉, then Coset(v) = Coset(u)ttt = Coset(u).

Definition 4.6 (fat). Let R be a regular recognizer and u be a state of R.
For every syllable σ, FatR(σ, u) = max(0, n − 1), where n is the number of σ-labeled
transitions from u. The subscript may be omitted when the recognizer is uniquely
determined by the context.

A recognizer R is deterministic if every FatR(σ, u) = 0. Note that a deterministic
recognizer does not have s-irregular paths.

Definition 4.7 (triangles). A triangle in a recognizer is a cycle of the form
〈(u1, t, u2), (u2, t, u3), (u3, t, u1)〉. We allow the possible “degenerate” cases where
some of the edges coincide. In particular, if e = (v, t, v), then 〈e, e, e〉 is a trian-
gle. An incomplete triangle is a two-edge path 〈(u1, t, u2), (u2, t, u3)〉 such that there
is no edge (u3, t, u1).

Definition 4.8 (triangle complete). A recognizer is triangle complete if it does
not have any incomplete triangles.

Note that if a recognizer is triangle complete, then for any edges e1 = (u1, t
−1, u2)

and e2 = (u2, t
−1, u3), there is an edge e3 = (u3, t

−1, u1). Indeed, by the triangle
completeness requirement, applied to 〈e−1

2 , e−1
1 〉, there is an edge (u1, t, u3). But its

inverse is the desired (u3, t
−1, u1).
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Lemma 4.9 (completing one triangle). Suppose that a deterministic regular rec-
ognizer R has an incomplete triangle 〈(u1, t, u2), (u2, t, u3)〉. Add a new edge (u3, t, u1)
and its inverse, and let S be the resulting recognizer. Then

1. S is equivalent to R;
2. S is deterministic;
3. S is regular.

Proof. Let e1 = (u1, t, u2), e2 = (u2, t, u3), and e3 = (u3, t, u1).
1. Obviously Γ(R) ⊆ Γ(S). We show that Γ(S) ⊆ Γ(R). If π is a run of S that

accepts a word w, replace every occurrence of e3 (respectively, e−1
3 ) in π with 〈e−1

2 , e−1
1 〉

(respectively, 〈e1, e2〉). The result is a run of R that accepts a word equal to w in G.
2. By contradiction assume that S is not deterministic. Taking into account

that R is deterministic and that e3 and e−1
3 are the only new edges of S, we have

FatS(t−1, u1) > 0 or FatS(t, u3) > 0. Either case leads to a contradiction. We consider
only the first case; the second case is similar.

Suppose that FatS(t−1, u1) > 0. Then vertex u1 has an outgoing edge of the form
(u1, t

−1, u0) in R. Let e0 = (u0, t, u1). Since R is regular, the end-vertices of the path
〈e0, e1, e2〉 coincide, so that u0 = u3 and e0 = (u3, t, u1), which is impossible because
〈e1, e2〉 is an incomplete triangle in R.

3. If S is not regular, then it has an irregular path π. We have proved already that
S is deterministic. It follows that π cannot be s-irregular. So π is t-irregular. Let
π = 〈f1, f2, f3〉. Since R is regular, π contains the new edge e3. We have three
different scenarios e3 = fi. Each of the scenarios leads to a contradiction.

We consider here only the scenario e3 = f2; the other scenarios are similar. Taking
into account that S is deterministic, we have that f1 = e2 and f3 = e1. But then u2

is the initial and final vertex of π, which contradicts the irregularity of π.
Corollary 4.10 (triangle completion). There is a polynomial-time triangle

completion algorithm that transforms an arbitrary deterministic regular recognizer
into an equivalent recognizer that is regular, deterministic, and triangle complete.

Proof. If there is an incomplete triangle 〈(u1, t, u2), (u2, t, u3)〉, then add a new
edge (u3, t, u1) and its inverse. Keep doing that until the recognizer is triangle
complete.

Lemma 4.11 (membership criterion). Let R be a triangle complete, deterministic,
regular recognizer, and let w be an arbitrary word. The subgroup Γ(R) contains the
group element w if and only if R accepts the reduct of w.

Proof. If R accepts the reduct of w, then w ∈ Γ(R) by the definition of recognizers.
Suppose that w ∈ Γ(R), and let w0 be a word with the fewest number of syllables
accepted by R. We show that w0 is reduced.

Let π be a run that accepts w0. If π has the form

π1 + 〈(v1, σ, v2)(v2, σ
−1, v3)〉 + π2,

then the middle segment can be removed from π. And if π has the form

π1 + 〈(v1, t
ε, v2)(v2, t

ε, v3)〉 + π2,

then the middle segment can be replaced by the edge (v1, t
−ε, v3). In either case, the

resulting run accepts a word that is equal to w and that has fewer syllables than w0,
which contradicts the choice of w0.

Lemma 4.12 (reading). There is a polynomial-time reading algorithm that, given
a deterministic regular recognizer R and a word w, determines whether w ∈ Γ(R).
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Proof. Let R1 be the given recognizer. Use the triangle completion algorithm
to transform R1 into an equivalent recognizer R2 that is regular, deterministic, and
triangle complete. Use the word reduction algorithm to transform w to an equal
reduced word w0. By the membership criterion lemma, w ∈ Γ(R2) if and only if R2

accepts w0. To determine whether R2 accepts w0, run R2 on w0.
Lemma 4.13 (fat reduction). There is a polynomial-time fat reduction algorithm

that transforms any recognizer into an equivalent deterministic regular recognizer.
Proof. The desired algorithm is iterative. At every round it decreases the number

of vertices. We describe one round of the algorithm.
1. If there an irregular path, then identify the end-vertices of the path, and start

a new round.
2. If there are distinct edges with the same initial vertex and the same label,

then identify their final vertices, and start a new round.
3. Halt.

Obviously the algorithm halts, and when it does the recognizer is deterministic and
regular. By the vertex identification and edge folding lemmas in section 2.4, the
algorithm does not change the recognizer subgroup.

Theorem 4.14. There is a polynomial-time decision algorithm for the member-
ship problem for (Z/2Z) ∗ (Z/3Z).

Proof. Use the construction algorithm of section 2.2 to produce a recognizer R1

for H. Use the weight reduction algorithm to transform R1 to an equivalent recognizer
that is regular and deterministic. Finally use the reading algorithm to check whether
w ∈ Γ(S).

5. Succinct 〈s | s2〉 ∗ 〈t | t3〉. In the previous section, we proved that the
membership problem for standard 〈s | s2〉∗ 〈t | t3〉 is polynomial-time decidable. Here
we introduce an exponentially more succinct syllabic representation of the elements of
〈s | s2〉∗〈t | t3〉 and show that the membership problem for G remains polynomial-time
decidable.

5.1. Succinct 〈s | s2〉 ∗ 〈t | t3〉: Definition and word reduction.
Definition 5.1 (succinct 〈s | s2〉 ∗ 〈t | t3〉). Succinct 〈s | s2〉 ∗ 〈t | t3〉 is the

group 〈s | s2〉 ∗ 〈t | t3〉 in the following syllabic representation.
• Alphabet: The alphabet consists of original letters s and t and the following

auxiliary symbols: −1, left and right parentheses, and 0, 1, . . . , 9. The al-
phabet is linearly ordered in some way; it will play no role in what order it is
exactly.

• Syllables: The syllables split into three categories.
–Positive: strings (ts)kt, where k is a natural number in decimal notation,
–Negative: strings (t−1s)kt−1, where k is a natural number in decimal no-

tation,
–Neutral: the string s.

Positive and negative syllables are partisan. The Greek letter ε is reserved
to range over {1,−1}, so that tε is always either t or t−1. To distinguish
this representation of 〈s | s2〉 ∗ 〈t | t3〉 from the standard representation,
new words will be called exponent words, and the old words will be called
unary words. Any exponent word w expands in the obvious way to a unary
word called the unary expansion of w. For example, (t, s)4s(ts)4 expands to
tststststststststst.

• Inverses: Syllables (ts)kt and (t−1s)kt−1 are the inverses of each other, and
s is its own inverse.
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• Equality: Exponent words are equal if their unary expansions are equal in the
sense of the standard 〈s | s2〉 ∗ 〈t | t3〉.

Obviously the quotient of the word semigroup over the equality relation is iso-
morphic to 〈s | s2〉 ∗ 〈t | t3〉.

As usual, the sign of an integer i is 1, 0, or −1 if i > 0, i = 0, or i < 0, respectively,
and |i| is the absolute value of i.

Definition 5.2 (T notation).

Ti =

⎧
⎪⎨
⎪⎩

(ts)i−1t if i > 0,

(t−1s)|i|−1t−1 if i < 0,

1 if i = 0.

Lemma 5.3 (syllables). Let i, j be nonzero integers.
1. TisTj = Ti+j if sign(i) = sign(j).
2.

TiTj =

{
Ti−1s

αT−1s
βTj−1 if sign(i) = sign(j) = 1,

Ti+1s
αT1s

βTj+1 if sign(i) = sign(j) = −1,

where α =

{
1 if |i| �= 1,

0 if |i| = 1,
and β =

{
1 if |j| �= 1,

0 if |j| = 1.
3.

TiTj =

⎧
⎪⎨
⎪⎩

sTi+j if sign(i) = −sign(j) and |i| < |j|,
1 if sign(i) = −sign(j) and |i| = |j|,
Ti+js if sign(i) = −sign(j) and |i| > |j|.

The proof is straightforward. We give here only a few examples.

T2sT3 = (tst)s(tstst) = (ts)4t = T5,

T−2sT−3 = (t−1st−1)s(t−1st−1st−1) = (t−1s)4t−1 = T−5,

T2T3 = (tst)(tstst) = (t)s(tt)s(tst) = T1sT−1sT2,

T1T3 = (t)(tstst) = (tt)s(tst) = T−1sT2,

T2T1 = (tst)(t) = (t)s(tt) = T1sT−1,

T−2T−2 = (t−1st−1)(t−1st−1) = (t−1)s(t−1t−1)s(t−1) = T−1sT1sT−1,

T2T−3 = (tst)(t−1st−1st−1) = st−1 = sT−1,

T3T−2 = (tstst)(t−1st−1) = ts = T1s,

T2t−2 = (tst)(t−1st−1) = 1.

Definition 5.4 (reduced exponent words). An exponent word is reduced if
(R1) every nonfinal neutral syllable is followed by a partisan syllable,
(R2) every nonfinal partisan syllable is followed by a neutral syllable,
(R3) any two partisan syllables separated only by a neutral syllable have different

signs.
For example, the exponent word T3sT−7sT2 is reduced.
Lemma 5.5 (exponent word reduction).

1. Every exponent word w is equal in G to a unique reduced exponent word. The
reduced exponent word is the reduct of w.
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2. There is a polynomial-time exponent word reduction algorithm that, given
any exponent word w, computes the reduct of w.

Proof. It is easy to see that (i) if an exponent word is reduced, then its unary
expansion is reduced in the sense of section 4 and (ii) if two reduced exponent words
are equal, then the reduced unary expansions are equal. By the word reduction
lemma of section 4, equal reduced unary words are identical. It follows that equal
reduced exponent words have identical unary expansions. It is easy to see that equal
reduced exponent words are also identical as exponent words; that is, they have the
same syllables in the same order. This establishes the uniqueness part of the first
claim.

In the remainder of the proof, we construct polynomial-time algorithms A1, A2,
and A3 transforming any exponent word w to an equal exponent word in such a way
that A1(w) satisfies requirement (R1), A2(A1(w)) satisfies requirements (R1) and
(R2), and A3(A2(A1(w))) satisfies requirements (R1), (R2), and (R3) and thus is
reduced.

Taking into account that s2 = 1, A1 is obvious. Taking into account part 1 of the
syllables lemma, A3 is obvious. It remains to construct A2.

We say that two successive syllables of an exponent word w collide if both syllables
are partisan. Define rank(w) = (c, b), where c is the number of collisions in w and b is
the number of partisan syllables in w. Order ranks lexicographically. A2 is an iterative
rank-reducing algorithm. It is presumed that the input exponent word satisfies A1.
In the next paragraph, we describe one round of A2.

If w satisfies (R2) then halt. Otherwise w has the form xTmTny. If sign(m) =
sign(n), use part 2 of the syllables lemma to reduce the number of collisions. If
sign(m) = −sign(n), use part 3 of the syllables lemma to reduce the rank. If (R1) is
violated in the process, then apply A1.

5.2. Deficit reduction. Recognizers were introduced in section 2.2.
Definition 5.6 (edges). An edge of a recognizer is partisan or neutral if its

label is so. A partisan edge is positive if or negative if its label is so. The length of
an edge e with label σ is the number of symbols in the unary expansion of σ. Thus
Length(e) = 2|i| − 1 if σ = Ti, and Length(e) = 1 if σ = s.

Definition 5.7 (paths). The length of a path π is the sum of the lengths of its
edges. A path π is positive if

• it has at least one positive edge and no negative edges, and
• the positive and neutral edges of π alternate.

Negative paths are defined similarly. Positive and negative paths are partisan.
Definition 5.8 (fat). Let R be a recognizer and u range over the vertices of R.
• FatR(s, u) = max(0, n− 1), where n is the number of neutral edges from u.
• FatR(t, u) = max(0, n− 1), where n is the number of positive edges from u.
• FatR(t−1, u) = max(0, n − 1), where n is the number of negative edges from
u.

Further, FatR(u) = FatR(s, u)+FatR(t, u)+FatR(t−1, u), and Fat(R) =
∑

u FatR(u).
The subscript may be omitted if the context uniquely defines the recognizer.

Definition 5.9 (lean recognizers). It is lean if Fat(R) = 0.
As in section 3.3, lean recognizers are deterministic, but deterministic recognizers

are not necessarily lean. Recall the regular recognizers and the triangles definitions
in section 4.

Definition 5.10 (deficit). Let R be a recognizer. A vertex u2 of R is deficient
if there are positive edges (u1, Tm, u2) and (u2, Tn, u3) such that either m + n > 2 or
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else m = n = 1 and 〈(u1, Tm, u2), (u2, Tn, u3)〉 is an incomplete triangle. The number
of deficient vertices is the deficit Δ(R) of R.

Lemma 5.11 (deficit decrement). There is a polynomial-time deficit decrement
algorithm that transforms any lean regular recognizer R with positive deficit to an
equivalent lean regular recognizer S with lesser deficit.

Proof. Find a deficient vertex u2 together with edges e1 = (u1, Tm, u2) and
e2 = (u2, Tn, u3) witnessing the deficiency of u2. Without loss of generality m ≥ n;
the case n ≥ m is similar. We consider various scenarios that arise and advise the
reader to draw diagrams.

Case 1: m = n = 1.
Case 1-00: u1 has no incoming positive edges, and u3 has no outgoing positive

edges. Add edges (u3, t, u1) and (u1, t
−1, u3). By the vertex creation lemma in sec-

tion 3.2, the resulting recognizer S is equivalent to R. Obviously S is regular and
lean. Δ(S) = Δ(R)−1 as one deficiency has been repaired without creating any other
deficiencies.

Case 1-11: u1 has an incoming positive edge e0 = (u0, T�, u1), and u3 has an
outgoing positive edge e3 = (u3, Tp, u4). Vertices u1, u2, and u3 are all deficient.
Since R is regular, we have �, p > 1. Split e0 and e3 into paths of the form

〈(u0, T�−1, u), (u, s, u′), (u′, t, u1)〉, 〈(u3, t, v), (v, s, v
′), (v′, Tp−1, u4)〉.

The resulting recognizer R′ is lean and equivalent to R. Δ(R′) = Δ(R). Note t-
irregular paths from u′ to u3 and from u1 to v. Identify u′ with u3 and u1 with v,
so that the edges (u′, t, u1) and (u3, t, v) become one edge (u3, t, u1), and the edges
(u1, t

−1, u′) and (v, t−1, u3) become one edge (u1, t
−1, u3). The resulting recognizer S

is regular, lean, and equivalent to R′. Δ(S) = Δ(R) − 3.
Case 1-01: u1 has no incoming positive edges, and u3 has an outgoing positive

edge e3 = (u3, Tp, u4). Since R is regular, we have p > 1. Vertices u2 and u3 are
deficient. Split e3 as in case 1-11. The resulting recognizer R′ is lean and equivalent
to R. Δ(R′) = Δ(R). Note a t-irregular path from u1 to v. Identify u1 with v, so that
the edge (u3, t, v) becomes (u3, t, u1) and the edge (v, t−1, u3) becomes (u1, t

−1, u3).
The resulting recognizer S is regular, lean, and equivalent to R′. Δ(S) = Δ(R) − 2.

Case 1-10: u1 has an incoming positive edge e0 = (u0, T�, u1), and u3 has no
outgoing positive edge. This case is dual (and similar) to case 1-01.

Case 2: m,n > 1. Split e1 and e2 into paths of the form

〈(u1, Tm−1, u), (u, s, u′), (u′, t, u2)〉, 〈(u2, t, v), (v, s, v
′), (v′, Tn−1, u3)〉.

The resulting recognizer R′ is regular, lean, and equivalent to R. Δ(R′) = Δ(R).
Continue as in case 1-00, with t-edges (u′, t, u2) and (u2, t, v) witnessing the deficiency
of u2.

Case 3: m > 1 and n = 1.
Case 3-0: u3 has no outgoing positive edges. Split e1 as in case 2. The resulting

recognizer R′ is lean and equivalent to R. Δ(R′) = Δ(R). Continue as in case 1-00
with edges (u′, t, u2) and (u2, t, u3) witnessing the deficiency of u2.

Case 3-1: u3 has an outgoing positive edge e3 = (u3, Tp, u4).
Case 3-11: p = 1. If u4 has no outgoing positive edges, then we have case 1-10

with the current u2, u3, and u4 playing the role of u1, u2, and u3 of case 1-10. If u4

has an outgoing positive edge, then we have case 1-11 with the current u2, u3, and u4

playing the role of u1, u2, and u3 of case 1-11.
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Case 3-12: p > 1. Vertices u2 and u3 are deficient. Split e1 as in case 2, and
split e3 as in case 1-11. The resulting recognizer R′ is lean and equivalent to R.
Δ(R′) = Δ(R). Note a t-irregular path from u′ to v. Identify u′ with v. The
resulting recognizer S is regular, lean, and equivalent to R′. Δ(S) = Δ(R′)− 2.

Corollary 5.12 (deficit reduction). There is a polynomial-time deficit reduc-
tion algorithm that transforms any lean regular recognizer into an equivalent zero-
deficit lean regular recognizer

5.3. Membership criterion and the reading algorithm. The quasi-runs
definition, the quasi-run labels corollary, and the tolerance definition of section 3.2
remain valid. By Part 1 of the syllables lemma in section 5.1, every partisan path
that starts and ends with partisan edges is a quasi transition.

Definition 5.13 (standard quasi transitions). A quasi-transition q is partisan
if it is a partisan path that starts and ends with partisan edges. A partisan quasi
transition is positive (respectively, negative) if it is so as a path. A neutral quasi
transition consists of one neutral edge. A quasi transition is standard if it is partisan
or neutral.

The label of every standard quasi transition is a syllable (rather than 1).
Definition 5.14 (standard quasi runs). A quasi-run 〈q1, . . . , q�〉 is standard if

every quasi-transition qi is standard.
Lemma 5.15 (membership criterion). Suppose that R is a zero-deficit lean regular

recognizer, and let w be a reduced exponent word. The following are equivalent.
1. There is a standard quasi run with label w.
2. The group element w belongs to Γ(R).

Proof. 2 → 1: By the quasi-run labels corollary, the associate run of Q accepts a
word equal to w, and so w ∈ Γ(R).

1 → 2: Suppose that the group element w belongs to Γ(R). Without loss of
generality, w �= 1. By the recognizer’s subgroup definition in section 2.2, R accepts
an exponent word w′ equal to w. Let π be a run that accepts w′.

We claim that the partisan and neutral edges alternate in π. To prove that, we
assume that π has the form π1 +e+f +π2, where the edges e and f are both partisan
or both neutral, and we prove that there is a shorter run accepting a word equal to
w. Let v be the final vertex of e. If e and f are neutral, then by the regularity of R,
f = e−1, and so π1 + π2 is a shorter run accepting a word equal to w. So e and f are
partisan. Let Tm = Label(e) and Tn = Label(f). Without loss of generality, m > 0;
the case m < 0 is similar. If n < 0, then f = e−1 because Fat(t−1, v) = 0. Again,
π1 + π2 is a shorter run accepting a word equal to w. Thus n > 0. Since Δ(R) = 0,
the vertex v is not deficient. It follows that m = n = 1, and there is an edge g such
that 〈e, f, g〉 is a triangle. Then π1 + g−1 + π2 is a shorter run accepting an exponent
word equal to w.

Notice that π is a standard quasi run. Let Q = 〈q1, . . . , q�〉 be a standard quasi
run with the fewest number of quasi transitions that tolerates an exponent word w0

equal to w. Accordingly w0 has the form ap1

1 . . . ap�

� . We show that w0 is reduced.
Recall the definition of reduced exponent words in section 5.1. Obviously w0 satis-
fies the conditions (R1) and (R2). It remains to prove that it satisfies the condition
(R3). It suffices to prove that the positive and negative quasi transitions alternate
in Q.

By contradiction suppose that two partisan syllables σi and σi+2 of the same sign
are separated by a neutral syllable σi+1. Using the syllables lemma in section 5.1,
replace the segment 〈qi, qi+1, qi+2〉 with a single quasi transition whose quasi label
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equals σiσi+1σi+2 in G. This gives a quasi-run Q′ with fewer quasi transitions that
accepts a word equal to w, which contradicts the choice of Q.

Lemma 5.16 (quasi transitions).
1. Let R be a zero-deficit lean regular recognizer and u be a vertex of R. For

every syllable σ, there is at most one standard quasi-transition q from u with
quasi-label σ.

2. There is a polynomial-time algorithm that, given a zero-deficit lean regular
recognizer R, a state u of R, and a syllable σ, determines whether there
exists a standard quasi transition with profile of the form (u, σ, v) and, if yes,
constructs the desired quasi transition.

Proof. 1. The case σ = s is obvious because R is regular. By contradiction
assume that there exist distinct standard quasi transitions with the same quasi-label
Tn from the same vertex u. We assume that n > 0; the case n < 0 is similar. Thus
we have two distinct positive paths of the same length 2n − 1 from u. Since neither
path can be a prefix of the other, there is a vertex v where the two paths branch out
which contradicts the leanness of R.

2. The case σ = s is obvious. Thus we may assume that σ = Tn for some n �= 0.
We assume n > 0; the case n < 0 is similar. Using the leanness of R, construct
a unique empty or positive path π such that Length(π) < 2n − 1 but π cannot be
extended to a longer positive path or such that Length(π) ≥ 2n − 1 and π is the
shortest such path. In the first case, the desired quasi transition does not exist.
Consider the second case. If Length(π) > 2n − 1, then the desired quasi transition
does not exists. But if Length(π) = 2n− 1, then we have the desired quasi transition.
Notice that π may cycle from some point on.

Lemma 5.17 (reading). There is a polynomial-time reading algorithm that, given
a lean regular recognizer R and a reduced exponent word w, determines whether the
group element w belongs to Γ(R).

Proof. Taking into account the deficit corollary in section 5.2, we may assume
without loss of generality that R is zero-deficit.

The reduced exponent word w is a concatenation σ1 . . . σ� of syllables where the
partisan syllables alternate with the neutral syllables and where, among the partisan
syllables, positive syllables alternate with negative syllables. By the membership
criterion lemma, it suffices to determine whether there exists a standard quasi-run
Q = 〈q1, . . . , q�〉 with label w. By the quasi-transition lemma, there is at most one
such quasi run.

Intuitively speaking, we use R to “read” w. Let u0 = o. Suppose that j ≤ � and
S has read the initial segment σ1 . . . σj of w and arrived at state uj . In the process
an initial segment q1 . . . qj of the desired Q has been constructed.

If j < �, then apply the algorithm of the quasi-transition lemma to (R, uj , σj+1). If
the algorithm determines that there is no appropriate qj+1, then w /∈ Γ(R). Otherwise
the algorithm produces the appropriate qi+1. Set uj+1 to be the final vertex of qj+1,
and proceed to read σj+2.

If j = �, then w ∈ Γ(R) if and only if u� = o.

5.4. Path folding. This section is similar to section 3.4, but we need to do a
little work to make the similarity apparent. The role of a fixed original letter a of
section 3.4 is played by the word ts in this section. The fact that the word ts is not
a single letter creates some difficulties.

Consider a regular recognizer R. Since R is regular, every vertex of R has at most
one outgoing s-edge.
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Definition 5.18 (dual vertices). If a vertex u has an outgoing s-edge e, then
the end of e is the dual of the vertex u; otherwise, u is an s-orphan.

It will be convenient to pretend that orphans have dual vertices as well.
Definition 5.19 (virtual duals). With every orphan u, we associate an object v

outside of R in such a way that distinct objects are associated with distinct vertices.
These objects v are called virtual elements of R. The nature of virtual elements is of
no importance. If an orphan u is associated with a virtual element v, we say that u
and v are the duals of each other. Further, the triples (u, s, v) and (v, s, u) are called
virtual edges of R.

Recall that a partisan path has the following properties: partisan and neutral
edges alternate and all partisan edges have the same sign.

Definition 5.20 (regular paths). A regular path π is a nonempty partisan path
of the form 〈e1, f1, . . . , ek, fk〉 subject to the following restrictions.

• Edges ei are partisan.
• Edges fi are neutral, and the final edge fk may be virtual.
• The initial vertices of edges ei are all distinct.

If fk is virtual, then π is odd, and if fk is real, then π is even. Notice that the
sequence 〈e1, . . . , ek〉 completely determines the regular path π which will be denoted
RP(e1, . . . , ek).

Definition 5.21 (even vertices). Let π be a regular path 〈e1, f1, . . . , ek, fk〉,
where ei = (ui−1, σi, vi) and fi = (vi, s, ui). Notice that every Length(π[u0, ui]) is
even and every Length(π[u0, vi]) is odd. Call vertices ui even and vertices vi odd. So
the even vertices are the initial vertices of the partisan edges and the final vertices of
the neutral edges. The even vertex sequence of π is the sequence 〈u0, . . . , uk−1, uk〉.
By the definition of regular paths, even vertices u0, . . . , uk−1 are distinct.

In the following definition, we redefine the notion of branch and cycle and some
related notions to the case of regular paths. We will not apply the old versions of
these notions to regular paths. In fact, the old notions will not be used in the rest of
this paper, except that here and there we refer the reader to previous sections where
the old notions are in use.

Definition 5.22 (branches, cycles, etc.). Consider a regular path π = 〈e1, . . . , ek〉
with even vertex sequence 〈u0, u1, . . . , uk〉.

• π is a branch if uk /∈ {u0, . . . , uk−1}.
• π is an impasse if it is a branch and uk does not have an outgoing partisan

edge of the sign of π.
• π is a cycle at u0 if uk = u0.
• π is a noose if uk = ui for some positive i < k.
• If π is a noose and uk = ui, where i < k, then π splits into the loop

RP(ei+1, . . . , ek) and the tail 〈e1, . . . , ei〉 of the noose.
• π is closed if it is an impasse, a cycle, or a noose.

Lemma 5.23 (closed paths). Every partisan edge e gives rise to a closed regu-
lar path π = RP(e1, . . . , ek) with e1 = e. Furthermore, there is a polynomial-time
algorithm that, given (a regular recognizer and) a partisan edge e, constructs such a
path π.

Proof. The desired algorithm is iterative. At the first round, it constructs the
regular path RP(e1) with e1 = e. Suppose that we did i rounds and constructed a
regular path RP(e1, . . . ei). If it is closed, then halt. Otherwise RP(e1, . . . ei) is even.
Let ei+1 be the lexicographically first partisan edge from ui of the sign of e, and
construct RP(e1, . . . ei+1). The process converges because the number of vertices is
finite.
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Definition 5.24 (edge splitting). Suppose that p, q, and r are positive integers
such that r = p + q. By the syllables lemma in section 5.1, Tr = TpsTq, and T−r =
T−psT−q. To split an edge e = (u, Tr, v) according to (p, q), create two new vertices
u′ and v′ and replace edges e and e−1 with six new edges: (u, Tp, u

′), (u′, s, v′), and
(v′, Tq, v) and their inverses. Splitting an edge e = (u, T−r, v) according to (p, q) is
defined similarly; just substitute Tp, Tq, and Tr with T−p, T−q, and T−r, respectively.

Lemma 5.25 (edge splitting). Edge splitting preserves the regularity of the rec-
ognizer, the recognizer subgroup, and the amount of fat of the recognizer.

Proof. The proof is obvious.
Definition 5.26 (vertex creation). Let π = RP(e1, . . . , ek), ν be the initial

vertex of π, and m be a positive even number such that m < Length(π) and there
is no even vertex of π with Length(π[ν, u]) = m. We explain how to create, on
π, a new even vertex v′ at distance m from ν as well as its dual u′ at distance m
from ν. Let L(i) = Length(RP〈e1, . . . , ei〉) for i = 0, . . . , k. Find the index i with
L(i−1) < m < L(i), and split the edge ei according to (p, q), where p = (m−L(i−1))/2
and q = (L(i) − m)/2. This creates, on π, the desired even vertex v′ as well as its
dual u′.

Corollary 5.27 (vertex creation). Vertex creation preserves the regularity of
the recognizer, the recognizer subgroup, and the amount of fat of the recognizer.

We adjust the entanglement definition of section 3.4 to fit our needs in this section.
The two path divisor definition of section 3.4 remains valid.

Definition 5.28 (entanglement). Suppose that π and ρ are regular paths of the
same sign and with the same initial vertex ν. Suppose further that either path is a
branch or a cycle. The two paths are entangled if there exist even vertices u and v
on π and ρ, respectively such that u �= v and

Length(π[ν, u]) = Length(ρ[ν, v]) mod Div(π, ρ).

Otherwise the two paths are disentangled.
The entanglement algorithm corollary of section 3.4 remains valid.
Lemma 5.29 (entanglement). If π and ρ are entangled and even vertices u and

v witness the entanglement, then the identification of u and v does not change the
recognizer subgroup.

Proof. Let d = Div(π, ρ), 2k = Length(π[ν, u]), 2� = Length(ρ[ν, v]), and H =
Coset(ν). We assume that π are ρ are positive; the negative case is similar. By the
syllables lemma in section 5.1, Label(π[ν, u]) = (ts)k, and Label(ρ[ν, v]) = (ts)�. By
the coset stability lemma in section 2.4, Coset(u) = H(ts)k and Coset(v) = H(ts)�.
By the vertex identification lemma in section 2.4, it suffices to prove that H(ts)k =
H(ts)�. Since u and v witness the entanglement, we have 2k = 2� mod d.

Case 1: Both paths are branches. Then k = �, and therefore H(ts)k = H(ts)�.
Case 2: One of the paths is a branch and the other is a cycle. Without loss of

generality, π is a cycle, and ρ is a branch. Then d = 2k, H(ts)k = H, and 2� = p · 2k
for some integer p. Then � = kp, and H(ts)� = H((ts)k)p = H = H(ts)k.

Case 3: Both paths are cycles. Then d = g.c.d.(2k, 2�), and H(ts)k = H(ts)� = H.
Clearly d is even; let δ = d/2 so that δ = g.c.d.(k, �). Since δ = g.c.d.(k, �), there are
integers i and j such that ik + j� = δ, and so H(ts)δ = H((ts)k)i((ts)�)j = H. Since
2k = 2� mod d, there is an integer p such that 2k = pd+2�, and therefore k = pδ+�.
Then H(ts)k = H((ts)δ)p(ts)� = H(ts)�.

Definition 5.30 (even vertex disjoint regular paths). Consider two regular paths
sharing the same initial vertex ν. The two paths are even vertex disjoint off ν if ν is
the only even vertex on both paths.
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If two regular paths are even vertex-disjoint off their common initial vertex ν,
then the dual of ν is the only possible odd vertex on both paths. But it is possible
that an even vertex of one path appears as an odd vertex on the other path.

Definition 5.31 (path folding). Suppose that π and ρ are regular paths such
that

• they have the same sign and the same initial vertex ν,
• either path is a branch or a cycle,
• Length(π) ≥ Length(ρ) if both paths are branches, and
• Length(π) = Div(π, ρ) if both paths are cycles.

To fold ρ into π, execute the following folding algorithm:
1. Apply the entanglement algorithm to π and ρ. If the number of vertices is

reduced, then halt. Otherwise the paths are disentangled.
2. For each even vertex v on ρ, create, on π, a new even vertex v′ and its dual

such that

Length(π[ν, v′]) = Length(ρ[ν, v]) mod Div(π, ρ)

unless π has an even vertex at this position already.
3. Identify every clone v′ with its original v, and identify the dual of v′ with the

dual of v.
4. Remove all partisan edges of ρ and their inverses.

The path folding lemma of section 3.4 remains valid. Its formulation does not
change at all, and its proof requires only small adjustments. For the reader’s conve-
nience we give here all details.

Lemma 5.32 (path folding). Let π and ρ be as in the path folding definition.
Folding ρ into π preserves the recognizer subgroup. If the algorithm halts at stage
1, then the number of vertices of the recognizer decreases. Otherwise the number of
vertices is unchanged, and the (amount of) fat changes as follows.

(BB) Suppose that π and ρ are branches of lengths m and n, respectively.
If m = n, then the fat decreases by 2.
If m > n and ρ is an impasse, then the fat decreases by 1.
If m > n but ρ is not an impasse, then the fat does not change.

(CB) Suppose that π is a cycle and ρ is a branch.
If ρ is an impasse, then the fat decreases by 1;
otherwise, the fat does not change.

(CC) Suppose that π and ρ are cycles. Then the fat decreases by 2.
Proof. We consider only the case in which π and ρ are positive; the case in which

they are negative is similar.
Let R be the given recognizer, and let Rp be the recognizer obtained from R by

executing p stages of the folding algorithm, so that R0 = R. Let the even vertex
sequence of π be 〈u0, . . . , uk〉. Let ρ = RP(f1, . . . , f�) and the even vertex sequence
of ρ be 〈v0, . . . , v�〉. Let d = Div(π, ρ)/2. The case in which π and ρ are entangled is
obvious. Assume that π and ρ are disentangled. Then nothing happens at stage 1,
and so R1 = R0.

First we note that the vertices of R4 are those of R1. Indeed all vertices v′j and
their duals created at stage 2 are identified with the respective vertices vj and their
duals at stage 3; thus, the vertices of R3 are those of R1. And the vertices do not
change at stage 4.

Second we show that Γ(R4) = Γ(R). By the vertex creation lemma in section 2.4,
Γ(R2) = Γ(R1). By the vertex identification lemma in section 2.4, Γ(R3) = Γ(R2). It
remains to show that Γ(R4) = Γ(R3). Let nj = 1

2
Length(π[v0, vj ]), rj = nj mod d,
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and v′0 = u0. It suffices to show that, for every partisan edge fj of ρ, R4 has a path
P with the profile of fj . The profile of fj is (vj−1, Tp, vj), where p = nj − nj−1. In
scenario (BB), the desired path P is π[v′j−1,Dual(v′j)]. In scenarios (CB) and (CC),
p = d · q + (rj+1 − rj) for some q. The desired path P starts at v′j−1 and ends at
Dual(v′j). If ri ≤ ri+1, then π does q full revolutions around π. If ri > ri+1, then
q > 0, and π does q − 1 full revolutions around π.

Finally we prove the claims about the fat. By the vertex creation lemma, Fat(R2) =
Fat(R1). Thus we need only to examine the evolution of the fat from R2 to R4.
Furthermore, it suffices to examine the evolution of the numbers Fat(t, vj) and
Fat(t−1,Dual(vj)). Indeed, v′j and its dual merge with vj and its dual, respectively,

at stage 3. Fat(t−1, vj) and Fat(t,Dual(vj)) do not change. And if a vertex v of R2

differs from any vj , from any v′j , and from their duals, then the immediate vicinity of
v does not change.

If 0 < j < �, then Fat(t, vj) and Fat(t−1,Dual(vj)) do not change from R2 to
R4. Indeed, as a result of identification with v′j , at stage 3, the vertex vj acquires one
outgoing positive edge, and Dual(vj) acquires one outgoing negative edge, but then,
at stage 4, vj loses one outgoing positive edge, namely, fj+1, and Dual(vj) loses one
outgoing negative edge, namely, f−1

j .
The vertices v0 and its dual do not acquire any outgoing edges at stage 3, and

thus neither Fat(t, v0) nor Fat(t−1,Dual(v0)) increase on stage 3. v0 loses one positive
outgoing edge, namely, f0, at stage 4, and so Fat(t, v0) decreases by 1 from R2 to R4.
Dual(v0) does not lose any negative outgoing edge in scenarios (BB) or (CB), and
so Fat(t−1,Dual(v0)) does not change in scenarios (BB) and (CB). Since v0 = v� in
scenario (CC), it remains only to examine the evolution of the numbers Fat(t, v�) and
Fat(t−1,Dual(v�)) in the three scenarios.

(BB) In this scenario, we first suppose that m = n. Since π and ρ are disentangled,
uk = v� . The vertices v� and its dual do not acquire any outgoing edges at stage 3
and lose only one outgoing edge, namely, the negative edge f−1

l , at stage 4. Thus
Fat(t, v�) does not change, and Fat(t−1,Dual(v�)) decreases by 1. To summarize,
Fat(t, v0) and Fat(t−1,Dual(v�)) decrease by 1 while Fat(t−1,Dual(v0)) and Fat(t, v�)
do not change. Hence Fat(R4) = Fat(R2) − 2.

Second we suppose that m > n. At stage 3, v� acquires one positive outgoing
edge, and Dual(v�) acquires one negative outgoing edge. At stage 4, v� loses no
outgoing edges while Dual(v�) loses f−1

� . Thus Fat(t−1,Dual(v�)) do not change. If
ρ is not an impasse, then Fat(t, v�) increases by 1; otherwise, Fat(t, v�) remains zero
throughout the process. We summarize. If ρ is an impasse, then Fat(t, v0) decreases
by 1 while Fat(t−1,Dual(v0)), Fat(t, v�), and Fat(t−1,Dual(v�)) do not change, so that
Fat(R4) = Fat(R2)−1. If ρ is not an impasse, then Fat(t, v0) decreases by 1, Fat(t, v�)
increases by 1, and Fat(t−1,Dual(v0)) and Fat(t−1,Dual(v�)) do not change, so that
Fat(R4) = Fat(R2).

(CB) This scenario is similar to the case m > n of scenario (BB). Let us just
point out that the vertex v� does not occur on π in R. Indeed suppose the opposite.
Since π and ρ are even vertex disjoint off their common initial vertex and uk = u0,
we have v� = u0 = v0. But then ρ is a cycle which contradicts scenario (CB).

(CC) In this scenario, v0 = v�, and thus Fat(t, v�) decreases by 1. Fat(t−1,Dual(v�))
does not change at stage 3 and decreases by 1 at stage 4 because f−1

� is removed. To
summarize, the overall change in the fat is this: both Fat(t, v�) and Fat(t−1,Dual(v�))
decrease by 1. Thus Fat(R4) = Fat(R2) − 2.

5.5. Weight reduction algorithm. The recognizer weight definition of sec-
tion 3.5 remains in force.
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Definition 5.33 (recognizer weight). The weight of a recognizer R is a pair
(i, j) of natural numbers, where i is the number of vertices of R and j = Fat(R).
The weights are ordered lexicographically with the number of vertices being the more
significant component.

Lemma 5.34 (weight reduction). There is a polynomial-time weight reduction
algorithm that reduces any recognizer to an equivalent lean regular recognizer.

Proof. The proof is very close to the proof of the weight reduction lemma of
section 3.5. There is a slight difference in the beginning, and so we give here that new
beginning.

We construct an iterative algorithm that transforms the given recognizer by means
of path folding; the algorithm halts when the recognizer is lean. By the folding lemma
of section 5.4, the algorithm preserves the recognizer subgroup.

We describe one round of the algorithm and show that the weight decreases at
each round. It will be obvious that the algorithm is polynomial time.

If the current recognizer R is regular and lean, halt. If there exists an irregular
path, then identify the two ends of the path. This decreases the recognizer weight.
Irregular paths were defined in section 4.

If there is a vertex ν with Fat(ν) > 0, find a witness (tε, ν, e1, f1) for this fact,
where ε ∈ {1,−1}, ν is a vertex with Fat(tε, ν) > 0, and e1 and f1 are two tε-edges
from ν of the sign of ε. We consider only the case ε = 1; the case ε = −1 is similar.
Use the algorithm of the closed paths lemma to construct closed regular paths E and
F continuing the e1 and e2, respectively.

The rest of the proof mimics the corresponding part of the proof of the weight
reduction lemma of section 3.5.

5.6. The theorem.
Theorem 5.35. There is a polynomial-time decision algorithm for the member-

ship problem for the succinct 〈s | s2〉 ∗ 〈t | t3〉. More explicitly, there is an algorithm
such that

(i) given exponent words h1, . . . , hm and w, the algorithm decides whether the
subgroup H generated by h1, . . . , hm contains w, and

(ii) the algorithm runs in time polynomial in |h1| + · · · + |hm| + |w|.
Proof. We describe the desired decision algorithm. Use the construction algorithm

of section 2.2 to construct a recognizer R1 for H. Use the weight reduction algorithm
of section 5.5 to reduce R1 into a lean regular recognizer R2. Use the reading algorithm
of section 5.3 to check whether the group element w belongs to H. Since all constituent
algorithms are polynomial time, the decision algorithm is polynomial time.

6. Main theorem. We reiterate the main theorem formulated in section 1.
Theorem 6.1 (main). The membership problem for the modular group PSL2(Z),

with integer entries in the standard decimal notation, is polynomial-time decidable.
Proof. In the previous section, we proved the polynomial-time decidability of the

membership problem for the succinct 〈s | s2〉 ∗ 〈t | t3〉. Thus it suffices to prove that
the membership problem for the modular group is polynomial-time reducible to the
membership problem for 〈s | s2〉 ∗ 〈t | t3〉. We construct the desired reduction.

By the modular group as a free product proposition in section 1, the modular
group is isomorphic to 〈s | s2〉 ∗ 〈t | t3〉, where

s =

(
0 1
−1 0

)
and t =

(
0 1
−1 1

)
.

Recall that a matrix is identified with its negative in the modular group.
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Consider the four basic elementary transformations over the columns of unimod-
ular matrices:

• subtract the first column from the second,
• subtract the second column from the first,
• add the second column to the first, and
• add the first column to the second.

Applying these transformations to the identity matrix, we get the basic elementary
matrices

(
1 −1
0 1

) (
1 0
−1 1

) (
1 0
1 1

) (
1 1
0 1

)
.

Multiplying a unimodular matrix M on the right by a basic elementary matrix
E performs the corresponding column operation on M , and multiplying M by a Ek

performs the column operation k times. Check that

st =

(
1 −1
0 1

)
, st−1 =

(
1 0
−1 1

)
, ts =

(
1 0
1 1

)
, t−1s =

(
1 1
0 1

)
.

We need to transform an arbitrary unimodular matrix M into an exponent word
that represents M . Note that every exponent word w represents a unimodular matrix
and thus gives rise to an operation X �→ X ×w over unimodular matrices. It suffices
to construct a polynomial-time procedure that reduces any unimodular matrix

M =

(
a b
c d

)

to the identity matrix by means of such operations.
Without loss of generality a > 0, because we can work either with M or with

−M . To simplify exposition (though not the algorithm), we can assume that b > 0 as
well. Indeed, if b < 0, then replace M with M × (t−1s)k, where k is the least integer
such that ka > |b|.

If a ≥ b, then compute the number k such that 0 ≤ a − kb < b, and replace M
with M × (st−1)k, so that we have a mod b in the left upper corner of the resulting
matrix. Note that a mod b < a/2. Indeed, if b ≤ a/2, then a mod b < b ≤ a/2;
otherwise, b > a/2, and a mod b ≤ a− b < a/2. Similarly, if a < b, then compute the
number k such that 0 ≤ b− ka < a, and replace M with M × (st)k, so that we have
b mod a in the right upper corner of the resulting matrix. We have b mod a ≤ b/2.

Keep doing that until you have zero in one of the upper corners. In every two
steps, the entries in both upper corners are more than halved. It follows that this
iteration works in linear time.

Thus, without loss of generality, we may assume that the left upper entry a of
the given matrix M is zero; the case when the right upper entry b is zero is similar.
So

M =

(
0 b
c d

)
.

Further, we may assume without loss of generality that b = 1 and c = −1 because the
determinant of M is 1, and we can work with either M or its negative. Replace M
with (M × t−1s)d; the result is the matrix

s =

(
0 1
−1 0

)
.
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Finally replace the resulting matrix s by s× s, and get (the negative of) the identity
matrix.
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APPROXIMATION ALGORITHMS FOR CONSTRAINED NODE
WEIGHTED STEINER TREE PROBLEMS∗

A. MOSS† AND Y. RABANI†

Abstract. We consider a class of optimization problems where the input is an undirected graph
with two weight functions defined for each node, namely the node’s profit and its cost. The goal is to
find a connected set of nodes of low cost and high profit. We present approximation algorithms for
three natural optimization criteria that arise in this context, all of which are NP-hard. The budget
problem asks for maximizing the profit of the set subject to a budget constraint on its cost. The
quota problem requires minimizing the cost of the set subject to a quota constraint on its profit.
Finally, the prize collecting problem calls for minimizing the cost of the set plus the profit (here
interpreted as a penalty) of the complement set. For all three problems, our algorithms give an
approximation guarantee of O(logn), where n is the number of nodes. To the best of our knowledge,
these are the first approximation results for the quota problem and for the prize collecting problem,
both of which are at least as hard to approximate as the set cover. For the budget problem, our
results improve on a previous O(log2 n) result of Guha et al. Our methods involve new theorems
relating tree packings to (node) cut conditions. We also show similar theorems (with better bounds)
using edge cut conditions. These imply bounds for the analogous budget and quota problems with
edge costs which are comparable to known (constant factor) bounds.

Key words. combinatorial approximation algorithms, network design, node-weighted problems

AMS subject classifications. 68W25, 90C27
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1. Introduction. We consider optimization problems on graphs with node costs
and profits. Let G = (V,E) be an undirected graph. Let every node v ∈ V have a
nonnegative cost c(v) and a nonnegative profit π(v). Our goal is to find a connected
set of nodes S ⊂ V that has low cost and high profit. There are several ways to cast
this goal as an optimization criterion. In this paper we consider three such problems.
In the quota problem, we are given a profit quota Q, and we have to find a set S of
the minimum total cost among those with a total profit of at least Q. In the budget
problem, the total cost is constrained to be at most a budget B. Subject to this
constraint, we have to find a set S of the maximum total profit. Finally, in the prize
collecting problem, the objective is to minimize the total cost of S plus the total profit
of V \S (the profit loss). All three problems also have a rooted version, where S must
contain a specified node r ∈ V . Clearly, an algorithm for the rooted version can be
used to solve the unrooted version, by enumerating over all possible roots.

We give O(log |V |) approximation guarantees for the rooted (and thus the un-
rooted) quota problem, for the (rooted) budget problem, and for the (rooted) prize
collecting problem. Our result for the budget problem is a bicriteria approximation
in the sense that the approximation algorithm is allowed to exceed the budget by a
factor of 2. The quota problem as well as the prize collecting problem are at least
as hard to approximate as the set cover, so our guarantees are asymptotically the
best possible under reasonable assumptions on the complexity of NP-hard problems
(see, for example, the survey by Arora and Lund (1997)). By the same token, the
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budget problem is at least as hard to approximate as the maximum coverage, so there
is a constant lower bound on its approximability under the same assumptions (see
Khuller, Moss, and Naor (1998)). In addition to these new results, our methods can
be used to derive previously discovered approximation guarantees for some related
problems. Our solutions are more uniform, and perhaps more elegant, than previous
results. See the discussion below for more details.

Most previous related research was done on closely related problems with edge
costs instead of node costs. (The cost of a set of nodes is the total cost of its mini-
mum spanning tree.) These problems are NP-hard, and in recent years constant factor
approximation algorithms were found for most of them. Goemans and Williamson
(1995) give a primal-dual 2 − 1

n−1
approximation algorithm for the prize collecting

Steiner tree problem, which is the version with edge costs of our prize collecting prob-
lem. Following the groundbreaking work of Blum, Ravi, and Vempala (1999), Garg
(1996) gives a 3-approximation (as well as a simpler 5-approximation) for k-minimum
spanning tree (MST), which is a special case of the version with edge costs of our quota
problem, with unit profits and a quota of k. Arora and Karakostas (2006) improve
Garg’s approximation guarantee to 2 + ε for all ε > 0. The constant factor approxi-
mations of the latter three works are derived by using the Goemans–Williamson prize
collecting Steiner tree algorithm on the graph with uniform profits. The profit is de-
termined (using binary search) to yield a tree (more precisely, a convex combination
of two trees) of size k. As noted by Chudak, Roughgarden, and Williamson (2004),
Garg’s k-MST 5-approximation algorithm can be recast in terms of a Lagrangian
relaxation for the problem, similar to the treatment by Jain and Vazirani (2001)
of the k-median problem. Recently, Garg (2005) gave a factor 2 approximation for
k-MST.

Awerbuch et al. (1998) (in a previous k-MST paper giving polylogarithmic ap-
proximation guarantees) note that a polynomial time k-MST approximation algorithm
can be used to get a pseudopolynomial time approximation algorithm with the same
guarantee for the (version with edge costs) quota problem. Johnson, Minkoff, and
Phillips (2000) note that, for the above-mentioned constant approximation k-MST
algorithms, the pseudopolynomial time algorithm can be converted into a truly poly-
nomial time one. Moreover, they show that such an algorithm can be used to solve
the (version with edge costs) unrooted budget problem, losing a constant factor in
the approximation guarantee.

The budget problem (with node costs) was introduced by Guha et al. (1999), who
motivate it by applications to problems in the maintenance of electric power networks.
They give an O(log2 |V |) approximation guarantee for the unrooted version. They also
show how to obtain a similar approximation guarantee for the rooted version using
a set that has a total cost at most twice the allowed budget B. Their algorithm is
based on an O(log |V |) approximation algorithm for the node weighted Steiner tree
problem by Klein and Ravi (1995). This problem is similar to the well-known Steiner
tree problem, except that nodes and not edges have costs. The problem is at least as
hard to approximate as the set cover. As pointed out by Guha et al., the algorithm
of Klein and Ravi is implicitly a primal-dual algorithm.

The starting point for all of our algorithms is a standard linear programming
relaxation for the rooted version, where nodes are chosen fractionally to be in the
output set S, and the connectivity requirement is expressed as constraints on (node)
cuts. For the quota and budget problems we show that any feasible solution to
the linear programming relaxation can be approximated by a convex combination of
connected sets of nodes containing the root. Moreover, such a convex combination is
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computable in polynomial time. It follows from an averaging argument that a good
set can be found. Our algorithm for the prize collecting problem is used to construct
the convex combination. It combines ideas from both the Klein–Ravi node weighted
Steiner tree algorithm (with its primal-dual interpretation by Guha et al.) and the
Goemans–Williamson prize collecting Steiner tree algorithm. Both the region growing
process and the final delete step are more complicated in our algorithm than in either
of those algorithms.

We then use the solution to the prize collecting problem to prove the following
theorem.

Theorem 1. Let G = (V,E) be an undirected graph with nonnegative node
weights d : V → Q

+. Let r ∈ V , and assume that, for every v ∈ V , d(v) ≤ 1 and
d(r) = 1. Furthermore assume that, for every node v ∈ V \ {r}, the minimum weight
node cut separating r and v has a weight of at least d(v). Then there exist polynomial
time algorithms that compute

1. a packing in G of connected sets containing r such that for every node v ∈ V
the total weight of sets containing v is between d(v)/c log |V | and d(v) and

2. a packing in G of connected sets containing r such that for every node v ∈ V
the total weight of sets containing v is between d(v) and min{1, d(v)c log |V |},

where, in both cases, c is an absolute constant. Notice that the second claim implies
the first. We state both claims for ease of application.

For optimization problems that can be formulated as positive integer programs,
Carr and Vempala (2002) prove that an approximation algorithm for the problem
can be used to generate a packing of integer solutions that approximates a feasible
solution to the linear programming (LP) relaxation of the integer program with the
same guarantee. Our results extend their results and use an approximation algorithm
for a different problem to generate the packing. Our approximation guarantees for
the budget and quota problems follow from applying the packing algorithms to the
solutions for the linear programming relaxations we use and then using averaging
arguments to find good integer solutions.

Using techniques similar to those used to prove Theorem 1, one can show the
following theorem. We omit the proof.

Theorem 2. Let G = (V,E) be an undirected graph with nonnegative node
weights d : V → Q

+ and nonnegative edge capacities c : E → Q
+. Let r ∈ V , with

d(r) = 1. Assume that, for every node v ∈ V \ {r}, the minimum capacity edge cut
separating r and v has a capacity of at least d(v). Then there exist polynomial time
algorithms that compute

1. a packing in G of trees rooted at r such that for every node v ∈ V the total
weight of trees containing v is between d(v)/2 and d(v) and for every edge
e ∈ E the total weight of trees containing e is at most c(e) and

2. a packing in G of trees rooted at r such that for every node v ∈ V the total
weight of trees containing v is between d(v) and 1 and for every edge e ∈ E
the total weight of trees containing e is at most 2c(e).

The celebrated theorem of Nash-Williams (see Diestel (2000)) implies such pack-
ings in the case of d(v) = 1 for all v ∈ V . One of the consequences of Theorem 2
is a modification of Garg’s 5-approximation for k-MST avoiding the Lagrangian re-
laxation. A similar modification (using another packing theorem) can be applied to
the 6-approximation for the metric k-median of Jain and Vazirani. It is not clear if
the better algorithms that use continuity properties of the Lagrangian relaxation (for
example, Garg’s 3-approximation for k-MST or the 4-approximation for the metric
k-median of Charikar and Guha (2005)) can be derived from our packings.
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We observe that the prize collecting problem can be viewed as the Lagrangian
relaxation of the quota problem. Thus, the Lagrangian relaxation method used in
Garg’s 5-approximation for k-MST and 6-approximation for the metric k-median of
Jain and Vazirani can be applied to the quota problem and together with our algorithm
for the prize collecting problem yields the same approximation guarantee for the
quota problem as our tree packings method. Furthermore, the algorithm for the
quota problem can be used to obtain an approximation algorithm for the budget
problem by performing a binary search on the quota space. Again, the latter method
yields the same approximation guarantee for the budget problem as the tree packings
method. The detailed description of these solutions for the quota and the budget
problems has been presented by Moss (2001). Though our results for the quota and
the budget problems can be obtained using the Lagrangian relaxation method, we
wish to introduce the tree packings method as an interesting alternative technique.

The rest of the paper is organized as follows. In section 2, we present the primal-
dual algorithm for the prize collecting problem. In section 3, we present the proof of
Theorem 1. In section 4, we give the algorithm for the quota problem. Finally, in
section 5, we give the algorithm for the budget problem.

2. The prize collecting problem. In the prize collecting problem, one is given
an undirected graph G = (V,E) with a cost function c : V → Q

+, a profit function
π : V → Q

+, and a specified root r. The objective is to find a subtree T of G
containing the root r such that

∑
v∈T c(v) +

∑
v �∈T π(v) is minimized. In this section

we present an approximation algorithm for the prize collecting problem and analyze
its approximation ratio. This algorithm is used to obtain the results in the following
sections.

2.1. The algorithm. Let V ′ = V \ {r}. Observe that the prize collecting
problem can be formulated as the following integer program:

minimize
∑

v∈V ′

c(v)xv +
∑

S⊆V ′

π(S)zS subject to (s.t.)

∑

v∈Γ(S)

xv +
∑

T |S⊆T

zT ≥ 1 ∀S ⊆ V ′,(1)

xv +
∑

T |v∈T

zT ≥ 1 ∀v ∈ V ′,(2)

xv ∈ {0, 1} ∀v ∈ V ′,
zS ∈ {0, 1} ∀S ⊆ V ′,

where xr = 1 and Γ(S) = {v | ∃uv ∈ E s.t. u ∈ S, v 
∈ S}. A linear programming
relaxation (denoted PC-LP) is obtained by replacing the last two sets of constraints
with x, z ≥ 0.

Consider the dual program for PC-LP, denoted by PC-D:

maximize
∑

S⊆V ′

yS +
∑

v∈V ′

pv s.t.

∑

S|v∈Γ(S)

yS + pv ≤ c(v) ∀v ∈ V ′,

∑

S|S⊆T

yS +
∑

v∈T

pv ≤ π(T )∀T ⊆ V ′,

y, p ≥ 0.
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The algorithm we propose for the prize collecting problem is a primal-dual algorithm
which greedily constructs an implicit solution to the dual problem PC-D.

Partition the vertices of V ′ into cheap vertices, for which c(v) ≤ π(v), and ex-
pensive vertices, which are the rest of V ′. Implicitly set pv = c(v) for each cheap v
and pv = π(v) for each expensive v. Consider the connected components induced by
cheap vertices v and the root r. Let P denote the set of these components.

For each vertex v ∈ V ′, define the residual cost cr(v) = c(v)− pv and the residual
penalty πr(v) = π(v) − pv. The algorithm greedily constructs a packing {yS}S⊆V ′

which together with the values of pv, v ∈ V ′, determined above, is a feasible solution
to PC-D; i.e., it satisfies

∑

S|v∈Γ(S)

yS ≤ 0 ∀cheap v ∈ V ′,

∑

S|v∈Γ(S)

yS ≤ cr(v) ∀expensive v ∈ V ′,(3)

∑

S⊆T

yS ≤
∑

cheapv∈T

πr(v)∀T ⊆ V ′,(4)

y ≥ 0.

The algorithm maintains a set C of active and inactive components. We say that
C is deactivated iff it changes its status from active to inactive. Initially, C ← P,
and all of the components C ∈ C are active, except for the component containing
the root. We raise uniformly the dual variables yS corresponding to each active
component, until either constraint (3) becomes tight for some expensive vertex v or
constraint (4) becomes tight for some active component C̃. In the former case, the
vertex v joins a component C such that v ∈ Γ(C), and, in case there are several such
components, all of these components are merged. In the latter case, the component
C̃ gets deactivated. The component containing the root remains inactive throughout
the algorithm, and the process terminates when no active components remain. The
algorithm also builds a connection tree T , which contains edges by which expensive
vertices join components. At the end of the algorithm, we perform a deletion step on
the tree T . During this step, a set of vertices S ⊆ T is expendable iff its removal does
not disconnect any remaining cheap vertex from r. The code in Figure 2.1 defines the
algorithm more rigorously. The variables w(C) maintain the values

∑
S⊆C yS , and

the variables d(v) maintain the values
∑

S|v∈S yS . The algorithm does not need to
maintain explicitly the values yS . Their computation is included in the code for the
purpose of analysis.

2.2. Analysis. Next we prove Theorem 3, which establishes an O(log n) approx-
imation guarantee for the primal-dual algorithm.

Theorem 3.

∑

v∈T

c(v) + β
∑

v �∈T

π(v) ≤ β

⎛
⎝

∑

S⊆V ′

yS +
∑

v∈V ′

pv

⎞
⎠ ,

where β = O(log n).
Proof. Let A be the set of cheap vertices not spanned by the final solution T ,

and let F denote the set of cheap vertices spanned by T . Also, let N be the set of
expensive vertices spanned by T . Recall that, for each cheap vertex v, pv = c(v)
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PrizeCollecting

Initialize:
C ← P
yC ← 0 for all C ∈ C
w(C) ← 0 for all C ∈ C
d(v) ← 0 for all v ∈ V
All C ∈ C are active, except for C � r
T ← the union of spanning trees for C ∈ C

Main loop:
while ∃active C ∈ C do

Let dv(C) = maxu∈C|∃uv∈E d(u)

Let ε1(v) =
cr(v)−∑

C|v∈Γ(C) dv(C)

|{active C|v∈Γ(C)}|
Find ṽ ∈ V \⋃C ∈ C that minimizes ε1 = ε1(ṽ)
Let ε2(C) =

∑
cheap i∈C

πr(i) − w(C)

Find an active C̃ ∈ C that minimizes ε2 = ε2(C̃)
ε ← min{ε1, ε2}
yC ← yC + ε for all active C ∈ C
w(C) ← w(C) + ε, for all active C ∈ C
d(v) ← d(v) + ε, for all active C ∈ C, v ∈ C
if ε = ε2 then

Deactivate C̃

Label all v ∈ C̃ by label C̃
else

Let C = {C ∈ C | ṽ ∈ Γ(C)}
Let C = (

⋃
(C ∈ C))

⋃{ṽ}
Let uC = argmax{d(w) | w ∈ C, wṽ ∈ E}, ∀C ∈ C
w(C) ← ∑

C|ṽ∈Γ(C) w(C)

C ← (C⋃{C}) \ {C | ṽ ∈ Γ(C)}
if r ∈ C then

C is inactive
else

C is active
endif
Add ṽ to the node set of T

Add uC ṽ to the edge set of T , for every C ∈ C
endif

endwhile

Deletion step:
Remove from T nodes that are disconnected from r.
while ∃cheap v labeled C s.t. C

⋃
Γ(C) is expendable do

Remove C
⋃

Γ(C) from T
endwhile
while ∃expensive v ∈ T that is expendable do

Remove v from T
endwhile

Output T .

Fig. 2.1. Algorithm PrizeCollecting for the prize collecting problem.
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and, for each expensive vertex v, pv = π(v). Therefore, to establish the claim of the
theorem, it suffices to prove that the following inequality holds:

∑

v∈N

cr(v) + β
∑

v∈A

πr(v) ≤ β
∑

S⊆V ′

yS ,

where β = O(log n). We establish the inequality above by proving that the following
two inequalities hold:

∑

v∈N

cr(v) ≤ β
∑

S|S ⋂
F �=∅

yS ,(5)

∑

v∈A

πr(v) ≤
∑

S|S ⋂
F=∅

yS .(6)

First, observe that the inequality (6) follows from the greedy construction of the
dual solution y by the algorithm. Indeed, consider the set M of maximal components
deactivated by the algorithm due to the residual penalty constraints (4) such that no
vertex of the component is included in the final solution T . Clearly, these components
are disjoint, and as each S with a nonzero value of yS contains some cheap vertex, we
get

∑

S|S ⋂
F=∅

yS =
∑

C∈M

∑

S⊆C

yS =
∑

C∈M

∑

v∈A
⋂

C

πr(v) =
∑

v∈A

πr(v).

To see the last equality, notice that by the elimination step of the algorithm every
vertex in A is included in some deactivated component not containing a vertex from F .

In the rest of the proof we show that the inequality (5) holds. In what follows we
refer to a set of vertices S as tree-bound if it contains a cheap vertex spanned by the
final tree T constructed by the algorithm (i.e., S

⋂
F 
= ∅). Similarly, a component

maintained by the algorithm will be called tree-bound if it contains a cheap vertex
spanned by T .

Before proceeding with the proof, we wish to outline its main ideas. We observe
again that the ideas of the proof are similar to those of the Klein–Ravi node weighted
Steiner tree algorithm and its primal-dual interpretation by Guha et al. But since
the component growing process in our algorithm is more complicated and, unlike
that of the Steiner tree algorithm, includes deactivation of components, our proof
incorporates special treatment of deactivated components.

We need to show that the residual cost of expensive vertices spanned by T is
bounded, within a logarithmic factor, by the sum of dual values of tree-bound sets.
We divide the algorithm into phases so that at the end of each phase the number of
tree-bound active components decreases. Clearly, a phase can end either by a merge of
two or more tree-bound active components or the root component or by deactivation
of a tree-bound active component. Thus a phase can span one or more iterations of
the algorithm.

During each phase, we pay the residual cost of some expensive vertices spanned by
T , that have not yet been paid. The exact subset of expensive vertices paid for at each
phase will be defined later. In the end of the process all of the expensive vertices in
T get paid for. We show that, if the number of tree-bound active components is m in
the beginning of a phase and m−k at the end of the phase, then the residual cost paid
during the phase is at most k+1

m times the sum of the dual values of the tree-bound
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sets. Notice that the initial number of tree-bound active components is bounded by
the number of cheap vertices and therefore is at most n. It is not hard to see that the
maximum cost will be payed if at each phase the number of tree-bound components
is decreased by one, in which case the total cost paid until the beginning of the last
iteration is at most the sum of the dual values multiplied by

∑n
i=2

2
i = O(log n).

Next we continue with the proof of the theorem. We refer to expensive vertices
that caused two or more components (active or inactive) to be merged as merge
vertices. We proceed by establishing the following properties of the dual solution
constructed by the algorithm. Note that it can be easily shown by induction that for
all v, d(v) =

∑
S|v∈S yS at each step of the algorithm.

Lemma 4. Let v0, v1, . . . , vk be a simple path in the connection tree T such that
for each i, 1 ≤ i ≤ k, vi is not a merge vertex, and vi gets connected to T by an edge
(vi−1, vi). Then at the moment vk gets connected to T the following holds:

∑

S|v0∈S

yS =

k∑

l=1

cr(vl).

Proof. We prove the claim of the lemma by induction on k. If k = 1, let d(v0) =∑
S|v0∈S yS = p before the increase of dual variables caused by v1. Then ε1 = cr(v1)−

p, and, after the increase of dual variables by ε1,

∑

S|v0∈S

yS = cr(v1),

proving the basis of the induction. For the induction step, suppose that the claim
of the lemma holds for vertices v1, . . . , vk−1, and consider the moment when vk gets
connected to T via the edge (vk−1, vk). By the induction hypothesis, at the moment

vk−1 entered T , it held that
∑

S|v0∈S yS =
∑k−1

l=1 cr(vl). Let d(vk−1) = q at the
current iteration. As vk−1 participates only in those sets that got nonzero values
after vk−1 entered T , it holds that

∑

S|v0∈S

yS =
∑

S|v0∈S,vk−1 �∈S

yS +
∑

S|v0∈S,vk−1∈S

yS

=

k−1∑

l=1

cr(vl) + q.

The increase ε1 in the dual variables, caused by vk, is cr(vk)− q, and therefore, when
vk joins T , we have

∑

S|v0∈S

yS =

k−1∑

l=1

cr(vl) + q + cr(vk) − q

=

k∑

l=1

cr(vl).

Lemma 5. Let C1, C2, . . . , Ck be components merged via a merge vertex v so that
1, . . . , Ck′ are active at the time of the merge and Ck′+1, . . . , Ck are inactive. Let
ui = argmax{d(w) | (w, v) ∈ E, w ∈ Ci}, i = 1, . . . , k; that is, (ui, v) is an edge in T
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by which v gets connected to Ci. Then immediately after the merge

k∑

i=1

∑

S|ui∈S

yS = cr(v).

Proof. Put

∑

S|ui∈S

yS = qi

before the merge for each i = 1, . . . , k. Then the increase of dual variables induced
by v is

ε1 =
cr(v) −

∑k
i=1 qi

k′
.

Since the dual variable of each of the components C1, C2, . . . , Ck′ gets increased by
this amount, after the merge it holds that

k∑

i=1

∑

S|ui∈S

yS =

k∑

i=1

qi +

k′∑

i=1

cr(v) −
∑k

j=1 qj

k′
= cr(v).

Following the notation of Lemma 5, define the partial cost of v with respect to
the component Ci as costCi

δ (v) =
∑

S|ui∈S yS . Clearly, if Ci is inactive at the time of

the merge, then costCi

δ (v) = qi; otherwise, costCi

δ (v) = qi + ε1. By Lemma 5 it follows
that

k∑

i=1

costCi

δ (v) = cr(v).(7)

Recall that we partition the algorithm into phases such that in the end of each
phase the number of tree-bound active components decreases. Let φi denote the
number of tree-bound active components at the end of phase i. If the phase i ends
by a merge of two or more tree-bound active components, let hi denote the number
of tree-bound active components merged at phase i. We refer to such a phase as a
merge phase. Otherwise, if the phase i ends by deactivation of a tree-bound active
component, let hi=2. We refer to such a phase as a deactivation phase.

Next we wish to assign expensive vertices of T that are not merge vertices to
phases so that the residual cost of each expensive vertex will be paid at some phase.
Let k be the total number of merge phases. Let Tj , j = 1, . . . , k, be a collection of
subtrees of T spanning cheap vertices in tree-bound components in the end of the jth
merge phase. Because of the deletion step of the algorithm it holds that Tk = T . Now
consider a merge phase i. We wish to pay for expensive vertices added to connect
the components merged at phase i. Formally, let ĩ be the last merge phase of the
algorithm preceding the merge phase i. Then the collection Di of expensive vertices
assigned to phase i is defined as vertices of Ti\Tĩ, not including merge vertices and the
vertices that belong to components inactive at the beginning of phase i. The latter
vertices are paid for at deactivation phases of the corresponding inactive components.
Thus, to define Di for a deactivation phase i, ending by deactivation of component C,
consider the earliest merge phase j following phase i such that, at the end of phase
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j, C becomes part of some active component or the root component. Let j̃ be the
last merge phase preceding the phase j. Then Di is defined as the set of expensive
vertices in (Tj \ Tj̃)

⋂
C.

Finally, we wish to pay the residual cost of merge vertices. The cost of such
vertices may be divided between several phases. Formally, if v is a merge vertex
between active components C1, . . . , Ck‘ and inactive components Ck‘+1, . . . , Ck, then
{costCi

δ (v)}k‘
i=1 will be assigned to the merge phase during which the merge takes

place, and for each i = k‘ + 1, . . . , k, costCi

δ (v) will be assigned to the deactivation
phase at which the component Ci was deactivated. Observe that by (7) the partial
costs of v sum up to its residual cost.

For each phase i, let cost(phasei) denote the sum of residual costs of vertices in Di

and partial costs of merge vertices assigned to phase i. Observe that
∑

i cost(phasei) =∑
v∈N cr(v); that is, by the end of the last phase all the expensive vertices get paid

for.
The following lemma proves that the cost paid at each phase of the algorithm is

bounded in terms of the dual solution.
Lemma 6. For each phase i,

cost(phasei) ≤ hi

φi−1

∑

S|S ⋂
F �=∅

yS .

Proof. Let Δ denote the sum of the values of ε for each iteration of the algorithm
until the end of phase i.

First, consider a merge phase i ending in a merge of tree-bound active components
C1, C2, . . . , Chi

via a merge vertex v. Let εm denote the value of ε in the last iteration
of the phase (i.e., the iteration ending by the merge via v). By definition of Di it
follows that Di is a collection of hi paths from v to some cheap vertices tj ∈ Cj , j =
1, . . . , hi, excluding the vertices of the components inactive at the beginning of phase
i. Let Pj , j = 1, . . . , hi, denote these paths. Let Pj = {tj = vj0, v

j
1, . . . , v

j
p−1, v

j
p = v}.

Observe that the partial costs of v assigned to phase i are
∑hi

l=1

∑
S|vl

p−1∈S,v �∈S yS +

εm · hi. We will attribute the part
∑

S|vj
p−1∈S,v �∈S yS + εm to each path Pj . It can be

seen that in this way we have divided all of the partial costs of v assigned to phase i
between the hi paths.

Now we will bound the contribution of each path Pj to cost(phasei). First,
consider the simple case when Pj does not contain merge vertices. Then by Lemma 4,

∑

S|tj∈S,vj
p−1 �∈S

yS =

p−1∑

l=1

cr(v
j
l ).

Therefore, the contribution of the path Pj to cost(phasei) is

∑

S|tj∈S,vj
p−1 �∈S

yS +
∑

S|vj
p−1∈S,v �∈S

yS + εm ≤ (Δ − εm) + εm = Δ.

The last inequality follows since only one component containing tj is active at each
time the dual variables are increased by a value of ε, and the sum of all values of ε
before the final merge is Δ − εm.

Since there might occur merges involving one active and one or more inactive
tree-bound components during the phase i, consider the second case when the path
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Pj passes through merge vertices and through vertices of inactive components. For
the sake of simplicity of presentation, we consider the case when Pj contains one
merge vertex and vertices of one inactive component. The case of multiple merge
vertices can be treated similarly by inductive argument. Recall that Pj = {tj =

vj0, v
j
1, . . . , v

j
p−1, v

j
p = v}, and let vjm be a merge vertex, causing the merge of the

active component Cj and inactive tree-bound components C1, C2, . . . , Cl, l ≥ 1. Pj

may pass through one of the components Ct, t = 1, . . . , l, which is without loss of
generality C1. Let q > m be the smallest index such that vq is not contained in C1.
Observe that if Pj does not pass through C1, then q = m + 1. By Lemma 4,

∑

S|tj∈S,vj
m−1 �∈S

yS =

m−1∑

l=1

cr(v
j
l ),

and also

∑

S|tj∈S,vj
m−1∈S,vj

p−1 �∈S

yS =

p−1∑

l=q

cr(v
j
l ).

Furthermore, the partial cost of vm assigned to phase i is
∑

S|vj
m−1∈S,vj

m �∈S . Therefore,

in this case the contribution of Pj to cost(phasei) is

∑

S|tj∈S,vj
m−1 �∈S

yS +
∑

S|tj∈S,vj
m−1∈S,vj

p−1 �∈S

yS +
∑

S|vj
m−1∈S,vj

m �∈S

yS +
∑

S|vj
p−1∈S,v �∈S

yS ≤ Δ,

where the last inequality follows by the same argument as in the previous case.
Since there are hi paths to v contributing to cost(phasei), we get that

cost(phasei) ≤ hiΔ.

Now consider a phase i ending in deactivation of a component Ci. Using the
same notation as in the previous case, Di is a set of at most two paths from vertices
vjm+1 and vjq−1 to some cheap vertices in Ci. By the same reasoning as in the case of
a merge phase, each of these paths contributes at most Δ to cost(phasei); therefore,
we get cost(phasei) ≤ 2Δ = hiΔ.

Observe that each component active at the beginning of phase i must contain
a vertex that has always been in some active component since the beginning of the
algorithm. Clearly, for such a vertex t,

∑
S|t∈S yS = Δ. Therefore,

∑

S|S ⋂
F �=∅

yS ≥ φi−1Δ.

Therefore, we get

cost(phasei) ≤ hiΔ

≤ hiΔ

φi−1Δ

∑

S|S ⋂
F �=∅

yS

=
hi

φi−1

∑

S|S ⋂
F �=∅

yS .
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Let m denote the total number of phases. By Lemma 6 and the argument men-
tioned in the beginning of the proof, it follows that

m∑

i=1

cost(phasei) ≤ O(log n)
∑

S|S ⋂
F �=∅

yS .

By Lemma 6, the cost added at the last phase of the algorithm is at most

hm

φm−1

∑

S|S ⋂
F �=∅

yS ≤ hm

hm − 1

∑

S|S ⋂
F �=∅

yS

≤ 2
∑

S|S ⋂
F �=∅

yS .

Therefore, the inequality (5) follows. This completes the proof of Theorem 3.

3. Tree packings. In this section we prove Theorem 1. We prove part 1 of the
theorem first, as the proof is somewhat simpler to follow. Notice that part 2 of the
theorem implies part 1.

Let V ′ = V \ {r}. We wish to show that for d : V → Q
+ such that di ≤ 1, for

every i ∈ V ′, dr = 1, and

di ≤
∑

j∈Γ(S)

dj ∀S ⊆ V ′, ∀i ∈ S,(8)

there exists a packing T of connected node sets containing r such that T ∈ T has
weight λT in the packing,

∑
T∈T λT ≤ 1, and such that for every node v ∈ V , the

following property holds:

αdv ≤
∑

v∈V

∑

T	v

λT ≤ d(v),(9)

where α = 1/c log |V |. The best packing satisfying the above property is given by the
solution to the following linear program, which we denote CLP:

maximize α s.t.

diα−
∑

T∈T |i∈T

λT ≤ 0∀i ∈ V,

∑

T∈T |i∈T

λT ≤ di ∀i ∈ V,(10)

λ ≥ 0,

where α ∈ R and λ ∈ R
T .

The dual program, which we denote by CD, is

minimize
∑

i∈V

dixi s.t.

∑

i∈V

diyi = 1,

∑

i∈T

(xi − yi) ≥ 0∀T ∈ T ,(11)

x, y ≥ 0,

where x, y ∈ R
V .
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Let β be the approximation guarantee for the prize collecting problem. We have
β = Θ(logn). Consider now a modified program, which we denote by MCD, where
the constraints (11) are replaced by the constraints

∑

i∈T

xi − β
∑

i∈T

yi ≥ 0∀T ∈ T .(12)

Lemma 7. Let Z∗
cd

and Z∗
mcd

be the optimal values of CD and MCD, respectively
(with the same coefficients d). Then Z∗

cd
≥ Z∗

mcd
/β.

Proof. If (x, y) is a feasible solution to CD, then (βx, y) is a feasible solution to
MCD.

Let {λT }T∈T , α be a feasible solution to CLP. Note that
∑

T∈T λT ≤ 1. This
follows from the fact that the root r is contained in every tree, and therefore, the
inequality above is implied by constraint (10) for r.

Observe that if we could find in polynomial time a solution to CLP of value 1
β , it

would induce a packing of sets satisfying the property (9). Indeed, such packing could
be obtained by picking sets T , with λT > 0. Unfortunately, the linear program CLP
has an exponential number of variables and therefore cannot be solved in polynomial
time by a linear programming algorithm. We overcome this problem by solving the
modified dual program MCD. This program has an exponential number of constraints,
but it can be solved in polynomial time using the ellipsoid algorithm, given a separa-
tion oracle. (Each constraint of MCD has a short description: see Grötschel, Lovász,
and Schrijver (1993) for the conditions required for applying the ellipsoid.) Next we
describe a separation oracle for MCD, which can be applied under the assumption
that

∑
i∈V dixi < 1. We show that such an oracle suffices for computing a solution

that suits our purpose.
Formally, under the assumption

∑
i∈V dixi < 1, we wish to find a set T violating

the constraint (12), i.e., a set T such that

∑

i∈T

xi − β
∑

i∈T

yi < 0.(13)

The following lemma provides a method for finding such a set.
Lemma 8. Let x, y ∈ R

V so that
∑

i∈V diyi = 1 and
∑

i∈V dixi < 1, where
d is a vector satisfying the conditions of Theorem 1. Then the set T produced by
PrizeCollecting for the instance of the prize collecting problem with c(v) = xv and
π(v) = yv, for all v ∈ V ′, satisfies the inequality (13).

Proof. By Theorem 3, PrizeCollecting produces a set T which satisfies:

∑

i∈T

xi + β
∑

i �∈T

yi ≤ βpc-opt(x, y),(14)

where pc-opt(x, y) is an optimal value of PC-LP for the problem instance described
above.

Define a feasible solution to PC-LP as follows. Number the vertices of V \ {r} so
that d1 ≤ d2 ≤ · · · ≤ dk, k = |V | − 1. Define Si = {1, 2, . . . , i} for 1 ≤ i ≤ k. Set

xi = di ∀i ∈ V,

zSk
= 1 − dk,

zSi = di+1 − di, 1 ≤ i ≤ k,

zS = 0, S 
= Si∀i ∈ {1, . . . , k}.
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First, observe that this is, indeed, a feasible solution to PC-LP. To see that the
constraints (1) are satisfied, consider any set S ⊆ V \ {r}. Let j be a vertex with
maximal dj in S. Then sets T ⊆ V ′ with nonzero zT containing S are exactly the
sets Sj , Sj+1, . . . , Sk. Therefore, we get

∑
T⊇S zT = 1 − dj . Then constraint (1) is

satisfied for S as d satisfies constraint (8) for S and j ∈ S. It can be easily verified that
constraints (2) are also satisfied. Now consider the value of the solution to PC-LP
described above. Observe that

∑
S	i zS = 1 − di, 1 ≤ i ≤ k. Therefore, each vertex

i, 1 ≤ i ≤ k, contributes its penalty multiplied by (1 − di) to the objective function
value. Thus, we get that the value of this solution is

∑
i∈V dixi +

∑
i∈V (1− di)yi. As

this value is not smaller than the optimal value for PC-LP, by (14) we get

∑

i∈T

xi + β
∑

i �∈T

yi ≤ β

(
∑

i∈V

dixi +
∑

i∈V

(1 − di)yi

)

= β

(
∑

i∈V

dixi +
∑

i∈V

yi − 1

)

< β
∑

i∈V

yi.

The latter inequality follows by the assumption that
∑

i∈V dixi < 1. Therefore, it
follows that

∑

i∈T

xi − β
∑

i∈T

yi < 0,

which implies the lemma.
We use the separation oracle described in the lemma above on the set of con-

straints of MCD together with the constraint
∑

i∈V dixi < 1 until no feasible solution
satisfying the latter constraint and the constraints already used by the algorithm can
be found. At this point, the optimal value of MCD with the subset of constraints used
by the ellipsoid algorithm is at least 1, and therefore the optimal value of CLP with
just the variables λT corresponding to the used constraints is at least 1

β . Therefore,

we can solve CLP with just those variables to obtain the packing of sets satisfying (9).
We now proceed with the proof of part 2 of Theorem 1. The proof structure is

essentially the same as the proof of part 1. However, some of the details are more
complicated.

Let V ′ = V \ {r}. We show that for d : V → Q
+ such that di ≤ 1 for every

i ∈ V ′, dr = 1, and such that constraints (8) are satisfied, there exists a packing T
of connected node sets containing r such that T ∈ T has weight λT in the packing,∑

T∈T λT ≤ 1, and such that for every node v ∈ V , the following property holds:

d(v) ≤
∑

v∈V

∑

T	v

λT ≤ min{1, d(v)α},(15)

where α = c log |V |. The best packing satisfying the above property is given by the
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solution to the following linear program which we denote CLP’:

minimize α s.t.

diα−
∑

T∈T |i∈T

λT ≥ 0∀i ∈ V,

∑

T∈T |i∈T

λT ≥ di ∀i ∈ V,(16)

−
∑

T∈T |i∈T

λT ≥ −1 ∀i ∈ V.

λ ≥ 0,

where α ∈ R and λ ∈ R
T .

Consider the dual program for CLP’, denoted CD’:

maximize
∑

i∈V

(diyi − zi) s.t.

∑

i∈V

dixi = 1,

∑

i∈T

(yi − zi − xi) ≥ 0∀T ∈ T ,(17)

x, y, z ≥ 0,

where x, y, z ∈ R
V .

We modify CD’ by replacing constraints (17) by:

∑

i∈T

(β(yi − zi) − xi) ≤ 0 ∀T ∈ T .(18)

We denote the modified dual program by MCD’. By the argument, similar to that of
the proof of Lemma 7,

Z∗
CD′ ≤ βZ∗

MCD′ .

Next we show a separation oracle for MCD’, which can be applied under the
assumption

∑
i∈V (diyi − zi) > 1. Formally, we wish to find a set T that violates

constraint (18). Similarly to the proof of Lemma 8, we apply PrizeCollecting to an
instance with costs xi and penalties yi. Let T be the set produced by the algorithm.
By the same reasoning as in the proof of Lemma 8, we get

∑

i∈T

xi + β
∑

i �∈T

yi ≤ β

(
∑

i∈V

dixi +
∑

i∈V

(1 − di)yi

)
.

Since by our assumption

∑

i∈V

diyi > 1 +
∑

i∈V

zi,

we get

∑

i∈T

xi + β
∑

i �∈T

yi < β + β
∑

i∈V

yi − β − β
∑

i∈V

zi,
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or, equivalently,

∑

i∈T

xi − β
∑

i∈T

yi + β
∑

i∈V

zi < 0.

Since zi ≥ 0, for all i ∈ V , it follows that

∑

i∈T

(xi + β(zi − yi)) < 0,

implying that the set T violates constraint (18).
We use the separation oracle described above on the set of constraints of MCD’

together with the constraint
∑

i∈V (diyi − zi) > 1 until no feasible solution satisfying
the latter constraint, and the constraints already used by the algorithm, can be found.
At this point, the optimal value of MCD’ with the subset of constraints used by the
ellipsoid algorithm is at most 1, and therefore the optimal value of CLP’ with just
the variables λT corresponding to the used constraints is at most β. Therefore, we
can solve CLP’ with just those variables to obtain the packing of sets satisfying (15).

4. The quota problem. In the quota problem, given an undirected graph G =
(V,E) with a cost function c : V → Q

+, a profit function π : V → Q
+, a specified

root r, and a quota Q, the objective is to find a connected subset T of V containing
r such that the total profit of T is at least Q and the total cost of T is minimized.

For every node i, we denote by L(i) the minimum cost of a path connecting r
and i. Notice that in dealing with the quota problem we may eliminate nodes i with
π(i) ≥ Q. If the optimal solution contains such a node i, then the optimal solution is a
least-cost path connecting r and i. We can compute such a path for every node i with
π(i) ≥ Q and compare its cost to the solution produced by the algorithm described
below. Furthermore, let q-opt denote the cost of the optimal solution for the quota
problem. Clearly, if L(i) > q-opt, then i is not contained in any optimal solution.
We can eliminate nodes i with L(i) > q-opt by enumerating over possible values for
q-opt. The only interesting values for this purpose are the values L(i) for all nodes i
(i.e., for L(i) we eliminate all nodes j with L(j) ≥ L(i)). In the following discussion
we assume that V does not contain nodes i with π(i) ≥ Q or with L(i) > q-opt.

Consider the following linear programming relaxation for the quota problem (V ′

denotes V \ {r}), which we denote by Q-LP:

minimize
∑

i∈V

c(i)di s.t.

∑

i∈V

π(i)di ≥ Q,

di ≤
∑

j∈Γ(S)

dj ∀S ⊆ V ′, ∀i ∈ S,(19)

dr = 1,

d ≥ 0.

Note that constraints (19) imply di ≤ 1, for all i ∈ V ′. Further note that Q-LP can be
solved using the ellipsoid algorithm (a separation oracle requires computing minimum
node cuts).

Let d be a solution to Q-LP. Let q-lp(d) denote the value of d. Consider the
packing of connected sets containing r from part 2 of Theorem 1. Let T denote the
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support of the packing, and for every T ∈ T let λT denote the (positive) weight of T
in the packing. The following lemma is a trivial consequence of Theorem 1. We omit
the proof.

Lemma 9. The packing from part 2 of Theorem 1 satisfies the following condi-
tions:

∑

T∈T
λT = 1,(20)

∑

T∈T
c(T )λT ≤ βq-lp(d),(21)

∑

T∈T
π(T )λT ≥ Q.(22)

Let L = {T ∈ T | c(T ) ≤ βq-lp(d)}, H = {T ∈ T | c(T ) > βq-lp(d)},
C = {T ∈ T | π(T ) < Q}, and X = {T ∈ T | π(T ) ≥ Q}.

Lemma 10. If L⋂X = ∅, then there exist T1 ∈ L and T2 ∈ H such that
π(T2 \ T1) ≥ Q− π(T1) and

c(T2 \ T1)

π(T2 \ T1)
≤ βq-lp(d)

Q− π(T1)
.

Proof. For A ⊂ T , let λA denote
∑

T∈A λT . By Lemma 9, the packing is good,
so by property (21), L is nonempty. Let T1 be the most profitable set in L. Assume
that π(T1) < Q. By property (22), H is nonempty. We may assume that H⋂ C = ∅,
otherwise, remove from T the sets in H⋂ C and scale the weights of the remaining sets
by 1−λH⋂ C . As we eliminated sets with above-average cost and below-average profit,
the modified packing is still good. Notice that π(T1)λL ≥ ∑

T∈L π(T )λT . Therefore,
π(T1)λL +

∑
T∈H π(T )λT ≥ Q, or, as λL = 1 − λH,

∑

T∈H
π(T \ T1)λT ≥ Q− π(T1).(23)

Notice that for all T ∈ H, π(T ) ≥ Q (as H⋂ C = ∅), so π(T \ T1) ≥ Q− π(T1). Also,
because the packing is good,

∑

T∈H
c(T \ T1)λT ≤

∑

T∈H
c(T )λT ≤ βq-lp(d).(24)

It follows from (23) and (24) that there exists T2 ∈ H which, together with T1, satisfies
the claims stipulated by the lemma.

Our algorithm for the quota problem proceeds as follows. Given an optimal
solution d to Q-LP, we use part 2 of Theorem 1 to compute a packing of connected
sets containing r. If this packing has a set T ∈ L⋂X , we output T . Otherwise, we
take T1 ∈ L and T2 ∈ H as exist by Lemma 10 and proceed as follows. Consider the
graph induced by T2 \ T1. This graph is a collection of components, each of which is
connected to some vertex in T1. We take a spanning tree in each component, rooted
at a vertex adjacent to a vertex of T1. Denote the set of these spanning trees by
S = {S1, S2, . . . , Sk}.

In what follows we describe a trimming procedure that we apply to the set S.
We observe that our trimming procedure bears some similarity to that used in Garg’s
5-approximation for k-MST. Our procedure outputs a trimmed set of trees R =
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{R1, R2, . . . , Rl} whose roots are taken from the set of roots of the trees in the original
set. The trimmed set has the property that its total profit is at least Q−π(T1), and its
total cost is at most (2β + 1)q-opt. We then connect R1, R2, . . . , Rl to T1. (Notice
that the roots of the trimmed trees are adjacent to vertices of T1.) Let T be the
resulting tree. By the previous discussion,

c(T ) ≤ Θ(logn)q-opt,

π(T ) ≥ Q.

Our algorithm outputs T .
We proceed to describe the trimming procedure. Let p = Q− π(T1). Notice that

the total profit of the trees in S is at least p (because π(T2) ≥ Q). We repeatedly
remove a maximal rooted subtree of any tree in S (including an entire tree), whose

removal leaves the cost-to-profit ratio at most ρ = βq-opt

p and the profit at least p

until no such subtree can be found. Let S denote the set of remaining trees. If the
profit of S is at most 2p, then its cost must be at most 2βq-opt. In this case we
output R = S.

Otherwise, the profit of S is more than 2p. We consider two cases.
Case 1. All rooted subtrees of trees in S have a cost-to-profit ratio of at most ρ.

We find a subtree T ′ rooted at some vertex r′ such that the profit of T ′ is at least p, but
the profit of each subtree rooted at a child of r′ is less than p. As the total profit of trees
in S is greater than 2p, T ′ exists and can be found by a simple scanning procedure.
Consider the subtrees rooted at the children of r′. We repeatedly remove such a
subtree until the total profit of the remaining tree T ′′ (including r′) is between p and
2p. Notice that, by the assumption in this case, each remaining subtree has a cost-to-
profit ratio at most ρ. The total profit of all remaining subtrees is at most 2p, so their
total cost (excluding r′) is at most 2pβq-opt

p = 2βq-opt. We connect T ′′ to the root

of the tree in S containing T ′′ using a least-cost path in G between the two vertices. As
the cost of the path is at most q-opt (this includes c(r′)), the total cost of the resulting
tree is at most (2β + 1)q-opt. We output the singleton set containing this tree.

Case 2. There exists a rooted subtree T ′ of a tree in S with a cost-to-profit ratio
larger than ρ. Consider a minimal T ′, inclusionwise. Notice that the profit of the rest
of S is less than p (otherwise we would delete T ′), and the cost-to-profit ratio is less
than ρ. Therefore, the cost of the rest of S is less than βq-opt. Moreover, as the
total profit of S is more than 2p, the profit of T ′ is more than p. If T ′ is a single
vertex r′ (a leaf), then, as c(r′) ≤ q-opt, S has a profit of more than 2p and a cost
of less than (β + 1)q-opt, so we output R = S. Otherwise, let r′ be the root of T ′.
By the minimality assumption, every rooted subtree of T ′ has a cost-to-profit ratio
of at most ρ. If there exists a subtree rooted at a child of r′ with a profit of at least
p, we can apply the argument of Case 1 to this tree. Otherwise, the profit of each
such subtree is less than p. We remove subtrees until the total profit (including r′) is
between p and 2p. The remaining subtrees have a total cost of at most βq-opt. We
add the least-cost path in G from the root of the tree in S containing T ′ to r′. The
added cost is at most q-opt. We output the singleton set containing the resulting
tree.

5. The budget problem. In the budget problem, given an undirected graph
G = (V,E) with a cost function c : V → Q

+, a profit function π : V → Q
+, a specified

root r, and a budget B, the objective is to find a subtree T of G containing r such
that the total cost of T does not exceed B and the total profit of T is maximized. We
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may assume that, for every vertex i ∈ V , L(i) ≤ B; otherwise, no feasible solution
can include i, so we can discard it. Let b-opt denote the value of the optimal solution
to the budget problem.

Consider the following linear programming relaxation to the budget problem (V ′

denotes V \ {r}):

maximize
∑

i∈V

π(i)di s.t.

∑

i∈V

c(i)di ≤ B,

di ≤
∑

j∈ΓS

dj ∀S ⊆ V ′, ∀i ∈ S,(25)

dr = 1,

d ≥ 0,

where d ∈ R
V . We denote this linear program by B-LP. Note that B-LP can be solved

in polynomial time using the ellipsoid algorithm.
Let d be a feasible solution to B-LP. Let b-lp(d) denote the value of d. Consider

the packing of connected sets containing r from part 1 of Theorem 1. Let T denote
the support of the packing, and for every T ∈ T let λT denote the weight of T in the
packing. It is easy to verify that this packing satisfies the following properties:

∑

T∈T
λT ≤ 1,(26)

∑

v∈V

c(v)
∑

T	v

λT ≤ B,(27)

∑

v∈V

π(v)
∑

T	v

λT ≥ Θ

(
1

log n

)
b-opt.(28)

Next we show how the packing T can be used to derive an O(log n)-approximation
for the budget problem. Let L = {T ∈ T | c(T ) ≤ B}, and H = {T ∈ T | c(T ) > B}.

Lemma 11. At least one of the following conditions holds:
1. ∃T ∈ L such that π(T ) ≥ Θ( 1

logn )b-opt;

2. ∃T ∈ H such that π(T )

c(T )
≥ Θ( 1

logn )b-opt

B .

Proof. Denote

π(T ) =
∑

v∈V

π(v)
∑

T	v

λT .

First, consider the case when the profit from L is at least half of the total profit
achieved by the packing. Formally, assume

∑

v∈V

π(v)
∑

T	v|T∈L
λT ≥ 1

2
π(T ).

In this case there exists a set T ′ ∈ L such that

∑

v∈T ′

π(v) ≥ 1

2
π(T ).
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Indeed, assume this is not the case. Then

∑

v∈V

π(v)
∑

T	v|T∈L
λT =

∑

T∈L
λT

∑

v∈T

π(v)

<
1

2
π(T )

∑

T∈L
λT

≤ 1

2
π(T ),

contradicting our assumption. As π(T ) = Θ( 1
logn )b-opt, the first condition of the

lemma holds.
Now consider the other case when

∑

v∈V

π(v)
∑

T	v|T∈L
λT <

1

2
π(T ).

Then

∑

v∈V

π(v)
∑

T	v|T∈H
λT ≥ 1

2
π(T ).

Moreover, by property (27),

∑

v∈V

c(v)
∑

T	v

λT ≤ B,

and, in particular,

∑

v∈V

c(v)
∑

T	v|T∈H
λT ≤ B.

Therefore, we get
∑

v∈V π(v)
∑

T	v|T∈H λT∑
v∈V c(v)

∑
T	v|T∈H λT

≥ 1

2

π(T )

B
.

We conclude that there exists a set T ′ ∈ H such that
∑

v∈T ′ π(v)∑
v∈T ′ c(v)

≥ 1

2

π(T )

B
.

Indeed, otherwise we would have
∑

v∈V π(v)
∑

T	v|T∈H λT∑
v∈V c(v)

∑
T	v|T∈H λT

=

∑
T∈H λT

∑
v∈T π(v)∑

T∈H λT

∑
v∈T c(v)

<

∑
T∈H λT

∑
v∈T c(v) · 1

2

π(T )

B∑
T∈H λT

∑
v∈T c(v)

=
1

2

π(T )

B
.

By property (28), we get that the second condition of the lemma holds.
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To obtain an O(log n)-approximation for budget problem, we proceed as follows.
If T satisfies condition 1 of Lemma 11, our algorithm outputs the set T ′ for which the
condition holds. Otherwise, the algorithm proceeds with the set T ′ for which condition
2 of Lemma 11 holds. Clearly, the total profit of T ′ is at least Θ( 1

logn )b-opt, but
it is not a feasible solution for the budget problem, as its total cost exceeds B. Our
algorithm trims T ′ to obtain another set T ′′ containing r such that

∑
v∈T ′′ π(v)∑
v∈T ′′ c(v)

≥ Θ

(
1

log n

)
b-opt

B
,

and

B

2
≤

∑

v∈T̃

c(v) ≤ 2B.

A trimming procedure to obtain such a set appears in Guha et al. (1999).
By the discussion above, we conclude
Theorem 12. The above algorithm is an O(log n)-approximation for the budget

problem.

6. Concluding remarks. The packing theorems in this paper point to an inter-
esting interplay between the primal-dual schema and rounding of linear programming
relaxations. Indeed, nonconstructive versions of these packing theorems and similar
theorems can be deduced directly from the bounds on the dual solution cut packings
underlying the related primal-dual algorithms. A better understanding of this issue
is desired and might lead to improved algorithms or new applications.

Our results for the budget problem are unsatisfactory. The problem is not known
to be harder to approximate than the maximum coverage problem, for which a tight
1 − 1/e bound on the approximability is known. Moreover, there is no reason to
believe that the problem cannot be approximated without violating the strict budget
constraints. We conjecture that there is a polynomial time constant-approximation
algorithm for this problem.

Acknowledgment. The second author thanks Mike Saks and David Johnson
for stimulating discussions.
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Abstract. Tolerant testing is an emerging topic in the field of property testing, which was
defined in [M. Parnas, D. Ron, and R. Rubinfeld, J. Comput. System Sci., 72 (2006), pp. 1012–
1042] and has recently become a very active topic of research. In the general setting, there exist
properties that are testable but are not tolerantly testable [E. Fischer and L. Fortnow, Proceedings
of the 20th IEEE Conference on Computational Complexity, 2005, pp. 135–140]. On the other hand,
we show here that in the setting of the dense graph model, all testable properties are not only
tolerantly testable (which was already implicitly proved in [N. Alon, E. Fischer, M. Krivelevich, and
M. Szegedy, Combinatorica, 20 (2000), pp. 451–476] and [O. Goldreich and L. Trevisan, Random
Structures Algorithms, 23 (2003), pp. 23–57]), but also admit a constant query size algorithm that
estimates the distance from the property up to any fixed additive constant. In the course of the
proof we develop a framework for extending Szemerédi’s regularity lemma, both as a prerequisite
for formulating what kind of information about the input graph will provide us with the correct
estimation, and as the means for efficiently gathering this information. In particular, we construct
a probabilistic algorithm that finds the parameters of a regular partition of an input graph using
a constant number of queries, and an algorithm to find a regular partition of a graph using a TC0

circuit. This, in some ways, strengthens the results of [N. Alon, R. A. Duke, H. Lefmann, V. Rödl,
and R. Yuster, J. Algorithms, 16 (1994), pp. 80–109].
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1. Introduction. Combinatorial property testing deals with the following task:
For a fixed ε > 0 and a fixed property P, distinguish using as few queries as possible
(and with probability at least 2

3
) between the case that an input of size m satisfies P,

and the case that the input is ε-far from satisfying P. In our context the inputs are
boolean, and the distance from P is measured by the minimum number of bits that
have to be modified in the input in order to make it satisfy P, divided by the input
size m. For the purpose here we are mainly interested in tests that have a number of
queries that depends only on the approximation parameter ε and is independent of
the input size. Properties that admit such algorithms are called testable.

The first time a question formulated in terms of property testing was considered
was by Blum, Luby, and Rubinfeld [7], and the general notion of property testing
was first formally defined by Rubinfeld and Sudan [17]. The first investigation in
the combinatorial context was that of Goldreich, Goldwasser and Ron [13], where
the testing of combinatorial graph properties (in the “dense” graph model) was first
formalized; their framework will also be the one used here. In recent years the field of
property testing has enjoyed rapid growth, as witnessed in the surveys [16] and [10].

One of the main goals in the study of graph property testing is the finding of
structural characterization results or, failing that, results that identify large classes of
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properties that are testable. An example of such a large class is the class of partition
properties that was identified in [13]. Other classes were identified as testable using
the regularity lemma of Szemerédi in [2] and [9]. The regularity lemma is a very useful
tool that guarantees the existence of a sort of “short summary” for graphs with any
number of vertices. The price is that the involved constants will not have a practical
bound, but for theoretical results this lemma currently is the most powerful tool for
understanding the essence of graph property testing.

The question of providing a complete structural characterization result for the
testable graph properties has been one of the central themes in the research on testing
graph properties. A partial result that in some sense characterizes graph properties
that consist of only one graph according to their testability is found in [11], also
making use of the regularity lemma. Concerning 1-sided graph property testing,
where the algorithm is also required to be independent of the number of vertices of
the graph, a recent work of Alon and Shapira [5] approaches what is in essence a
full characterization. Very recently a complete characterization of the properties that
are testable by 2-sided error tests was provided in [3]. In a different angle of the
characterization problem, the canonical testers of [14] can be considered as a first
hint that testable graph properties are more than just testable. Here we investigate
this further, showing that the class of all testable graph properties (with 1-sided or
2-sided algorithms) is in fact identical to a class of properties that admit algorithms
with much stringer requirements than those of property testers.

An investigation that goes beyond the original definition of testable properties
was initiated by Parnas, Ron, and Rubinfeld [15] and concerns tolerant testers. These
are property testers that reject all instances that are far enough from the property
P and accept every instance that is close enough to P (and not just instances that
are in P). Recently, Fischer and Fortnow [12] showed that not all testable properties
are also tolerantly testable. Here we prove a positive general result on testable graph
properties that involves a much tighter concept. We say that a property is (ε, δ)-
estimable if there exists a probabilistic algorithm making a constant number of queries
on any input (independently of the input size) that distinguishes with probability 2

3

between the case that the input is (ε−δ)-close to some input that satisfies the property,
and the case that it is ε-far from any input satisfying the property. We call a property
estimable if it is (ε, δ)-estimable for every fixed ε > 0 and δ > 0. Thus, if a property
is estimable, then there exists an O(1)-query algorithm that can estimate the relative
distance of an input from the property within any fixed additive constant. Obviously
estimability (and also tolerant testing, where we demand only an (ε, δ)-estimation for
some δ > 0 that may depend on ε) is a generalization of the standard testing, and the
two notions coincide when we take δ = ε.

Our main result is a proof that all testable graph properties are also estimable.
Equivalently, we obtain that for every testable property P and every ε > 0, the
property of being ε-close to P is in itself testable. For nongraph properties this is not
always true, as shown in [12].

While the famed regularity lemma of Szemerédi is not very applicable in practice,
it is quite important theoretically and not only for property testing. Alon et al. [1]
have shown that a regular partition can be found in asymptotically the same time
complexity as that of matrix multiplication. For many applications of the regularity
lemma, one does not need to know the regular partition itself, but only its signature
(the pairwise edge densities between its sets). A lemma towards our main result
asserts the existence of a randomized algorithm that uses only O(1) queries to the
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input and approximates the signature of an ε-regular partition of a graph to within
an additive error of ε for any fixed constant ε > 0.

As it turns out, this proof also implies a new algorithm that allows the finding
of a regular partition using a very low complexity class algorithm (namely TC0, as
opposed to NC1 which was previously known from [1]).

The rest of the paper is organized as follows. Section 2 contains the most basic
definitions and the formal statement of the main result. Section 3 contains definitions
and lemmas concerning Szemerédi’s regularity lemma, the essence of property testing
algorithms in the dense graph model, and the connection between them. Section 4
contains a framework for extending Szemerédi’s regularity lemma, leading to the proof
of the main result. This proof is based on two main lemmas: One lemma states that
knowing the parameters of a certain partition of the graph (which is guaranteed to
exist by the extension of Szemerédi’s lemma) is enough for knowing how far the
input graph is from a graph which a property testing algorithm would accept, and
the other lemma states that an approximation of the parameters of such a partition
can indeed be calculated with high probability from a small sample of the graph.
These two main lemmas are then proved in section 5 (approximating a partition)
and section 6 (estimating the distance from the property). Finally, section 7 contains
some concluding comments, including a description of the low complexity algorithm
for finding an ε-regular partition of a graph.

2. The main result. In the following we formally state our main result. We
start with the most basic definition of property testing of graphs (in the “dense model”
context).

Definition 1. We say that two graphs G and G′ with the same vertex set of
size n are ε-close if the number of vertex pairs that form an edge for one of G and
G′ but not the other does not exceed ε

(
n
2

)
. For a property P of graphs, we say that G

is ε-close to P if there exists a graph G′ that satisfies P and is ε-close to G. If there
exists no such G′, then we say that G is ε-far from P. For properties of combinatorial
objects other than graphs, we replace “

(
n
2

)
” in the definition above with the size of the

corresponding input.

We call a property ε-testable if there exists a probabilistic algorithm making a
constant number of queries on any input (independently of the input size, which is
given to the algorithm in advance) that distinguishes with probability 2

3
between the

case that the input satisfies the property, and the case that the input is ε-far from any
input that satisfies the property. We call a property testable if it is ε-testable for every
fixed constant ε > 0.

Parnas, Ron, and Rubinfeld [15] have started investigating properties (of various
combinatorial objects and not just graphs) for which there exists a probabilistic algo-
rithm that apart from being an ε-test is also guaranteed to accept (with probability at
least 2

3
) any input that is sufficiently close to satisfying the property. In the following

we concern ourselves with the strictest possible definition of such properties, in that
we want to also accept any input whose distance from the property is only somewhat
smaller than the guaranteed rejection distance.

Definition 2. We call a property (ε, δ)-estimable if there exists a probabilistic
algorithm making a constant number of queries on any input (independently of the
input size) that distinguishes with probability 2

3
between the case that the input is

(ε−δ)-close to some input that satisfies the property, and the case that it is ε-far from
any input satisfying the property. We call a property estimable if it is (ε, δ)-estimable
for every fixed ε > 0 and δ > 0.
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We prove that for graph properties (in the dense model), estimation algorithms
exist for any property for which there exists a test in the usual sense.

Theorem 2.1. Every testable property of graphs is also estimable.
As a corollary from the proofs, we also find an algorithm for constructing an

ε-regular partition (or a strengthening thereof) of an input graph G using a low
complexity (TC0) algorithm. As the required definitions for stating this result and
its motivations are only presented in sections 3 and 4, the result is discussed in full
in section 7.

3. The building blocks. In this section we prepare some tools that are needed
for the following discussion. We define and explain the role of regular partitions and
show their relevance to predicting the behavior of a given testing algorithm when
applied to the input graph.

Starting with this section and throughout the paper, we use the convention that
a function defined by the statement of a lemma is indexed with the lemma’s number.
We make no attempt anywhere to minimize the constants involved and ignore floor
and ceiling signs when these make no essential difference for the argument.

For some of the proofs we use the following standard Chernoff-type large deviation
inequality (see, e.g., [6, Appendix A]).

Lemma 3.1. Suppose that X1, . . . , Xm are m independent boolean random vari-
ables, satisfying Pr(Xi = 1) = pi. Let E =

∑m
i=1 pi. Then, Pr(|∑m

i=1 Xi − E| ≥
δm) ≤ 2e−2δ2m.

In the following we often use one distribution to approximate another. For this
the following definition is handy.

Definition 3. Given two distributions μ and ν over a finite family H of combi-
natorial structures, their variation distance is defined as |μ−ν| = 1

2

∑
H∈H |Prμ(H)−

Prν(H)|.
We note that the variation distance is just a normalized distance in �1. In par-

ticular 0 ≤ |μ− ν| ≤ 1 for any ν, μ. The importance of this measure is that if |μ− ν|
is small, then ν approximates μ well, as asserted by the following well-known lemma
for which we provide a proof for completeness.

Lemma 3.2. If two distributions μ, ν over a finite family H of combinatorial
structures satisfy |μ−ν| ≤ δ, then for any set A ⊆ H we have |Prμ(A)−Prν(A)| ≤ δ.

Proof. Set B = H \ A. Because these are probability spaces we have Prμ(B) −
Prν(B) = Prν(A) − Prμ(A). Therefore,

|Prμ(A) − Prν(A)|

=
1

2
|Prμ(A) − Prν(A)| + 1

2
|Prμ(B) − Prν(B)|

≤ 1

2

∑

H∈A
|Prμ(H) − Prν(H)| + 1

2

∑

H∈B
|Prμ(H) − Prν(H)| = |μ− ν|

The following is also a well-known probabilistic lemma that we will use.
Lemma 3.3. Let μ be a product distribution over {0, 1}k, where for (α1, . . . , αk) ∈

{0, 1}k we have Prμ((α1, . . . , αk)) =
∏k

i=1(pi)
αi(1 − pi)

1−αi for a fixed sequence
p1, . . . , pk. Similarly, let ν be a product distribution over {0, 1}k, with q1, . . . , qk re-

placing p1, . . . , pk in the definition above. Then, |μ− ν| ≤ ∑k
i=1 |pi − qi|.

Proof. The proof is by induction on k. For k = 1 this is immediate from the
definition, and for k > 1 we use the definition of the variation distance to reduce
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it to the expression for k − 1, using extensively the simple inequality |ab − cd| ≤
|a− c|b + c|b− d| for a, b, c, d ≥ 0:

|μ− ν|

=
1

2

⎛
⎝

∑

α1,...,αk−1

∣∣∣∣∣pk
k−1∏

i=1

(pi)
αi(1 − pi)

1−αi − qk

k−1∏

i=1

(qi)
αi(1 − qi)

1−αi

∣∣∣∣∣

+
∑

α1,...,αk−1

∣∣∣∣∣(1 − pk)

k−1∏

i=1

(pi)
αi(1 − pi)

1−αi − (1 − qk)

k−1∏

i=1

(qi)
αi(1 − qi)

1−αi

∣∣∣∣∣

⎞
⎠

≤ 1

2

∑

α1,...,αk−1

(
|pk − qk|

k−1∏

i=1

(pi)
αi(1 − pi)

1−αi

+ qk

∣∣∣∣∣

k−1∏

i=1

(pi)
αi(1 − pi)

1−αi −
k−1∏

i=1

(qi)
αi(1 − qi)

1−αi

∣∣∣∣∣

+ |(1 − pk) − (1 − qk)|
k−1∏

i=1

(pi)
αi(1 − pi)

1−αi

+ (1 − qk)

∣∣∣∣∣

k−1∏

i=1

(pi)
αi(1 − pi)

1−αi −
k−1∏

i=1

(qi)
αi(1 − qi)

1−αi

∣∣∣∣∣

)

= |pk − qk| + 1

2

∑

α1,...,αk−1

∣∣∣∣∣

k−1∏

i=1

(pi)
αi(1 − pi)

1−αi −
k−1∏

i=1

(qi)
αi(1 − qi)

1−αi

∣∣∣∣∣

≤
k∑

i=1

|pi − qi|.

An immediate corollary of Lemma 3.3 is the following lemma (by taking k =
(
q
2

)
).

Lemma 3.4. Suppose that μ and ν are two probability distributions over graphs
with the set of vertices {v1, . . . , vq}, where each pair vivj is independently chosen to
be an edge with probability μi,j and νi,j, respectively. If |μi,j − νi,j | ≤ ε/

(
q
2

)
for every

1 ≤ i < j ≤ q, then the variation distance between μ and ν is bounded by ε.
A crucial notion to the following arguments (as is the case with many other graph

property testing results) is Szemerédi’s notion of regularity.
Definition 4. For two nonempty disjoint vertex sets U and V of a graph G, we

define the density d(U, V ) of the pair to be the number of edges of G between U and
V , divided by |U ||V |.

We say that the pair U, V is ε-regular if for any two subsets U ′ of U and V ′ of V ,
satisfying |U ′| ≥ ε|U | and |V ′| ≥ ε|V |, the edge densities satisfy |d(U ′, V ′)−d(U, V )| <
ε.

Although Definition 4 bounds the deviation in densities for any two subsets U ′, V ′

that are at least as large as their respective thresholds, it is easy to see that it is enough
to require that |d(U ′, V ′) − d(U, V )| ≤ ε for every two subsets U ′, V ′ of size exactly
|U ′| = �ε|U |� and |V ′| = �ε|V |�.
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Regular pairs behave much like random graphs, as seen in the following well-
known lemma.

Lemma 3.5 (see, e.g., [11, Lemma 4.2] for a proof). For every k and ε there
exists γ = γ3.5(k, ε), so that if U1, . . . , Uk are disjoint sets of vertices of G such that
every two sets form a γ-regular pair, then the following two distributions for picking
a graph H with vertices v1, . . . , vk have variation distance at most ε between them.

(i) For every 1 ≤ i < j ≤ k, independently take vivj to be an edge of H with
probability d(Vi, Vj).

(ii) Pick uniformly and independently a vertex ui ∈ Ui for every i, and let vivj
be an edge of H if and only if uiuj is an edge of G.

What we need is a “cover” of an entire graph with regular pairs. This idea is
formalized in the following.

Definition 5. Given a graph G, an equipartition A = {V1, . . . , Vk} of G is a
partition of its vertex set for which the sizes of any two sets differ by at most 1. An
equipartition B = {W1, . . . ,Wl} is said to be a refinement of A if all of the sets Wi

are each fully contained in some set of A.

An equipartition B as above is called ε-regular if at least (1 − ε)
(
l
2

)
of the pairs

Wi,Wj are ε-regular.

Regular partitions are found using the famed regularity lemma of Szemerédi [18]
(see [8, Chapter 7] for a good exposition of the proof).

Lemma 3.6 (Szemerédi’s regularity lemma [18]). For every k and ε there exists
T = T3.6(k, ε) such that for every equipartition A of a graph G with n ≥ N3.6(k, ε)
vertices into k sets, there exists a refinement B of A into t ≤ T sets which is ε-regular.

We now turn to the behavior of property testers when applied to an input graph
G. The most important feature of G would be the count of its small induced subgraphs
of any kind, as exemplified in the following definition.

Definition 6. The q-statistic of a graph G is the following probability space
over (labeled) graphs with q vertices: Given a labeled graph H with the vertex set
{v1, . . . , vq}, the probability for H is exactly the probability that the edge relation of
G, when restricted to a uniformly random sequence of q vertices (without repetitions)
w1, . . . , wk, is identical to that of H where each wi plays the role of vi. Namely, the q-
statistic is just the probability distribution over all (labeled) graphs with q vertices that
results from picking at random q distinct vertices of G and considering the induced
subgraph.

Given a family H of graphs with q vertices, we denote the probability for obtaining
a member of H when drawing a graph according to the q-statistic of G by PrG(H).

Note that in the definition above one could work with isomorphic copies of H
rather than labeled graphs. This, however, brings in the extra complication of having
to take into account the automorphism group size of H. When dealing with labeled
graphs the analysis is simpler.

The importance of knowing the q-statistic of a graph G is in its close connection
with the distance of G from a given testable property, proven in [14].

Lemma 3.7 (canonical testers [14]). If there is an ε-test for a graph property P
that makes a constant number of queries, then there exists such a test that makes its
queries by choosing uniformly q distinct vertices of G (for an appropriate constant q)
and querying the induced subgraph. In particular, there exists an appropriate family
H of labeled graphs such that any graph G that satisfies P also satisfies PrG(H) ≥ 2

3
,

and any graph G that is ε-far from satisfying P satisfies PrG(H) ≤ 1
3
.

The above motivates us to try deducing the q-statistic of the graph from the
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densities of one of its regular partitions, as per the following definition.

Definition 7. For an equipartition A = {V1, . . . , Vt} of G, a (γ, ε)-signature of
A is a sequence S = (ηi,j)1≤i<j≤t, such that |d(Vi, Vj) − ηi,j | ≤ γ for every i < j but
at most ε

(
t
2

)
of the pairs. A (γ, γ)-signature is simply referred to as a γ-signature.

We use just the term signature for S as above when we do not commit to any specific
error parameters.

Given a signature S = (ηi,j)1≤i<j≤t as above, the perceived q-statistic of G ac-
cording to S is the following probability distribution over labeled graphs with q vertices:
To choose H with the vertex set v1, . . . , vq, we first choose uniformly and without rep-
etitions a sequence of indices i1, . . . , iq from {1, . . . , t}. We then independently take
every vkvl for k < l to be an edge of H with probability ηik,il if ik < il, and with
probability ηil,ik if ik > il.

Given a family H of graphs with q vertices, we denote the probability for obtaining
a member of H according to the perceived q-statistic by PrS(H).

The following lemma shows that for a regular partition, the perceived statistic is
indeed close to the statistic of the graph.

Lemma 3.8. For every q and ε there exist γ = γ3.8(q, ε) and r = r3.8(q, ε), so
that for every γ-regular partition A of G into t ≥ r sets, where G has n ≥ N3.8(q, ε, t)
vertices, and for every γ-signature S of A, the variation distance between the perceived
q-statistic according to S and the (actual) q-statistic of G is at most ε.

Proof. Recall Definition 3 for the variation distance between two distributions
over a combinatorial structure. Here the structure is the set of labeled graphs on
q vertices. The perceived statistic distribution is as defined above, and the actual
statistic is as defined by the process of picking a random q-size labeled subgraph of
G in Definition 6.

Set r = 7
(
q
2

)
/ε and γ = min{ε/7(q

2

)
, γ3.5(q, ε/7)}. Let v1, . . . , vq be a uniformly

random set of q distinct vertices, and let ij for every 1 ≤ j ≤ q denote the index
for which vi ∈ Vij . With probability at least 1 − 4ε/7, i1, . . . , iq are distinct, and,
moreover, all the pairs Vij , Vik are γ-regular and satisfy |ηij ,ik − d(Vij , Vik)| ≤ ε/7

(
q
2

)
.

Also, note that
∑t

i=1 |(|Vi|/n) − 1/t| ≤ ε/7 for an appropriate choice of N3.8(q, ε, t).

Finally, for a specific fixed sequence i1, . . . , iq for which the above event holds,
Lemma 3.5 guarantees that the conditional distribution of the induced graph on
v1, . . . , vq is not more than ε/7-far (in the variation distance) from the distribution
on a random graph over v1, . . . , vq for which every edge vivj is independently selected
with probability d(Vij , Vik). Noting that |d(Vij , Vik) − ηmin{ij ,ik},max{ij ,ik}| ≤ ε/7

(
q
2

)

and using Lemma 3.4, it follows that the variation distance between the q-statistic of
G and the perceived statistic distribution is (after summing all the above error terms)
at most ε.

By now we note that knowing an accurate enough signature of a regular partition
enables us to estimate the q-statistics of a graph, which in turn enables us to predict
the behavior of a property tester (by Lemma 3.7) and thus distinguish between graphs
that satisfy the property and graphs which are ε-far from satisfying it.

However, for estimability we would like to know more than that. It is not enough
to know whether the input graph G has a regular partition that indicates its accep-
tance by the property tester; we also need to know how far our input graph G is from
a graph G′ that has such a partition. The problem is that the regular partition that
indicates the acceptance of G′ may be different from the regular partition found for
G. Our technique is to find in G a partition that, in addition to being regular, will be
able to “withstand” a repartitioning according to such a G′. This issue and the issue
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of efficiently finding a signature for such a partition are addressed in the next section.

4. Robust and final partitions and proving Theorem 2.1. To prove the
main result, we must first define a framework that allows us to extend the notion of
regular partitions. To this end let us first delve a little into the details of the proof
of the original regularity lemma. We start with the basic function defined in [18] to
track graph partitions with respect to their possible regularity.

Definition 8. For an equipartition A of a graph G into t sets, its index ind(A)
is defined as t−2

∑
1≤i<j≤t d

2(Vi, Vj). For a function f : N → N and a constant γ, we

say that A as above is (f, γ)-robust if there exists no refinement B of A with up to
f(t) sets for which ind(B) ≥ ind(A) + γ.

The main lemma used in [18] for proving Szemerédi’s lemma can be paraphrased
as the following (note that in the proof of Lemma 3.6 as presented in [8, Chapter 7],
instead of ind(A) a similar function that is denoted there by “q” is used, and the
equipartitions are allowed to have a small number of “exceptional vertices” not in any
set).

Lemma 4.1 (see [18]; see also [8, Lemma 7.2.4]). For every ε there exist γ =

γ4.1(ε) and f = f
(ε)
4.1 : N → N such that every (f, γ)-robust partition is also ε-regular.

In the original formulation of [18], it is proved that a non–ε-regular partition
into t sets has a refinement into max{exp(t), exp(1/ε)} many sets whose index is
larger by at least some poly(ε) (without explicitly stating Lemma 4.1). With either
formulation, the move from Lemma 4.1 to Lemma 3.6 is made through the following
simple observation.

Observation 4.2. For every k, γ, and f : N → N there exists T = T4.2(k, γ, f),
such that every equipartition A of a graph G with n ≥ N4.2(k, γ, f) vertices into at
most k sets has a refinement B into at most T sets that is (f, γ)-robust.

Proof. We start by setting B = A, but if it is not (f, γ)-robust, then we replace it
with the refinement showing this, repeating the procedure as many times as necessary.
Since the index of a partition is always between 0 and 1, this process will terminate
after at most 1/γ iterations.

In the following we will also consider robust partitions for choices of f that grow
faster than what is required for ε-regularity. This means that in some sense we will
use a strengthening of the original regularity lemma.

The following definition is clearly a strengthening of the definition of robustness.
Definition 9. For a function f : N → N and a constant γ, we say that A as

above is (f, γ)-final if there exists no partition B (even one that is not a refinement
of A) with at least t and up to f(t) sets for which ind(B) ≥ ind(A) + γ.

The following is an analogue of Observation 4.2 to final partitions. The price is
that now we can no longer demand that the final partition be a refinement of a given
equipartition.

Observation 4.3. For every k, γ, and f : N → N there exists T = T4.3(k, γ, f) such
that for every graph G with n ≥ N4.3(k, γ, f) vertices there exists an equipartition A
into at least k and at most T sets that is (f, γ)-final.

In fact we do not need the stronger but less flexible condition of finality for our
combinatorial statements, but we use it because the parameters of a final partition
are easier to detect than those of a robust one. A testing algorithm can actually
compute a signature of a final partition like the one that Observation 4.3 guarantees
for a graph G, as the following lemma shows.

Lemma 4.4. For every k, γ, and f : N → N there exists q = q4.4(k, γ, f)
such that there exists an algorithm that makes up to q queries to a graph G with
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n ≥ N4.3(k,
1
2
γ, f) vertices, computing with probability at least 2

3
a γ-signature for an

(f, γ)-final partition of G into at least k and at most T4.3(k,
1
2
γ, f) sets.

This lemma is proved in section 5 and brings us halfway towards our estimability
result.

At this point, if from a signature of a regular partition of G we could estimate
how far G is from having a regular partition with a different given signature, then
we could use it to estimate how far G is from having a statistic that will cause a
canonical tester to accept it with high probability. This we cannot do directly, but we
can instead estimate such a difference if we are provided with a signature of a partition
that is somewhat more than regular, that is, robust with respect to an appropriate
function. We explain in section 6 why a regular partition is not enough while a robust
one is. We now present the formal statement of the appropriate result and show how
it implies Theorem 2.1.

Lemma 4.5. For every q and δ there exist γ = γ4.5(q, δ), s = s4.5(q, δ), and

f = f
(q,δ)
4.5 : N → N with the following property. For every family H of graphs with

q (labeled) vertices there exists a deterministic algorithm that receives as an input
only a γ-signature S for an (f, γ)-robust partition A with t ≥ s sets of a graph G
with n ≥ N4.5(q, δ, t) vertices and distinguishes (using no information on G apart
from S and t) given any ε between the case that G is (ε − δ)-close to some graph G′

for which PrG′(H) ≥ 2
3

and the case that G is ε-far from every graph G′ for which
PrG′(H) > 1

3
.

This lemma is proved in section 6. Lemmas 4.4 and 4.5 together imply the main
result.

Proof of Theorem 2.1. Suppose that P is a testable graph property, and let ε
and δ be constants for which we want to (ε, δ)-estimate P. As P is in particular
1
2
δ-testable, Lemma 3.7 asserts that there exist a constant q and a family H of graphs

on q vertices, such that for every graph G that is in P, PrG(H) ≥ 2/3, and for any
graph G that is 1

2
δ-far from P, PrG(H) ≤ 1/3.

Set γ = γ4.5(q,
1
2
δ), f = f

(q,δ/2)
4.5 , and k = s4.5(q,

1
2
δ), and apply the algorithm

provided by Lemma 4.4, with the parameters k, γ, and f , on the input graph G. This
algorithm makes up to q4.4(k, γ, f) queries to the graph G and with probability at
least 2

3
returns a γ-signature S of an equipartition of G into at least s4.5(q, δ) sets and

at most T4.3(k,
1
2
γ, f) sets that is (f, γ)-final.

We now apply the algorithm that is provided by Lemma 4.5, with parameters q,
1
2
δ, and ε − 1

2
δ, to the signature S (remember that this is a deterministic algorithm

making no additional queries). Due to the choice of parameters, it is guaranteed by
Lemma 4.5 that we can distinguish between the case that there is a graph G′ that is
(ε− δ)-close to G and for which PrG′(H) ≥ 2

3
and the case that G is (ε− 1

2
δ)-far from

every graph G′ for which PrG′(H) > 1
3
. In the first case G is accepted, and in the

second case it is rejected.
For the above to work we require that

n ≥ max

{
N4.3

(
k,

1

2
γ, f

)
, N4.5

(
q,

1

2
δ, T4.3

(
k,

1

2
γ, f

))}
.

For a smaller n we can just read the entire input and compute its distance from
the property to be estimated. We now claim that the above algorithm is indeed an
(ε, δ)-estimation algorithm for P for every large enough n.

If G is (ε− δ)-close to P, then by the premises above, it is also (ε− δ)-close to a
graph G′ for which PrG′(H) ≥ 2

3
, and so the first case above will hold as long as S is in
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fact a γ-signature of an (f, γ)-robust partition of G, which happens with probability
at least 2

3
. Thus G is accepted with probability at least 2

3
.

On the other hand, if G is ε-far from P, then by the triangle inequality it is
(ε − 1

2
δ)-far from any graph G′ for which PrG′(H) > 1

3
(because such a G′ would

be 1
2
δ-close to satisfying P, as q was chosen to suffice for testing P with distance

parameter 1
2
δ). Thus, if S is indeed a γ-signature of an (f, γ)-robust partition, then

the algorithm rejects G, and this again happens with probability at least 2
3
.

With both cases covered, the proof is concluded.

5. Proof of Lemma 4.4. Our strategy as outlined here is rather simple. Let
k, γ, and f be as in the formulation of the lemma, and set T = T4.3(k, γ/2, f). For
every s ∈ {k, . . . , f(T )} we quantize all possible signatures of equipartitions into s
parts, choosing such a finite family of signatures so that every possible signature of
an s-partition is close enough to one of the chosen signatures. For every such chosen
signature we test whether there exists a partition into s sets with densities that are
as determined by the signature, allowing for a small slack. This is done using the test
of Goldreich, Goldwasser, and Ron for generalized graph partitions [13]. For every
positive answer (namely, that such a partition exists) we record the signature and
estimate the index of the partition. Having all this information, we set for every s
the quantity M(s) that is the largest index of any of the partitions into s sets that
we (approximately) know about. We then set s∗ to be such that for every s for which
s∗ ≤ s ≤ f(s∗), the records indicate that M(s) ≤ M(s∗) + 3

4
γ. Finally, we output

the signature that achieves M(s∗) and claim that it is a signature of an (f, γ)-final
equipartition.

To see that such an s∗ indeed exists, consider the (f, 1
2
γ)-final equipartition A that

is guaranteed by Observation 4.3 for k, γ, and f . A is a partition into b ≤ T sets with
some signature S. Thus, while passing through all possible signatures of equipartitions
into b sets in the process above, the closest signature to S must have been considered
and the corresponding index, which is a good approximation of ind(A), was computed.
Now, as A is (f, 1

2
γ)-final, it follows by the definitions that s∗ = b is a valid answer

to the output above, assuming that all the index estimations are good enough. Let
us now proceed with the formal details.

Set ε = γ/(24 · f2(T )). We assume that ε−1 is an integer without loss of
generality, as otherwise we can decrease it a little more (by a factor of less than
2) without changing the essence of the arguments. For every k ≤ s ≤ f(T ) set

S(s, ε) = {0, ε, 2ε, . . . , 1}(s2). Every S ∈ S(s, ε) is clearly associated with a signature
of a possible equipartition of G into s sets.

As we have only signatures to work with, we have to use them to estimate the
index of a partition.

Definition 10. In a manner analogous to the definition of the index of a parti-
tion, we define the index of a signature S = (ηi,j)1≤i<j≤t to be ind(S) =
t−2

∑
1≤i<j≤t(ηi,j)

2.

Following is an obvious observation (by a simple calculation) that relates the
index of any ε-signature of a partition to the index of the partition.

Observation 5.1. Let A be an equipartition into s sets and assume that S =
(ηi,j)1≤i<j≤s is an ε-signature of A. Then |ind(A) − ind(S)| ≤ 3ε.

Let G be a graph with n vertices and let s be fixed. Let 0 ≤ αi,j < βi,j ≤ 1,
1 ≤ i < j ≤ s be two sequences of numbers. The following is a special case of a
theorem proved by Goldreich, Goldwasser, and Ron [13] (in [13], there are lower and
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upper bounds on the sizes of the vertex sets, too, but having them here does not make
an essential difference).

Lemma 5.2 (GGR-test of graph partitions [13]). For a fixed s, let P be the
property of a graph G with n vertices having an equipartition V1, . . . , Vs of its vertex
set, such that αi,j ≤ d(Vi, Vj) ≤ βi,j for every 1 ≤ i < j ≤ s (for fixed, given
αi,j < βi,j).

Property P is testable, with a number of queries that is polynomial in ε (for every
fixed s) and is independent of n.

We use the following guarantee on the approximation of a signature given by a
GGR-test.

Lemma 5.3. Let s ≥ 2/ε be fixed, let S = (ηi,j)1≤i<j≤s be a signature, and let
α = (αi,j)1≤i<j≤s and β = (βi,j)1≤i<j≤s be defined by αi,j = ηi,j−ε and βi,j = ηi,j +ε
for 1 ≤ i < j ≤ s. Then applying the GGR-test on a graph G with s, α, β, and
distance parameter ε results in the following.

(i) If the test accepts with probability more than 1
3
, then there exists an equipar-

tition A of G into s sets for which S is an s2ε-signature.
(ii) If there is an equipartition A of G into s sets for which S is an (ε, 0)-

signature, then the test accepts with probability at least 2
3
.

Proof. The first thing to note is that the GGR-property to be tested is exactly
the property that S is an (ε, 0)-signature for some partition of G. This immediately
yields the second item in the assertion of the lemma.

For the first item, assume that the test accepts with probability more than 1
3

when
applied with s, α, and β. Then there must be a graph G′ that is ε-close to G and that
has an equipartition A for which S is an (ε, 0)-signature. Thus A, considered as an
equipartition of G, must have |dG(Vi, Vj)−dG′(Vi, Vj)| ≤ 1

2
s2ε for every 1 ≤ i < j ≤ s

(as otherwise G′ will be more than ε-far from G), and therefore S is an s2ε-signature
for G′.

We are now ready to conclude this section.
Proof of Lemma 4.4. Suppose that the parameters f , γ, and k are given, and set

T = T4.3(k,
1
2
γ, f). For s ∈ {k, . . . , f(T )}, let ε and S(s, ε) be as defined above, and

let m =
∑f(T )

s=k ε−(s2) be the total number of members in the union of all S(s, ε) for
k ≤ s ≤ f(T ).

We use the following procedure for every s ∈ {k, . . . , f(T )}.
(i) Initialize M(s) = 0. This variable will contain the supposed maximum index

of any equipartition into s sets.
(ii) for every S = (ηi,j)1≤i<j≤t ∈ S(s, ε), define α and β by αi,j = ηi,j − ε and

βi,j = ηi,j + ε for 1 ≤ i < j ≤ s (just as in Lemma 5.3).
Apply the GGR-test on G with parameters α, β and distance parameter ε for 100 logm
times. If the majority of the runs accept, then we say that S was accepted. In this case
we take max{M(s), ind(S)} to be the new value of M(s) and record the signature S
if it is the one for which this maximum is obtained. If the test rejects on the majority
of the runs, then we do nothing and say that S was rejected.

Note that in the second step above we need to go over all signatures S ∈ S(s, ε).
It is not hard to generate and go over them in a lexicographic order.

Let s∗ be the smallest number in {k, . . . , T} such that M(s∗) + 3
4
γ ≥ M(s′) for

every s′ ∈ {s∗ +1, . . . , f(s∗)}. If there exists such an s∗, output the signature S∗ that
achieves the maximum for s∗. Otherwise, the algorithm fails.

It is clear that the algorithm above uses a constant number of queries (on account
of using a constant number of GGR-tests). We now need to show that with probability
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at least 2
3
, the algorithm indeed produces a γ-signature of an (f, γ)-final partition of G

into at least k and at most T sets. We conclude the proof using the following claims.
Claim 5.4. With probability at least 2

3
the following holds. For every s ∈

{k, . . . , f(T )} and every S ∈ S(s, ε) which the algorithm accepted, there is an equipar-
tition AS into s sets, with |ind(AS)− ind(S)| ≤ 3s2ε and with S as its s2ε-signature,
and for every such s and S which were rejected by the algorithm, there exists no
equipartition AS for which S is an (ε, 0)-signature.

Proof. We prove for each of the two parts of the claim that it occurs with proba-
bility at least 5

6
, and so it follows that the entire claim holds with probability at least

2
3
. We start with the second part.

Let s and S be such that S is an (ε, 0)-signature for some A. Then by Lemma 5.3 it
will be accepted by any one run of the GGR-test (with the corresponding parameters)
with probability at least 2/3. Thus, it will be rejected by the test only if it is rejected
by the majority of the 100 logm runs, which by Lemma 3.1 will occur with probability
at most 1/(6m). Hence, with probability at least 5/6 the test will accept all such S
as above. This proves that the second part of the claim occurs with probability at
least 5/6.

For the first part of the claim, let us assume now that S is not an s2ε-signature
for any possible equipartition of G into s sets. By Lemma 5.3 this means that every
run of the GGR-test will reject S with probability at least 2/3. Hence, by Lemma 3.1,
the probability that S is accepted by the majority of the runs is no more than 1/6m.
This implies that with probability at least 5/6, every signature S that was accepted
by our algorithm is an s2ε-signature of some equipartition AS of G into s sets, and
then by Observation 5.1 this means that S and AS satisfy |ind(AS)− ind(S)| ≤ 3s2ε.

We have proved that each of the parts occurs with probability at least 5/6, and
so the claim that both of them hold with probability at least 2/3 follows.

Claim 5.5. If the event of Claim 5.4 occurred, then the algorithm succeeds in
the following sense: The algorithm does not fail in its last step, and the signature it
outputs is an s2ε-signature of some (f, γ)-final partition.

Proof. We assume that the event of Claim 5.4 indeed occurred, and first show
that the algorithm does not fail in the last step.

Set s1 to be the smallest s for which G has an (f, γ/2)-final partition into s1 sets.
The fact that such an s1 ∈ {k, . . . , T} exists is asserted in Observation 4.3. Let A
be the corresponding (f, γ/2)-final equipartition with the largest index (if there are
more than one, then let A be the first one in the lexicographic order of its signature).
Then, by the fact that A is (f, γ/2)-final, we have that ind(A)+γ/2 ≥ ind(S) for any
equipartition S into at least s1 and at most f(s1) sets. Also by our choice of A we
have ind(A) ≥ ind(A′) for any equipartition A′ into s1 sets. Let S ∈ S(s1, ε) be the
first in lexicographic order such that S is an (ε, 0)-signature of A. Obviously there
exists such an S by the choice of S(s1, ε).

Thus, assuming that the sampler accepted all signatures which were (ε, 0)-signa-
tures of a corresponding partition, S was in particular accepted. By Observation 5.1,
together with the fact that ind(A) ≥ ind(A′) for any equipartition A′ into s1 sets, it
follows that

ind(A) − 3s2ε ≤ M(s1) ≤ ind(A) + 3s2ε.

Moreover, by combining the inequalities above and Observation 5.1, we get that as
long as all signatures that were not s2ε-signatures of some equipartition were rejected,
the following holds. For any equipartition B into s sets with s1 ≤ s ≤ f(s1) that has a
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corresponding s2ε-signature T ∈ S(s, ε) that was accepted by the algorithm, we have
ind(T ) ≤ ind(B) + 3s2ε ≤ ind(A) + γ/2 + 3s2ε ≤ M(s1) + γ/2 + 6s2ε.

Now this implies that ind(T ) ≤ M(s1) + γ/2 + 6f(s1)
2ε ≤ M(s1) + 3

4
γ by our

choice of ε = γ/24f(T )2. Thus s1 is recognized as a candidate for s∗, and hence the
sampler will not fail to output some s∗ and S∗ (we do not claim that the sampler
actually outputs s1 as s∗, but only that the existence of s1 ensures that the algorithm
does not fail to output something in the last step).

It remains to show that if the event of Claim 5.4 occurs and the sampler outputs a
signature S∗ with index s∗, then there exists a corresponding (f, γ)-final equipartition.
Indeed, this event implies that there exists an equipartition A∗ into s∗ sets so that S∗

is its s2ε-signature. This also means that for all s ∈ {s∗, . . . , f(s∗)} and all signatures
S ∈ S(s, ε), no such signature satisfying ind(S) > M(s∗)+ 3

4
γ is an (ε, 0)-signature of

any equipartition of G (as these signatures were rejected by the algorithm). Now if A∗

was not (f, γ)-final, then there would be an equipartition B with s ∈ {s∗, . . . , f(s∗)}
sets for which ind(B) ≥ ind(A∗) + γ ≥ M(s∗) + γ − 3(s∗)2ε. But if we set S to be an
(ε, 0)-signature of B (by approximating each pair density of B by its closest multiple
of ε), this would imply, by Observation 5.1, that ind(S) ≥ M(s∗)+ γ− 3(s∗)2ε− 3ε >
M(s∗)+ 3

4
γ, a contradiction since such an S (which would have been accepted by the

algorithm) means that S∗ would not be a valid output.
To summarize, by Claim 5.4, with probability at least 2

3
the sampler accepts

all signatures under consideration that are (ε, 0)-signatures of some corresponding
equipartition and rejects all signatures that are not s2ε-signatures of any equipartition.
Then, by Claim 5.5, whenever this event occurs the algorithm will output without
fail a γ-signature for some (f, γ)-final equipartition. Together this means that with
probability at least 2

3
the algorithm will supply the desired output, concluding the

proof of Lemma 4.4.

6. Proof of Lemma 4.5. By Lemma 3.8 (using Lemma 3.7 about canonical
testing), if we know a signature of a regular partition of a graph G, then this is
enough to distinguish whether the graph satisfies a given testable property or is δ-
far from satisfying it. For estimability we would like to go a step further and use a
signature of G to approximate its distance from any graph G′ that the δ-test may
accept.

However, knowing just the signature of a regular partition of G is insufficient, since
regular partitions of two graphs of small relative distance might still be quite different
(and have quite different signatures). Thus, if G does not satisfy a testable property
but is close to satisfying it as witnessed by a graph G′, then a regular partition of G
with a corresponding signature may still not provide us with information about the
regular partition of G′ and thus about the distance of G from the property. Instead,
our strategy will be to ask for a signature of a partition A of G that is robust enough
to ensure that G′ will have a regular partition that is a refinement of A which is still
regular for G. With this setting, we will also be able to calculate a signature in G
for the new partition of G′, using only the signature of A in G. This will enable
us to compare possible signatures for estimating the distance between G and the
hypothetical G′.

We now turn to the formal proof. We first need some definitions about distances
of signatures and about how signatures behave under refinements of equipartitions.

Definition 11. The distance between the signatures S = (ηi,j)1≤i<j≤t and S ′ =
(η′i,j)1≤i<j≤t is defined as the average density difference

∑
1≤i<j≤t |ηi,j − η′i,j |/

(
t
2

)
.

Given a signature S = (ηi,j)1≤i<j≤t for an equipartition A and a refinement
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B = {W1, . . . ,Ws} of A, the extension of S to B is the sequence S ′ = (η′i,j)1≤i<j≤s

defined by setting η′i,j = ηk,l if there exist k 	= l such that Wi ⊂ Vk and Wj ⊂ Vl, and
by arbitrarily setting η′i,j = 0 if Wi and Wj are both subsets of the same Vk.

The following follows directly from the above definition (for any equipartition,
disregarding the regularity conditions).

Observation 6.1. For every ε and s there exist r = r6.1(ε) and N = N6.1(ε, s)
satisfying the following. Suppose that G and G′ are α-close graphs on the same vertex
set of size n ≥ N , and that S and S ′ are γ and γ′ signatures, respectively, of the same
equipartition A of the vertex set of G and G′ into s ≥ r sets. Then the distance
between S and S ′ is at most α + ε + 2(γ + γ′).

Proof (sketch). Setting r = 2/ε, it is clear that for n large enough the 0-signatures
(i.e., the sequences of actual densities) of A over G and G′ differ by no more than α+ε.
Also, it is not hard to see that the 0-signature and any γ-signature of A over G differ
by no more than 2γ, and, similarly, the 0-signature and any γ′-signature of A over G′

differ by no more than 2γ′. We conclude the proof using the triangle inequality.

Given a signature for a regular partition of G, we can use it to bound the distance
of G from some other graph that shares the same regular partition.

Lemma 6.2. For every ε and t there exist γ = γ6.2(ε) and N = N6.2(t, ε), such
that for every graph G with n ≥ N vertices, if S is a γ-signature of a γ-regular
partition A of G with t sets, then for every signature S ′ that is δ-close to S for some
δ, there is a graph G′ (with the same vertex set) that is (δ + ε)-close to G, so that A
is an ε-regular partition of G′ and S ′ is an ε-signature thereof.

Before we continue, we note that the converse is false, as there could be two graphs
that share exactly the same signature but are quite far from each other. For example,
two graphs chosen uniformly at random from the set of all graphs with a fixed labeled
set of n vertices will be with high probability far from each other, but still share the
same signature for the same regular partition, namely the all-1

2
signature.

Proof of Lemma 6.2. We set γ = 1
4
ε. Given G, A = {V1, . . . , Vt}, S = (ηi,j)1≤i<j≤t,

and S ′ = (η′i,j)1≤i<j≤t, as above, we create G′ from G in the following manner.

(i) For every i, the edges within Vi are unchanged.
(ii) For i < j such that η′i,j < d(Vi, Vj), every edge of G between Vi and Vj is

removed with probability 1 − η′i,j/d(Vi, Vj), independently of all other probabilistic
actions in this construction.

(iii) For i < j such that η′i,j > d(Vi, Vj), every vertex pair of G between Vi and
Vj that is not an edge becomes one with probability 1 − (1 − η′i,j)/(1 − d(Vi, Vj)),
independently of all other probabilistic actions in this construction.

Let G′ be the resulting graph. For every X ⊆ Vi, Y ⊆ Vj let d′(X,Y ) = dG′(X,Y )
be the pairwise density with regard to G′ (Definition 4). We choose N > 8t4/(γ3).
Making extensive use of Lemma 3.1, we now prove two claims. We first prove that
with high probability we will get in G′ the correct densities.

Claim 6.3. For every 1 ≤ i < j ≤ t, |d′(Vi, Vj) − η′i,j | > 2γ with probability at

most 1/(2t2).

Proof. Suppose first that η′i,j < d(Vi, Vj). Then, we have m = d(Vi, Vj) · (n/t)2
edges, where each edge is now removed with probability p = 1 − η′i,j/d(Vi, Vj) (in-
dependently of other edges). Note that the expected number of removed edges is
E = (d(Vi, Vj)− η′i,j) · (n/t)2 and thus the expected value of d′(Vi, Vj) is exactly η′i,j .
Hence for the event above to occur, the deviation of the number of edges removed
from E has to be more than 2γ · (n/t)2. Now if d(Vi, Vj) > 2γ, then m is large enough
(assuming that n is large enough) for Lemma 3.1 to ensure that the probability that
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the deviation above is more than γ · (n/t)2 is below the claimed bound and thus to
imply the statement. For d(Vi, Vj) < 2γ the number of removed edges is at most
d(Vi, Vj) and thus the event above occurs with probability 1. If η′i,j > d(Vi, Vj), then
the argument is analogous so we omit it here.

Note that if |d′(Vi, Vj) − η′i,j | ≤ 2γ for a pair (i, j), then we have |d′(Vi, Vj) −
d(Vi, Vj)| ≤ |d′(Vi, Vj) − η′i,j | + |η′i,j − ηi,j | + |ηi,j − d(Vi, Vj)| ≤ 2γ + |η′i,j − ηi,j | +
|ηi,j − d(Vi, Vj)|, and by the assumption on the distance between S and S ′ we also
know that

∑
1≤i<j≤t |η′i,j − ηi,j | ≤

(
t
2

)
δ. We now prove a claim about the regularity

of the pairs in G′.
Claim 6.4. For every i < j for which Vi, Vj is a γ-regular pair in G, this will

not be an ε-regular pair in G′ with probability at most 1/(2t2).

Proof. Again we assume that η′i,j < d(Vi, Vj), as the argument for the com-
plementary case is analogous. Then, for Vi, Vj not to be ε-regular with respect
to G′ there must be some subsets X ⊆ Vi and Y ⊆ Vj of size εn/t for which
|d′(X,Y ) − d′(Vi, Vj)| > ε. We call such sets a violation at (X,Y ). However, since A
is γ-regular for G, we have that |d(X,Y ) − d(Vi, Vj)| ≤ γ (over G). Thus a violation
at (X,Y ) can occur only when the number of removed edges from e(X,Y ) deviates
from its expectation by more than (ε − γ) · (εn/t)2. Note also that the number of
possible edges between X and Y is m = d(X,Y ) · (εn/t)2.

If d(Vi, Vj) > 2γ = ε/2, then m is large enough (assuming that n is large enough),
for Lemma 3.1 to ensure that the probability that the deviation above is more than
(ε−γ) · (εn/t)2 is less than 1/(2t)2 ·2−2n/t. Thus, by the union bound, the probability
that there exists a pair (X,Y ) for which a violation occurs is bounded above by
(1/(2t)2 · 2−2n/t)2|Vi|+|Vj | ≤ 1/(2t2) as claimed.

If d(Vi, Vj) < 2γ, then the number of removed edges is at most 2γ(n/t)2, and
thus a violation at (X,Y ) cannot occur at all (recall that no edges are added by our
procedure in the case η′i,j < d(Vi, Vj).

By the analysis above, the union bound (for every 1 ≤ i < j ≤ t) implies that
there is such a G′ for which the assertions of both claims hold simultaneously for
every 1 ≤ i < j ≤ t. Thus by the statement of Claim 6.4, S ′ is a signature for an
ε-regular partition of G′, being an ε-signature thereof by the statement of Claim 6.3.
In addition, Claim 6.3 implies (as noted right after its proof) that for every pair Vi, Vj ,
at most a 2γ + |η′i,j − ηi,j | + |ηi,j − d(Vi, Vj)| fraction of edges are removed or added
while moving from G to G′.

Summing this for all pairs and recalling that |ηi,j − d(Vi, Vj)| ≤ γ for all but a
γ-fraction of the pairs (due to S being a γ-signature of G) as well as that S and S ′

are δ-close, we get that the total distance between G and G′ is bounded by 2γ + δ +
(1 − γ)γ + γ · 1 ≤ δ + 4γ ≤ δ + ε.

In general, even if G′ and G are close enough graphs (but not too close), a regular
partition of G is not necessarily regular for G′. Instead, we will look at a refinement of
the partition of G that is regular for G′. However, a refinement of a regular partition
is not necessarily in itself regular, nor is its signature close to the corresponding
extension of the original signature. For this we turn to robustness, with the aid of
a lemma about the index of a refinement. The following lemma was proved in [2,
Lemma 3.7] (using the Cauchy–Schwartz inequality), although in essence it was also
already implicitly proved in [18], in the proof of Lemma 4.1.

Lemma 6.5 (see [2, Lemma 3.7]). For every ε and t there exist γ = γ6.5(ε) and
N6.5(t, ε) satisfying the following. Assume that A is an equipartition of a graph G
with n ≥ N6.5(t, ε) vertices into s sets, and that B is a refinement of A into at most
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t sets. Assume further that S is any γ-signature of A and that T is its extension to
B. If B satisfies ind(B) ≤ ind(A) + γ, then T is an ε-signature for B.

The following lemma about the index of a refinement never decreasing too much
was also implicitly proved in the course of several regularity-related proofs. See, for
example, [8, Lemma 7.2.2].

Lemma 6.6. For every ε and t there exists N = N6.6(t, ε), so that for every
equipartition A of G with n ≥ N vertices into s sets and every refinement B of A into
at most t sets, ind(B) ≥ ind(A) − ε.

Proof (sketch). If t divides n (and hence so does s), then we would have ind(B) ≥
ind(A) as a direct consequence of the Cauchy–Schwartz inequality (see, e.g., [8,
Lemma 7.2.2]): Set A = {Vi|1 ≤ i ≤ s} and B = {Wi,k|1 ≤ i ≤ s, 1 ≤ k ≤ t/s}, where
{Wi,1, . . . ,Wi,t/s} are assumed to be exactly the members of B that are contained in
Vi. It is clear that for all 1 ≤ i < j ≤ s we have that d(Vi, Vj) is the average of the
sequence 〈d(Wi,k,Wj,l)|1 ≤ k, l ≤ t/s〉. Hence, the square of d(Vi, Vj) is at most the
average of the squares of 〈d(Wi,k,Wj,l)|1 ≤ k, l ≤ t/s〉, and from here it is easy to see
that ind(B) ≥ ind(A).

If t does not divide n, then we may lose on the difference between ind(A) and
ind(B) on account of rounding errors, but for an appropriate choice of N this loss
would be less than ε.

We can now prove the existence of a refinement for A that is also regular with
respect to G′, provided that A is robust enough.

Lemma 6.7. For every ε there exist γ = γ6.7(ε) and f = f
(ε)
6.7 : N → N satisfying

the following. Suppose that A is an (f, γ)-robust partition of a graph G into s sets
and that S is a γ-signature of A, where G has n ≥ N6.7(s, ε) vertices. Then for
every G′ that shares the same vertex set as G, there exists a refinement B of A into
t ≤ T3.6(s, ε) sets which is ε-regular for both G and G′. Moreover, the corresponding
extension of S to B is an ε-signature with respect to G.

Proof. We set γ = min{ 1
2
γ4.1(ε), γ6.5(ε)}, and for every k ∈ N we set f(k) =

f
(ε)
4.1(T3.6(k, ε)). We set N to be the maximum over the respective functions of all

lemmas that are used in the following (this will be explained later on).

Given a partition A as above and assuming that N ≥ N3.6(s, ε), Lemma 3.6 asserts
that there is a refinement B of A that partitions V (G′) into at most t ≤ T3.6(s, ε) sets
and is ε-regular with respect to G′.

Lemma 6.6, assuming that N ≥ N6.6(T3.6(s, ε), γ), asserts that ind(B) ≥ ind(A)−
γ ≥ ind(A) − 1

2
γ4.1(ε) over G (the last inequality is by the choice of γ). This implies

that B is (f
(ε)
4.1, γ4.1(ε))-robust with respect to G, as otherwise it would mean that

there is a refinement C with at most f
(ε)
4.1(t) sets for which ind(C) > ind(B) + γ4.1(ε),

but this would imply that ind(C) > ind(A) + γ4.1(ε)− 1
2
γ4.1(ε), which contradicts the

robustness requirement of A. Hence we conclude by Lemma 4.1 (applied to B) that
B is also ε-regular with respect to G. This proves that the refinement B is as needed.

In addition, the original robustness requirement for A ensures that the index of
B with respect to G is no more than ind(A)+γ6.5(ε). Hence, Lemma 6.5 ensures that
the extension of S is an ε-signature for B with respect to G, as required.

In the course of the proof of the above, we also make the following observation.

Observation 6.8. If A is an (f
(ε)
6.7, γ6.7(ε))-robust partition of a graph G into s

sets, where G has n ≥ N6.7(s, ε) vertices, and B is any refinement of A with t ≤
T3.6(s, ε) sets, then the extension of any γ6.7(ε)-signature of A to B is an ε-signature
of B (over G).
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We are now ready for the proof of Lemma 4.5. The intuition of the proof is the
following: Assume that S is a γ-signature of an equipartition A that is (f, γ)-robust
for G, for a small enough γ and a fast enough growing f . Our decision whether to
accept or reject G is based on checking whether there is a refinement B of A (with
not too many sets) for which the extension T of S is close enough to a signature T ′

for which the perceived q-statistic satisfies PrT ′(H) ≥ 1
2
. If such a refinement exists,

then we accept G, and otherwise we reject G.
Now, if there is an (ε− δ)-close graph G′ for which PrG′(H) ≥ 2

3
, then G will be

accepted, as close enough graphs have close signatures (Observation 6.1), and f and
γ will be chosen so that B will be regular enough for both G and G′ (as implied by
Lemma 6.7), so that the signature T ′ of B with respect to G′ (which is close to T ) is
such that PrT ′(H) approximates PrG′(H) well enough so that it does not fall below
1
2
. On the other hand, if G is accepted on account of some signature T ′ close to T

for which PrT ′(H) ≥ 1
2
, then Lemma 6.2 asserts that there is a close enough G′ to G,

for which the partition B is regular enough, and for which T ′ is indeed a signature
ensuring that PrG′(H) is close enough to PrT ′(H) so that it is larger than 1

3
. We now

choose the actual parameters and present the formal proof.
Proof of Lemma 4.5. We set the values γ = γ6.7(γ0), s = max{r3.8(q, 1

6
), r6.1(

1
6
δ)},

and f(k) = f
(γ0)

6.7 (k), where

γ0 = min

{
1

6
δ, γ3.8

(
q,

1

6

)
, γ6.2

(
min

{
1

2
δ, γ3.8

(
q,

1

7

)})}
.

We set N to be the maximum over all respective functions of the lemmas and argu-
ments used in the following (we omit here the exact details of the implicitly assumed
lower bounds on n).

Given a γ-signature S for an (f, γ)-robust partition A into t ≥ s sets, we do
the following. We check whether there could be any refinement B of A with at most
T3.6(t, γ0) sets, for which the extension T of S to B is (ε− 1

2
δ)-close to any signature

T ′ such that the perceived q-statistic according to T ′ satisfies PrT ′(H) ≥ 1
2
. If there

exists such a signature, then we accept G, and otherwise we reject it. Note that the
existence of the refinement B depends only on the provided signature S, so we do not
make here any additional queries to the graph G. We now prove the two directions
that tie the existence of such a T ′ with the existence of a corresponding graph G′.

Proof of the first direction. Suppose that G′ is any graph that is (ε−δ)-close to G,
and for which PrG′(H) ≥ 2

3
. We will show that G is accepted by the above procedure.

We use here only that γ0 ≤ min{ 1
6
δ, γ3.8(q,

1
6
)} in the expressions for γ, s, and f .

Indeed let A be an (f, γ)-robust partition of G into t ≥ s sets and let S be
a γ-signature of A. By Lemma 6.7, there exists a refinement B of A into at most
T3.6(t, γ0) sets, so that B is γ0-regular for both G and G′. Moreover, denoting by T
the corresponding extension of S, we have that T is a γ0-signature of B with respect
to G. By the upper bound on γ0 this implies that B is γ3.8(q,

1
6
)-regular for both G

and G′ and that T is a 1
6
δ-signature of B with respect to G.

Let T ′ be the 0-signature of B over G′. Lemma 3.8 implies (using B and G′)
that the perceived statistics with respect to T ′ and the actual statistics of G′ are of
variation distance at most 1

6
. Thus, Lemma 3.2 implies that PrT ′(H) ≥ 2

3
− 1

6
= 1

2
.

In addition, by Observation 6.1 (since B has at least r6.1(
1
6
δ) sets and assuming that

n is large enough), T ′ is (ε− 1
2
δ)-close to T on account of G and G′ being (ε−δ)-close

graphs. Thus, T and T ′ provide a witness that the procedure above accepts G.
Proof of the second direction. Let A be an (f, γ)-robust partition of G into t ≥ s
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sets and let S be a γ-signature of A. Assume that there is a refinement B of A into at
most T3.6(t, γ0) sets, for which the extension T of S to B is (ε− 1

2
δ)-close to a signature

T ′ such that the perceived q-statistic according to T ′ satisfies PrT ′(H) ≥ 1
2
.

We will show that there is a graph G′ that is ε-close to G and for which PrG′(H) >
1
3
. We use here the fact that γ0 ≤ γ6.2(min{ 1

2
δ, γ3.8(q,

1
7
)}) in the expressions for γ,

s, and f .
Indeed, Observation 6.8 (regarding B as a possible refinement of A with respect

to G) asserts that T is a γ0-signature of B (with respect to G), which by the upper
bound on γ0 means that it is a γ6.2(min{ 1

2
δ, γ3.8(q,

1
7
)})-signature for B with respect

to G.
Now Lemma 6.2 (applied on T as an appropriate signature of B and the relatively

close signature T ′) implies that there is a graph G′ that is (ε− 1
2
δ + 1

2
δ)-close to G,

namely ε-close to G, and for which T ′ is a γ3.8(q,
1
7
)-signature of B, which in turn is

γ3.8(q,
1
7
)-regular over G′. By Lemma 3.8 about the closeness of the q-statistic of G′

to the perceived one and Lemma 3.2, PrG′(H) ≥ 1
2
− 1

7
> 1

3
as required.

With both directions proven, the correctness of the above algorithm is now es-
tablished.

7. Concluding comments.

Efficient calculation of regular partitions. The main result of [1] is an al-
gorithm that, for a fixed ε, calculates for an input graph G an ε-regular partition
thereof. The algorithm is proved there to be in NC1 and with deterministic time (in
its nonparallel version) that is the same as that of matrix multiplication. By carefully
reviewing the proof of Lemma 4.4 we can strengthen the first part of their result.
First we give a formal definition for the computational complexity of our algorithms.

Definition 12. A TC0 solution for a problem is an efficient (polynomial time
in n) algorithm for constructing a polynomial size (in n) circuit for every n that gives
a correct answer for every input instance of this size, where the height of the circuit
is independent of n and the circuit consists solely of unlimited fan-in AND (∧) gates,
OR (∨) gates, threshold gates (a threshold gate, for inputs y1, . . . , ym and a given-in-
advance parameter t, checks whether

∑m
i=1 yi ≥ t), and negations (¬). By contrast,

an NC1 solution allows circuits with only negations and fan-in 2 AND/OR gates, but
in which the circuit height is O(log n).

By our methods we are able to prove the following.
Theorem 7.1. For every k, γ, and f : N → N there exists a TC0 solution that for

an input graph G with n ≥ N4.3(k,
1
2
γ, f) vertices computes an (f, γ)-final partition

of G into at least k and at most T4.3(k,
1
2
γ, f) sets.

Proof (sketch). First we show how to calculate only a signature for such a par-
tition. We follow the proof of Lemma 4.4. We recall that whenever the algorithm
in the proof needs to accept or reject a signature S, it makes a constant number of
iterations of a GGR-test. Here we will instead reject or accept S based on an estima-
tion of the acceptance probability of one GGR-test. For this end we first construct a
deterministic circuit for every possible choice of the queries from G that the GGR-test
can make. The queries of a GGR-test are made by first uniformly choosing a constant
number of vertices of G; hence there is a polynomial number of such choices, and for
each one of them we can use a constant size circuit to know whether the test would
have accepted had it made these queries. Then we collect all the outputs of all these
circuits through one threshold gate, setting the threshold to be equal to half of the
number of the inputs of the gate. Thus we will (deterministically) accept S if and
only if the corresponding GGR-test would have accepted with probability at least 1

2
.
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Clearly we can state and prove for this procedure a (deterministic) replacement for
Claim 5.4.

In the original algorithm of Lemma 4.4 there were no other queries made apart
from those coming from the constant number of instances of the GGR-test. Given
all the acceptance and rejection decisions of the signatures above, whose number is
independent of n, we can now find s∗ and S∗ as in the algorithm of Lemma 4.4 using
an additional constant number of gates. A claim analogous to Claim 5.5 will also
work here to ensure that this output is correct.

To find the actual final partition of G, we turn again to the proof in [13] of
Lemma 5.2. In addition to the test itself, it is proved in [13] that it is possible with
high probability to find a constant query size oracle for placing every vertex of G in
its correct set of the partition. In our case we will go over all possible oracles (again
there is a polynomial number of such oracles, as the randomized oracle was built in
[13] using a constant number of queries to the graph), and for every possibility we use
threshold gates to check whether its densities are indeed within the parameters of the
corresponding s∗ and S∗ (noting that there is only a constant number of possibilities
for the values of s∗ and S∗).

Comparing the above theorem to the main result of [1], it is a strengthening both
in the types of partitions it can find (finding ε-regular partitions through Lemma 4.1),
and in the complexity class of the algorithm (TC0 as compared to NC1). On the other
hand, if we consider the running time of the nonparallel version of the algorithm and
are concerned only with regular partitions, then the algorithm of [1] still performs
significantly better than the one here.

Robust partitions and variants of regularity. A variant of the regularity
lemma that required the existence of both a partition and a regular refinement thereof
in the graph G played a central role in [2], [9], and [5]. That variant can also be proved
using the notion of robust partitions; in fact, the proof in [2] of the corresponding
variant is similar in essence to some of the methods used here for proving Observa-
tion 4.2 and Lemma 6.7, so the framework here can be viewed as a generalization of
the previous frameworks.

Reducing the number of queries. One can reduce somewhat the number of
queries of our test if instead of Lemma 6.7 a more complicated lemma (but with bet-
ter parameters) about the existence of a partition that is final for both G and G′ is
proved (rather than starting with a partition A that is only final for G). However,
such an approach would make for a more complicated proof and for a more compli-
cated estimation algorithm that will have to find the parameters for all possible final
partitions.

This improvement in the number of queries still would not have made the test
practical, since as long as the regularity lemma is used in such a form, the estimation
will require a number of queries that is at least a tower in some function of the
number of queries of the original testing algorithm. For this reason we aimed here for
proof simplicity instead. It would be interesting if this (or any other graph testing
result whose only known proof depends on the regularity lemma) can be proved using
alternative methods that would provide a saner dependency of the parameters.

REFERENCES
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Abstract. We consider an extension of first-order logic by modular quantifiers of a fixed modulus
q. Drawing on collapse results from finite model theory and techniques of finite semigroup theory,
we show that if the only available numerical predicate is addition, then sentences in this logic cannot
define the set of bit strings in which the number of 1’s is divisible by a prime p that does not divide
q. More generally, we completely characterize the regular languages definable in this logic. The
corresponding statement, with addition replaced by arbitrary numerical predicates, is equivalent to
the conjectured separation of the circuit complexity class ACC from NC1. Thus our theorem can
be viewed as proving a highly uniform version of the conjecture.
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1. Background. The circuit complexity class ACC(q) is the family of lan-
guages recognized by constant-depth polynomial-size families of circuits containing
unbounded fan-in AND, OR, and MODq gates for some fixed modulus q > 0. It
is known that if q is a prime power and p is a prime that does not divide q, then
ACC(q) does not contain the language Lp consisting of all bit strings in which the
number of 1’s is divisible by p (see Razborov [17] and Smolensky [19]). But for moduli
q that have distinct prime divisors, little is known, and the task of separating ACC,
the union of the ACC(q), from NC1 is an outstanding unsolved problem in circuit
complexity.

ACC(q) has a model-theoretic characterization as the family of languages defin-
able in an extension of first-order logic which contains predicate symbols for arbitrary
relations on the natural numbers, and in which special “modular quantifiers” of mod-
ulus q occur along with ordinary quantifiers (see Barrington et al. [3] and Straub-
ing [20]). Since there are languages that are complete for NC1 under constant-depth
reductions, in order to separate NC1 from ACC, it is sufficient to show that for each
q > 1 there is a language in NC1 that does not belong to ACC(q). This suggests
that one might be able to attack the problem by model-theoretic means. However,
the problem has resisted solution by this or any other method, and little progress has
been made since the appearance of Smolensky’s work.

Recently, Krebs, Lange, and Reifferscheid [11] raised the possibility of proving
the separation for logics with a restricted class of numerical predicates. It is already
known (see Straubing, Thérien, and Thomas [21]) that if the only available numerical
predicate is <, then all the languages definable with ordinary and modular quantifiers
of modulus q are regular, and all the groups in the syntactic monoids of these languages
are solvable, of cardinality dividing a power of q. This implies, for example, that if q
is odd, then one cannot define the set of bit strings with an even number of 1’s in this
logic. The natural next step is to allow the ternary relation x+ y = z on the natural
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numbers. One can prove the analogue of the separation between AC0 and NC1 in
this setting by purely model-theoretic means, without recourse to results from circuit
complexity (originally proved by Lynch [14]; the question is discussed at length in
Barrington et al. [5]). In the present paper we extend this to formulas with ordinary
and modular quantifiers over the numerical predicate x+y = z. This can be viewed as
proving the separation between ACC and NC1 in a highly uniform setting (recently,
a circuit interpretation of this logic was given by Behle and Lange [9]).

We note that natural uniform versions of AC0 and ACC result when one allows
both addition and multiplication as numerical predicates (see Barrington, Immerman,
and Straubing [4]). These formulas behave very differently and are much harder to
analyze by model-theoretic means. So separating ACC from NC1 even in this natural
uniform setting still appears to be a very difficult problem.

We find it more convenient to first work in the setting of infinite bit strings that
contain finitely many 1’s. We view such a string as a particularly rudimentary struc-
ture (a linearly ordered finite set of 1’s) embedded in the natural numbers. We are
then faced with the question of how much of the expressive power of the larger struc-
ture (in this case, the integers under addition) is needed to express properties of the
embedded structure (for instance, that the number of 1’s is even). This is precisely
the kind of problem considered in the study of “embedded finite models,” and we are
able to draw upon various collapse results that already appear in the model-theoretic
literature. We obtain our result by first showing, in section 3, that it is sufficient
to consider sentences that only quantify over positions in a bit string that contain
a 1. The underlying quantifier-elimination procedure, while rather complicated in the
case of modular quantifiers, is based on an idea that goes back to Presburger [16].
In section 4, we use another model-theoretic collapse, this one based on Ramsey’s
theorem, to show that it is sufficient to consider sentences in which the only numer-
ical predicate is <, which can be analyzed by known semigroup-theoretic methods.
Semigroup theory has been used in the past to obtain rather weak lower bounds for
computations by circuits and branching programs (see, e.g., Barrington and Straub-
ing [6]). By coupling the algebra in this way with ideas from model theory, we are
able to extend its reach.

Nurmonen [15] establishes different nonexpressibility results for sentences with
modular quantifiers, using a version of Ehrenfeucht–Fräıssé games. Schweikardt [18]
proves nonexpressibility results for logics with different generalized quantifiers over the
base (N,+). Extension of the Ramsey property to generalized quantifiers is discussed
in Benedikt and Libkin [10]. We have relied heavily on the account of collapse results
for embedded finite models contained in two expository works by Libkin: the survey
article [12] and the book [13].

Of course, we are most interested in proving the separation over arbitrary numer-
ical predicates or, at the very least, over a class of numerical predicates that includes
both addition and multiplication. In the final section we discuss both the prospects
for generalizing the present work, and the obstacles to doing so.

2. Notation and statement of result. We consider first-order logic FO[+]
with a single ternary relation x + y = z. Formulas are interpreted in the natural
numbers N. We adjoin to this logic a single unary relation π. The resulting formulas
are interpreted in bit strings, with π(x) taken to mean that the bit in position x is 1.
In fact we can consider several such interpretations: in finite bit strings (w ∈ {0, 1}∗),
in infinite bit strings (w ∈ {0, 1}N), and in infinite bit strings with a finite number
of 1’s (w ∈ {0, 1}∗0ω, where 0ω denotes an infinite sequence of 0’s). A sentence φ in
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this logic accordingly defines three sets of strings:

Lfin
φ = {w ∈ {0, 1}∗ : w |= φ},

L∞
φ = {w ∈ {0, 1}N : w |= φ},

and

Lfs
φ = {w ∈ {0, 1}∗0ω : w |= φ}.

(The letters “fs” stand for “finite support.”)
For example, let φ be the sentence

∃x∃y((x = y + y) ∧ π(x)),

which asserts that there is a 1 in an even-numbered position. Note that for this
sentence Lfs

φ is a proper subset of L∞
φ , and that Lfs

φ = Lfin
φ 0ω.

We denote this logic by FO[π,+]. More generally, if R is any set of relations on

N, we denote the analogous logic by FO[π,R]. We define the languages Lfin
φ , etc., in

exactly the same way.
To this apparatus we adjoin modular quantifiers ∃r mod q for a fixed modulus q and

0 ≤ r < q. The interpretation of ∃r mod q x φ is, informally, “the number of positions
x for which φ holds is congruent to r modulo q.” More precisely, let φ(x, y1, . . . , yk)
be a formula with free variables x, y1, . . . , yk. Let w ∈ {0, 1}∗ or w ∈ {0, 1}N, and let
a1, . . . , ak < |w|. (If w is infinite, this last condition is automatically satisfied for any
natural numbers ai.) Then we define

w |= (∃r mod q x φ)(a1, . . . , ak)

iff

|{b < |w| : w |= φ(b, a1, . . . , ak)}| ≡ r (mod q).

(In particular, for infinite strings w, this implies that the set {b < |w| : w |=
φ(b, a1, . . . , ak)} is finite.) For example, the sentence

∃0 mod 2 x π(x)

defines, in all three interpretations, the set of strings with an even number of 1’s.
We denote this logic by (FO + MODq)[π,+].
Here is our main result. Let m > 1, and let Lm denote the set of all finite bit

strings in which the number of 1’s is divisible by m.
Theorem 2.1. If m is a prime that does not divide q, then there is no sentence

φ in (FO + MODq)[π,+] such that Lfin
φ = Lm or L∞

φ = Lm0ω.
Remark. If we consider instead the family N of all relations on N, then the family

of languages in {0, 1}∗ definable by sentences in (FO + MODq)(π,N ) is precisely
the nonuniform circuit complexity class ACC(q) (see [3, 20]). If we let × denote
multiplication in N, then (FO + MODq)[π,+,×] is the natural uniform version of
ACC(q) (see [4]). For these logics, the analogues of Theorem 2.1 are equivalent to
the conjectured separation of ACC(q) and NC1 in the nonuniform and uniform cases,
respectively. Thus our theorem can be thought of as establishing this separation in a
highly uniform setting.
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In our proof of Theorem 2.1, we will use some notions from the algebraic theory
of finite automata: To each regular language L ⊆ Σ∗ there is associated a finite
monoid M(L) (the syntactic monoid of L) and a homomorphism μL : Σ∗ → M(L)
(the syntactic morphism of L) such that the value μL(w) determines whether or not
w ∈ L. That is, there is a subset X of M(L) such that L = μ−1

L (X). (M(L) is the
smallest monoid with this property: It is the monoid of transformations on the states
of the minimal automaton of L induced by elements of Σ∗. The homomorphism μL

maps a word w to the transformation it induces, and X is the set of transformations
that take an initial state to an accepting state.)

If L ⊆ Σ∗ and λ ∈ Σ, we say λ is a neutral letter for L if for any u, v ∈ Σ∗,
uλv ∈ L iff uv ∈ L. In other words, deleting or inserting occurrences of λ does not
affect a word’s membership in L. In the algebraic setting, λ is a neutral letter for L
iff μL(λ) is the identity of M(L). For example, each of the languages Lm ⊆ {0, 1}∗
defined above has 0 as a neutral letter.

3. Collapse to active-domain formulas. While our goal is to prove a result
about definability of sets of finite strings, most of our argument concerns definability
of sets of infinite strings. An easy reduction makes the connection between the two
models.

Lemma 3.1. Let φ be a sentence of (FO+MODq)[π,+] and let L = Lfin
φ . Then

there is a sentence φ′ of (FO + MODq)[π,+] such that

Lfs
φ′ = L∞

φ′ = L0ω.

Proof. We define a formula φ[≤ x] with a single free variable x by rewriting it
from the innermost quantifier outward, replacing each instance of

Qzα,

where Q is the quantifier ∃ or ∃r mod q, by

Qz((z ≤ x) ∧ α).

Then L0ω is defined by the sentence

∃x(∀y(π(y) → y ≤ x) ∧ φ[≤ x]).

Remark. Obviously, Lemma 3.1 holds for any of the logics (FO + MODq)[π,R]
in which ≤ is definable.

An active-domain formula in (FO+MODq)[π,+] is one in which every quantifier
occurs in the form

Qx(π(x) ∧ α),

where Q is either the ordinary existential quantifier or a modular quantifier, and α is
a formula. We call these active-domain quantifiers. In other words, we allow quan-
tification only over positions that contain the bit 1. Libkin [12] sketches a proof that
one can replace every formula in FO[π,+] by an equivalent active-domain formula,
provided one extends the signature (the natural-active collapse). Here we generalize
this result to formulas that contain modular quantifiers. (We should add that the
collapse to active-domain formulas holds for arbitrary finite structures—for instance,
graphs—embedded in (N,+), not just sequences of 1’s. One proves, in general, that
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any formula is equivalent to one in which quantification only ranges over elements of
the embedded structure.)

We consider the logic

(FO + MODq)[π,+, <, 0, 1, {≡s: s > 1}],
in which + is now treated as a binary function, 0 and 1 are constants, and ≡s is
a binary relation symbol denoting congruence modulo s. Of course, all these new
constants and relations are definable in FO[+], but we need to include them formally
as part of the language in order to carry out the quantifier elimination.

Theorem 3.2. Let φ be a formula of (FO + MODq)[π,+, <, 0, 1, {≡s: s > 1}],
with free variables in {x1, . . . , xr}. Then there is an active-domain formula ψ in
the same logic such that for all w ∈ {0, 1}∗0ω and a1, . . . , ar ∈ N, we have w |=
φ(a1, . . . , ar) iff w |= ψ(a1, . . . , ar).

Proof. The proof is by induction on the construction of φ. There is nothing to
prove in the base case of quantifier-free formulas. For the inductive step, we assume

(3.1) φ = Qz φ′,

where Q is either an existential quantifier (∃) or a modular quantifier (∃k mod q) and
φ′ is a formula such that any quantifier appearing in φ′ is an active-domain quantifier.
We assume that φ′ has free variables x1, x2, . . . , xr and bound variables (hence active-
domain variables) y1, y2, . . . , ys.

Notation. We shall write v̂m to denote the tuple (v1, v2, . . . , vm). When m is
obvious from the context or is irrelevant, we simply write v̂ and refer to the ith
coordinate as v̂i.

Terms in our logic are expressions of the form

a0 + a1w1 + · · · + akwk,

where the ai are in N and the wi are variables. Atomic formulas have the form

σ = τ, σ < τ, σ > τ, σ ≡m τ, π(σ),

where σ, τ are terms. We can eliminate atomic formulas of the form π(σ) by intro-
ducing a new active-domain variable y and replacing the atomic formula by

∃y(π(y) ∧ y = σ).

We can rewrite each atomic formula σ = τ in φ that involves z as nz = ρ, where ρ
does not involve z. Strictly speaking, ρ is not a term in our logic, since we do not have
subtraction available, so this must be regarded as a shorthand for nz+ρ1 = ρ2, where
ρ1, ρ2 are genuine terms that do not involve z. Later we will view the expression ρ
as defining a partial function on N

r+s. Similarly, we rewrite other atomic formulas
involving z as

nz < ρ, nz > ρ, nz ≡m ρ,

where ρ does not involve z.
Let l be the least common multiple of the coefficients of z in these atomic formulas.

Then since

nz = ρ iff lz = (l/n)ρ,

nz < ρ iff lz < (l/n)ρ,

nz ≡m ρ iff lz ≡m(l/n) (l/n)ρ
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we can suppose that z always appears with the same coefficient l in every atomic
subformula of φ′.

Making a change of variable z 
→ lz, we see that φ is equivalent to the following
formula:

Q z (z ≡l 0 ∧ φ′),

where if z occurs in an atomic formula, it occurs with coefficient 1, and where each
such formula has the form z = ρ, z < ρ, z > ρ, z ≡m ρ, where ρ does not involve z.

Atomic formulas in φ′ of the form z ≡m ρ can be replaced by

m−1∨

i=0

(z ≡m i ∧ ρ ≡m i),

so we may suppose that in every such atomic formula ρ is a constant in N. Let l′ be
the least common multiple of the moduli occurring in such atomic formulas. Then φ
is equivalent to

(3.2) Q z
l′−1∨

j=0

[
z ≡l′ j ∧ φ′

j

]
,

where φ′
j is the formula obtained from φ′ upon replacing each congruence z ≡m i by

true or false, depending on whether this is consistent with z ≡l′ j.
If Q = ∃ in (3.2), then we can rewrite it as

(3.3)

l′−1∨

j=0

∃z
[
z ≡l′ j ∧ φ′

j

]
.

Suppose Q = ∃k mod q. Observe that if α1, . . . , αt are pairwise mutually exclusive,
then we can rewrite

∃k mod qz

t∨

i=1

αi

as

∨ t∧

i=1

∃ki mod qz αi,

where the disjunction is over all t-tuples (k1, . . . , kt) ∈ Z
t
q for which

∑t
i=1 ki = k.

Thus we can rewrite (3.2) as a boolean combination of formulas of the form

∃k′ mod qz
[
z ≡l′ j ∧ φ′

j

]
.

We can thus assume that φ has the form

Q z
(
(z ≡d c) ∧ φ′

)
,

where Q is an ordinary existential or ordinary modular quantifier and φ′ is an active-
domain formula in which every atomic formula involving z is either of the form z < ρ,
z = ρ, or z > ρ.
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We now fix an instantiation of x̂r, the free variables of φ, by a tuple âr ∈ N
r.

To simplify the notation, we will not make explicit reference to âr in the remainder
of the proof. Each ρ appearing on the right-hand side of one of our atomic formulas
accordingly defines a partial function g from N

s into N, where s is the number of active-
domain variables. We set ρ(t1, t2, . . . , ts) to be the value obtained by substituting
ti ∈ N for the variable yi, 1 ≤ i ≤ s, in ρ if this value is nonnegative; ρ(t1, . . . , ts) is
undefined otherwise. We let {gi : i ∈ I} denote the set of these partial functions.

Let w ∈ {0, 1}∗0ω, and let D ⊆ N denote the set of positions in w that contain 1’s.
(That is, D is the active domain of w.) Let

B =
⋃

i∈I

{gi(ŷ)|ŷ ∈ Ds}.

Write B as an ordered set {b0, b1, . . . , bp−1}, where b0 < b1 < b2 < · · · < bp−1. We
denote by (a, b) the set {x ∈ N : a < x < b}. By an interval in B, we will mean either
the leftmost interval (−1, b0), intervals of the form (bi, bi+1) for 0 ≤ i ≤ p− 2, or the
rightmost interval (bp−1,∞).

Lemma 3.3. If there exists an integer z0 in an interval in B such that

w |= φ′(z0),

then

w |= φ′(z′0)

for every z′0 in the interval. (That is, if an interval contains a witness, then every
point in the interval is a witness.)

Proof. The proof is by induction on the construction of φ′. We will show that for
every subformula ψ of φ′ and every instantiation d̂ of the free active-domain variables
by a tuple over D, w |= ψ(z0, d̂) implies w |= ψ(z′0, d̂).

Since all atomic formulas of φ′ that involve z have one of the forms z < gj(ŷ),

z = gj(ŷ), or z > gj(ŷ) for some j ∈ I, and since gj(d̂) ∈ B for all tuples d̂ over D,
the claim holds for the atomic subformulas of φ′. The property clearly is preserved
under boolean operations. Now suppose that the property holds for some subformula
ψ of φ′, and that y1, . . . , yj are the free active-domain variables in ψ. Our hypothesis
applied to ψ implies that if z0 and z′0 belong to the same interval of B, then

{d̂ ∈ Dj : w |= ψ(z0, d̂)} = {d̂ ∈ Dj : w |= ψ(z′0, d̂)}.
In particular, for each fixed d2, . . . , dj ∈ D,

{d1 ∈ D : w |= ψ(z0, d̂)} = {d1 ∈ D : w |= ψ(z′0, d̂)},
so, in particular, these two sets have the same cardinality. Thus if Q is either an
existential or modular quantifier,

w |= Qy1(π(y1) ∧ ψ(z0, d2, . . . , dj))

iff

w |= Qy1(π(y1) ∧ ψ(z′0, d2, . . . , dj)).

Thus the property is preserved under active-domain quantification.
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We define the function χc,d : Z → Z as follows:

χc,d(α) =

{
(c− α) mod d if α �≡d c,

d otherwise.

Corollary 3.4. Let (l, r) be an interval in B such that l ≡dq α. Then

w |= {(z0 ≡d c) ∧ φ′(z0)}
for some z0 ∈ (l, r) iff

l + χc,d(α) < r and w |= φ′(l + χc,d(α)).

Proof. Lemma 3.3 implies that if there is a witness at all in the interval (l, r),
then any integer z0 in the interval such that z0 ≡d c would be a witness. The integer
l+ (c−α) mod d satisfies this requirement if c �≡d α. If c ≡d α, then the integer l+ d
satisfies the requirement.

Remark. We count witnesses in two iterations: First, we count the number modulo
q of witnesses z (if they exist) strictly contained in intervals (l, r), where l < z < r
and l, r are successive points in B, and then we separately count points of B which are
themselves witnesses. As a result, we need to distinguish the cases c ≡ l mod d and
c �≡ l mod d in our formulas. The function χc,d enables us to distinguish between the
two cases.

We also have a special property concerning the infinite interval (bp−1,∞), as
follows.

Corollary 3.5. Let bp−1 ≡dq α. If

w |= ∃k mod q z {(z ≡d c) ∧ φ′} ,
then

w �|= φ′(bp−1 + χc,d(α)).

Proof. If

w |= φ′(bp−1 + χc,d(α)),

then Lemma 3.3 implies that every z0 ∈ (bp−1,∞) such that z0 ≡d c would be a
witness. However,

w |= ∃k mod q z {(z ≡d c) ∧ φ′}
implies that there are only a finite number of witnesses.

We also note the following fact.
Lemma 3.6. Let l, r ∈ N, where l ≤ r, and let c, d, q, α, β ∈ N be such that

l ≡ α mod dq and r ≡ β mod dq.

Let ηq(α, β) denote the number modulo q of integers x in (l, r) such that x ≡d c. Then
ηq(α, β) depends only on α, β, c, d, q.

Proof. Since the number mod q of points x ≡d c in the interval (l, r) does not
change under the maps r 
→ r + adq, l 
→ l + bdq (where a, b ∈ Z), ηq(α, β) is
independent of the actual values of l and r.
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Remark 3.1. An explicit formula for ηq(α, β) is

ηq(α, β) ≡ 1 +
β − α− (c− α) mod d− (β − c) mod d

d
− δ (mod q),

where

δ =

⎧
⎨
⎩

2 if α ≡d c and β ≡d c,
1 exactly one of α or β is ≡d c,
0 otherwise.

However, the point of Lemma 3.6 is that ηq(α, β) depends only on the constants
α, β, c, d, q, and so wherever it appears in our formulas, say, in the form ηq(α, β) ≡q γ
(see, e.g., the formula CountZero(x, y) below), we can replace this by true or false.
This renders the exact form of the expression ηq(α, β) irrelevant.

We now proceed to the quantifier elimination by building an active-domain for-
mula equivalent to φ = ∃k mod qz((z ≡d c) ∧ φ′(z)). The idea is to write a formula
that counts, modulo q, the number of witnesses to (z ≡d c) ∧ φ′(z) in each interval
of B. At each step of the argument we show how to express some property of w in
our language. Our initial result will be a formula in which the arbitrary quantifier
is replaced by quantification over elements of B, but in the end we will show how to
rewrite these in terms of active-domain quantifiers.

Membership in B: The formula Member(x) asserts that x ∈ B:

∃a ŷ
∨

i∈I

(gi(ŷ) = x),

where ∃aŷ α is an abbreviation for

∃y1(π(y1) ∧ ∃y2(π(y2) ∧ · · · ∃ys(π(ys) ∧ α) · · · )).

(x, y) is an interval : The formula I(x, y) asserts that x and y are successive
elements of B:

(x < y) ∧ Member(x) ∧ Member(y)

∧ ¬∃ z (
Member(z) ∧ {

(x < z) ∨ (z < y)
})

.
(3.4)

The interval (x, y) in B has 0 mod q witnesses: This is expressed by the sentence
InteriorPointCountZero(x, y):

I(x, y) ∧ CountZero(x, y),

where CountZero(x, y) is

∨

0≤α≤dq−1
0≤β≤dq−1

[
(x ≡dq α) ∧ (y ≡dq β)

∧
{

(x + χc,d(α) < y) =⇒
(
¬φ′(x + χc,d(α)) ∨ ηq(α, β) ≡q 0

)}]
.

Remark 3.2. Since the function χc,d(α) depends only on the constants c, d,
and α, we can substitute the value of χc,d(α) wherever it appears in our formulas,
for example, in the formula for CountZero(x, y) above. Thus it is not necessary to
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express χc,d(α) in terms of a boolean formula. A similar comment holds for ηq(α, β)
(see Remark 3.1).

Interval (x, y) in B contains γ mod q witnesses, where γ �≡q 0: This is expressed
by the sentence InteriorPointCountNonZero(x, y, γ):

I(x, y) ∧ CountNonZero(x, y, γ),

where CountNonZero(x, y, γ) is

∨

0≤α≤dq−1
0≤β≤dq−1

[
(x ≡dq α) ∧ (y ≡dq β)

∧ (x + χc,d(α) < y) ∧ φ′(x + χc,d(α)) ∧ ηq(α, β) ≡q γ
]
.

Interval (x, y) in B contains γ mod q witnesses: This is expressed by the sentence
InteriorPointCount(x, y, γ):

(γ ≡q 0 =⇒ InteriorPointCountZero(x, y))

∧ (γ �≡q 0 =⇒ InteriorPointCountNonZero(x, y, γ)).

Minimum and maximum elements of B: The formula for Min(x) is

Member(x) ∧ ¬∃y(Member(y) ∧ y < x).

We define Max(x) similarly.
The leftmost interval contains γ mod q witnesses: The formula W (γ) given by

∃x
[
Min(x) ∧

{
(γ ≡q 0) =⇒ CountZero(0, x)

}

∧
{

(γ �≡q 0) =⇒ CountNonZero(0, x, γ)
}]

says that the interval (0, b0) contains γ mod q witnesses. We have to modify this
depending on whether or not 0 is itself a witness. Thus if c �= 0, we set CL(γ) to be
W (γ); otherwise, we set it to be φ′(0) ∧W (γ − 1).

The rightmost interval contains no witnesses: This is expressed by CR:

∃x
⎧
⎨
⎩Max(x) ∧

∧

0≤α≤dq−1

{(x ≡dq α) → ¬φ′(x + χc,d(α))}
⎫
⎬
⎭ .

Number mod q of intervals (bi, bi+1) containing γ mod q witnesses: The sentence
H(δ, γ) asserts that there are δ mod q intervals (x, y) with endpoints in B having
γ mod q witnesses:

H(δ, γ) = ∃δ mod q x ∃ y InteriorPointCount(x, y, γ).

Number mod q of witnesses from intervals (bi, bi+1): The formula Cint(γ) asserts
that the number of witnesses contained in intervals (bi, bi+1), where bi, bi+1 ∈ B, is
congruent to γ mod q:

∨

0≤γj≤q−1
0≤j≤q−1∑q−1

j=0 jγj≡γ mod q

q−1∧

i=0

H(i, γi).
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Number mod q of witnesses from B: The sentence CB(γ) asserts that the number
of witnesses bi ∈ B is congruent to γ mod q:

∃γ mod q l (Member(l) ∧ (l ≡d c) ∧ φ′(l)).

Total number mod q of witnesses: The sentence Ctot(γ) asserts that the total
number of witnesses is congruent to γ modulo q:

∨

0≤γ1,γ2,γ3≤q−1
γ1+γ2+γ3≡qγ

(CB(γ1) ∧ CL(γ2) ∧ Cint(γ3)).

Thus ∃k mod qz
{
(z ≡d c) ∧ φ(z)

}
is equivalent to the sentence

T = Ctot(k) ∧ CR.

Note that T is almost active-domain. The non–active-domain quantifiers in T
are of the form

∃x {Member(x) ∧ T ′(x)} or of the form ∃k mod q x {Member(x) ∧ T ′(x)} .

In the first case, we can replace the ordinary existential quantifier in front of x
by the definition of Member(x) to get an active-domain formula of the form

∃aŷ
∨

i∈I

T ′(gi(ŷ)).

Rewriting the second formula with active-domain quantifiers is more complicated.
Let g1, . . . , gm be the partial functions, and let Bi be the set of points in gi(D

s) that
are not in gj(D

s) for any j > i. Since B is the disjoint union of the Bi, we can rewrite

∃k mod q x {Member(x) ∧ T ′(x)}

as a boolean combination of sentences of the form

(3.5) ∃k′ mod q x {Memberj(x) ∧ T ′(x)} ,

where Memberj(x) asserts that x belongs to Bj . It is easy enough writing an active-
domain formula that asserts that x is in Bj , but how do we count the number of
elements in Bj with a given property?

Let ≺ denote the lexicographic ordering on Ds. We can express ŷ ≺ ŷ′ as a
boolean combination of the formulas yi < y′i and yi = y′i. Let LLi(ŷ) be the formula

¬∃aŷ′((gi(ŷ) = gi(ŷ
′)) ∧ (ŷ ≺ ŷ′)).

This asserts that ŷ is the lexicographically maximal s-tuple yielding the value gi(ŷ)
under gi. (Implicit in this is the assertion that gi(ŷ) is defined, which is expressed by
a simple inequality.) We can thus rewrite our formula (3.5) as

∃k′ mod q(ŷ ∈ Ds)

⎛
⎝LLj(y) ∧ T ′(gj(ŷ)) ∧ ¬∃ŷ′ ∨

i>j

(gi(ŷ
′) = gj(ŷ))

⎞
⎠ .
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Finally, we note that modular quantification over s-tuples of elements of D is express-
ible in terms of modular quantification over active-domain elements. Indeed,

∃k mod q(y1, y2) α

is equivalent to the disjunction of

(3.6)

q−1∧

i=0

∃i mod q y1 ∃f(i) mod q y2 α

over all functions f from Zq to itself such that
∑q−1

i=0 if(i) = k, and we can extend
this inductively to quantification over tuples of arbitrary size.

We have said nothing about how to eliminate ordinary non–active-domain quan-
tifiers. This case is treated in Libkin [12], which was the starting point for the present
proof. The argument follows the same pattern, but is much simpler, since we do not
need to count either points in the images of the gi or points in their domains. We
merely have to assert that there exists some u ∈ B such that

{
∨

0≤e≤d−1
u+e≥0
u+e≡dc

φ′(u + e)

}
∨
{

∨

0≤e≤d−1
u−e≥0
u−e≡dc

φ′(u− e)

}

holds, and this is easily carried out using the Member formula introduced earlier.

4. Collapse to formulas with < as the only numerical predicate.

4.1. Ramsey property. Our discussion here closely parallels that of Libkin [13].
Let R be any set of relations on N, and let φ(x1, . . . , xk) be an active-domain for-
mula in (FO + MODq)[π,R]. We say that φ has the Ramsey property if for each
infinite subset X of N there exists an infinite subset Y of X and an active-domain
formula ψ(x1, . . . , xk) in (FO + MODq)[π,<] that satisfies the following condition:
If w ∈ {0, 1}∗0ω and all the 1’s in w are in positions belonging to Y , then for all
a1, . . . , ak ∈ Y ,

w |= φ(a1, . . . , ak) iff w |= ψ(a1, . . . , ak).

Lemma 4.1. Let N be the set of all relations on N. Every active-domain formula
in (FO + MODq)[π,N ] has the Ramsey property.

Proof. The Ramsey property for an assortment of generalized quantifiers is proved
by Benedikt and Libkin [10] (also in [13, Lemma 13.15, p. 259]) by using induction on
the quantifier depth. While they do not explicitly consider the modular quantifiers
that we use here, there is no essential change in the proof. For clarity, we include the
inductive step for modular quantifiers.

Let φ(x̂) = ∃k mod qy [π(y) ∧ φ1(y, x̂
r)] be an active-domain formula in (FO +

MODq)[π,N ]. By the induction hypothesis (from Lemma 13.15 in [13]), for each
infinite subset X of N there exists an infinite subset Y of X and an active-domain
formula ψ1(y, x̂) in (FO + MODq)[π,<] such that if w ∈ {0, 1}∗0ω and all the 1’s in
w are in positions belonging to Y , then for all âr ∈ Y r and b ∈ Y , w |= ψ1(b, â) iff
w |= φ1(b, â). This implies that for every â,

{b ∈ Y |w |= ψ1(b, â)} = {b ∈ Y | w |= φ1(b, â)}.
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Let ψ(x̂) = ∃k mod qy [π(y) ∧ ψ1(y, x̂)]. Then for every w such that its 1’s are in Y
and â ∈ Y r, w |= ψ(â) iff

|{b ∈ Y |w |= ψ1(b, â)}| ≡q k.

This happens iff

|{b ∈ Y |w |= φ1(b, â}| ≡q k

since the two sets are identical. Thus w |= ψ(â) iff w |= φ(â).
The Ramsey property allows us to capture a subset of a language expressible

by a formula φ (which satisfies the Ramsey property) using a new formula over a
very limited vocabulary (the only numerical predicate allowed is <). This limited
vocabulary restricts the kind of language that can be expressed.

Lemma 4.2. Let Lψ = {w|w ∈ {0, 1}∗} be the set of finite bit strings defined by
an active-domain sentence ψ ∈ (FO + MODq)[π,<].

(i) The language Lψ is regular. Moreover, the syntactic monoid M(Lψ) contains
only solvable groups whose order divides a power of q.

(ii) Lψ has 0 as a neutral letter.
(iii) Let z ∈ Σ∗. Then z ∈ Lψ iff z0ω |= ψ.
Proof. Condition (i) is a result of Straubing, Thérien, and Thomas [21]. Inserting

or deleting 0’s from any string satisfying ψ does not alter the truth value of any atomic
formula of the form x < y, provided the variables represent positions containing 1,
which is the case here, since ψ is active-domain. Conditions (ii) and (iii) then follow
by an easy induction on the quantifier depth.

4.2. Proof of Theorem 2.1. Let m be a prime that does not divide q, and
suppose, contrary to the claim in the theorem, that Lm is defined by a sentence φ of
(FO + MODq)[π,+]. By Lemma 3.1, Theorem 3.2, and Lemma 4.1, there exists an
active-domain sentence ψ of (FO + MODq)[π,<] and an infinite subset Y of N such
that for all w ∈ {0, 1}∗0ω in which all 1’s are in positions belonging to Y, w |= ψ iff
w ∈ Lm0ω. Let Lψ denote the set of finite bit strings that satisfy ψ. We prove the
following lemma.

Lemma 4.3. Lm = Lψ.
Proof. We first show that Lψ ⊆ Lm. Let z′ ∈ Lψ. We pad z′ with 0’s so that

the 1’s in the new padded string z′′ appear in positions included in the set Y . Since
z′′ ∈ Lψ (by Lemma 4.2 (ii)), we conclude that z′′0ω |= ψ (by Lemma 4.2 (iii)). Since
the 1’s in z′′0ω appear in positions in Y , z′′0ω |= φ. Hence z′′0ω ∈ Lm0ω, so z′′ ∈ Lm.
Removing additional neutral letter 0’s introduced while padding z′, we conclude that
z′ ∈ Lm.

The opposite inclusion (Lm ⊆ Lψ) is proved by reversing each step above.
Since the syntactic monoid of Lm is the cyclic group Zm and that of Lψ has

groups of order dividing a power of q (via Lemma 4.2), we have a contradiction since
(m, q) = 1. Thus Lm cannot be defined by a sentence in (FO + MODq)[π,+]. This
completes the proof.

4.3. Other nondefinability results. Here we show how to extend Theorem 2.1
to prove nonexpressibility results for other languages. We begin by removing the
restriction to binary alphabets.

Let Σ be a finite alphabet and let us consider languages definable in the logic
Lq,Σ,+ = (FO + MODq)[{πσ : σ ∈ Σ},+], where each πσ is a unary predicate: πσx
is interpreted to mean that the letter in position x is σ. We designate a special letter
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λ ∈ Σ, and say that a formula is active-domain (with respect to λ) if every existential
and modular quantifier Q occurs in the form Qx((∨σ 
=λ πσx) ∧ α). Note that we
need never use the atomic formula πλx, even in non–active-domain formulas, as it is
equivalent to the conjunction of the ¬πσx over all letters σ not equal to λ. All the
preceding results hold in this broader setting, with no changes to their proofs. We
thus have the following theorem.

Theorem 4.4. Let L ⊆ Σ∗, with λ ∈ Σ a neutral letter for L. If L is definable
in Lq,Σ,+, then it is definable by a sentence of (FO + MODq)[{πσ : σ ∈ Σ}, <]. In
particular, L is regular, and every group in M(L) is solvable, with cardinality dividing
a power of q.

The foregoing theorem allows us to give an effective characterization of all the
regular languages in Lq,Σ,+.

Theorem 4.5. Let L ⊆ Σ∗ be regular. L is definable in Lq,Σ,+ iff for all t > 0
every group in μL(Σt) is solvable and has cardinality dividing a power of q.

The reduction to the neutral letter case is somewhat involved, so we delegate the
proof to the next section. The same property is known to characterize the regular
languages in ACC(q), provided that the conjectured separation of ACC(q) and NC1

holds [3].
Since L is regular, there exist integers k and l such that μL(Σk+l) = μL(Σk) (since

μL(Σt) ⊆ M(L) for all t ≥ 0 and M(L) is finite). Thus we can effectively enumerate
all the sets μL(Σt) and all their subgroups. We thus have the following result.

Corollary 4.6. Given an integer q > 1 and a regular language L ⊆ Σ∗, the
question of whether L is definable in Lq,Σ,+ is decidable.

Here is an application of Theorem 4.5. Let G be a finite group and let Σ ⊆ G be
a set of generators of G. We treat G as a finite alphabet; to each word w ∈ Σ∗ we
assign the group element φ(w) that results by multiplying together the letters of w.
The word problem for G (with respect to Σ) is the language {w ∈ Σ∗ : φ(w) = 1}.
Barrington [2] showed that the word problem for any finite nonsolvable group is
complete for NC1 with respect to constant-depth reductions, so that the conjectured
separation of ACC from NC1 is equivalent to the assertion that no such word problem
belongs to ACC. We can verify directly that no such word problem L is definable in
Lq,Σ,+: L is a regular language, and it is easy to check that M(L) = G and μL = φ.
If G is nonsolvable, then its commutator subgroup G′ is also nonsolvable, and thus
every element of G′ is the image of a word over Σ of length divisible by |G| (each
commutator is an image of a word of the form uvu|G|−1v|G|−1, where u, v ∈ Σ). We
can pad each of these words with a sufficient number of copies of σ|G| (for some fixed
σ ∈ Σ) so that they all have the same length t. Thus G′ ⊆ φ(Σt). Since G′ is
nonsolvable, Theorem 4.5 now implies that L is not definable is Lq,Σ,+.

Theorem 4.7. No word problem of a finite nonsolvable group is definable in any
Lq,Σ,+.

Note that it is precisely the nonsolvability of G, rather than the relation between
|G| and q, that is at issue here: For instance, a word problem of the alternating
group of degree 5, whose cardinality is 60, is not definable in L30,Σ,+ even though the
cardinality and modulus are consistent. On the other hand, the word problem for any
solvable group of order 60 is definable in this logic.

5. Proof of Theorem 4.5.

5.1. Two essential lemmas. Let Σ be a finite alphabet. We prove that defin-
ability in (FO + MODq)[{πσ : σ ∈ Σ},+, <] (which we denote by L for the rest of
this section) is preserved under inverse length-multiplying morphisms and quotients.
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Remark. Note that we are admitting x < y as an atomic formula, rather than
simply defining it in terms of +. This is largely a matter of convenience; we could
still carry out the proof if we allowed only + as a numerical predicate.

Given a language L ⊆ Σ∗ and strings u, v ∈ Σ∗, we define the language u−1Lv−1 =
{w ∈ Σ∗|uwv ∈ L}.

Lemma 5.1. Let L ⊆ Σ∗ be definable in L. Then u−1Lv−1 is also definable in L.
Proof. It suffices to prove that σ−1L and Lσ−1 are definable in L for each σ ∈ Σ.

We exhibit a proof of the first of these assertions by constructing a formula ψ[φ] for
σ−1L given a formula φ for L. (We omit the almost identical proof of the second
assertion.) To accomplish this, we encode each position x in σv by a pair of positions
(x1, x2) in v: We map x to (1, x − 1) if x > 0, and to (0, 0) if x = 0. Note that this
requires |v| ≥ 2, so we must treat the case where |v| < 2 separately. The encoding is
clearly injective; let us denote its inverse by α.

We first write a formula ψ1[φ] satisfied by all strings v ∈ Σ∗ of length 0 or 1 such
that σv |= φ (such a formula is trivial to write since there are only three strings to
consider). For strings v of length ≥ 2, we show how to construct ψ2[φ] by recursion
over the term structure of φ. The final formula ψ[φ] is ψ1[φ] ∧ ψ2[φ].

Our inductive hypothesis is the following: Given a formula φ(x1, x2, . . . , xk),
there exists a formula ψ2[φ](x1,1, x2,1, . . . , x1,k, x2,k) such that if |v| ≥ 2, then v |=
ψ2[φ](b1,1, b2,1, . . . , b1,k, b2,k) iff σv |= φ(α(b1,1, b2,1), . . . , α(b1,k, b2,k)). In particular,
the former condition can hold only if all the α(b1,k, b2,k) are defined. When there are
no free variables then σv |= φ iff v |= ψ2[φ] as desired (if |v| ≥ 2).

The formula ψ2[φ] is defined below, depending on the following choices for φ:
(1) Qτ (x): If τ �= σ, then ψ2[φ] = (x1 = 1) ∧ Qτ (x2); otherwise set ψ2[φ] =

(Qσ(x2) ∧ x1 = 1) ∨ (x1 = 0).
(2) x+ y = z: We enumerate the subcases depending on the number of x1, y1, z1

equal to 0:

ψ2[φ] = ((x1 = y1 = z1 = 1) ∧ (x2 + y2 + 1 = z2))

∨ ((x1 = 0) ∧ (y1 = z1 = 1) ∧ (y2 = z2))

∨ ((y1 = 0) ∧ (x1 = z1 = 1) ∧ (x2 = z2))

∨ (x1 = y1 = z1 = 0).

(3) ¬φ1: ψ2[φ] = ¬ψ2[φ1].
(4) φ1 ∧ φ2: ψ2[φ] = ψ2[φ1] ∧ ψ2[φ2].
(5) ∃x φ1: ψ2[φ] = ∃ (x1, x2) ψ2[φ].
(6) ∃a mod q x φ1:

ψ2[φ] = (∃a mod q(x1, x2)(x1 = 1) ∧ ψ2[φ1] ∧ ¬∃(x1, x2)(x1 = 0 ∧ ψ2[φ]))

∨ (∃a−1 mod q(x1, x2)(x1 = 1) ∧ ψ2[φ1] ∧ ∃(x1, x2)(x1 = 0 ∧ ψ2[φ1])).

Note that both modular and existential quantification over tuples (x1, x2) can be
expressed as a boolean combination of quantification over x1 and x2 (see (3.6) and the
remarks preceding it). Also note that we strictly cannot have terms like (x + 1) = y
in our logic as we have written above; we still use these as a (clearer) shorthand for
the more elaborate formula ¬∃z((x < z) ∧ (z < y)) ∧ (x �= y).

Lemma 5.2. Let Σ,Γ be finite alphabets and let f : Γ∗ → Σ∗ be a homomorphism
such that f(Γ) ⊆ Σr for some fixed r > 0. If L ⊆ Σ∗ is definable in L, then f−1(L) ⊆
Γ∗ is also definable in L.
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Proof. Let φ be a formula in L, such that w ∈ L iff w |= φ. We construct (via
recursion over the term structure of φ) a formula ψ[φ] in L such that for any v ∈ Γ∗,
v |= ψ[φ] iff f(v) |= φ. Once again, we do this by encoding each position in f(v) by
a pair of positions in v. In this case, x is encoded by (x mod r, �x/r�). Note that
this requires |v| ≥ r, so again we will have to treat the finite number of exceptions
separately. The inverse of this encoding, α(x1, x2) = rx1 + x1, is defined iff x1 < r.

We first write a formula ψ1[φ] satisfied by the (finite) set of strings v ∈ Γ∗, where
|v| < r and f(v) |= φ:

ψ1[φ] =
∨

v=σ0σ1...σs−1
s<r

f(v)|=φ

s−1∧

i=0

Qσi(i).

For strings v of length ≥ r, we show how to construct ψ2[φ] by recursion over the
term structure of φ. The final formula ψ[φ] is ψ1[φ] ∧ ψ2[φ].

Our inductive hypothesis is the following: Given a formula φ(x1, x2, . . . , xk),
there exists a formula ψ2[φ](x1,1, x2,1, . . . , x1,k, x2,k) such that if |v| ≥ r, then v |=
ψ2[φ](b1,1, b2,1, . . . , b1,k, b2,k) iff f(v) |= φ(α(b1,1, b2,1), . . . , α(b1,k, b2,k)). In particular,
the former condition can hold only if all the α(b1,k, b2,k) are defined. When there are
no free variables then f(v) |= φ iff v |= ψ2[φ] as desired (if |v| ≥ r).

We set ψ[φ] = ψ1[φ] ∧ ψ2[φ], where the formula ψ2[φ] is defined recursively, de-
pending on the following choices for φ:

(1) Qσx: Then ψ2[φ] = (
∨

f(γ)i=σ Qγ(x2) ∧ x1 = i).

(2) x + y = z: This would imply that x1 + y1 − z1 = r(z2 − x2 − y2). Since
1 ≤ x1 + y1 − z1 < 2r and r|(x1 + y1 − z1), the left-hand side x1 + y1 − z1 is
either r or 0 (and this determines the right-hand side’s values). Thus

ψ2[φ] = (x1 + y1 = z1 ∧ x2 + y2 = z2)∨ (x1 + y1 = z1 + r ∧ x2 + y2 + 1 = z2).

(3) ¬φ1: ψ2[φ] = ¬ψ2[φ1].
(4) φ1 ∧ φ2: ψ2[φ] = ψ2[φ1] ∧ ψ2[φ2].
(5) ∃x φ1: ψ2[φ] = ∃ (x1, x2) ((x1 < r) ∧ ψ2[φ1]).
(6) ∃a mod q x φ1: ψ2[φ] = ∃a mod q (x1, x2) ((x1 < r) ∧ ψ2[φ1]).
As in Lemma 5.1, both modular and existential quantification over tuples (x1, x2)

can be expressed as a boolean combination of quantification over x1 and x2 (see (3.6)
and the remarks preceding it).

5.2. Reduction to the neutral-letter case. We prove that every group con-
tained in μL(Σt) (in the statement of Theorem 4.5) is the syntactic monoid of a
(regular) language with a neutral letter definable in L. Then Theorem 4.4 implies
that every such group has to be solvable and has cardinality dividing a power of q.
This reduction to the neutral letter case is done in Lemma 5.3 below. Note that the
reverse direction follows easily from Straubing, Thérien, and Thomas [21]: If every
group in μL(Σt) is solvable and has order dividing a power of q, then every subgroup
of M(L) is solvable and has order dividing a power of q, and this implies that L is
definable in (FO + MODq)[{πσ : σ ∈ Σ}, <] and hence is definable in Lq,Σ,+.

Lemma 5.3. Let L ⊆ Σ∗ be regular, and suppose L is definable in L. Then for
every t ≥ 0 and every group G ⊆ μL(Σt), there exists a finite alphabet Γ = ΓG and a
language LG ⊆ Γ∗, such that LG has a neutral letter and is definable in L. Moreover,
LG is regular and M(LG) = G.
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Proof. We define the finite alphabet

Γ = {γw : w ∈ Σt, μL(w) ∈ G}.
The map γw 
→ w extends to a homomorphism f from Γ∗ into Σ∗ such that f(Γ) ⊆ Σt.
We define

LG = {v ∈ Γ∗ : μL(f(v)) = e},
where e is the identity of G.

Note that LG has a neutral letter γv, where μL(v) = e. We will show shortly that
LG is definable by a sentence of L. First note that LG is regular: It is recognized by
a deterministic finite automaton (DFA) with state set G, initial and accepting state
e, and state transitions

γw : g 
→ gμL(w).

Every state of this automaton is accessible from the initial state, and equivalent states
must be identical, because of cancellation in the group. Thus this is the minimal DFA
of LG, and consequently M(LG) = G.

It remains to establish the claim about definability of LG in L. It is well known
that if K ⊆ Σ∗ is regular, then for each m ∈ M(K), the set μ−1

K (m) is a finite boolean
combination of languages of the form

u−1Kv−1 = {w ∈ Σ∗ : uwv ∈ K},
where u, v ∈ Σ∗. We have

LG = f−1(μ−1
L (e)),

so our claim will follow if we can show that definability is preserved under the language
operations

K 
→ u−1Kv−1

and

K 
→ f−1(K).

This was established by Lemmas 5.1 and 5.2.

6. Monadic predicates. In this section, we consider definability of languages
in first-order logic with modular quantifiers when we allow monadic (i.e., arity 1)
numerical predicates. More specifically, we consider the logic MONq = (FO +
MODq)[<, {πσ}σ∈Σ, θ1, θ2, . . . , θr], where θi, 1 ≤ i ≤ r, are bit-valued functions on N.

We define a map

̂: Σ∗ → (Σ × {0, 1}r)∗

as follows:

w = σ0σ1 . . . σn−1 
→ ŵ = (σ0, γ1,0, γ2,0, . . . , γr,0) · · · (σn−1, γ1,n−1, γ2,n−1, . . . , γr,n−1),

where γi,j = θi(j). Given L ⊆ Σ∗, we denote L̂ = {ŵ| w ∈ L}.
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Lemma 6.1. Let φ be a sentence in MONq. There exists a language K ⊆
(Σ× {0, 1}r)∗ such that (a) K is regular, and every group in the syntactic monoid of
K is solvable with order dividing a power of q; (b) if w ∈ Σ∗, then w |= φ iff ŵ ∈ K.

Proof. We take the formula φ and rewrite it by replacing every occurrence of
θi(x) by the disjunction of all π(σ,v)x, with σ ∈ Σ and v ∈ {0, 1}r, for which the ith
component of v is 1. Likewise we replace every occurrence of πσx by the disjunction
of π(σ,v) over all v ∈ {0, 1}r. By [21], the resulting sentence φ̂, interpreted in words
over Σ × {0, 1}r, defines a regular language K whose syntactic monoid possesses the

desired property, and it is clear that w |= φ iff ŵ |= φ̂. (Observe that not every
element of K is ŵ for some w ∈ Σ∗.)

We need the following lemma, which follows from Ramsey’s theorem.
Lemma 6.2. Consider a k-coloring of the set {(i, j)| 1 ≤ i ≤ j} ⊆ N × N. Then

there is an infinite sequence {ij} with

1 ≤ i1 < i2 < · · ·
such that all (ij , ij+1) have the same color.

(We note that the full strength of Ramsey’s theorem is not required here, as we
do not need all (ij , ik) with j < k to have the same color. A weaker combinatorial
principle, along the lines of the Erdös–Szekeres theorem on the existence of long
monotone subsequences of arbitrary sequences, will suffice. See [6], which is the
source for the kind of argument that we use in the present section.)

Theorem 6.3. If L is a language with a neutral letter definable in MONq, then
it is regular and definable in (FO+MODq)[<, {πσ}σ∈Σ]. Furthermore, the syntactic
monoid of L is solvable and every group in the syntactic monoid has order dividing a
power of q.

Proof. We let Σ = {σ1, σ2, . . . , σt} and let λ ∈ Σ be the neutral letter for L (so
that λ = σi for some i).

We extend the notation we used to define the function ̂: We set (̂w, i) to be the
suffix of length |w| of v̂w, where v is any string of length i. This is independent of

the choice of the string v. Note that ŵ = (̂w, 0).
Suppose L is definable by a sentence φ in MONq. Let K ⊆ (Σ × {0, 1}r)∗ be

the regular language whose existence is proved in Lemma 6.1. Let M be its syntactic
monoid and let μ : (Σ × {0, 1}r)∗ → M be its syntactic morphism. Furthermore let
X ⊆ M be such that K = μ−1(X).

Let w = τ1τ2 . . . τn ∈ Σ∗ and |w| = n. We color (i, j), 1 ≤ i < j, i, j ∈ N, by

(mσ1
,mσ2

, . . . ,mσt
), where mσk

= μ( ̂σkλj−i−1, i− 1) ∈ M . By Lemma 6.2, there is
a sequence 1 ≤ i1 < i2 < · · · < in+1 such that (ij , ij+1), 0 ≤ j ≤ n, have the same
color. Define

pad(w) = λi1−1τ1λ
i2−i1−1τ2 . . . λ

in−in−1−1σnλ
in+1−in−1.

Since λ is a neutral letter for L, w ∈ L iff pad(w) ∈ L. Observe that

μ(p̂ad(w)) = m0mτ1mσ2 · · ·mτn ,

where m0 = μ(λ̂i1−1). Thus w ∈ L iff m0ν(w) ∈ X, where ν : Σ∗ → M is the
homomorphism defined by ν(σi) = mσi for 1 ≤ i ≤ t. This implies that there is a set
Y = {m ∈ M | m0m ∈ X} such that w ∈ L iff ν(w) ∈ Y ⊂ M . Thus L is regular, and
its syntactic monoid is a quotient of a submonoid of M , which implies that all the
groups in M(L) are solvable and have order dividing a power of q. The conclusion
about logical definability of L now follows from the results of [21].
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7. Directions for further research. In many steps of the algorithm for re-
ducing a sentence defining Lm to an active-domain sentence, we introduced ordinary
quantifiers even when the original formula had only modular quantifiers. If there
were a way to avoid this, we could also prove, by the same techniques, that the lan-
guage 0∗1{0, 1}∗ cannot be defined by a formula over (N,+) having only modular
quantifiers. If addition is replaced by arbitrary numerical predicates, this statement
is equivalent to the conjecture that the circuit complexity class CC0 does not con-
tain the language 1∗. (CC0 is the class of languages recognized by constant-depth,
polynomial-size circuit families in which every gate is a MODq gate for a fixed mod-
ulus q. See Barrington, Straubing, and Thérien [7].)

One can ask in general for what classes C of numerical predicates we have that
every language in (FO + MODq)[N, C] with a neutral letter is regular and definable
using only the ordering in <. The question is discussed at length in [5], and in [12]
in the more general context of collapse results for embedded finite models. One can
investigate whether, as is the case for first-order logic, finite VC-dimension of (N, C)
implies the collapse. This would require generalizing the results of Baldwin and
Benedikt [1] to modular quantifiers.

But there is a limit to how far we can push this approach. We are really interested
in proving our result over a base of arbitrary numerical predicates, or at the very least
over the base {+,×}. However, with {+,×}, one can express all problems in the arith-
metic hierarchy (section 4 in [5]). Specifically, it is possible in this logic to define the set
of infinite strings with an even number of 1’s in first-order logic without using modular
quantifiers! Let E(x) be the numerical predicate “the binary expansion of x contains
an even number of 1’s,” and B(x, y) the predicate “bit y in the binary expansion of
x is 1.” Then the set of infinite bit strings with an even number of 1’s is defined by

∃x(E(x) ∧ ∀y(π(y) ↔ B(x, y))).

Both E and B are definable over (+,×). This shows that we cannot extend the col-
lapse arguments to these richer logics. It also shows (since we know, from circuit com-
plexity, that first-order sentences cannot define PARITY for finite strings) that there
are important differences between finite and infinite strings as regards definability.

One possible approach to formulas with more general numerical predicates is to
try to prove some version of the collapse results for sentences interpreted in finite
strings that are known to define regular languages. We do know, for example, thanks
to the circuit lower bounds, that regular languages definable by first-order sentences
with arbitrary numerical predicates are all definable in FO[<, {≡s: s > 1}], and the
same holds even when we add modular quantifiers of fixed prime modulus, so we
do indeed have a collapse result, although this has never been proved directly by
model-theoretic means (see [3] and [20]).

Acknowledgments. We acknowledge helpful discussions with Klaus-Jörn Lange,
Denis Thérien, David Mix Barrington, and the late Clemens Lautemann. We also
thank Andreas Krebs for pointing out to us that our original proofs of Lemmas 5.1
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ments given here.
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[21] H. Straubing, D. Thérien, and W. Thomas, Regular languages defined with generalized
quantifiers, Inform. and Comput., 118 (1995), pp. 289–301.



SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 37, No. 2, pp. 522–551

LINES AND FREE LINE SEGMENTS TANGENT TO ARBITRARY
THREE-DIMENSIONAL CONVEX POLYHEDRA∗
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Abstract. Motivated by visibility problems in three dimensions, we investigate the complexity
and construction of the set of tangent lines in a scene of three-dimensional polyhedra. We prove
that the set of lines tangent to four possibly intersecting convex polyhedra in R

3 with a total of n
edges consists of Θ(n2) connected components in the worst case. In the generic case, each connected
component is a single line, but our result still holds for arbitrarily degenerate scenes. More generally,
we show that a set of k possibly intersecting convex polyhedra with a total of n edges admits, in the
worst case, Θ(n2k2) connected components of maximal free line segments tangent to at least four
polytopes. Furthermore, these bounds also hold for possibly occluded lines rather than maximal free
line segments. Finally, we present an O(n2k2 logn) time and O(nk2) space algorithm that, given
a scene of k possibly intersecting convex polyhedra, computes all the minimal free line segments
that are tangent to any four of the polytopes and are isolated transversals to the set of edges they
intersect; in particular, we compute at least one line segment per connected component of tangent
lines.

Key words. computational geometry, 3D visibility, visibility complex, visual events

AMS subject classifications. 65D18, 68U05

DOI. 10.1137/S0097539705447116

1. Introduction. Computing visibility relations in a three-dimensional (3D) en-
vironment is a problem central to computer graphics and engineering tasks such as
radio propagation simulation and fast prototyping. Examples of visibility computa-
tions include determining the view from a given point, and computing the umbra and
penumbra cast by a light source. In many applications, visibility computations are
well known to account for a significant portion of the total computation cost. Con-
sequently a large body of research is devoted to speeding up visibility computations
through the use of data structures (see [14] for a survey).

One such structure, the visibility complex [16, 23], encodes visibility relations by
partitioning the set of maximal free line segments. The size of this partition is inti-
mately related to the number of maximal free line segments tangent to four objects
in the scene; for a scene of n triangles in R

3, the complex can have size Θ(n4) in the
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Fig. 1.1. A terrain of size n with Ω(n4) maximal free line segments tangent in four points.

worst case [16], even when the triangles form a terrain (see [11] or Figure 1.1). The
complex is thus potentially enormous, which has hindered its application in practice.
However, there is evidence, both theoretical and practical, that this estimation is
pessimistic. The lower bound examples, which are carefully designed to exhibit the
worst-case behavior, are unrealistic in practice. For realistic scenes, Durand, Dret-
takis, and Puech [15] observed a quadratic growth rate, albeit for rather small scenes.
For random scenes, Devillers et al. [12] proved that the expected size of the visibil-
ity complex is much smaller; for uniformly distributed unit balls the expected size is
linear and for polygons or polyhedra of bounded aspect ratio and similar size it is
at most quadratic. Also, in two dimensions, while the worst-case complexity of the
visibility complex is quadratic, experimental results strongly suggest that the size of
the visibility complex of a scene consisting of scattered triangles is linear [10].

While these results are encouraging, most scenes are not random. In fact, most
scenes have a lot of structure which we can exploit; a scene is typically represented by
many triangles which form a much smaller number of convex patches. In particular,
if a scene consists of k disjoint convex polyhedra with a total of n edges, then under a
strong general position assumption, the number of maximal free line segments tangent
to four of the polyhedra is at most O(n2k2); this follows directly from the bound
proved in [17] on the number of combinatorial changes of the silhouette map viewed
from a point moving along a straight line, and was also later proved in [8]. We present
in this paper a generalization of these results. After preliminary definitions, we give
a detailed account of our results and then present related previous work.

Preliminary definitions. We consider a scene that consists of a finite number of
polytopes, not necessarily disjoint, not necessarily fully dimensional, and in arbitrary
position. The definitions below are standard, yet carefully phrased in a way that
remains valid in those situations.

A polytope is the convex hull of a point set. A plane is tangent to a polytope if
it intersects the polytope and bounds a closed half-space that contains the polytope.
A face, an edge, or a vertex of a polytope in R

3 is the 2-, 1-, or 0-dimensional
intersection of the polytope with a tangent plane. Note that, with this usual definition
of polytopes, edges and faces are closed and are not subdivided in any way.

A line or segment is tangent to a polytope (whether or not the latter is fully
dimensional) if it intersects the polytope and is contained in a tangent plane. In a
given plane, a line is tangent to a polygon if it intersects the polygon and bounds a
closed half-plane that contains the polygon. With these definitions, given a polygon
in a plane π, and a line contained in π that intersects the relative interior of this
polygon, the line is tangent to the polygon when considered as a polytope in R

3, but
not tangent to the polygon in the plane π.
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The set of lines in R
3 has a natural topological structure, namely, that of Plücker

space [25]. The set of lines tangent to at least four polytopes is a subspace, whose
connected components correspond to lines that can be continuously moved one into
the other while remaining tangent to at least four polytopes.1 A line or line segment
is free if it is tangent to each polytope that its relative interior intersects;2 otherwise
it is occluded. A free line segment is a maximal free line segment if it is not properly
contained in another free line segment. The space of line segments also has a natural
topological structure, and the connected components of maximal free line segments
tangent to at least four among the k polytopes are defined similarly as for lines.

A support vertex of a line is a polytope vertex that lies on the line. A support
edge of a line is a polytope edge that intersects the line but has no endpoint on it (a
support edge intersects the line at only one point of its relative interior). A support
of a line is one of its support vertices or support edges. The supports of a segment
are defined similarly. Notice that it follows from the definition of polytopes that any
line has at most two supports in any given polytope.

A line is isolated with respect to a set of edges and vertices if the line cannot
be moved continuously while remaining a common transversal to these edges and
vertices. Furthermore, we say that a set S of edges and vertices admits an isolated
transversal if these edges and vertices admit a common transversal that is isolated
with respect to S. Finally, a line is isolated if it is isolated with respect to a set of
some, and hence all, of its supports.

Our results. In this paper we present two types of results, combinatorial bounds
and algorithms.

Combinatorial bounds. We generalize the result of [8, 17] in two ways. First,
we consider polytopes that may intersect. We show that among k polytopes of total
complexity n, the number of lines tangent to any four of them is in the worst case
either infinite or Θ(n2k2). The most surprising aspect of this result is that the bound
(which is tight) is the same whether the polytopes intersect or not. This is in sharp
contrast to the 2D case, where the number of tangents of two convex polygons is
always four if disjoint and could be linear in the size of the polygons if they intersect.
Second, we consider polytopes in arbitrary position: we drop all general position
assumptions. The polytopes may intersect in any way; they may overlap or coincide.
They may degenerate to polygons, segments, or points. While four polytopes in
general position (as defined in [8]) admit a finite number of common tangents, four
polytopes in arbitrary position may admit an infinite number of common tangents
which can be partitioned into connected components.

Our main results are, more precisely, the following.

Theorem 1.1. Given k polytopes in R
3 with n edges in total, there are, in the

worst case, Θ(n2k2) connected components of maximal free line segments tangent to at
least four of the polytopes. This bound also holds for connected components of possibly
occluded lines tangent to at least four of the polytopes.

These results improve the trivial bound of O(n4). Note that, when k �= 4, neither
of the two results stated in Theorem 1.1 implies the other since a line tangent to at
least four among k polytopes may contain many, but does not necessarily contain any,

1The set of polytopes to which the line is tangent might change during the motion.
2When the polytopes are fully dimensional, a segment is free if it does not intersect the interior

of any of them. Our definition ensures that a segment is free also when it intersects and is coplanar
with a two-dimensional (2D) polytope. The endpoints of a free segment may also lie on the boundary
of a polytope.
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maximal free line segments tangent to four polytopes.

When k = 4, Theorem 1.1 implies that there are Θ(n2) connected components of
lines tangent to the four polytopes, an improvement on the previously known upper
bound of O(n3 log n) which follows from the same bound on the complexity of the
set of line transversals to a set of polyhedra (here four) with n edges in total [1].
Moreover, we prove a tighter bound when one of the four polytopes has few edges.

Theorem 1.2. Given three polytopes with n edges in total and one polytope with
m edges, there are, in the worst case, Θ(mn) connected components of lines tangent
to the four polytopes.

We also prove the following result which is more powerful, though more technical,
than Theorem 1.1. Whereas Theorem 1.1 bounds the number of connected compo-
nents of tangents, Theorem 1.3 bounds the number of isolated tangents with some
notion of multiplicity. For example, the line in Figure 1.2 is counted

(
k
2

)
times, which

is the number of minimal sets of vertices that admit that line as an isolated transver-
sal. Although neither theorem implies the other, we will prove in Proposition 3.4 that
the upper bound of Theorem 1.1 is easily proved using Theorem 1.3.

Theorem 1.3. Given k polytopes in R
3 with n edges in total, there are, in the

worst case, Θ(n2k2) minimal sets of open edges and vertices, chosen from some of the
polytopes, that admit a possibly occluded isolated transversal that is tangent to these
polytopes.

Algorithm. We now turn our attention to the computation of all free segments
that are isolated transversals to their set of supports and tangent to the corresponding
polytopes. Durand, Drettakis, and Puech [16] proposed an algorithm for this problem
with worst-case time complexity O((n3 + p) log n), where p is the output size; this al-
gorithm, based on a double-sweep, has proved to be difficult to implement. Durand,
Drettakis, and Puech also presented an algorithm with Θ(n5) worst-case time com-
plexity that incorporates interesting heuristics leading to reasonable performance in
practice [15]. We present an algorithm that uses, in the worst case, O(n2k2 log n) time
and O(nk2) space, is readily implementable, and uses only simple data structures. The
polytopes may intersect and be in arbitrary position. A preliminary version of this
algorithm was described for disjoint convex polyhedra in Goaoc’s Ph.D. thesis [19].

Theorem 1.4. Given k polytopes in R
3 with n edges in total, we can compute,

in O(n2k2 log n) time and O(nk) space, all the possibly occluded lines that are iso-
lated transversals to their set of supports and tangent to the corresponding polytopes.
We can also compute, in O(n2k2 log n) time and O(nk2) space, all the minimal free
segments that are isolated transversals to their set of supports and tangent to the
corresponding polytopes.

It should be noted that our algorithm does not provide the endpoints (possibly at
infinity) of the maximal free segments. Computing the endpoints of each such segment
can be done by shooting rays in O(log2 n) time per ray using O((nk)2+ε) preprocessing
time and storage [3]. Such ray-shooting data structures are not, however, readily
implementable. Alternatively, each ray-shooting query can be answered in O(k log n)
time after O(n log n) preprocessing time and using additional O(n) space by applying
the Dobkin–Kirkpatrick hierarchy on each polytope [13].

To emphasize the importance of considering intersecting polytopes, observe that
computer graphics scenes often contain nonconvex objects. These objects, however,
can be decomposed into sets of convex polyhedra. Notice that simply decomposing
these objects into convex polyhedra with disjoint interiors may induce a scene of
much higher complexity than a decomposition into intersecting polytopes. Moreover,
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Fig. 1.2. A line tangent at a vertex of each of k polytopes.

Table 1.1

Published bounds on the complexity of the set of free lines or maximal free line segments among
objects of total complexity n. The expected complexities are given for the uniform distribution of the
balls centers.

Worst-case Expected

Free lines to a polyhedron Θ(n4) (trivial)

Free lines above a polyhedral terrain O(n32c
√

log n) [20, 22]

Free lines among disjoint homothetic polytopes Ω(n3) [4]

Free lines among unit balls Ω(n2) [12], O(n3+ε) [2] Θ(n) [12]

Max. free segments above a polyhedral terrain Θ(n4) [11]

Isolated maximal free segments among
k generic disjoint convex polyhedra

Θ(n2k2) [17, 8]

Max. free segments among unit balls Ω(n2) [12], O(n4) Θ(n) [12]

the decomposition of a polyhedron into interior-disjoint polytopes may introduce new
tangents which were not present in the original scene; indeed a line tangent to two
polytopes along a shared face is not tangent to their union.

The importance of considering polytopes in arbitrary position comes from the
fact that graphics scenes are full of degeneracies both in the sense that four polytopes
may admit infinitely many tangents and that polytopes may share edges or faces.
There may actually be more connected components of tangents when the objects are
in degenerate position; this is, for instance, the case for line segments [9]. Also, we
could not find a perturbation argument that guarantees the preservation of all (or at
least a constant fraction of) the connected components of tangents, and we do not
believe that finding such a perturbation is a simple matter.

Related results. Previous results on this topic include those that bound the com-
plexity of sets of free lines or free line segments among different sets of objects. They
are summarized in Table 1.1.

Recently, Agarwal et al. [2] proved that the set of free lines among n unit balls
has complexity O(n3+ε). Devillers et al. showed a simple bound of Ω(n2) [12] for this
problem, and Koltun recently sketched a bound of Ω(n3) (private communication,
2004).

The complexity of the set of free line segments among n balls is trivially O(n4).
Devillers and Ramos showed that the set of free line segments can have complexity
Ω(n3) (private communication, 2001; see also [12]). When the balls are unit size, the
Ω(n2) lower bound for the set of free lines holds. A lower bound of Ω(n4) that applies
to either case was recently sketched by Glisse (private communication, 2004).
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e

le
Q

RΠt

P

Pt

RtQt

Fig. 2.1. Plane Πt contains edge e and intersects polytopes P, Q, and R in polygons Pt, Qt,
and Rt.

We mention two results for polyhedral environments. Halperin and Sharir [20]
and Pellegrini [22] proved that, in a polyhedral terrain with n edges, the set of free
lines has near-cubic complexity. De Berg, Everett, and Guibas [4] showed an Ω(n3)
lower bound on the complexity of the set of free lines (and thus free segments) among
n disjoint homothetic convex polyhedra.

This paper is organized as follows. We prove the upper bounds of Theorems 1.1,
1.2, and 1.3 in sections 2 and 3, and the lower bounds in section 4. In section 5, we
present our algorithm for computing free segments.

2. Main lemma. We prove in this section a lemma which is fundamental for
the proofs of the upper bounds of Theorems 1.1, 1.2, and 1.3. Consider four polytopes
P, Q, R, and S in R

3, with p, q, r, and s � 1 edges, respectively, and let e be an
edge of S.

Main Lemma. There are O(p + q + r) isolated lines intersecting e and tangent
to P, Q, R, and S, excluding those that lie in planes that contain e and are tangent
to all four polytopes.

The proof of the Main Lemma is rather complicated because it handles polytopes
which may intersect as well as all the degenerate cases. To assist the reader, we
first give an overview of the proof. We then state preliminaries and definitions in
section 2.2. In sections 2.3 and 2.4, we bound the number of “generic tangent lines.” In
section 2.5, we bound the number of “nongeneric tangent lines.” Finally, in section 2.6,
we pull these results together to conclude the proof of the Main Lemma.

2.1. Proof overview. The proof is inspired by a method which was, to our
knowledge, first used in [6] (and later in [5, 17, 8]). We present here an overview of the
proof in which we do not address most of the problems arising from degeneracies. In
particular, some definitions and remarks will require more elaboration in the context
of the complete proof.

We sweep the space with a plane Πt rotating about the line containing e. The
sweep plane intersects the three polytopes P, Q, and R in three, possibly degenerate
or empty, convex polygons denoted Pt, Qt, and Rt, respectively (see Figure 2.1).
During the sweep, we track the bitangents, that is, the lines tangent to Pt and Qt, or
to Qt and Rt, in Πt. As the sweep plane rotates, the three polygons deform, and the
bitangents move accordingly. Every time two bitangents become aligned during the
sweep, the common line they form is tangent to P, Q, and R.

In any given instance of the sweep plane Πt, we consider the pairs of bitangents
(one involving Pt and Qt and the other Qt and Rt) that share a vertex of Qt (see
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Πt−ε
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Πt

Qt+ε
Pt+ε

Pt−ε
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Qt−ε

Qt

e

e

e

Fig. 2.2. A bitangent to Pt and Qt is tangent to Pt along an edge. The plane Πt is F-critical.

Figure 2.1). The isolated lines intersecting e and tangent to P, Q, R, and S are
isolated transversals with respect to a tuple of supports that consists of e and the
supports of two such bitangents. We consider all candidate such tuples of supports as
the sweep plane rotates.

Such a tuple induced by an instance of the sweep plane changes as the plane
rotates only when a support of a bitangent changes. We define critical planes in such
a way that the supports of the bitangents do not change as the sweep plane rotates
between two consecutive critical planes. As the sweep plane rotates, the supports of
a bitangent change if a support starts or ceases to be swept, or if, during its motion,
the bitangent becomes tangent to one of the polygons along an edge of that polygon
(see Figure 2.2). In the latter case, this means that the bitangent crosses a face or
contains an edge of one of the polytopes. We thus define two types of critical planes:
an instance of the sweep plane is critical if it contains a vertex of one of the polytopes,
or if it contains a line that lies in the plane containing a face of one of the polytopes,
and is tangent to another of the polytopes (see Figures 2.2 and 2.3). We will show
that the number of critical planes is O(p + q + r).

When the polytopes intersect there may exist a linear number of bitangents in
an instance of the sweep plane (two intersecting convex polygons may admit a linear
number of bitangents, as is the case for two regular n-gons where one is a rotation of
the other about its center). Thus there can be a linear number of candidate tuples
induced by any instance of the sweep plane, and the linear number of critical planes
leads to a quadratic bound on the total number of distinct candidate tuples. In the
detailed proof of the lemma, we amortize the count of candidate tuples over all the
critical planes to get a linear bound on the number of distinct candidate tuples and
thus on the number of isolated lines intersecting e and tangent to P, Q, R, and
S; this bound will, however, not hold for those isolated lines that lie in planes that
contain e and are tangent to all four polytopes. Indeed, the number of such isolated
tangent lines can be quadratic in degenerate cases; for instance, four polytopes such
that a plane contains edge e and a face of linear complexity from each of the other
polytopes may admit in this plane a quadratic number of such isolated tangent lines
(one through each of a quadratic number of pairs of vertices).
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2.2. Preliminaries and definitions. We can assume without loss of generality
that P, Q, R, and S have nonempty interiors. Indeed, since the set of isolated tangent
lines to the four polytopes is zero-dimensional, there is always room to extend any
polytope with empty interior in such a way that none of the original isolated tangent
lines are lost.

We say that a line properly intersects a polygon if it intersects its relative interior.
In what follows, we use this definition only when the line and polygon are coplanar.
Notice that a line that contains a segment is tangent to the segment as well as properly
intersects it.

Let le be the line containing e and let Πt denote the sweep plane parameterized
by t ∈ [0, π] such that Πt contains the line le for all t and Π0 = Ππ. Each plane Πt

intersects the three polytopes P, Q, and R in three, possibly degenerate or empty,
convex polygons, Pt, Qt, and Rt, respectively (see Figure 2.1).

For any t, a bitangent to polygons Pt and Qt is a line tangent to Pt and Qt in
Πt (the line may intersect the polygon Rt in any way, possibly not at all). For any
t, let a (Pt, Qt)-tuple be the unordered set of all supports in P and Q of one of the
bitangents to polygons Pt and Qt. Note that a support in P may be identical to
a support in Q, in which case the (Pt, Qt)-tuple does not contain duplicates. Also
note that a (Pt, Qt)-tuple consists of exactly one support in P and one support in Q
(possibly identical) except when the corresponding bitangent is tangent to P (or Q)
along a face (either intersecting the face properly or containing one of its edges); then
the (Pt, Qt)-tuple contains two supports in P (or Q) instead of one. A PQ-tuple is a
set of edges and vertices that is a (Pt, Qt)-tuple for some t. We define similarly the
(Qt, Rt)-tuples and QR-tuples.

We say that a (Pt, Qt)-tuple is maximal for some t if it is not contained in any
other (Pt, Qt)-tuple for the same t. Note that a (Pt, Qt)-tuple is nonmaximal for some
t if and only if all its supports intersect Πt in one and the same point, and Pt and Qt

are not equal to one and the same point (see Figure 2.5(b)).
For any t, let a (Pt, Qt, Rt)-tuple be the union of a (Pt, Qt)-tuple and a (Qt, Rt)-

tuple that share at least one support in Q. A (Pt, Qt, Rt)-tuple is maximal for some
t if it is not contained in any other (Pt, Qt, Rt)-tuple for the same t. A PQR-tuple is
a set of edges and vertices that is a (Pt, Qt, Rt)-tuple for some t. Note that a PQR-
tuple typically consists of three supports, one from each polytope, and consists, in all
cases, of at most two supports in P, at most three supports in Q, and at most two
supports in R.

A line intersecting e and tangent to P, Q, R, and S is called a generic tangent
line if and only if it intersects S only on e and is tangent to Pt, Qt, and Rt in some
plane Πt. Otherwise it is called a nongeneric tangent line. A nongeneric tangent line
properly intersects a face of S or properly intersects Pt, Qt, or Rt in some plane Πt.
In the latter case Pt, Qt, or Rt is a face or an edge of P, Q, or R lying in Πt; thus
a nongeneric tangent line is (in both cases) tangent to P, Q, R, and S in a plane
containing a face or two edges of these polytopes, a degenerate situation.

In the following three subsections, we bound the number of generic and non-
generic tangent lines. It is helpful to keep in mind that, as observed earlier, two
convex polygons in a plane Πt (such as Pt and Qt) may admit a linear number of
tangents if they intersect.

2.3. Generic tangent lines.
Lemma 2.1. The set of supports in P, Q, and R of a generic tangent line is a

PQR-tuple.
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Fig. 2.3. Plane Πt is F -critical: it contains a line that lies in a plane Ψ containing a face of
P such that the line is tangent to Q ∩ Ψ at a point not on le.

Proof. Any generic tangent line � is tangent in Πt to Pt, Qt, and Rt for some
value t. Thus the set of supports of � in P and Q (resp., in Q and R) is a (Pt, Qt)-
tuple (resp., a (Qt, Rt)-tuple). Moreover, the (Pt, Qt)-tuple and the (Qt, Rt)-tuple
contain the same supports in Q, and thus their union is a (Pt, Qt, Rt)-tuple, hence a
PQR-tuple.

We now define the critical planes Πt in such a way that, as we will later prove,
the set of (Pt, Qt, Rt)-tuples is invariant for t ranging strictly between two consecutive
critical values. We introduce two types of critical planes: the V-critical and F-critical
planes.

A plane Πt is V-critical if it contains a vertex of P, Q, or R, not on le. (The
constraint that the vertex does not lie on le ensures that the number of V-critical
planes is finite even in degenerate configurations.) A plane Πt is F-critical relative to
an ordered pair of polytopes (P,Q) if (see Figure 2.3) it contains a line � such that

(i) � lies in a plane Ψ �= Πt containing a face of P, and

(ii) � is tangent in Ψ to polygon Q ∩ Ψ or P ∩ Ψ, at some point not on le.

For simplicity, we do not require that � is tangent to P; this leads to overestimating
the number of common tangents to P, Q, R, and S but only by an asymptotically
negligible amount. Note that not all lines in Ψ tangent to Q are tangent to the
polygon Q ∩ Ψ when that polygon is a face or edge of Q lying in Ψ. Note also that
we define Πt to be F-critical when � is tangent to P∩Ψ at some point not on le only
for handling the very degenerate case where Q∩Ψ is an edge of Q and there exists a
line in Ψ that properly intersects Q ∩ Ψ and is tangent to P ∩ Ψ along an edge that
has an endpoint on le (see Figure 2.4). Note finally that if � ∈ Πt satisfies (i) and is
tangent, in Ψ, to P ∩ Ψ at some point not on le, then polytope Q plays no role and
thus Πt is F-critical relative to (P,Q) for all polytopes Q.

F-critical planes relative to (Q,P), (Q,R), and (R,Q) are defined similarly. A
plane Πt is F-critical if it is F-critical relative to pairs of polytopes (P,Q), (Q,P),
(Q,R), or (R,Q).

The values of t corresponding to critical planes Πt are called critical values. We
call V-critical and F-critical events the ordered pairs (t, o), where t is a critical value
and o is a vertex or line depending on the type of critical event. In a V-critical event,
o is a vertex of P, Q, or R that belongs to Πt \ le. In an F-critical event, o is a line
lying in some plane Πt and satisfying conditions (i)–(ii) above. A critical event is a
V-critical or F-critical event.
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Ψ

m = Πt∗ ∩ Ψ

Πt∗+ε ∩ Ψ

Πt∗−ε ∩ Ψ
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edge of P
edge of P
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Fig. 2.4. Plane Πt∗ contains a line m such that (i) m lies in a plane Ψ �= Πt∗ containing a face
of P and (ii) m is tangent to polygon P ∩ Ψ at some point not on le; however, m is not tangent to
Q∩Ψ. If the definition of F-critical planes did not consider such a plane Πt∗ to be F-critical, then
Lemma 2.3 would not hold. Indeed the set u of supports of line Πt∗−ε∩Ψ is a maximal (Pt, Qt)-tuple
for some but not all t in any open neighborhood of t∗, and, although Πt∗ is V-critical, there exists
no V-critical event (t∗, v) such that u contains v or an edge with endpoint v.

Lemma 2.2. There are at most 2
3
(p + q + r) V-critical events and 8

3
(p + 2 q + r)

F-critical events.
Proof. The number of V-critical events is at most the total number of vertices of

P, Q, and R, and hence is less than two-thirds the total number of edges of P, Q,
and R. We now count the number of F-critical events relative to polytopes (P,Q).
Let Ψ be a plane containing a face of P, and suppose that for some plane Πt, line
� = Πt ∩Ψ satisfies conditions (i)–(ii). Plane Ψ does not contain le because otherwise
both le and � lie in the two distinct planes Ψ and Πt; thus � = le, but then � cannot
satisfy condition (ii). Furthermore, � and le intersect or are parallel since they both
lie in Πt. Thus if Ψ ∩ le is a point, then � contains it, and otherwise Ψ ∩ le = ∅ and �
is parallel to le.

If Ψ∩ le is a point, there are at most four candidates for a line � in plane Ψ going
through Ψ ∩ le and tangent to Q ∩ Ψ or P ∩ Ψ at some point not on le. Likewise,
if Ψ ∩ le is empty, there are at most four candidates for a line � in plane Ψ that is
parallel to le and tangent to Q ∩ Ψ or P ∩ Ψ. In either case, each candidate line is
contained in a unique plane Πt, for t ∈ [0, π], since � �= le (� contains a point not on
le). Hence, a face of P generates at most four F-critical events relative to (P,Q).
Therefore the number of critical events relative to (P,Q) is at most 8

3
p since the

number of faces of a polytope is at most two-thirds the number of its edges. Hence
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Fig. 2.5. Lines through x in Πt and tangent to Pt and Qt.

the number of critical events relative to (P,Q), (Q,P), (Q,R), and (R,Q) is at most
8
3
(p + 2 q + r).

The following lemma states that the critical planes have the desired property. Let
ue be the set of supports of le in P and Q and let u denote some (Pt, Qt)-tuple.

Lemma 2.3. Let t∗ be the endpoint of a maximal interval 3 throughout which
u �= ue is a maximal (Pt, Qt)-tuple. Then t∗ is a critical value. Moreover, there exists
a V-critical event (t∗, v) or an F-critical event (t∗,m) such that u contains v or an
edge with endpoint v, or u is contained in the set of supports of m.

The proof of this lemma is rather long and intricate; we postpone it to section 2.4.
Note that, as stated, this lemma applies only under the assumptions that u is maximal
and distinct from ue. These assumptions are made in order to simplify the proof of
Lemma 2.3; we do not suggest that the lemma is false without them.

Lemma 2.4. Any edge or vertex of P or Q is in at most two PQ-tuples that
are maximal (Pt, Qt)-tuples for all t in any given nonempty interval 3of R/πZ.

Proof. Let t̃ be an element of a nonempty interval I of R/πZ and x be an edge
or vertex of P or Q. If x does not intersect Πt̃, then no (Pt̃, Qt̃)-tuple contains x. If
x intersects Πt̃ in one point, then there are, in general, at most two lines in Πt̃ going
through x and tangent to Pt̃ and Qt̃ (see Figure 2.5(a)); in all cases there are at most
three (Pt̃, Qt̃)-tuples containing x (see Figure 2.5(b)); however, at most two of them
are maximal. If x intersects Πt̃ in more than one point, x is an edge lying in Πt̃. Then
any line in Πt̃ intersecting x and tangent to Pt̃ and Qt̃ contains an endpoint of x, and
thus x belongs to no (Pt̃, Qt̃)-tuple.

Hence at most two PQ-tuples contain x and are maximal (Pt, Qt)-tuples for t = t̃,
and thus at most two PQ-tuples contain x and are maximal (Pt, Qt)-tuples for all t
in I.

Lemma 2.5. There are at most O(p + q + r) PQR-tuples.

Proof. In order to count the number of distinct (Pt, Qt, Rt)-tuples, we charge each
maximal (Pt, Qt, Rt)-tuple to a critical event. We then show that each critical event
is charged at most a constant number of times. It then follows from Lemma 2.2 that
there are O(p + q + r) distinct maximal (Pt, Qt, Rt)-tuples. A maximal (Pt, Qt, Rt)-
tuple consists of at most two supports in P, at most three supports in Q, and at most
two supports in R, and thus contains at most (22 − 1)(23 − 1)(22 − 1) distinct subsets
with at least one support in each of P, Q, and R. Each maximal (Pt, Qt, Rt)-tuple
thus contains at most a constant number of distinct (Pt, Qt, Rt)-tuples, which implies
the result.

Let s be a maximal (Pt, Qt, Rt)-tuple and let I be any maximal connected subset
of R/πZ such that s is a maximal (Pt, Qt, Rt)-tuple for all t ∈ I. Let u be a maximal

3Such an interval could be open or closed, a single point, or an interval of positive length.
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(Pt, Qt)-tuple and u′ a maximal (Qt, Rt)-tuple such that the union of u and u′ is s
and such that u and u′ share at least one support in Q.

First, suppose that I = R/πZ. Then u is a maximal (Pt, Qt)-tuple for all t ∈
R/πZ. Thus each support in u intersects Πt for all t ∈ R/πZ and thus intersects le;
moreover, each support in u intersects Πt only on le for all t ∈ R/πZ except possibly
for one value of t. Since P and Q have nonempty interior, Pt ∪Qt is not reduced to a
point for all t in some interval of positive length. For all t in such an interval, since u
is maximal, the union of the supports in u intersects Πt in at least two distinct points.
These at least two distinct points lie on le for some values of t by the above argument.
Thus, for these values of t, le is the only line in Πt whose set of supports contains u.
Hence u is the set of supports of le. The same property holds for v, and thus s is also
the set of supports of le. We can thus assume in the following that I �= R/πZ and
only count the maximal (Pt, Qt, Rt)-tuples that are not the set of supports of le.

Interval I is thus a nonempty interval of R/πZ; it can be open or closed, a
single point, or an interval of positive length. Let w0 and w1 denote the endpoints of
I �= R/πZ.

If s contains a vertex v, or an edge with endpoint v such that v lies in Πwi \ le for
i = 0 or 1, then we charge s to the V-critical event (wi, v). Otherwise, we charge s to
an F-critical event (wi,m) where m is a line in Πwi whose set of supports contains u
or u′. Such a V-critical or F-critical event exists by Lemma 2.3.

We now prove that each critical event is charged by at most a constant number of
distinct maximal (Pt, Qt, Rt)-tuples. As mentioned before, that will imply the result.

Consider a V-critical event (t∗, v) that is charged by a maximal (Pt, Qt, Rt)-tuple
s. By the charging scheme, s contains a support x that is v or an edge with endpoint
v, and s is a maximal (Pt, Qt, Rt)-tuple for all t in at least one of three intervals, {t∗}
and two open intervals having t∗ as endpoint; denote these intervals by I1, I2, I3.

By Lemma 2.4, at most two PQ-tuples contain x and are maximal (Pt, Qt)-tuples
for all t in Ii. Moreover, each of these PQ-tuples contains at most two supports in
Q, and each of these supports belongs to at most two QR-tuples that are maximal
(Qt, Rt)-tuples for all t in Ii. Thus at most eight PQR-tuples contain x and are
maximal (Pt, Qt, Rt)-tuples for all t in Ii, for each i = 1, . . . , 3. Hence any V-critical
event (t∗, v) is charged by at most 24 distinct maximal (Pt, Qt, Rt)-tuples.

Consider now an F-critical event (t∗,m) that is charged by a maximal (Pt, Qt, Rt)-
tuple s, and define as before u and u′. By the charging scheme, the set of supports
of m contains u or u′ (or both); suppose without loss of generality that it contains
u. The set of supports of m contains at most two supports in P and at most two
supports in Q. Since u contains at least one support in P and at least one support
in Q, there are at most 32 choices for u.

By the charging scheme, s is a maximal (Pt, Qt, Rt)-tuple for all t in at least one
of three intervals, {t∗} and two open intervals having t∗ as endpoint; denote these
intervals by I1, I2, I3. It follows from Lemma 2.4 that, for each support x of Q in
u, at most two QR-tuples contain x and are maximal (Qt, Rt)-tuples for all t in Ii.
There are at most 32 choices for u (as shown above), 2 for x, 3 for i, and 2 for the
QR-tuples containing x. Hence any F-critical event (t∗,m) is charged by at most
22 × 33 distinct maximal (Pt, Qt, Rt)-tuples.

Therefore each critical event is charged by at most a constant number of distinct
maximal (Pt, Qt, Rt)-tuples, which concludes the proof.

Corollary 2.6. There are at most O(p + q) PQ-tuples.

Proof. Replace R by a copy of Q in Lemma 2.5. Any PQ-tuple is also a PQQ-
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tuple, and there are at most O(p + q + q) = O(p + q) of these.
Proposition 2.7. There are O(p + q + r) isolated generic tangent lines.
Proof. A generic tangent line is transversal to e and to the edges and vertices of

a PQR-tuple, by definition and Lemma 2.1. An isolated generic tangent line is thus
an isolated transversal with respect to a set of edges and vertices that consists of a
PQR-tuple and either edge e or one or both of its endpoints. The number of such
sets is four times the number of PQR-tuples, which is in O(p+ q+ r) by Lemma 2.5.
The result follows since each such set consists of at most eight edges and vertices (at
most two supports from each of the four polytopes) and thus admits at most eight
isolated transversals [9].

2.4. Proof of Lemma 2.3. Recall that ue denotes the set of supports of le in
P and Q, and that Lemma 2.3 states the following.

Let t∗ be the endpoint of a maximal interval throughout which u �= ue

is a maximal (Pt, Qt)-tuple. Then t∗ is a critical value. Moreover,
there exists a V-critical event (t∗, v) or an F-critical event (t∗,m)
such that u contains v or an edge with endpoint v, or u is contained
in the set of supports of m.

We can assume that u contains no vertex v and no edge with endpoint v such that
v lies on Πt∗ \ le because otherwise (t∗, v) is a V-critical event such that u contains v
or an edge with endpoint v, which concludes the proof.

We prove a series of lemmas that yields Lemma 2.3. Indeed, we prove the existence
of a line m in Πt∗ whose set of supports contains u (Lemma 2.10) such that (i) m lies
in a plane Ψ �= Πt∗ containing a face of P (Lemma 2.11) and (ii) m is tangent in Ψ
to polygon Q ∩Ψ or P ∩Ψ, at some point not on le (Lemma 2.12). This proves that
Πt∗ contains a line m whose set of supports contains u and such that (t∗,m) is an
F-critical event, which concludes the proof.

By hypothesis, for any sufficiently small open neighborhood N of t∗ whose end-
points are denoted by t0 and t1, u is not a maximal (Pt, Qt)-tuple for some t ∈ N and
u is a maximal (Pt, Qt)-tuple for t = t∗ or for all t ∈ (t∗, t1) (or by symmetry for all
t ∈ (t0, t

∗)).
We only consider in the following supports in P and in Q; polytope R plays no

role. We start by proving two preliminary lemmas.
Lemma 2.8. Each support in u intersects Πt in exactly one point (possibly on le)

for all t in any sufficiently small open neighborhood N of t∗.
Moreover, the union of all supports in u intersects Πt in at least two distinct

points for all t �= t∗ in N . This property also holds for t = t∗ if u is a maximal
(Pt∗ , Qt∗)-tuple.

Proof. Since u is a (Pt, Qt)-tuple for some t in every open neighborhood of t∗,
each support in u intersects Πt for some t in every open neighborhood of t∗. It thus
follows from the assumption that u contains no vertex v and no edge with endpoint
v, such that v lies on Πt∗ \ le, that each support in u intersects Πt for all t in any
sufficiently small open neighborhood N of t∗. It follows that each support in u either
lies in le or intersects Πt in exactly one point for all t ∈ N . However, no edge of u
lies in le because otherwise if x denotes such an edge of, say, P, then any line tangent
to Pt in Πt and intersecting x contains an endpoint of x which is a vertex of P; thus,
by definition, u does not contain x but one of its endpoints. Hence each support of u
intersects Πt in exactly one point for all t ∈ N .

We now prove that the union of the supports in u intersects Πt in at least two
distinct points for any t ∈ N such that u is a maximal (Pt, Qt)-tuple. Suppose for a
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contradiction that the union of the supports in u intersects Πt in one single point v
for some t ∈ N such that u is a maximal (Pt, Qt)-tuple. Then polygons Pt and Qt

are both reduced to point v because otherwise u is not maximal (otherwise, a line in
Πt tangent to Pt and Qt at v can be rotated about v until it becomes tangent to Pt

or Qt at some other points). Thus v = Pt = Qt is a vertex of P and of Q because the
polytopes have nonempty interior. Hence u = {v} because each support in u contains
v. It follows that v lies on le since each support in u intersects Πt for all t ∈ N .
Moreover, since Pt and Qt are both reduced to point v = le ∩P = le ∩Q, the set ue

of supports of le is u, contradicting the hypotheses of Lemma 2.3.

Thus, if u is a maximal (Pt, Qt)-tuple for all t ∈ (t∗, t1), the union of the supports
in u intersects Πt in at least two distinct points for all t ∈ (t∗, t1) and thus for all
t �= t∗ in any sufficiently small open neighborhood of t∗. Also, if u is a maximal
(Pt, Qt)-tuple for t = t∗, the union of the supports in u intersects Πt in at least two
distinct points for t = t∗ and thus for all t in any sufficiently small open neighborhood
of t∗.

Lemma 2.9. If u is a maximal (Pt∗ , Qt∗)-tuple, then u consists of at least three
supports.

Proof. Note that it follows from Lemma 2.8 that u contains at least two supports.
Suppose for a contradiction that u consists of only two supports. By Lemma 2.8,
they intersect Πt in exactly two distinct points for all t in any sufficiently small open
neighborhood N of t∗. Thus there exists for all t ∈ N a unique line mt in Πt whose set
of supports contains u; moreover, mt is continuous in terms of t. Since u is a maximal
(Pt∗ , Qt∗)-tuple, the set of supports of mt∗ is u. Thus, for all t in any sufficiently
small N , the set of supports of mt is u. Thus the set of supports of mt is invariant
for t ∈ N and since mt∗ is tangent to Pt∗ and Qt∗ , line mt is tangent to Pt and Qt

for all t ∈ N .

Hence, for all t ∈ N , line mt, whose set of supports is u, is tangent to Pt and Qt

in Πt. Thus u is a maximal (Pt, Qt)-tuple for all t ∈ N . Moreover, mt is the unique
line in Πt whose set of supports contains u, and thus u is a maximal (Pt, Qt)-tuple
for all t ∈ N , contradicting the hypotheses of the lemma.

Lemma 2.10. There exists a line m in Πt∗ whose set of supports contains u that
is tangent to Pt∗ and Qt∗ along an edge of one of them, say of Pt∗ .

Proof. Consider first the case where u is a maximal (Pt∗ , Qt∗)-tuple. There exists
in Πt∗ a line m tangent to Pt∗ and Qt∗ whose set of supports is u. By Lemma 2.9,
the set u of supports of m contains at least three supports, and hence at least two
supports in P (or in Q). Furthermore, the supports of m in one polytope intersect
Πt∗ in distinct points (by definition of supports). Thus m intersects Pt∗ (or Qt∗) in
at least two distinct points and is tangent to Pt∗ and Qt∗ . The result follows since
Pt∗ (and Qt∗) is convex.

Consider now the case where u is a maximal (Pt, Qt)-tuple for all t ∈ (t∗, t1).
Then, for all t ∈ (t∗, t1), there exists a line in Πt tangent to Pt and Qt and whose set
of supports is u. Moreover, by Lemma 2.8, this line is unique for each t ∈ (t∗, t1) and
varies continuously in terms of t ∈ (t∗, t1). When t tends to t∗, the line tends to a
line mt∗ in Πt∗ which is tangent to Pt∗ and Qt∗ and whose set of supports contains
u. If its set of supports strictly contains u, then mt∗ is tangent to Pt∗ and Qt∗ along
an edge of one of them because the polygons are convex, and hence we can choose m
= mt∗ to complete the proof. Otherwise, u is a (Pt∗ , Qt∗)-tuple.

We can suppose that u is a nonmaximal (Pt∗ , Qt∗)-tuple since we already treated
the case where u is maximal. There exists in Πt∗ a line tangent to Pt∗ and Qt∗ whose
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Πt∗

m = Πt∗ ∩ Ψ

Pt∗

le

face of P in Ψ

Qt∗

Fig. 2.6. Line m is tangent to P along a face in plane Ψ �= Πt∗ .

set of supports is u. Since u is nonmaximal, this line is tangent to Pt∗ and Qt∗ at a
shared vertex and can be rotated about this vertex in Πt∗ until it becomes tangent to
Pt∗ and Qt∗ at some other points, which must occur because u is nonmaximal; let m
denote the resulting line. The set of supports of m contains u, and m is tangent to
Pt∗ and Qt∗ along an edge of one of them because the polygons are convex.

Lemma 2.11. Line m lies in a plane Ψ �= Πt∗ containing a face of P.

Proof. By Lemma 2.10, m contains an edge of Pt∗ ; see Figure 2.6. This edge
either intersects the relative interior of some face of P, in which case we take Ψ to
be the plane containing that face, or this edge is an edge of P, in which case we take
Ψ to be a plane, different from Πt∗ , containing one of the two faces of P incident to
that edge.

Let mt be the line Ψ∩Πt for all t in any sufficiently small open neighborhood N
of t∗; line mt is well defined since Ψ ∩ Πt∗ is line m by Lemmas 2.10 and 2.11.

Lemma 2.12. Line m is tangent to P∩Ψ or to Q∩Ψ at some point not on le.

Proof. We assume for a contradiction that line m does not satisfy the lemma;
i.e., m is not tangent to P ∩ Ψ or to Q ∩ Ψ at any point other than on le. We prove
that the set of supports of m is u and is a maximal (Pt, Qt)-tuple for all t in any
sufficiently small neighborhood of t∗, contradicting the hypotheses of Lemma 2.3 and
thus proving Lemma 2.12.

Since m is tangent to Q (by Lemma 2.10), m is tangent to Q ∩ Ψ only on le
(see Figure 2.7(a)), or m properly intersects Q ∩ Ψ which is then a face or an edge
of Q (see Figure 2.7(b)).4 Similarly m is tangent to P ∩ Ψ only on le, or m properly
intersects it; however, P ∩ Ψ is necessarily a face of P by Lemma 2.11.

Lemmas 2.13 and 2.14 which follow imply that the set of supports of mt is in-
variant and equal to u for all t in any sufficiently small open neighborhood N of t∗.
Moreover, since mt varies continuously with t and m = mt∗ is tangent to Pt∗ and
Qt∗ (by Lemma 2.10), line mt is tangent to Pt and Qt for all t ∈ N . Hence u is a
(Pt, Qt)-tuple for all t ∈ N . We now prove that u is a maximal (Pt, Qt)-tuple for all
t ∈ N .

As we have seen before, m = mt∗ is tangent to P in at least two points (by
Lemma 2.10); thus mt∗ intersects its supports in at least two distinct points. More-
over, the set of supports of mt∗ is u. Thus there is a unique line in Πt∗ whose set of
supports contains u. Hence u is a maximal (Pt∗ , Qt∗)-tuple.

By Lemma 2.8, mt is the unique line in Πt whose set of supports contains u for
all t �= t∗ in N . Thus u is a maximal (Pt, Qt)-tuple for all t �= t∗ in N .

4Note that in these two situations, two edges of two distinct polytopes are then coplanar (in the
first case an edge of Q and e are coplanar, and in the latter case a face of P is coplanar with a face or
an edge of Q). Hence proving this lemma is straightforward under some general position assumption
that excludes such situations.
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Ψ

m = Πt∗ ∩ Ψ

Πt∗+ε ∩ Ψ

Πt∗−ε ∩ Ψ

le
face of P in Ψ

face of Q in Ψ

(a) (b)

Ψ

m = Πt∗ ∩ Ψ

Πt∗+ε ∩ Ψ

Πt∗−ε ∩ Ψ
Q ∩ Ψ

le
face of P in Ψ

Fig. 2.7. m is tangent to P along a face in Ψ and (a) to Q∩Ψ only on le or (b) to Q along a
face in Ψ.

Hence u is a maximal (Pt, Qt)-tuple for all t ∈ N , contradicting the hypotheses
of Lemma 2.3 and thus concluding the proof of Lemma 2.12.

Lemma 2.13. The set of supports of mt is u for some t in any sufficiently small
open neighborhood N of t∗.

Proof. We first prove that the supports in u are supports of mt for all t ∈ N . A
support vertex in u lies on le by Lemma 2.8 and thus lies in Πt for all t. A support
vertex in u also lies on m by Lemma 2.10 and thus lies in plane Ψ by Lemma 2.11.
Hence, for all t ∈ N , the support vertices in u lie on mt and thus are supports of mt.

In order to prove that the support edges in u are supports of mt, it is sufficient
(by Lemma 2.10) to prove that the support edges of m are supports of mt. The
support edges of m in P lie in plane Ψ (see Figure 2.7(b)) because Ψ contains m and
a face of P (indeed if m intersects an edge of P not in Ψ, then m contains one of its
endpoints, and thus the edge is not a support). Thus all the support edges of m lie
in Ψ and m contains none of their endpoints (by definition). Since mt lies in Ψ for
all t and mt∗ = m, line mt intersects all the support edges of m and contains none of
their endpoints for all t in any sufficiently small open neighborhood N of t∗. Hence
the support edges of m in P are supports of mt for all t ∈ N .

Consider the case where Q ∩ Ψ is a face or an edge of Q. Similarly as for P, the
support edges of m in Q lie in plane Ψ and thus are supports of mt for all t ∈ N .

Consider now the case where m is tangent to Q ∩ Ψ only on le at, say, point v
(see Figure 2.7(a)). Then v lies in Ψ (since m ⊂ Ψ by Lemma 2.11) and also lies in
Πt for all t (since le ⊂ Πt for all t). Hence mt contains v for all t ∈ N . Moreover, mt

is tangent to Q ∩Ψ only at v for all t in any sufficiently small open neighborhood N
of t∗. Hence the set of supports of mt in Q is invariant for all t ∈ N .

We have so far proved that the set of supports of mt contains u for all t ∈ N .

We now prove that the set of supports of mt is u for some t ∈ N . Consider first
the case where u is a maximal (Pt∗ , Qt∗)-tuple. Then, by Lemma 2.8, the union of the
supports in u intersects Πt∗ in at least two distinct points; thus mt∗ = m is the only
line in Πt∗ whose set of supports contains u. Moreover, since u is a (Pt∗ , Qt∗)-tuple,
there exists a line in Πt∗ whose set of supports is u. Hence the set of supports of mt∗

is u.

Consider now the case where u is a maximal (Pt, Qt)-tuple for all t ∈ (t∗, t1). By
Lemma 2.8, for all t ∈ (t∗, t1), the union of the supports in u intersects Πt in at least
two distinct points; thus mt is the only line in Πt whose set of supports contains u.
For all t ∈ (t∗, t1), since u is a (Pt, Qt)-tuple there exists a line in Πt whose set of
supports is u. Hence the set of supports of mt is u for all t ∈ (t∗, t1).
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Lemma 2.14. The set of supports of mt is invariant for t ranging in any suffi-
ciently small open neighborhood N of t∗.

Proof. First if m = le, then mt = le for all t ∈ N because Ψ contains m = le (by
Lemma 2.11), and Πt contains le for all t (by definition). Thus the set of supports of
mt is invariant for all t ∈ N . We now assume that m �= le.

Line m is tangent to polygon Pt∗ along an edge by Lemma 2.10. Thus m is
tangent to P in at least two points. Hence, since P ∩ Ψ is a face of P and m lies in
Ψ, either m properly intersects P∩Ψ or m is tangent to P∩Ψ along one of its edges.
In the latter case, the edge does not lie in le since m �= le; thus m is tangent to P∩Ψ
at some point not on le, contradicting our assumptions. Hence m properly intersects
the face of P in Ψ.

It follows that, if m contains a vertex of P, then this vertex is an endpoint of a
support edge of mt for all t in any sufficiently small open neighborhood of t∗ (indeed
mt lies in Ψ and tends to m when t tends to t∗). By Lemma 2.13, the set of supports
of mt is u for some t in any sufficiently small open neighborhood of t∗. Hence, if
m contains a vertex of P, this vertex is an endpoint of a support edge in u. By
assumption u contains no edge with endpoint on Πt∗ \ le; thus m contains no vertex of
P except possibly on le (since m lies in Πt∗). It thus follows that the set of supports
of mt in P is invariant for t ranging in any sufficiently small open neighborhood of t∗

(since mt ⊂ Ψ tends to m when t tends to t∗ and all supports of m lie in Ψ).
Now consider the case where m properly intersects Q ∩ Ψ which is a face or an

edge of Q. Similarly as for P, m contains no vertex of Q except possibly on le, and
thus the set of supports of mt in Q is invariant for t ranging in any sufficiently small
open neighborhood of t∗.

Finally, consider the case where m is tangent to Q ∩ Ψ only on le. Then, as in
the proof of Lemma 2.13, the set of supports of mt in Q is invariant for all t ranging
in any sufficiently small open neighborhood of t∗, which concludes the proof.

2.5. Nongeneric tangent lines. We count here the number of nongeneric tan-
gent lines. Note that, as mentioned before, there are no such lines under some ade-
quate general position assumption.

Proposition 2.15. There are at most O(p + q + r) isolated nongeneric tangent
lines except possibly those that lie in planes that contain e and are tangent to all four
polytopes.

Proof. An isolated nongeneric tangent line lies in plane Πt for some t and contains
(at least) two distinct points, each of which is a vertex of P, Q, R, or S, or a point of
tangency between the line and one of the polygons Pt, Qt, and Rt; indeed, otherwise
the line can be moved in Πt while keeping the same supports.

We count first the isolated nongeneric tangent lines that contain two distinct
points of tangency with two of the polygons Pt, Qt, and Rt in Πt for some t. Consider
such a line � tangent to, say, Pt and Qt in Πt. Line � is nongeneric and thus properly
intersects a face of S or a face or an edge of R lying in Πt. If � properly intersects a
face of S or a face or an edge of R lying in Πt but not entirely contained in le, then
Πt is one of the at most four planes tangent to R or S. There are O(p + q) lines
tangent to Pt and Qt in two distinct points in each of these planes and thus O(p+ q)
such lines in total. Otherwise, Πt intersects each of R and S in an edge contained in
le. The supports of � are thus the union of a PQ-tuple and, in each of R and S, the
edge lying in le or one (or both) of its endpoints. It follows that at most a constant
number of such isolated nongeneric tangent lines contain a given PQ-tuple in their
set of supports. Hence the number of such lines is at most the number of PQ-tuples,
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which is in O(p + q) by Corollary 2.6. It follows that there are at most O(p + q + r)
isolated nongeneric tangent lines that contain two distinct points of tangency with
two of the polygons Pt, Qt, and Rt in Πt for some t. We obtain similarly that there
are at most O(p + q + r) isolated nongeneric tangent lines that contain two distinct
points of tangency with only one of the polygons Pt, Qt, and Rt.

We now count the isolated nongeneric tangent lines that contain a unique vertex
of P, Q, R, or S and a unique point of tangency with the polygons Pt, Qt, and Rt

in Πt for some t. Each vertex v of P, Q, R, or S that does not lie on le is contained
in a unique plane Πt, and there are, in that plane, at most six lines through v and
tangent to Pt, Qt, or Rt. There are thus O(p + q + r) such lines in total. Consider
now a line � through a vertex v on le and tangent to Pt at w �= v in Πt for some
t. We can suppose that each of Qt and Rt is either tangent to � at w or is properly
intersected by �; indeed otherwise � is tangent to two polygons in two distinct points.
If Qt (or Rt) is a face of Q (resp., R) or an edge not contained in le, then Πt is one
of the at most two planes tangent to Q (resp., R) and, in each of these planes, there
are at most two lines through v and tangent to Pt. If Qt (or Rt) is tangent to � at
w such that the support edges of � in P and in Q (resp., R) are not collinear, then �
goes through a vertex of P, Q, R, or S that lies on le, and through a vertex of the
intersection of two of these polytopes. There are at most eight vertices of P, Q, R,
and S on le and O(p + q + r) vertices on the intersection of two of these polytopes.
There are thus O(p + q + r) such lines in total. Otherwise, Qt (and Rt) is an edge
contained in le or is tangent to � at w such that the support edges of � in P and in Q
(resp., R) are collinear; then � is not isolated.

We finally bound the number of isolated nongeneric tangent lines that contain no
point of tangency with the polygons Pt, Qt, and Rt in Πt for any t (and thus contain
at least two vertices of P, Q, R, and S). Consider such a line � that lies in plane Πt

for some t. Line � is tangent to P, Q, and R and thus properly intersects Pt, Qt, and
Rt in plane Πt which is tangent to P, Q, and R. If plane Πt is not tangent to S, �
goes through an endpoint of e (since � is tangent to S), and there are O(p + q + r)
such lines � that go through an endpoint of e and at least another vertex of P, Q, or
R. If plane Πt is tangent to S, line � lies in a plane Πt tangent to P, Q, R, and S,
which concludes the proof.

Note that there can be Ω(n2) isolated nongeneric tangent lines that lie in a plane
tangent to all four polytopes. Consider, for instance, four polytopes that admit a
common tangent plane containing edge e, an edge e′ of P, and two faces of Q and R
of linear complexity such that all the lines through a vertex of each face intersect e
and e′. All these lines are isolated nongeneric tangent lines.

2.6. Proof of the main lemma. Proposition 2.7, which handles the isolated
generic tangent lines, and Proposition 2.15, which handles the isolated nongeneric
tangent lines, directly yield the Main Lemma.

3. Upper bounds. We prove in this section the upper bounds of Theorems 1.1,
1.2, and 1.3. The lower bounds are proved in section 4. Consider k pairwise distinct
polytopes P1, . . . ,Pk with n1, . . . , nk edges, respectively, and n edges in total.

Lemma 3.1. For any edge e of Pi, there are O(nj + nl + nm) sets of open edges,
chosen from Pi, Pj, Pl, and Pm, that admit an isolated transversal that intersects e
and is tangent to these four polytopes.

Proof. Any isolated transversal to a set of edges is isolated with respect to the
set of all its supports. It is thus sufficient to bound the number of sets of open
edges, chosen from Pi, Pj , Pl, and Pm, that are intersected by an isolated line that
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intersects e and is tangent to these four polytopes. The Main Lemma states that
there are O(nj + nl + nm) isolated lines intersecting e and tangent to Pi, Pj , Pl,
and Pm, excluding those that lie in planes that contain e and are tangent to all four
polytopes. Any of these O(nj + nl + nm) isolated lines intersects at most two open
edges in any polytope. Thus there are O(nj + nl + nm) sets of open edges (chosen
from Pi, Pj , Pl, and Pm) that are intersected by one of these isolated lines. Now
consider any isolated line that lies in a plane that contains e and is tangent to all four
polytopes. This plane contains all the open edges that are intersected by the isolated
line. Thus these edges (and any subset of them) admit no isolated transversal.

Lemma 3.2. A minimal set of open edges and vertices that admit an isolated
transversal consists of (i) two vertices, (ii) one vertex and one or two edges, or (iii)
two, three, or four edges.

Proof. Consider a minimal set of open edges and vertices that admit an isolated
transversal. The elements are necessarily distinct because the set is minimal. If the
set contains two vertices, it contains no other element since the two vertices admit a
unique transversal.

Suppose now that the set contains one vertex. None of the open edges contains
the vertex because otherwise such an edge would be redundant. Thus, the vertex
and any segment define either a line, and thus admit an isolated transversal, or they
define a plane. If none of the other edges intersects that plane in a unique point,
the vertex and all open edges admit zero or infinitely many common transversals, a
contradiction. Thus there exists an edge that intersects the plane in a unique point.
Hence, the vertex and two open edges admit a unique transversal, and the minimal
set contains no other element.

Suppose finally that the set contains only open edges. The characterization of the
transversals to a set of line segments [9] shows that either two, three, or four of these
line segments admit at most two transversals, or that the set of common transversals
to all the open line segments can be parameterized by an open set of parameters
in R

2, R, or R/πZ. In the latter case, the edges admit no isolated transversal, a
contradiction. Hence, the minimal set of edges consists of two, three, or four edges.
(Note that two or three edges may admit an isolated transversal if that transversal
contains one or two of the edges.)

We can now prove the upper bound of Theorem 1.3.

Proposition 3.3. There are O(n2k2) minimal sets of open edges and vertices,
chosen from some polytopes, that admit an isolated transversal that is tangent to these
polytopes.

Proof. We bound the number of minimal sets depending of their type according
to Lemma 3.2. First, there are O(n2) pairs of vertices, pairs of edges, and sets of one
vertex and one edge. Hence, at most O(n2) such pairs admit an isolated transversal.

Consider a minimal set of one vertex and two open edges, chosen from some poly-
topes, that admit an isolated transversal that is tangent to these polytopes. The open
edges do not contain the vertex because otherwise they admit no isolated transversal.
Thus the vertex and each edge define a plane. For each of the O(n2) planes defined
by a vertex and an open edge not containing it, there are O(k) lines in that plane
that are tangent to one of the polytopes at some point other than the vertex. Hence
there are O(n2k) sets of one vertex and two edges, chosen from some polytopes, that
admit an isolated transversal that is tangent to these polytopes.

It is straightforward to show that three open edges admit an isolated transversal
only if the line containing one of the edges intersects the other two edges. Since any
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line intersects at most two open edges in any of the k polytopes, there are O(nk2)
sets of three open edges that admit an isolated transversal.

Consider now the case of four edges, chosen from at most three polytopes, that
admit an isolated transversal that is tangent to these polytopes. The two edges chosen
from the same polytope belong to the same face, and the isolated transversal lies in
the plane containing that face. Each of the other two open edges intersects that plane
in one point, because otherwise the four open edges admit zero or infinitely many
transversals. For each of the O(n) planes containing a face of one of the polytopes,
and each of the O(n) edges intersecting that plane in exactly one point, there are at
most 2k lines in that plane that contain this point and are tangent to one of the k
polytopes at some other point. Hence there are O(n2k) sets of four open edges, chosen
from at most three polytopes, that admit an isolated transversal that is tangent to
these polytopes.

We finally bound the number of sets of four edges, no two chosen from the same
polytope. By Lemma 3.1 and by summing over all n edges e of the polytopes, the
number T of sets of four open edges, chosen from four polytopes, that admit an
isolated transversal that is tangent to these four polytopes satisfies

T � n
∑

j<l<m

C (nj + nl + nm),

where C is some constant. Since each ni, 1 � i � k, appears
(
k−1

2

)
times in the sum,

it follows that

T � C n
∑

1�i�k

ni

(
k − 1

2

)
= C n2

(
k − 1

2

)
,

and thus T is in O(n2k2) as claimed.
The above result implies the following upper bounds and in particular those of

Theorem 1.1.
Proposition 3.4. There are O(n2k2) connected components of maximal free

line segments tangent to at least four of the polytopes. This bound also holds for con-
nected components of possibly occluded lines tangent to at least four of the polytopes.
Furthermore, the same bound holds for isolated such segments or lines.

Proof. We prove the proposition for possibly occluded lines tangent to at least
four of the polytopes; the proof is similar for maximal free line segments. By Propo-
sition 3.3, there are O(n2k2) minimal sets of open edges and vertices, chosen from
some polytopes, that admit an isolated transversal that is tangent to these polytopes.
The bound on the number of connected components thus follows from the fact that
any connected component of lines tangent to four polytopes contains an isolated line.
Indeed, any nonisolated line can be moved while keeping the same set of supports
until (at the limit) the line intersects a new edge or vertex. During the motion, the
line remains tangent to all four polytopes since it keeps the same supports (except at
the limit); if the line has more than one degree of freedom, this can be repeated until
the line becomes isolated.

We now prove the upper bound of Theorem 1.2. We start with two preliminary
lemmas.

Lemma 3.5. Four possibly intersecting convex polygons in R
2 admit at most a

constant number of connected components of line transversals.
Proof. Consider the usual geometric transform where a line in R

2 with equation
y = ax + b is mapped to the point (−a, b) in the dual space (see, e.g., [24, section
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8.2.1]). The transversals to a convex polygon are mapped to a region bounded from
above by a convex x-monotone curve and from below by a concave x-monotone curve;
such a region is called a stabbing region, and the curves are referred to as the upper
and lower boundaries of the stabbing region. The transversals to four polygons are
mapped to the intersection of four stabbing regions. There exists no transversal of a
given slope if and only if the lower boundary of a stabbing region lies above the upper
boundary of another stabbing region at that slope. Two such boundaries intersect
in at most two points, and thus the transversals to four polygons form at most a
constant number of connected components of transversals.

As in section 2, let P, Q, R, and S be four polytopes in R
3, with p, q, r, and

s � 1 edges, respectively, and let e be a closed edge of S.
Lemma 3.6. There are O(p+ q+ r) connected components of lines intersecting e

and tangent to P, Q, R, and S.
Proof. As in the proof of Proposition 3.4, any connected component of lines inter-

secting e and tangent to P, Q, R, and S contains an isolated line. The Main Lemma
thus yields that there are O(p + q + r) connected components of lines intersecting e
and tangent to P, Q, R, and S except for the components that contain only isolated
lines that lie in planes that contain e and are tangent to all four polytopes.

We show that there are at most a constant number of connected components of
lines intersecting e and tangent to P, Q, R, and S that lie in planes that contain e
and are tangent to all four polytopes. There may be infinitely many such planes that
intersect P, Q, R, and S only on le, but all the lines tangent to the four polytopes
in all these planes belong to the same connected component. Besides these planes
there are at most two planes containing e and tangent to all four polytopes. In any
such plane, the lines tangent to the four polytopes are the transversals to the four
polygons that are the faces, edges, or vertices of P, Q, R, and S lying in the plane.
Lemma 3.5 thus yields the result.

We can now prove the upper bound of Theorem 1.2.
Proposition 3.7. Given three polytopes with n edges in total and one polytope

with m edges, there are O(mn) connected components of lines tangent to the four
polytopes.

Proof. Let S denote the polytope with m edges. First, if S consists of a single
point, it is straightforward to show that there are O(n) connected components of
lines tangent to the four polytopes. Otherwise, by summing over all the edges of S,
Proposition 3.6 yields that the number of connected components of lines tangent to
the four polytopes is O(mn).

4. Lower bounds. We provide in this section the lower bound examples needed
for Theorems 1.1, 1.2, and 1.3. The following proposition proves the lower bound of
Theorem 1.2.

Lemma 4.1. There exist four disjoint polytopes of complexity n such that the
number of common tangent lines is finite and Ω(n2). There also exist two polytopes
of complexity n and two polytopes of complexity m such that the number of common
tangent lines is finite and Ω(mn).

Proof. We consider four planar regular polygons P , Q, R, and S, each with n
vertices, embedded in R

3. P is centered at the origin and parallel to the yz-plane, Q is
obtained from P by a rotation of angle π

n about the x-axis, and R and S are obtained
from P and Q, respectively, by a translation of length 1 in the positive x-direction
(see Figure 4.1). We transform the polygons P and Q into the polytopes P and Q by
adding a vertex at coordinates (ε, 0, 0). Similarly, we transform the polygons R and
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Fig. 4.1. Lower bound examples for Lemmas 4.1 and 4.2.

S into the polytopes R and S by adding a vertex at coordinates (1 + ε, 0, 0).

For ε sufficiently small, the lines tangent to P, Q, R, and S are the lines through
a vertex of P ∩Q and a vertex of R∩S. Since P ∩Q and R∩S have 2n vertices each,
there are 4n2 tangent lines. Now, moving P and S by 2ε in the x direction ensures
the disjointness of the polytopes while preserving the existence of the tangents if ε is
small enough.

Replacing R and S in the above construction by regular polygons each with m
vertices yields the Ω(mn) lower bound in the case of two polytopes of complexity n
and two polytopes of complexity m.

We now prove the lower bounds of Theorems 1.1 and 1.3. The following proposi-
tion directly yields these bounds since the number of isolated tangents to any four of
the polytopes is less than or equal to the number of sets of open edges and vertices
in at most four polytopes that admit an isolated transversal that is tangent to these
polytopes.

Lemma 4.2. There exist k disjoint polytopes of total complexity n such that the
number of maximal free line segments tangent to four of them is finite and Ω(n2k2).
Moreover, these segments lie in pairwise distinct lines.

Proof. The lower bound example is similar to the one with four polyhedra. For
simplicity suppose that n and k are such that n

k and k
4

are integers. We first take
an n

k -regular polygon A1 in the plane x = 0. Next we consider a copy, B0, of A1

scaled by a factor of (1 + ε), and on each edge of B0 we place k
4

points. Polygon Bi,

1 � i � k
4
, is constructed by taking the ith point on each edge of B0. If ε is small

enough, the intersection points of A1 and Bi are outside the other polygons Bj for
1 � j � k

4
and i �= j. Now the Ai, for 2 � i � k

4
, are constructed as copies of A1

scaled by a factor 1 + i
kε (see Figure 4.1). For the moment, all polygons lie in plane

x = 0. We now construct four families of k
4

polygons each:

• Pi is a copy of Ai translated by iε in the negative x direction.
• Qi is a copy of Bi translated by iε in the positive x direction.
• Ri is a copy of Bi translated by 1 − iε in the positive x direction.
• Si is a copy of Ai translated by 1 + iε in the positive x direction.

Any choice of four polygons, one in each family Pi, Qj , Rl, and Sm, reproduces
the quadratic example of Lemma 4.1 with polygons of size n

k and thus with total

number of tangents greater than
(
k
4

)4
4
(
n
k

)2
= n2k2

4
. Furthermore, the lines tangent
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to Pi, Qj , Rl, and Sm are occluded only by Pi′ and Sm′ for i′ > i and m′ > m, that
is, beyond the portion of the tangents containing the contact points. The k polygons
can be transformed into k convex polyhedra as in Lemma 4.1.

5. Algorithm. Using the sweep-plane algorithm outlined in section 2.1, we can
compute in O(n2k2 log n) time all minimal sets of open edges and vertices, chosen
from some of the polytopes, that admit a possibly occluded isolated transversal that
is tangent to these polytopes. Now, for some of these lines, the segment joining the
contact points with the polytopes is free. We can use standard, but complicated,
ray-shooting data structures in order to determine which of these O(n2k2) segments
are free; this can be done in O(log2 n) time per query using O((nk)2+ε) preprocessing
time and storage [3].

We present in this section a solution that uses O(n2k2 log n) time and O(nk2)
space. We adapt the algorithm outlined in section 2.1 to directly compute the min-
imal sets of edges and vertices admitting an isolated line transversal that contains a
free segment tangent to their respective polytopes. Our algorithm has better time
and space complexities than the previously mentioned approach and is readily imple-
mentable. Moreover, the space complexity drops to O(nk) if no occlusion is taken into
account. Precisely, we prove the following theorem which is more powerful, though
more technical, than Theorem 1.4 and directly yields it.

Theorem 5.1. Given k polytopes in R
3 with n edges in total, we can compute in

O(n2k2 log n) time and O(nk) space all the minimal sets of open edges and vertices,
chosen from some of the polytopes, that admit an isolated, possibly occluded, line
transversal tangent to these polytopes. We can also compute, in O(n2k2 log n) time
and O(nk2) space, all the minimal sets of open edges and vertices that admit an
isolated line transversal containing a maximal free segment that is tangent to these
polytopes. Furthermore, the algorithm reports which of the transversals contain such
a free line segment.

For ease of presentation, we describe a simplified version of the algorithm in which
we assume that the polytopes are in generic position; see section 5.2 for details. Using
the same techniques as in section 2, it is straightforward though tedious to generalize
the algorithm for arbitrary situations. We also detail the algorithm only for the case
of minimal sets of four edges, with no two chosen from the same polytope; the other
sets of at most four edges and vertices can be computed similarly.

5.1. Algorithm overview and data structures. The input to our algorithm
is a set of possibly intersecting polytopes structured in a standard way so that classic
incidence queries can be performed in constant time (see, for instance, [7, section
9.1]).

We consider each polytope edge, e, in turn and sweep a plane around it between
its two incident faces. During the sweep we create and maintain the following objects.

Combinatorial polygons. The sweep plane intersects each polytope in a (possibly
empty) convex polygon whose vertices correspond to polytope edges. For each of
these polygons, we maintain the set of vertices, each represented by its corresponding
polytope edge, in a data structure that admits logarithmic-time vertex insertion,
deletion, and look-up operations, as well as ray-shooting queries. This can be done
with a balanced binary search tree (see [21, section 7.9.1]).

Combinatorial bitangents. The algorithm keeps track of the lines contained in
the sweep plane and tangent to two polygons. The polytopes properly intersected by
such a bitangent between its two supports are its blockers. A bitangent is represented
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by (pointers to) its two supports and a set of its blockers, ordered by polytope index,
stored in a balanced binary search tree.

Polytope edges. We associate with each polytope edge a list of pointers to the
combinatorial bitangents it supports in the current sweep plane.

Critical events. The sweep stops at critical events at which time combinatorial
polygons and bitangents are updated. In addition to the V- and F-critical events
defined in section 2.3, we introduce the following two new types of events at which
the set of blockers of some combinatorial bitangents may change. A T-critical event
occurs whenever three bitangents, supported by a PQR-tuple, become aligned (see
Figure 5.1(b)). An I-critical event occurs when the sweep plane contains a point of
intersection between an edge and a face of two (distinct) polytopes (see Figure 5.2).

Each event is represented by a data structure providing pointers to the primitives
that define it: a vertex for a V-event, a bitangent and a face for an F-event, three
bitangents for a T-event, and a face and an edge for an I-event. In addition, for a
T-event, we store a bit of information specifying which of the line transversals to le
and the three support edges defines the T-event. Note that the critical value of each
critical event can be computed in constant time from the information associated with
the event; it thus does not need to be explicitly stored.

Finally, critical events are sorted in the order in which they appear during the
sweep and stored in an event queue supporting insertion and deletion in logarithmic
time.

5.2. Generic position assumption. Our generic position assumption is that
the ordered set of events does not change under any arbitrarily small perturbation of
the input polytopes. This assumption corresponds to the following: (i) the events are
generic, and (ii) no two events occur in the same sweep plane, except for F- and I-
critical events induced by the same pair of edge and face. The genericity of the events
is ensured by (but not characterized by) the following geometric conditions:

V-critical events: no vertex lies on a line containing another edge.
F-critical events: no two edges in two distinct polytopes are coplanar.
I-critical events: if an edge intersects a face of another polytope, it does so properly

and not on a line containing another edge.
T-critical events: any four lines containing polytope edges admit zero or two

transversals.

5.3. Initialization. For each new sweep, we initialize the event queue and con-
struct the combinatorial polygons and combinatorial bitangents as follows.

Combinatorial polygons. Computing the combinatorial polygons in the initial
sweep plane can easily be done in O(n) time.

Combinatorial bitangents. The bitangent lines to two polygons P and Q in the
initial sweep plane through a given vertex of P can be computed by a binary search
on Q in O(log n) time. The blockers of a given bitangent can be found using one ray-
shooting query per combinatorial polygon, for a total time of O(k log n). Altogether,
the O(nk) combinatorial bitangents can thus be computed in O(nk2 log n) time.

Event queue. There are O(n) V-critical events and O(nk) I-critical events, since
an edge intersects a polytope in at most two faces. The O(nk) edge-face intersection
points are computed and stored once before the beginning of the first sweep; this
computation can be done by using brute force in O(n2) time and with O(nk) space,
since it is done once for all the sweeps. For each sweep, all the V- and I-critical
events can then be inserted in O(nk log n) time. For each of the O(nk) combinatorial
bitangents, we also insert F- and T-critical events in O(k log n) time as explained in
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Fig. 5.1. (a) The sweep plane in which the combinatorial bitangent with support edges e1 and
e2 is created. (b) The sweep plane at a T-critical event induced by the three bitangents with support
edges in e1, e2, and e3. (c)–(d) A line � that defines an F-critical event. (d) The F-event defined
by � occurs simultaneously with an I-critical event.

section 5.4 (Lemma 5.2). In total, initializing the event queue takes O(nk2 log n) time
per sweep.

Thus, initializing all the combinatorial polygons, bitangents, and the event queue
can be done in O(nk2 log n) time per sweep plus O(n2) time overhead for a total of
O(n2k2 log n) time as announced in Theorem 5.1.

5.4. Updating the event queue. Every time a new combinatorial bitangent
is created, we compute and insert into the queue new F- and T-events as described
below. Let e1 and e2 denote the two support edges of a new combinatorial bitangent.
Let Πt0 denote the critical plane at which the new combinatorial bitangent is created.

New T-critical events. See Figure 5.1(a)–(b). Consider all the bitangents having
e1 as support edge and compute the set of support edges (distinct from e1 and e2)
of all these bitangents. Compute the intersection of this set with the similar set for
e2; this can be done in O(k log k) time by ordering the edges by their indices. For
each edge e3 in that set, insert a T-event for each line transversal to le, e1, e2, and
e3 if the transversal is tangent to the three polytopes containing e1, e2, and e3; this
test can be done in constant time. Each of the at most k insertions into the event
queue takes O(log n). Thus computing and inserting the new T-critical events takes
O(k log n) time per new bitangent.

New F-critical events. Consider in turn each of the four faces incident to one of
the two support edges. Let e1 and f denote the considered edge and face. We compute
a candidate F-event, in constant time, as follows. Compute the line � (if any) that
lies in the plane Ψ containing f and goes through le and e2 (see Figure 5.1(c)). If �
is tangent to the polytope containing e2, � defines an F-event. We reject this F-event
if � does not intersect e1 (in such a case, the edge e1 does not intersect the sweep
plane at the F-event, and thus the combinatorial bitangent to e1 and e2 would have
been deleted at some V-event before the F-event). We also discard this F-event if
it occurs at the critical value t0 where the (considered) bitangent is created (that is,
Πt0 contains �); we discard such F-events because when a bitangent is created at an
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F-event, we do not reinsert the same F-event into the queue. We thus retain at most
four F-events, at most one for each of the four faces incident to one of the two support
edges. If no F-event is retained, the bitangent will be deleted at a V-critical event and
no new F-critical event is created. If more than one F-event is retained, we need only
keep the first one, since, as we shall see in section 5.5.2, the combinatorial bitangent
will be deleted at the first of these events.

Again, let f denote the face incident to edge e1 that induces that F-critical event.
If the other support edge, e2, intersects face f (see Figure 5.1(d)), then this event will
be treated as an I-critical event and again we create no new F-event. Otherwise, we
insert the F-event into the queue in O(log n) time. We thus get the following lemma.

Lemma 5.2. Each time a combinatorial bitangent is created, the event queue can
be updated in O(k log n) time.

5.5. Processing events.

5.5.1. V-critical events. Let v denote the vertex that induces a V-critical
event. As the sweep plane reaches v, all edges incident to v start or cease to be
swept; we call the former starting edges and the latter terminating edges. Let Q
denote the polytope to which v belongs and let Πt0 be the sweep plane containing v.
When processing a V-event, we perform the following operations.

Create and delete combinatorial bitangents. Suppose first that the critical plane
through v properly intersects Q. Consider in turn each combinatorial bitangent sup-
ported by a terminating edge, et, incident to v and let h denote the other support
edge of this bitangent. We check all starting edges incident to v to find the edge es
such that the line in Πt0+ε through es and h is tangent to Q for ε > 0 arbitrarily
small. We create a new combinatorial bitangent and delete the old one; in fact, we
simply replace et by es in the combinatorial bitangent, create a pointer from edge
es to the bitangent, and update the event queue. After handling the last bitangent
supported by edge et, delete all the pointers from et to the bitangents.

The critical plane through v contains O(k) bitangents through v; thus, by conti-
nuity, at most O(k) combinatorial bitangents are deleted and created. Each deletion
and creation takes linear time in the degree of v plus O(k log n) time for updating the
event queue (Lemma 5.2). Hence, since the sum of the degrees of the vertices is O(n),
this step takes O(nk2 log n) time in total for all nonextremal V-events.

Suppose now that the critical plane through v is tangent to Q and that all edges
incident to v are starting. For each edge not incident to v, we can decide in constant
time whether it supports a bitangent through v in the critical plane through v. If so, we
check, for each edge incident to v, if the line in plane Πt0+ε that goes through these two
edges is tangent to Q for ε > 0 arbitrarily small. If so, we create a new combinatorial
bitangent. By continuity, O(k) bitangents are created in total time O(n+ kd), where
d is the degree of v. For each of these newly created bitangents, we compute its set
of blockers in (brute force) O(n) time and update the event queue in O(k log n) time
(Lemma 5.2). This takes O(nk log n) time per event; hence O(nk2 log n) time per
sweep since there are at most two sweep planes tangent to any polytope.

Finally, if all edges incident to v are terminating, we delete all the O(k) bitangents
supported by these edges; for each bitangent, deleting its blockers and the pointer from
the edge not incident to v can be done in O(k) time. Hence, this takes O(k2) time
per critical event and O(k3) time per sweep.

Update the combinatorial polygon associated with Q. This takes O(log n) time
per polytope edge incident to v, thus O(n log n) time in total for all V-events.

Hence, processing all V-events takes O(nk2 log n) time per sweep.
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Fig. 5.2. I-critical event.

5.5.2. F-critical events. We process an F-critical event as follows. Let b and
f denote the bitangent and face associated with the event. Let e1 and e2 denote the
two support edges of b such that e1 is the edge that belongs to f (see Figure 5.1(c)–
(d)). By construction of F-events (see section 5.4), e2 does not intersect face f (see
Figure 5.1(c)); thus the bitangent b is deleted and a new combinatorial bitangent is
created.

Bitangent b is removed from the lists of bitangents supported by e1 and e2 in
O(k) time. The support edges of the new bitangent are e2 and the edge e′1 �= e1

of f that is intersected by the line in the plane Ψ (containing f) through le and e2

(see Figure 5.1(c)). This edge e′1 is also one of the two edges adjacent to e1 in its
combinatorial polygon. Edge e′1 can thus be computed in O(log n) time. As usual,
the new bitangent is added to the lists of bitangents supported by e′1 and e2. We then
compute all the blockers of this new bitangent by performing one ray-shooting query
per combinatorial polygon, for a total time of O(k log n). We finally update the event
queue in O(k log n) time (Lemma 5.2).

There are O(k) F-events associated to each polytope face, thus O(nk) F-events
per sweep. Hence, the total time complexity for processing all F-events is O(nk2 log n)
per sweep.

5.5.3. I-critical events. An I-event is associated with a face f of some polytope
P and an edge e1 of some other polytope Q. Let p denote the point of intersection
between f and e1. The sweep plane, Πt0 , that contains p intersects the two polytopes
P and Q in two polygons Pt0 and Qt0 . See Figure 5.2. Point p lies on an edge of Pt0 ;
the two endpoints of this edge are the intersection of two edges of P, say e0 and e2.
These two polytope edges can be computed in O(log n) time using the combinatorial
polygon associated with P.

Create or delete combinatorial bitangents. If the two polygons Pt0 and Qt0 are
tangent at p (see Figure 5.2(a)), the two combinatorial bitangents whose pairs of
support edges are (e0, e1) and (e1, e2) are either created or deleted at the I-event.
If these bitangents appear in the list of bitangents having edge e1 as support, we
remove them from the list and delete them; this can be done by brute force in O(k)
time. Otherwise we create these two combinatorial bitangents. We compute their set
of occluders in O(k log n) time by intersecting the bitangents with all the polytopes
using their associated combinatorial polygons. Finally, we update the event queue in
O(k log n) time.

Update sets of blockers. Now consider each of the O(k) bitangents having e1 as
a support edge except for the two bitangents that might have just been created. We
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update its set of blockers as follows. First, note that only polytope P may have to
be added to, or removed from, the set of blockers. Two situations occur: either the
geometric bitangent segment joining the two support edges in Πt0 properly intersects
polygon Pt0 or it does not. In the first case (e.g., segment pq in Figure 5.2), polytope
P was and remains a blocker of the bitangent. In the second case (e.g., segment pr
in Figure 5.2), P has to be either removed from or added to the set of blockers. This
can be done in O(k log k) time by searching for P in the set (recall that polytopes are
ordered by their index in a binary search tree).

Processing an I-event thus takes O(k log n) time. Since any polytope edge inter-
sects any other polytope in at most two points, there are O(nk) I-events which can
be processed in O(nk2 log n) time in total per sweep.

5.5.4. T-critical events. Suppose that on the line transversal to e1, e2, e3, and
le (the one associated to the T-event) edges e1, e2, e3 are met in that order at points
p1, p2, p3. Let Qi be the polytope containing ei, 1 � i � 3.

Update sets of blockers. Update the occluder set for the bitangent with support
edges e1 and e3 by either removing Q2 (if it appears in the set) or adding Q2 (if it
does not appear in the set); this can be done in O(log n) time.

Output. First determine if the segment p1p3 is unoccluded by checking if the set
of blockers of the bitangent with support edges e1 and e3 is empty or reduced to
Q2. If so and if the segment intersects the reference edge e, then it is a free segment
transversal to the four edges e, e1, e2, e3. In order to report each such transversal
exactly once, we report it only if the reference edge e is smaller than e2 for some
global ordering of all edges. This can be done in constant time.

There are O(nk2) T-critical events per sweep (see the proof of Proposition 3.3);
thus all the T-events can be processed in O(nk2 log n) time per sweep.

5.6. Complexity. Note first that we assume a model of computation in which
bounded-degree algebraic polynomials may be evaluated in constant time. See [18]
for a detailed description of the predicates concerning line transversals that are used
in this algorithm.

In this model of computation, we have described a Θ(n2k2 log n)-time algorithm
for computing all the minimal sets of edges, with no two chosen from the same poly-
tope, that admit an isolated line transversal containing a free segment that is tangent
to all these polytopes. As mentioned earlier, the sweep-plane algorithm can be easily
modified to report all types of minimal support sets.

The space used by the algorithm is Θ(nk2) in the worst case. To see this, first
notice that storing the combinatorial polygons and the V-, F- and I-critical events
uses O(nk) space. There are also O(nk) combinatorial bitangents in any sweep plane.
Storing the combinatorial bitangents thus requires Θ(nk2) space since, in the worst
case, Θ(nk) of them may be intersected by Θ(k) polytopes. Furthermore, there may be
Θ(nk2) T-events in the queue since each of the Θ(nk) bitangents may share a support
with Θ(k) other bitangents. This yields the bounds of Theorem 1.4 for computing
minimal free segments.

Notice that, with a slight modification to the algorithm and no increase in the
time complexity, we can reduce the storage requirement of the T-events to O(nk).
To do this we maintain the bitangents sorted by polar angle around each vertex
of the combinatorial polygons, which can easily be done since the cyclic ordering
changes only at T-critical events or when a bitangent is created or deleted. Since two
bitangents become aligned only when they are neighbors in this cyclic ordering, we
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need only maintain the T-events for pairs of consecutive bitangents, and there can be
only O(nk) of these at any one time.

Finally, the bounds of Theorem 1.4 that concern the computation of potentially
occluded isolated lines tangent to polytopes are obtained by noticing that we need not
maintain the sets of blockers of the bitangents, which reduces the space requirements
for the combinatorial bitangents to O(nk).

6. Conclusion. We have presented a tight bound on the number of (connected
components of) lines and maximal free line segments that are tangent to at least four
among k possibly intersecting polytopes in arbitrary position. A problem that we
leave open is to prove that the same bound holds for the combinatorial complexity of
the set of all maximal free line segments among k polytopes.

We have also shown how to compute in near-optimal worst-case time all the
minimal free line segments that are isolated transversals to their set of supports and
tangent to the corresponding polytopes. We believe that our algorithm can also be
made to report all connected sets of minimal free segments that are transversal to
the same set of edges. A problem that we have not solved, however, is to compute
in the same time and space complexities, respectively, the polytopes supporting the
endpoints of the corresponding maximal free line segments.
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Abstract. In this paper the Nečiporuk method for proving lower bounds on the size of Boolean
formulas is reformulated in terms of one-way communication complexity. We investigate the settings
of probabilistic formulas, nondeterministic formulas, and quantum formulas. In all cases we can use
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results regarding formula size are as follows: We show a polynomial size gap between probabilis-
tic/quantum and deterministic formulas, a near-quadratic gap between the sizes of nondeterministic
formulas with limited access to nondeterministic bits and nondeterministic formulas with access to
slightly more such bits, and a near-quadratic lower bound on quantum formula size. Furthermore we
give a polynomial separation between the sizes of quantum formulas with and without multiple read
random inputs. The lower bound methods for quantum and probabilistic formulas employ a variant
of the Nečiporuk bound in terms of the Vapnik–Chervonenkis dimension. To establish our lower
bounds we show optimal separations between one-way and two-way protocols for limited nondeter-
ministic and quantum communication complexity, and we show that zero-error quantum one-way
communication complexity asymptotically equals deterministic one-way communication complexity
for total functions.
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1. Introduction. One of the most important goals of complexity theory is to
prove lower bounds on the size of Boolean circuits computing some explicit functions.
Currently only linear lower bounds for this complexity measure are known. It is well
known that superlinear lower bounds are provable, however, if we restrict the circuits
to fan-out 1, i.e., if we consider Boolean formulas. The best known technique for
providing these is due to Nečiporuk [32]; see also the survey by Boppana and Sipser
[7]. It applies to Boolean formulas with arbitrary gates of fan-in 2. For other methods
applying to circuits over a less general basis of gates, see again [7]. The largest lower
bounds provable with Nečiporuk’s method are of the order Θ(n2/ log n).

The complexity measure of formula size is not only interesting because formulas
are restricted circuits, which are easier to handle in lower bounds, but also because
the logarithm of the formula size is asymptotically equivalent to the circuit depth.

It has become customary to consider randomized algorithms as a standard model
of computation. While randomization can be eliminated quite efficiently using the
nonuniformity of circuits, randomized circuits are sometimes simpler to describe and

∗Received by the editors December 20, 2001; accepted for publication (in revised form) January
8, 2007; published electronically June 5, 2007. The results in this paper appeared in On the size
of probabilistic formulae, in Proceedings of the 8th International Symposium on Algorithms and
Computation, Singapore, 1997, Lect. Notes Comput. Sci. 1350, Springer, 1997, pp. 243–252; Lower
bounds for computation with limited nondeterminism, in Proceedings of the 13th IEEE Conference
on Computational Complexity, Buffalo, NY, 1998, pp. 141–153; and On quantum and probabilistic
communication: Las Vegas and one-way protocols, in Proceedings of the 32nd Annual ACM Sym-
posium on Theory of Computing, Portland, OR, 2000, pp. 644–651.

http://www.siam.org/journals/sicomp/37-2/40004.html
†Institut für Informatik, Goethe-Universität Frankfurt, Robert-Mayer Str. 11–15, 60054 Frank-

furt, Germany (klauck@thj.informatik.uni-frankfurt.de). The work of this author was supported by
DFG Project KL 1470/1.

552



COMMUNICATION COMPLEXITY AND THE NEČIPORUK METHOD 553

more concise than deterministic circuits. It is natural to ask whether we can prove
lower bounds for the size of randomized formulas.

More generally, we like to consider different modes of computation other than
randomization. First we are interested in nondeterministic formulas. It turns out
that general nondeterministic formulas are as powerful as nondeterministic circuits
and thus are intractable for lower bounds with current techniques. But this construc-
tion relies heavily on a large consumption of nondeterministic bits guessed by the
simulating formula; in other words, such a simulation drastically increases the length
of proofs involved in nondeterministic computation. So we can ask whether the size of
formulas with a limited number of nondeterministic guesses can be lower bounded, in
the spirit of research on limited nondeterminism (for a survey of this topic see [14]).

Finally, we are interested in quantum computing. The model of quantum formu-
las was introduced by Yao in [41]. He gave a superlinear lower bound for quantum
formulas computing the MAJORITY function. Later Roychowdhury and Vatan [37]
proved that the classical Nečiporuk bound divided by logn applies to quantum for-
mulas and showed a lower bound of the order Ω(n2/ log2 n) for an explicit function.
They also showed that quantum formulas can actually be simulated quite efficiently
by classical Boolean circuits.

The outline of this paper is the following. First we observe that the Nečiporuk
method can be defined in terms of one-way communication complexity. While this
observation is not relevant for deterministic computations, it becomes useful if we con-
sider other modes of computation. First we consider probabilistic formulas. We derive
a variation of the Nečiporuk bound in terms of randomized communication complex-
ity and, using results due to Kremer, Nisan, and Ron [26], a combinatorial variant
involving the Vapnik–Chervonenkis (VC) dimension. Applying this lower bound we
show a near-quadratic lower bound for probabilistic formula size (Corollary 3.7).

We also exhibit a function for which probabilistic formulas are smaller by a factor
of

√
n than deterministic formulas and even Las Vegas (zero-error) formulas (Corollary

3.13). This is shown to be the maximal such gap provable under the condition that
the lower bound for deterministic formulas is given by the Nečiporuk method. Fur-
thermore we observe that the standard Nečiporuk bound asymptotically also works
for Las Vegas formulas.

We then introduce communication complexity type Nečiporuk methods for non-
deterministic formulas and for quantum formulas. To apply these generalizations
we have to provide lower bounds for one-way communication complexity with lim-
ited nondeterminism and for quantum one-way communication complexity. Since the
communication problems we investigate are asymmetric (i.e., Bob receives much fewer
inputs than Alice), our results show optimal separations between one- and two-round
communication complexity for limited nondeterministic and for quantum communica-
tion complexity. Such separations have been known previously for deterministic and
probabilistic protocols; see [26, 36]. In the quantum case such a separation is given in
the equivalent scenario of quantum random access codes in the work of Ambainis et
al. [2]. In the case of limited nondeterminism such a separation was unknown prior
to this work.

In the nondeterministic case we give a specific combinatorial argument for the
communication lower bound (Theorem 5.5). In the quantum case we give a general
lower bound method based on the VC dimension (Theorem 5.9), which can also be
extended to the case where the players share prior entanglement, as an application
of the ideas in [2]. The generalization to protocols with entanglement has also been
observed by Nayak in his thesis [31]. Furthermore we show that exact and Las Vegas
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quantum one-way communication complexity are never much smaller than determin-
istic one-way communication complexity for total functions (Theorems 5.11 and 5.12),
generalizing a theorem of Hromkovič and Schnitger [19].

Then we are ready to give Nečiporuk-type lower bound methods for nondetermin-
istic formulas and quantum formulas. In the nondeterministic case we show that for
an explicit function there is a threshold on the amount of nondeterminism needed for
efficient formulas; i.e., a near-quadratic size gap occurs between formulas allowed to
make a certain amount of nondeterministic guesses and formulas allowed a logarithmic
factor more. The threshold is polynomial in the input length (Theorem 6.4).

For quantum formulas (in Corollary 6.11) we show a lower bound of Ω(n2/ log n),
improving by a logarithmic factor on the best previously known bound due to
Roychowdhuri and Vatan [37]. More importantly, our bound also applies to a more
general model of quantum formulas, which are, e.g., allowed to access multiple read
random variables. This feature makes these generalized quantum formulas a proper
generalization of both quantum formulas and probabilistic formulas. It turns out that
we can give a Ω(

√
n/ log n) separation between formulas with multiple read random

variables and without this option, even if the former are classical and the latter are
quantum (Corollary 6.6). Thus quantum formulas as defined by Yao are not capable of
efficiently simulating classical probabilistic formulas. We show that the VC-dimension
variant of the Nečiporuk bound holds for generalized quantum formulas and the stan-
dard Nečiporuk bound holds for generalized quantum Las Vegas formulas (Theorem
6.10).

The organization of the paper is as follows: In section 2 we describe some prelimi-
naries regarding the VC dimension, classical communication complexity, and Boolean
circuits. In section 3 we expose the basic lower bound approach and apply the idea to
probabilistic formulas. In section 4 we give more background on quantum computing
and information theory. In section 5 we give the lower bounds for nondeterministic
and quantum one-way communication complexity. In section 6 we derive our results
for nondeterministic and quantum formulas and apply those bounds. In section 7 we
give some conclusions.

2. Preliminaries.

2.1. The VC dimension. We start with a useful combinatorial concept [39],
the Vapnik–Chervonenkis dimension. This will be employed to derive lower bounds for
one-way communication complexity and then to give generalizations of the Nečiporuk
lower bound on formula size.

Definition 2.1. A set S is shattered by a set of Boolean functions F , if for all
R ⊆ S there is a function f ∈ F , so that for all x ∈ S: f(x) = 1 ⇐⇒ x ∈ R.

The size of the largest set shattered by F is called the VC dimension V C(F)
of F .

The following fact [39] will be useful.
Fact 2.2. Let F be a set of Boolean functions f : X → {0, 1}. Then

2V C(F) ≤ |F| ≤ (|X| + 1)V C(F).

2.2. One-way communication complexity. We now define the model of one-
way communication complexity, first described by Yao [40]. Our discussion of this
model will be informal; for a more formal treatment of the material and additional
background information we refer to the excellent monograph by Kushilevitz and Nisan
[27].
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Definition 2.3. Let f : X × Y → {0, 1} be a function. Two players Alice
and Bob with unrestricted computational power receive inputs x ∈ X, y ∈ Y to the
function.

Alice sends a binary encoded message to Bob, who then computes the function
value. The complexity of a protocol is the worst case length of the message sent (over
all inputs).

The deterministic one-way communication complexity of f , denoted D(f), is the
complexity of an optimal deterministic protocol computing f .

In the case Bob sends one message and Alice announces the result, we use the
notation DB(f).

The communication matrix of a function f is the matrix M , with M(x, y) =
f(x, y) for all inputs x, y.

We will consider different modes of acceptance for communication protocols. Let
us begin with nondeterminism.

Definition 2.4. In a nondeterministic one-way protocol for a Boolean function
f : X ×Y → {0, 1} Alice first guesses nondeterministically a sequence of s bits. Then
she sends a message to Bob, depending on the sequence and her own input. Bob
computes the function value. Note that the guessed sequence is known only to Alice.
In such a protocol an input is accepted, if there is at least one sequence of s bits, which
leads to the output “1” when guessed by Alice. All other inputs are defined as rejected.
f is computed by the protocol, if all input pairs are accepted/rejected correctly by the
nondeterministic protocol.

The complexity of a nondeterministic one-way protocol with s nondeterministic
bits is the length of the longest message used.

The nondeterministic communication complexity N(f) is the complexity of an
optimal one-way protocol for f using arbitrarily many nondeterministic bits.

Ns(f) denotes the complexity of an optimal nondeterministic protocol for f , which
uses at most s private nondeterministic bits for every input.

Note that if we do not restrict the number of nondeterministic bits, then nonde-
terministic protocols with more than one round of communication can be simulated
without loss: Alice guesses a dialogue and sends this dialogue if it is consistent with
her input; Bob checks the same with his input and outputs 1 if this is implied by the
dialogue.

While nondeterministic communication is a theoretically motivated model, prob-
abilistic communication is the most powerful realistic model of communication besides
quantum mechanical models.

Definition 2.5. In a probabilistic protocol with private random coins Alice and
Bob each possess a source of independent random bits that can be used to obtain an
arbitrary number of random bits under the uniform distribution. The players are
allowed to access that source and communicate depending on their inputs and the
random bits they read. We distinguish the following modes of acceptance:

1. In a Las Vegas protocol the players are not allowed to err. They may, however,
give up without an output with some probability ε. The complexity of a one-
way protocol is the worst case length of a message used by the protocol; the Las
Vegas complexity of a function f is the complexity of an optimal Las Vegas
protocol computing f and is denoted R0,ε(f).

2. In a probabilistic protocol with bounded error ε the output has to be correct
with probability at least 1 − ε. The complexity of a protocol is the worst case
length of the message sent (over all inputs and the random guesses); the
complexity of a function is the complexity of an optimal protocol computing
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that function and is denoted Rε(f). For ε = 1/3 the notation is abbreviated
to R(f).

3. A bounded error protocol has one-sided error, if inputs with f(xA, xB) = 0
are rejected with certainty.

We also consider probabilistic communication with public randomness. Here the
players have access to a shared source of random bits without communicating. This
means that both players can read the ith bit produced by the random source and thus
establish a shared random bit string. Complexity in this model is denoted Rpub, with
acceptance defined as above.

The difference between probabilistic communication complexity with public and
with private random bits is actually only an additive O(log n) as shown by Newman
[33] via an argument based on the nonuniformity of the model.

The following communication problems are frequently considered in the literature
about communication complexity.

Definition 2.6 (disjointness problem). DISJn(x1 . . . xn, y1 . . . yn) = 1 ⇐⇒
∀i : ¬xi ∨ ¬yi. The function accepts, if the two sets described by the inputs are
disjoint.

Index function:
IX2n(x1 . . . x2n , y1 . . . yn) = 1 ⇐⇒ xy = 1.
The deterministic one-way communication complexity of a function can be char-

acterized as follows. Let row(f) be the number of different rows in the communication
matrix of f . Note that in the communication matrix the rows are associated to the
inputs of the sender, Alice.

Fact 2.7. D(f) = �log row(f)�.
It is relatively easy to estimate the deterministic one-way communication com-

plexity using this fact. As an example consider the index function; note that obviously
DB(IXn) = log n. It is easy to see with Fact 2.7 that D(IXn) = n, since there are
2n different rows in the communication matrix of IXn. Kremer, Nisan, and Ron [26]
show that also Rpub(IXn) = Ω(n) holds. A bound with a tight constant factor has
been obtained by Ambainis et al. [2] using information theory. Similar results were
also given by Katz and Trevisan [20].

A general lower bound method for probabilistic one-way communication complex-
ity is shown in [26].

We consider the VC dimension for functions as follows.
Definition 2.8. For a function f : X × Y → {0, 1} let F = {g|∃x ∈ X : ∀y ∈

Y : g(y) = f(x, y)}. Then define V C(f) = V C(F).
Fact 2.9. Rpub(f) = Ω(V C(f)).
In section 5.2 we will generalize this result to quantum one-way protocols.
With the above definition �log |F|� = D(f). Then V C(f) ≤ D(f) ≤ �log(|Y | +

1) · V C(f)� due to Fact 2.2.
Las Vegas communication can be quadratically more efficient than deterministic

communication in many-round protocols for total functions [27]. For one-way proto-
cols the situation is different as shown by Hromkovič and Schnitger [19].

Fact 2.10. For all total functions f : Rpub
0,1/2(f) ≥ D(f)/2.

We will also generalize this result to quantum communication in section 5.2.

2.3. Circuits and formulas. We now define the models of Boolean circuits and
formulas. Note that we do not consider questions of uniformity of families of such
circuits. For the definition of a Boolean circuit we refer to [7]. We consider circuits
with fan-in 2. While it is well known that almost all f : {0, 1}n → {0, 1} need circuit
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size Θ(2n/n) (see, e.g., [7]), superlinear lower bounds for explicit functions are known
only for restricted models of circuits.

Definition 2.11. A (deterministic) Boolean formula is a Boolean circuit with
fan-in 2 and fan-out 1. The Boolean inputs may be read arbitrarily often, the gates
are arbitrary, and constants 0, 1 may be read.

The size (or length) of a deterministic Boolean formula is the number of its non-
constant leaves.

It is possible to show that for Boolean functions the logarithm of the formula size
is linearly related to the optimal circuit depth (see [7]).

Probabilistic formulas have been considered in [38, 6, 12] with the purpose of
constructing efficient (deterministic) monotone formulas for the majority function in
a probabilistic manner.

The standard model of a probabilistic formula is a probability distribution on
deterministic formulas. Since such a distribution can give some positive probability
to all formulas of the given size, this is not a compact representation of a Boolean
function. Hence we consider the following model of probabilistic formulas: “Fair”
probabilistic formulas are formulas that read input variables plus additional random
variables. The model mentioned before will be called “strong” probabilistic formulas.

Definition 2.12. A fair probabilistic formula is a Boolean formula, which works
on input variables and additional random variables r1, . . . , rm; a strong probabilistic
formula is a probability distribution F on deterministic Boolean formulas. Fair (resp.,
strong) probabilistic formulas F compute a Boolean function f with bounded error, if

Pr[F (x) �= f(x)] ≤ 1/3.

Fair (resp., strong) probabilistic formulas F are one-sided error formulas for f
(i.e., have one-sided error), if

Pr[F (x) = 0|f(x) = 1] ≤ 1/2 and Pr[F (x) = 1|f(x) = 0] = 0.

A Las Vegas formula consists of two Boolean formulas. One formula computes
the output; the other (verifying) formula indicates whether the computation of the first
can be trusted or not. Both work on the same inputs. There are four different outputs,
of which two are interpreted as “?” (the verifying formula rejects), and the other as
0 (resp., 1). A Las Vegas formula F computes f , if the outputs 0 and 1 are always
correct, and

Pr[F (x) =?] ≤ 1/2.

The size of a fair probabilistic formula is the number of its nonconstant leaves;
the size of a strong probabilistic formula is the expected size of a deterministic formula
according to F .

It is easy to see that one can decrease the error probability to arbitrarily small
constants, while increasing the size by a constant factor; therefore, we will sometimes
allow different error probabilities.

A strong probabilistic formula F can be transformed into a deterministic formula.
For one-sided error formulas this increases the size by a factor of O(n): Choose O(n)
formulas randomly according to F and connect them by an OR gate. An application of
the Chernov inequality proves that the error probability is so small that no errors are
possible anymore. Strong formulas with bounded (two-sided) error are derandomized
by picking O(n) formulas and connecting them by an approximative majority function.
That function outputs 1 on n Boolean variables if at least 2n/3 have the value 1 and
outputs 0 if at most n/3 variables have the value 1. An approximative majority
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function can be computed by a deterministic formula of size O(n2); see [38, 6]. Thus
the size increases by a factor of O(n2).

Let us remark that strong probabilistic formulas may have sublinear length; this is
impossible for fair probabilistic formulas depending on all inputs. As an example, the
approximative majority function may be computed by a strong probabilistic formula
through picking a random input and outputting its value.

We will later also consider nondeterministic formulas.
Definition 2.13. A nondeterministic formula with s nondeterministic bits is a

formula with additional input variables a1, . . . , as. The formula accepts an input x, if
there is a setting of the variables a, so that (a, x) is accepted.

3. The general lower bound method and probabilistic formulas. There
are some well known results giving lower bounds for the length of Boolean formulas.
The method of Nečiporuk [32, 7] remains the one giving the largest lower bounds
among those methods working for formulas in which all fan-in 2 functions are allowed
as gates. For other methods see [7] and [3]; a characterization for formula size with
gates AND, OR, NOT using the communication complexity of a certain game is also
known (see [27]). For such formulas the largest known lower bound is a near-cubic
bound due to H̊astad [15].

Let us first give the standard definition of the Nečiporuk bound.
Let f be a function on the n variables in X = {x1, . . . , xn}. For a subset S ⊆ X

let a subfunction on S be a function induced by f by assigning Boolean values to the
variables in X−S. The set of all subfunctions on S is called the set of S subfunctions
of f .

Fact 3.1 (Nečiporuk). Let f be a Boolean function on n variables. Let S1, . . . , Sk

be a partition of the variables and si the number of Si subfunctions on f . Then every
deterministic Boolean formulas for f has size at least

(1/4)
k∑

i=1

log si.

It is easy to see that the Nečiporuk function (1/4)
∑k

i=1 log si is never larger than
n2/ log n.

Definition 3.2. The function “indirect storage access” (ISA) is defined as fol-
lows: There are three blocks of inputs U,X, Y , with |U | = log n − log log n, |X| =
|Y | = n. U addresses a block of length log n in X, which addresses a bit in Y . This
bit is the output; thus ISA(U,X, Y ) = YXU

.
The following is proved, e.g., in [7, 42].
Fact 3.3. Every deterministic formula for ISA has size Ω(n2/ log n).
There is a deterministic formula for ISA with size O(n2/ log n).
1We are now going to generalize the Nečiporuk method to probabilistic formulas

and later to nondeterministic and quantum formulas. We will use a simple connection
to one-way communication complexity and use the guidance obtained by this connec-
tion to give lower bounds from lower bounds in communication complexity. In the
case of probabilistic formulas we will employ the VC dimension to give lower bounds.
Informally speaking we will replace the log of the size of the set of subfunctions by
the VC dimension of that set and get a lower bound for probabilistic formulas.

Our lower bounds are valid in the model of strong probabilistic formulas. Corol-
lary 3.7 shows that even strong probabilistic formulas with a two-sided error do not
help to decrease the size of formulas for ISA. All upper bounds will be given for fair
formulas.
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We are going to show that the (standard) Nečiporuk is at most a factor of O(
√
n)

larger than the probabilistic formula size for total functions. Thus the maximal gap
we can show using the best known general lower bound method is limited.

On the other hand we describe a Boolean function, for which fair probabilistic
formulas with a one-sided error are a factor Θ(

√
n) smaller than Las Vegas formulas,

as well as a similar gap between one-sided error formulas and two-sided error formulas.
The lower bound on Las Vegas formulas uses the new observation that the standard
Nečiporuk bound asymptotically also works for Las Vegas formulas.

3.1. Lower bounds for probabilistic formulas. We now derive a Nečiporuk-
type bound with one-way communication.

Definition 3.4. Let f be a Boolean function of n Boolean inputs, and let y1 . . . yk
be a partition of the input variables.

We consider k communication problems for i = 1, . . . , k. Player Bob receives
all inputs in yi; player Alice receives all other inputs. The deterministic one-way
communication complexity of f under this partition of inputs is called D(fi). The
public coin bounded error one-way communication complexity of f under this partition
of inputs is called Rpub(fi).

The probabilistic Nečiporuk function is (1/4)
∑

i R
pub(fi).

It is easy to see that (1/4)
∑

i D(fi) coincides with the standard Nečiporuk func-
tion and is therefore a lower bound for deterministic formula size due to Fact 3.1.

Theorem 3.5. The probabilistic Nečiporuk function is a lower bound for the size
of strong probabilistic formulas with a bounded error.

Proof. We will show for every partition y1, . . . , yk of the inputs how a strong
probabilistic formula F can be simulated in the k communication games. Let Fi be
the distribution over deterministic formulas on variables in yi induced by picking a
deterministic formula as in F and restricting to the subformula with all leaves labeled
by variables in yi and containing all paths from these to the root. We want to simulate
the formula in game i so that the probabilistic one-way communication is bounded
by the expected number of leaves in Fi.

We are given a probabilistic formula F . The players now pick a deterministic
formula F ′ induced by F with their public random bits; player Alice knows all of the
inputs except those in yi. This also fixes a subformula F ′

i drawn from Fi. Actually
the players have access only to an arbitrarily large public random string, so the
distributions Fi may be approximated only within arbitrary precision. This alters
success probabilities by arbitrarily small values. We disregard these small changes in
probability.

Let Vi contain the vertices in F ′
i , which have two predecessors in F ′

i , and let Pi

contain all paths, which start in Vi or at a leaf, and which end in Vi or at the root,
but contain no further vertices from Vi. It suffices, if Alice sends two bits for each
such path, which shows whether the last gate of the path computes 0, 1, g, or ¬g, for
the function g computed by the first gate of the path. Then Bob can evaluate the
formula alone.

There are at most 2|Vi| + 1 paths as described, since the fan-in of the formula is
2. Thus the overall communication is 4|Vi| + 2. The set of leaves Li with variables
from yi has |Vi| + 1 elements, and thus

Rpub(fi) ≤ 4|Vi| + 2 < 4|Li|,
and 1/4

∑
i R

pub(fi) is a lower bound for the length E[
∑

i |Li|] =
∑

i E[|Li|] of the
probabilistic formula.
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Let V C(fi) denote the VC dimension of the communication problem fi. We call∑
i V C(fi) the VC–Nečiporuk function.
Corollary 3.6. The VC–Nečiporuk function is an asymptotical lower bound for

the length of strong probabilistic formulas with a bounded error.
The standard Nečiporuk function is an asymptotical lower bound for the length of

strong Las Vegas formulas for total functions.
Proof. Using Fact 2.9 the VC dimension is an asymptotical lower bound for the

probabilistic public coin bounded error one-way communication complexity.
As in the proof of Theorem 3.5 we may simulate a Las Vegas formula by Las

Vegas public coin one-way protocols. Using Fact 2.10 public coin Las Vegas one-way
protocols for total functions can be only a constant factor more efficient than optimal
deterministic one-way protocols.

According to Fact 3.3 the deterministic formula length of the ISA function from
definition 3.2 is Θ(n2/ log n). We now employ our method to show a lower bound of
the same order for strong bounded error probabilistic formulas. Thus ISA is an explicit
function for which strong probabilism does not allow us to decrease the formula size
significantly.

Corollary 3.7. Every strong probabilistic formula for the ISA function (with a
bounded error) has length Ω(n2/ log n).

Proof. ISA has inputs Y,X,U and computes YXU
. First we define a partition.

We partition the inputs in X into n/ log n blocks containing logn bits each; all other
inputs are in one additional block. In a communication game Alice thus receives all
inputs but those in one block of X. Let S denote the set of possible values of the
variables in that block. This set is shattered: Let R ⊆ S and R = {r1, . . . , rm}. Then
set the pointer U to the block of inputs belonging to Bob, and set Yi = 1 ⇐⇒ i ∈ R.

Thus the VC dimension of fi is at least |S| = n. Since there are n/ log n commu-
nication games, the result follows.

The next result would be trivial for deterministic or for fair probabilistic formu-
las, but strong probabilistic formulas can compute functions depending on all inputs
in sublinear size. Consider, e.g., the approximate majority function. This partial
function can be computed by a strong probabilistic formula of length 1 by picking a
random input variable. For total functions on the other hand we have the following.

Corollary 3.8. Every strong probabilistic formula which computes a total func-
tion depending on n variables has length Ω(n).

Proof. We partition the inputs into n blocks containing one variable each. In a
communication game Alice thus receives n− 1 variables, and Bob receives 1 variable.
Since the function depends on both Alice’s and Bob’s inputs, the deterministic com-
munication complexity is at least 1. If the probabilistic one-way communication were
0, the error would be 1/2, and thus the protocol would not compute correctly.

Fact 2.2 shows that for a function f : X × Y → {0, 1} it is true that D(f) ≤
�V C(f) · log(|Y | + 1)�. This leads to the following.

Theorem 3.9. For all total functions f : {0, 1}n → {0, 1} having a strong
probabilistic formula of length s and for all partitions of the inputs of f :

∑
D(fi)

s
= O(

√
n).

Proof. Obviously D(fi) ≤ n for all i. Since a partition of the inputs can contain
at most

√
n blocks with more than

√
n variables, these contribute at most n

√
n to

the Nečiporuk function
∑

D(fi). All smaller blocks satisfy D(fi) ≤ �√n · V C(fi)�.
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Thus overall
∑

D(fi) ≤ O(
√
n(n +

∑
V C(fi))) = O(

√
ns), with Corollary 3.8 and

Theorem 3.5.
If a total function has an efficient (say, linear length) probabilistic formula, then

the Nečiporuk method does not give near-quadratic lower bounds for the deterministic
formula size.

3.2. A function for which probabilism helps. We now describe a function
for which one-sided error probabilism helps as much as we can possibly show under
the constraint that the lower bound for deterministic formulas is given using the
Nečiporuk method. We find such a complexity gap even between strong Las Vegas
formulas and fair one-sided error formulas.

Definition 3.10. The matrix product function MP receives two n× n-matrices
T (1), T (2) over Z2 as input and accepts if and only if their product is not the all zero
matrix.

Theorem 3.11. The MP function can be computed by a fair one-sided error
formula of length O(n2).

Proof. We use a fingerprinting technique similar to the one used in matrix product
verification [30] but adapted to be computable by a formula. First we construct a
vector as a fingerprint for each matrix using some random input variables. Then
we multiply the fingerprints and obtain a bit. This bit is always zero if the matrix
product is zero; otherwise, it is 1 with probability 1/4. Thus we obtain a one-sided
error formula.

Let r(1), r(2) be random strings of n bits each. The fingerprints are defined as

F (1)[k] =

n⊕

i=1

r(1)[i]T (1)[i, k] and F (2)[k] =

n⊕

j=1

T (2)[k, j]r(2)[j].

Then let

b =

n⊕

k=1

F (1)[k] ∧ F (2)[k].

Obviously b can be computed by a formula of linear length.
Assume T (1)T (2) = 0. Then b = r(1)T (1)T (2)r(2) = 0 for all r(1) and r(2).
If on the other hand T (1)T (2) �= 0, then i, j exist such that

⊕
k T

(1)[i, k]T (2)[k, j] =
1. Fix all random bits except r(1)[i] and r(2)[j] arbitrarily. Note that

b =

n⊕

i,j=1

(
r(1)[i]r(2)[j] ·

n⊕

k=1

T (1)[i, k]T (2)[k, j]

)
.

Regardless of how the values of sums for other i, j look, one of the values of r(1)[i]
and r(2)[j] yields the result b = 1; this happens with probability 1/4.

Theorem 3.12. For the MP function a lower bound of Ω(n3) holds for the length
of strong Las Vegas formulas.

Proof. We use the Nečiporuk method. First the partition of the inputs has to be
defined. There are n blocks bj with the bits T (2)(i, j) for i = 1, . . . , n plus one block
for the remaining inputs. Then Alice receives all inputs except n bits in column j
of the second matrix, i.e., T (2)(·, j), which go to Bob. We show that MP has now
one-way communication complexity Ω(n2). The Nečiporuk method then gives us a
lower bound of Ω(n3) for the length of deterministic and strong Las Vegas formulas.
Without loss of generality (w.l.o.g.) assume Bob has the bits T (2)(i, 1).
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We construct a set of assignments to the input variables of Alice. Let U be a
subspace of Z

n
2 and TU be a matrix, with TUx = 0 ⇐⇒ x ∈ U . For every U

we choose TU as T (1) and T (2)(i, j) = 0 for all i and for j ≥ 2. If there are 2Ω(n2)

pairwise different subspaces, then we get that many different inputs. But these inputs
correspond to different rows in the communication matrix, since all T (1) have different
kernels. Thus with Corollary 3.6 the Las Vegas one-way communication is Ω(n2).

To see that there are 2Ω(n2) pairwise different subspaces of Z
n
2 we count the sub-

spaces with dimension at most n/2. There are 2n vectors. There are
(

2n

n/2

)
possibilities

to choose a set of n/2 pairwise different vectors. Each such set generates a subspace

of dimension at most n/2. Each such subspace is generated by at most
(
2n/2

n/2

)
sets

of n/2 pairwise different vectors from the subspace. Hence this number is an upper
bound on the number of times a subspace is counted, and there are at least

(
2n

n/2

)

(
2n/2

n/2

) ≥ 2Ω(n2)

pairwise different subspaces of Z
n
2 .

Corollary 3.13. There is a function that can be computed by a fair one-sided
error formula of length O(N), while every strong Las Vegas formula needs length
Ω(N3/2) for this task; i.e., there is a size gap of Ω(N1/2) between Las Vegas and
one-sided error formulas.

There is also a size gap of Ω(N1/2) between one-sided error formulas and (two-
sided) bounded error probabilistic formulas.

Proof. The first statement is proved in the previous theorems. For the second
statement we consider the following function with four matrices as input. The function
is the parity of the MP function on the first two matrices and the complement of MP
on the other two matrices.

A fair probabilistic formula can compute the function obviously with length O(n2)
following the construction in Theorem 3.11. Assume we have a one-sided error for-
mula, then fix the first two input matrices once in a way so that their product is
the 0 matrix and then so that their product is something else. In this way one gets
one-sided error formulas for both MP and its complement. Then one can use both
formulas on the same input and combine their results to get a Las Vegas formula,
which leads to the desired lower bound with Theorem 3.12.

For the construction of a Las Vegas formula let F be the one-sided error formula
for MP and G be the one-sided error formula for ¬MP . Then F and ¬G are formulas
for MP , so that F never erroneously accepts and is correct with probability 1/2,
and ¬G never erroneously rejects and is correct with probability 1/2. Assuming the
function value is 0, then F rejects. With probability 1/2, ¬G also rejects; otherwise,
we may give up. Assuming the function value is 1, then ¬G accepts. With probability
1/2, F also accepts; otherwise, we may give up. The other way around, if both
formulas accept or both reject we can safely use this result, and this result comes up
with probability 1/2; the only other possible result is that F rejects and ¬G accepts,
in which case we have to give up.

The formula described in the proof of Theorem 3.11 has the interesting property
that each input is read exactly once, while the random inputs are read often. MP
cannot be computed by a deterministic formula reading the inputs only once, since
this contradicts the size bound of Theorem 3.12. Later we will show that MP cannot
be computed substantially more efficiently by a fair probabilistic formula reading its
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random inputs only once than by deterministic formulas. This follows from a lower
bound for the size of such formulas given by the Nečiporuk function divided by logn
(Corollary 6.7). Hence for the MP function read-once random inputs are of little use.

4. Background on quantum computing and information. In this section
we define more technical notions and describe results we will need. We start with
information theory, then define the model of quantum formulas, and give results
from quantum information theory. We also discuss programmable quantum gates.
These results are used in the following section to give lower bounds for one-way
communication complexity. Then we proceed to apply these to derive more formula
size bounds.

4.1. Information theory. We now define a few notions from classical informa-
tion theory; see, e.g., [10].

Definition 4.1. Let X be a random variable with values in S = {x1, . . . , xn}.
The entropy of X is H(X) = −∑

x∈S Pr(X = x) log Pr(X = x).
The entropy of X given an event E is H(X|E) = −∑

x∈S Pr(X = x|E) log Pr(X =
x|E).

The conditional entropy of X given a random variable Y is H(X|Y ) =
∑

y Pr(Y =
y)H(X|Y = y), where the sum is over the values of Y . Note that H(X|Y ) = H(XY )−
H(Y ).

The information between X and Y is I(X : Y ) = H(X) −H(X|Y ).
The conditional information between X and Y , given Z, is I(X : Y |Z) = H(XZ)+

H(Y Z) −H(Z) −H(XY Z).
For α ∈ [0, 1] we define H(α) = −α logα− (1 − α) log(1 − α).
All of the above definitions use the convention 0 log 0 = 0.
The following result is a simplified version of Fano’s inequality; see [10].
Fact 4.2. If X,Y are Boolean random variables with Pr(X �= Y ) ≤ ε, then

I(X : Y ) ≥ H(X) −H(ε).
Proof. Let Z = 1 ⇐⇒ X = Y and Z = 0 ⇐⇒ X �= Y . Then H(X|Y ) =

H(XY ) −H(Y ) = H(ZY ) −H(Y ) ≤ H(Z) ≤ H(ε).
The next lemma is similar in the sense of a “Las Vegas variant.”
Lemma 4.3. Let X be a random variable with a finite range of values S, and let

Y be a random variable with range S ∪ {x?}, so that Pr(Y = x|X = x) ≥ 1 − ε for
all x ∈ S, Pr(Y = x|X �= x) = 0 for all x �= x?, and Pr(Y = x?|X = x) ≤ ε for all
x ∈ S. Then I(X : Y ) ≥ (1 − ε)H(X).

Proof. I(X : Y ) = H(X) − H(X|Y ). Let δ = Pr(Y = x?) ≤ ε, εx = Pr(Y =
x?|X = x) ≤ ε, px = Pr(X = x).

H(X|Y )≤ (1 − δ)H(X|Y �= x?) + δH(X|Y = x?)

= δH(X|Y = x?)

= −δ
∑

x

Pr(X = x|Y = x?) log(Pr(X = x|Y = x?))

= −δ
∑

x

(εxpx/δ) log(εxpx/δ)

≤ −ε
∑

x

px log px + δ
∑

x

(εxpx/δ) log(δ/εx)

≤ εH(X) + δ log
∑

x

px with Jensen’s inequality

≤ εH(X).
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4.2. Quantum computation. We refer to [35] for a thorough introduction into
the field. Let us briefly mention that pure quantum states are unit vectors in a
Hilbert space written |ψ〉, inner products are denoted 〈ψ|φ〉, and the standard norm
is ‖ |ψ〉 ‖ =

√〈ψ|ψ〉. Outer products |ψ〉〈φ| are matrix valued.
In the space C

4 we will consider not only the standard basis {|00〉, |01〉, |10〉, |11〉}
but also the Bell basis consisting of

|Φ+〉 =
1√
2
(|00〉 + |11〉), |Φ−〉 =

1√
2
(|00〉 − |11〉),

|Ψ+〉 =
1√
2
(|01〉 + |10〉), |Ψ−〉 =

1√
2
(|01〉 − |10〉).

The dynamics of a discrete time quantum system is described by unitary oper-
ations. We give some examples of such operations. A very useful operation is the
Hadamard transform:

H2 =
1√
2

(
1 1
1 −1

)
.

Then Hn = H2 ⊗ · · · ⊗H2︸ ︷︷ ︸
n

is the n-wise tensor product of H2.

The CNOT operation is defined by CNOT : |x, y〉 → |x, x⊕ y〉 on Boolean values
x, y.

Furthermore measurements are fundamental operations. Measuring as well as
tracing out subsystems leads to probabilistic mixtures of pure states.

Definition 4.4. An ensemble of pure states is a set {(pi, |φi〉)|1 ≤ i ≤ k}. Here
the pi are the probabilities of the pure states |φi〉. Such an ensemble is called a mixed
state.

The density matrix of a pure state |φ〉 is the matrix |φ〉〈φ|; the density matrix of
a mixed state {(pi, |φi〉)|1 ≤ i ≤ k} is

k∑

i=1

pi|φi〉〈φi|.

A density matrix is always Hermitian, positive semidefinite, and has trace 1.
Thus a density matrix has nonnegative eigenvalues that sum to 1. The results of all
measurements of a mixed state are determined by the density matrix.

A pure state in a Hilbert space H = HA ⊗HB cannot in general be expressed as
a tensor product of pure states in the subsystems.

Definition 4.5. A mixed state {(pi, |φi〉)|1 ≤ i ≤ k} in a Hilbert space H1⊗H2 is
called separable if it has the same density matrix as a mixed state {(qi, |ψ1

i 〉⊗|ψ2
i 〉)|i =

1, . . . , k′} for pure states |ψ1
i 〉 from H1 and |ψ2

i 〉 from H2 with
∑

i qi = 1 and qi ≥ 0.
Otherwise, the state is called entangled.

Consider, e.g., the state |Φ+〉 = 1√
2
(|00〉+ |11〉) in C

2⊗C
2. The state is entangled

and is usually called an EPR pair. This name refers to Einstein, Podolsky, and Rosen,
who first considered such states [13].

Linear transformations on density matrices are called superoperators. Not all
superoperators are physically allowed.

Definition 4.6. A superoperator T is positive if it sends positive semidefinite
Hermitian matrices to positive semidefinite Hermitian matrices. A superoperator is
trace preserving if it maps matrices with trace 1 to matrices with trace 1.
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A superoperator T is completely positive if every superoperator T ⊗ IF is positive,
where IF is the identity superoperator on a finite dimensional extensional F of the
underlying Hilbert space.

A superoperator is physically allowed iff it is completely positive and trace
preserving.

The following theorem characterizes physically allowed superoperators in terms
of unitary operation, adding qubits, and tracing out [35].

Fact 4.7. The following statements are equivalent:
1. A superoperator T sending density matrices over a Hilbert space H1 to density

matrices over a Hilbert space H2 is physically allowed.
2. There is a Hilbert space H3 with dim(H3) ≤ dim(H1) and a unitary map U ,

so that for all density matrices ρ over H1:

Tρ = traceH1⊗H3 [U(ρ⊗ |0H3⊗H2〉〈0H3⊗H2 |)U†].

4.3. Quantum information theory. In this section we describe notions and
results from quantum information theory.

Definition 4.8. The von Neumann entropy of a density matrix ρX is S(X) =
S(ρX) = −trace(ρX log ρX).

The conditional von Neumann entropy S(X|Y ) of a bipartite system with density
matrix ρXY is defined as S(XY ) − S(Y ), where the state ρY of the Y system is the
result of a partial trace over X.

The von Neumann information between two parts of a bipartite system in a state
ρXY is S(X : Y ) = S(X) + S(Y ) − S(XY ) (ρX and ρY are the results of partial
traces).

The conditional von Neumann information of a system in state ρXY Z is S(X :
Y |Z) = S(XZ) + S(Y Z) − S(Z) − S(XY Z).

Let E = {(pi, ρi)|i = 1, . . . , k} be an ensemble of density matrices. The Holevo
information of the ensemble is χ(E) = S(

∑
i piρi) −

∑
i piS(ρi).

The von Neumann entropy of a density matrix depends on the eigenvalues only,
so it is invariant under unitary transformations. If the underlying Hilbert space has
dimension d, then the von Neumann entropy of a density matrix is bounded by log d.
A fundamental result is the so-called Holevo bound [16], which states an upper bound
on the amount of classical information in a quantum state.

Fact 4.9. Let X be a classical random variable with Pr(X = x) = px. Assume
for each x that a quantum state with density matrix ρx is prepared; i.e., there is an
ensemble E = {(px, ρx)|x = 0, . . . , k}. Let ρXZ =

∑k
x=0 px|x〉〈x| ⊗ ρx. Let Y be a

classical random variable which indicates the result of a measurement on the quantum
state with density matrix ρZ =

∑
x pxρx. Then

I(X : Y ) ≤ χ(E) = S(X : Z).

We will also need the following lemma.
Lemma 4.10. Let E = {(px, σx)|x = 0, . . . , k} be an ensemble of density matrices,

and let σ =
∑

x pxσx be the density matrix of the mixed state of the ensemble. Assume
that there is an observable with possible measurement results x and “?”, so that for
all x measuring the observable on σx yields x with probability at least 1− ε, the result
“?” with probability at most ε, and a result x′ �= x with probability 0; then

S(σ) ≥
∑

x

pxS(σx) + (1 − ε)H(X), i.e., χ(E) ≥ (1 − ε)H(X).
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Proof. The proof proceeds similar to the information theoretic arguments in [2].
States x of a classical random variable X are coded as quantum states σx, where x
and σx have probability px. The density matrix of the overall mixed state is σ and
has von Neumann entropy S(σ). σ corresponds to the “code” of a random x.

According to Holevo’s theorem (Fact 4.9) the information on X one can access
by measuring σ with result Y is bounded by I(X : Y ) ≤ S(σ) − ∑

x pxS(σx). But
there is such a measurement as assumed in the lemma, and with Lemma 4.3 I(X :
Y ) ≥ (1 − ε)H(X). Thus the lemma follows.

Not all of the relations that are valid in classical information theory hold in
quantum information theory. The following fact states a notable exception, the so-
called Araki–Lieb inequality and one of its consequences; see [35].

Fact 4.11. S(XY ) ≥ |S(X) − S(Y )|.
S(X : Y |Z) ≤ 2S(X).
The reason for this behavior is entanglement.
Lemma 4.12. If σXY is separable, then S(XY ) ≥ S(X) and S(X : Y ) ≤ S(X).

4.4. The quantum communication model. Now we define quantum one-way
protocols.

Definition 4.13. In a two-player quantum one-way protocol players Alice and
Bob each possess a private set of qubits. Some of the qubits are initialized to the
Boolean inputs of the players; all other qubits are in some fixed basis state |0〉.

Alice then performs some quantum operation on her qubits and sends a set of
these qubits to Bob. The latter action changes the possession of qubits rather than the
global state. We can assume that Alice sends the same number of qubits for all inputs.
After Bob has received the qubits he can perform any quantum operation on the qubits
in his possession, and afterwards he announces the result of the computation. The
complexity of a protocol is the number of qubits sent.

In an exact quantum protocol the result has to be correct with certainty. QE(f)
is the minimal complexity of an exact quantum protocol for a function f .

In a bounded error protocol the output has to be correct with probability 1− ε (for
1/2 > ε > 0). The bounded error quantum one-way communication complexity of
a function f is Qε(f), the minimal complexity of a bounded error quantum one-way
protocol for f , and we set Q(f) = Q1/3(f).

Quantum Las Vegas protocols are defined in a manner similar to their probabilistic
counterparts; the complexity measure notation is Q0,ε(f).

Cleve and Buhrman [9] consider a different model of quantum communication:
Before the start of the protocol Alice and Bob own a set of qubits whose state may be
entangled but must be independent of the inputs. Then as above a quantum commu-
nication protocol is used. We use the superscript pub to denote the complexity in this
model.

It is possible to simulate the model with entangled qubits by allowing first an
arbitrary finite communication independent of the inputs, followed by an ordinary
protocol. By measuring distributed EPR pairs it is possible to simulate classical
public randomness. The technique of superdense coding of [5] allows one in the model
with prior entanglement to send n bits of classical information with �n/2� qubits.

4.5. Quantum circuits and formulas. Besides quantum Turing machines
quantum circuits [11] are a universal model of quantum computation (see [41]) and
are generally easier to handle in descriptions of quantum algorithms. A more general
model of quantum circuits in which superoperator gates work on density matrices is
described in [1]. We begin with the basic model.
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Definition 4.14. A unitary quantum gate with k inputs and k outputs is specified

by a unitary operator U : C
2k → C

2k

.
A quantum circuit consists of unitary quantum gates with O(1) inputs and outputs

each, plus a set of inputs to the circuits, which are connected to an acyclic directed
graph, in which the inputs are sources. Sources are labeled by Boolean constants or
by input variables. Edges correspond to qubits; the circuit uses as many qubits as it
has sources. One designated qubit is the output qubit. A quantum circuit computes a
unitary transformation on the source qubits in the obvious way. In the end the output
qubit is measured in the standard basis.

The size of a quantum circuit is the number of its gates; the depth is the length
of the longest path from an input to the output.

A quantum circuit computes a function with a bounded error if it gives the right
output with probability at least 2/3 for all inputs.

A quantum circuit computes a Boolean function with a one-sided error if it has a
bounded error and furthermore never erroneously accepts.

A pair of quantum circuits computes a Boolean function f in the Las Vegas sense,
if the first is a one-sided error circuit for f and the second is a one-sided error circuit
for ¬f .

A quantum circuit computes a function exactly if it makes no error.
The definition of Las Vegas circuits is motivated by the fact that we can easily

verify the computation of a pair of one-sided error circuits for f and ¬f as in the
classical case; see the proof of Corollary 3.13.

We are interested in restricted types of circuits, namely, quantum formulas [41].
Definition 4.15. A quantum formula is a quantum circuit with the following

additional property: For each source there is at most one path connecting it to the
output. The length or size of a quantum formula is the number of its sources.

Apart from the Boolean input variables a quantum formula is allowed to read
Boolean constants only. There is only one final measurement. We also call the model
from [41] pure quantum formulas. Compare also the definitions in [37].

In [1] a more general model of quantum circuits is studied, in which superoperators
work on density matrices.

Definition 4.16. A superoperator gate g of order (k, l) is a trace-preserving,
completely positive map from the density matrices on k qubits to the density matrices
on l qubits.

A quantum superoperator circuit is a directed acyclic graph with inner vertices
marked by superoperator gates with fitting fan-in and fan-out. The sources are marked
with input variables or Boolean constants. One gate is designated as the output.

A function is computed as follows. In the beginning the sources are each assigned
a density matrix corresponding to the Boolean values determined by the input or by a
constant. The Boolean value 0 corresponds to |0〉〈0|, 1 to |1〉〈1|. The overall state of
the qubits involved is the tensor product of these density matrices.

Then the gates are applied in an arbitrary topological order. Applying a gate
means applying the superoperator composed of the gate’s superoperator on the chosen
qubits for the gate and the identity superoperator on the remaining qubits.

In the end the state of the output qubit is supposed to be a classical probability
distribution on |0〉 and |1〉.

The following fact from [1] allows one to apply gates in an arbitrary topological
ordering.

Fact 4.17. Let C be a quantum superoperator circuit, and let C1 and C2 be two
sets of gates working on different sets of qubits. Then for all density matrices ρ on
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the qubits in the circuit the result of C1 applied to the result of C2 on ρ is the same
as the result of C2 applied to the result of C1 on ρ.

Let two arbitrary topological orderings of the gates in a quantum superoperator
circuit be given. The result of applying the gates in one ordering is the same as the
result of applying the gates in the other ordering for any input density matrix.

One more aspect is interesting in the definition of quantum formulas: We want to
allow quantum formulas to access multiple read random inputs, just as fair probabilis-
tic formulas. This makes it possible to simulate the latter model. Instead of random
variables we allow the quantum formulas to read an arbitrary nonentangled state. A
pure state on k qubits is called nonentangled if it is the tensor product of k states on
one qubit each. A mixed state is nonentangled if it can be expressed as a probabilistic
ensemble of nonentangled pure states. Note that a classical random variable read k
times can be modeled as |1k〉 with probability 1/2 and |0k〉 with probability 1/2.

We restrict our definition to gates with fan-in 2; the set of quantum gates with
fan-in 2 is known to be universal [4].

Definition 4.18. A generalized quantum formula is a quantum superoperator
circuit with fan-out 1/fan-in 2 gates together with a fixed nonentangled mixed state.
The sources of the circuit are either labeled by input variables or may access a qubit
of the state. Each qubit of this state may be accessed only by one gate.

As proved in [1] Fact 4.7 implies that quantum superoperator circuits with con-
stant fan-in are asymptotically as efficient as quantum circuits with constant fan-in.
The same holds for quantum formulas. The essential difference between pure and
generalized quantum formulas is the availability of multiple read random bits.

4.6. Programmable quantum gates. For simulations of quantum mechanical
formulas by communication protocols we will need a programmable quantum gate.
Such a gate allows Alice to communicate a unitary operation as a program stored in
some qubits to Bob, who then applies this operation to some of his qubits.

Formally we have to look for a unitary operator G, with

G(|d〉 ⊗ |PU 〉) = U(|d〉) ⊗ |P ′
U 〉.

Here |PU 〉 is the “code” of a unitary operator U and |P ′
U 〉 some leftover of the code.

The bad news is that such a programmable gate does not exist, as proved in [34].
Note that in the classical case such gates are easy to construct.

Fact 4.19. If N different unitary operators (pairwise different by more than
a global phase) can be implemented by a programmable quantum gate, then the gate
needs a program of length logN .

Since there are infinitely many unitary operators on just one qubit there is no
programmable qubit with finite program length implementing them all. The proof
uses the fact that the gate works deterministically, and actually a probabilistic solution
to the problem exists.

We now sketch a construction of Nielsen and Chuang [34]. For the sake of sim-
plicity we describe just the construction for unitary operations on one qubit.

The program of a unitary operator U is

|PU 〉 =
1√
2
(|0〉U |0〉 + |1〉U |1〉).

The gate receives as input |d〉⊗|PU 〉. The gate then measures the first and second
qubits in the basis {|Φ+〉, |Φ−〉, |Ψ+〉, |Ψ−〉}. Then the third qubit is used as a result.
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For a state |d〉 = a|0〉 + b|1〉 the input to the gate is

[a|0〉 + b|1〉] |0〉U |0〉 + |1〉U |1〉√
2

=
1

2

[|Φ+〉(aU |0〉 + bU |1〉) + |Φ−〉(aU |0〉 − bU |1〉)

+ |Ψ+〉(aU |1〉 + bU |0〉) + |Ψ−〉(aU |1〉 − bU |0〉)] .
Thus the measurement produces the correct state with probability 1/4, and more-

over the result of the measurement indicates whether the computation was done cor-
rectly. Also, given this measurement result we know exactly which unitary “error”
operation has been applied before the desired operation. We now state Nielsen and
Chuang’s result.

Fact 4.20. There is a probabilistic programmable quantum gate with m input
qubits for the state plus 2m input qubits for the program, which implements every
unitary operation on m qubits and succeeds with probability 1/22m. The result of a
measurement done by the gate indicates whether the computation was done correctly
and which unitary error operation has been performed.

Also note that it is easy to construct an approximate programmable quantum
gate in the following sense. For any error parameter ε we may discretize the set of
superoperators to a finite set so that for each superoperator T there is an operator
T ′ from the finite set, such that for each density matrix ρ we have that Tρ is ε-close
to T ′ρ. Then we can construct a gate that receives the classical description of one of
these finitely many superoperators as a program.

5. One-way communication complexity: The nondeterministic and the
quantum cases.

5.1. A lower bound for limited nondeterminism. In this section we inves-
tigate nondeterministic one-way communication with a limited number of nondeter-
ministic bits. Analogous problems for many-round communication complexity have
been addressed in [18], but in this section we again consider asymmetric problems,
for which the one-way restriction is essential.

It is easy to see that if player Bob has m input bits, then m nondeterministic
bits are the maximum player Alice needs. Since the nondeterministic communication
complexity without any limitation on the number of available nondeterministic bits
is at most m, Alice can just guess the communication and send it to Bob in case it
is correct with respect to her input and leads to acceptance. Bob can then check the
same for his input. Thus an optimal protocol can be simulated.

For the application to lower bounds on formula size we are again interested in
functions with an asymmetric input partition; i.e., Alice receives much more inputs
than Bob. For nontrivial results thus the number of nondeterministic bits must be
smaller than the number of Bob’s inputs.

A second observation is that using s nondeterministic bits can reduce the commu-
nication complexity from the deterministic one-way communication complexity d to
d/2s in the best case. If s is sublogarithmic, strong lower bounds follow already from
the deterministic lower bounds, e.g., Nε logn(¬EQ) ≥ n1−ε, while Nlogn(¬EQ) =
O(log n). On the other hand, we have the following.

Lemma 5.1.

Ns(f) = c ⇒ Nc(f) ≤ c.

Proof. In a protocol with communication c at most 2c different messages can
be sent (for all inputs). To guess such a message c nondeterministic bits are
sufficient.
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Hence it is unnecessary for a nondeterministic protocol to use more nondeter-
ministic bits than communication. We are interested in determining how large the
difference between nondeterministic one-way communication complexity with s non-
deterministic bits and unrestricted nondeterministic communication complexity may
be. Therefore we consider the maximal such gap as a function G.

Corollary 5.2. Let f : {0, 1}n × {0, 1}m → {0, 1} be a Boolean function and
G : N → N a monotone increasing function, with N(f) = c and Ns(f) = G(c) for
some s.

Then NG−1(n)(f) ≤ c and hence s ≤ G−1(n), where G−1(x) = min{y|G(y) ≥ x}.
Proof. G(c) ≤ n and hence c ≤ G−1(n).
The range of values of s for which a gap G between N(f) and Ns(f) is possible

is thus limited. If, e.g., an exponential difference G(x) = 2x holds, then s ≤ log n. If
G(x) = r · x, then s ≤ n/r.

We now show a gap between nondeterministic one-way communication complexity
with s nondeterministic bits and unlimited nondeterministic communication complex-
ity. First we define the family of functions exhibiting this gap. Denote by P(a, b) the
set of size b subsets of a size a universe.

Definition 5.3. Let DIn,s be the following Boolean function for 1 ≤ s ≤ n:

DIn,s(x1, . . . , xn;xn+1) = 1 ⇐⇒ ∀i : xi ∈ P(n3, s)

∧∃i : |{j|j �= i;xi ∩ xj �= ∅}| ≥ s.

Note that the function has Θ(sn log n) input bits in a standard encoding. We
consider the partition of inputs in which Bob receives the set xn+1 and Alice all other
sets. The upper bounds in the following lemma are trivial, since Bob receives only
O(s log n) input bits.

Lemma 5.4.

NO(s logn)(DIn,s) = O(s log n).

DB(DIn,s) = O(s log n).

The lower bound we present now results in a near optimal difference between non-
deterministic (one-way) communication and limited nondeterministic one-way com-
munication. Limited nondeterministic one-way communication has also been studied
subsequently to this work in [17]. There a tradeoff between the consumption of non-
deterministic bits and the one-way communication is demonstrated (i.e., with more
nondeterminism the communication gradually decreases). Here we describe a funda-
mentally different phenomenon of a threshold type: Nondeterministic bits do not help
much, until a certain number of them are available, when quite quickly the optimal
complexity is attained. For more results of this type see [22].

Theorem 5.5. There is a constant ε > 0, so that for s ≤ n

Nεs(DIn,s) = Ω(ns log n).

Proof. We have to show that all nondeterministic one-way protocols computing
DIn,s with εs nondeterministic bits need much communication.

A nondeterministic one-way protocol with εs nondeterministic bits and commu-
nication c induces a cover of the communication matrix with 2εs Boolean matrices
having the following properties: Each 1-entry of the communication matrix is a 1-
entry in at least one of the Boolean matrices, no 0-entry of the communication matrix
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is a 1-entry in any of the Boolean matrices, and furthermore the set of rows appear-
ing in those matrices has size at most 2c. This set of matrices is obtained by fixing
the nondeterministic bits and taking the communication matrices of the resulting
deterministic protocols. Note that the rows of the communication matrices of the de-
terministic protocols correspond to messages. We will deduce the lower bound from
the weaker property that each of the Boolean matrices covering the communication
matrix uses at most 2c different rows. This can be used to show that the lower bound
holds even for protocols with limited, but public, nondeterminism.

We start by constructing a submatrix of the communication matrix with some
useful properties and then show the theorem for this “easier” problem.

Partition the universe {1, . . . , n3} in n disjoint sets U1, . . . , Un, with |Ui| = n2 =
m. Then choose vectors of n size s subsets of the universe, so that the ith subset is
from Ui. Thus the n subsets of a vector are pairwise disjoint. Now the protocol has
to determine whether the set of Bob intersects nontrivially with s of the sets given to
Alice.

We restrict the set of inputs further. There are
(
m
s

)
different size s subsets of

Ui. We choose a set of such subsets so that each pair of them has no more than s/2
common elements. To do so we start with any subset and remove all subsets having
more than s/2 common elements with any already chosen subset. This process can
be repeated until all size s subsets are either chosen or discarded. We end with a
set of size s subsets of Ui, whose elements have pairwise no more than s/2 common
elements. In every step at most

(
s

s/2

)(
m
s/2

)
subsets are discarded; thus we choose at

least
(
m
s

)
(

s
s/2

)(
m
s/2

) ≥
(m
s

)s/2

/23s/2(5.1)

sets.
As described we draw Alice’s inputs as vectors of sets, where the set at position

i is drawn from the set of subsets of Ui we have just constructed. These inputs are
identified with the rows of the submatrix of the communication matrix. The columns
of the submatrix are restricted to elements of U1 ∪ {�} × · · · × Un ∪ {�}, for which
s positions are occupied; i.e., n− s positions carry the extra symbol � which stands
for “no element.” Call the constructed submatrix M .

Now assume there is a protocol computing the restricted problem with communi-
cation matrix M . Fixing the nondeterministic bits gives us a deterministic protocol.
If a nondeterministic protocol uses r nondeterministic bits, then there are 2r such
deterministic protocols, and at least one of them accepts a fraction of 1/2r of the ones
in M , where r = εs. We now show that such a matrix must have many different rows,
which corresponds to a large amount of communication.

Each row of M (being a vector of zeros and ones) also corresponds to a vector of
n sets, the associated input of Alice. A position i is called a difference position for
a pair of such sequences if they have different sets at position i. According to our
construction these sets have no more than s/2 elements in common.

We say a set of rows has k difference positions if there are k positions i1, . . . , ik,
so that for each il there are two rows in the set for which il is a difference position.

We now show that each row of M ′ containing “many” ones does not “fit” on many
rows of M , i.e., contains ones these do not have. Since M ′ has a one-sided error, the
rows of M ′ are either sparse or cover only a few rows of M . Observe that each row
of M has exactly

(
n
s

)
ss ones.
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Lemma 5.6. Let z be a row of M ′, appearing several times in M ′. The rows of
M , in whose place in M the row z appears in M ′, may have δn difference positions.
Then z contains at most 2

(
n
s

)
ss/2δs/6 ones.

Proof. Several rows of M having δn difference positions are given, and the ones
of z occur in all of these rows. Let C be the set of

(
n
s

)
ss columns/sets being the ones

in the first such row. All other columns are forbidden and may not be ones in z.
A column in C is chosen randomly by choosing s out of n positions and then one

of s elements for each position. Let k = δs. We have to show an upper bound on
the number of ones in z, and we analyze this number as the probability of getting a
one when choosing a column in C. The probability of getting a one is at most the
probability that the chosen positions have a nontrivial intersection with less than k/2
sets Ui at difference positions i (call this event E) plus the probability of getting a one
under the condition of event E, following the general formula Prob(A) ≤ Prob(A|E)+
Prob(E).

We first count the columns in C, which have a nontrivial intersection with at most
k/2 of the sets Ui at difference positions i. Consider the slightly different experiment
in which s times independently one of n positions is chosen; hence positions may be
chosen more than one time. Now expected δs = k difference positions are chosen.
Applying Chernov’s inequality yields that, with probability at most

e−
1

4·2 ·k ≤ 2−δs/6,

at most k/2 difference positions occur. When choosing a random column in C instead,
this probability is even smaller, since now positions are chosen without repetitions.
Thus the columns in C, which “hit” less than k/2 difference positions, contribute at
most 2−δs/6

(
n
s

)
ss ones to z.

Now consider the columns/sets in C, which intersect at least k/2 of the Ui at
difference positions i. Such a column/set fits on all of the rows, if the element at each
position not bearing a � lies in the intersection of all sets in the rows at position i. At
each difference position there are two rows, which hold different sets at that position,
and those sets have no more than s/2 common elements.

Fix an arbitrary set of positions such that at least k/2 difference positions are
included. The next step of choosing a column in C consists of choosing one of s
elements for each position. But if a position is a difference position, then at most
s/2 elements satisfy the condition of lying in the sets held by all of the rows at that
position. Thus the probability of fitting on all of the rows is at most 2−k/2, and at
most

(
n
s

)
ss/2k/2 such columns can be a one in z.

Overall only a fraction of 2−δs/6+1 of all columns in C can be ones in z.
At least one-half of all ones in M ′ lie in rows containing at least ≥ (

n
s

)
ss/2r+1

ones. Lemma 5.6 tells us that such a row fits only on a set of rows of M having no
more than δn difference positions, where r + 1 = δs/6 − 1. Hence such a row can

cover at most all of the ones in
(
m
s

)δn
rows of M and therefore only

(
m
s

)δn(n
s

)
ss ones.

According to (5.1) at least (m/s)sn/2
(
n
s

)
ss/(23sn/22r+1) ones are covered by such

rows; hence

(m/s)sn/2
(
n
s

)
ss

(
m
s

)δn(n
s

)
ss23sn/22r+1

≥ (m/s)sn/2

(em/s)6εsn+12n23sn/22εs+1

= 2Ω(sn logn)

rows are necessary (for ε = 1/20 and n ≥ s ≥ 400).



COMMUNICATION COMPLEXITY AND THE NEČIPORUK METHOD 573

5.2. Quantum one-way communication. Our first goal in this section is to
prove that the VC-dimension lower bound for randomized one-way protocols (Fact
2.9) can be extended to the quantum case. To achieve this we first prove a linear
lower bound on the bounded error quantum communication complexity of the index
function IXn and then describe a reduction from the index function IXd to any
function with VC dimension d, thus transferring the lower bound. It is easy to see
that V C(IXn) = n, and thus the bounded error probabilistic one-way communication
complexity is large for that function.

The problem of random access quantum coding has been considered in [2]. In a
n,m, ε-random access quantum code all Boolean n-bit words x have to be mapped
to states of m qubits each, so that for i = 1, . . . , n there is an observable, so that
measuring the quantum code with that observable yields the bit xi with probability
1 − ε. The quantum code is allowed to be a mixed state. The following is a result
from [2].

Fact 5.7. For every n,m, ε-random access quantum coding m ≥ (1 −H(ε))n.
It is easy to see that the problem of random access quantum coding is equivalent

to the construction of a quantum one-way protocol for the index function. If there is
such a protocol, then the messages can serve as mixed state codes, and if there is such
a code, the codewords can be used as messages. We can thus deduce a lower bound
for IXn in the model of one-way quantum communication complexity without prior
entanglement.

We now give a proof that can also be adapted to the case of allowed prior entan-
glement. The proof follows Nayak’s idea, who also obtained the generalization to the
case of prior entanglement in his thesis [31].

Theorem 5.8. Qε(IXn) ≥ (1 −H(ε))n.
Qpub

ε (IXn) ≥ (1 −H(ε))n/2.
Proof. Let M be the register containing the message sent by Alice, and let X be

a register holding a uniformly random input to Alice. Then σXM denotes the state of
Alice’s qubits directly before the message is sent. σM is the state of a random message.
Now every bit is decodable with probability 1 − ε, and thus S(Xi : M) ≥ 1 − H(ε)
for all i. To see this consider S(Xi : M) as the Holevo information of the following
ensemble:

σi,0 =
∑

x:xi=0

1

2n−1
σx
M

with probability 1/2 and

σi,1 =
∑

x:xi=1

1

2n−1
σx
M

with probability 1/2, where σx
M is the density matrix of the message on input x. The

information obtainable on xi by measuring σM must be at 1 − H(ε) due to Fano’s
inequality (Fact 4.2), and thus the Holevo information of the ensemble is at least
1 −H(ε); hence S(Xi : M) ≥ 1 −H(ε).

But then S(X : M) ≥ (1 − H(ε)n (since all Xi are mutually independent).
S(X : M) ≤ S(M) using Lemma 4.12, since X and M are not entangled. Thus the
number of qubits in M is at least (1 −H(ε))n.

Now we analyze the complexity of IXn in the one-way communication model with
entanglement.
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The density matrix of the state induced by a uniformly random input on X,
the message M , and the qubits EA, EB containing the prior entanglement in the
possession of Alice and Bob is σXMEAEB

. Here EA contains those qubits of the
entangled state Alice keeps; note that some of the entangled qubits will usually belong
to M . Tracing out X and EA we receive a state σMEB

, which is accessible to Bob.
Now every bit of the string in X is decodable; thus S(Xi : MEB) ≥ 1−H(ε) for all i
as before. But then also S(X : MEB) ≥ (1 −H(ε)n, since all of the Xi are mutually
independent.

S(X : MEB) = S(X : EB) + S(X : M |EB) ≤ 2S(M) by an application of the
Araki–Lieb inequality; see Fact 4.11. Note that S(X : EB) = 0. So the number of
qubits in M must be at least (1 −H(ε))n/2.

Note that the lower bound shows that two-round deterministic communication
complexity can be exponentially smaller than one-way quantum communication com-
plexity. For a more general quantum communication round hierarchy see [25].

Theorem 5.9. For all functions f : Qε(f) ≥ (1 −H(ε))V C(f) and Qpub
ε (f) ≥

(1 −H(ε))V C(f)/2.
Proof. We now describe a reduction from the index function to f . Assume

V C(f) = d; i.e., there is a set S = {s1, . . . , sd} of inputs for Bob, which is shattered
by the set of functions f(x, .). The reduction then goes from IXd to f .

For each R ⊆ S let cR be the incidence vector of R (having length d). cR is a
possible input for Alice when computing the index function IXd. For each R choose
some xR, which separates this subset from the rest of S, i.e., so that f(xR, y) = 1 for
all y ∈ R and f(xR, y) = 0 for all y ∈ S −R.

Assume a protocol for f is given. To compute the index function the players do
the following. Alice maps cR to xR. Bob’s inputs i are mapped to the si. Then
f(xR, si) = 1 ⇐⇒ si ∈ R ⇐⇒ cR(i) = 1.

In this manner a quantum protocol for f must implicitly compute IXd. According
to Theorem 5.8 the lower bounds follow.

As an application of the previous theorem we get lower bounds for the disjointness
problem in the model of quantum one-way communication complexity.

Corollary 5.10. Qε(DISJn) ≥ (1 −H(ε))n.
Qpub

ε (DISJn) ≥ (1 −H(ε))n/2.
The first result has independently been obtained by Buhrman and de Wolf [8].

Note that the obtained lower bound method is not tight in general. There are functions
for which an unbounded gap exists between the VC dimension and the quantum one-
way communication complexity [24].

Now we turn to the exact and Las Vegas quantum one-way communication com-
plexity. For classical one-way protocols it is known that Las Vegas communication
complexity is at most a factor 1/2 better than deterministic communication for total
functions; see Fact 2.10.

Theorem 5.11. For all total functions f :
QE(f) = D(f),
Q0,ε(f) ≥ (1 − ε)D(f).
Proof. Let row(f) be the number of different rows in the communication matrix

of f(x, y). According to Fact 2.7, D(f) = �log row(f)�. We assume in the following
that the communication matrix consists of pairwise different rows only.

We will show that any Las Vegas one-way protocol which gives up with probability
at most ε ≥ 0 for some function f having row(f) = R must use messages with von
Neumann entropy at least (1 − ε) logR, when started on a uniformly random input.
Inputs for Alice are identified with rows of the communication matrix. We then
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conclude that the Hilbert space of the messages must have dimension at least R1−ε,
and hence at least (1− ε) logR qubits have to be sent. This gives us the second lower
bound of the theorem. The upper bound of the first statement is trivial; the lower
bound of the first statement follows by taking ε = 0.

We now describe a process in which rows of the communication matrix are chosen
randomly bit per bit. Let p be the probability of having a 0 in column 1 (i.e., the
number of 0s in column 1 divided by the number of rows). Then a 0 is chosen with
probability p, a 1 with probability 1−p. Afterwards the set of rows is partitioned into
the set I0 of rows starting with a 0 and the set I1 of rows starting with a 1. When
x1 = b is chosen, the process continues with Ib and the next column.

Let ρy be the density matrix of the following mixed state: The (possibly mixed)
message corresponding to a row starting with y is chosen uniformly over all such rows.

The probability that a 0 is chosen after y is called py, and the number of different
rows beginning with y is called rowy.

We want to show via induction that S(ρy) ≥ (1 − ε) log rowy. Surely S(ρy) ≥ 0
for all y.

Recall that Bob can determine the function value for an arbitrary column with
the correctness guarantee of the protocol.

Then with Lemma 4.10, S(ρy) ≥ pyS(ρy0) + (1 − py)S(ρy1) + (1 − ε)H(py), and
via induction

S(ρy) ≥ py((1 − ε) log rowy0)

+ (1 − py)((1 − ε) log rowy1) + (1 − ε)H(py)

= (1 − ε)[py log(pyrowy)

+ (1 − py) log((1 − py)rowy) + H(py)]

= (1 − ε) log rowy.

We conclude that S(ρ) ≥ (1− ε) log row(f) for the density matrix ρ of a message to a
uniformly random row. Hence the lower bound on the number of qubits holds.

We now again consider the model with prior entanglement.
Theorem 5.12. For all total functions f :
Qpub

E (f) = �D(f)/2�,
Qpub

0,ε (f) ≥ D(f)(1 − ε)/2.
The upper bound follows from superdense coding [5]. Instead of the lower bounds

of the theorem we prove a stronger statement. We consider an extended model of
quantum one-way communication that will be useful later.

In a nonstandard one-way quantum protocol Alice and Bob are allowed to com-
municate in arbitrarily many rounds; i.e., they can exchange many messages. But
Bob is not allowed to send Alice a message, so that the von Neumann information
between Bob’s input and all of Alice’s qubits is larger than 0. The communication
complexity of a protocol is the number of qubits sent by Alice in the worst case. The
model is at least as powerful as the model with prior entanglement, since Bob may,
e.g., generate some EPR pairs and send one qubit of each pair to Alice, and then
Alice may send a message as in a protocol with prior entanglement.

Lemma 5.13. For all functions f a nonstandard quantum one-way protocol with
a bounded error must communicate at least (1 −H(ε))V C(f)/2 qubits from Alice to
Bob.

For all total functions f a nonstandard quantum one-way protocol
1. with exact acceptance must communicate at least �D(f)/2� qubits from Alice

to Bob;
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2. with Las Vegas acceptance and success probability 1− ε must communicate at
least (1 − ε)D(f)/2 qubits from Alice to Bob.

Proof. In this proof we always call the qubits available to Alice P and the qubits
available to Bob Q for simplicity disregarding that these registers change during the
course of the protocol. We assume that the inputs are in registers X,Y and are never
erased or changed in the protocol. Furthermore we assume that for all fixed values
x, y of the inputs the remaining global state is pure.

For the first statement it is again sufficient to investigate the complexity of the
index function.

Let σXY PQ be the state for random inputs in X,Y for Alice and Bob, with qubits
P and Q in the possession of Alice and Bob, respectively. Since Bob determines the
result, it must be true that in the end of the protocol S(XY : Y Q) ≥ 1 − H(ε),
since the value XY can be determined from Bob’s qubits with probability 1 − ε. It
is always true in the protocol that S(XP : Y ) = 0. Let ρX=x,Y =y

P be the density
matrix of P for fixed inputs X = x and Y = y. Then we have that for all x, y, y′:
ρX=x,Y =y
P = ρX=x,Y =y′

P .

ρX=x,Y =y
PQ purifies ρX=x,Y =y

P . Then the following fact from [29] and [28] tells us
that all y and corresponding states of Q are “equivalent” from the perspective of
Alice.

Fact 5.14. Assume |φ1〉 and |φ2〉 are pure states in a Hilbert space H ⊗K, so
that TrK |φ1〉〈φ1| = TrK |φ2〉〈φ2|.

Then there is a unitary transformation U acting on K, so that I ⊗ U |φ1〉 = |φ2〉
(for the identity operator I on H).

Thus there is a local unitary transformation applicable by Bob alone, so that

ρX=x,Y =y
PQ can be changed to ρX=x,Y =y′

PQ . Hence for all i we have S(QY : Xi) ≥
1 −H(ε), and thus S(X : QY ) ≥ (1 −H(ε))n.

In the beginning S(X : QY ) = 0. Then the protocol proceeds w.l.o.g. so that
each player applies a unitary transformation on his qubits and then sends a qubit
to the other player. Since the information cannot increase by local operations, it is
sufficient to analyze what happens if qubits are sent. When Bob sends a qubit to
Alice, S(X : QY ) is not increased. When Alice sends a qubit to Bob, then Q is
augmented by a qubit M , and S(X : QMY ) ≤ S(X : QY ) + S(XQY : M) ≤ S(X :
QY ) + 2S(M) ≤ S(X : QY ) + 2 due to Fact 4.11. Thus the information can increase
only when Alice sends a qubit and always by at most 2. The lower bound follows.

Now we turn to the second part. We consider the same situation as in the proof of
Theorem 5.11. Let σrc

P denote the density matrix of the qubits P in Alice’s possession
under the condition that the input row is r and the input column is c. Clearly σrc

PQ

(containing also Bob’s qubits) is a purification of σrc
P . Again σrc

P = σrc′

P for all r, c, c′,
and according to Fact 5.14 for all c and all corresponding states of Q, it is true that
Bob can switch locally between them. Hence it is possible for Bob to compute the
function for an arbitrary column.

The probability of choosing a 0 after a prefix y of a row is again called py,
and the number of different rows beginning with y is called rowy. ρy contains the
state of Bob’s qubits at the end of the protocol if a random row starting with y
is chosen uniformly (and some fixed column c is chosen). Surely S(ρy) ≥ 0 for all
y. Since Bob can change his column (and the corresponding state of Q) by a local
unitary transformation, he is able to compute the function for an arbitrary column,
always with the success probability of the protocol, at the end. With Lemma 4.10
S(ρy) ≥ pyS(ρy0) + (1 − py)S(ρy1) + (1 − ε)H(py).
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At the end of the protocol thus S(σc
Q) = S(ρ) ≥ (1−ε) log row(f)+

∑
r

1
row(f)

S(σrc
Q )

for all c. Thus the Holevo information of the ensemble, in which ρr = σrc
Q is chosen

with probability 1/row(f), is at least (1 − ε) log row(f). Let σRPQ be the density
matrix of rows, qubits of Alice and Bob. It follows that S(R : Q) ≥ (1− ε) log row(f),
and as before at least half that many qubits have to be sent from Alice to Bob.

6. More lower bounds on formula size.

6.1. Nondeterminism and formula size. Let us first mention that any non-
deterministic circuit can easily be transformed into an equivalent nondeterministic
formula without increasing size by more than a constant factor. To do so one simply
guesses the values of all internal gates and then verifies that all of these guesses are
correct and that the circuit accepts. This is a big AND over test involving O(1) vari-
ables, which can be implemented by a Boolean formula in conjunctive normal form.
Hence large lower bounds for nondeterministic formula size are very hard to prove,
since even nonlinear lower bounds for the size of deterministic circuits computing some
explicit functions are unknown. We now show that formulas with limited nondeter-
minism are more approachable. We start by introducing a variant of the Nečiporuk
method, this time in terms of nondeterministic communication:

Definition 6.1. Let f be a Boolean function with n input variables and y1 . . . yk
be a partition of the inputs in k blocks.

Player Bob receives the inputs in yi, and player Alice receives all other inputs.
The nondeterministic one-way communication complexity of with s nondeterministic
bits of f under this input partition is called Ns(fi). Define the s-nondeterministic

Nečiporuk function as 1/4
∑k

i=1 Ns(fi).
Lemma 6.2. The s-nondeterministic Nečiporuk function is a lower bound for the

length of nondeterministic Boolean formulas with s nondeterministic bits.
The proof is analogous to the proof of Theorem 3.5. Again protocols simulate the

formula in k communication games. This time Alice fixes the nondeterministic bits
by herself, and no probability distribution on formulas is present.

We will apply the above methodology to the following language.
Definition 6.3. Let ADn,s denote the following language (for 1 ≤ s ≤ n):

ADn,s = {(x1, . . . , xn+1)|∀i : xi ∈ P(n3, s),

xi is written in sorted order

∧∃i : |{j|j �= i;xi ∩ xj �= ∅}| ≥ s}.

Theorem 6.4. Every nondeterministic formula with s nondeterministic bits for
ADn,20s has length at least Ω(n2s log n).

ADn,s can be computed by a nondeterministic formula of length O(ns2 log n),
which uses O(s log n) nondeterministic bits (for s ≥ log n).

Proof. For the lower bound we use the methodology we have just described. We
consider the n + 1 partitions of the inputs, in which Bob receives the set xi and
Alice all other sets. The function they have to compute now is the function DIn,s
from Definition 5.3. In Theorem 5.5 a lower bound of Ω(ns log n) is shown for this
problem; hence the length of the formula is Ω(n · ns log n).

For the upper bound we proceed as follows: The formula guesses (in binary) a
number i with 1 ≤ i ≤ n + 1 and pairs (j1, w1), . . . , (js, ws), where 1 ≤ jk ≤ n + 1
and 1 ≤ wk ≤ n3 for all k = 1, . . . , s. The number i indicates a set, and the pairs are
witnesses that set i and set jk intersect on element wk.
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The formula does the following tests. First there is a test of whether all sets
consist of s sorted elements. For this ns comparisons of the form xj

i < xj+1
i suffice,

which can be realized with O(log2 n) gates each. Since s ≥ log n overall O(ns2 log n)
gates are enough.

The next test is whether j1 < · · · < js. This makes sure that witnesses for s
different sets have been guessed. Also i �= jk for all k must be tested.

Then the formula tests whether for all 1 ≤ l ≤ n+ 1 the following holds: If l = i,
then all guessed elements are in xl; if 1 ≤ l ≤ n + 1 and 1 ≤ k ≤ s, the formula also
tests, whether l = jk implies, that wk ∈ xl.

All of these tests can be done simultaneously by a formula of length O(ns2

log n).
For 0 < ε ≤ 1/2 let s = n

ε
1−ε ; then the lower bound for limited nondetermin-

istic formulas is Ω(N2−ε/ log1−ε N), with N ε/ logε N nondeterministic bits allowed.
O(N ε log1−ε N) nondeterministic bits suffice to construct a formula having length
O(N1+ε/ logε N). Hence the threshold for constructing an efficient formula is poly-
nomially large, allowing an exponential number of computations on each input.

6.2. Quantum formulas. Now we derive the lower bound for generalized quan-
tum formulas. Roychowdhury and Vatan [37] consider pure quantum formulas (recall
these are quantum formulas which may not access multiply readable random bits).
Their result is as follows.

Fact 6.5. Every pure quantum formula computing a function f with a bounded
error has length

Ω

(
∑

i

D(fi)/ logD(fi)

)

for the Nečiporuk function
∑

i D(fi); see Fact 3.1 and Definition 3.4.
Furthermore in [37] it is shown that pure quantum formulas can be simulated

efficiently by deterministic circuits.
Now we know from section 3.2 that the Boolean function MP with O(n2) inputs

(the matrix product function) has fair probabilistic formulas of linear size O(n2), while
the Nečiporuk bound is cubic (Theorems 3.11 and 3.12). Thus we get the following.

Corollary 6.6. There is a Boolean function MP with N inputs, which can be
computed by fair one-sided error formulas of length O(N), while every pure quantum
formula with a bounded error for MP has size Ω(N3/2/ logN).

We conclude that pure quantum formulas are not a proper generalization of classi-
cal formulas. A fair probabilistic formula can be simulated efficiently by a generalized
quantum formula, on the other hand. We now derive a lower bound method for gen-
eralized quantum formulas. First we give again a lower bound in terms of one-way
communication complexity, and then we show that the VC–Nečiporuk bound is a
lower bound, too.

This implies with Theorem 3.9 that the maximal difference between the sizes
of deterministic formulas and generalized bounded error quantum formulas provable
with the Nečiporuk method is at most O(

√
n).

But first let us conclude the following corollary, which states that fair probabilistic
formulas reading their random bits only once are sometimes inefficient.

Corollary 6.7. The (standard) Nečiporuk function divided by log n is an asym-
ptotical lower bound for the size for fair probabilistic formulas reading their random
inputs only once.
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Proof. We have to show that pure quantum formulas can simulate these special
probabilistic formulas. For each random input we use two qubits in the state |00〉.
These are transformed into the state |Φ+〉 by a Hadamard gate. One of the qubits
is never used again; then the other qubit has the density matrix of a random bit.
Then the probabilistic formula can be simulated. For the simulation of gates unitary
transformations on three qubits are used. These get the usual inputs of the gate
simulated plus one empty qubit as input, which after the application of the gate
carries the output. These gates are easily constructed unitarily. According to [4] each
3-qubits gate can be composed of O(1) unitary gates on two qubits only.

We will need the following observation [1].
Fact 6.8. If the density matrix of two qubits in a circuit (with nonentangled

inputs) is not the tensor product of their density matrices, then there is a gate so that
both qubits are reachable on a path from that gate.

Since the above situation is impossible in a formula, the inputs to a gate are never
entangled.

The first lower bound is stated in terms of one-way communication complexity.
It is interesting that actually randomized complexity suffices for a lower bound on
quantum formulas.

Theorem 6.9. Let f be a Boolean function on n inputs and y1 . . . yk a partition
of the input variables in k blocks. Player Bob knows the inputs in yi, and player
Alice knows all other inputs. The randomized (private coin) one-way communication
complexity of f (with a bounded error) under this input partition is called R(fi).

Every generalized quantum formula for f with a bounded error has length

Ω

(
∑

i

R(fi)

logR(fi)

)
.

Proof. For a given partition of the input we show how a generalized quantum
formula F can be simulated in the k communication games, so that the randomized
one-way communication in game i is bounded by a function of the number of leaves
in a subtree Fi of F . Fi contains exactly the variables belonging to Bob as leaves, and
its root is the root of F . Furthermore Fi contains all gates on paths from these leaves
to the root. Note that the additional nonentangled mixed state which the formula
may access is given to Alice.

F is a tree of fan-in 2 fan-out 1 superoperators (recall that superoperators are
not necessarily reversible). “Wires” between the gates carry one qubit each. Fi is a
formula that Bob wants to evaluate, the remaining parts of the formula F belong to
Alice, and she can easily compute the density matrices for all qubits on any wire in
her part of the formula by a classical computation, as well as the density matrices
for the qubits crossing to Bob’s formula Fi. Note that none of the qubits on wires
crossing to Fi is entangled with another, so the state of these qubits is a probabilistic
ensemble of pure nonentangled states. Hence Alice may fix a pure nonentangled state
from this ensemble with a randomized choice.

In all communication games Bob evaluates the formula as far as possible without
the help of Alice. By an argument as in other Nečiporuk methods (e.g., [7, 37] or the
previous sections) it is sufficient to send a few bits from Alice to Bob to evaluate a
path with the following property: All gates on the path have one input from Alice
and one input from its predecessor, except for the first gate, which has one input
from Alice and one (already known) input from Bob. With standard arguments the
number of such paths is a lower bound on the number of leaves in the subformula; see
section 3.1.
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Hence we have to consider some path g1, . . . , gm in F , where g1 has one input or a
gate from Alice as predecessor and an input or gate from Bob as the other predecessor,
and all gates gi have the previous gate gi−1 and an input or gate from Alice’s part of
the formula as predecessors. The density matrix of Bob’s input to g1 is called ρ, and
the density matrix of the other m inputs is called σ. The circuit computing σ works
on different qubits than the circuit computing ρ.

Thus the density matrix of all inputs to the path is ρ⊗ σ; see Fact 6.8. The path
maps ρ⊗ σ with a superoperator T to a density matrix μ on one qubit; alternatively
we may view σ as determining a superoperator Tσ on one qubit that has to be applied
to ρ. Now Alice can compute this superoperator by herself, classically.

Bob knows ρ. Bob wants to know the state Tσρ. Since this operator works on
a single qubit only, it can be described within a precision 1/poly(k) by a constant
size matrix containing numbers of size O(log k) for any integer k. Thus Alice may
communicate Tσ to Bob within this precision using O(log k) bits.

In this way Alice and Bob may evaluate the formula, and the error of the formula
is changed only by sizei/poly(k) compared to the error of the quantum formula,
where sizei denotes the number of gates in Fi. Thus choosing k = poly(sizei)
the communication is bounded R(fi) ≤ O(sizei log sizei). This implies sizei ≥
Ω(R(fi)/ logR(fi)). Summation over all i yields the theorem.

The above construction loses a logarithmic factor, but in the combinatorial bounds
we actually apply, we can avoid this, by using quantum communication and the pro-
grammable quantum gate from Fact 4.20.

Theorem 6.10. The VC–Nečiporuk function is an asymptotical lower bound for
the length of generalized quantum formulas with a bounded error.

The Nečiporuk function is an asymptotical lower bound for the length of general-
ized quantum Las Vegas formulas.

Proof. We proceed similar to the above construction, but Alice and Bob use
quantum computers. Instead of communicating a superoperator in matrix form with
some precision, we use the programmable quantum gate.

Alice and Bob cooperatively evaluate the formulas Fi in a communication game as
before. As before, for certain paths Alice wants to help Bob to apply a superoperator
Tσ on a state ρ of his. Using Fact 4.7 we can assume that this is a unitary operator
on O(1) qubits (one of them ρ, the others blank) followed by throwing away all but
one of the qubits.

This time Alice sends to Bob the program corresponding to the unitary operation
in Tσ. Bob feeds this program into the programmable quantum gate, which tries
to apply the transformation, and if this is successful, the formula evaluation can
continue after discarding the unnecessary qubits. This happens with probability Ω(1).
If Alice could get some notification from Bob saying whether the gate has operated
successfully, and if not, what kind of error occurred, then Alice could send him another
program that both undoes the error and the previous operator and then makes another
attempt to compute the desired operator.

Note that the error that resulted by an application of the programmable quan-
tum gate is determined by the classical measurement outcome resulting in its ap-
plication. Furthermore this error can be described by a unitary transformation
itself. If the error function is E, the desired is unitary is U , and the state it
has to be applied to is ρ, then Bob now holds UEρE†U†. Once Alice knows E
(which is determined by Bob’s measurement outcome), Alice can produce a program
for UE†U†. If Bob applies this transformation successfully, they are done; other-
wise, they can iterate. Note that only an expected number of O(1) such iterations
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are necessary, and hence the expected quantum communication in this process is
O(1), too.

So the expected communication can be reduced to O(sizei). But Alice needs
some communication from Bob. Luckily this communication does not reveal any
information about Bob’s input: Bob’s measurement outcomes are random numbers
without correlation with his input.

So we consider the nonstandard one-way communication model from Lemma 5.13,
in which Bob may talk to Alice but without revealing any information about his input.
Using this model in the construction and letting Bob always ask explicitly for more
programs reduces the communication in game i to O(sizei) in the expected sense.

With Lemma 5.13 we get the lower bounds for a bounded error and Las Vegas
communication.

Now we can give a lower bound for ISA showing that even generalized quan-
tum formulas compute the function not significantly more efficient than deterministic
formulas.

Corollary 6.11. Every generalized quantum formula which computes ISA with
a bounded error has length Ω(n2/ log n).

Considering the matrix multiplication function MP , we get the following.
Corollary 6.12. There is a function, which can be computed by a generalized

quantum formula with a bounded error as well as by a fair probabilistic formula with
a bounded error, with size O(N). Every generalized quantum Las Vegas formula needs
size Ω(N3/2) for this task. Hence there is a size gap of Ω(N1/2) between the Las Vegas
formula length and the length of the bounded error formulas.

Since the VC–Nečiporuk function is a lower bound for generalized quantum for-
mulas, Theorem 3.9 implies that the maximal size gap between deterministic formulas
and generalized quantum formulas with a bounded error provable by the (standard)
Nečiporuk method is O(

√
n) for input length n. Such a gap actually already lies

between generalized quantum Las Vegas formulas and fair probabilistic formulas with
a bounded error.

7. Conclusions. In this paper we have derived lower bounds for the sizes of
probabilistic, nondeterministic, and quantum formulas. These lower bounds follow the
general approach of reinterpreting the Nečiporuk bound in terms of one-way communi-
cation complexity. This is nontrivial in the case of quantum formulas, where we had to
use a programmable quantum gate. Nevertheless we have obtained the same combina-
torial lower bound for quantum and probabilistic formulas based on the VC dimension.

Using the lower bound methods we have derived a general
√
n gap between the

bounded error and Las Vegas formula size. Another result is a threshold phenomenon
for the amount of nondeterminism needed to compute a function, which gives a near-
quadratic size gap for a polynomial threshold on the number of nondeterministic bits.

To derive our results we needed lower bounds for one-way communication com-
plexity. These results give gaps between two-round and one-way communication com-
plexity in these models. Those gaps have been generalized to round hierarchies for
larger number of rounds in [22] and [25] for the nondeterministic and the quantum
cases, respectively. Furthermore we have shown that quantum Las Vegas one-way
protocols for total functions are not much more efficient than deterministic one-way
protocols. The lower bounds for quantum one-way communication complexity are
also useful to give lower bounds for quantum automata and for establishing that only
bounded error quantum finite automata can be exponentially smaller than determin-
istic finite automata [23]. A generalization of the VC-dimension bound on quantum
one-way communication complexity is given in [24].
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The following problems remain open:
1. Give a better separation between deterministic and probabilistic/quantum

formula size (see [21] for a candidate function).
2. Separate the size complexities of generalized quantum and probabilistic for-

mulas for some function.
3. Investigate the power of quantum formulas that can access an entangled state

as an additional input, thus introducing entanglement into the model.
4. Separate quantum and probabilistic one-way communication complexity for

some total function or show that both are related.
5. Prove superquadratic lower bounds for formulas over the basis of all fan-in 2

gates.
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Abstract. Point location is the problem of preprocessing a planar polygonal subdivision S of
size n into a data structure in order to determine efficiently the cell of the subdivision that contains
a given query point. We consider this problem from the perspective of expected query time. We are
given the probabilities pz that the query point lies within each cell z ∈ S. The entropy H of the
resulting discrete probability distribution is the dominant term in the lower bound on the expected-
case query time. We show that it is possible to achieve query time H +O(

√
H +1) with space O(n),

which is optimal up to lower order terms in the query time. We extend this result to subdivisions
with convex cells, assuming a uniform query distribution within each cell. In order to achieve space
efficiency, we introduce the concept of entropy-preserving cuttings.
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1. Introduction. A planar straight-line graph defines a subdivision of the plane
into (possibly unbounded) polygonal regions called cells. Planar point location is the
problem of preprocessing such a polygonal subdivision S so that, given any query
point q, the cell containing q can be computed efficiently. Throughout, we let n
denote the total size of S, defined to be the total number of vertices, edges, and faces
of S.

The point-location problem has a considerable history. The first asymptotically
worst-case optimal result in the area was Kirkpatrick’s elegant method based on hier-
archical triangulations [19], which supported query processing in O(log n) time using
O(n) space. This was followed by a number of other optimal methods with better
practical performance including the layered directed acyclic graph of Edelsbrunner,
Guibas, and Stolfi [13], searching in similar lists by Cole [8], the method based on
persistent search trees by Sarnak and Tarjan [25], and the randomized incremental
algorithms of Mulmuley [23] and Seidel [26]. The important question of determining
the exact constant factor in query time was raised in work by Goodrich, Orletsky, and
Ramaiyer [16] and was solved subsequently by Seidel and Adamy [27], who showed
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that point-location queries can be answered in log2 n+2
√

log2 n+o(
√

log n) time and
O(n) space. They also provided a nearly matching lower bound.

Adamy and Seidel’s results were based on a model of computation, called the
trapezoidal search graph model, in which the result of the query is based entirely on
binary tests called primitive comparisons. There are two types of primitive compar-
isons. The first determines whether the query point q lies to the left or right of a
vertical line passing through a vertex of the subdivision. (See Figure 1(a).) The other
determines whether the query point lies above or below an edge of the subdivision.
This latter comparison is performed only after we have already determined that the
x-coordinates of the point lie between the x-coordinates of the endpoints of the edge.
(See Figure 1(b).) Note that both comparisons can be expressed as standard ori-
entation tests [11] (in 1 or 2 dimensions). Orientation tests form the basis of many
algorithms in discrete computational geometry [14]. In particular, all of the point-
location algorithms mentioned above are easily formulated in this model. Our main
result (Theorem 1 below) assumes this same model of computation.

q

(b)

q

(a)

Fig. 1. Primitive comparisons.

All the previous results on point location were considered in the context of worst-
case query times. In many applications, point-location queries tend to be clustered
in regions of greater interest. This raises the question of whether it is possible to use
knowledge of the query distribution to achieve better query times in the expected case.
We model this by assuming that, for each cell z ∈ S, we are given the probability pz
that a query point lies in z. We call the result a weighted subdivision. Unless otherwise
stated we make no assumptions about the probability distribution within each cell.
To avoid dealing with many special cases, we assume that the probability that the
query point lies on an edge or vertex of the subdivision is zero, but this restriction
can be overcome, for example, by treating edges and vertices of nonzero probability
as cells that have infinitesimal width or extent.

An important concept in characterizing the complexity of the search is the entropy
of S, denoted throughout as H:

entropy(S) = H =
∑

z∈S

pz log(1/pz).

(Unless otherwise stated all logarithms are taken in base 2.) It is well known that
entropy is maximized when all of the cells have equal probability [10], in which case
H = log n2, where n2 denotes the number of cells (faces of dimension 2) of S. Con-
versely, entropy decreases as the disparity among the probabilities increases. Note that
entropy may be arbitrarily close to 0. Unlike n, when stating asymptotic bounds, we
cannot assume that H is larger than a fixed constant. For this reason, throughout
the paper we will follow the convention that the expression “f is O(g)” means that
there exists a constant c (independent of n and H) such that f ≤ c · g. Furthermore,
we assume throughout that n ≥ n0 for some constant n0.
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For the 1-dimensional restriction of this problem, a classical result due to Shannon
implies that the expected number of binary comparisons needed to answer such queries
is at least as large as the entropy of the probability distribution [20, 28], and clearly
this lower bound applies to the 2-dimensional case as well. Mehlhorn [22] showed
that it is possible to build a binary search tree whose expected search time is at most
H + 2. The related problem of computing the binary search tree that minimizes the
expected search time is considered in [17,20].

The idea of using the entropy of the query distribution as the basis for an analy-
sis for geometric data structures is a recent development in computational geometry.
Arya and Fu [2] first applied this approach to analyzing the complexity of approx-
imate nearest neighbor queries. Arya et al. [1] then applied this to point location
in subdivisions having convex cells. They assumed that the x- and y-coordinates of
the query point were chosen independently from some probability distribution. They
showed that O(H + 1) expected query time was achievable, where the multiplica-
tive constant factor was a function of the amount of space used. Arya, Malamatos,
and Mount [5] presented a simple and practical randomized algorithm that answers
queries in O(H + 1) expected time with O(n) space, and Iacono [18] presented a
similar deterministic method achieving the same bounds.

In the spirit of prior work on optimal search structures [16,22,27], a fundamental
question is whether it is possible to achieve the expected query time of H including
only additive lower order terms. In our earlier work on this problem [3,4] we presented
such data structures, but the space was linear only in special cases, for example, if the
cells are axis-parallel rectangles. Otherwise, the space requirements were superlinear,
ranging from O(n log∗ n) up to O(n1+ε) depending on the nature of the subdivision
and assumptions about the probability distribution.

All of the existing solutions fall short of the goal of producing a point-location
structure of linear space whose expected query time matches the information-theoretic
lower bound of H (up to lower order terms) and which makes no restrictions on the
probability distribution within each cell. In this paper we present such a solution.
Here is our main result.

Theorem 1. Consider a polygonal subdivision S of size n consisting of cells
of constant combinatorial complexity and a query distribution presented as a weight
assignment to the cells of S. In time O(n log n) it is possible to construct a search
structure of space O(n) that answers point-location queries (in the trapezoidal search
graph model) in expected time H + O(

√
H + 1), where H = entropy(S).

Recall that H may generally be arbitrarily close to 0, which is why the extra “+1”
is added to the asymptotic term. Due to our reliance on geometric cuttings of line
segments in the plane [7, 16], our construction is randomized, and so the O(n log n)
construction time holds in expectation. Otherwise, our construction runs in O(n log n)
time and is deterministic. Throughout, we make the usual general-position assump-
tion that no two vertices have the same x-coordinate, and thus no edge is vertical. This
assumption can be overcome, for example, by standard perturbation methods [14].

The requirement that cells have constant complexity applies only to cells of
nonzero probability, since cells of zero probability can be triangulated without af-
fecting the entropy of the subdivision. (This applies to the unbounded external cell
of the subdivision as well.) If no assumptions are made about the query distribution,
then the assumption that cells have constant cell complexity seems to be critical. In
the next section, for example, we show that if the query distribution is arbitrary, then
even determining whether a query point lies within a single n-sided convex polygon
requires expected time Ω(log n), irrespective of entropy. Nonetheless, we show (in
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Theorem 2 below) that if we are given a convex subdivision (that is, one whose faces
are convex) and assume that the query distribution within each cell is uniform, then
it is possible to answer point-location queries just as efficiently even if the cells have
an arbitrary number of sides. In order to handle convex cells it will be necessary to
refine the subdivision through the insertion of new edges. For this reason we define
the extended trapezoidal search graph model to include primitive comparisons involv-
ing line segments that are not necessarily part of the original subdivision, but that
join two vertices of the original subdivision.

Theorem 2. The complexity bounds of Theorem 1 apply as well (in the extended
trapezoidal search graph model) if S is a weighted convex planar polygonal subdivision
such that the query distribution within each cell is uniform.

In order to provide a formal definition of expected query time in the (standard or
extended) trapezoidal search graph model, we begin with a brief discussion of binary
space partition trees. Observe that any point-location algorithm that is based on
binary comparisons can be modeled abstractly as a decision-tree structure called a
binary space partition (BSP) [11]. (The search structure that we present is not a
proper binary tree, since it allows sharing of substructures, but this affects only the
space requirements and not the query time.) For our purposes, a BSP is a rooted
binary tree in which each internal node is associated with a line. This line subdivides
the plane into two half-planes, one open and one closed, which are then associated
with the node’s two children. (Since we assume that query points do not fall on edges,
the question of which is open and which is closed is not significant.) Each node of a
BSP is implicitly associated with a (possibly unbounded) convex polygon, called its
region, which is the intersection of the half-planes corresponding to the path from the
root to this node.

Given a BSP, point-location queries are answered by performing a simple descent
in the tree. At each internal node we visit the child corresponding to the half-plane
that contains the query point until arriving at a leaf. It is easy to see that the
query point lies within the regions associated with each of the nodes along the search
path. It follows that the BSP correctly solves the point-location problem if and only
if the region associated with every leaf of the tree lies entirely within a single cell
of the subdivision. (If the region were to overlap two or more cells, we could not
unambiguously determine which of these cells contains the query point.) When the
search arrives at a leaf, the associated cell is returned as the answer. Given a query
distribution, each leaf of the BSP is associated with the probability that the query
point lies within this leaf’s region. The weighted external path length of a BSP is the
weighted average of the depths of all its leaves, where the weight is this probability [20].
We define the expected query time of a BSP to be this weighted external path length.
An example is shown in Figure 2, where (a) shows the original subdivision, (b) shows
the binary space partition induced by three lines L1, L2, and L3 and the associated
probabilities with each region, and (c) shows the associated tree. In this case the
weighted external path length is 1 · p1 + 2 · p2 + 3(p3 + p4).

The rest of the paper is organized as follows. The next section presents math-
ematical preliminaries and provides an overview of our approach. In section 3 we
present an algorithm for answering point-location queries that is optimal in expected
time (up to lower order terms) but suboptimal in space. It answers queries in ex-
pected time H + O(

√
H + 1) and space O(n1+ε) for any ε > 0. In section 4 we show

how to reduce this to O(n) space. We first introduce the notion of entropy-preserving
cuttings, and in section 4.1 and section 4.2 we show how to apply this concept to
complete the space bound of Theorem 1. Finally, in section 5, we show that these
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Fig. 2. BSP and the associated search tree.

methods can be generalized to convex subdivisions with uniform query distributions
within each cell in order to prove Theorem 2.

2. Preliminaries. Consider a weighted subdivision S. Viewing S as a planar
graph, let n denote the total numbers of its vertices, edges, and faces (cells), re-
spectively. The (unbounded) external face is also considered a cell. A well-known
consequence of Euler’s formula is that if this graph is connected, then n is asymptoti-
cally bounded by the number of edges of S (see, e.g., [11]). Since the number of edges
is clearly a lower bound on the space complexity of any point-location structure, any
O(n) space structure is asymptotically optimal with respect to space.

2.1. On subdivisions of unbounded cell complexity. Throughout much
of the paper we will concentrate on the case where the cells of S are bounded by
a constant number of sides. We will show here why this assumption seems to be
critical in the context of achieving query-time bounds based on entropy. Note that
this assumption is not required for worst-case optimal planar point location, since
it is possible to refine any planar polygonal subdivision into one whose cells have a
constant number of sides while increasing the size of the subdivision by just a constant
factor. However, we show that if cells have unbounded complexity, even if they are
convex, there exist query distributions such that any search structure based on point-
line comparisons performs arbitrarily worse than the entropy bound in the expected
case.

Lemma 1. Given any convex polygon Z with n sides, there exists a discrete query
probability distribution such that the probability that a query point lies within Z is
1/2, and the expected number of point-line comparisons needed to determine whether
a point lies within Z is Ω(log n).

Proof. The probability distribution is defined as follows. Let the vertices of Z be
{v1, . . . , vn}. For each vertex vi we consider two points ai and bi placed very close
to vi. The point ai lies just inside of Z, and bi lies just outside of Z. The points
ai and bi all carry a query probability of 1/(2n). (See Figure 3.) Observe that the
probabilities sum to 1.

Now let Ψ be any BSP that correctly determines membership in Z. Clearly for
Ψ to be correct, for each vertex vi there must be some node of Ψ whose associated
line stabs the line segment aibi, since otherwise both ai and bi would lie in the same
leaf region, implying that we cannot distinguish between inside and outside in this
case. Because Z is convex, we can place the points ai and bi sufficiently close to
each vertex so that any line can stab at most two such segments. Now consider any
node of Ψ. In order to minimize the expected search time, the best that we can hope
to accomplish is that the remaining probability in the region is evenly split between
the left and right children, implying that, other than the at most two vertices whose
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Fig. 3. The proof of Lemma 1 and a stabbing line.

segments were stabbed, half of the remaining vertices lie on one side of the line and
half on the other. It follows easily that Ω(logn) such comparisons are needed along
any search path of the optimum BSP.

A convex polygon defines a trivial subdivision consisting of two cells (inside and
outside). Irrespective of n, the entropy of the subdivision described in Lemma 1 is
easily seen to be 1. Since the query time grows as Ω(log n), it is not possible to bound
the expected query time purely as a function of entropy. Thus we have the following
theorem.

Theorem 3. If no restrictions are placed on cell complexity or query distribution,
then no search structure based on point-line comparisons can guarantee an expected-
case query time that is bounded purely by a function of entropy, even for convex
subdivisions.

2.2. Conditioning the subdivision. If the cells of the subdivision all have
constant combinatorial complexity, then we claim that it is possible to condition the
problem to bring it into a simpler form without adversely affecting the expected-
case query time. Many point-location data structures assume that the subdivision is
presented in some canonical subdivision, e.g., a triangulation [19], a monotone subdi-
vision [13], or a trapezoidal map [23,26]. If the cells of S have constant combinatorial
complexity, then any of these canonical subdivisions can be realized by refining each
cell into at most a constant number of subcells. The most convenient canonical struc-
ture for our purposes is a trapezoidal map. This is a planar subdivision in which
each cell is a trapezoid with vertical parallel sides. These are trapezoids in a general
sense and may be unbounded or degenerate to triangles. (To avoid the complexities
of unbounded cells, it is common to enclose the entire subdivision in a large bounding
rectangle, which contains all the query points.) Any polygonal subdivision can be
converted into a trapezoidal map by adding two vertical segments between each ver-
tex and the edges lying immediately above and below it. (See Figure 4.) This can be
done in O(n log n) time either by a straightforward modification of plane sweep [6,11]
or through a simple randomized incremental construction [23,26]. (Recall that by our
general-position assumption, no segment of the original subdivision is vertical.)

In this section we show that if the initial subdivision has cells of constant com-
plexity, then it is possible to condition the input without significantly affecting the
expected-case query time so that it is a trapezoidal map. (The method can be ap-
plied to produce any of the other canonical subdivision forms, but this is the one that
will be most relevant to our construction.) Before giving a formal statement of the
result, we first present a few definitions. Given a planar subdivision S, a refinement
S∗ is a planar subdivision such that each cell of S∗ is contained within some cell of
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Fig. 4. A subdivision (left) and its trapezoidal map (right).

S. Given S and S∗, for each cell z ∈ S, we let Fz denote the subset of cells of S∗

that are contained within z, called its fragments. Let fz = |Fz| be the number of
fragments. We say that S∗ has fragmentation f if fz ≤ f for all cells z. Clearly
answering point-location queries for S can be reduced to answering queries of S∗.

Given a function g : R
+ → R

+, we say that a point-location structure Ψ is
g-efficient for a weighted subdivision S with entropy H if Ψ answers point location
queries for S in expected time at most H+g(H). For example, Theorem 1 asserts that
it is possible to construct an O(

√
H + 1)-efficient point-location structure. Since the

function g is designed to capture the lower order terms of the query-time complexity,
it should grow at an asymptotic rate that is less than linear. To make this more
formal, we say that a positive function g is admissible if for all reals x, y ≥ 0

• g is subadditive, that is, g(x + y) ≤ g(x) + g(y), and
• g(x) is O(x + 1).

It is easy to see that, for any positive constant c, the function g(H) = c · (√H + 1) is
admissible.

An important observation about the point-location construction described in The-
orem 1 is that it is only given the probability pz that a query point lies within each
cell and knows nothing of the probability distribution within each cell. We say that
such a construction is distribution-oblivious. It follows that any structure produced
by such an algorithm must satisfy its expected-case query-time bound for any choice
of the probability distribution within each cell, provided of course that the probability
that a point lies within cell z is indeed pz. This issue arises because in the process
of computing the point-location structure we compute a refinement of the original
subdivision. We do not know what the query distribution is within the cells of the
refined subdivision, and so we cannot compute its expected query time. However, we
know that entropy is maximized when all cells have the same probability. Thus, we
invent a query distribution by splitting the probabilities evenly among the fragments
of each refined cell. We then build an efficient structure for the resulting weighted
subdivision using any distribution-oblivious construction. The following result shows
formally that this strategy leads to an efficient solution to the original problem, irre-
spective of the actual query distribution.

Lemma 2. Consider a subdivision S and a query distribution on S. Let H denote
its entropy. Let S∗ be any refinement of S of fragmentation O(1). In O(n) time it
is possible to assign nonnegative weights to the cells of S∗, thus producing a weighted
subdivision Ŝ with the following property. Let Ψ be any g-efficient point-location
structure for Ŝ produced by a distribution-oblivious construction for an admissible
function g. Then Ψ is an O(g + 1)-efficient point-location structure for the original
subdivision S.

Before presenting the proof, we show how to apply this result to achieve the de-
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sired conditioning. Consider any weighted subdivision S of constant cell complexity
and of total size n. In O(n log n) time we convert this subdivision into a trapezoidal

map Ŝ through a refinement of fragmentation O(1). Clearly the resulting refinement
also has size O(n). Now, we apply the above result to assign weights to this trape-
zoidal map. Assuming that Theorem 1 holds for trapezoidal maps, it follows that in
O(n log n) time we can construct an O(

√
H + 1)-efficient point-location structure Ψ

for Ŝ. By the above result, Ψ can be used as an O(
√
H + 1)-efficient point-location

structure for the original subdivision S, albeit with a higher constant factor hidden
by the “O”-notation.

We devote the remainder of this section to proving Lemma 2. Let S denote the
original subdivision of entropy H. Let S∗ be a refinement of S of fragmentation f .
For each cell z of S, recall that pz is the probability that the query point lies within z.
Also recall that Fz denotes the set of fz fragments into which z has been subdivided.
For each fragment y ∈ Fz there is some probability py that the query point lies within
y, but the algorithm does not know this probability. Clearly

∑
y∈Fz

py = pz. Let
H∗ =

∑
z∈S

∑
y∈Fz

py log(1/py) denote the entropy of this (unknown) distribution.
For the purposes of the proof we need to assign probabilities to the fragments.

Since we know that entropy is maximized when probabilities are distributed as evenly
as possible, let us split the weight evenly among the fragments by setting wy = pz/fz
for each fragment y ∈ Fz. Since py ≤ pz, and since S∗ has fragmentation f , we have

wy ≥ py/f . Clearly
∑

y∈Fz
wy = pz. Let Ŝ denote the resulting weighted subdivision,

and let

Ĥ =
∑

z∈S

∑

y∈Fz

wy log
1

wy

denote its entropy based on this weight assignment. The assignment can easily be
computed in O(n) time. The following lemma asserts that the entropies of all these
subdivisions are related to each other, up to an additive term of log f .

Lemma 3. Given the weighted subdivisions S, S∗, and Ŝ defined above, their
respective entropies satisfy

H ≤ H∗ ≤ Ĥ ≤ H + log f.

Proof. To prove the first inequality we observe that if y is a fragment of z, then
py ≤ pz and thus

H =
∑

z∈S

pz log
1

pz
=

∑

z∈S

∑

y∈Fz

py log
1

pz
≤

∑

z∈S

∑

y∈Fz

py log
1

py
= H∗.

The second inequality is an immediate consequence of the fact that entropy is max-
imized when the probabilities (weights) are equal to each other [10], which is clearly

the case for the weight assignment defining Ĥ. Finally, to prove the last inequality
we use the facts that fz = |Fz|,

∑
z pz = 1, and fz ≤ f to obtain

Ĥ =
∑

z∈S

∑

y∈Fz

wy log
1

wy
=

∑

z∈S

∑

y∈Fz

pz
fz

log
fz
pz

=
∑

z∈S

pz

(
log

1

pz
+ log fz

)

≤
(
∑

z∈S

pz log
1

pz

)
+ log f = H + log f.
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Returning now to the proof of Lemma 2, recall that Ŝ is our uniformly weighted
refined subdivision. Let Ψ be a g-efficient point-location structure for Ŝ, which results
from a distribution-oblivious construction. Let ÊΨ denote the expected query time for
Ψ assuming the weight assignment wy given above for each cell y of Ŝ. (Technically,

ÊΨ can only be defined relative to a particular probability distribution such that the
probability that a query point lies within y is wy. However, given that the construction
is distribution-oblivious, we know that for any choice of such a probability distribution
we will have ÊΨ ≤ Ĥ + g(Ĥ). Since this is the only assumption we will make about

ÊΨ we will tolerate this abuse.)
Because Ψ can be viewed abstractly as a BSP and by the remarks made in section

2.1 on the correctness of BSPs for point location, it follows that the region associated
with each leaf cell of Ψ lies within some cell y of Ŝ. Thus, each fragment y is further
decomposed by Ψ into subfragments. Let Fy denote the subfragments of y, each
associated with a leaf of Ψ. (See Figure 5.)

y1 y2

x11

x22

x21

x23
y1 y2

z z z

Fig. 5. Fragments (Fz = {y1, y2}) and subfragments (Fy2 = {x21, x22, x23}).

For each x ∈ Fy, let px denote the (unknown) probability that the query point
lies within this subfragment, and let dx denote its search depth in Ψ, that is, the
number of primitive comparisons needed to provide an answer for any query point in
x. Since subfragments may have different search depths, we then define the (true)
expected search depth for a fragment y of S∗ to be

Dy =
1

py

∑

x∈Fy

pxdx.

It follows easily that if we apply Ψ as a point-location structure for the original
subdivision S, the expected search time, denoted EΨ, is given by summing up the
contributions from all the subfragments:

EΨ =
∑

z∈S

∑

y∈Fz

∑

x∈Fy

pxdx =
∑

z∈S

∑

y∈Fz

pyDy.

The values of the py’s are not known to us, and so we cannot compute Dy. But
because Ψ is constructed by a distribution-oblivious algorithm, we know that the
upper bound on the expected query time for Ŝ holds irrespective of the choice of
probability distribution within each of the fragments. We define such a probability
distribution for Ŝ by allocating weights among the subfragments in exactly the same
proportions as their true values. Of course, this is done subject to the constraint that
they sum to wy. We also define the expected depth analogously:

wx =
px
py

wy and D̂y =
1

wy

∑

x∈Fy

wxdx.

We observe that D̂y is equal to its counterpart in the true distribution:

D̂y =
1

wy

∑

x∈Fy

wxdx =
1

wy

∑

x∈Fy

px
py

wydx =
1

py

∑

x∈Fy

pxdx = Dy.
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The expected search time ÊΨ under our constructed distribution is

ÊΨ =
∑

z∈S

∑

y∈Fz

∑

x∈Fy

wxdx =
∑

z∈S

∑

y∈Fz

wyD̂y.

By the obliviousness of Ψ’s construction and g-efficiency we have

g(Ĥ) ≥ ÊΨ − Ĥ =
∑

z∈S

∑

y∈Fz

wyD̂y −
∑

z∈S

∑

y∈Fz

wy log
1

wy

=
∑

z∈S

∑

y∈Fz

wy

(
D̂y − log

1

wy

)
.

From the observation made prior to Lemma 3 that wy ≥ py/f and the fact that the
probabilities sum to 1, we have

g(Ĥ) ≥
∑

z∈S

∑

y∈Fz

py
f

(
D̂y − log

f

py

)
=

1

f

∑

z∈S

∑

y∈Fz

py

(
D̂y − log

1

py
− log f

)

=
1

f

⎛
⎝
⎛
⎝
∑

z∈S

∑

y∈Fz

py

(
D̂y − log

1

py

)⎞
⎠− log f

⎞
⎠ .

Next, we multiply both sides by f and add log f , and then apply the substitution
D̂y = Dy and the definitions of EΨ and H∗ to obtain

f · g(Ĥ) + log f ≥
∑

z∈S

∑

y∈Fz

py

(
Dy − log

1

py

)
= EΨ −H∗.

Now, from Lemma 3 we know that H∗ ≤ Ĥ ≤ H + log f . Since g is admissible,
it is also subadditive. Combining this with the fact that the fragmentation f is a
constant, we obtain

EΨ −H ≤ EΨ −H∗ + log f ≤ f · g(H + log f) + 2 log f

≤ f(g(H) + g(log f)) + 2 log f (by subadditivity)

≤ f(g(H) + O(log f + 1)) + 2 log f (by admissibility)

= O(g(H) + 1).

This implies that Ψ is O(g + 1)-efficient as a point-location structure for S, and so
completes the proof of Lemma 2.

In conclusion, we can condition our input subdivision into a trapezoidal map so
that the impact of this conditioning on the expected-case query time is to increase
the constant factor of the lower order terms. This conditioning has a nice side benefit.
Recall from the introduction that the entropy H of the input subdivision may generally
be arbitrarily close to zero, but it does not make sense to talk about query times that
are smaller than 1. As mentioned after the statement of Theorem 1, we therefore suffer
the notational inconvenience of carrying an extra term of “ + 1” in all our complexity
bounds. We claim that we can avoid this inconvenience henceforth because the entropy
Ĥ of the trapezoidal map is at least 1. To see this, observe that every bounded cell
of the initial subdivision has at least three sides and thus will be subdivided by a
vertical line into at least two trapezoids. Our construction distributes the probability
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evenly among the fragments of a cell, and so it follows that for all fragments z in the
final subdivision we have wz ≤ 1/2. Therefore, because the sum of fragment weights
is 1, the entropy of the resulting trapezoidal map is

Ĥ =
∑

z∈S

∑

y∈Fz

wy log(1/wy) ≥
∑

z∈S

∑

y∈Fz

wy = 1,

as desired.

2.3. Overview of our methods. Before presenting our algorithms we provide
an overview of our methods. Our point-location data structure is based on many of
the same methods used in the construction of worst-case efficient point-location struc-
tures, particularly the methods given by Preparata [24] and Seidel and Adamy [27].
Establishing efficient expected query time involves considerably different techniques
from worst-case query time. As mentioned above, a point-location data structure that
is based on linear comparisons can be viewed abstractly as a BSP. What properties
must the associated partition tree possess in order to answer point-location queries ef-
ficiently on average? Observe that since the expected query time is the tree’s weighted
external path length, the contribution of each leaf to the expected query time is its
tree depth times its probability. The probability that the query point lies in the re-
gion associated with a leaf is not known exactly, since we are not given the query
distribution within each cell. Our strategy will be to construct a tree in which the
depth of any leaf generated from a cell z ∈ S is close to log(1/pz).

As we shall see this will lead to a method, which while optimal with respect to
expected-case query time, is not optimal with respect to space. In particular our
best upper bound on space is superlinear in n. (See Theorem 4 below.) To reduce
the storage further we employ a common strategy in computational geometry, called
cuttings. Given a subdivision S with m edges, and a parameter r ≥ 1, a (1/r)-
cutting [7] is a partition of the plane into O(r) trapezoids such that the interior of
each trapezoid is intersected by at most m/r edges of S. If numeric weights are
assigned to the edges, then this can be generalized to a weighted (1/r)-cutting, where
now the total weight of edges intersecting any trapezoid is at most W/r, where W
is the total weight of all the edges. Goodrich, Orletsky, and Ramaiyer [16] and later
Seidel and Adamy [27] applied cuttings in a divide-and-conquer manner to produce
the most space-efficient data structure.

Cuttings cannot be applied directly in our case, however, since the partitioning
process may refine the subdivision in a way that significantly increases its entropy, and
this increases the expected query time. An important contribution of this paper is the
notion of an entropy-preserving cutting, which additionally ensures that the entropy of
the subdivision is increased by at most an additive constant. This will be presented in
section 4. Our approach will be to apply entropy-preserving cuttings to build a two-
level search structure. For the first level we construct an entropy-preserving cutting
of an appropriately chosen size and build the initial point-location structure described
in section 3 for the cutting. This achieves good expected-case query time but leaves
a number of regions to search. We show that the probability that the query point lies
within any of these remaining regions is so small that a relatively sloppy worst-case
optimal point-location algorithm suffices to achieve our desired results.

Extending these results to convex subdivisions with uniform query distributions
involves a simple refinement step. Each convex cell is triangulated by a process that
extracts a triangle whose area is a constant fraction of the total area, and then recurses
on each of the three resulting fragments. We show that if the query distribution is
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uniform, then the increase in entropy in the resulting refined subdivision is at most
an additive constant.

3. Initial solution. In this section we present an algorithm for answering point-
location queries that is optimal in expected time but suboptimal in space. Recall that
from the results of section 2 we may assume that the subdivision S is presented as a
weighted trapezoidal map of nonvertical segments and its entropy H is at least 1.

Theorem 4. Given a trapezoidal map S of size n, together with probabilities pz
that a query point lies within each cell z, we can build a data structure that answers
point-location queries in expected query time

H + 2
√

2H +
1

2
logH + O(1),

where H is the entropy of S. The space for the data structure is

O

(
n2

√
2H 1√

H
log n

)
.

Other than the probabilities pz we make no assumptions about the query proba-
bility distribution within each cell. Recall that 1 ≤ H ≤ log n. It is easy to verify that

2
√

2H/
√
H increases monotonically for H ≥ 1/(

√
2 ln 2)2 ≈ 1.04, and so the space is

maximized when H = log n. Thus, the space is at most O(n2
√

2 log n
√

log n), which is
O(n1+ε) for any ε > 0. The preprocessing time is O(N +n log n), where N is the total
space of the data structure. Thus the asymptotic preprocessing time is dominated by
the above space bound.

3.1. Construction of the search tree. As mentioned earlier, our data struc-
ture is based on constructing a BSP Ψ for S. Before building the tree we map the cell
probabilities to an assignment of weights to the vertices of the subdivision as follows.
Recall that n is the combinatorial complexity of S. For each trapezoid z ∈ S, we
assign a weight of wz/4 to each of its (at most four) corner vertices, where

wz =
1

2
max

(
pz,

1

n

)
.

(See Figure 6.) If a vertex is a corner of multiple trapezoids, then its weight is the
sum of the contributions from all such trapezoids. It is easy to see that the total
weight of all the trapezoids is at most 1, and this holds as well for the total weight
of all the vertices. The 1/n term in the definition of the weight will be important
in limiting the fragmentation of cells of very small probability. This in turn will be
needed to establish our space bounds.

4
w

z

4

4
w

w
z

w

z

z

4

wz

Fig. 6. Assignment of weights.

The tree Ψ is built recursively in a top-down fashion. Each node u of Ψ will be
associated with a trapezoidal region, denoted Δu. We define the weight of a region to
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be the sum of the weights of the subdivision vertices in the interior of the region, and
we define the weight of a node u to be the weight of Δu. The construction is based on
a recursive process, which is broken into stages. Each stage replaces an existing leaf
node whose associated region overlaps two or more cells of S with a new subtree. Let
us consider one such stage. Suppose that we are working on the subdivision contained
within a trapezoid Δu associated with some node u. (Initially u is the root of the tree
and Δu is the entire space.) Let wu denote u’s weight. (For example, in the upper
left of Figure 7(a) wu is the sum of the weights of the black and gray vertices lying
in the interior of the trapezoid Δu.) We split Δu into two vertical slabs, by passing
a vertical line through a subdivision segment endpoint, such that the weight of each
slab is at most wu/2. We repeat this for t levels, where t ≥ 1 is a suitable parameter
(to be fixed later), each time ensuring that the sum of the weights is halved. This
partitioning can be represented in a natural way by a balanced tree having up to 2t

leaves, representing the 2t vertical slabs. (There may in fact be fewer, since some
slabs may contain no interior vertices before the splitting process ends.)

After this, each slab is further partitioned into trapezoids by the segments of
the subdivision that completely cross it. (See Figure 7(b).) Following Seidel and
Adamy [27], we build a weighted search tree [22] for each slab. There is a technical
difficulty, however. A trapezoid that contains no vertices in its interior (called an
empty trapezoid) has a weight of 0, and so we cannot reasonably bound its depth
in the tree. To handle this the weighted search tree is based on the following set of
adjusted weights. The adjusted weight of a nonempty trapezoid is just its weight,
that is, the sum of weights of its interior vertices. The adjusted weight of an empty
trapezoid cell is defined to be wz/(h2t), where z is the trapezoid of S that contains
this cell, and where h ≥ 1 is a suitable parameter (to be fixed later). (See Figure
7(b).) After building the weighted search tree for the trapezoids of each slab, we
recurse on each of the nonempty trapezoids. The process ends when there are no
nonempty trapezoids.

τ

iσ

τ3

τ1

τ

1

2

τ4

τ5

4σ3σ2σ1

iσ
iσ iσ

τ3

τ5τ4

τ2

σ

(a)

u

1 3σ σσ 2 σ 4

(b)

u

R(u)

Fig. 7. Construction of the initial search structure for t = 2.

For the purpose of analysis, it is convenient to view this partitioning scheme as a
multiway tree as follows. Each stage involves splitting a trapezoid u into 2t vertical
slabs, each of which is then partitioned into smaller trapezoids. In the multiway
tree, there is a node representing trapezoid u, which is made the parent of the nodes
representing these smaller trapezoids. Let Ψ′ denote this multiway tree. Note that
each node of Ψ′ corresponds to a unique node of Ψ and represents the same region.
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This construction can be implemented efficiently as follows. We assume that we
maintain the following for each node u:

(i) Su = S ∩ Δu (i.e., the original subdivision S clipped to within Δu), and
(ii) a list of the vertices of S that lie within the interior of Δu and their associated

weights, sorted according to their x-coordinates.

We assume that Su is represented in a manner that supports efficient processing
and traversal, say as a doubly connected edge list (DCEL) [11]. We also assume that
there are cross links between each vertex of the sorted list and its corresponding vertex
of the DCEL. This information can be computed for the root of the tree in O(n log n)
time. Let us also define Tu to be the set of (unclipped) trapezoids of S that intersect
the interior of Δu. Thus each (clipped) trapezoid z′ ∈ Su arises by intersecting some
(unclipped) trapezoid z ∈ Tu with Δu.

Now consider the single-stage construction for a fixed internal node u of the
multiway tree. Let nu denote the combinatorial complexity of Su. Let mu denote
the total number of empty and nonempty trapezoids that result from one stage of the
construction or, equivalently, the total number of nodes in all the weighted trees for
all of u’s slabs. In O(nu) time it is possible to scan the sorted vertex list from left to
right, to generate the (up to) 2t slabs with the desired weights. We then cut Su into
slabs by tracing along each of the 2t− 1 vertical lines that define the slab boundaries.
Because each cell of Su is of constant combinatorial complexity, by standard results
on DCELs [11] we can do this in O(1) time for each intersection between a segment of
Su and a cutting line. The overall time is O(mu). As we are cutting out each slab, we
note which of the segments of S cut clear through the slab. From this information we
can determine which of the resulting trapezoids are empty and which are nonempty.
Then, for each nonempty trapezoid, we can construct the DCEL representation of
the subdivisions lying within the trapezoid in time proportional to its size. This
takes time O(nu) when summed over all the nonempty trapezoids. After this the
subdivisions are ready for the next recursive step.

Next we consider how to update the sorted vertex list. Consider each nonempty
trapezoid τi. We traverse the associated subdivision and, for each vertex lying in
the interior of the trapezoid, we access the cross link to the sorted list and label the
associated list entry with the integer i. Through the use of any stable integer sorting
algorithm (e.g., counting sort [9]) we sort these labels in O(nu) time. By collecting
adjacent entries with the same label, we can partition the sorted vertex lists among
the various nonempty trapezoids, while maintaining the sorted order, all in O(nu)
time.

Thus, the total processing time for node u is O(nu + mu). The sum of the mu

terms over all the nodes is essentially equal to the number of nodes of Ψ′, which is
bounded above by the total number of nodes of Ψ. Because each subdivision vertex
appears in the region associated with at most one node at each level of Ψ′, the sum
of the nu terms for each level is O(n). In Lemma 4 below we show that the number
of levels in Ψ′ is at most (1/t) log n + 5. Therefore the overall construction time is
O(N + n log n), where N is the total number of nodes in the tree. We will bound N
later in Lemma 5.

3.2. Analysis of the space and query time. We now analyze the space and
expected query time as a function of the parameters t and h. For a node u of Ψ,
let pu denote the probability of the query point lying in its associated region Δu

(or, equivalently, the probability of visiting u during point location). Recall that wu

denotes the weight of all the vertices in the interior of Δu. The following lemma
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bounds the number of levels in multiway tree Ψ′.
Lemma 4. The number of levels in Ψ′ is at most (1/t) log n + 5.
Proof. Consider any path in the multiway tree Ψ′ descending from the root to a

leaf. Along any edge that leads from one internal node to another the weight decreases
by a factor of at least 2t. Since the weight of the root is at most 1, the weight of
any internal node u at level i of Ψ′ is at most 1/2t(i−1). Since u is internal, it must
contain the corner vertex of some trapezoid z in its interior. Recall that the weight
of each of the corner vertices of trapezoid z is at least wz/4 (more if it is a corner of
multiple trapezoids). It follows that

1

2t(i−1)
≥ wz

4
.

Simplifying this gives

i ≤ 1

t

(
log

1

wz
+ log 4

)
+ 1 ≤ 1

t
log

1

wz
+ 3.

Since wz ≥ 1/(2n) it follows that the level of any internal node is at most (1/t) log n+4,
and the number of levels is higher by 1.

Using this, we can bound the total size of the tree.
Lemma 5. The total number of nodes of Ψ is at most O(n2t((log n)/t + 1)).
Proof. Consider any trapezoid z of S. We first show that the number of leaves of

Ψ generated by z is at most

4 · 2t
(

1

t
log n + 4

)
.

It follows from our construction that any internal node of the multiway tree Ψ′ that
overlaps the interior of z must contain at least one of the four corner vertices of z.
Thus, there are at most four such internal nodes at any level of Ψ′. (In fact, a more
careful analysis shows that there are at most two such nodes, one for the left side and
one for the right side.) From the proof of Lemma 4 it follows that the total number of
internal nodes of Ψ′ that overlap the interior of z is at most 4((1/t) log n + 4). Since
any node of Ψ′ can have at most 2t children that overlap the interior of z, the above
bound follows.

By summing this bound over all O(n) trapezoids, the total number of leaves of
Ψ is at most O(n2t((log n)/t + 1)). Since Ψ is binary, the number of internal nodes
cannot be larger.

In Lemma 7, we bound the depth of a leaf generated from a trapezoid z ∈ S. To
this end, we need the following technical result.

Lemma 6. Let u be an internal node in the multiway tree Ψ′. Let σ be any of the
2t vertical slabs into which Δu is partitioned. Then the total adjusted weight of the
weighted search tree corresponding to σ is at most (wu/2

t)(1 + 4/h).
Proof. Recall that the segments of S partition σ into empty and nonempty trape-

zoids. Since the weight associated with σ is at most wu/2
t, the total adjusted weight

of all the nonempty trapezoids is at most wu/2
t. We will show that the total adjusted

weight of the empty trapezoids is at most 4wu/(2
th), which will complete the proof.

Recall that Tu denotes the set of (unclipped) trapezoids of S that intersect the
interior of Δu. The construction implies that the trapezoids of Tu have at least one
of their four corner vertices in the interior of Δu. Since wu is the sum of the weights
of all the vertices in the interior of Δu, it follows that wu ≥ ∑

z∈Tu
wz/4.
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Next observe that a trapezoid of Tu can generate at most one empty trapezoid in
slab σ. Recall that the adjusted weight of an empty trapezoid generated by trapezoid
z ∈ S is wz/(2

th). Thus the total adjusted weight of the empty trapezoids in σ is at
most

∑
z∈Tu

wz/(2
th). By the bound on wu from the previous paragraph, this is at

most 4wu/(2
th).

The following lemma establishes the essential property given in section 2.3, by
showing that the depth of any leaf associated with a cell is proportional to the loga-
rithm of its reciprocal probability.

Lemma 7. Let u be a leaf of Ψ generated by any trapezoid z ∈ S. Then the depth
of u in Ψ is at most

log
1

wz
+ t +

(
2 +

6

h

)
1

t
log

1

wz
+ log h + O(1).

Proof. Let P = u1, u2, . . . , u� be the path from the root to the leaf u = u� in the
multiway tree Ψ′. Recall that each node of Ψ′ corresponds to a unique node of Ψ.
Consider a fixed i, 1 ≤ i < �. Let σ denote the vertical slab in Δui

that contains the
trapezoid associated with ui+1, and let v denote the node of Ψ corresponding to σ.
To prove the lemma, we will separately bound the length of the paths in Ψ from ui

to v and from v to ui+1. By construction, the length of the path in Ψ from ui to v is
at most t.

To bound the length of the path in Ψ from v to ui+1, recall that ui+1 is a leaf in
the weighted search tree for slab σ. By standard results on weighted search trees [22],
the length of the path in Ψ from v to ui+1 is at most log(W/w) + 2, where W is the
total adjusted weight of all the trapezoids in slab σ and w is the adjusted weight of
the trapezoid associated with ui+1. By Lemma 6, W ≤ (wui

/2t)(1 + 4/h). We now
consider two cases: (i) 1 ≤ i ≤ � − 2 and (ii) i = � − 1. In the first case, ui+1 is a
nonempty trapezoid, so its adjusted weight w is the same as its weight wui+1 . Thus,
the length of the path in Ψ from v to ui+1 is at most

log

(
(wui/2

t)(1 + 4/h)

wui+1

)
+ 2 = (logwui

− logwui+1) − t + log

(
1 +

4

h

)
+ 2.

In the second case, ui+1 = u� is an empty trapezoid, so its adjusted weight w is
wz/(2

th). Thus, the length of the path in Ψ from v to u� is at most

log

(
(wu�−1

/2t)(1 + 4/h)

wz/(2th)

)
+ 2 = (logwu�−1

− logwz) + log h + log

(
1 +

4

h

)
+ 2.

By using the above claim to bound the lengths of the paths in Ψ between adja-
cent pairs of vertices in P , the fact that wu1 ≤ 1, and summing and cancelling the
telescoping probability terms, it is easy to see that the depth of u in Ψ is at most

(1) log
1

wz
+ t +

(
2 + log

(
1 +

4

h

))
(�− 1) + log h.

Recall the trapezoid z in the statement of the lemma. Since u�−1 must contain
at least one of the corner vertices of trapezoid z, it follows that wu�−1

≥ wz/4. Also,

since the weight of a node at level i is at most 1/2t(i−1), we have wu�−1
≤ 1/2t(�−2).

Thus,

�− 2 ≤ 1

t
log

1

wu�−1

≤ 1

t

(
log

1

wz
+ log 4

)
≤ 1

t

(
log

1

wz
+ 2

)
.
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Substituting this value of � into (1) and using the facts that log(1 + 4/h) < 6/h,
h ≥ 1, and t ≥ 1, we obtain the bound on the depth of u given in the statement of the
lemma.

We can now bound the expected query time.

Lemma 8. The expected query time using the BSP Ψ is at most

H + t +

(
2 +

6

h

)
H

t
+ log h + O(1).

Proof. For any trapezoid z ∈ S, let Lz denote the set of leaves generated by z.
The expected query time is given by

∑

z∈S

∑

u∈Lz

pudu,

where pu denotes the probability that the query point lies in the region associated
with node u, and du denotes the depth of u. By applying Lemma 7 it follows that
this sum is at most

∑

z∈S

∑

u∈Lz

pu

[
log

1

wz
+ t +

(
2 +

6

h

)
1

t
log

1

wz
+ log h + O(1)

]
.

Using the facts that
∑

u∈Lz
pu = pz and

∑
z∈S pz = 1, this is at most

(
∑

z∈S

pz log
1

wz

)
+ t +

(
2 +

6

h

)
1

t

(
∑

z∈S

pz log
1

wz

)
+ log h + O(1).

Noting that wz ≥ pz/2, h ≥ 1, and t ≥ 1, we obtain the desired bound.

In order to obtain the best bound on the expected query time, we choose t =⌈√
2H

⌉
and h =

√
H in Lemma 8. This yields an expected query time of at most

H + 2
√

2H +
1

2
logH + O(1).

Using Lemma 5 and noting that t is at most O(
√

log n), we obtain a bound on the
space of

O

(
n2

√
2H log n√

H

)
.

This completes the proof of Theorem 4.

Remark. By setting t =
⌈√

2H
⌉
+c, where c is a fixed positive integer and h =

√
H,

it is easy to see from Lemma 7 that the maximum depth in the search tree, that is, the
worst-case query time, is (1 + O(1/c)) log n. Simultaneously, the bound on expected
performance given by Theorem 4 also holds.

Remark. For the next section on entropy-preserving cuttings, it will be necessary
to derive a bound on query times that is sensitive to the cell containing the query
point. The following lemma establishes this for us.

Lemma 9. We are given a trapezoidal map S of size n, together with a nonnegative
weight wz for each cell z ∈ S, such that

∑
z∈S wz ≤ 1, and a real parameter 1 ≤ B ≤
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√
log n. Then we can build a data structure that answers point-location queries for

each cell z ∈ S in time
[
1 + O

(
1

B

)]
log

1

wz
+ O(B).

The space and preprocessing time for the data structure are O(n2
√

2 log n
√

log n).
Proof. Let h = B and t =

⌈
B
√

2
⌉
. From Lemma 7 it follows that the time to

locate a query point in any cell z of S is at most

log
1

wz
+ t +

(
2 +

6

h

)
1

t
log

1

wz
+ log h + O(1)

=

[
1 +

1

t

(
2 +

6

h

)]
log

1

wz
+ (t + log h + O(1))

=

[
1 + O

(
1

B

)]
log

1

wz
+ O(B),

as desired.
From Lemma 5, the total number of nodes of Ψ is at most

O

(
n2t

(
log n

t
+ 1

))
= O

(
n2B

√
2

(
log n

B
+ 1

))
.

For B ≥ 1/(
√

2 ln 2) ≈ 1.02, it is easy to verify that 2B
√

2/B is an increasing function
of B, and since B ≤ √

log n, it follows that the space is at most

O

(
n2

√
2 log n

(
log n√
log n

+ 1

))
= O

(
n2

√
2 log n

√
log n

)
.

Recall that the preprocessing time is O(N +n log n), where N is the total space of the
data structure. Thus the preprocessing time is dominated by the above space bound.
This completes the proof.

4. Entropy-preserving cuttings. Although the query time given in Theorem 4
is as desired, the space bound is still superlinear in n. In this section we introduce
the notion of an entropy-preserving cutting, that is, a cutting that ensures that the
entropy of the subdivision is increased by at most an additive constant. Then, in
sections 4.1 and 4.2 we will see how to apply this idea to reduce the space to linear.

Recall that we are given a subdivision S, presented to us as a weighted trapezoidal
map of a set X of nonvertical segments, whose entropy H is at least 1. The results of
the previous section provide optimal expected query time (up to lower order terms),
but the space required is superlinear in n. In this section we show how to apply the
well-known notion of cuttings in the expected-case setting to produce a structure of
linear space. Suppose that each x ∈ X is associated with a positive weight wx. Let
W =

∑
x∈X wx denote the total weight. Consider a positive parameter r. For our

purposes we define a (1/r)-cutting of X to be a partition of the plane into trapezoids
(in general these are canonical shapes of constant combinatorial complexity) such that
the total weight of the segments of X that intersect the interior of any trapezoid is
at most W/r. It is known that it is possible to compute such a cutting of size O(r) in
O(n log n) time by a randomized algorithm, and it can be computed deterministically
in polynomial time [7, 16]. The construction also provides for each trapezoid of the
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cutting the set of segments that intersect this trapezoid. Furthermore, this construc-
tion has the property that each trapezoid in this cutting is bounded from above and
below by a subsegment of some segment of X. (See Figure 8.)

The point-location construction of the previous section was based primarily on an
assignment of weights to the vertices of S. Our approach here will involve a similar
assignment of weights to the segments of X. For each cell z ∈ S, recall that pz
denotes the probability that the query point lies within z, and that we make no other
assumptions about the query distribution within a cell.

(a) (b)

Δ

Fig. 8. A set X of segments (a) and a cutting of X (shown with broken lines) and a cell of the
cutting (shaded) (b).

Each trapezoid of S can be associated by a subset of at most four defining seg-
ments of X, which together define its four sides. These are the segments defining the
trapezoid’s upper and lower sides, any segment whose endpoint lies on its left vertical
side, and any segment whose endpoint lies on its right vertical side. (These segments
are indicated with an asterisk in Figure 9.) We begin by assigning weights to the
segments of X as follows. For each trapezoid z ∈ S, we assign a weight of wz/4 to
each of its defining segments, where

wz =
1

2
max

(
pz,

1

n

)
.

If a segment is a defining segment of multiple trapezoids, then its weight is the sum
of the contributions from all such trapezoids. Note that the total weight of all the
segments is at most 1.

*

*

*

*

(c)(a) (b)

4
wz zw

4

zw
4

zw

4
zw

Fig. 9. Defining segments (a) and the weight distribution ((b) and (c)).

We next present our construction of entropy-preserving cuttings. Using the weight
assignment wx defined above, we compute a standard weighted (1/r)-cutting for X.
As mentioned at the start of this section, such a cutting has size O(r) and can be
computed in O(n log n) time. Furthermore, each trapezoid of this cutting is bounded
from above and below by a subsegment of some segment of X. Let C∗ denote this
cutting.

We modify the cutting C∗ by applying the following procedure on each trapezoid
z ∈ S. If a trapezoid of the cutting lies within z, then by the properties of the
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cutting, this trapezoid is bounded from above and below by the same segments that
bound z from above and below. Thus, any adjacent trapezoids of the cutting that
are contained within z must be separated from each other by a vertical line segment,
and hence a collection of adjacent cutting trapezoids within z occurs as a contiguous
sequence. If z contains such a contiguous sequence of trapezoids of C∗, we merge
each such maximal subsequence into a single trapezoid. (See Figure 10.) Since no
segment of X intersects the interior of the merged trapezoid, it follows that C also
satisfies the properties of a weighted (1/r)-cutting. Let C denote this new cutting,
and let S∗ denote the subdivision formed by superimposing C on S. In Lemma 11,
we will establish the key properties enjoyed by C. In particular, we will show that C
is entropy-preserving; that is, the entropy of S∗ exceeds the entropy of S by at most
a constant.

Fig. 10. Merging contiguous trapezoids of the cutting.

Clearly, the cells of S∗ are trapezoids; we use the term fragments to refer to these
cells. We distinguish between two types of fragments. Consider a fragment u that
arises from the intersection of a cutting cell Δ and a subdivision cell z. If Δ ⊆ z,
we call it a type-1 fragment ; otherwise it is a type-2 fragment. Let Fz,F ′

z, and F ′′
z

denote the set of all fragments, type-1 fragments, and type-2 fragments, respectively,
that are contained within z. Let F ′ = ∪z∈SF ′

z denote the set of all type-1 fragments
and F ′′ = ∪z∈SF ′′

z denote the set of all type-2 fragments. Finally, let C′ denote the
set of trapezoids of C that are contained within a single cell of S, and let C′′ denote
the rest of the trapezoids of C. Note that type-1 fragments are contained inside the
trapezoids of C′ (in fact, F ′ = C′), while type-2 fragments are contained inside the
trapezoids of C′′.

For any trapezoid Δ (not necessarily in C), we define the following items. We let
SΔ = S ∩ Δ (i.e., the original subdivision S clipped to within Δ). We let pΔ be the
probability that the query point lies within Δ. We will use XΔ to denote the set of
segments in X that intersect the interior of Δ, and TΔ to denote the set of trapezoids
of S that intersect the interior of Δ. Observe that SΔ and TΔ are exactly analogous to
Su and Tu introduced in section 3.1. In particular, each (clipped) trapezoid z′ ∈ SΔ

arises by intersecting some (unclipped) trapezoid z ∈ TΔ with Δ.
The following technical lemma will be useful in proving Lemma 11.
Lemma 10. Let Δ be any trapezoid of C′′. Then
(i)

∑
z∈TΔ

pz = O(1/r),
(ii) pΔ = O(1/r),
(iii) |XΔ| = O(n/r).
Proof. Consider a trapezoid Δ in C′′ and any trapezoid z in TΔ. We claim that at

least one of the defining segments of z belongs to XΔ. To prove this claim, recall that
Δ is bounded from above and below by some segment of X. Since S is a trapezoidal
map of X, it follows that z cannot cross the segments of X that bound Δ from above
and below. We consider two cases. First, suppose either that the segment bounding
z from above differs from the segment bounding Δ from above or that the segment
bounding z from below differs from the segment bounding Δ from below. (See Figure
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11(a).) Then clearly the differing segment must intersect the interior of Δ and thus
belongs to XΔ. Since the segments bounding z from above and below are defining
segments of z, the claim holds. Otherwise, it follows that the segments of X bounding
Δ from above and below also bound z from above and below. (See Figure 11(b).) In
this case, one of the two vertical sides of z must intersect the interior of Δ (because
otherwise Δ would be a subset of z, and then Δ would belong to C′). It follows that
the segment of X that defines this vertical side of z must belong to XΔ. This proves
the claim.

Δ
defining segment

z

Δ

z

(b)(a)

Fig. 11. Proof of Lemma 10.

Recall that trapezoid z assigns a weight of at least pz/8 to each of its defining
segments. It follows from the above claim that z assigns a weight of at least pz/8 to
some segment in XΔ. Therefore,

∑

z∈TΔ

pz
8

≤
∑

x∈XΔ

wx.

Since C is a weighted (1/r)-cutting for X, we have
∑

x∈XΔ
wx = O(1/r). Thus,∑

z∈TΔ
pz = O(1/r), which implies (i). Recalling that each (clipped) trapezoid z′ ∈

SΔ is a subset of some (unclipped) trapezoid of z ∈ TΔ, we have pz′ ≤ pz and so

pΔ =
∑

z′∈SΔ

pz′ ≤
∑

z∈TΔ

pz = O(1/r),

which implies (ii). Finally, since the weight of each segment of X is at least 1/(8n)
and

∑
x∈XΔ

wx = O(1/r), it follows that there can be at most O(n/r) segments in
XΔ.

Lemma 11 (entropy-preserving cuttings). For any r ≥ 1, in time O(n log n) we
can partition the plane into O(r) trapezoids satisfying the following properties. Let C
denote the cutting formed by these O(r) trapezoids, S∗ denote the subdivision formed
by superimposing C on S, and Δ denote any trapezoid of C.

(i) If Δ ∈ C′′, then the probability pΔ that the query point lies within Δ is O(1/r).
(ii) The number of segments, |XΔ|, intersecting the interior of Δ is O(n/r).
(iii)

∑
Δ∈C

∑
z∈TΔ

pz = O(1).

(iv) Let HS =
∑

z∈S pz log 1
pz

and HS∗ =
∑

u∈S∗ pu log 1
pu

be the respective en-
tropies of these subdivisions. Then the increase in entropy, HS∗ −HS, is at
most a constant.

The construction also provides for each trapezoid of the cutting the set of segments
that intersect this trapezoid.

Proof. We claim that the cutting C described above satisfies the four properties
given in the statement of the lemma. Let Δ denote any trapezoid of C. If Δ ∈ C′,
then, by definition, Δ is contained within a trapezoid of S, and so (ii) obviously holds.
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Otherwise Δ ∈ C′′, and, by applying Lemma 10(ii) and (iii), we have pΔ = O(1/r)
and |XΔ| = O(n/r). This proves (i) and (ii).

We next prove (iii). For any trapezoid z ∈ S, let fz, f
′
z, and f ′′

z denote the
number of all fragments, type-1 fragments, and type-2 fragments, respectively, that
are contained within z. Observe that

∑
Δ∈C

∑
z∈TΔ

pz is the same as
∑

z∈S pzfz. We
will show that the latter quantity is O(1), which will prove (iii).

In view of the merging process (recall Figure 10), it is clear that there must be a
fragment of type 2 between any two fragments of type 1, and so f ′

z ≤ f ′′
z + 1. Thus

(2)
∑

z∈S

pzfz =
∑

z∈S

pz(f
′
z + f ′′

z ) ≤
∑

z∈S

pz(2f
′′
z + 1) = 1 + 2

∑

z∈S

pzf
′′
z .

Note that
∑

z∈S pzf
′′
z is the same as

∑
Δ∈C′′

∑
z∈TΔ

pz. By Lemma 10(i), for each

Δ ∈ C′′,
∑

z∈TΔ
pz = O(1/r). Since |C′′| ≤ |C| = O(r), it follows that

∑
z∈S pzf

′′
z =

O(1). Substituting into (2), we have
∑

z∈S pzfz = O(1), which completes the proof
of (iii).

For convenience we express part (iv) of the lemma as

(3)
∑

u∈S∗

pu log
1

pu
−

∑

z∈S

pz log
1

pz
= O(1).

The left-hand side of (3) can be written as

∑

z∈S

[(
∑

u∈Fz

pu log
1

pu

)
− pz log

1

pz

]
.

Since
∑

u∈Fz
pu = pz, it follows from basic properties of entropy (see, e.g., [10]) that∑

u∈Fz
pu log(1/pu) is maximized when the probability of all the fragments u ∈ Fz is

equal, i.e., pz/fz. Thus

∑

u∈S∗

pu log
1

pu
−

∑

z∈S

pz log
1

pz
≤

∑

z∈S

[
fz · pz

fz
log

fz
pz

− pz log
1

pz

]

=
∑

z∈S

pz log fz ≤
∑

z∈S

pzfz.

In proving (iii) above, we showed that
∑

z∈S pzfz = O(1), which establishes (3).
Finally, standard cutting construction already provides the set of segments that

intersect each trapezoid, and so it is trivial to adapt our construction to do so as
well.

4.1. Space reduction through entropy-preserving cuttings. We are now
ready to describe our space-efficient data structure. We set the parameter r to the
value n/(2

√
2 log n

√
log n) and construct the entropy-preserving cutting C described in

Lemma 11. In O(n log n) time, we obtain C along with XΔ for each cutting trapezoid
Δ. Let c =

∑
Δ∈C

∑
z∈TΔ

pz, which by Lemma 11(iii) is O(1). For each trapezoid
Δ ∈ C, we assign it a weight wΔ proportional to the sum of probabilities of the
overlapping trapezoids, that is, wΔ =

∑
z∈TΔ

pz/c. By our choice of c we have∑
Δ∈C wΔ = 1. From our initial conditioning, we know that HS ≥ 1. So using these

weights, and setting B =
√
HS , we can now apply Lemma 9 to build a point-location

data structure for C. Since |C| = O(n/(2
√

2 log n
√

log n)), it follows that the space and
preprocessing time for this data structure are O(n).
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Additionally, for each trapezoid Δ ∈ C′′, we build any standard worst-case point-
location data structure for the subdivision SΔ. This data structure uses O(|XΔ|)
space and answers queries in time O(log |XΔ|). Each such structure can be computed
in O(|XΔ| log |XΔ|) time by standard algorithms [11]. By Lemma 11(ii) we know that

|XΔ| is O(2
√

2 log n
√

log n). Since the number of trapezoids in C′′ is O(n/(2
√

2 log n
√

log n)),
the total space and preprocessing time for all the point location structures correspond-
ing to the trapezoids Δ ∈ C′′ are O(n) and O(n

√
log n), respectively.

Together with the space used by the point-location structure for C, it follows that
the total space used is O(n). The preprocessing time is O(n log n) and is dominated
by the time to construct the cutting and determine the segments of X intersecting
each cutting trapezoid. In the next section we discuss how the data structure is used
to answer queries and analyze the expected query time, which is the last step needed
to establish Theorem 1.

4.2. Query processing. In order to locate the cell containing a query point q,
we use the point-location structure for C to identify the trapezoid Δ ∈ C that contains
q. If Δ ∈ C′, then we can directly output the cell of S that contains q. Otherwise
Δ ∈ C′′, and we use the point location structure for SΔ to locate the cell of SΔ (and
hence of S) that contains q.

To analyze the query time, suppose that q lies in a fragment u that arises from
the intersection of a trapezoid Δ ∈ C with a cell z ∈ S. Let t1 denote the time it takes
to determine the trapezoid Δ ∈ C that contains q. By Lemma 9 and using the facts
that B =

√
HS and wΔ ≥ pz/c (where c is the constant defined in the first paragraph

of section 4.1), we have

t1 ≤
[
1 + O

(
1√
HS

)]
log

c

pz
+ O

(√
HS

)

≤
[
1 + O

(
1√
HS

)]
log

1

pz
+ O

(√
HS

)
.

If Δ ∈ C′ (that is, u ∈ F ′
z), then we are done after finding Δ, and so the

query time is t1. Otherwise Δ ∈ C′′ (that is, u ∈ F ′′
z ), and we need an addi-

tional time t2 = O(log |XΔ|) to search SΔ and determine u. By Lemma 11(ii),

|XΔ| = O(22
√

logn
√

log n), so t2 = O(
√

log n). Putting it all together, we have shown
that the expected query time is

∑

z∈S

⎡
⎣
∑

u∈Fz

pu

([
1 + O

(
1√
HS

)]
log

1

pz
+ O

(√
HS

))
+

∑

u∈F ′′
z

puO
(√

log n
)
⎤
⎦ .

Using the facts that
∑

u∈Fz
pu = pz and

∑
z∈S pz = 1 and substituting HS for∑

z∈S pz log(1/pz), this simplifies to

(4) HS + O
(√

HS

)
+ O

(
p′′

√
log n

)
,

where p′′ =
∑

z∈S

∑
u∈F ′′

z
pu =

∑
u∈F ′′ pu.

To complete the analysis we need to establish a relationship between p′′ and the
entropy HS . Intuitively, the following lemma shows that p′′ is small when the entropy
HS is small.

Lemma 12. Let p′′ be the probability that the query point falls in a fragment
u ∈ F ′′. Then p′′ = O(HS/ log n).
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Proof. We first compute a lower bound on HS∗ . Clearly

HS∗ =
∑

u∈S∗

pu log(1/pu) ≥
∑

u∈F ′′

pu log(1/pu).

By Lemma 11(i), for each Δ ∈ C′′, pΔ = O(2
√

2 log n
√

log n/n). Let pm = maxu∈F ′′ pu.
Since any fragment in F ′′ is a subset of some Δ ∈ C′′, it follows directly that pm =
O(2

√
2 log n

√
log n/n). Recall that p′′ =

∑
u∈F ′′ pu. By basic properties of entropy [10],

the entropy is minimized by maximizing the disparity among the probabilities. This
is done by setting as many of the pu’s to pm as possible, subject to the condition that
they sum to p′′. Thus, we obtain a lower bound on

∑
u∈F ′′ pu log(1/pu) by assuming

that �p′′/pm� of the fragments u ∈ F ′′ have pu = pm, one fragment u ∈ F ′′ has the
leftover probability pu = p′′ − �p′′/pm� pm, and all remaining fragments u ∈ F ′′ have
pu = 0. Thus

HS∗ ≥
(
p′′

pm
− 1

)
pm log

1

pm
≥ p′′ log

1

pm
−O(1) ≥ Ω(p′′ log n− 1).

Also, by Lemma 11(iv), HS∗ ≤ HS + O(1). Combining the lower and upper bound
on HS∗ , we obtain HS + O(1) = Ω(p′′ log n − 1). Recalling that HS ≥ 1, the lemma
follows.

Applying Lemma 12 to (4), we see that the expected query time is

HS + O
(√

HS

)
+ O

(
HS/

√
log n

)
≤ HS + O

(√
HS

)
,

where we have used the fact that HS = O(log n).
This completes the proof of our main result, Theorem 1.

5. Convex polygons with uniform distribution. In this section we establish
Theorem 2. We are given a planar convex subdivision and assume that the query
distribution within each cell is uniform. We prove the following lemma, which states
that it is possible to triangulate this subdivision so that the entropy increases by
only a additive constant. Theorem 2 follows by applying Theorem 1 to the resulting
triangulation.

Lemma 13. Let S be a planar subdivision of size n whose cells are convex poly-
gons, and assume that the query distribution within each polygon is uniform. We can
triangulate each polygon such that the entropy of the resulting subdivision exceeds the
entropy of S by at most an additive constant. The new subdivision can be constructed
in O(n log n) time.

The proof of this lemma relies on the straightforward observation that, given a
convex polygon P , in linear time it is possible to compute a triangle whose area is
at least 1/4 the area of P . This is easy to prove by considering the triangle formed
by the endpoints of the line segment defining P ’s diameter and the vertex of P that
is farthest from this segment. (Although we do not need it, a better bound can be
obtained by combining Tóth’s bound of 3

√
3/4π ≈ 0.41 on the fraction of area of

the largest triangle in a convex polygon [15] with Dobkin and Snyder’s linear-time
algorithm for computing the largest triangle contained in a convex polygon [12].)

Proof of Lemma 13. We triangulate each convex cell of S as follows. Let z denote
any convex polygon. By the above observation we can find a triangle contained
within z whose area is at least 1/4 the area of z. We insert this triangle into the
triangulation. This partitions the remainder of z into at most three convex polygons,
which we triangulate recursively.
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We bound the entropy of this triangulation. Let Fz denote the set of trian-
gles in the triangulation of z, constructed by the above procedure. Define Φz to be∑

x∈Fz
px log(1/px). We claim that

(5) Φz ≤ pz log
1

pz
+ 8pz.

The proof of this claim is by induction on the number of sides of z. For the basis case,
z has three sides, and the claim is trivially true. Suppose that the claim holds for any
convex polygon with at most i sides for some i ≥ 3. We will establish the claim for
any convex polygon z with i + 1 sides.

Let y denote the first triangle added to the triangulation of z. Since the area of y
is at least 1/4 the area of z and the query distribution within z is uniform, py ≥ pz/4.
Note that the remainder z \ y consists of (at most) three convex polygons, denoted
z1, z2, and z3. By the induction hypothesis, Φzi ≤ pzi log(1/pzi) + 8pzi for 1 ≤ i ≤ 3.
Thus Φz can be written as

py log
1

py
+

3∑

i=1

Φzi ≤ py log
1

py
+

3∑

i=1

(
pzi log

1

pzi
+ 8pzi

)

=

(
py log

1

py
+

3∑

i=1

pzi log
1

pzi

)
+ 8

3∑

i=1

pzi .(6)

Obviously py +
∑3

i=1 pzi = pz. Since py ≥ pz/4, it follows that
∑3

i=1 pzi ≤ 3pz/4.
Also, by basic properties of entropy [10], the maximum value of

py log
1

py
+

3∑

i=1

pzi log
1

pzi

subject to the constraint that py +
∑3

i=1 pzi = pz occurs when py = pz1 = pz2 = pz3 =
pz/4, and is given by pz log(4/pz). Using these bounds in (6), we obtain

Φz ≤ pz log
4

pz
+ 8

(
3

4
pz

)
= pz log

1

pz
+ 8pz,

which completes the proof by induction.
Summing both sides of (5) over all the polygons of S, it follows that the entropy

of the triangulation exceeds the entropy of S by at most 8.
Finally, we discuss the time it takes to construct the triangulation. Let m denote

the size of a convex polygon z ∈ S. By the observation made just prior to the proof
of Lemma 13, it takes O(m) time to find the first triangle y in z and decompose the
remainder z \ y into (at most) three convex polygons z1, z2, and z3. If z \ y consists of
just one polygon with m− 1 vertices, then continuing in this way, it may take O(m2)
time to complete the triangulation of z. To reduce this to O(m logm), we make a
small change to the construction. At each step in the recursion, we partition the
current polygon into two polygons with roughly equal numbers of vertices, and then
find a triangle with large area in each of these two polygons. This reduces the depth
of the recursion to O(logm), and since the time taken for each level of the recursion
is O(m), the total time becomes O(m logm). It is now a simple exercise to extend
the above proof to show that this modified triangulation algorithm also preserves the
entropy (only the constant 8 increases).
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6. Concluding remarks. We have shown that, given a polygonal subdivision
S of size n consisting of cells of constant combinatorial complexity and a query dis-
tribution presented as a weight assignment to the cells of S, it is possible to answer
point location queries H + O(

√
H + 1), where H is the entropy of the subdivision.

Our data structure requires O(n) space, and it can be constructed in O(n log n) time
by a randomized algorithm. We make no assumptions about the distribution of query
points within each cell of the subdivision. We have also shown that this result can
be extended to convex subdivisions of arbitrary combinatorial complexity, assuming
that the query distribution is uniform within each cell.

There are a number of open problems suggested here. If point location is based
on the results of primitive comparisons, it is known that the entropy is a lower bound
on the expected running time, and so our results are optimal up to lower order terms.
Assuming that the query distribution within the cells is unknown, a stronger lower
bound of H +

√
H −O(1) is known in the trapezoidal search graph model [21]. Can

the lower-bound analysis be refined to justify the presence of the O(
√
H) term, when

information on the query distribution within the cells is available? Taking this in a
different direction, suppose that the query distribution is not known at all. That is,
the probabilities that the query point lies within the various cells of the subdivision
are unknown. In the 1-dimensional case it is known that there exist self-adjusting
data structures, such as splay trees [29], that achieve good expected query time in the
limit. Do such self-adjusting structures exist for planar point location?

A related observation is that, in the case of worst-case query time, Seidel and
Adamy [27] showed an analogous lower order term of 2

√
log n. An interesting ques-

tion along these lines is whether it is possible to reduce the lower order term in
Theorem 4, say to 2

√
H. Another interesting question is the computational complex-

ity of computing the BSP that minimizes the expected search time, assuming, say,
the extended trapezoidal search graph model and an oracle that can answer questions
about the query distribution.

As mentioned earlier, our results are based on the trapezoidal search graph model
used by Seidel and Adamy [27]. The two comparison primitives used in the trape-
zoidal search graph model have significantly different computation times. (One is a
1-dimensional orientation test, and the other is a 2-dimensional orientation test.) This
raises the question of the computational complexity of point location in even more
primitive models of computation, for example, the number of arithmetic operations
on coordinates.
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1. Introduction. As experimentalists attempt to realize quantum computers,
we need some way to test whether the desired quantum operations are actually being
implemented. Our motivation is to derive sufficient and self-contained tests for veri-
fying the action of specific finite sets of quantum gates. One of the most important
features of our work is that our tests do not rely on the use of some other trusted
quantum operations that have somehow already been characterized and tested.

Inspired by classical work on self-testing programs [8, 26, 21, 15] (see section 1.1),
our approach is to characterize quantum gates by testable properties. For example,
one testable property of the Hadamard gate H is that if one starts with input |0〉,
applies H, and then measures, one should measure |0〉 with probability 1

2
. This of

course does not uniquely characterize the Hadamard gate; for instance, there are
many nonunitary quantum gates with the same property. If a gate is known to be
unitary, then it is quite easy to find a set of testable properties that characterize it.
So one of our key techniques for characterizing gates is a test for unitarity. Since any
reasonable test could verify only that the probability of outputting |0〉 is likely very
close to 1

2
, we need robust properties. Informally, a property is robust if, whenever a

function satisfies the property approximately, it is close to a function that satisfies it
exactly.
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Our tests are in the quantum circuit model of computation, which corresponds
most naturally to what experimentalists are implementing. The quantum circuit
model and the quantum Turing machine are the first formal models of quantum com-
puting that were defined by Deutsch [11, 12]. Yao has shown [31] that these two models
have polynomially equivalent computational power when the circuits are uniform.

A quantum circuit operates on n quantum bits (qubits), where n is some integer.
The actual computation takes place in the Hilbert space C

{0,1}n

, whose computational
basis consists of the 2n orthonormal vectors |i〉 for i ∈ {0, 1}n. According to the
standard model, during the computation the state of the system is a unit length
linear combination, or a superposition, of the basis states. The computational steps
of the system are done by quantum gates, which perform unitary operations and are
local in the sense that they involve only a constant number of qubits. At the end of the
computation a measurement takes place on one of the qubits. This is a probabilistic
experiment whose outcome can be 0 or 1, and the probability of measuring the bit b is
the squared length of the projection of the superposition to the subspace spanned by
the basis states that are compatible with the outcome. As a result of a measurement,
the state of the system becomes this projected state.

The most convenient way to describe all possible operations on a quantum reg-
ister is in the formalism of “density matrices.” In this approach, which differs from
the Dirac notation, the quantum operations are described by completely positive su-
peroperators (CPSOs) that act on matrices. These density matrices describe mixed
states (that is, classical probability distributions over pure quantum states), and the
CPSOs correspond exactly to all of the physically allowed transformations on them.
Such a model of quantum circuits with mixed states was described by Aharonov, Ki-
taev, and Nisan [3], and we will adopt it here. The unitary quantum gates of the
standard model and measurements are special CPSOs. CPSOs can be simulated by
unitary quantum gates on a larger number of qubits, and in [3] it was shown that the
computational powers of the two models are polynomially equivalent.

Unitary quantum gates for a small number of qubits have been extensively studied.
One reason is that, although quantum gates for up to three qubits have already
been realized (e.g., in [20]), constructing gates for large numbers seems to be elusive.
Another reason is that universal sets of gates can be built from them, which means
that they can simulate (approximately) any unitary transformation on an arbitrary
number of qubits. The first universal quantum gate which operates on three qubits
was identified by Deutsch [12]. After a long sequence of work on universal quantum
gates [14, 4, 13, 22, 6, 30, 18, 17], Boykin et al. [7] have recently shown that the set
consisting of a Hadamard gate, a c-NOT gate, and a phase rotation gate of angle π/4
is universal. In order to form a practical basis for quantum computation, a universal
set must also be able to operate in a noisy environment, and therefore there has to
be an implementation of fault-tolerant quantum computation using this set of gates
[30, 2, 17, 19]. The above set of three gates has the additional advantage of also being
fault-tolerant in this sense.

In this paper we develop the theory of self-testing of quantum gates by classical
procedures. Given a CPSO G for n qubits, and a family F of unitary CPSOs, we
would like to decide if G belongs to F . Intuitively, a self-tester is a procedure that
answers the question “G ∈ F ?” by interacting with the CPSO G in a purely classical
way. More precisely, it will be a probabilistic algorithm that is able to access G as a
black box in the following sense: It can prepare the classical states w ∈ {0, 1}n, iterate
G on these states, and, afterwards, measure in the computational basis. The access
must be seen as a whole, performed by a specific, experimental oracle for G: Once
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the basis state w and the number of iterations k have been specified, the program in
one step gets back one of the possible probabilistic outcomes of measuring the state of
the system after G is iterated k times on w. The intermediate quantum states of this
process cannot be used by the program, which cannot perform any other quantum
operations either. For 0 ≤ δ1 ≤ δ2, such an algorithm will be a (δ1, δ2)-tester for F if
for every CPSO G, whenever the distance of G and F is at most δ1 (in some norm),
it accepts with high probability, and whenever the same distance is greater than δ2,
it rejects with high probability, where the probability is taken over the measurements
performed by the oracle and by the coin tosses of the algorithm. Finally we will
say that F is testable if for every δ2 > 0, there exists 0 < δ1 ≤ δ2 such that there
exists a (δ1, δ2)-tester for F . These definitions can be extended to several classes of
CPSOs.

We note in section 2 that for any real ϕ the states |1〉 and eiϕ|1〉 are experimentally
indistinguishable. This implies that if we start by distinguishing only the classical
states 0 and 1, then there are families of CPSOs which are indistinguishable as well.
For example, let H be the well-known Hadamard gate, and let Hϕ be the same gate
expressed in the basis (|0〉, eiϕ|1〉) for ϕ ∈ [0, 2π). Any experiment that starts in state 0
or 1 and uses only H will produce outcomes 0 and 1 with the same probabilities as the
same experiment with Hϕ. Thus no experiment that uses this quantum gate alone can
distinguish it from all of the other Hadamard gates. Indeed, a family F containing H
can be tested only if the entire Hadamard family H = {Hϕ : ϕ ∈ [0, 2π)} is included
in F . This degree of freedom is formalized generally for any gate in Fact 4.1.

It might seem at first sight that not being able to get rid of this degree of freedom
is a serious handicap. Nonetheless, it remains coherent when we test several gates
simultaneously. Thus, for example, if we define NOTϕ similarly to Hϕ, we are able
to test the family of couples {(NOTϕ,Hϕ) : ϕ ∈ [0, 2π)}.

The main result of this paper is Theorem 6.5, which states that for several sets of
unitary CPSOs, in particular, the Hadamard gates family, Hadamard gates together
with c-NOT gates, and Hadamard gates with c-NOT and phase rotation gates of
angle ±π/4, are testable. This last family is of particular importance since every
triplet in the family forms a universal and fault-tolerant set of gates for quantum
computation [7].

For the proof we will define the notion of experimental equations which are func-
tional equations for CPSOs corresponding to the properties of the quantum gate that
a self-tester can approximately test. These tests are done via the interaction with
the experimental oracle. The proof itself contains three parts. In Theorems 4.2, 4.4,
and 4.5 we will exhibit experimental equations for the families of unitary CPSOs that
we want to characterize. In Theorem 5.2 we will show that actually all experimen-
tal equations are robust; in fact, the distance of a CPSO from the target family is
polynomially related to the error tolerated in the experimental equations. Finally
Theorem 6.3 gives self-testers for CPSO families which are characterized by a finite
set of robust experimental equations.

In some cases, we are able to calculate explicitly the polynomial bound in the
robustness of experimental equations. Such a result will be illustrated in Theorem 5.4
for the equations characterizing the Hadamard family H.

Technically, these results will be based on the representation of one-qubit states
and CPSOs in R

3, where they are, respectively, vectors in the unit ball of R
3 and

particular affine transformations. This correspondence is known as the Bloch ball
representation.
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1.1. Related prior work. Experimental procedures for determining the prop-
erties of quantum “black boxes” were given by Chuang and Nielsen [10] and Poyatos,
Cirac, and Zoller [24]; however, these procedures implicitly require an apparatus that
has already been tested and characterized.

The idea of self-testing in quantum devices is implicit in the work of Adleman,
Demarrais, and Huang [1]. They have developed a procedure by which a quantum
Turing machine is able to estimate its internal angle by its own means under the
hypothesis that the machine is unitary. In the context of quantum cryptography
Mayers and Yao [23] have designed tests for deciding if a photon source is perfect.
These tests guarantee that if a source passes them, then it is adequate for the security
of the Bennett-Brassard [5] quantum key distribution protocol.

The study of self-testing programs is a well-established research area which was
initiated by the work of Blum, Luby, and Rubinfeld [8], Rubinfeld [26], Lipton [21],
and Gemmel et al. [15]. The purpose of a self-tester for a function family is to detect
by simple means if a program which is accessible as an oracle computes a function from
the given family. This clearly inspired the definition of our self-testers, which have the
particular feature that they should test quantum objects that they can access only in
some particular way. The analogy with self-testing does not stop with the definition.
One of the main tools in self-testing of function families is the characterization of
these families by robust properties. The concept of robustness was introduced and
its implication for self-testing was first studied by Rubinfeld and Sudan [27] and by
Rubinfeld [28]. It will play a crucial role in our case.

2. Preliminaries.

2.1. The quantum state. A pure state in a quantum physical system is de-
scribed by a unit vector in a Hilbert space. In the Dirac notation it is denoted by
|ψ〉. In particular a qubit (a quantum two-state system) is an element of the Hilbert
space C

{0,1}. The orthonormal basis containing |0〉 and |1〉 is called the computa-
tional basis of C

{0,1}. Therefore a pure state |ψ〉 ∈ C
{0,1} is a linear combination, or

a superposition, of the computational basis states, that is, |ψ〉 = c0|0〉 + c1|1〉, with
|c0|2 + |c1|2 = 1. A physical system which deals with n qubits is described mathemat-
ically by the 2n-dimensional Hilbert space which is by definition C

{0,1}⊗ · · ·⊗C
{0,1},

that is, the nth tensor power of C
{0,1}. Let N = 2n. The computational basis of

this space consists of the N orthonormal states |i〉 for 0 ≤ i < N . If i is in binary
notation i1i2 . . . in, then |i1 . . . in〉 = |i1〉 . . . |in〉, where this is a short notation for
|i1〉⊗· · ·⊗|in〉. All vectors and matrices will be expressed in the computational basis.
The transposed complex conjugate |ψ〉† of |ψ〉 is denoted by 〈ψ|. The inner product
between |ψ〉 and |ψ′〉 is denoted by 〈ψ|ψ′〉 and their outer product by |ψ〉〈ψ′|.

Quantum systems can also be in more general states than what can be described
by pure states. The most general states are mixed states, described by a probability
distribution over pure states. Such a mixture can be denoted by {(pk, |ψk〉) : k ∈ N},
where the system is in the pure state |ψk〉 with probability pk.

Different mixtures (even different pure states |ψ〉) can represent the same physical
system. This notational redundancy can be avoided if we use the formalism of the
density matrices. A density matrix that represents an n-qubit state is an N × N
Hermitian semipositive matrix with trace 1. The pure state |ψ〉 in this representation
is described by the density matrix ψ = |ψ〉〈ψ| and a mixture {(pk, |ψk〉) : k ∈ N}
by the density matrix ψ =

∑
k∈N

pk|ψk〉〈ψk|. For example, the pure states eiγ |ψ〉,
for γ ∈ [0, 2π), or the mixtures {( 1

2
, |0〉), ( 1

2
, |1〉)} and {( 1

2
, |0〉+|1〉√

2
), ( 1

2
, |0〉−|1〉√

2
)} have,

respectively, the same density matrix.
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Since a density matrix is Hermitian semipositive, its eigenvectors are orthogonal
and its eigenvalues are nonnegative. Because the density matrix has trace 1, its eigen-
values sum to 1. Therefore a density matrix represents the mixture of its orthonormal
eigenvectors, where the probabilities are the respective eigenvalues. Note that diag-
onal density matrices correspond to a mixture over pure states |i〉 for 0 ≤ i < N .
Density matrices that represent pure states have a simple algebraic characterization:
ρ is a pure state if and only if it has two eigenvalues: 0 with multiplicity N − 1 and
1 with multiplicity 1; equivalently, ρ is a pure state exactly when ρ2 = ρ.

A 2×2 Hermitian matrix of unit trace is semipositive if and only if its determinant
is between 0 and 1/4. Therefore in the case of one qubit, any density matrix ρ can
be written as ρ = p|0〉〈0| + (1 − p)|1〉〈1| + α|1〉〈0| + α∗|0〉〈1|, where p ∈ [0, 1], and α
is a complex number such that |α|2 ≤ p(1 − p). This density matrix will be denoted
by ρ(p, α). Remark that ρ(p, α) is a pure state exactly when |α|2 = p(1 − p); that is,
its determinant is 0.

2.2. Superoperators. The evolution of physical systems is described by specific
transformations on density matrices, that is, on operators. A superoperator for n
qubits is a linear transformation on C

N×N . A positive superoperator (PSO) is a
superoperator that maps density matrices to density matrices. A completely positive
superoperator (CPSO) G is a PSO such that, for all positive integers M , G⊗ IM is
also a PSO, where IM is the identity on C

M×M . CPSOs are exactly the physically
allowed transformations on density matrices. An example of a PSO for one qubit
that is not a CPSO is the transpose superoperator T defined by T (|i〉〈j|) = |j〉〈i| for
0 ≤ i, j ≤ 1.

Quantum computation is traditionally based on the possibility of constructing
some particular CPSOs, unitary superoperators, which preserve the set of pure states.
These operators are characterized by transformations from U(N), the set of N × N
unitary matrices. For any A ∈ U(N), we define a CPSO which maps a density
matrix ρ into AρA†. When the underlying unitary transformation A is clear from
the context, by a slight abuse of notation we will denote this CPSO simply by A. If
|ψ′〉 denotes A|ψ〉, then the unitary superoperator A maps the pure state ψ to the
pure state ψ′. As was the case in the Dirac representation of states, there is the same
phase redundancy in the set of unitary transformations U(N). If A ∈ U(N), then
for all γ ∈ [0, 2π) the transformations eiγA are different; however, the corresponding
superoperators are identical. We will therefore focus on U(N)/U(1).

Conversely, CPSOs can be defined using unitary transformations. For every
CPSO G for n qubits, there exists a unitary transformation A ∈ U(23n) for 3n qubits
such that G corresponds to the application of A after tracing out the additional n
qubits [3]: G maps a density matrix ρ into G(ρ) = Tr2(A(ρ ⊗ I22n)A†), where Tr2
denotes the trace out over the last 2n qubits.

2.3. Measurements. Measurements form another important class of (non-
unitary) CPSOs. They describe physical transformations corresponding to the obser-
vation of the system. We will now formally define one of the simplest classes of mea-
surements which correspond to the projections to elements of the computational basis.

A von Neumann measurement in the computational basis of n qubits is the n-qubit
CPSO M that, for every density matrix ρ, satisfies M(ρ)i,i = ρi,i and M(ρ)i,j = 0
for i �= j.

In the case of one qubit, the von Neumann measurement in the computational
basis maps the density matrix ρ(p, α) into ρ(p, 0). We will say that p = 〈0|ρ|0〉 is the
probability of measuring |0〉〈0|, and we will denote it by Pr0[ρ].
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In general, a von Neumann measurement of n qubits in any basis can be viewed as
the von Neumann measurement in the computational basis preceded by some unitary
superoperator.

2.4. The Bloch ball representation. Specific for the one-qubit case, there is
an isomorphism between the group U(2)/U(1) and the special rotation group SO(3),
the set of 3 × 3 orthogonal matrices with determinant 1. This allows us to repre-
sent one-qubit states as vectors in the unit ball of R

3 and unitary superoperators as
rotations on R

3. We will now describe exactly this correspondence.
The Bloch ball B (respectively, Bloch sphere S) is the unit ball (respectively, unit

sphere) of the Euclidean affine space R
3. Any point u ∈ R

3 determines a vector with
the same coordinates which we will also denote by u. The inner product of u and v
will be denoted by (u, v) and their Euclidean norm by ‖u‖.

Each point u ∈ R
3 can be also characterized by its norm r ≥ 0, its latitude

θ ∈ [0, π], and its longitude ϕ ∈ [0, 2π). The latitude is the angle between the z-axis
and the vector u, and the longitude is the angle between the x-axis and the orthogonal
projection of u in the plane defined by z = 0. If u = (x, y, z), then these parameters
satisfy x = r sin θ cosϕ, y = r sin θ sinϕ, and z = r cos θ.

For every density matrix ρ for one qubit there exists a unique point ρ = (x, y, z) ∈
B such that

ρ =
1

2

(
1 + z x− iy
x + iy 1 − z

)
.

This mapping is a bijection that also obeys

ρ(p, α) = (2Re(α), 2Im(α), 2p− 1).

In this formalism, the pure states are nicely characterized in B by their norm.
Fact 2.1. A density matrix ρ represents a pure state if and only if ρ ∈ S; that

is, ‖ρ‖ = 1.
Also, if θ ∈ [0, π] and ϕ ∈ [0, 2π) are, respectively, the latitude and the longitude

of ψ ∈ S, then the corresponding density matrix represents a pure state and satisfies
|ψ〉 = cos(θ/2)|0〉 + sin(θ/2)eiϕ|1〉 (see Figure 2.1). Observe that the pure states

|ψ〉 and |ψ⊥〉 are orthogonal if and only if ψ = −ψ⊥. We will use the following
notation for the six pure states along the x, y, and z axes: |ζ±x 〉 = 1√

2
(|0〉 ± |1〉),

|ζ±y 〉 = 1√
2
(|0〉 ± i|1〉), |ζ+

z 〉 = |0〉, and |ζ−z 〉 = |1〉, with the respective coordinates

(±1, 0, 0), (0,±1, 0), and (0, 0,±1) in R
3. Recall that for every density matrix ρ

for one qubit there exists two orthogonal pure states |ψ〉 and |ψ⊥〉 such that ρ =
p|ψ〉〈ψ| + (1−p)|ψ⊥〉〈ψ⊥|, where 0 ≤ p ≤ 1. Thus ρ is just the barycenter of ψ and

ψ⊥ with respective weights p and (1−p) (see Figure 2.2).
For each CPSO G, there exists a unique affine transformation G over R

3, which
maps the ball B into B and is such that, for all density matrices ρ, G(ρ) = G(ρ).
Unitary superoperators have a nice characterization in B.

Fact 2.2. The map between U(2)/U(1) and SO(3), which sends A to A, is an
isomorphism.

For α ∈ (−π, π], θ ∈ [0, π
2
], and ϕ ∈ [0, 2π), we will define the unitary transforma-

tion Rα,θ,ϕ over C
2. If |ψ〉 = cos(θ/2)|0〉 + eiϕ sin(θ/2)|1〉 and |ψ⊥〉 = sin(θ/2)|0〉 −

eiϕ cos(θ/2)|1〉, then by definition Rα,θ,ϕ|ψ〉 = |ψ〉 and Rα,θ,ϕ|ψ⊥〉 = eiα|ψ⊥〉. If A is
a unitary superoperator, then we have A = Rα,θ,ϕ for some α, θ, and ϕ. In R

3 the
transformation Rα,θ,ϕ is the rotation of angle α whose axis cuts the sphere S in the
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Fig. 2.1. Bloch ball representation of a pure state.
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Fig. 2.2. Bloch ball representation of a density matrix.

points ψ and ψ⊥. Note that for θ = 0 the CPSO Rα,0,ϕ does not depend on ϕ. We
will denote this phase rotation by Rα.

The affine transformation in B which corresponds to the von Neumann measure-
ment in the computational basis is the orthogonal projection to the z-axis. Therefore
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it maps ρ = (x, y, z) into (0, 0, z), the point which corresponds to the density matrix
1+z
2

|0〉〈0| + 1−z
2

|1〉〈1|. Thus Pr0[ρ] = 1+z
2

.

2.5. Norm and distance. Let N = 2n. We will consider the trace norm on
C

N×N which is defined as follows: For all V ∈ C
N×N , ‖V ‖1 = Tr

√
V †V . This norm

has several advantages when we consider the difference of density matrices. Given a
von Neumann measurement, a density matrix induces a probability distribution over
the basis of the measurement. The trace norm of the difference of two density matrices
is the maximal variation distance between the two induced probability distributions,
over all von Neumann measurements. It also satisfies the following properties.

Fact 2.3. For all density matrices ρ(p, α) and ρ(q, β) for one qubit, we have

‖ρ(p, α) − ρ(q, β)‖1 = ‖ρ(p, α) − ρ(q, β)‖
= 2

√
(p− q)2 + |α− β|2.

Fact 2.4. For all V ∈ C
N×N and W ∈ C

M×M , we have ‖V ⊗W‖1 = ‖V ‖1‖W‖1

and
√

Tr(V †V ) ≤ ‖V ‖1. For density matrices ρ it holds that ‖ρ‖1 = 1.
For n-qubit superoperators, the superoperator norm associated to the trace norm

is defined as

‖G‖∞ = sup{‖G(V )‖1 : ‖V ‖1 = 1}.
This norm is always 1 when G is a CPSO (see, e.g., [3, Lem. 12]). The norm
‖ ‖∞ can be easily generalized for k-tuples of superoperators by ‖(G1, . . . ,Gk)‖∞ =
max(‖G1‖∞, . . . , ‖Gk‖∞). We will denote by dist∞ the natural distance induced by
the norm ‖ ‖∞.

For our purposes we could have considered any other norm on superoperators
since our results are motivated by the testability of universal sets of gates which act
on a constant number of qubits. Indeed, it is a well-known fact that in fixed dimension
all of the norms are equivalent. As stated in Fact 6.2, the testability remains invariant
under changing norms.

3. Properties of CPSOs. Here we will establish the properties of CPSOs that
we will need for the characterization of our CPSO families. The first lemma does
not use the complete positivity; thus, it is stated in general for PSOs for one qubit.
Note that in the Bloch ball formalism PSOs for one qubit are exactly affine maps that
preserve B.

Lemma 3.1. Let G be a PSO for one qubit, and let ρ and τ be density matrices
for one qubit.

(a) ‖G(ρ) −G(τ)‖1 ≤ ‖ρ− τ‖1.
(b) If G is not constant and G(ρ) is a pure state, then ρ is a pure state.
The first property is clear when G is a CPSO since ‖G‖∞ = 1 and G is linear.

Moreover, the second property does not hold for PSOs (and even for CPSOs) that act
on more than one qubit. For example, the CPSO on two qubits that is the identity on
the first qubit and constant to some pure state on the second qubit is a counterexample
(take, for instance, ρ = ψ ⊗ ( 1

2
I2), where ψ is any pure state).

Proof. We prove the lemma using the Bloch ball formalism.
(a) Let ρ, τ ∈ B be two distinct elements. Let L and u be, respectively, the linear

part and the constant part of the affine map G; that is, G = L + u. Then
we have

G(ρ) −G(τ) = ‖ρ− τ‖L
(

ρ− τ

‖ρ− τ‖
)
.
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Note that v = ρ−τ
‖ρ−τ‖ has norm 1. To conclude the proof, we now show that

‖L(v)‖ ≤ 1. Observe that

‖G(v)‖2 + ‖G(−v)‖2 = ‖L(v) + u‖2 + ‖−L(v) + u‖2

= 2(‖L(v)‖2 + ‖u‖2).

Since G preserves B and ±v ∈ B, the images G(±v) are also in B. Therefore
‖G(±v)‖ ≤ 1, and then ‖L(v)‖ ≤ 1.

(b) We prove the second property by contradiction. Let us recall that S denotes
the Bloch sphere. Suppose that there exists ρ ∈ B − S such that G(ρ) ∈ S.
Since G is not constant, there exists an element τ ∈ B such that G(τ) �= G(ρ).
For every real ε > 0, let wε = ρ+ ε(ρ− τ). Fix some ε > 0 such that wε ∈ B.
Such an ε exists since, by hypothesis, ρ ∈ B − S. Moreover G is affine; thus

G(wε) = G(ρ) + ε(G(ρ) −G(τ)).

Therefore, using ‖G(ρ)‖ = 1, the norm of G(wε) satisfies

‖G(wε)‖2 = 1 + 2ε
(
(G(ρ) −G(τ)),G(ρ)

)
+ ε2‖G(ρ) −G(τ)‖2

= 1 + 2ε
(
1 − (

G(τ),G(ρ)
))

+ ε2‖G(ρ) −G(τ)‖2

≥ 1 + ε2‖G(ρ) −G(τ)‖2

> 1.

Therefore there exists some element wε ∈ B such that G(wε) �∈ B, which
contradicts G(B) ⊆ B.

An affine transformation of R
3 is uniquely defined by the images of four noncopla-

nar points. Surprisingly, if the transformation is a CPSO for one qubit, the images
of three points are sometimes sufficient. The following will make this precise more
generally for n qubits.

Lemma 3.2. Let n ≥ 1 be an integer, and let ρ1, ρ2, and ρ3 be three distinct one-
qubit density matrices representing pure states, such that the plane in R

3 containing
the points ρ1, ρ2, ρ3 goes through the center of B. If G is a CPSO for n qubits that
acts as the identity on the set {ρ1, ρ2, ρ3}⊗n, then G is the identity mapping.

Proof. Let P be the plane defined in R
3 by ρ1, ρ2, and ρ3. To simplify the

discussion, we suppose without loss of generality (w.l.o.g.) that ζ±z and ζ±x are in P .
Every one-qubit ρ satisfying ρ ∈ P is a linear combination of ρ1, ρ2 and ρ3. Therefore
by linearity of G we get that it acts as the identity on {ρ : ρ ∈ P}⊗n. Moreover it is
sufficient to show that G is the identity on density matrices representing nonentangled
pure states, since they form a basis for all density matrices. To see this fact, note
that any 2× 2 complex matrix can be expressed as a linear combination of pure state
density matrices. For example, the elementary matrix |0〉〈1| can be written as

2|0〉〈1| = (|0〉 + |1〉)(〈0| + 〈1|) + i(|0〉 + i|1〉)(〈0| − i〈1|) − (1 + i)|0〉〈0| − (1 + i)|1〉〈1|.
Thus any tensor product of 2×2 matrices can be expanded as a linear combination of
the tensor product of single qubit pure state density matrices. Since a 2n×2n density
matrix can be written as a linear combination of tensor products of 2 × 2 matrices
(see, e.g., section 3.1 of [29]), it follows that any such density matrix can be expressed
as a linear combination of the density matrices representing nonentangled pure states.
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Using the fact that G is the identity on both the computational basis and the
diagonal basis, that is, on {ζ±x , ζ±z }⊗n, we would like to derive that G acts as the
identity everywhere. One way of proving this is to use the correspondence between
unitary transformations and CPSOs. Let A be a unitary matrix such that G(ρ) =
Tr2(A(ρ⊗I2n)A†) for every n-qubit state ρ (recall that Tr2 denotes the trace out over
half of the last qubits). By assumption, for every n-qubit pure state |ψ〉 ∈ {ζ±x , ζ±z }⊗n,
there exists a n-qubit pure state |ϕψ〉 such that A|ψ〉|0n〉 = |ψ〉|ϕψ〉. Therefore, by
the linearity of A, we get that |ϕψ〉 does not depend on |ψ〉, which implies by again
the linearity of A that for every n-qubit pure state |ψ〉, A|ψ〉|0n〉 = |ψ〉|ϕ〉 for some
n-qubit pure state |ϕ〉. Then we directly conclude that G is the identity.

For the sake of completeness, we now prove the result in more detail by induction
using our first definition of CPSOs. For this, for every k, let Ek be the set of density
matrices representing k-qubit nonentangled pure states, and let Fk = {ζ±x , ζ±z }⊗k.
We will show by induction on k that, for every 0 ≤ k ≤ n, the CPSO G acts as the
identity on Ek ⊗ Fn−k. The case k = 0 follows by the hypothesis of the lemma.

Suppose the statement is true for some k. Fix σ ∈ Ek and τ ∈ Fn−k−1. For every
one-qubit density matrix ρ, let ρ̃ denote the n-qubit density matrix σ ⊗ ρ⊗ τ .

We now prove that G(ρ̃) = ρ̃ for every ρ ∈ E1. For this, we use the fact that
the density matrix Ψ+ representing the entangled EPR state (|00〉+ |11〉)/√2 can be
written in terms of tensor products of the ζ states:

Ψ+ = 1
2
(ζ+

x ⊗ ζ+
x + ζ−x ⊗ ζ−x + ζ+

z ⊗ ζ+
z + ζ−z ⊗ ζ−z ) − 1

2
(ζ+

y ⊗ ζ+
y + ζ−y ⊗ ζ−y ).

This can be generalized for the pure state |μ〉 = (|0̃〉|0̃〉 + |1̃〉|1̃〉)/√2:

μ = 1
2
(ζ̃+

x ⊗ ζ̃+
x + ζ̃−x ⊗ ζ̃−x + ζ̃+

z ⊗ ζ̃+
z + ζ̃−z ⊗ ζ̃−z ) − 1

2
(ζ̃+

y ⊗ ζ̃+
y + ζ̃−y ⊗ ζ̃−y ).

If we apply the CPSO I2n ⊗G to the state μ, we get

(I2n ⊗G)(μ)

= 1
2
[ζ̃+

x ⊗ ζ̃+
x + ζ̃−x ⊗ ζ̃−x + ζ̃+

z ⊗ ζ̃+
z + ζ̃−z ⊗ ζ̃−z − ζ̃+

y ⊗G(ζ̃+
y ) − ζ̃−y ⊗G(ζ̃−y )].

If |ϕ〉 and |ϕ′〉 are orthogonal n-qubit pure states, then let Φ−
ϕϕ′ = (|ϕ〉|ϕ′〉−|ϕ′〉|ϕ〉)/√2.

Since Φ−
ϕϕ′ is orthogonal to all symmetric 2n-qubit pure states of the form ψ ⊗ ψ, by

projecting (I2n ⊗G)(μ) to Φ−
ϕϕ′ we obtain

〈Φ−
ϕϕ′ |(I2n ⊗G)(μ)|Φ−

ϕϕ′〉 = − 1
2
〈Φ−

ϕϕ′ |ζ̃+
y ⊗G(ζ̃+

y )|Φ−
ϕϕ′〉− 1

2
〈Φ−

ϕϕ′ |ζ̃−y ⊗G(ζ̃−y )|Φ−
ϕϕ′〉.

Since G is a CPSO, the left-hand side of this equality is nonnegative, and in the
right-hand side both terms are nonpositive. Therefore for every orthogonal n-qubit
pure states |ϕ〉 and |ϕ′〉, we get

〈Φ−
ϕϕ′ |ζ̃+

y ⊗G(ζ̃y
+
)|Φ−

ϕϕ′〉 = 〈Φ−
ϕϕ′ |ζ̃−y ⊗G(ζ̃y

−
)|Φ−

ϕϕ′〉 = 0.

A straightforward calculation then shows that G(ζ̃y
±

) = ζ̃±y . Therefore G acts as the

identity on density matrices ζ̃±z , ζ̃+
x , and ζ̃+

y , which generate all density matrices, and
thus G(ρ̃) = ρ̃.

We also use the property that for CPSOs unitarity and invertibility are equivalent
(see, e.g., [25, Chap. 3, sect. 8]).
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Lemma 3.3. Let G be a CPSO for n qubits. If there exists a CPSO H for n
qubits such that H ◦G is the identity mapping, then G is a unitary superoperator.

Using the following lemma, we can give a version of Lemma 3.2 in the approximate
context.

Lemma 3.4. Let G be a superoperator for one qubit. Let 0 ≤ ε ≤ 1 be such that
‖G(ζ±x ) − ζ±x ‖1, ‖G(ζ±y ) − ζ±y ‖1, ‖G(ζ±z ) − ζ±z ‖1 ≤ ε. Then ‖G− I2‖∞ ≤ √

10ε.
Proof. Every 2 × 2 complex matrix V can be decomposed as

V =

(
a b
c d

)
= aζ+

z +dζ−z +
b + c

2

(
ζ+
x − 1

2
(ζ+

z + ζ−z )

)
+i

b− c

2

(
ζ+
y − 1

2
(ζ+

z + ζ−z )

)
.

All norms ‖ζ±· ‖1 are 1; therefore, the hypotheses on G imply

‖G(V ) − V ‖1 ≤ ε(|a| + 2|b| + 2|c| + |d|).
From Fact 2.4 we also have that

√
Tr(V †V ) ≤ ‖V ‖1. Moreover Tr(V †V ) = |a|2 +

|b|2 + |c|2 + |d|2. Then we conclude the proof by the Cauchy–Schwarz inequality
|a| + 2|b| + 2|c| + |d| ≤ √

10
√|a|2 + |b|2 + |c|2 + |d|2.

Lemma 3.5. Let u and v be two orthonormal vectors in R
3, and let 0 ≤ ε ≤ 1

be a constant. If G is a CPSO for one qubit such that ‖G(±u) − ±u‖ ≤ ε and
‖G(±v) −±v‖ ≤ ε, then ‖G− I2‖∞ ≤ 96ε.

Proof. We can suppose w.l.o.g. that u = ζ+
x and v = ζ+

z . Let ρ = G(ζ+
y ), where

ρ = (x, y, z). From Lemma 3.1 it follows that ‖G(ζ+
z ) − ρ‖1 ≤ ‖ζ+

z − ζ+
y ‖1 =

√
2. By

the assumption of this lemma we have that ‖G(ζ+
z )−ζ+

z ‖1 ≤ ε, and hence ‖ζ+
z −ρ‖1 ≤√

2 + ε. The same relation holds also for the other three fixed points ζ−z , ζ+
x , and ζ−x .

As a result, the three coordinates of ρ have to obey the four inequalities

(3.1)
x2 + y2 + (z ± 1)2 ≤ (

√
2 + ε)2 ≤ 2 + 4ε

and (x± 1)2 + y2 + z2 ≤ (
√

2 + ε)2 ≤ 2 + 4ε.

A second set of restrictions on (x, y, z) comes from the complete positivity of G.
Again we use the decomposition of the EPR state Ψ+ to analyze the two-qubit state:

(I2 ⊗G)(Ψ+) = 1
2
(ζ+

x ⊗G(ζ+
x ) + ζ−x ⊗G(ζ−x ))

+ 1
2
(ζ+

z ⊗G(ζ+
z ) + ζ−z ⊗G(ζ−z ))

− 1
2
(ζ+

y ⊗G(ζ+
y ) + ζ−y ⊗G(ζ−y )).

Using the hypothesis, the projection of this state onto the antisymmetrical entangled
qubit pair |Φ−〉 = (|01〉 − |10〉)/√2 yields

〈Φ−|(I2 ⊗G)(Ψ+)|Φ−〉 ≤ 2ε− 1
2
〈Φ−|ζ+

y ⊗G(ζ+
y )|Φ−〉 − 1

2
〈Φ−|ζ−y ⊗G(ζ−y )|Φ−〉.

Since G is a CPSO, as in Lemma 3.2 we get 〈Φ−|ζ+
y ⊗ρ|Φ−〉 ≤ 4ε. A straightforward

calculation shows that this last relation is equivalent with a restriction on the y
coordinate: y ≥ 1 − 16ε.

This last inequality implies y2 ≥ 1− 32ε, which combined with the restrictions of
(3.1) leads to the conclusion that (x± 1)

2 ≤ 2 + 4ε− y2 − z2 ≤ 1 + 36ε, and similarly

(z ± 1)
2 ≤ 1 + 36ε. The x and z coordinates of ρ satisfy |x|, |z| ≤ 18ε.

These bounds imply

‖G(ζ+
y ) − ζ+

y ‖1 =
√
x2 + (y − 1)2 + z2 ≤

√
904ε.

The same result can be proved for ζ−y . Therefore by Lemma 3.4 we can conclude the
proof.
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4. Characterization.

4.1. One-qubit CPSO families. In this section, every CPSO will be for one
qubit. First we define the notion of experimental equations, and then we show that
several important CPSO families are characterizable by them.

An experimental equation in one variable is a CPSO equation of the form

(4.1) Pr0[Gk(|b〉〈b|)] = r,

where k is a nonnegative integer, b ∈ {0, 1}, and 0 ≤ r ≤ 1. We will call the left-hand
side of the equation the probability term and the right-hand side the constant term.
The size of this equation is k. A CPSO G will “almost” satisfy the equations if, for
example, it is the result of adding small systematic and random errors (independent
of time) to a CPSO that does satisfy them. For ε ≥ 0, the CPSO G ε-satisfies (4.1)
if |Pr0[Gk(|b〉〈b|)] − r| ≤ ε, and when ε = 0 we will just say that G satisfies (4.1).
Let (E) be a finite set of experimental equations. If G ε-satisfies all equations in
(E), we say that G ε-satisfies (E). If some G satisfies (E), then (E) is satisfiable.
The set {G : G satisfies (E)} will be denoted by F(E). A family F of CPSOs is
characterizable if it is F(E) for some finite set (E) of experimental equations. In this
case we say that (E) characterizes F .

All of these definitions generalize naturally for m-tuples of CPSOs for m ≥ 2.
In what follows we will need only the case m = 2. An experimental equation in two
CPSO variables is an equation of the form

(4.2) Pr0[F k1 ◦Gl1 ◦ · · · ◦ F kt ◦Glt(|b〉〈b|)] = r,

where k1, . . . , kt, l1, . . . , lt are nonnegative integers, b ∈ {0, 1}, and 0 ≤ r ≤ 1.
We discuss now the existence of finite sets of experimental equations in one

variable that characterize unitary superoperators, that is, the operators Rα,θ,ϕ, for
α ∈ (−π, π], θ ∈ [0, π/2], and ϕ ∈ [0, 2π). First observe that, due to the restric-
tions of experimental equations, there are unitary superoperators that they cannot
distinguish.

Fact 4.1. Let α ∈ [0, π], θ ∈ [0, π/2], and ϕ1, ϕ2 ∈ [0, 2π) such that ϕ1 �= ϕ2. Let
(E) be a finite set of experimental equations in m variables. If (Rα,θ,ϕ1 ,G2, . . . ,Gm)
satisfies (E), then there exist G′

2, . . . ,G
′
m and G′′

2 , . . . ,G
′′
m such that (R−α,θ,ϕ1 ,G

′
2, . . . ,

G′
m) and (Rα,θ,ϕ2 ,G

′′
2 , . . . ,G

′′
m) both satisfy (E).

In the Bloch ball formalism this corresponds to the following degrees of freedom
in the choice of the orthonormal basis of R

3. Since experimental equations contain
exactly the states |0〉〈0| and |1〉〈1|, there is no freedom in the choice of the z-axis, but
there is complete freedom in the choice of the x and y axes. The indistinguishability
of the latitude ϕ corresponds to the freedom of choosing the oriented x-axis, and
the indistinguishability of the sign of α corresponds to the freedom of choosing the
orientation of the y-axis.

We introduce the following notations. Let Rα,θ denote the superoperator family
{R±α,θ,ϕ : ϕ ∈ [0, 2π)}. For ϕ ∈ [0, 2π), let the NOTϕ transformation be defined
by NOTϕ|0〉 = eiϕ|1〉 and NOTϕ(eiϕ|1〉) = |0〉, and recall that the Hadamard trans-
formation Hϕ obeys Hϕ|0〉 = (|0〉 + eiϕ|1〉)/√2 and Hϕ(eiϕ|1〉) = (|0〉 − eiϕ|1〉)/√2.
Observe that Hϕ = Rπ,π/4,ϕ and NOTϕ = Rπ,π/2,ϕ for ϕ ∈ [0, 2π). Finally let
H = {Hϕ : ϕ ∈ [0, 2π)}, and N = {NOTϕ : ϕ ∈ [0, 2π)}.
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Since the sign of α cannot be determined, we will assume that α is in the interval
[0, π]. We will also consider only unitary superoperators such that α/π is rational.
This is a reasonable choice, since these superoperators form a dense subset of all
unitary superoperators. For such a unitary superoperator, let nα be the smallest
positive integer n for which nα = 0 mod 2π. Then either nα = 1 or nα ≥ 2, and
there exists t ≥ 1 which is coprime with nα such that α = (t/nα)2π. Observe that
the case nα = 1 corresponds to the identity superoperator.

Our first theorem shows that almost all families Rα,θ are characterizable by some
finite set of experimental equations.

Theorem 4.2. Let (α, θ) ∈ (0, π]× (0, π/2]\{(π, π/2)} be such that α/π is ratio-
nal. Let zk(α, θ) = cos2 θ + sin2 θ cos(kα). Then the following experimental equations
characterize Rα,θ:

Pr0[Gnα(|1〉〈1|)] = 0,(4.3)

Pr0[Gk(|0〉〈0|)] = (1 + zk(α, θ))/2, k ∈ {1, 2, . . . , nα}.(4.4)

In particular, since H = Rπ,π/4, the family H is characterized by

Pr0[G2(|1〉〈1|)] = 0, Pr0[G2(|0〉〈0|)] = 1,

Pr0[G(|0〉〈0|)] = 1/2.

Proof. First observe that every CPSO in Rα,θ satisfies the experimental equations

of the theorem since the z-coordinate of Rk
α,θ,ϕ(|0〉〈0|) is zk(α, θ) for every ϕ ∈ [0, 2π).

Let G be a CPSO that satisfies these equations. We will prove that G is a unitary
superoperator. Then, Fact 4.3 implies that G ∈ Rα,θ.

Since z1(α, θ) �= ±1, G(|0〉〈0|) �∈ {|0〉〈0|, |1〉〈1|}. Observing that Gnα(|0〉〈0|) =
|0〉〈0|, Lemma 3.1(b) implies that G(|0〉〈0|) is a pure state. Thus |0〉〈0|, |1〉〈1|, and
G(|0〉〈0|) are distinct pure states, and since Gnα acts as the identity on them, by
Lemma 3.2 it is the identity mapping. Hence, by Lemma 3.3, G is a unitary super-
operator.

Fact 4.3. Let α ∈ (0, π], θ ∈ (0, π/2], α′ ∈ (−π, π], θ′ ∈ (0, π/2] be such that α/π
is rational. If zk(α, θ) = zk(α

′, θ′) for k ∈ {1, 2, . . . , nα}, then |α′| = α and θ′ = θ.
The remaining families Rα,θ for which α/π is rational are {R−α,Rα}, for α ∈

[0, π], and N . Let us recall that M is the CPSO that represents the von Neumann
measurement in the computational basis. Since M satisfies exactly the same equations
as R±α, and NOT0 ◦ M satisfies exactly the same equations as NOTϕ, for any
ϕ ∈ [0, 2π), these families are not characterizable by experimental equations in one
variable. Nevertheless it turns out that together with the family H they become
characterizable. This is stated in the following theorem.

Theorem 4.4. The family {(Hϕ,NOTϕ) : ϕ ∈ [0, 2π)} ⊂ H ×N is character-
ized by the experimental equations in two variables (F ,G):

Pr0[F (|0〉〈0|)] = 1/2, Pr0[F 2(|0〉〈0|)] = 1, Pr0[F 2(|1〉〈1|)] = 0,
Pr0[G(|0〉〈0|)] = 0, Pr0[G(|1〉〈1|)] = 1,

Pr0[F ◦G2 ◦ F (|0〉〈0|)] = 1, Pr0[F ◦G ◦ F (|0〉〈0|)] = 1.

If α/π is rational, then the family H × {R±α} is characterized by the experimental
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equations in two variables (F ,G):

Pr0[F (|0〉〈0|)] = 1/2, Pr0[F 2(|0〉〈0|)] = 1, Pr0[F 2(|1〉〈1|)] = 0,
Pr0[G(|0〉〈0|)] = 1, Pr0[G(|1〉〈1|)] = 0,
Pr0[F ◦Gnα ◦ F (|0〉〈0|)] = 1, Pr0[F ◦G ◦ F (|0〉〈0|)] = (1 + cosα)/2.

In particular, since I2 = R0, the identity transformation on 1 qubit is characterizable;
namely, the family H× {I2} is characterized by

Pr0[F (|0〉〈0|)] = 1/2, Pr0[F 2(|0〉〈0|)] = 1, Pr0[F 2(|1〉〈1|)] = 0,
Pr0[G(|0〉〈0|)] = 1, Pr0[G(|1〉〈1|)] = 0,
Pr0[F ◦G ◦ F (|0〉〈0|)] = 1.

Proof. Let us consider the first characterization. Observe that every couple (F ,G)
of {(Hϕ,NOTϕ) : ϕ ∈ [0, 2π)} satisfies the system of experimental equations.

Let now F and G be two CPSOs that satisfy the system. The CPSO F satisfies
also the system in (4.3) for α = π and θ = π/4; thus, from Theorem 4.2 there
exists 0 ≤ ϕ < 2π such that F = Hϕ. By hypothesis, G2 acts as the identity on
|0〉〈0| and |1〉〈1|. Moreover Hϕ ◦ G2 ◦ Hϕ(|0〉〈0|) = |0〉〈0|. Let us apply Hϕ on
both sides of the previous equality. Since H2

ϕ = I2, the CPSO G2 acts also as the
identity on Hϕ(|0〉〈0|). Therefore using Lemma 3.2 we get that G2 is the identity;

then, by Lemma 3.3, G is a unitary CPSO. Since |0〉〈0| and |1〉〈1| are exchanged
together under the action of G, the rotation axis of G is necessarily in the plane with
equation z = 0. Moreover this axis goes through Hϕ(|0〉〈0|) because from the last
experimental equation G acts as the identity on Hϕ(|0〉〈0|). We conclude that the
CPSO G is NOTϕ.

We now consider the second characterization. The system is clearly satisfied by
every pair (F ,G) in H× {R±α}.

Let now F and G be two CPSOs that satisfy the system of experimental equa-
tions. Like in the previous characterization, there exists a real 0 ≤ ϕ < 2π such that
F = Hϕ, and Gnα is the identity. Therefore G is a unitary CPSO. Since G acts
as the identity on |0〉〈0| and |1〉〈1|, the rotation axis of G is the z-axis. The last
experimental equation implies that the angle α′ ∈ (−π, π] of the rotation G satisfies
cosα′ = cosα; that is, α′ = ±α.

4.2. Characterization of c-NOT gates. In this section we will extend our
theory of characterization of CPSO families for several qubits. In particular, we will
show that the family of c-NOT gates together with the family H is characterizable.
First we need some definitions.

For every ϕ ∈ [0, 2π), we define c-NOTϕ as the only unitary transformation
over C

4 satisfying c-NOTϕ(|0〉|ψ〉) = |0〉|ψ〉 and c-NOTϕ|1〉|ψ〉 = |1〉NOTϕ|ψ〉 for all
|ψ〉 ∈ C

2.
We extend the definition of the experimental equation for CPSOs given in (4.2)

for n qubits. When variables denote CPSOs for n qubits, it is an equation of the form

(4.5) Prv[F k1 ◦Gl1 ◦ · · · ◦ F kt ◦Glt(|w〉〈w|)] = r,

where, in addition to the notation of (4.2), v, w ∈ {0, 1}n, and Prv is the probability
of measuring |v〉〈v|. When variables denote CPSOs for less than n qubits, we also
allow both the tensor product of two CPSO variables and the tensor product of a
CPSO variable with the identity. We now state the characterization.
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Theorem 4.5. The family {(Hϕ, c-NOTϕ) : ϕ ∈ [0, 2π)} is characterized by
the experimental equations in two variables (F ,G):

Pr0[F (|0〉〈0|)] = 1/2, Pr0[F 2(|0〉〈0|)] = 1, Pr0[F 2(|1〉〈1|)] = 0,
Pr00[G(|00〉〈00|)] = 1, Pr01[G(|01〉〈01|)] = 1,
Pr11[G(|10〉〈10|)] = 1, Pr10[G(|11〉〈11|)] = 1,
Pr00[(I2 ⊗ F ) ◦G ◦ (I2 ⊗ F )(|00〉〈00|)] = 1,
Pr10[(I2 ⊗ F ) ◦G ◦ (I2 ⊗ F )(|10〉〈10|)] = 1,

Pr00[(F ⊗ I2) ◦G2 ◦ (F ⊗ I2)(|00〉〈00|)] = 1,

Pr01[(F ⊗ I2) ◦G2 ◦ (F ⊗ I2)(|01〉〈01|)] = 1,
Pr00[(F ⊗ F ) ◦G ◦ (F ⊗ F )(|00〉〈00|)] = 1.

Proof. First observe that every pair (F ,G) in {(Hϕ, c-NOTϕ) : ϕ ∈ [0, 2π)}
satisfies the experimental equations of the theorem.

Let F and G satisfy these equations. By Theorem 4.2, with α = π and θ = π/4,
the first three equations imply that F = Hϕ for some ϕ ∈ [0, 2π). Let ρ = Hϕ(|0〉〈0|).
The remaining equations imply that G2 acts as the identity on {|0〉〈0|, |1〉〈1|, ρ}⊗2

.
Then Lemma 3.2 implies that G2 = I4, and it follows from Lemma 3.3 that G is a
unitary CPSO.

We now show that indeed G = c-NOTϕ. To simplify we will suppose that ϕ = 0,
since one can replace |1〉 by |1′〉 = eiϕ|1〉. Let G ∈ U(4) be a unitary transformation
such that G is the corresponding CPSO. Then, since G acts as the identity on |00〉〈00|,
there exists a real 0 ≤ γ < 2π such that G|00〉 = eiγ |00〉. Since G is also the
corresponding CPSO of the unitary transformation e−iγG, we can suppose that γ = 0
w.l.o.g.. By hypothesis G acts as the identity on the density matrices |01〉〈01| and
|0〉〈0| ⊗ ρ. Therefore the linearity of G necessarily implies that G|01〉 = |01〉.

Using a similar argument, since G acts as c-NOT0 on the density matrices
|10〉〈10|, |11〉〈11|, and |1〉〈1| ⊗ ρ, there exists a real 0 ≤ γ′ < 2π such that G|10〉 =
eiγ

′ |11〉 and G|11〉 = eiγ
′ |10〉.

Then the last experimental equation, which states that G acts as the identity on
ρ⊗ ρ, implies

G(|00〉 + |01〉 + |10〉 + |11〉) = eiγ
′′
(|00〉 + |01〉 + |10〉 + |11〉)

for some 0 ≤ γ′′ < 2π. We now conclude the proof by observing that the linearity of
G implies γ′ = 0, γ′′ = 0, and therefore G = c-NOT0.

5. Robustness. In this section we introduce the notion of robustness for exper-
imental equations which will be the crucial ingredient for proving self-testability. For
simplicity we will deal only with the case of experimental equations for one qubit and
in one variable. From now on (E) will always denote a set of such equations. Similar
results can be obtained for several qubits and several variables.

Definition 5.1. Let ε, δ ≥ 0, and let (E) be a finite satisfiable set of experimental
equations. We say that (E) is (ε, δ)-robust if whenever a CPSO G ε-satisfies (E), we
have dist∞(G,F(E)) ≤ δ.

When a CPSO family is characterized by a finite set of experimental equations
(E), one would like to prove that (E) is robust. The next theorem shows that this is
always the case.
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Theorem 5.2. Let (E) be a finite satisfiable set of experimental equations. Then
there exists an integer k ≥ 1 and a real C > 0 such that, for all ε ≥ 0, (E) is
(ε, Cε1/k)-robust.

The proof uses the structure of semialgebraic sets. Therefore we introduce a few
notions of algebraic geometry over reals for which the reader can refer, for example,
to [9]. A (real) semialgebraic set is a subset of R

m such that X = {x ∈ R
m : Q(x)},

where Q a finite Boolean combination of expressions of type P (x) > 0, P (x) <
0, or P (x) = 0 for any real polynomial P . Finite unions, finite intersections, and
complements of such sets remain semialgebraic sets. One of the main results on
these sets is that their projections also remain semialgebraic sets. This is Tarski-
Seidenberg’s theorem (see, e.g., [9, Thm. 2.3.4]). A consequence of that theorem is
that we can also use quantifiers ∃y ∈ Y and ∀y ∈ Y , where Y is a semialgebraic set,
for defining semialgebraic sets.

Let X ⊆ R
m. A function f : X → R

m′
is semialgebraic if its graph representation

is a semialgebraic set. The composition of two semialgebraic functions is also semi-
algebraic. Tarski-Seidenberg’s theorem implies that every real function defined over
X ⊆ R

m by x �→ inf{f(x, y) : (x, y) ∈ X ′} (respectively, x �→ sup{f(x, y) : (x, y) ∈
X ′}), where X ′ ⊆ R

m′
and f : X ′ → R are semialgebraic, is also semialgebraic (see,

e.g., [16, Cor. A.2.4]). In particular, the function that maps an element toward its dis-
tance to a compact semialgebraic set is a continuous semialgebraic function. Another
fundamental consequence of Tarski-Seidenberg’s theorem for continuous semialgebraic
functions is Lojasiewicz’s inequality. For a proof of the following fact, see, for exam-
ple, [9, Prop. 2.3.11].

Fact 5.3 (Lojasiewicz’s inequality). Let X ⊆ R
m be a compact semialgebraic

set. Let f, g : X → R be continuous semialgebraic functions. Assume that for all
x ∈ X if f(x) = 0, then g(x) = 0. Then there exists an integer k ≥ 1 and a real
C > 0 such that, for all x ∈ X, |g(x)|k ≤ C|f(x)|.

We can now prove Theorem 5.2, that is, the generic robustness for experimental
equations.

Proof. In the proof, C is identified with R
2. Then the set K of CPSOs for one

qubit is a real compact semialgebraic set. Indeed we prove that, for every n, the set
Kn of all CPSOs for n qubits is a real compact semialgebraic set using one of the
Kraus representations for CPSOs. For that, let Tr2 be the partial trace operator.
Namely, Tr2 is the unique linear map C

N2 ⊗C
N2

, where N = 2n, such that, for every
i, j = 1, . . . , N2 and every V ∈ C

N2

,

Tr2(V ⊗ |i〉〈j|) =

{
V if i = j,

0 otherwise.

Then the set Kn satisfies the following (see, e.g., [25, Chap. 3, sect. 3]):

Kn = {G : ∃A ∈ U(N2), ∀V ∈ C
N×N , G(V ) = Tr2(A(V ⊗ IN )A†)}.

Since U(N2) is a compact semialgebraic set, Kn is also a compact semialgebraic set.
Suppose now that in (E) there are d equations. Let f : K → R be the function

that maps the CPSO G to the maximum of the magnitudes of the difference between
the probability term and the constant term of the ith equation in (E) for i = 1, . . . , d.
By definition of f , we get f−1(0) = F(E). Moreover, f is a continuous semialgebraic
function, since it is the maximum of the magnitudes of polynomial functions in the
(real) coefficients of G.
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Let g : K → R be defined in G by g(G) = dist∞(G,F(E)). Since K is a compact
semialgebraic set, g is a continuous semialgebraic function. Moreover, for all G ∈ K,
we have f(G) = 0 if and only if g(G) = 0. Then Fact 5.3 concludes the proof.

In some cases we can explicitly compute the constants C and k of Theorem 5.2.
We will illustrate these techniques with the equations in Theorem 4.2 for the case
α = π and θ = π/4. Let us recall that these equations characterize the set H.

Theorem 5.4. For every 0 ≤ ε ≤ 1, the following equations are (ε, 1824
√
ε)-

robust:

Pr0[G(|0〉〈0|)] = 1/2, Pr0[G2(|0〉〈0|)] = 1,

Pr0[G2(|1〉〈1|)] = 0.

Proof. Let G be a CPSO which ε-satisfies the equations. First we will show
that there is a point ρ ∈ S with z-coordinate 0 whose distance from G(|0〉〈0|) is
at most 10

√
ε. The last two equations imply that ‖G2(|b〉〈b|) − |b〉〈b|‖1 ≤ 3

√
ε for

b = 0, 1. Therefore ‖G2(|0〉〈0|) − G2(|1〉〈1|)‖1 ≥ 2 − 6
√
ε, and by Lemma 3.1(a)

we have ‖G(|0〉〈0|) − G(|1〉〈1|)‖1 ≥ 2 − 6
√
ε. Thus ‖G(|b〉〈b|)‖ ≥ 1 − 6

√
ε for b =

0, 1. Let τ = ρ(1/2, α), where G(|0〉〈0|) = ρ(p, α). The first equation implies that
‖τ −G(|0〉〈0|)‖ ≤ 2ε. Therefore for ρ = τ/‖τ‖ we get ‖G(|0〉〈0|) − ρ‖1 ≤ 10

√
ε.

The point ρ on S uniquely defines ϕ ∈ [0, 2π) such that Hϕ(|0〉〈0|) = ρ. One can
verify that H−1

ϕ ◦G acts as the identity with error at most 19
√
ε on the four density

matrices |0〉〈0|, |1〉〈1|, Hϕ(|0〉〈0|), and Hϕ(|1〉〈1|). From Lemma 3.5 we conclude
that ‖G−Hϕ‖∞ ≤ 1824

√
ε.

6. Quantum self-testers. In this final section we formally define our testers
and establish the relationship between robust equations and testability. Again, we
will do it here only for the case of one qubit and one variable. Let G be a CPSO.
The experimental oracle O[G] for G is a probabilistic procedure. It takes inputs from
{0, 1} × N and generates outcomes from the set {0, 1} such that for every k ∈ N

Pr[O[G](b, k) = 0] = Pr0[Gk(|b〉〈b|)].
An oracle program T with an experimental oracle O[G] is a program denoted by
TO[G] which can ask queries from the experimental oracle in the following sense:
When it presents a query (b, k) to the oracle, in one computational step it receives
the probabilistic outcome of O[G] on it.

Definition 6.1. Let F be a family of CPSOs, and let 0 ≤ δ1 ≤ δ2 < 1. A
(δ1, δ2)-tester for F is a probabilistic oracle program T such that for every CPSO G

• if dist∞(G,F) ≤ δ1, then Pr[TO[G] says PASS] ≥ 2/3,
• if dist∞(G,F) > δ2, then Pr[TO[G] says FAIL] ≥ 2/3,

where the probability is taken over the probability distribution of the outcomes of the
experimental oracle and the coin tosses of the program.

Since norms are equivalent in fixed dimension, the testability of families of CPSOs
acting on a constant number of qubits does not change for any norm. This is stated
in the following fact.

Fact 6.2. Assume that T is a (δ1, δ2)-tester for a family F of CPSOs for k-
qubits. Then T is a (δ1/α, δ2/β)-tester for F when dist∞ is replaced by any distance
d such that βd(G,G′) ≤ dist∞(G,G′) ≤ αd(G,G′), for all CPSOs G,G′ for k-qubits
and for 0 < β ≤ α.

Theorem 6.3. Let ε, δ > 0, and let (E) be a satisfiable set of d experimental
equations such that the size of every equation is at most k. If (E) is (ε, δ)-robust,
then there exists an (ε/(3k), δ)-tester for F(E) which makes O(d ln(d)/ε2) queries.



628 W. VAN DAM, F. MAGNIEZ, M. MOSCA, AND M. SANTHA

Proof. We will describe a probabilistic oracle program T . Let G be a CPSO.
We can suppose that, for every equation in (E), T has a rational number r̃ such
that |r̃ − r| ≤ ε/6, where r is the constant term of the equation. By sampling the
oracle O[G], for every equation in (E), T obtains a value p̃ such that |p̃ − p| ≤ ε/6
with probability at least 1 − 1/(3d), where p is the probability term of the equation.
A standard Chernoff bound argument shows that this is feasible with O(ln(d)/ε2)
queries for each equation. If for every equation |p̃ − r̃| ≤ 2ε/3, then T says PASS;
otherwise, T says FAIL. Using the robustness of (E) and Fact 6.4, one can verify that
T is a (ε/(3k), δ)-tester for F(E).

Fact 6.4. Let (E) be a finite satisfiable set of experimental equations such that
the size of every equation is at most k, and let G be a CPSO. For every ε ≥ 0, if
dist∞(G,F(E)) ≤ ε, then G (kε)-satisfies (E).

Our main result is the consequence of Theorems 4.2, 4.4, 4.5, 5.2, 5.4, and 6.3
and the many-qubit generalizations of them.

Theorem 6.5. Let F be one of the following families:
• Rα,θ for (α, θ) ∈ (0, π] × (0, π/2]\{(π, π/2)}, where α/π is rational,
• {(Hϕ,NOTϕ) : ϕ ∈ [0, 2π)},
• H × {R±α} for α/π rational,
• {(Hϕ, c-NOTϕ) : ϕ ∈ [0, 2π)},
• {(Hϕ,Rsπ/4, c-NOTϕ) : ϕ ∈ [0, 2π), s = ±1}.

Then there exists an integer k ≥ 1 and a real C > 0 such that, for all ε > 0, F has
an (ε, Cε1/k)-tester which makes O(1/ε2) queries. Moreover, for every 0 < ε ≤ 1, H
has an (ε/6, 4579

√
ε)-tester which makes O(1/ε2) queries.

Note that each triplet of the last family forms a universal and fault-tolerant set
of quantum gates [7].
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Abstract. This paper considers the problem of designing fast, approximate, combinatorial
algorithms for multicommodity flows and other fractional packing problems. We present new, faster,
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1. Introduction. Consider the problem of computing a maximum s-t flow in a
graph with unit edge capacities. While there are many different algorithms known
for this problem we discuss one which views the problem purely as one of packing s-t
paths so that constraints imposed by edge capacities are not violated. The algorithm
associates a length with each edge and at any step it routes a unit flow along the
shortest s-t path. It then multiplies the length of every edge on this path by 1 + ε
for a fixed ε. Thus the longer an edge is the greater the flow through it is. Since we
always choose the shortest s-t path to route flow along, we essentially try to balance
the flow on all edges in the graph. One can argue that, if, after sufficiently many
steps, M is the maximum flow through an edge, then the flow computed is almost M
times the maximum s-t flow. Therefore scaling the flow by M gives a feasible flow
which is almost maximum.

Note that the length of an edge at any step is exponential in the total flow go-
ing through the edge. Such a length function was first proposed by Shahrokhi and
Matula [22], who used it to compute the throughput of a given multicommodity flow
instance. While this problem (and all other problems considered in this paper) can
be formulated as a linear program and solved to optimality using fast matrix multi-
plication [24], the authors of [22] were mainly interested in providing fast, possibly
approximate, combinatorial algorithms. Their procedure, which applied only to the
case of uniform edge capacities, computed a (1 + ω)-approximation to the maximum
throughput in time polynomial in ω−1. The key idea of their procedure, which was
adopted in numerous subsequent papers, was to compute an initial flow by disregard-
ing edge capacities and then to reroute this, iteratively, along short paths so as to
reduce the maximum congestion on any edge.

The running time of [22] was improved significantly by Klein et al. [17]. It was
then extended and refined to the case of arbitrary edge capacities by Leighton et al.

∗Received by the editors September 30, 2004; accepted for publication (in revised form) October
30, 2006; published electronically June 15, 2007.

http://www.siam.org/journals/sicomp/37-2/44623.html
†Computer Science and Engineering, Indian Institute of Technology, New Delhi, India

(naveen@cse.iitd.ac.in). This work of this author was supported by the EU ESPRIT LTR Project
N. 20244 (ALCOM-IT). This work was done while the author was at the Max-Planck-Institut für
Informatik, Im Stadtwald, 66123 Saarbrücken, Germany.

‡Department of Combinatorics and Optimization, University of Waterloo, ON N2L 3G1, Canada
(jochen@math.uwaterloo.ca). This work was done while the author was at the Universität des Saar-
landes, Im Stadtwald, 66123 Saarbrücken, Germany.

630



APPROXIMATING FRACTIONAL PACKING PROBLEMS 631

[18], Goldberg [11], and Radzik [21] to obtain better running times; see Table 1 for
the current best bound.

Plotkin, Shmoys, and Tardos [20] observed that a similar technique could be
applied to solve any fractional packing problem. Their approach to packing problems
starts with an infeasible solution. The amount by which a packing constraint is
violated is captured by a variable which is exponential in the extent of this violation.
At any step the packing is modified by a fixed amount in a direction determined by
these variables. Hence, the running time of the procedure depends upon the maximum
extent to which any constraint could be violated; this is referred to as the width of
the problem [20]. In [20], the authors propose several width-reduction techniques in
order to decrease the (pseudopolynomial) running time of the algorithm.

Grigoriadis and Khachiyan [13] consider block angular packing problems which
are problems of the form

min
{
λ|∑k

i=1 f
i(xi) ≤ λe, xi ∈ Bi, 1 ≤ i ≤ k

}
,

where Bi is a convex set, f i : Bi → R
m is a nonnegative convex function, and e is

the vector of all 1’s. They assume the existence of an oracle which, given i, 1 ≤ i ≤
k, nonnegative vector y, and scalar μ, computes min

{
yT f i(x)|f i(x) ≤ μe, x ∈ Bi

}
,

and they show how to find a (1 + ε)-approximation to the block angular packing
problem with only k2 lnm(ε−2 + ln k) calls to this oracle. In [14], Grigoriadis and
Khachiyan show that this problem can also be solved in km(ε−2 ln ε−1 + lnm) calls
to an oracle which computes min

{
yT f i(x)|x ∈ Bi

}
. Note that both these running

times are independent of the width of the problem.
All the problems that we consider in this paper can be formulated as block angular

packing problems. This is immediate for the maximum concurrent flow and the min-
cost multicommodity flow problems. For these problems, the blocks are single com-
modity flows. In [13], the oracle corresponds to finding a min-cost single-commodity
flow, while in [14], the oracle is a shortest path computation.

The maximum multicommodity flow problem can also be formulated as a block
angular packing problem with one block, B, which is the set of all multicommodity
flows of total value 1. For a flow x ∈ B, f(x) is a vector denoting the fraction of the
capacity utilized by x on the edges. If for a flow x, f(x) ≤ λe, then the flow x/λ
satisfies all capacities and routes 1/λ units. Thus computing maximum flow is the
same as minimizing λ. A similar idea can also be used to formulate fractional packing
as a block angular convex program.

In a significant departure from this line of research and motivated by ideas from
randomized rounding, Young [25] proposed an oblivious rounding approach to packing
problems. Young’s approach has the essential ingredient of previous approaches—a
length function which measures, and is exponential in, the extent to which each con-
straint is violated by a given solution. However, [25] builds the solution from scratch
and at each step adds to the packing a variable which violates only such packing
constraints that are not already too violated. In particular, for multicommodity flow,
it implies a procedure which does not involve rerouting flow (the flow is scaled only
at the end) and which for the case of maximum s-t flow reduces to the algorithm
discussed at the beginning of this section.

Our contributions. In this paper we provide a unified framework for multi-
commodity flow and packing problems which yields significantly simpler and faster
algorithms than previously known. Our approach is similar to Young’s approach to
packing problems. However, we develop a new and simple combinatorial analysis
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which has the added flexibility that it allows us to make the greatest possible advance
at each step. Thus for the setting of maximum s-t flows with integral edge capacities,
Young’s procedure routes a unit flow at each step, while our procedure would route
enough flow so as to saturate the minimum capacity edge on the shortest s-t path.
This simple modification is quite powerful and delivers a slightly better running time
and a much simpler proof.

Our approach yields a new, very natural, algorithm for maximum concurrent flow
(section 5) which extends in a straightforward manner to min-cost multicommodity
flows (section 6). These algorithms use a min-cost flow computation as a subroutine
and have running times that match the best known. We also provide algorithms for
these two problems which use shortest path computations as a subroutine and are
faster than previous algorithms. One idea in these algorithms which is key to the
faster running times is to organize all computation sequentially and to use the length
updates done at one step in the computations done at all subsequent steps. This is,
in some ways, similar to the round-robin idea employed by Radzik [21].

This paper first appeared as a technical report in [9] and then as an extended
abstract in [10]. Subsequently the approach presented here has been extended and
improved results have been obtained for almost all the problems considered here. For
the maximum multicommodity flow problem, Fleischer [7] obtained a running time
that is independent of the number of commodities. Karakostas [15] obtained a corre-
sponding result for the maximum multicommodity flow and min-cost multicommodity
flow problems. We discuss the ideas behind these improvements in the appropriate
sections.

Bienstock and Iyengar [4] recently adapted a method by Nesterov [19] in order to
obtain a (1+ω)-approximation for generalized packing problems. The ω-dependence of
the running time of their algorithm is O((1/ω)·log 1/ω), as opposed to a dependence of
O(1/ω2) of our algorithms. However, their algorithm needs to solve a convex quadratic
program in each iteration, and this is computationally substantially more expensive
than the oracle calls necessary in our algorithms. As a result, our algorithms remain
faster than the algorithm by Bienstock and Iyengar for a fixed or moderately small ω.

Table 1 summarizes our results. All our algorithms are deterministic and compute
a (1 + ω)-approximation to the optimum solution. In giving the running times we
ignore polylog factors; the Õ denotes this fact.

Table 1

A summary of our results. Here, D denotes the number of nonzero entries in the given con-
straint matrix and L is the maximum number of nonzero entries in a column.

Problem Previous best Our running time Subseq. improvement

Max. mult. flow Õ(ω−2km2) [14] Õ(ω−2km2) Õ(ω−2m2) [7]

Frac. packing Õ(ω−2mD) [14] Õ(ω−2mD) Õ(ω−2(mL + D)) [26]

Maximum Õ(ω−2kmn) [21] Õ(ω−2kmn)

concurrent flow Õ(ω−2km2) [14] Õ(ω−2(k + m)m) Õ(ω−2m2) [15]

Max. cost-bd. Õ(ω−2kmn) [12] Õ(ω−2kmn)

conc. flow Õ(ω−2km2) [14] Õ(ω−2(k + m)m) Õ(ω−2m2) [15]

The framework introduced in this paper for multicommodity flow problems was
extended by Fleischer and Wayne [8] to generalized flow. The book by Bienstock [3] is
a good survey of the theoretical issues and computational studies done on this topic.
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2. Maximum multicommodity flow. Given a graph G = (V,E) with edge
capacities c : E → R

+ and k pairs of terminals (s1, t1), . . . , (sk, tk), with one com-
modity associated with each pair, we want to find a multicommodity flow such that
the sum of the flows of all commodities is maximized. Let Pj be the set of sj , tj-paths
in G for all 1 ≤ j ≤ k, and define P to be the union of P1, . . . ,Pk. Also, let Pe be
the set of paths in P that use edge e for all e ∈ E. The path-flow linear programming
formulation for the maximum multicommodity flow problem has a variable x(p) for
the flow sent along each path p ∈ P:

max
∑

p∈P
x(p)(Pmmc)

s.t.
∑

p∈Pe

x(p) ≤ c(e) ∀e ∈ E,

x ≥ 0.

The dual to this linear program associates a length l(e) with each of the edges e ∈ E:

min D(l)
def
=

∑

e∈E

c(e) · l(e)(Dmmc)

s.t.
∑

e∈p

l(e) ≥ 1 ∀p ∈ P,

l ≥ 0.

Observe that the above two linear programs (Pmmc) and (Dmmc) have exponential
size. Optimal solutions can, however, be found in polynomial time as equivalent
polynomial-size edge-flow formulations exist (e.g., see [1]).

In the following let distj(l) be the length of the shortest sj , tj-path with respect

to length l for 1 ≤ j ≤ k. Also let α(l)
def
= minj distj(l) be the minimum length path

between any pair of terminals. Then (Dmmc) is equivalent to finding a length function

l : E → R
+ such that D(l)

α(l) is minimized. Let β
def
= minl D(l)/α(l).

The algorithm proceeds in iterations. Let li−1 be the length function at the
beginning of the ith iteration and fi−1 be the total flow routed in iterations 1 . . . i−1.
Let P be a path of length α(li−1) between a pair of terminals, and let c be the capacity
of the minimum capacity edge on P . In the ith iteration we route c units of flow along
P . Thus fi = fi−1 + c. The function li differs from li−1 only in the lengths of the
edges along P ; these are modified as li(e) = li−1(e)(1+ εc/c(e)), where ε is a constant
to be chosen later.

Initially every edge e has length δ, i.e., l0(e) = δ for some constant δ to be chosen
later. For brevity we denote α(li), D(li) by α(i), D(i), respectively. The procedure
stops after t iterations, where t is the smallest number such that α(t) ≥ 1.

2.1. Analysis. For every iteration i ≥ 1

D(i) =
∑

e

li(e)c(e)

=
∑

e

li−1(e)c(e) + ε
∑

e∈P

li−1(e)c

= D(i− 1) + ε(fi − fi−1)α(i− 1),
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which implies that

(1) D(i) = D(0) + ε

i∑

j=1

(fj − fj−1)α(j − 1).

Consider the length function li−l0. Note that D(li−l0) = D(i)−D(0) and α(li−l0) ≥
α(i)− δL, where L is the maximum number of edges on any simple path in G. Hence

(2) β ≤ D(li − l0)

α(li − l0)
≤ D(i) −D(0)

α(i) − δL
.

Substituting this bound on D(i) −D(0) into (1), we get

α(i) ≤ δL +
ε

β

i∑

j=1

(fj − fj−1)α(j − 1).

To solve the above recurrence we first note that the sequence x(0), x(1), . . . x(i), . . . ,

where x(i) = δL + ε
β

∑i
j=1(fj − fj−1)x(j − 1), dominates the sequence

α(0), α(1), . . . , α(i), . . . ,

where x(0) = α(0). Now

x(i) = δL +
ε

β

i−1∑

j=1

(fj − fj−1)x(j − 1) +
ε

β
(fj − fj−1)x(i− 1)

= x(i− 1)(1 + ε(fi − fi−1)/β)

≤ x(i− 1)eε(fi−fi−1)/β .

Since x(0) = α(0) ≤ δL we have x(i) ≤ δLeεfi/β , and this implies

α(i) ≤ δLeεfi/β .

By our stopping condition

(3) 1 ≤ α(t) ≤ δLeεft/β ,

and hence

(4)
β

ft
≤ ε

ln(δL)−1
.

Claim 2.1. There is a feasible flow of value ft
log1+ε

1+ε
δ

.

Proof. Consider an edge e. For every c(e) units of flow routed through e the length
of e increases by a factor of at least 1 + ε. The last time its length was increased, e
was on a path of length strictly less than 1. Since every increase in edge-length is by
a factor of at most 1 + ε, lt(e) < 1 + ε. Since l0(e) = δ it follows that the total flow
through e is at most c(e) log1+ε

1+ε
δ . Scaling the flow, ft, by log1+ε

1+ε
δ then gives a

feasible flow of claimed value.
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Thus the ratio of the values of the optimum dual and the primal solutions, γ, is
β
ft

log1+ε
1+ε
δ . By substituting the bound on β/ft from (4) we obtain

γ ≤ ε log1+ε
1+ε
δ

ln(δL)−1
=

ε

ln(1 + ε)

ln 1+ε
δ

ln(δL)−1
.

The ratio ln(1+ε)δ−1

ln(δL)−1 equals (1 − ε)−1 for δ = (1 + ε)((1 + ε)L)−1/ε. Hence with this

choice of δ we have

γ ≤ ε

(1 − ε) ln(1 + ε)
≤ ε

(1 − ε)(ε− ε2/2)
≤ (1 − ε)−2.

Since this quantity should be no more than our approximation ratio (1+w), we choose
ε appropriately.

2.2. Running time. In the ith iteration we increase the length of the minimum
capacity edge along P by a factor of 1 + ε. Since, for any edge e, l0(e) = δ and
lt(e) < 1 + ε, the number of iterations in which e is the minimum capacity edge on
the path chosen in that iteration is at most � 1

ε log1+ε L�. Using the fact that there
are m edges we get the following theorem.

Theorem 2.1. There is an algorithm that computes a (1 + ω)-approximation
to the maximum multicommodity flow in time O(ω−2km logL · Tsp), where L is the
maximum number of edges on a path between any source-sink pair and Tsp is the time
required to compute the shortest s-t path in a graph with nonnegative edge-weights.

2.3. Subsequent improvements. Fleischer [7] made the interesting observa-
tion that it suffices to route flow along an approximate shortest path and that if the
path chosen at each step is an a approximation to the shortest path then the approx-
imation guarantee worsens only by a multiplicative factor a. Her algorithm proceeds
in phases, each of which is composed of k iterations. If at the start of the ith phase the
shortest path between each pair has length at least α, then in the jth iteration of this
phase we route the jth commodity along any path of length at most α(1+ε) and move
to the next iteration only when the shortest path between sj , tj is at least α(1 + ε).
This ensures that at the end of the ith phase every (sj , tj) pair is at least α(1 + ε)
apart. Hence the number of phases is at most log1+ε δ

−1. The algorithm performs one
shortest path computation in each iteration that does not result in flow being routed.
Hence the total number of shortest path computations is (m + k)� 1

ε log1+ε L�. Since
k can be as large as O(n2), Fleischer eliminates the dependence of the running time
on k by routing all commodities with the same source in an iteration. It is possible
to do this without additional effort since Dijkstra’s algorithm for computing shortest
paths gives the shortest path to every node in the graph.

3. Packing LP. A packing LP is a linear program of the kind

max
{
cTx|Ax ≤ b, x ≥ 0

}
,

where A, b, and c are (m× n), (m× 1), and (n× 1) matrices, all of whose entries are
positive. We also assume that for all i, j, the (i, j)th entry of A, A(i, j), is at most
b(i). The dual of this LP is min

{
bT y|AT y ≥ c, y ≥ 0

}
.

We view the rows of A as edges and the columns as paths. b(i) is the capacity of
edge i, and every unit of flow routed along the jth column consumes A(i, j) units of
capacity of edge i while providing a benefit of c(j) units.



636 NAVEEN GARG AND JOCHEN KÖNEMANN

The dual variable y(i) corresponds to the length of edge i. Define the length of

a column j with respect to the dual variables y as lengthy(j)
def
=

∑
i A(i, j)y(i)/c(j).

Finding a shortest path now corresponds to finding a column whose length is mini-

mum; define α(y)
def
= minj lengthy(j). Also define D(y)

def
= bT y. Then the dual program

is equivalent to finding a variable assignment y such that D(y)/α(y) is minimized.

Once again our procedure will be iterative. Let yk−1 be the dual variables and
fk−1 the value of the primal solution at the beginning of the kth iteration. Let q be
the minimum length column of A, i.e., α(yk−1) = lengthyk−1

(q)—this corresponds
to the path along which we route flow in this iteration. The minimum capacity
edge is the row for which b(i)/A(i, q) is minimum; let this be row p. Thus in this
iteration we will increase the primal variable x(q) by an amount b(p)/A(p, q) so that
fk = fk−1 + c(q)b(p)/A(p, q). The dual variables are modified as

yk(i) = yk−1(i)

(
1 + ε

b(p)/A(p, q)

b(i)/A(i, q)

)
,

where ε is a constant to be chosen later.

The initial values of the dual variables are given by y0(i) = δ/b(i) for some
constant δ to be chosen later. For brevity we denote α(yk), D(yk) by α(k), D(k),
respectively. Thus D(0) = mδ. The procedure stops at the first iteration t such that
D(t) ≥ 1.

3.1. Analysis. The analysis here proceeds almost exactly as in the case of max-
imum multicommodity flow. For every iteration k ≥ 1

D(k) =
∑

i

b(i)yk(i)

=
∑

i

b(i)yk−1(i) + ε
b(p)

A(p, q)

∑

i

A(i, q)yk−1(i)

= D(k − 1) + ε(fk − fk−1)α(k − 1),(5)

which, as before, implies that

D(k) = D(0) + ε

k∑

l=1

(fl − fl−1)α(l − 1).

Let β
def
= miny D(y)/α(y). Then β ≤ D(l − 1)/α(l − 1), and so

D(k) ≤ mδ +
ε

β

k∑

l=1

(fl − fl−1)D(l − 1).

In order to solve this recurrence, we first define

x(i) = mδ +
ε

β

k∑

l=1

(fl − fl−1)x(l − 1)
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for all i ≥ 0. We note that the sequence (x(i))i≥0 dominates the sequence (D(i))i≥0.
Now

x(k) = mδ +
ε

β

k−1∑

l=1

(fl − fl−1)x(l − 1) +
ε

β
(fk − fk−1)x(k − 1)

=

(
1 +

ε

β
(fk − fk−1)

)
x(k − 1)

≤ eε(fk−fk−1)/βx(k − 1)

≤ eεfk/βx(0) = mδ · eεfk/β .

Using D(k) ≤ x(k) we therefore obtain

D(k) ≤ mδeεfk/β ,

and by our stopping condition

(6) 1 ≤ D(t) ≤ mδeεft/β ,

and hence

β

ft
≤ ε

ln(mδ)−1
.

Claim 3.1. There is a feasible solution to the packing LP of value ft
log1+ε

1+ε
δ

.

Proof. The primal solution x we constructed has value ft. However, it may not
be feasible since some packing constraint (

∑
j A(i, j)x(j))/b(i) ≤ 1 may be violated.

When we pick column q and increase x(q) by b(p)/A(p, q) we increase the left-hand

side (LHS) of the ith constraint by A(i,q)b(p)
b(i)A(p,q) (= z, say). Simultaneously we increase

the dual variable y(i) by a multiplicative factor of 1 + εz. By our definition of p it
follows that z ≤ 1, and hence increasing the LHS of the ith constraint by 1 causes an
increase in y(i) by a multiplicative factor of at least 1+ ε. Note that yt−1(i) < 1/b(i),
and so yt(i) < (1 + ε)/b(i). Since y0(i) = δ/b(i) it follows that the final value of the
LHS of the ith constraint is no more than log1+ε

1+ε
δ . Since this is true for every i,

scaling the primal solution by log1+ε
1+ε
δ gives a feasible solution of value as in the

claim.
The rest of the analysis is exactly the same as in section 2.1 with m replacing L.

Thus δ = (1 + ε)((1 + ε)m)−1/ε.

3.2. Running time. In the kth iteration we increase the dual variable of the
“minimum capacity” row by a factor of (1+ε). Since for any row i, y0(i) = δ/b(i) and
yt(i) < (1 + ε)/b(i) and there are m rows in all, the total number of iterations is at
most m� 1

ε log1+ε m�. For explicitly given packing programs one requires O(D) time
to compute the minimum length column, where D is the number of nonzero entries
in the matrix A. This implies a running time of mD� 1

ε log1+ε m� for computing a
(1 − ε)−2-approximation to the packing LP.

Theorem 3.1. There is an algorithm that computes a (1 + ω)-approximation to
the packing LP in time O(ω−2mD logm), where m is the number of rows and D is
the number of nonzero entries in the given constraint matrix.
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3.3. Subsequent improvements. Young [26] observed that with Fleischer’s
technique this running time improves to Õ(ω−2(mL+D)), where L is the maximum
number of nonzero entries in a column and D is the number of nonzero entries in the
constraint matrix.

4. Spreading metrics. Given a graph G = (V,E) with edge costs c : E → R
+,

a spreading metric is an assignment of lengths to the edges, l : E → R
+, so as to

minimize
∑

e l(e)c(e) subject to the constraint that for any set S ⊆ V and vertex
r ∈ S,

∑
v∈S distr,v(l) ≥ f(S), where distr,v(l) is the distance from r to v under the

length function l and f() is a function only of the size of S. For the linear arrangement
problem f(S) = (|S| − 1)(|S| − 3)/4 [6], while for the problem of computing a ρ-
separator1 f(S) is defined as |S| − ρ|V | [5].

Since the length function l is positive, the shortest paths from r to the other ver-
tices in S form a tree—the shortest path tree rooted at r. Thus the above constraints
can be equivalently stated as follows: for any tree T , for any subset S of vertices in
T , and for any vertex r ∈ S

∑

v∈S

distr,v(l, T ) ≥ f(S),

where distr,v(l, T ) denotes the distance from r to v in tree T under the length function
l.

Let ue(T, S, r) be the number of vertices of S in the subtree below edge e when
T is rooted at r. Then the above constraint can be rewritten again to obtain the LP

min
∑

e

l(e)c(e)

s.t.
∑

e∈T

l(e)ue(T, S, r) ≥ f(S) ∀T, ∀S ⊆ T, ∀r ∈ S,

l ≥ 0.

The dual of this program, which is a packing LP, has a nonnegative variable x(T, S, r)
for every tree T , subset S ⊆ T , and vertex r ∈ S and is as follows:

max
∑

T,S,r

x(T, S, r)f(S)

s.t.
∑

T :e∈T

x(T, S, r)ue(T, S, r) ≤ c(e) ∀e ∈ E,

x ≥ 0.

Note that the packing LP has exponentially many variables. However, the (1+w)-
approximation to the optimum fractional solution, in the previous section, needed an
oracle that returned only the “most violated constraint” of the dual LP. In this set-
ting, this oracle is a subroutine, which, given a length function l, finds a triple (T, S, r)
for which (

∑
e∈T l(e)ue(T, S, r))/f(S) or, equivalently, (

∑
v∈S distr,v(l, T ))/f(S) is

minimum.

1A minimum cost set of edges whose removal disconnects the graph into connected components,
each of which has at most ρ|V | vertices.
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Our subroutine will try out all n choices for vertex r and for each of these it will
determine the best choice of T, S. For a given r and every subset S, the expression∑

v∈S distr,v(l, T ) is minimized when T is the tree of shortest paths from r and under
the length function l. Therefore, for a given r, our choice of T will be the shortest
path tree rooted at r. Since f(S) depends only on |S|, given that |S| = k, the ratio
(
∑

v∈S distr,v(l, T ))/f(S) is minimized when S is the set of k nearest vertices to r.
Amongst the n different choices for k, and hence for S, we choose the set for which
the above ratio is minimum. Having found the best triple (T, S, r), we now determine
the extent to which x(T, S, r) is increased by considering all edges in T and finding
the edge for which c(e)/ue(T, S, r) is minimum.

The subroutine thus requires n single-source shortest path computations. The
running time of the procedure is obtained by noting that the subroutine is invoked
once in each of the m� 1

ε log1+ε m� iterations.

Theorem 4.1. There is an algorithm that computes a (1 + ω)-approximation
to spreading metrics in time O(ω−2mn logm · Tsp), where Tsp is the time required to
compute single-source shortest paths in a graph with nonnegative edge-weights.

It is easy to improve the running time by a factor n by using Fleischer’s idea.
After computing the shortest path tree from a certain root vertex and finding the best
set S we continue with the same root vertex until the ratio is at least (1+ ε) times the
ratio at the start of the phase. Our analysis is now almost exactly the same as for the
maximum multicommodity flow problem and leads to a running time of Õ(ω−2m2).

5. Maximum concurrent flow. Once again we are given a graph with edge
capacities c : E → R

+ and k commodities with sj , tj being the source and sink,
respectively, for commodity j. Now each commodity has a demand d(j) associated
with it, and we want to find the largest λ such that there is a multicommodity flow
which routes λd(j) units of commodity j.

In the following, let Fj be the set of flows that transport d(j) units of flow from
sj to tj for all 1 ≤ j ≤ k. Similar to section 2, we use F to denote the union of
F1, . . . ,Fk. For a flow f ∈ F and an edge e ∈ E, we let fe be the amount of flow
sent across e. We can then formulate the maximum concurrent flow problem as the
following LP:

max λ(Pmcf)

s.t.
∑

f∈F
fe · x(f) ≤ c(e) ∀e ∈ E,

∑

f∈Fj

x(f) ≥ λ ∀1 ≤ j ≤ k,

x ≥ 0, λ ≥ 0.

Its dual has a length l(e) for each edge e ∈ E, and a variable z(j) for each commodity
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1 ≤ j ≤ k:

min D(l)
def
=

∑

e∈E

c(e)l(e)(Dmcf)

s.t.
∑

e∈E

fe · l(e) ≥ z(j) ∀1 ≤ j ≤ k,∀f ∈ Fj ,

k∑

j=1

z(j) ≥ 1,

l, z ≥ 0.

For a given l : E → R
+, z(j) is the minimum cost of shipping d(j) units of flow from

sj to tj under cost function l, henceforth denoted by min costj(l). Let

α(l)
def
=

k∑

j=1

min costj(l).

LP (Dmcf) can now be recast as finding an assignment of lengths to the edges, l : E →
R

+, such that D(l)/α(l) is minimized. Let β be this minimum. For now we assume
that β ≥ 1 and shall remove this assumption later.

The algorithm now proceeds in phases; each phase is composed of k iterations.
Consider the jth iteration of the ith phase and let li,j−1 be the length function before
this iteration. In this iteration we route d(j) units of commodity j along the paths
given by min costj(li,j−1). Let fi,j(e) be the flow through edge e. The length function
is modified as li,j(e) = li,j−1(e)(1 + εfi,j(e)/c(e)). Then

D(li,j) =
∑

e

li,j(e)c(e)

= D(li,j−1) + ε
∑

e

li,j−1(e)fi,j(e)

= D(li,j−1) + ε · min costj(li,j−1).

The lengths at the start of the (i+1)th phase are the same as those at the end of the
ith phase, i.e., li+1,0 = li,k. Initially, for any edge e, l1,0(e) = δ/c(e) = l0,k(e).

5.1. The analysis. We shall be interested in the values of the functions D(), α()
only for the length functions li,k, i ≥ 0. For brevity we denote D(li,k), α(li,k) by
D(i), α(i), respectively. With this new notation we have for i ≥ 1

D(i) = D(li,k) = D(li,0) + ε

k∑

j=1

min costj(li,j−1).

Since the edge-lengths are monotonically increasing, min costj(li,j−1) ≤ min costj(li,k),
and hence

(7) D(i) ≤ D(li,0) + ε

k∑

j=1

min costj(li,k) = D(i− 1) + εα(i).
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Since D(i)
α(i) ≥ β we have

D(i) ≤ D(i− 1)

1 − ε/β
.

Since D(0) = mδ we have for i ≥ 1

D(i) ≤ mδ

(1 − ε/β)i

=
mδ

1 − ε/β

(
1 +

ε

β − ε

)i−1

≤ mδ

1 − ε/β
e

ε(i−1)
β−ε

≤ mδ

1 − ε
e

ε(i−1)
β(1−ε) ,

where the last inequality uses our assumption that β ≥ 1.
The procedure stops at the first phase t for which D(t) ≥ 1. Therefore,

1 ≤ D(t) ≤ mδ

1 − ε
e

ε(t−1)
β(1−ε) ,

which implies

(8)
β

t− 1
≤ ε

(1 − ε) ln 1−ε
mδ

.

In the first t− 1 phases, for every commodity j, we have routed (t− 1)d(j) units.
However, this flow may violate capacity constraints.

Claim 5.1. λ > t−1
log1+ε 1/δ .

Proof. Consider an edge e. For every c(e) units of flow routed through e, we
increase its length by at least a factor 1 + ε. Initially, its length is δ/c(e), and after
t− 1 phases, since D(t− 1) < 1, the length of e satisfies lt−1,k(e) < 1/c(e). Therefore
the total amount of flow through e in the first t − 1 phases is strictly less than

log1+ε
1/c(e)
δ/c(e) = log1+ε 1/δ times its capacity. Scaling the flow by log1+ε 1/δ implies

the claim.
Thus the ratio of the values of the dual and primal solutions, γ, is strictly less

than β
t−1

log1+ε 1/δ. Substituting the bound on β/(t− 1) from (8), we get

γ <
ε log1+ε 1/δ

(1 − ε) ln 1−ε
mδ

=
ε

(1 − ε) ln(1 + ε)

ln 1/δ

ln 1−ε
mδ

.

For δ = (m/(1 − ε))−1/ε the ratio ln 1/δ

ln 1−ε
mδ

equals (1 − ε)−1, and hence

γ ≤ ε

(1 − ε)2 ln(1 + ε)
≤ ε

(1 − ε)2(ε− ε2/2)
≤ (1 − ε)−3.

Now it remains to choose ε suitably so that (1 − ε)−3 is at most our desired approxi-
mation ratio 1 + w.
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5.2. Running time. By weak-duality we have

1 ≤ γ <
β

t− 1
log1+ε

1

δ
,

and hence the number of phases in the above procedure, t, is strictly less than 1 +
β log1+ε 1/δ, which implies that t = �β

ε log1+ε
m

1−ε�.
The running time of our computation depends on β, which can be reduced/

increased by multiplying the demands/capacities appropriately. Let zi be the max-

imum possible flow of commodity i, and let z
def
= mini zi/d(i). Then z denotes the

maximum fraction of the demands that can be routed independently, and hence
z/k ≤ β ≤ z. We scale the capacities/demands so that z/k = 1 thus satisfying
our assumption that β ≥ 1. Note, however, that β could now be as large as k.

If our procedure does not stop within 2� 1
ε log1+ε

m
1−ε� (= T , say) phases, then

we know that β ≥ 2. We double the demands of all commodities and continue the
procedure. Note that β is now half its value in the previous phase and is at least
1. We run the procedure for an additional T phases and if it does not halt we again
double demands. Since we halve the value of β after every T phases, the total number
of phases is at most T log k.

Theorem 5.1. There is an algorithm that computes a (1 + ω)-approximation
to the maximum concurrent flow in time O(ω−2k log k logm · Tmcf), where Tmcf is
the time required to compute a minimum cost s-t flow in a graph with nonnegative
edge-costs.

The number of phases can be reduced further using an idea from [20]. We first
compute a 2-approximation to β using the procedure outlined above. This requires
O(log k logm) phases and returns β̂, β ≤ β̂ ≤ 2β. Now create a new instance by

multiplying demands by β̂/2; this instance has 1 ≤ β ≤ 2. Therefore, we need at
most an additional T phases to obtain a (1 +w)-approximation. Thus the number of
phases is O(logm(log k + (ε ln 1 + ε)−1)), which multiplied by k gives the number of
single-commodity min-cost flow computations required.

5.3. Avoiding min-cost flow computations. We now show how min-cost flow
computations can be avoided in the above algorithm for the maximum concurrent
flow problem. Using the notation introduced in section 2, an alternate path-flow LP
formulation of the maximum concurrent flow problem is as follows:

max λ(P 2
mcf)

s.t.
∑

p∈Pe

x(p) ≤ c(e) ∀e ∈ E,

∑

p∈Pj

x(p) ≥ λ · d(j) ∀1 ≤ j ≤ k,

x ≥ 0, λ ≥ 0.
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Its linear programming dual has a length l(e) for each edge e ∈ E and a variable z(j)
for each commodity j:

min D(l)
def
=

∑

e∈E

c(e)l(e)(D2
mcf)

s.t.
∑

e∈p

l(e) ≥ z(j) ∀1 ≤ j ≤ k,∀p ∈ Pj ,

k∑

j=1

d(j) · z(j) ≥ 1,

l, z ≥ 0.

For a given l : E → R
+, z(j) is the shortest path between sj and tj under length

function l. Define

α(l)
def
=

∑

j

d(j)distj(l),

where distj(l) denotes the shortest path distance between sj and tj under the length
function l. The dual (D2

mcf) can then be viewed as an assignment of lengths to edges,
l : E → R

+, such that D(l)/α(l) is minimized. Let β be this minimum.
The structure of this new algorithm is similar to that in the previous section.

Thus the algorithm runs in phases, each of which is composed of k iterations. In
the jth iteration of the ith phase, we route d(j) units of commodity j in a sequence
of steps. Let ls−1

i,j be the length function before the sth step, and let P s
i,j be the

shortest path between sj and tj ; i.e., P s
i,j has length distj(l

s−1
i,j ). In this step we

route fs
i,j = min

{
c, ds−1

i,j

}
units of flow along P s

i,j , where c is the capacity of the

minimum capacity edge on this path. We now set dsi,j to ds−1
i,j − fs

i,j ; the iteration
ends after p steps, where dpi,j = 0.

Thus at each step we perform a shortest path computation instead of a min-cost
flow computation as in section 6. The length functions are modified in exactly the
same manner as before and the analysis is almost exactly the same. Thus after routing
all flow of commodity j we have

D(lpi,j) ≤ D(l0i,j) + ε · d(j)distj(lpi,j),
and after routing all commodities in the ith phase we have

D(li,k) ≤ D(li,0) + ε

k∑

j=1

d(j)distj(li,k).

Using the same abbreviations as before we again obtain

D(i) ≤ D(i− 1) + εα(i).

Beyond this point we follow the analysis of section 5.1 to argue that we have a (1+ω)-
approximation for the same choice of ε and δ.

For the running time we again note that in each step, except the last one in an
iteration, we increase the length of at least one edge by a factor 1 + ε. Since each
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edge has an initial length of δ and a final length less than 1 + ε, the number of steps
exceeds the number of iterations by at most m log1+ε

1+ε
δ . Thus the total number of

steps is at most (2k log k + m)� 1
ε log1+ε

m
1−ε� and each of these involves one shortest

path computation.
Recall from the previous section that we needed k initial maximum flow compu-

tations to compute an approximate interval for the optimum throughput. We now
describe a technique introduced by Grigoriadis and Khachiyan [14] to compute a
slightly larger interval using k shortest path computations.

Define a length l(e) = 1/c(e) for each edge e ∈ E. For 1 ≤ i ≤ k, let Pi be a
shortest si, ti-path with respect to this length. Then let f be the flow obtained by
sending d(i) units of flow along path Pi for all 1 ≤ i ≤ k concurrently. Let f∗ be an
optimum concurrent flow that feasibly routes β · d(i) units of flow from si to ti for
each commodity i and define f̄ as (1/β)f∗. Flow f̄ routes the full demand of d(i)
units of flow between si and ti for each 1 ≤ i ≤ k while sending at most (1/β) · c(e)
of flow on each edge e ∈ E. The total length of flow f̄ under l is

∑

e∈E

1

c(e)
· f̄e ≤ m

β
.

It is not hard to see that the total length of flow f is at most that of f̄ , and hence

1

c(ē)
· fē ≤

∑

e∈E

fe
c(e)

≤ m

β

for all edges ē ∈ E. Equivalently, the flow f · (β/m) is feasible. The maximum
congestion of f is given by

λ = max
e∈E

fe
c(e)

≤ m

β
.

Thus, the flow f/λ is feasible and has a throughput of at least β/m, i.e., β ∈
[1/λ,m/λ]. Using this interval for β, the total number of phases used in our algorithm
becomes T logm.

Theorem 5.2. There is an algorithm that computes a (1 + ω)-approximation
to the maximum concurrent flow in time O(ω−2(k logm + m) logm · Tsp) where Tsp

is the time required to compute the shortest s-t path in a graph with nonnegative
edge-weights.

5.4. Subsequent improvements. Karakostas [15] improved the running time
of the above algorithm by removing the dependence on k. This was done in a manner
similar to the approach followed for maximum multicommodity flow. Thus in an
iteration all commodities with the same source are considered together. The shortest
path to all sinks are computed with one call to Dijkstra’s algorithm and flow is routed
along these paths in ratio of the demands of the various commodities. As before, in
each step of the iteration, except the last, the length of at least one edge increases by
a factor 1+ ε. However, the number of iterations in a phase is now at most min(k, n),
and hence the overall running time is Õ(ω−2m2).

6. Minimum cost multicommodity flow. Given an instance of the multi-
commodity flow problem, as in the previous section, edge costs b : E → R

+, where
b(e) represents the cost incurred in shipping one unit of flow along edge e, and a bound
B, we consider the problem of maximizing λ subject to the additional constraint that
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the cost of the flow is no more than B. In the following LP formulation we use the
notation introduced in section 5 and we let b(f) denote the cost of a flow f ∈ F under
cost function b:

max λ(Pmcmcf)

s.t.
∑

f∈F
fe · x(f) ≤ c(e) ∀e ∈ E,

∑

f∈Fj

x(f) ≥ λ ∀1 ≤ j ≤ k,

∑

f∈F
b(f) · x(f) ≤ B,

x ≥ 0, λ ≥ 0.

Its dual has a length l(e) for each edge e ∈ E, variables z(1), . . . , z(k) for the through-
put constraints, and a variable φ for the cost constraint. We will view φ as the length
of the cost constraint.

min D(l, φ)
def
=

∑

e∈E

c(e)l(e) + B · φ(Dmcmcf)

s.t.
∑

e∈E

fe · (l(e) + b(e)φ) ≥ z(j) ∀1 ≤ j ≤ k,∀f ∈ Fj ,

k∑

j=1

z(j) ≥ 1,

l, z ≥ 0.

For a given l : E → R
+, z(j) is the minimum cost of shipping d(j) units of flow

from sj to tj under cost function l+bφ. Define α(l, φ)
def
=

∑
j min costj(l + φb). Then

(Dmcmcf) can be restated as finding a length function (l, φ) such that D(l, φ)/α(l, φ)
is minimum; let β denote this minimum value. As in the case of maximum concurrent
flow we begin by assuming that β ≥ 1.

Once again the algorithm proceeds in phases, each of which is composed of k
iterations. In the jth iteration of the ith phase we begin with length functions
(li,j−1, φi,j−1) and route d(j) units of commodity j. As before, for all edges e, de-
fine li+1,0(e) = li,k(e) and l1,0(e) = l0,k(e) = δ/c(e). Similarly, φi+1,0 = φi,k and
φ1,0 = δ/B.

The flow in each iteration is routed in a sequence of steps; in each step we route
only so much flow that its cost does not exceed the bound B. Let (ls−1

i,j , φs−1
i,j ) be

the length functions at the start of the sth step (see Figure 1); the lengths at the
start of the first step are given by l0i,j = li,j−1 and φ0

i,j = φi,j−1. Further, let ds−1
i,j

be the flow of commodity j that remains to be routed in this iteration. We com-

pute fs
i,j

def
= min costj(l

s−1
i,j + bφs−1

i,j ), which routes d(j) units of flow of commodity

j. Since we need to route only ds−1
i,j units of flow, we multiply the flow function

fs
i,j by ds−1

i,j /d(j). If Bs
i,j is the cost of flow fs

i,j , then the cost of the scaled flow is
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li,j

li−1,k

ith phase

1st iter jth iter. kth iter

pth stepsth step1st step

li,0 li,j−1

lpi,j

li+1,0l0i,j

lsi,j

li,kls−1
i,j

Fig. 1. The notation used in section 6. The length functions above the central axis are the
lengths before the box on the right, and the ones below are the lengths after the box on the left.

Bs
i,jd

s−1
i,j /d(j). If this quantity exceeds B, then we multiply the original flow function

fs
i,j by Bs

i,j/B. We reuse notation and denote the final scaled flow and its cost by

fs
i,j , B

s
i,j , respectively. Now fs

i,j routes at most ds−1
i,j units of flow at cost Bs

i,j ≤ B.
The length functions are modified in a similar manner as before. Thus lsi,j =

ls−1
i,j (1 + εfs

i,j(e)/c(e)) and φs
i,j = φs−1

i,j (1 + εBs
i,j/B). Further, only dsi,j = ds−1

i,j − fs
i,j

more units of commodity j remain to be routed in this iteration. The iteration ends
at the step p for which dpi,j = 0. The procedure stops at the first step at which D()
exceeds 1; let this happen in the tth phase.

6.1. Analysis. Note that now

D(lsi,j , φ
s
i,j)

= D(ls−1
i,j , φs−1

i,j ) + ε · min costj(l
s−1
i,j + bφs−1

i,j )fs
i,j/d(j)

≤ D(ls−1
i,j , φs−1

i,j ) + ε · min costj(l
p
i,j + bφp

i,j)f
s
i,j/d(j),

where the last inequality holds because the edge-lengths are monotonically increasing
over steps. The total flow routed in the p steps equals the demand of commodity j,
i.e.,

∑p
s=1 f

s
i,j = d(j). Summing over all p steps, we get

D(lpi,j , φ
p
i,j) ≤ D(l0i,j , φ

0
i,j) + ε · min costj(l

p
i,j + bφp

i,j).

The length functions at the start of the (j + 1)th iteration are given by li,j = lpi,j and
φi,j = φp

i,j . Moving from steps to iterations we have

D(li,j , φi,j)

≤ D(li,j−1, φi,j−1) + ε · min costj(li,j + bφi,j)

≤ D(li,j−1, φi,j−1) + ε · min costj(li,k + bφi,k),

where the last inequality uses the fact that the edge-lengths are monotonically in-
creasing over iterations. Summing over all iterations in the ith phase, we have

D(li,k, φi,k) ≤ D(li,0, φi,0) + ε

k∑

j=1

min costj(li,k + bφi,k)

= D(li−1,k, φi−1,k) + εα(li,k, φi,k).
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As before we abbreviate D(li,k, φi,k), α(li,k, φi,k) to D(i), α(i), respectively, to obtain

D(i) ≤ D(i− 1) + εα(i).

The remainder of the analysis is exactly as in section 5.1. The only modification is
in the claim about the throughput of the flow routed. Now we need to argue that
the cost of the flow after we scale it by log1+ε 1/δ is at most B or, equivalently, that
the cost of the flow routed in the first t − 1 iterations is at most B log1+ε 1/δ. This
follows from the facts that φt−1,k < 1/B (since D(t − 1) < 1), that φ1,0 = δ/B, and
that in our procedure every time we route flow whose total cost is B we increase φ by
at least a factor 1 + ε.

6.2. Running time. Note that except for the last step in each iteration, in all
other steps we increase the length function φ by a factor 1 + ε. This implies that the
total number of steps exceeds the number of iterations by at most log1+ε 1/δ.

Now define zi as the maximum possible flow of commodity i of cost no more than

B. Again z
def
= mini zi/d(i) denotes the maximum fraction of the demands that can be

routed if the capacity constraints and the bound B on the cost of the flow are applied
independently to each commodity. Thus z/k ≤ β ≤ z, and we multiply demands
suitably so that for the new instance 1 ≤ β ≤ k. As before we double the demands,
thereby halving β, after every T = 2� 1

ε log1+ε
m

1−ε� phases. Thus the number of
iterations is kT log k, and our procedure for minimum cost multicommodity flow needs
at most (2k log k + 1)� 1

ε log1+ε
m

1−ε� single-commodity min-cost flow computations.

Theorem 6.1. There is an algorithm that computes a (1 + ω)-approximation to
the maximum cost-bounded concurrent flow in time O(ω−2k log k logm·Tmcf+kTmcbf),
where Tmcf is the time required to compute a minimum-cost s-t flow in a graph with
nonnegative edge-costs and Tmcbf is the time required to compute the maximum s-t
flow of cost at most B in a capacitated network with nonnegative edge costs.

6.3. Avoiding min-cost flow computations. Much like in section 5.3 we can
give an alternate path-flow formulation for the minimum-cost multicommodity flow
problem. In the following we let b(p) denote the cost of path p ∈ P:

max λ(P 2
mcmcf)

s.t.
∑

p∈Pe

x(p) ≤ c(e) ∀e ∈ E,

∑

p∈Pj

x(p) ≥ λ · d(j) ∀1 ≤ j ≤ k,

∑

p∈P
b(p) · x(p) ≤ B,

x ≥ 0, λ ≥ 0.
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Its linear programming dual has a length l(e) for each edge e ∈ E, a length φ for the
cost constraint, and a variable z(j) for each commodity j:

min D(l, φ)
def
=

∑

e∈E

c(e)l(e) + B · φ(D2
mcmcf)

s.t.
∑

e∈p

(l(e) + b(e)φ) ≥ z(j) ∀1 ≤ j ≤ k,∀p ∈ Pj ,

k∑

j=1

d(j) · z(j) ≥ 1,

l, z ≥ 0.

For a given l : E → R
+, z(j) is the shortest path between sj and tj under length

function l + bφ. We now define α(l, φ)
def
=

∑
j d(j)distj(l + bφ). The dual to the min-

cost multicommodity flow problem is an assignment of lengths to edges, l : E → R
+,

and a scalar φ such that D(l)/α(l) is minimized. Let β be this minimum.
The algorithm differs from the one developed in section 6 in that at any step

we route flow along only one path, which, if this is the sth step of the jth phase of
the ith iteration, is the shortest path between sj and tj under the length function
ls−1
i,j + bφs−1

i,j . If the minimum capacity edge on this path has capacity c, then the flow
function at this step, fs

i,j , corresponds to routing c units of flow along this path. If

c ≤ ds−1
i,j and the cost of this flow is less than B, we route this flow completely. Else

we scale it so that the flow routed in this step has cost no more than B and the total
flow routed in this iteration does not exceed d(j).

The analysis of the algorithm proceeds as in section 6.1 with the only modification
that min costj(.) is replaced with d(j)distj(.). For the running time we need only
observe that in each step, except the last step in an iteration, we increase either the
length of some edge or the value of φ by a factor 1 + ε. The lengths of the edges and
φ can each be increased by a factor 1+ ε at most log1+ε

1+ε
δ times. Hence the number

of steps exceeds the number of iterations by at most (m + 1)� 1
ε log1+ε

m
1−ε�.

Similar to section 5.3, we now describe how an idea proposed by Grigoriadis and
Khachiyan [14] can be adapted to find a good estimate on the maximum throughput β
subject to capacity and cost bounds. Once again, we define the length le of each edge
e ∈ E as b(e)/B+1/c(e). For each 1 ≤ i ≤ k, let Pi be the shortest si, ti-path for this
length. Then define f to be the flow obtained by routing d(i) units of flow along Pi

for all commodities i simultaneously. As before, let f∗ be an optimum cost-bounded
flow with throughput β and define f̄ as f∗ · (1/β). The flow f̄ routes d(i) units of
flow between the terminals of each of the k commodities.

The total length of flow f̄ under length l is

∑

e∈E

(b(e)/B + 1/c(e)) · f̄e ≤ m + 1

β
.

The total length of flow f is at most that of f̄ , and hence

1

c(e)
· fe ≤ m + 1

β
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for all edges e ∈ E and

1

B
·
∑

e∈E

b(e)fe ≤ m + 1

β
.

The flow (β/(m + 1))f is therefore a feasible cost-bounded flow with throughput
β/(m + 1).

Define the congestion of f as

λ = max

{∑
e∈E b(e)fe

B
,max
e∈E

fe
c(e)

}
≤ m + 1

β
.

From the above we conclude that the optimal throughput β must be in the interval
[1/λ, (m + 1)/λ]. Using this interval for β, the total number of phases used in the
algorithm becomes T log(m + 1).

Theorem 6.2. There is an algorithm that computes a (1 + ω)-approximation
to the maximum concurrent flow in time O(ω−2(m + k logm) logm · Tsp), where Tsp

is the time required to compute the shortest s-t path in a graph with nonnegative
edge-weights.

6.4. Subsequent improvements. Karakostas [15] showed how to remove the
dependence of the running time on k by grouping commodities with a common source.
The shortest paths are now computed with respect to the length function l + φb and
only so much flow is routed that the cost of flow routed is no more than B. This
leads to a (1+ω)-approximation algorithm for computing the maximum cost-bounded
concurrent flow in time Õ(ω−2m2).

7. Integrality. A multicommodity flow has integrality q if the flow of every
commodity on every edge is a nonnegative integer multiple of q. In this section we
show how small modifications to the algorithms discussed in previous sections lead to
flows that have small integrality.

Our algorithm for maximum multicommodity flow routes flow along a path P in
the ith iteration. If c is the minimum capacity of an edge on P , then we require that
the flow routed in this iteration be no more than c. However, note that if we route q <
c units along P and increase the length of an edge e on P by a factor (1+εq/c(e)), then
the algorithm still delivers a (1−ε)−2-approximation to the maximum multicommodity
flow, albeit with a worse running time. To obtain a feasible flow we eventually scale
the flow constructed in this manner by log1+ε 1/δ. Thus if we were routing q units in
a certain iteration, then only q

log1+ε 1/δ units would “appear” in the feasible solution.

Theorem 7.1. Let e be the minimum capacity edge in G and q ≤ c(e). Then
one can in polynomial time compute a flow f which is a (1 − ε)−2-approximation to
the maximum multicommodity flow and has integrality qε

log1+ε L
.

Corollary 7.2. If all edges in G have capacity at least 1
ε log1+ε L, then there is

an integral flow which is a (1− ε)−2-approximation to the maximum multicommodity
flow.

For maximum concurrent flow we use the algorithm from section 5.3. Recall that
in the sth step of the jth iteration in the ith phase we route fs

i,j = min
{
c, ds−1

i,j

}

units of flow along path P s
i,j , where c is the minimum capacity of an edge on this path

and ds−1
i,j is the residual demand of the jth commodity. As in the case of maximum

multicommodity flow we route q < fs
i,j units of flow in this step and increase the

length of an edge e on P by a factor (1 + εq/c(e)). To ensure that exactly q units of
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flow can be routed in each step of the jth iteration we require that d(j) be an integral
multiple of q. To obtain a feasible flow we scale the flow constructed by log1+ε 1/δ.
Hence in the final solution the flow appears in units of qε

log1+ε m/(1−ε) .

Theorem 7.3. Let e be the minimum capacity edge in G and q ≤ c(e). If all
demands are integral multiples of q, then one can, in polynomial time, compute a
flow f which is a (1− ε)−3-approximation to the maximum concurrent flow and f has
integrality qε

log1+ε m/(1−ε) .

Corollary 7.4. If all edges in G have capacity at least 1
ε log1+ε

m
1−ε and all

demands are integral multiples of 1
ε log1+ε

m
1−ε , then there is an integral flow which is

a (1 − ε)−3-approximation to the maximum concurrent flow.
The above theorem and its corollary also hold for the setting of min-cost multi-

commodity flows.

8. Improvements in practice. In this section we propose a heuristic for our
algorithms that turns out to improve running times greatly in practice. The idea is
best explained with the example of the maximum multicommodity algorithm from
section 2. To route (fi − fi−1) units of flow in iteration i, we computed k shortest
paths which was later improved to one shortest path computation by Fleischer.

The idea now is to allow flow to be routed along paths which have lengths greater
than the shortest path. More precisely, let l be the vector of current edge lengths and
let f be the total flow routed so far. Let β̂ be an upper bound on β. We allow flow to

be routed along a path P if its length is at most Lδeεf/β̂ , where L, ε, and δ are defined
as in section 2. The amount of flow routed along P equals the minimum capacity of
an edge on P . The edge-lengths are updated in the same manner as before. The
procedure stops when

1 ≤ Lδeεf/β̂ .

We first show that in the modified algorithm we can always find a path whose
length is at most the given bound. Observe that the α(j − 1) on the right side of (1)
really denotes the length of the path along which flow was routed in the jth iteration.

As our induction hypothesis we assume that this quantity is at most δLeεfj−1/β̂ , which
in turn is at most δLeεfj−1/β ; we denote this last expression by y(j− 1). This implies
that the length of the shortest path at the ith iteration, α(i), is bounded as

α(i) ≤ δL +
ε

β

i∑

j=1

(fj − fj−1)y(j − 1).

Recall the solution of the recurrence for the sequence x in section 2.1. It follows that
the expression on the right is at most δLeεfi/β , which shows that the shortest path
between any pair has length less than the specified bound.

In the original algorithm in section 5 we used the stopping condition in two ways.
We argued that the length of any edge is no more than 1+ε and that δLeεft/β ≥ 1. The
termination condition of the modified algorithm is the same as the second property.
The first property also holds since all paths along which flow was ever routed had
length at most 1.

This modification to the algorithm allows one to continue sending flow on a path
until its length exceeds the specified bound. Thus we can now route more flow for
every shortest path computation performed. This same heuristic can be adapted to
the other problems considered in this paper to obtain better running times in practice.



APPROXIMATING FRACTIONAL PACKING PROBLEMS 651

Acknowledgments. The authors thank Philip Klein, Cliff Stein, and Neal Young
for useful discussions.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows, Prentice–Hall, Englewood
Cliffs, NJ, 1993.

[2] B. Awerbuch and F. T. Leighton, Improved approximation algorithms for the multicommod-
ity flow problem and local competitive routing in dynamic networks, in Proceedings of the
ACM Symposium on Theory of Computing, ACM, New York, 1994, pp. 487–496.

[3] D. Bienstock, Potential Function Methods for Approximately Solving Linear Programming
Problems: Theory and Practice, Kluwer Academic Publishers, Dordrecht, The Netherlands,
2002.

[4] D. Bienstock and G. Iyengar, Approximating fractional packings and coverings in O(1/ε)
iterations, SIAM J. Comput., 35 (2006), pp. 825–854.

[5] G. Even, J. Naor, S. Rao, and B. Schieber, Fast approximate graph partitioning algorithms,
SIAM J. Comput., 28 (1999), pp. 2187–2214.

[6] G. Even, S. Naor, S. Rao, and B. Schieber, Divide-and-conquer approximation algorithms
via spreading metrics, J. ACM, 47 (2000), pp. 585–616.

[7] L. K. Fleischer, Approximating fractional multicommodity flow independent of the number
of commodities, SIAM J. Discrete Math., 13 (2000), pp. 505–520.

[8] L. K. Fleischer and K. D. Wayne, Fast and simple approximation schemes for generalized
flow, Math. Program., 91 (2002), pp. 215–238.

[9] N. Garg and J. Könemann, Faster and Simpler Algorithms for Multicommodity Flow and
Other Fractional Packing Problems, Technical report 97-1-025, Max-Planck Institut für
Informatik, Saarbrücken, Germany, 1997.

[10] N. Garg and J. Könemann, Faster and simpler algorithms for multicommodity flow and
other fractional packing problems, in Proceedings of the IEEE Symposium on Foundations
of Computer Science, IEEE Computer Society, Los Alamitos, CA, 1998, pp. 300–309.

[11] A. V. Goldberg, A natural randomization strategy for multicommodity flow and related algo-
rithms, Inform. Process. Lett., 42 (1992), pp. 249–256.

[12] M. Grigoriadis and L. G. Khachiyan, Approximate minimum-cost multicommodity flows in
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Abstract. In this paper, we give the first constant-factor approximation algorithm for the rooted
Orienteering problem, as well as a new problem that we call the Discounted-Reward traveling
salesman problem (TSP), motivated by robot navigation. In both problems, we are given a graph
with lengths on edges and rewards on nodes, and a start node s. In the Orienteering problem,
the goal is to find a path starting at s that maximizes the reward collected, subject to a hard limit
on the total length of the path. In the Discounted-Reward TSP, instead of a length limit we
are given a discount factor γ, and the goal is to maximize the total discounted reward collected,
where the reward for a node reached at time t is discounted by γt. This problem is motivated by
an approximation to a planning problem in the Markov decision process (MDP) framework under
the commonly employed infinite horizon discounted reward optimality criterion. The approximation
arises from a need to deal with exponentially large state spaces that emerge when trying to model
one-time events and nonrepeatable rewards (such as for package deliveries). We also consider tree
and multiple-path variants of these problems and provide approximations for those as well. Although
the unrooted Orienteering problem, where there is no fixed start node s, has been known to be
approximable using algorithms for related problems such as k-TSP (in which the amount of reward to
be collected is fixed and the total length is approximately minimized), ours is the first to approximate
the rooted question, solving an open problem in [E. M. Arkin, J. S. B. Mitchell, and G. Narasimhan,
Proceedings of the 14th ACM Symposium on Computational Geometry, 1998, pp. 307–316] and [B.
Awerbuch, Y. Azar, A. Blum, and S. Vempala, SIAM J. Comput., 28 (1998), pp. 254–262]. We
complement our approximation result for Orienteering by showing that the problem is APX-hard.
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salesman problem, orienteering, robot navigation, Markov decision processes
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1. Introduction. Consider a robot with a map of its environment that needs to
visit a number of sites to drop off packages, collect samples, search for a lost item, etc.
One classic model of such a scenario is the traveling salesman problem (TSP), in which
we ask for the tour that visits all the sites and whose length is as short as possible.
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However, what if this robot cannot visit everything? For example, it might have a
limited supply of battery power. In that case, a natural problem is to find the tour
that visits the maximum total reward of sites (where the reward might correspond to
the value of a package being delivered or the probability that some lost item we are
searching for is located there), subject to a constraint that the total length is at most
some given bound B. This is called the (rooted) Orienteering problem (“rooted”
because we are fixing the starting location of the robot). Interestingly, while there have
been a number of algorithms that given a desired reward can approximately minimize
the distance traveled (which yield approximations to the unrooted Orienteering

problem), approximating the reward for the case of a fixed starting location and fixed
hard length limit has been an open problem.

Alternatively, suppose that battery power is not the limiting consideration, but
we simply want to give the robot a penalty for taking too long to visit high-value sites.
For example, if we are searching for a lost item, and at each time step there is some
possibility the item will be taken (or, if we are searching for a trapped individual in a
dangerous environment, and at each time step there is some probability the individual
might die), then we would want to discount the reward for a site reached at time t
by γt, where γ is a known discount factor. We call this the Discounted-Reward

TSP. This problem is motivated by an approximation to a planning problem in the
Markov decision process (MDP) framework [26, 25] under the commonly employed
infinite horizon discounted reward optimality criterion. The approximation arises
from a need to deal with exponentially large state spaces that emerge when trying to
model one-time events and nonrepeatable rewards (such as for package deliveries).

In this paper, we provide the first constant-factor approximations to both the
(rooted) Orienteering and the Discounted-Reward TSP problems, as well as
a number of variants that we discuss below. We also prove that Orienteering is
APX-hard, or NP-hard to approximate within an arbitrarily small constant factor.

1.1. Motivation and background. Robot navigation and path planning prob-
lems can be modeled in many ways. In the theoretical computer science and opti-
mization communities, these are typically modeled as kinds of prize-collecting TSPs
[19, 4, 17, 3]. In the artificial intelligence community, problems of this sort are often
modeled as MDPs [6, 7, 21, 25, 26]. Below we give some background and motivation
for our work from each perspective.

1.1.1. MDPs and time-dependent rewards. An MDP consists of a state
space S, a set of actions A, a probabilistic transition function T , and a reward function
R. For this work, it is sufficient to consider discrete, finite S and A. At any given
time step, an agent (such as a robot) acting in an MDP will be located at some state
s ∈ S, where it can choose an action a ∈ A. The agent is subsequently relocated to a
new state s′ drawn from the transition probability distribution T (s′|s, a) ≡ Pr[qt+1 =
s′|qt = s, a], where qt is a random variable indicating the agent’s state at time step t.
The transition function captures both the agent’s stochastic dynamics (e.g., unreliable
actuators) and structure and characteristics of the environment such as walls, pits,
friction of the surface, etc. Associated with each state is a real-valued reward, given
by the function R(s), which the agent receives upon entering state s.1 For example, a

1It is also possible to model rewards associated with actions or transitions by writing more general
reward functions such as R(s, a) or R(s, a, s′), but such extensions do not fundamentally change the
nature of the MDP. Any such functions can be rewritten into a model of the form we give here with
an appropriate modification to the state and action sets.
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package-delivery robot might get a reward every time it correctly delivers a package.
The goal of planning in an MDP framework is to formulate a policy, ψ : S → A,

that guides the agent to optimal long-term aggregate reward. In order to encourage
the agent to perform the tasks that we want, and to do so in a timely manner,
a commonly employed aggregate reward objective function is the infinite horizon
discounted reward [21, 25, 26]. Specifically, for a given discount factor γ ∈ (0, 1), the
value of the reward collected at time t is discounted by a factor γt. Thus the total
discounted reward, which we aim to maximize, is Rtot =

∑∞
t=0 R(st)γ

t. Because the
agent’s actions are stochastic, in practice we must settle for optimizing the expected
value of this quantity, V ψ(s) = Eψ[Rtot|q0 = s], where the expectation is taken
with respect to all possible trajectories through the state space rooted at state s,
weighted by their probability of occurring under policy ψ. Note that because a fixed
(s, a) pair yields a fixed probability distribution over next states, the combination
of an MDP with a fixed policy produces a Markov chain over S. The expectation,
therefore, is simply the expected discounted reward accumulated by a random walk
on the corresponding Markov chain. This optimality criterion guides the agent to
accumulate as much reward as possible as early as possible, and produces what in
practice turns out to be good behavior.

One can also motivate exponential discounting by imagining that, at each time
step, there is some fixed probability the game will end (the robot loses power, a
catastrophic failure occurs, the objectives change, etc.). The quantity V ψ(s) then
gives the expected (undiscounted) reward collected by the robot before the game
ends. Exponential discounting also has the nice mathematical property that it is time-
independent, meaning that an optimal strategy is stationary and can be completely
described by the mapping from states to actions given by ψ.2 The overall goal of
planning, then, is to locate ψ∗, the policy that maximizes V ψ(s), the expected infinite
horizon discounted reward. A fundamental theorem of MDP planning states that for
this optimality criterion, there is guaranteed to be a stationary ψ∗ that dominates all
other policies at all states: V ψ∗

(s) ≥ V ψ(s) for all s ∈ S and all ψ [25].
There are well-known algorithms for solving MDPs in time polynomial in the

cardinality of the state space [6, 25, 26]. However, one drawback of the MDP model is
that the agent receives R(s) every time that state s is visited. Thus, in order to model
a package-delivery or search-and-rescue robot, one would need a state representing not
only the current location of the robot but also a record of all packages (victims) it
has already delivered (rescued). For example, one could write S = L × 2d, where L
is a set of discrete locations that the robot could occupy, and the list of d bits tracks
whether the agent has achieved each of d subgoals (packages or rescues). Then the
reward function can be R(〈l, b1, . . . , bd〉) = 1 iff l is a location containing subgoal i and
bi = 0, or R(s) = 0 otherwise. When the robot reaches the location containing sub-
goal i, bi is set to 1 and remains so thereafter. This formulation yields an exponential
increase in the size of the state space over the raw cardinality of L and prevents a
direct, exact solution of the MDP. Instead, it would be preferable to directly model
the case of rewards that are given only the first time a state is visited [22, 23].

As a first step towards tackling this general problem, we abandon the stochastic
element and restrict the model to deterministic, reversible actions. This model is a
reasonable approximation to many robot-navigation style MDP domains, in which
we can formulate subpolicies for navigating between pairs of locations in the environ-

2Under other objective functions, an optimal policy could require dependence on the number of
steps remaining in the game or other functions of the history of states encountered to date.
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ment. Often, such subpolicies, or macros, can be “nearly deterministic” (failing with
probability ≤ ε) because they average out the stochasticity of atomic actions over
many steps [23]. We can to a good approximation, therefore, treat such a domain as a
deterministic planning problem over the set of subgoal locations (nodes) and location-
to-location macros (arcs). This leads us to study the Discounted-Reward TSP, in
which we assume we have an undirected weighted graph (edge weights represent the
time to traverse a given edge), with a reward value πv on each vertex v, and our goal
is to find a path visiting each vertex v at time tv so as to maximize

∑
πvγ

tv .

1.1.2. Prize-collecting TSP and ORIENTEERING problems. A different
way to model the goal of collecting as much reward as possible as early as possible is
to impose a hard deadline on the time the robot may spend delivering its packages.
The robot gets a reward equal to the value of the package on a delivery but only if the
delivery is made before a deadline D. If the deadline is exceeded, he gets no reward.
This problem has been studied previously as the Orienteering problem [19] or
bank robber problem [3].

Orienteering belongs to the family of the prize-collecting traveling salesman
problems (PCTSPs). Given a set of cities with nonnegative “prize” values associated
with them and a table of pairwise distances, a salesman needs to pick a subset of
the cities to visit so as to minimize the total distance traveled while maximizing the
total amount of prize collected. Note that there is a trade-off between the cost of a
tour and how much prize it spans. The original version of the PCTSP introduced by
Balas [4] deals with these two conflicting objectives by combining them: one seeks a
tour that minimizes the sum of the total distance traveled and the penalties (prizes)
on cities skipped, while collecting at least a given quota amount of prize. Bienstock
et al. [8] subsequently focused on a special case of this problem in which the quota
requirement is dropped, and provided a constant-factor approximation for it. This
was further improved to a 2-approximation via a primal-dual approach by Goemans
and Williamson [18].

An alternative approach to the bicriterion optimization is to optimize just one of
the objectives while enforcing a fixed bound on the other. For example, in a quota-
driven version of the PCTSP, called k-TSP, every node has a prize of one unit and
the goal is to minimize the total length of the tour, while visiting at least k nodes.
Similarly, Orienteering can be viewed as a budget-driven version of the PCTSP,
since we are maximizing the total amount of prize collected, while keeping the distance
traveled below a certain threshold.3

There are several constant-factor approximations known for the k-TSP problem
[2, 15, 9, 3], the best being a recent 2-approximation due to Garg [16]. Most of these
results are based on a classic primal-dual algorithm for the PCTSP due to Goemans
and Williamson [18] (mentioned above).

The algorithms for k-TSP extend easily to the unrooted version of the Orien-

teering problem in which we do not fix the starting location [3, 16]. In particular,
suppose that we want to find a tour (cycle) of length D that spans value Π, and using
a c-approximation to the k-TSP, for some c > 1, we obtain a cycle of length cD span-
ning value Π. Then we can just break this cycle into 2c pieces of length at most D/2
each, take the piece spanning the most value, and convert it into a cycle of length
at most D (by traversing the path forward and then back). Noting that the cycle

3Strictly speaking, a budget-driven version of the PCTSP would require a tour, e.g., a path that
ends at the start node, whereas the Orienteering problem is content with a path that ends at an
arbitrary node. We consider both versions of the problem.
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spans at least Π/2c value, we get a 2c-approximation to unrooted Orienteering.
However, this does not work for the rooted problem because the “best piece” in the
above reduction might be far from the start. In contrast to this simple result, there
is no previously known O(1)-approximation algorithm for the rooted Orienteering

problem in general graphs. Arkin, Mitchell, and Narasimhan [1] give a constant-factor
approximation to the rooted Orienteering problem for the special case of points in
the plane.

1.2. Summary of results. In this paper, we give the first constant-factor ap-
proximation algorithms for both of the above problems. A key contribution of our
work is the introduction of the min-excess objective. The excess of a path is defined
to be the difference between the length of a prize-collecting s-t path and the length
of the shortest path between the two endpoints. Informally, any path must spend a
minimum amount of time equal to the shortest distance between s and t, just to get
to the destination t; the excess of the path is the extra time spent by it to gather
reward along the way. We consider the following Min-Excess-Path problem: given
a weighted graph with rewards, endpoints s and t, and a reward quota k, find a
minimum excess path from s to t collecting reward at least k.

Approximating the excess of a path turns out to be a crucial component in our
algorithms for Orienteering and Discounted-Reward TSP. Note that an ap-
proximation for the excess is a strictly better guarantee than what is implied by an
approximation algorithm for the k-TSP; the latter would return a path that has length
at most a constant multiple times the total optimal length from s to t.

Our algorithm for approximating Min-Excess-Path uses as a subroutine an
approximation to a variant of the k-TSP, the min-cost s-t path problem (k-path

problem in [10]). In particular, an αCP -approximation to the k-path, when used as
a subroutine in our algorithm, implies an (αEP = 3

2
αCP − 1

2
)-approximation for the

Min-Excess-Path problem. The best currently known approximation for the k-path

problem is a (2+δ)-approximation (for any fixed δ > 0), which follows from a (2+δ)-
approximation to the k-TSP due to Chaudhuri et al. [10].4 Then via our reduction,
this implies a (2.5 + δ)-approximation to excess, for any fixed δ > 0. We also present
an improved analysis of our algorithm based on the Chaudhuri et al. k-TSP algorithm
obtaining a (2 + δ)-approximation for the Min-Excess-Path problem.

An αEP -approximation to Min-Excess-Path further implies a (1 + 	αEP 
)-
approximation for Orienteering and a roughly e(αEP + 1)-approximation for
Discounted-Reward TSP. Our final approximation factors for the latter two prob-
lems are 4 and 6.75 + δ, respectively.

Finally, using the APX-hardness of the TSP on bounded metrics [14], we prove
that Min-Excess-Path and Orienteering are APX-hard.

1.3. Subsequent work. Following the initial publication of our work, Bansal
et al. [5] obtained a 3-approximation for a stronger version of Orienteering called
“point-to-point Orienteering,” in which the starting location s as well as the ter-
minal location t are fixed. They also consider the vehicle routing problem with time-
windows, a generalization of Orienteering in which each reward has a time-window
(“release time” and “deadline”) associated with it, and reward is earned only if the
location is visited within the corresponding time-window. Bansal et al. obtain an

4Garg’s 2-approximation algorithm for the k-TSP, although better that Chaudhuri et al.’s (2+δ)-
approximation, implies only a 5-approximation to the k-path problem.
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O(log2 n)-approximation for this problem, as well as an O(log n)-approximation when
all the release times are zero.

Organization. The rest of this paper is organized as follows. We begin with
some definitions in section 2. Then we give an algorithm for Min-Excess-Path in
section 3, followed by algorithms for Discounted-Reward TSP and Orienteering

in sections 4 and 5, respectively. In section 6, we extend some of the algorithms
to tree and multiple-path versions of the problems. We present some hardness of
approximation results in section 7 and conclude in section 8.

2. Notation and definitions. Our work encompasses a variety of problems.
In this section, we introduce the notation to be used throughout the paper, provide
formal problem statements, and describe a uniform naming scheme for them.

Let G = (V,E) be a weighted undirected graph, with a distance function on edges,
d : E → �+, and a prize or reward function on nodes, π : V → �+. Let πv = π(v) be
the reward on node v. Let s ∈ V denote a special node called the start or root.

For a path P visiting u before v, let dP (u, v) denote the length along P from u
to v. Let d(u, v) denote the length of the shortest path from node u to node v. For
ease of notation, let dv = d(s, v) and dP (v) = dP (s, v). For a set of nodes V ′ ⊆ V , let
Π(V ′) =

∑
v∈V ′ πv. For a set of edges E′ ⊆ E, let d(E′) =

∑
e∈E′ d(e).

Our problems aim to construct a certain subgraph—a path, tree, or cycle, possibly
with additional constraints. Most of the problems attempt a trade-off between two
objective functions: the cost (distance) of the path (or tree, or cycle), and the total
prize spanned by it. From the point of view of exact algorithms, we need simply to
specify the cost we are willing to tolerate and the prize we wish to span. Most variants
of this problem, however, are NP-hard, and so we focus on approximation algorithms.
We must then specify our willingness to approximate the two distinct objectives. We
refer to a min-cost problem when our goal is to approximately minimize the cost of our
objective subject to a fixed lower bound on prize (thus, prize is a feasibility constraint,
while our approximated objective is cost). Conversely, we refer to a max-prize problem
when our goal is to approximately maximize the prize collected subject to a fixed
upper bound on cost (thus, cost is a feasibility constraint, while our approximated
objective is prize). For example, the min-cost tree problem is the traditional k-MST:
it requires spanning k units of prize and aims to minimize the cost of doing so. Both
the rooted and unrooted min-cost tree problems have constant-factor approximations
[20, 2, 15, 9, 3]. The max-prize path problem, which aims to find a path of length
at most D from the start node s that visits a maximum amount of prize, is the
Orienteering problem.

The main subroutine in our algorithms also requires introducing a variation on
approximate cost. Define the excess of a path P from s to t to be dP (s, t)−d(s, t), that
is, the difference between that path’s length and the distance between s and t in the
graph. Obviously, the minimum excess path of total prize Π is also the minimum cost
path of total prize Π; however, a path of a constant factor times minimum cost may
have more than a constant factor times the minimum excess. We therefore consider
separately the minimum excess path problem. Note that an (s, t) path approximating
the optimum excess ε by a factor α will have length d(s, t) + αε ≤ α(d(s, t) + ε) and
therefore approximates the minimum cost path by a factor α as well. Achieving a
good approximation to this Min-Excess-Path problem will turn out to be a key
ingredient in our approximation algorithms.

Finally, as discussed earlier, we consider a different means of combining length
and cost motivated by applications of MDPs. We introduce a discount factor γ < 1.
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Table 2.1

Approximation factors and reductions for our problems.

Problem Best approx. Source/Reduction
Hardness
of approx.

min-cost s-t path
αCP = 2 + δ [10] 1.0046

(k-path)
min-excess path αEP = 2.5 + δ 3

2
(αCP ) − 1

2 1.0046
(Min-Excess-Path) αEP = 2 + δ algo. based on [10]

max-discounted-prize path
αDP = 6.75 + δ α

−αEP
EP (1 + αEP )1+αEP ?

(Disctd-Reward TSP)
max-prize path

αPP = 4 1 + �αEP � 1.00068
(Orienteering)

max-prize tree αPT = 8 2αPP ?
max-prize cycle αPC = 8 2αPP 1.00068
max-prize multiple-path αkPP = 5 αPP + 1 1.00068

Given a path P rooted at s, let the discounted reward collected at node v by path

P be defined as ρPv = πvγ
dP (s,v). That is, the prize gets discounted exponentially by

the amount of time it takes for the path to reach node v. The max-discounted-reward
problem is to find a path P rooted at s that maximizes ρP =

∑
v∈P ρPv . We call this

the Discounted-Reward TSP. Note that the length of the path is not specifically
bounded in this problem, though of course shorter paths produce less discounting.

2.1. Reductions and approximation factors. We present a constant-factor
approximation algorithm for the max-prize path (rooted Orienteering) problem,
solving an open problem of [3, 1], as well as the Discounted-Reward TSP. Central
to our results is a constant-factor approximation for the Min-Excess-Path prob-
lem defined above, which uses an algorithm for the min-cost s-t path problem as
a subroutine. We also give constant-factor approximations to several related prob-
lems, including the max-prize tree problem—the “dual” to the k-MST (min-cost tree)
problem—and max-prize cycle. Specific constants are given in Table 2.1. For the Min-

Excess-Path problem, we derive a tighter analysis and an improved approximation
of 2+δ in section 3.2, based on the min-cost s-t path algorithm of [10]. This improve-
ment gives a better approximation factor of 6.75 + δ for the Discounted-Reward

TSP.

Our approximation algorithms reflect a series of reductions from one approxima-
tion problem to another. Improvements in the approximations for various problems
will propagate through. We state approximation factors in the form αXY , where XY
denotes the problem being approximated; the first letter denotes the objective (cost,
prize, excess, or discounted prize denoted by C, P , E, and D, respectively), and
the second letter denotes the structure (path, cycle, or tree denoted by P , C, or T ,
respectively).

2.2. Preliminaries. To support dynamic programming in the max-prize vari-
ants, we assume that all prizes are integers in the range {1, . . . , n2}—this allows us
to “guess” the reward collected by the optimal solution by trying out all integer val-
ues less than n3. We can make this assumption by scaling the values such that the
maximum value is exactly n2 (this guarantees that the optimal solution gets at least
n2 reward). We then round each value down to its nearest integer, losing an additive
amount of at most n, which is a negligible multiplicative factor. This negligible factor
does mean that an approximation algorithm for a max-prize problem with guarantee
c on polynomially bounded inputs has (weaker) guarantee “arbitrarily close to c” on
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arbitrary inputs. For the Min-Excess-Path problem, we do not make this bounded-
value assumption. This implies that the running time of our algorithm is linear in
the total value in the graph (with all the values in the graph being integral). Note,
however, that in our algorithms for the max-prize problems, we may use a bicriteria
version of Min-Excess-Path in which we approximate the value obtained to within
a (1 + O(1/n)) factor and excess to within an αEP factor. We may then use the
bounded value assumption, and our running time is again bounded by a polynomial
in n.

3. MIN-EXCESS-PATH. Let P ∗ be the shortest path from s to t with Π(P ∗) ≥
k. Let ε(P ∗) = d(P ∗) − d(s, t). Our algorithm returns a path P with Π(P ) ≥ k
and length d(P ) = d(s, t) + αEP ε(P

∗), where αEP = 3
2
αCP − 1

2
. Thus we obtain

a (2.5 + δ)-approximation to Min-Excess-Path using an algorithm of Chaudhuri
et al. [10] for min-cost s-t path (MCP) with αCP = 2 + δ.

We begin with a brief description of the min-cost path algorithm and approxi-
mation. In their paper, Chaudhuri et al. provide a subroutine for constructing a tree
containing nodes s and t that spans at least k vertices5 and has cost at most (1+ 1

2
δ)

times the cost of the shortest s-t path with k vertices, for any fixed constant δ. To
construct an s-t path from the tree obtained by the algorithm of Chaudhuri et al., we
can double all the edges, except those along the tree path from s to t. This gives us
a partial “Euler tour” of the tree that starts at s and ends at t. Clearly, the cost of
such a path is at most (2 + δ) times the cost of the shortest s-t path spanning prize
k, for any fixed constant δ.

Now we return to the harder Min-Excess-Path problem. The idea for our
algorithm for Min-Excess-Path is as follows. Suppose that the optimum solution
path encounters all its vertices in increasing order of distance from s. We call such
a path monotonic. We can find this optimum monotonic path via a simple dynamic
program: for each possible prize value p and for each vertex i in increasing order of
distance from s, we compute the minimum excess path that starts at vertex s, ends
at i, and collects prize at least p.

We solve the general case by breaking the optimum path into segments that are
either monotonic (and thus can be found optimally as just described) or “wiggly”
(generating a large amount of excess). We show that the total length of the wiggly
portions is comparable to the excess of the optimum path; our solution uses the
optimum monotonic paths and approximates the length of the wiggly portions by a
constant factor, yielding an overall increase proportional to the excess.

Consider the optimal path P ∗ from s to t. We divide it into segments in the
following manner. For any real d, define f(d) as the number of edges on P ∗ with one
endpoint at distance less than d from s and the other endpoint at distance at least
d from s. Note that f(d) ≥ 1 for all 0 ≤ t ≤ dt (it may also be nonzero for some
d ≥ dt). Note also that f is piecewise constant, changing only at distances equal
to vertex distances. We break the real line into intervals according to f : the type 1
intervals are the maximal intervals on which f(d) = 1; the type 2 intervals are the
maximal intervals on which f(d) ≥ 2. These intervals partition the real line (out
to the maximum distance reached by the optimum solution) and alternate between
types 1 and 2. Let the interval boundaries be labeled 0 = b1 < b2 · · · bm, where bm is
the maximum distance of any vertex on the path, so that the ith interval is (bi, bi+1).

5The algorithm can be transformed easily to obtain a tree spanning a given target prize value—to
each node v with a prize πv , we attach πv − 1 leaves and run the algorithm on this new graph.
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V21V Vn

s

t

type 1 type 1type 2 type 2 type 1 type 2

b b b b2 n1 i

Fig. 3.1. Segment partition of a path in graph G. Vertices are laid out in order of their
distances from s. The vertical dotted lines indicate distances from s.

Note that each bi is the distance label for some vertex. Let Vi be the set of vertices
whose distance from s falls in the ith interval. Note that the optimum path traverses
each set Vi exactly once—once it leaves some Vi, it does not return. One of any two
adjacent intervals is of type 1; if the path left this interval and returned to it, then
f(d) would exceed 1 within the interval. Thus, the vertices of P ∗ in set Vi form a
contiguous segment of the optimum path that we label as Si = P ∗ ∩ Vi.

A segment partition is shown in Figure 3.1.
Note that for each i, there may be (at most) 1 edge crossing from Vi to Vi+1. To

simplify the next two lemmas, let us split that edge into two with a vertex at distance
bi from s, so that every edge is completely contained in one of the segments (this
can be done since one endpoint of the edge has distance exceeding bi and the other
endpoint has distance less than bi).

Lemma 3.1. A segment Si of type 1 has length at least bi+1−bi. A segment Si of
type 2 has length at least 3(bi+1 − bi), unless it is the segment containing t, in which
case it has length at least 3(dt − bi).

Proof. The length of segment Si is lower bounded by the integral of f(d) over
the ith interval. In a type 1 interval, the result is immediate. For a type 2 interval,
note that f(d) ≥ 1 actually implies that f(d) ≥ 3 by a parity argument—if the path
crosses distance d twice only, it must end up at distance less than d.

Corollary 3.2. The total length of type 2 segments is at most 3ε(P ∗)/2.
Proof. Let 	i denote the length of segment i. We know that the length of P ∗ is

dt + ε(P ∗) =
∑

	i. At the same time, we can write

dt ≤ bm =

m−1∑

i=1

(bi+1 − bi) ≤
∑

i type 1

	i +
∑

i type 2

	i/3.

It follows that

ε(P ∗) =
∑

	i − dt ≥
∑

i type 2

2	i/3.

Multiplying both sides by 3/2 completes the proof.
Having completed this analysis, we note that the corollary remains true even if

we do not introduce extra vertices on edges crossing interval boundaries. The crossing
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edges are no longer counted as parts of segments, but this decreases only the total
length of type 2 segments.

3.1. A dynamic program. Our algorithm computes, for each interval that
might be an interval of the optimum solution, a segment corresponding to the optimum
solution in that interval. It then uses a dynamic program to paste these fragments
together using (and paying for) edges that cross between segments. The segments
we compute are defined by four vertices: the closest-to-s and farthest-from-s vertices,
c and f , in the interval (which define the start- and endpoints of the interval: our
computation is limited to vertices within that interval), and the first and last vertices,
x and y, on the segment within that interval. They are also defined by the amount
p of prize we are required to collect within the segment. There are therefore O(Πn4)
distinct segments to compute, where Π is the total prize in the graph. For each
segment, we find an optimum solution for a type 1 and a type 2 interval. For a type 1
interval, the optimum path is monotonic; we can therefore compute (in linear time) an
optimum (shortest) monotonic path from x to y that collects prize p. If the interval
is of type 2, the optimum path need not be monotonic. Instead, we use the MCP
routine to approximate to within a constant factor the minimum length of a path that
starts at x, finishes at y, stays within the boundaries of the interval defined by c and
f , and collects prize at least p. Let A1(x, y, p) and A2(x, y, c, f, p) denote the lengths
of the type 1 and type 2 segments computed above for each interval. (Note that for
type 1 segments, c = x and f = y.)

Given the optimum type 1 and near-optimum type 2 segment determined for each
set of four vertices and prize value, we can find the optimal way to paste some subset
of them together monotonically using a dynamic program. Let B1(y, p) denote the
length of the path starting at s, ending at y, spanning value p, and ending in a type 1
segment that is found by our algorithm. Likewise, let B2(y, f, p) denote the length of
a corresponding path ending in a type 2 segment found by our algorithm. Then the
following recurrences determine B1(y, p) and B2(y, f, p):

B1(y, p) = min
x,z,f,p′:dz<df<dx<dy,p′<p

{B2(z, f, p
′) + d(z, x) + A1(x, y, p− p′)},

B2(y, f, p) = min
x,c,f,p′:dz<dc<dx<dy,p′<p

{B1(z, p
′) + d(z, x) + A2(x, y, c, f, p− p′)}.

Note that the segments corresponding to the optimum path are considered in this
dynamic program, and so our solution will be at least as good as the one we get by
using the segments corresponding to the ones on the optimum path (i.e., using the
optimum type 1 segments and using the approximately optimum type 2 segments).
We need to show only that this solution is good.

We focus on the segments corresponding to the optimum path P ∗. Consider the
segments Si of length 	i on the optimum path. If Si is of type 1, our algorithm will find
a (monotonic) segment with the same endpoints collecting the same amount of prize
of no greater length. If Si is of type 2, our algorithm (through its use of subroutine
MCP) will find a path with the same endpoints collecting the same prize over length at
most αCP 	i. Let L1 denote the total length of the optimum type 1 segments, together
with the lengths of the edges used to connect between segments. Let L2 denote the
total length of the optimum type 2 segments. Recall that L1 + L2 = dt + ε(P ∗) and
that (by Corollary 3.2) L2 ≤ 3

2
ε(P ∗). By concatenating the optimum type 1 segments

and the approximately optimum type 2 segments, the dynamic program can (and
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therefore will) find a path collecting the same total prize as P ∗ of total length at most

L1 + αCPL2 = L1 + L2 + (αCP − 1)L2

≤ dt + ε(P ∗) + (αCP − 1)

(
3

2
ε(P ∗)

)

= dt +

(
3

2
αCP − 1

2

)
ε(P ∗).

In other words, we approximate the minimum excess to within a factor of 3
2
αCP − 1

2
.

3.2. An improved approximation for MIN-EXCESS-PATH. Our approxi-
mation guarantee for Min-Excess-Path derived above is based on treating the k-
path subroutine as a “black box.” In this section, we show how to slightly improve
our approximation guarantee for the Min-Excess-Path problem by exploiting the
details of the min-cost path algorithm derived from the work of Chaudhuri et al. [10].

Recall that Chaudhuri et al. provide an algorithm for constructing a tree con-
taining two nodes s and t that spans at least k reward and has cost at most (1 + 1

2
δ)

times the cost of the optimal k-path P ∗ from s to t. Doubling the edges of this tree,
we obtain an approximation to the k-path problem with αCP = (2 + δ).

In fact, if the optimal path P ∗ has length 	 = d(s, t) + ε∗, then the tree has
length at most (1 + 1

2
δ)(d(s, t) + ε∗). We convert this tree into a path from s to t

by doubling all edges, except for the ones on the tree path from s to t. Noting that
the total cost of “nondoubled” edges is at least d(s, t), we get a path from s to t of
length at most (2 + δ)(d(s, t) + ε∗)− d(s, t) = (1 + δ)(d(s, t) + ε∗) + ε∗ = (1 + δ)	+ ε∗.
This stronger guarantee gives us an improved guarantee on the performance of the
Min-Excess-Path algorithm described above.

In particular, suppose that we apply the k-path algorithm to a segment of type 2
with endpoints u and v, and having an optimum min-excess path with length 	 =
d(u, v) + ε. Then we get a path from u to v with the same value and length at most
(1 + δ)	 + ε, for any fixed small constant δ.

In order to combine the lengths of all the type 2 segments, we rewrite this ex-
pression in terms of the excess of the path P ∗ at u and v. Let εu = dP

∗
(u) − du

denote the excess of P ∗ from s to u, and εv = dP
∗
(v) − dv the excess of P ∗ from s

to v. Note that the ε in the above expression is not necessarily equal to εv − εu, but
we can relate the two quantities via the triangle inequality—the distance along P ∗

from u to v can be written as 	 = (dv + εv)− (du + εu) ≤ d(u, v) + εv − εu; therefore,
ε ≤ εv − εu. This implies that the Chaudhuri et al. algorithm returns a path of length
at most (1 + δ)	 + εv − εu between u and v.

We can now apply Corollary 3.2 as before, to obtain an approximation in terms
of the excess. The dynamic program finds a path collecting the same total value as
P ∗ and of total length at most

L1 + (1 + δ)L2 +
∑

type 2 segments

(εv − εu) ≤ L1 + (1 + δ)L2 + ε(P ∗)

= dt + 2ε(P ∗) + δL2

≤ dt + 2ε(P ∗) +
3δ

2
ε(P ∗),

where the last statement follows from Corollary 3.2. Therefore, we get an approxima-
tion ratio of 2 + δ′ for the Min-Excess-Path problem, for any small constant δ′.
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4. Maximum discounted-prize path. In this section, we present an approx-
imation algorithm for the Discounted-Reward TSP which builds upon our Min-

Excess-Path algorithm. Recall that we aim to optimize ρ(P ) =
∑

γdP
v πv. Assume

without loss of generality that the discount factor is γ = 1/2—we simply rescale each
length 	 to 	′ such that γ� = ( 1

2
)�

′
, i.e., 	′ = 	 log2(1/γ).

We first establish a property of an optimal solution that we make use of in our
algorithm. Define the scaled prize π′ of a node v to be the (discounted) reward that a
path gets at node v if it follows a shortest path from the root to v. That is, π′

v = πvγ
dv .

Let Π′(P ) =
∑

v∈P π′
v. Note that for any path P , the discounted reward obtained by

P is at most Π′(P ).

Now consider an optimal solution P ∗. Fix a parameter ε that we will set later.
Let t be the last node on the path P ∗ for which dP

∗

t − dt ≤ ε; i.e., the excess of path
P ∗ at t is at most ε. Consider the portion of P ∗ from root s to t. Call this path P ∗

t .

Lemma 4.1. Let P ∗
t be the part of P ∗ from s to t. Then, ρ(P ∗

t ) ≥ ρ(P ∗)(1− 1
2ε ).

Proof. Assume otherwise. Suppose we shortcut P ∗ by taking a shortest path
from s to the next node visited by P ∗ after t. This new path collects (discounted)
rewards from the vertices of P ∗−P ∗

t , which form more than a 1
2ε fraction of the total

discounted reward by assumption. The shortcutting procedure decreases the distance
on each of these vertices by at least ε, meaning these rewards are “undiscounted” by
a factor of at least 2ε over what they would be in path P ∗. Thus, the total reward on
this path exceeds the optimum, a contradiction.

It follows that we can approximate ρ(P ∗) by approximating ρ(P ∗
t ). Based on the

above observation, we give the algorithm of Figure 4.1 for finding an approximately
optimal solution. Note that “guess t” and “guess k” are implemented by exhausting
all polynomially many possibilities.

Algorithm for Discounted-Reward TSP
1. Rescale all edge lengths so that γ = 1/2.
2. Replace the prize value of each node with the prize discounted by the shortest

path to that node: π′
v = γdvπv. Call this modified graph G′.

3. Guess t—the last node on optimal path P ∗ with excess less than ε.
4. Guess k—the value of Π′(P ∗

t ).
5. Apply our Min-Excess-Path approximation algorithm to find a path P

collecting scaled prize k with small excess.
6. Return this path as the solution.

Fig. 4.1. Approximation for maximum discounted-prize path (Discounted-Reward TSP).

Our analysis below proceeds in terms of α = αEP , the approximation factor for
our Min-Excess-Path algorithm.

Lemma 4.2. Our approximation algorithm finds a path P that collects discounted
reward ρ(P ) ≥ Π′(P ∗

t )/2αε.

Proof. The prefix P ∗
t of the optimum path shows that it is possible to collect

scaled prize k = Π′(P ∗
t ) on a path with excess ε. Thus, our approximation algorithm

finds a path collecting the same scaled prize with excess at most αε. In particular,
the excess of any vertex v in P is at most αε. Thus, the discounted reward collected
at v is at least
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ρ(v) ≥ πv

(
1

2

)dv+αε

= πv

(
1

2

)dv
(

1

2

)αε

= π′
v

(
1

2

)αε

.

Summing over all v ∈ P and observing Π′(P ) ≥ Π′(P ∗) ≥ Π′(P ∗
t ) completes the

proof.
Combining Lemmas 4.2 and 4.1, we get the following.
Theorem 4.3. The solution returned by the above algorithm has ρ(P ) ≥ (1 −

1
2ε )ρ(P

∗)/2αε.
Proof.

ρ(P ) ≥ Π′(P ∗)/2αε by Lemma 4.2
≥ ρ(P ∗

t )/2αε by definition of π′

≥ (
1 − 1

2ε

)
ρ(P ∗)/2αε by Lemma 4.1.

We can now set ε as we like. Writing x = 2−ε, we optimize our approximation
factor by maximizing (1− x)xα to deduce x = α/(α + 1). Plugging this into x yields
an approximation ratio of (1 + αEP )(1 + 1/αEP )αEP .

5. Orienteering. In this section, we present an algorithm for computing an
approximately max-prize path of length at most D that starts at a specified vertex s.
We will use the algorithm for Min-Excess-Path given in section 3 as a subroutine.
Our algorithm for the max-prize problem is given in Figure 5.1. As before, “guess k”
is implemented by performing exhaustive enumeration.

Algorithm for max-prize path (Orienteering)
1. Guess k, the amount of prize collected by an optimum Orienteering solu-

tion. Let α = 	αEP 
 + 1.
2. For each vertex v, compute the min-excess path from s to v collecting prize

k/α.
3. There exists a v such that the min-excess path returned has length at most

D; return the corresponding path.

Fig. 5.1. Algorithm for max-prize path (Orienteering).

We analyze this algorithm by showing that any optimum Orienteering solution
contains a low-excess path which, in turn, is an approximately optimum Orienteer-

ing solution. More precisely, we prove that for some vertex v, there exists a path from
s to v with excess at most D−dv

αEP
that collects prize at least Π∗

αPP
, where αEP is the

approximation ratio for Min-Excess-Path, αPP is the desired approximation ratio
for max-prize path, and Π∗ is the prize of the optimum max-prize path. Assuming
this path exists, our min-excess path computation on this vertex v will find a path
with total length at most dv + αEP

D−dv

αEP
= D and prize at least Π∗

αPP
, providing an

αPP -approximation for Orienteering.
Let t be the last vertex on the optimum Orienteering path. We first consider

the case where t is the vertex at maximum distance from s on the optimum path.
Lemma 5.1. If there is a path from s to t of length at most D that collects prize

Π, such that t is the furthest point from s along this path, then there is a path from
s to some node v with excess at most D−dv

r and prize at least Π
r (for any integer

r ≥ 1).
Proof. For each point a along the original path P , let ε(a) = dPa − da; in other

words, ε(a) is the excess in the length of the path to a over the shortest-path distance.
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We have ε(t) ≤ D − dt. Consider mapping the points on the path to a line from 0 to
ε(t) according to their excess (we observe that excess can only increase as we traverse

path P ). Divide this line into r intervals with length ε(t)
r . Some such interval must

contain at least Π
r prize, since otherwise the entire interval from 0 to ε(t) would not

be able to collect prize Π. Suppose such an interval starts with node a and ends with
node v. We consider a path from s to v that takes the shortest s-a path and then
follows path P from a to v. This path collects the prize of the interval from a to v in
the original path, which is a prize of at least Π

r as desired. The total length of this

path is da + dP (a, v) = da + dPv − dPa = dv + ε(v) − ε(a) ≤ dv + ε(t)
r . The excess of

this path is ε(t)
r ≤ D−dt

r ≤ D−dv

r , where the last inequality follows by using that t is
farther from s than v.

Of course, in general the optimum Orienteering path might have some inter-
mediate node that is farther from s than the terminal node t. We will generalize the
above lemma to account for this case.

Lemma 5.2. If there is a path from s to t of length at most D that collects prize
Π, then there is a path from s to some node v with excess at most D−dv

r and prize at

least Π
r+1

(for any integer r ≥ 1).

Proof. Let f be the furthest point from s along the given path P . We are
interested in the case where f �= t. We can break path P into two pieces; first a path
from s to f and then a path from f to t. Using the symmetry of our metric, we can
produce a second path from s to f by using the shortest path from s to t and then
following the portion of our original path from f to t in reverse. We now have two
paths from s to f , each of which has length at most D. The total length of these
paths is bounded by D+ dt. We will call our paths A and B, and let their lengths be
df + δA and df + δB , respectively. Note that δA + δB ≤ D + dt − 2df < D − df .

We now map path A to the interval from 0 to δA according to the excess at each
point, much as in Lemma 5.1. We consider dividing this interval into pieces of length
δA+δB

r (the last subinterval may have shorter length if δA does not divide evenly). We
perform the same process on path B. We have created a total of r + 1 intervals (this
relies on the assumption that r is integral, allowing us to bound the sum of the ceilings
of the number of intervals for each path). We conclude that some such interval has
prize at least Π

r+1
. We suppose without loss of generality that this interval spans a

portion of path A from a to v. We now consider a path that travels from s to a via
the shortest path and then from a to v following path A. The length of this path
is bounded by dv + δA+δB

r for an excess of at most
D−df

r ≤ D−dv

r as desired.

Making use of Lemma 5.2, we can prove that our algorithm for Orienteering

obtains a constant approximation. Making use of Chaudhuri et al.’s approximation
for min-cost s-t path [10] along with our result on Min-Excess-Path from section 3,
we have a 4-approximation for Orienteering.

Theorem 5.3. Our algorithm is an (	αEP 
+1)-approximation for the max-prize
path (Orienteering) problem, where αEP is the approximation factor for Min-

Excess-Path.

Proof. Lemma 5.2 implies that there exists a path from s to some v with excess
D−dv

�αEP � obtaining prize Π∗

�αEP �+1
. Such a path has length dv + D−dv

�αEP � , implying that

the approximation algorithm for Min-Excess-Path will find a path from s to v with
length at most dv+(D−dv) = D and at least the same prize. The algorithm described
will eventually try the proper values of k and v and find such a path in polynomial
time.
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6. Extensions.

6.1. Max-prize tree and max-prize cycle. In this section, we consider the
tree and cycle variants of the Orienteering problem. In max-prize tree, given a
graph G with root r, prize function Π, and lengths d, we are required to output
a tree T rooted at r with d(T ) ≤ D and maximum possible reward Π(T ). This
problem is also called the budget prize-collecting Steiner tree problem [20]. Although
the unrooted version of the problem can be approximated to within a factor of 5 + ε
via a 3-approximation for k-MST [20], the version of the problem in which a tree is
required to contain a specified vertex has remained open until recently.

Let the optimal solution for this problem be a tree T ∗. Double the edges of this
tree to obtain an Euler tour of length at most 2D. Now, divide this tour into two
paths, each starting from the root r and having length at most D. Among them, let
P ′ be the path that has greater reward. Now consider the max-prize path problem
on the same graph with distance limit D. Clearly, the optimal solution P ∗ to this

problem has Π(P ∗) ≥ Π(P ′) ≥ Π(T ∗)

2
. Thus, we can use the αPP -approximation for

Orienteering to get a 2αPP -approximation to T ∗.
Finally, we note that we can use our algorithm for the Orienteering problem

to approximate max-prize cycle. Namely, we can find an approximately max-prize
cycle of length at most D that contains a specified vertex s. To this end, we apply
our algorithm to an instance of the Orienteering problem with the starting node s
and the length constraint D/2. To obtain a cycle from the resulting path, we connect
its endpoints by a shortest path. Clearly, the length of the resulting cycle is at most
D. Now, notice that an optimal max-prize cycle of length D can span at most twice
the amount of prize as an optimal max-prize path of length D/2. Thus, using αPP -
approximation to Orienteering, we get 2αPP -approximation to the max-prize cycle
problem.

6.2. Multiple-path ORIENTEERING. In this section, we consider a variant
of the Orienteering problem in which we are allowed to construct up to k paths,
each having length at most D.

We approximate this problem by applying the algorithm in section 4 successively
k times, to construct the k paths. At the ith step, we set the prizes of all points
visited in the first i − 1 paths to 0, and constructed the ith path on the new graph,
using the Orienteering algorithm in section 5. Using a set-cover-like argument,
we get the following approximation guarantees for the cases when all paths have the
same starting point and when different paths have different starts.6

Theorem 6.1. If all the paths have a common start node, the above algorithm
gives a 1/(1 − e−αPP )-approximation to multiple-path Orienteering. If the paths
have different start nodes, the above algorithm gives a (αPP + 1)-approximation to
multiple-path Orienteering.

Proof. Consider first the case when all the paths have the same starting point. Let
the difference in the reward collected by the optimal solution and the reward collected
by our solution up to stage i be Πi. At the beginning, this is the total reward of the
optimal solution. At step i, at least one of the paths in the optimal solution collects
reward, not collected by the algorithm by stage i, of value at least 1

kΠi. Then, using
the approximation guarantee of the algorithm for Orienteering, our solution collects
at least a 1

kαPP
fraction of this reward. That is, Πi+1 ≤ (1− 1

kαPP
)Πi. By the end of

6Subsequent to the initial publication of our work, Chekuri and Kumar [12] independently em-
ployed a similar analysis for other “maximum-coverage” problems.
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k rounds, the total reward collected by optimal solution, but not collected by us, is
at most (1 − 1

kαPP
)kΠ(P ∗) ≤ e−αPP Π(P ∗), and the result follows.

Next, consider the case when different paths have different starting locations. Let
Oi be the set of points visited by the ith path in the optimal solution and Ai be
the corresponding set of points visited by our algorithm. Let Δi be the set of points
that are visited by the ith path in the optimal solution and some other path in our
solution. Let O = ∪iOi, A = ∪iAi, and Δ = ∪iΔi. Now, in the ith stage, there is a
valid path starting at the ith source that visits all points in Oi \ Δi. Thus we have
Π(Ai) ≥ 1

αPP
(Π(Oi) − Π(Δi)). Summing over i, we get αPPΠ(A) ≥ (Π(O) − Π(Δ)).

But Π(Δ) ≤ Π(A). Thus Π(A) ≥ 1
αPP +1

Π(O).

7. Hardness of approximation. All the problems discussed in this paper are
NP-hard, as they are generalizations of the TSP. In this section, we show that the
Min-Excess-Path problem and Orienteering are APX-hard; that is, it is NP-hard
to approximate these problems to within an arbitrary constant factor.

The hardness of approximating the Min-Excess-Path problem follows from the
APX-hardness of the TSP [24]. In particular, we can reduce the TSP to an instance of
Min-Excess-Path on the same graph, with any one vertex as the start and the end
point, and a reward quota of n. Then an α-approximation to Min-Excess-Path on
this instance is also an α-approximation to the TSP. We therefore get the following
theorem.

Theorem 7.1. The Min-Excess-Path problem is NP-hard to approximate to
within a factor of 220

219
.

Theorem 7.2. Orienteering is NP-hard to approximate to within a factor of
1481
1480

.
Proof. We reduce the TSP on {1, 2}-metrics to Orienteering. In particular,

let G = (V,E) be a complete graph on n nodes, with edges lengths in the set {1, 2}.
Engebretsen and Karpinski [14] show that the TSP is NP-hard to approximate within
a factor of 1 + α = 741

740
on such graphs.

Our reduction is as follows. Let the length of the optimal TSP solution be L =
n + δn. (We simply try all values of L between n and 2n.) Suppose that there
is an algorithm that approximates Orienteering within a factor of 1 + β, where
β ≤ α

2
= 1

1480
. We apply this algorithm to the graph G with distance limit L. Note

that the optimal solution (which is the optimal TSP path) collects n−1 nodes within
distance L (all nodes, except the start, assuming a reward of 0 on the start node).
Therefore, the solution returned by our algorithm collects 1

1+β (n − 1) nodes. We

augment this solution to a tour containing all the nodes by using (1− 1
1+β )(n− 1)+1

edges of length at most 2. Therefore, the length of our solution is at most

L + 2(1 − 1
1+β )(n− 1) + 2 = L + 2β

1+β (n− 1) + 2

< L + 2βn
= L + αn ≤ (1 + α)L,

where the second inequality follows from assuming that n > 1
β2 .

Therefore, we get a (1+α)-approximation to the TSP on G, contradicting the fact
that TSP is NP-hard to approximate to within a (1+α) factor on {1, 2}-metrics.

Using a similar argument as for Orienteering, we get a 1481
1480

hardness of ap-
proximation for the max-prize cycle problem as well.

8. Conclusions. In this paper, we give constant-factor algorithms for the Ori-

enteering problem, Discounted-Reward TSP, and some of their variants. We
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also prove that it is NP-hard to obtain a polynomial time approximation scheme
(PTAS) for the Orienteering and Min-Excess-Path problems. An interesting
open problem is to obtain better approximations, or even a PTAS, for these problems
when the underlying metric is planar. Another interesting open problem is to con-
sider the directed versions of the problems, although we believe that it may be hard
to approximate these to within constant or even logarithmic factors. Some recent
progress has been made in this direction by Chekuri and Pál [13], who developed
quasi-polynomial time log-approximation algorithms for Orienteering and several
related problems on directed graphs.

Even more ambitiously, returning to the MDP motivation for this work, one
would like to generalize these results to probabilistic transition functions. How-
ever, this has the additional complication that the optimum solution may not even
have a short description (it is no longer just a path). Still, perhaps some sort of
nontrivial approximation bound, or a result holding in important special cases, can
be found. The Ph.D. thesis of the second author [11] contains preliminary results in
this direction.
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Abstract. The two most important notions of fractal dimension are Hausdorff dimension,
developed by Hausdorff [Math. Ann., 79 (1919), pp. 157–179], and packing dimension, developed in-
dependently by Tricot [Math. Proc. Cambridge Philos. Soc., 91 (1982), pp. 57–74] and Sullivan [Acta
Math., 153 (1984), pp. 259–277]. Both dimensions have the mathematical advantage of being de-
fined from measures, and both have yielded extensive applications in fractal geometry and dynamical
systems. Lutz [Proceedings of the 15th IEEE Conference on Computational Complexity, Florence,
Italy, 2000, IEEE Computer Society Press, Piscataway, NJ, 2000, pp. 158–169] has recently proven
a simple characterization of Hausdorff dimension in terms of gales, which are betting strategies that
generalize martingales. Imposing various computability and complexity constraints on these gales
produces a spectrum of effective versions of Hausdorff dimension, including constructive, computable,
polynomial-space, polynomial-time, and finite-state dimensions. Work by several investigators has
already used these effective dimensions to shed significant new light on a variety of topics in theo-
retical computer science. In this paper we show that packing dimension can also be characterized in
terms of gales. Moreover, even though the usual definition of packing dimension is considerably more
complex than that of Hausdorff dimension, our gale characterization of packing dimension is an exact
dual of—and every bit as simple as—the gale characterization of Hausdorff dimension. Effectivizing
our gale characterization of packing dimension produces a variety of effective strong dimensions,
which are exact duals of the effective dimensions mentioned above. In general (and in analogy with
the classical fractal dimensions), the effective strong dimension of a set or sequence is at least as
great as its effective dimension, with equality for sets or sequences that are sufficiently regular. We
develop the basic properties of effective strong dimensions and prove a number of results relating
them to fundamental aspects of randomness, Kolmogorov complexity, prediction, Boolean circuit-size
complexity, polynomial-time degrees, and data compression. Aside from the above characterization
of packing dimension, our two main theorems are the following. 1. If �β = (β0, β1, . . . ) is a com-

putable sequence of biases that are bounded away from 0 and R is random with respect to �β, then
the dimension and strong dimension of R are the lower and upper average entropies, respectively,
of �β. 2. For each pair of Δ0

2-computable real numbers 0 < α ≤ β ≤ 1, there exists A ∈ E such that
the polynomial-time many-one degree of A has dimension α in E and strong dimension β in E. Our
proofs of these theorems use a new large deviation theorem for self-information with respect to a
bias sequence �β that need not be convergent.
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1. Introduction. Hausdorff dimension—a powerful tool of fractal geometry de-
veloped by Hausdorff [12] in 1919—was effectivized in 2000 by Lutz [22, 23, 24].
This has led to a spectrum of effective versions of Hausdorff dimension, including
constructive, computable, polynomial-space, polynomial-time, and finite-state dimen-
sions. Work by several investigators has already used these effective dimensions to
illuminate a variety of topics in algorithmic information theory and computational
complexity [23, 24, 1, 7, 27, 13, 16, 11, 14, 15, 10]. (See [28] for a survey of some of
these results.) This work has also underscored and renewed the importance of earlier
work by Ryabko [29, 30, 31, 32], Staiger [38, 39, 40], and Cai and Hartmanis [5] re-
lating Kolmogorov complexity to classical Hausdorff dimension. (See section 6 of [24]
for a discussion of this work.)

The key to all these effective dimensions is a simple characterization of classical
Hausdorff dimension in terms of gales, which are betting strategies that generalize
martingales. (Martingales, introduced by Lévy [18] and Ville [46], have been used
extensively by Schnorr [33, 34, 35] and others in the investigation of randomness and
by Lutz [20, 21] and others in the development of resource-bounded measure.) Given
this characterization, it is a simple matter to impose computability and complexity
constraints on the gales to produce the above-mentioned spectrum of effective dimen-
sions.

In the 1980s, a new concept of fractal dimension, called the packing dimension,
was introduced independently by Tricot [43] and Sullivan [41]. Packing dimension
shares with Hausdorff dimension the mathematical advantage of being based on a
measure. Over the past two decades, despite its greater complexity (requiring an
extra optimization over all countable decompositions of a set in its definition), packing
dimension has become, next to Hausdorff dimension, the most important notion of
fractal dimensions, yielding extensive applications in fractal geometry and dynamical
systems [9, 8].

The main result of this paper is a proof that packing dimension can also be
characterized in terms of gales. Moreover, notwithstanding the greater complexity of
packing dimension’s definition (and the greater complexity of its behavior on compact
sets, as established by Mattila and Mauldin [26]), our gale characterization of packing
dimension is an exact dual of—and every bit as simple as—the gale characterization
of Hausdorff dimension. (This duality and simplicity are in the statement of our gale
characterization; its proof is perforce more involved than its counterpart for Hausdorff
dimension.)

Effectivizing our gale characterization of packing dimension produces for each of
the effective dimensions above an effective strong dimension that is its exact dual.
Just as the Hausdorff dimension of a set is bounded above by its packing dimension,
the effective dimension of a set is bounded above by its effective strong dimension.
Moreover, just as in the classical case, the effective dimension coincides with the
strong effective dimension for sets that are sufficiently regular.

After proving our gale characterization and developing the effective strong dimen-
sions and some of their basic properties, we prove a number of results relating them
to fundamental aspects of randomness, Kolmogorov complexity, prediction, Boolean
circuit-size complexity, polynomial-time degrees, and data compression. Our two main
theorems along these lines are the following.

1. If δ > 0 and �β = (β0, β1, . . . ) is a computable sequence of biases with each
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βi ∈ [δ, 1
2
], then every sequence R that is random with respect to �β has

dimension

dim(R) = lim inf
n→∞

1

n

n−1∑

i=0

H(βi)

and strong dimension

Dim(R) = lim sup
n→∞

1

n

n−1∑

i=0

H(βi),

where H(βi) is the Shannon entropy of βi.
2. For every pair of Δ0

2-computable real numbers 0 < α ≤ β ≤ 1 there is a
decision problem A ∈ E such that the polynomial-time many-one degree of A
has dimension α in E and strong dimension β in E.

In order to prove these theorems, we prove a new large deviation theorem for the self-
information log 1

μ�β(w)
, where �β is as in 1 above. Note that �β need not be convergent

here.
A corollary of theorem 1 above is that, if the average entropies 1

n

∑n−1

i=0 H(βi)

converge to a limit H(�β) as n → ∞, then dim(R) = Dim(R) = H(�β). Since the
convergence of these average entropies is a much weaker condition than the conver-
gence of the biases βn as n → ∞, this corollary substantially strengthens Theorem 7.7
of [24].

Our remaining results are much easier to prove, but their breadth makes a strong
prima facie case for the utility of effective strong dimension. They in some cases
explain dual concepts that had been curiously neglected in earlier work, and they are
likely to be useful in future applications. It is to be hoped that we are on the verge of
seeing the full force of fractal geometry applied fruitfully to difficult problems in the
theory of computing.

2. Preliminaries. We use the set Z of integers, the set Z
+ of (strictly) positive

integers, the set N of natural numbers (i.e., nonnegative integers), the set Q of rational
numbers, the set R of real numbers, and the set [0,∞) of nonnegative reals. All
logarithms in this paper are base 2. We use the slow-growing function log∗ n =
min{j ∈ N | tj ≥ n}, where t0 = 0 and tj+1 = 2tj , and Shannon’s binary entropy
function H : [0, 1] → [0, 1] defined by

H(β) = β log
1

β
+ (1 − β) log

1

1 − β
,

where 0 log 1
0

= 0.
A string is a finite, binary string w ∈ {0, 1}∗. We write |w| for the length of a

string w and λ for the empty string. For i, j ∈ {0, . . . , |w|−1}, we write w[i..j] for the
string consisting of the ith through the jth bits of w, and w[i] for w[i..i], the ith bit
of w. Note that the 0th bit w[0] is the leftmost bit of w and that w[i..j] = λ if i > j.
A sequence is an infinite binary sequence. If S is a sequence and i, j ∈ N, then the
notations S[i..j] and S[i] are defined exactly as for strings. We work in the Cantor
space C consisting of all sequences. A string w ∈ {0, 1}∗ is a prefix of a sequence
S ∈ C, and we write w � S, if S[0..|w| − 1] = w. The cylinder generated by a string
w ∈ {0, 1}∗ is Cw = {S ∈ C|w � S}. Note that Cλ = C.
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A language, or decision problem, is a set A ⊆ {0, 1}∗. We usually identify a
language A with its characteristic sequence χA ∈ C defined by χA[n] = if sn ∈ A
then 1 else 0, where s0 = λ, s1 = 0, s2 = 1, s3 = 00, . . . is the standard enumeration
of {0, 1}∗. That is, we usually (but not always) use A to denote both the set A ⊆
{0, 1}∗ and the sequence A = χA ∈ C.

Given a set A ⊆ {0, 1}∗ and n ∈ N, we use the abbreviations A=n = A ∩ {0, 1}n
and A≤n = A ∩ {0, 1}≤n. A prefix set is a set A ⊆ {0, 1}∗ such that no element of A
is a prefix of another element of A.

For each i ∈ N we define a class Gi of functions from N into N as follows.

G0 = {f | (∃k)(∀∞n)f(n) ≤ kn},
Gi+1 = 2Gi(log n) = {f | (∃g ∈ Gi)(∀∞n)f(n) ≤ 2g(log n)}.

We also define the functions ĝi ∈ Gi by ĝ0(n) = 2n, ĝi+1(n) = 2ĝi(log n). We regard
the functions in these classes as growth rates. In particular, G0 contains the linearly
bounded growth rates, and G1 contains the polynomially bounded growth rates. It is
easy to show that each Gi is closed under composition, that each f ∈ Gi is o(ĝi+1),
and that each ĝi is o(2n). Thus Gi contains superpolynomial growth rates for all
i > 1, but all growth rates in the Gi-hierarchy are subexponential.

Let CE be the class of computably enumerable languages. Within the class DEC
of all decidable languages, we are interested in the exponential complexity classes Ei =
DTIME(2Gi−1) and EiSPACE = DSPACE(2Gi−1) for i ≥ 1. The much-studied classes
E = E1 = DTIME(2linear), E2 = DTIME(2polynomial), and ESPACE = E1SPACE =
DSPACE(2linear) are of particular interest.

We use the following classes of functions:

all = {f | f : {0, 1}∗ → {0, 1}∗},
comp = {f ∈ all | f is computable},

pi = {f ∈ all | f is computable in Gi time} (i ≥ 1),

pispace = {f ∈ all | f is computable in Gi space} (i ≥ 1).

(The length of the output is included as part of the space used in computing f .) We
write p for p1 and pspace for p1space.

A constructor is a function δ : {0, 1}∗ → {0, 1}∗ that satisfies x�
�=δ(x) for all

x. The result of a constructor δ (i.e., the language constructed by δ) is the unique
language R(δ) such that δn(λ) � R(δ) for all n ∈ N. Intuitively, δ constructs R(δ) by
starting with λ and then iteratively generating successively longer prefixes of R(δ).
We write R(Δ) for the set of languages R(δ) such that δ is a constructor in Δ. The
following facts are the reason for our interest in the above-defined classes of functions:

R(all) = C.
R(comp) = DEC.
For i ≥ 1, R(pi) = Ei.
For i ≥ 1, R(pispace) = EiSPACE.

If D is a discrete domain (such as N, {0, 1}∗,N × {0, 1}∗, etc.), then a function

f : D −→ [0,∞) is Δ-computable if there is a function f̂ : N × D −→ Q ∩ [0,∞)

such that |f̂(r, x) − f(x)| ≤ 2−r for all r ∈ N and x ∈ D and f̂ ∈ Δ (with r coded
in unary and the output coded in binary). We say that f is exactly Δ-computable if
f : D −→ Q ∩ [0,∞) and f ∈ Δ. We say that f is lower semicomputable if there is a

computable function f̂ : D × N → Q such that
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(a) for all (x, t) ∈ D × N, f̂(x, t) ≤ f̂(x, t + 1) < f(x), and

(b) for all x ∈ D, limt→∞ f̂(x, t) = f(x).
Finally, we say that f is Δ0

2-computable if f is computable (i.e., comp-computable)
relative to the halting oracle.

A real number α ∈ [0,∞) is computable (respectively, Δ0
2-computable) if the

function f : {0} → [0,∞) defined by f(0) = α is computable (respectively, Δ0
2-

computable).
Let k be a positive integer. A k-account finite-state gambler (k-account FSG) is

a tuple G = (Q, δ, β, q0, �c0), where
• Q is a nonempty, finite set of states,
• δ : Q× {0, 1} → Q is the transition function,
• β : {1, . . . , k} ×Q× {0, 1} → Q ∩ [0, 1] is the betting function,
• q0 ∈ Q is the initial state, and
• �c0 is the initial capital vector, a sequence of k nonnegative rational numbers.

The betting function satisfies β(i, q, 0) + β(i, q, 1) = 1 for each q ∈ Q and 1 ≤ i ≤ k.
We use the standard extension δ∗ : Σ∗ → Q of δ defined recursively by δ∗(λ) = q0
and δ∗(wb) = δ(δ∗(w), b) for all w ∈ {0, 1}∗ and b ∈ {0, 1}.

3. Fractal dimensions. In this section we briefly review the classical definitions
of some fractal dimensions and the relationships among them. Since we are primar-
ily interested in binary sequences and (equivalently) decision problems, we focus on
fractal dimension in the Cantor space C.

For each k ∈ N, we let Ak be the collection of all prefix sets A such that A<k = ∅.
For each X ⊆ C, we then define the families

Ak(X) =

{
A ∈ Ak

∣∣∣∣∣X ⊆
⋃

w∈A

Cw

}
,

Bk(X) = {A ∈ Ak |(∀w ∈ A)Cw ∩X = ∅} .
If A ∈ Ak(X), then we say that the prefix set A covers the set X. If A ∈ Bk(X),
then we call the prefix set A a packing of X. For X ⊆ C, s ∈ [0,∞), and k ∈ N, we
then define

Hs
k(X) = inf

A∈Ak(X)

∑

w∈A

2−s|w|,

P s
k (X) = sup

A∈Bk(X)

∑

w∈A

2−s|w|.

Since Hs
k(X) and P s

k (X) are monotone in k, the limits

Hs(X) = lim
k→∞

Hs
k(X),

P s
∞(X) = lim

k→∞
P s
k (X)

exist, though they may be infinite. We then define

(3.1) P s(X) = inf

{ ∞∑

i=0

P s
∞(Xi)

∣∣∣∣∣X ⊆
∞⋃

i=0

Xi

}
.

The set functions Hs and P s have the technical properties of an outer measure [9],
and the (possibly infinite) quantities Hs(X) and P s(X) are thus known as the s-
dimensional Hausdorff (outer) cylinder measure of X and the s-dimensional packing
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(outer) cylinder measure of X, respectively. The set function P s
∞ is not an outer

measure; this is the reason for the extra optimization (3.1) in the definition of the
packing measure.

Definition. Let X ⊆ C.
1. The Hausdorff dimension of X is dimH(X) = inf{s ∈ [0,∞)|Hs(X) = 0}.
2. The packing dimension of X is dimP(X) = inf{s ∈ [0,∞)|P s(X) = 0}.

The proof of our main result uses a well-known characterization of packing di-
mension as a modified box dimension. For each X ⊆ C and n ∈ N, let

Nn(X) =
∣∣∣{w ∈ {0, 1}n|(∃S ∈ X)w � S}

∣∣∣.

Then the upper box dimension of X is

(3.2) dimB(X) = lim sup
n→∞

logNn(X)

n
.

The lower box dimension dimB(X), which we do not use here, is obtained by using a
limit inferior in place of the limit superior in (3.2). When dimB(X) = dimB(X), this
quantity, written dimB(X), is called the box dimension of X.

Box dimensions are over 60 years old, have been reinvented many times, and
have been named many things, including Minkowski dimension, Kolmogorov entropy,
Kolmogorov dimension, topological entropy, metric dimension, logarithmic density,
and information dimension. Box dimensions are often used in practical applications
of fractal geometry because they are easy to estimate, but they are not well-behaved
mathematically. The modified upper box dimension

(3.3) dimMB(X) = inf

{
sup
i

dimB(Xi)

∣∣∣∣∣X ⊆
∞⋃

i=0

Xi

}

is much better behaved. (Note that (3.3), like (3.1), is an optimization over all
countable decompositions of X.) In fact, the following relations are well known [9].

Theorem 3.1. For all X ⊆ C, 0 ≤ dimH(X) ≤ dimMB(X) = dimP(X) ≤
dimB(X) ≤ 1.

The above dimensions are monotone, i.e., X ⊆ Y implies dim(X) ≤ dim(Y ),
and stable, i.e., dim(X ∪ Y ) = max{dim(X),dim(Y )}. The Hausdorff and packing
dimensions are also countably stable, i.e., dim(∪∞

i=0Xi) = sup{dim(Xi)|i ∈ N}.
4. Gale characterizations. In this section we review the gale characterization

of Hausdorff dimension and prove our main theorem, which is the dual gale charac-
terization of packing dimension.

Definition. Let s ∈ [0,∞).
1. An s-supergale is a function d : {0, 1}∗ −→ [0,∞) that satisfies the condition

(4.1) d(w) ≥ 2−s[d(w0) + d(w1)]

for all w ∈ {0, 1}∗.
2. An s-gale is an s-supergale that satisfies (4.1) with equality for all w ∈ {0, 1}∗.
3. A supermartingale is a 1-supergale.
4. A martingale is a 1-gale.

Intuitively, we regard a supergale d as a strategy for betting on the successive
bits of a sequence S ∈ C. More specifically d(w) is the amount of capital that d has
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after betting on the prefix w of S. If s = 1, then the right-hand side of (4.1) is the
conditional expectation of d(wb), given that w has occurred (when b is a uniformly
distributed binary random variable). Thus a martingale models a gambler’s capital
when the payoffs are fair. (The expected capital after the bet is the actual capital
before the bet.) In the case of an s-gale, if s < 1, the payoffs are less than fair; if
s > 1, the payoffs are more than fair.

We use the following known generalization of the Kraft inequality.

Lemma 4.1 (Lutz [23]). Let s ∈ [0,∞). If d is an s-supergale and B ⊆ {0, 1}∗ is
a prefix set, then for all w ∈ {0, 1}∗, ∑u∈B 2−s|u|d(wu) ≤ d(w).

We now define two criteria for the success of a gale or supergale.

Definition. Let d be an s-supergale, where s ∈ [0,∞).

1. We say that d succeeds on a sequence S ∈ C if

(4.2) lim sup
n→∞

d(S[0..n− 1]) = ∞.

The success set of d is S∞[d] = {S ∈ C|d succeeds on S}.
2. We say that d succeeds strongly on a sequence S ∈ C if

(4.3) lim inf
n→∞ d(S[0..n− 1]) = ∞.

The strong success set of d is S∞
str[d] = {S ∈ C|d succeeds strongly on S}.

We have written conditions (4.2) and (4.3) in a fashion that emphasizes their
duality. Condition (4.2) says simply that the set of values d(S[0..n−1]) is unbounded,
while condition (4.3) says that d(S[0..n− 1]) → ∞ as n → ∞.

Notation. Let X ⊆ C.

1. G(X) is the set of all s ∈ [0,∞) for which there exists an s-gale d such that
X ⊆ S∞[d].

2. Gstr(X) is the set of all s ∈ [0,∞) for which there exists an s-gale d such that
X ⊆ S∞

str[d].

3. Ĝ(X) is the set of all s ∈ [0,∞) for which there exists an s-supergale d such
that X ⊆ S∞[d].

4. Ĝstr(X) is the set of all s ∈ [0,∞) for which there exists an s-supergale d such
that X ⊆ S∞

str[d].

Note that s′ ≥ s ∈ G(X) implies that s′ ∈ G(X), and similarly for the classes

Gstr(X), Ĝ(X), and Ĝstr(X). The following fact is also clear.

Observation 4.2. For all X ⊆ C, G(X) = Ĝ(X) and Gstr(X) = Ĝstr(X).

For Hausdorff dimension, we have the following known fact.

Theorem 4.3 (gale characterization of Hausdorff dimension; see Lutz [23]). For
all X ⊆ C, dimH(X) = inf G(X).

Our main result is the following dual of Theorem 4.3.

Theorem 4.4 (gale characterization of packing dimension). For all X ⊆ C,
dimP(X) = inf Gstr(X).

By Observation 4.2, we could equivalently use Ĝ(X) and Ĝstr(X) in Theorems 4.3
and 4.4, respectively. We will use the following lemma to prove Theorem 4.4.

Lemma 4.5. For each family of sets {Xk ⊆ C |k ∈ N}, inf Gstr (
⋃

k Xk) =
supk inf Gstr(Xk).

Proof. The inequality inf Gstr(
⋃

k Xk) ≥ supk inf Gstr(Xk) holds trivially.
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To prove that inf Gstr(
⋃

k Xk) ≤ supk inf Gstr(Xk), let s > supk inf Gstr(Xk). Then
for each k ∈ N there is an s-gale dk such that Xk ⊆ S∞

str[dk]. We define an s-gale d by

d(w) =
∑

k∈N

2−k

dk(λ)
· dk(w)

for all w ∈ {0, 1}∗. Then for each k, for any S ∈ Xk, we have

d(S[0..n− 1]) ≥ 2−k

dk(λ)
· dk(S[0..n− 1])

for all n, so S ∈ S∞
str[d]. Therefore

⋃
k Xk ⊆ S∞

str[d], and the lemma follows.
Proof of Theorem 4.4. Let X ⊆ C. By Theorem 3.1, it suffices to show that

dimMB(X) = inf Gstr(X).
To see that dimMB(X) ≤ inf Gstr(X), let s > inf Gstr(X). It suffices to show that

dimMB(X) ≤ s.
By our choice of s, there is an s-gale d such that X ⊆ S∞

str[d]. For each n ∈ N, let

Bn = {w ∈ {0, 1}n|d(w) > d(λ)}
and

Yn = {S ∈ C|S[0..n− 1] ∈ Bn}.
For each i ∈ N, let

Xi =

∞⋂

n=i

Yn,

and note that

(4.4) X ⊆
∞⋃

i=0

Xi.

For all n ≥ i ∈ N, we have Xi ⊆ Yn, whence the generalized Kraft inequality
(Lemma 4.1) tells us that

Nn(Xi) ≤ Nn(Yn) = |Bn| < 2sn.

It follows that, for all i ∈ N,

dimB(Xi) = lim sup
n→∞

logNn(Xi)

n
≤ s,

whence by (4.4),

dimMB(X) ≤ sup
i∈N

dimB(Xi) ≤ s.

To see that inf Gstr(X) ≤ dimMB(X), let s > s′ > s′′ > dimMB(X). It suffices to
show that inf Gstr(X) ≤ s. Since s′′ > dimMB(X), there exist sets X0, X1, . . . ⊆ C
such that X =

⋃∞
i=0 Xi and dimB(Xi) < s′′ for all i ∈ N. By Lemma 4.5, it suffices

to show that s ∈ Gstr(Xi) for all i ∈ N.
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Fix i ∈ N. Since dimB(Xi) < s′′, there exists n0 ∈ N such that, for all n ≥ n0,
logNn(Xi)

n < s′′, i.e., Nn(Xi) < 2s
′′n. For each n ≥ n0, let

An = {S[0..n− 1]|S ∈ Xi}
(noting that |An| = Nn(Xi)), and define dn : {0, 1}∗ → [0,∞) by

dn(w) =

⎧
⎪⎨
⎪⎩

2(s−s′)|w| ∑

u
wu∈An

2−s′|u| if |w| ≤ n,

2(s−1)(|w|−n)dn(w[0..n− 1]) if |w| > n.

It is routine to verify that dn is an s-gale for each n ≥ n0. Note also that dn(w) =
2(s−s′)n for all n ≥ n0 and w ∈ An. Let d =

∑∞
n=n0

dn. Then

d(λ) =

∞∑

n=n0

dn(λ) =

∞∑

n=n0

|An|2−s′n =

∞∑

n=n0

Nn(Xi)2
−s′n

<

∞∑

n=n0

2(s′′−s′)n < ∞,

so d is an s-gale by linearity. Let S ∈ Xi. Then, for all n ≥ n0, S[0..n− 1] ∈ An, so

d(S[0..n− 1]) ≥ dn(S[0..n− 1]) ≥ 2(s−s′)n.

Thus S ∈ S∞
str[d]. This shows that Xi ⊆ S∞

str[d], whence s ∈ Gstr(Xi).

5. Effective strong dimensions. Theorem 4.3 has been used to effectivize
Hausdorff dimension at a variety of levels. In this section we review these effective
dimensions while using Theorem 4.4 to develop the dual effective strong dimensions.

We define a gale or supergale to be constructive if it is lower semicomputable.

For any s ∈ [0,∞) and any k-account FSG G an s-gale d
(s)
G is defined as follows [11].

(Recall that finite-state gamblers were defined in section 2.) For each 1 ≤ i ≤ k we

define an s-gale d
(s)
G,i by the recursion

d
(s)
G,i(λ) = c0,i,

d
(s)
G,i(wb) = 2sd

(s)
G,i(w)β(i, δ∗(w), b)

for all w ∈ {0, 1}∗ and b ∈ {0, 1}. Then

d
(s)
G =

k∑

i=1

d
(s)
G,i.

We define an s-gale d to be finite-state if there is an FSG G such that d
(s)
G = d. For

the rest of this paper, Δ denotes one of the classes all, comp, p, pspace, p
2 , p2space,

etc., defined in section 2.
For each Γ ∈ {constr,Δ,FS} and X ⊆ C, we define the sets GΓ(X), Gstr

Γ (X),

ĜΓ(X), and Ĝstr
Γ (X) just as the classes G(X), Gstr(X), Ĝ(X), and Ĝstr(X) were defined

in section 4, but with the following modifications:
(i) If Γ = constr, then d is required to be constructive.



680 ATHREYA, HITCHCOCK, LUTZ, AND MAYORDOMO

(ii) If Γ = Δ, then d is required to be Δ-computable.
(iii) In GFS(X) and Gstr

FS(X), d is required to be finite-state.

(iv) ĜFS(X) and Ĝstr
FS(X) are not defined.

The following effectivizations of Hausdorff and packing dimension are motivated
by Theorems 4.3 and 4.4.

Definition. Let X ⊆ C and S ∈ C.
1. [24] The constructive dimension of X is cdim(X) = inf Gconstr(X).
2. The constructive strong dimension of X is cDim(X) = inf Gstr

constr(X).
3. [24] The dimension of S is dim(S) = cdim({S}).
4. The strong dimension of S is Dim(S) = cDim({S}).
5. [23] The Δ-dimension of X is dimΔ(X) = inf GΔ(X).
6. The Δ-strong dimension of X is DimΔ(X) = inf Gstr

Δ (X).
7. [23] The dimension of X in R(Δ) is dim(X|R(Δ)) = dimΔ(X ∩R(Δ)).
8. The strong dimension of X in R(Δ) is Dim(X|R(Δ)) = DimΔ(X ∩R(Δ)).
9. [11] The finite-state dimension of X is dimFS(X) = inf GFS(X).

10. The finite-state strong dimension of X is DimFS(X) = inf Gstr
FS(X).

11. [11] The finite-state dimension of S is dimFS(S) = dimFS({S}).
12. The finite-state strong dimension of S is DimFS(S) = DimFS({S}).
In parts 1, 2, 5, and 6 of the above definition, we could equivalently use the

“hatted” sets Ĝconstr(X), Ĝstr
constr(X), ĜΔ(X), and Ĝstr

Δ (X) in place of their unhatted
counterparts. In the case of parts 5 and 6, this follows from Lemma 4.7 of [23]. In
the case of parts 1 and 2, it follows from the main theorem in [15] (which answered

an open question in [24], where Ĝconstr(X) was in fact used in defining cdim(X)).
The polynomial-time dimensions dimp(X) and Dimp(X) are also called the feasi-

ble dimension and the feasible strong dimension, respectively. The notation dimp(X)
for the p-dimension is all too similar to the notation dimP(X) for the classical packing
dimension, but confusion is unlikely because these dimensions typically arise in quite
different contexts.

Note that the classical Hausdorff and packing dimensions can each now be written
in three different ways, i.e.,

dimH(X) = dimall(X) = dim(X|C)

and

dimP(X) = Dimall(X) = Dim(X|C).

Observations 5.1.

1. Each of the dimensions that we have defined is monotone (e.g., X ⊆ Y
implies cdim(X) ≤ cdim(Y )).

2. Each of the effective strong dimensions is bounded below by the corresponding
effective dimension (e.g., cdim(X) ≤ cDim(X)).

3. Each of the dimensions that we have defined is nonincreasing as the effec-
tivity constraint is relaxed (e.g., dimH(X) ≤ cdim(X) ≤ dimpspace(X) ≤
dimFS(X)).

4. Each of the dimensions that we have defined is nonnegative and assigns C
the dimension 1.

Lemma 5.2. The finite-state dimensions are stable; i.e., for all X,Y ⊆ C,

dimFS(X ∪ Y ) = max{dimFS(X),dimFS(Y )}
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and

DimFS(X ∪ Y ) = max{DimFS(X),DimFS(Y )}.

Proof. The stability of finite-state dimension was proved in [11]. The same argu-
ments establish stability for finite-state strong dimension.

Definition. Let X,X0, X1, X2, . . . ⊆ C.
1. We say that X is a Δ-union of the Δ-dimensioned sets {Xk|k ∈ N} if

X =
⋃∞

k=0 Xk and for each s > supk∈N
dimΔ(Xk) with 2s rational there

is a function d : N × {0, 1}∗ → [0,∞) with the following three properties:
(i) d is Δ-computable.
(ii) For each k ∈ N, if we write dk(w) = d(k,w), then the function dk is an

s-gale.
(iii) For each k ∈ N, Xk ⊆ S∞[dk].
Analogously, X is a Δ-union of the Δ-strong dimensioned sets {Xk|k ∈ N}
if there is a d with the above properties that also satisfies
(iv) For each k ∈ N, Xk ⊆ S∞

str[dk].
2. We say that X is a Δ-union of the sets {Xk|k ∈ N} dimensioned in R(Δ)

if X =
⋃∞

k=0 Xk and X ∩ R(Δ) is a Δ-union of the Δ-dimensioned sets
{Xk ∩R(Δ)|k ∈ N}.
Analogously, X is a Δ-union of the sets {Xk|k ∈ N} strong dimensioned
in R(Δ) if X =

⋃∞
k=0 Xk and X ∩ R(Δ) is an Δ-union of the Δ-strong

dimensioned sets {Xk ∩R(Δ)|k ∈ N}.
Lemma 5.3. The dimensions defined from Δ are Δ-countably stable; i.e., if X

is a Δ-union of the Δ-dimensioned sets X0, X1, X2, . . . , then

dimΔ(X) = sup
k∈N

dimΔ(Xk),

and if X is a Δ-union of the Δ-strong dimensioned sets X0, X1, X2, . . . , then

DimΔ(X) = sup
k∈N

DimΔ(Xk),

and similarly for dimension and strong dimension in R(Δ).
Proof. The stability of dimΔ over Δ-unions was proven in [23]. The proof for

strong dimension is analogous.
Lemma 5.4. The constructive dimensions are absolutely stable; i.e., for all

X ⊆ C,

cdim(X) = sup
S∈X

dim(S)

and

cDim(X) = sup
S∈X

Dim(S).

Proof. The absolute stability of constructive dimension was proven in [24] using
optimal constructive supergales. The same argument works for constructive strong
dimension.

In the following two sections, we use Martin-Löf’s definition of randomness [25]
as reformulated in terms of martingales by Schnorr [33] as follows.
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A probability measure on C is a function ν : {0, 1}∗ → [0,∞) such that ν(λ) = 1
and ν(w) = ν(w0) + ν(w1) for all w ∈ {0, 1}∗. (Intuitively, ν(w) is the probability
that w � S when the sequence S is “chosen according to ν.”)

A bias is a real number β ∈ [0, 1]. Intuitively, if we toss a 0/1-valued coin with
bias β, then β is the probability of the outcome 1. A bias sequence is a sequence
�β = (β0, β1, β2, . . . ) of biases. If �β is a bias sequence, then the �β-coin-toss probability

measure is the probability μ
�β on C defined by

(5.1) μ
�β(w) =

|w|−1∏

i=0

βi(w),

where βi(w) = (2βi − 1)w[i] + (1−βi), i.e., βi(w) = if w[i] then βi else 1−βi. That

is, μ
�β is the probability that S ∈ Cw when S ∈ C is chosen according to a random

experiment in which for each i, independently of all other j, the ith bit of S is decided
by tossing a 0/1-valued coin whose probability of 1 is βi. In the case where the biases

βi are all the same, i.e., �β = (β, β, β, . . . ) for some β ∈ [0, 1], we write μβ for μ
�β , and

(5.1) simplifies to

(5.2) μβ(w) = (1 − β)#(0,w)β#(1,w),

where #(b, w) is the number of times the bit b appears in the string w. The uniform

probability measure on C is the probability measure μ = μ
1
2 , for which (5.2) simplifies

to

μ(w) = 2−|w|

for all w ∈ {0, 1}∗.
Definition. Let ν be a probability measure on C.
1. A ν-martingale is a function d : {0, 1}∗ → [0,∞) that satisfies the condition

d(w)ν(w) = d(w0)ν(w0) + d(w1)ν(w1)

for all w ∈ {0, 1}∗.
2. A ν-martingale is constructive if it is lower semicomputable.

Note that a μ-martingale is a martingale. If �β is a bias sequence, then we call a

μ
�β-martingale simply a �β-martingale.

Definition. Let ν be a probability measure on C, and let X ⊆ C.
1. X has constructive ν-measure 0, and we write νconstr(X) = 0 if there is a

constructive ν-martingale d such that X ⊆ S∞[d].
2. X has constructive ν-measure 1, and we write νconstr(X) = 1 if νconstr(C −

X) = 0.
Definition. If ν is a probability measure on C, then a sequence R ∈ C is ν-

random, and we write R ∈ RANDν if the singleton set {R} does not have constructive
ν-measure 0 (i.e., there is no constructive ν-martingale that succeeds on R).

It is well known (and easy to see) that νconstr(RANDν) = 1.

We write RAND
�β for RANDμ

�β

and RAND for RANDμ.
We also use resource-bounded notions of randomness that have been investigated

by Schnorr [34], Lutz [20], Ambos-Spies, Terwijn, and Zheng [2], and others.
Definition. Let ν be a probability measure on C, and let t : N → N.
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1. A sequence R ∈ C is Δ-ν-random, and we write R ∈ RANDν(Δ), if there is
no Δ-computable ν-martingale that succeeds on R.

2. A sequence R ∈ C is t(n)-ν-random, and we write R ∈ RANDν(t(n)), if
there is no O(t(n))-time-computable ν-martingale that succeeds on R.

We write RAND
�β(t(n)) for RANDμ

�β

(t(n)).

6. Algorithmic information. In this section we present a variety of results
and observations in which constructive and computable strong dimensions illuminate
or clarify various aspects of algorithmic information theory. Included is our second
main theorem, which says that every sequence that is random with respect to a
computable sequence of biases βi ∈ [δ, 1/2] has the lower and upper average entropies
of (β0, β1, . . . ) as its dimension and strong dimension, respectively. We also present a
result in which finite-state strong dimension clarifies an issue in data compression.

Mayordomo [27] proved that for all S ∈ C,

(6.1) dim(S) = lim inf
n→∞

K(S[0..n− 1])

n
,

where K(w) is the Kolmogorov complexity of w. (Note: Here and below, K(w) is
the “self-delimiting” or “prefix” version of Kolmogorov complexity, as opposed to the
“plain” complexity C(w) [19].) Subsequently, Lutz [24] used termgales to define the
dimension dim(w) of each (finite!) string w ∈ {0, 1}∗ and proved that

(6.2) dim(S) = lim inf
n→∞ dim(S[0..n− 1])

for all S ∈ C and

(6.3) K(w) = |w|dim(w) ±O(1)

for all w ∈ {0, 1}∗, thereby giving a second proof of (6.1). The following theorem is a
dual of (6.2) that yields a dual of (6.1) as a corollary.

Theorem 6.1. For all S ∈ C,

Dim(S) = lim sup
n→∞

dim(S[0..n− 1]).

Proof. This proof is analogous to the one for the dual statement (6.2) given
in [24].

Corollary 6.2. For all S ∈ C,

Dim(S) = lim sup
n→∞

K(S[0..n− 1])

n
.

By Corollary 6.2, the “upper algorithmic dimension” defined by Tadaki [42] is
precisely the constructive strong dimension.

The rate at which a gambler can increase its capital when betting in a given
situation is a fundamental concern of classical and algorithmic information and com-
putational learning theories. In the setting of constructive gamblers, the following
quantities are of particular relevance.

Definition. Let d be a supermartingale, let S ∈ C, and let X ⊆ C.

1. The lower d-Lyapunov exponent of S is λd(S) = lim infn→∞
log d(S[0..n−1])

n .

2. The upper d-Lyapunov exponent of S is Λd(S) = lim supn→∞
log d(S[0..n−1])

n .
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3. The lower Lyapunov exponent of S is λ(S) = sup{λd(S)|d is a constructive
supermartingale}.

4. The upper Lyapunov exponent of S is Λ(S) = sup{Λd(S)|d is a constructive
supermartingale}.

5. The lower Lyapunov exponent of X is λ(X) = infS∈X λ(S).
6. The upper Lyapunov exponent of X is Λ(X) = infS∈X Λ(S).

Lyapunov exponents such as these were investigated by Schnorr [34, 36], Ryabko
[32], and Staiger [39, 40] (using slightly different notation) prior to the effectivization
of Hausdorff dimension. The quantities λd(S) and Λd(S) are also called “exponents
of increase” of d on S. It is implicit in Staiger’s paper [39] that

Λcomp(S) = 1 − dimcomp(S)

for all S ∈ C, where Λcomp(S) is defined like Λ(S) above, but with d required to be a
computable martingale. Similar reasoning leads to the following characterizations of
the Lyapunov exponents.

Theorem 6.3. Let S ∈ C and X ⊆ C. Then Λ(S) = 1 − dim(S), λ(S) =
1 − Dim(S), Λ(X) = 1 − cdim(X), and λ(X) = 1 − cDim(X).

Proof. We show that Λ(S) = 1− dim(S). A similar argument shows that λ(S) =
1 − Dim(S). By Lemma 5.4, Λ(X) = 1 − cdim(X) and λ(X) = 1 − cDim(X) follow
from the statements about sequences.

Let t < s < Λ(S) with t computable, and let d be a constructive supermartingale
for which Λd(S) > s. Then for infinitely many n, d(S[0..n − 1]) > 2sn. Define a
constructive (1 − t)-supergale d′ by d′(w) = 2−t|w|d(w) for all w ∈ {0, 1}∗. Then
for infinitely many n, we have d′(S[0..n − 1]) = 2−tnd(S[0..n − 1]) > 2(s−t)n, so
S ∈ S∞[d]. Therefore dim(S) ≤ 1 − t. This holds for all computable t < Λ(S), so
dim(S) ≤ 1 − Λ(S).

Let s > dim(S) be computable, and let d be a constructive s-gale with S ∈ S∞[d].
Define a constructive martingale d′ by d′(w) = 2(1−s)|w|d(w) for all w ∈ {0, 1}∗. For
infinitely many n, we have d(S[0..n−1]) > 1, and for each of these n, d′(S[0..n−1]) >
2(1−s)n. Therefore Λd′(S) ≥ 1− s, so Λ(S) ≥ 1− s. This holds for all s > dim(S), so
Λ(S) ≥ 1 − dim(S).

Constructive strong dimension can also be used to characterize entropy rates of
the type investigated by Staiger [38, 39] and Hitchcock [16].

Definition. Let A ⊆ {0, 1}∗.
1. The entropy rate of A ⊆ {0, 1}∗ is HA = lim supn→∞

log |A=n|
n .

2. We define the sets of sequences

Ai.o. = {S ∈ C|(∃∞n)S[0..n− 1] ∈ A}

and

Aa.e. = {S ∈ C|(∀∞n)S[0..n− 1] ∈ A}.

Definition. Let X ⊆ C. The constructive entropy rate of X is

HCE(X) = inf{HA|X ⊆ Ai.o. and A ∈ CE},

and the constructive strong entropy rate of X is

Hstr
CE(X) = inf{HA|X ⊆ Aa.e. and A ∈ CE}.
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Hitchcock [16] proved that

(6.4) HCE(X) = cdim(X)

for all X ⊆ C. We have the following dual of (6.4).
Theorem 6.4. For any X ⊆ C, Hstr

CE(X) = cDim(X).
Proof. This proof is analogous to the proof of (6.4) given in [16].
In the classical case, Tricot [43] has defined a set to be regular if its Hausdorff

and packing dimensions coincide, and defined its irregularity to be the difference
between these two fractal dimensions. Analogously, we define the c-irregularity (i.e.,
constructive irregularity) of a sequence S ∈ C to be Dim(S)− dim(S), and we define
the c-irregularity of a set X ⊆ C to be cDim(X) − cdim(X). We define a sequence
or set to be c-regular (i.e., constructively regular) if its c-irregularity is 0.

As the following result shows, the c-irregularity of a sequence may be any real
number in [0, 1].

Theorem 6.5. For any two real numbers 0 ≤ α ≤ β ≤ 1, there is a sequence
S ∈ C such that dim(S) = α and Dim(S) = β.

Proof. Let R ∈ RAND be a random sequence. It is well known that

(6.5) K(R[0..n− 1]) ≥ n−O(1).

Write R = r1r2r3 . . . , where |rn| = 2n− 1 for all n. Note that |r1 · · · rn| = n2.
For each n, define

γn =

{
1−α
α if log∗ n is odd,

1−β
β if log∗ n is even,

and let

kn = �|rn|γn� .

We now define S ∈ C as

S = r10
k1r20

k2 · · · rn0kn · · · .

Note that for all n,

|rn0kn | = �|rn|(1 + γn)�

=

{⌈
1
α |rn|

⌉
if log∗ n is odd,⌈

1
β |rn|

⌉
if log∗ n is even.

Let w � S. Then for some n,

w = r10
k1 · · · rn−10

kn−1r′n0j ,

where r′n � rn and 0 ≤ j ≤ kn. We have

(6.6)

K(w) ≤ K(r1 · · · rn−1r
′
n) + K(k1) + · · · + K(kn−1) + K(j) + O(1)

≤ |r1 · · · rn−1r
′
n| + O(n log n)

≤ (n− 1)2 + O(n log n).
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Also,

K(r1 · · · rn−1r
′
n) ≤ K(w) + K(k1) + · · · + K(kn−1) + K(j) + O(1)

≤ K(w) + O(n log n),

and so by (6.5),

(6.7)

K(w) ≥ K(r1 · · · rn−1r
′
n) −O(n log n)

≥ |r1 · · · rn−1r
′
n| −O(n log n)

≥ (n− 1)2 −O(n log n).

We bound the length of w in terms of n as

(6.8)

|w| ≥ |r1|(1 + γ1) + · · · + |rn−1|(1 + γn−1) + |r′n|

≥ |r1 · · · rn−1|
β

=
1

β
(n− 1)2

and

(6.9)

|w| ≤ |r1|(1 + γ1) + · · · + |rn−1|(1 + γn−1) + |rn|(1 + γn) + n

≤ |r1 · · · rn−1rn|
α

+ n

≤ 1

α
(n + 1)2.

From (6.6) and (6.8), we have

(6.10) lim sup
m→∞

K(S[0..m− 1])

m
≤ lim sup

n→∞
(n− 1)2 + O(n log n)

1
β (n− 1)2

= β,

and (6.7) and (6.9) yield

(6.11) lim inf
m→∞

K(S[0..m− 1])

m
≥ lim inf

n→∞
(n− 1)2 −O(n log n)

1
α (n + 1)2

= α.

For each n, let

wn = r10
k1 · · · rn0kn .

Recall the sequence of towers defined by tj by t0 = 1 and tj+1 = 2tj . If j is even,

then for all tj−1 < i ≤ tj , γi = 1−β
β . Then

(6.12)

|wtj | ≤ tj +

tj∑

i=1

|ri|(1 + γi)

= tj +

tj−1∑

i=1

|ri|(1 + γi) +
1

β

tj∑

i=tj−1+1

|ri|

≤ tj +
1

α
t2j−1 +

1

β
(t2j − t2j−1)

≤ 1

β
t2j + tj + O((log tj)

2).
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Similarly, if j is odd, we have

(6.13)

|wtj | ≥
tj∑

i=1

|ri|(1 + γi)

=

tj−1∑

i=1

|ri|(1 + γi) +
1

α

tj∑

i=tj−1+1

|ri|

≥ 1

β
tj−1

2 +
1

α
(t2j − t2j−1)

≥ 1

α
t2j −O((log tj)

2).

Combining (6.7) and (6.12), we have

(6.14) lim sup
m→∞

K(S[0..m− 1])

m
≥ lim sup

n→∞
K(wt2n)

|wt2n |
≥ β.

Putting (6.6) together with (6.13) yields

(6.15) lim inf
m→∞

K(S[0..m− 1])

m
≤ lim inf

n→∞
K(wt2n+1

)

|wt2n+1 |
≤ α.

By (6.1), (6.11), and (6.15), we have dim(S) = α. By Corollary 6.2, (6.10), and
(6.14), we have Dim(S) = β.

We now come to the main theorem of this section. The following notation sim-
plifies its statement and proof.

Notation. Given a bias sequence �β = (β0, β1, . . . ), n ∈ N, and S ∈ C, let

Hn(�β) =
1

n

n−1∑

i=0

H(βi),

H−(�β) = lim inf
n→∞ Hn(�β),

H+(�β) = lim sup
n→∞

Hn(�β).

We call H−(�β) and H+(�β) the lower and upper average entropies, respectively, of �β.

Theorem 6.6. If δ ∈ (0, 1
2
] and �β is a computable bias sequence with each

βi ∈ [δ, 1
2
], then for every sequence R ∈ RAND

�β,

dim(R) = H−(�β) and Dim(R) = H+(�β).

Theorem 6.6 says that every sequence that is random with respect to a suitable
bias sequence �β has the lower and upper average entropies of �β as its dimension and
strong dimension, respectively. Since there exist �β-random sequences in Δ0

2 when �β is
computable, this gives a powerful and flexible method for constructing Δ0

2 sequences
with given (Δ0

2-computable) dimensions and strong dimensions.
Note that Theorem 6.6 also gives an alternative, though less constructive, proof

of Theorem 6.5.
We now develop a sequence of results that are used in our proof of Theorem 6.6.
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Lemma 6.7. Assume that δ > 0, ε > 0, and that, for each β ∈ [δ, 1 − δ], ηβ is a
bounded random variable with expectation Eηβ ≤ −ε and Eetηβ is, uniformly in t, a
continuous function of β. Then there exists θ > 0 such that, for all β ∈ [δ, 1 − δ] and
t ∈ (0, θ],

Eetηβ < 1 − tε

2
.

Proof. Assume the hypothesis. Then the dominated convergence theorem [3] tells
us that, for all β ∈ [δ, 1 − δ],

lim
t→0+

Eetηβ − 1

t
= lim

t→0+
E
etηβ − 1

t

= E

(
lim
t→0+

etηβ − 1

t

)

= E

(
ηβ lim

t→0+

etηβ − 1

tηβ

)

= Eηβ

≤ −ε.

Hence, for each β ∈ [δ, 1 − δ], there exists tβ > 0 such that, for all t ∈ (0, tβ ],

Eetηβ − 1

t
< −3ε

4
.

It follows by our continuity hypothesis that, for each β ∈ [δ, 1 − δ], there is an open
neighborhood Nβ of β such that, for all t ∈ (0, tβ ] and γ ∈ Nβ ∩ [δ, 1 − δ],

Eetηγ − 1

t
< − ε

2
.

The family G = {Nβ | β ∈ [δ, 1 − δ]} is an open cover of the compact set [δ, 1 − δ], so
there is a finite set B ⊆ [δ, 1 − δ] such that the subcollection G′ = {Nβ | β ∈ B} is
also a cover of [δ, 1 − δ]. Let

θ = min{tβ | β ∈ B}.
Then θ > 0 and, for all β ∈ [δ, 1 − δ] and t ∈ (0, θ],

Eetηβ − 1

t
< − ε

2
,

whence

Eetηβ < 1 − tε

2
.

Corollary 6.8. For each δ > 0 and ε > 0, there exists θ > 0 such that, for all
β ∈ [δ, 1 − δ], if we choose a ∈ {0, 1} with Prob[a = 1] = β, and if

η = ξ −H(β) − ε

or

η = H(β) − ξ − ε,
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where

ξ = (1 − a) log
1

1 − β
+ a log

1

β
,

then

Eeθη < 1 − θε

2
.

Proof. The random variables

η1,β = ξ −H(β) − ε,

η2,β = H(β) − ξ − ε

satisfy the hypothesis of Lemma 6.7 with Eη1,β = Eη2,β = −ε, so we can choose θ1 > 0
for η1,β and θ2 > 0 for η2,β as in that lemma. Letting θ = min{θ1, θ2} establishes the
corollary.

Notation. Given a bias sequence �β = (β0, β1, . . . ), n ∈ N, and S ∈ C, let

Ln(�β)(S) = log
1

μ�β(S[0..n− 1])
=

n−1∑

i=0

ξi(S),

where

ξi(S) = (1 − S[i]) log
1

1 − βi
+ S[i] log

1

βi

for 0 ≤ i < n.

Note that Ln(�β), ξ0, . . . , ξn−1 are random variables with

ELn(�β) =

n−1∑

i=0

Eξi =

n−1∑

i=0

H(βi) = nHn(�β).

The following large deviation theorem tells us that Ln(�β) is very unlikely to deviate
significantly from this expected value.

Theorem 6.9. For each δ > 0 and ε > 0, there exists α ∈ (0, 1) such that, for

all bias sequences �β = (β0, β1, . . . ) with each βi ∈ [δ, 1 − δ] and all n ∈ Z
+, if Ln(�β)

and Hn(�β) are defined as above, then

P
[|Ln(�β) − nHn(�β)| ≥ εn

]
< 2αn,

where the probability is computed according to μ
�β.

Proof. Let δ > 0 and ε > 0, and choose θ > 0 as in Corollary 6.8. Let α = 1− θε
2

,

noting that α ∈ (0, 1). Let �β be as given, and let n ∈ Z
+. Let L = Ln(�β), H = Hn(�β),

and ξ0, ξ1, . . . be as above. The proof is in two parts.

1. For each i ∈ N, let ηi = ξi −H(βi) − ε. Then Markov’s inequality, indepen-
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dence, and Corollary 6.8 tell us that

P[L− nH ≥ εn] = P [eθ(L−nH) ≥ eθεn]

≤ e−θεnEeθ(L−nH)

= Eeθ(L−nH)−εθn

= Eeθ
∑n−1

i=0 ηi

= E

n−1∏

i=0

eθηi

=

n−1∏

i=0

Eeθηi

< αn.

2. Arguing as in part 1 with ηi = H(βi)−ξi−ε shows that P[nH−L ≥ εn] < αn.
By parts 1 and 2 of this proof, we now have

P[|L− nH| ≥ εn] < 2αn.

Some of our arguments are simplified by the following constructive version of a
classical theorem of Kakutani [17]. Say that two bias sequences �β and �β′ are square-

summably equivalent, and write �β ≈2 �β′ if
∑∞

i=0(βi − β′
i)

2 < ∞.

Theorem 6.10 (van Lambalgen [44, 45], Vovk [47]). Let δ > 0, and let �β and �β′

be computable bias sequences with βi, β
′
i ∈ [δ, 1 − δ] for all i ∈ N.

1. If �β ≈2 �β′, then RAND
�β = RAND

�β′
.

2. If �β ≈2 �β′, then RAND
�β ⋂RAND

�β′
= ∅.

Corollary 6.11. If δ > 0 and �β is a computable bias sequence with each
βi ∈ [δ, 1−δ], then there is an exactly computable bias sequence �β′ with each β′

i ∈ [ δ
2
, βi]

satisfying RAND
�β′

= RAND
�β.

Proof. Assume the hypothesis. Then there is a computable function g : N×N → Q

such that |g(i, r) − βi| ≤ 2−r for all i, r ∈ N. Let m = 2 +
⌈
log 1

δ

⌉
, and let

β′
i = g(i,m + i) − 2−(m+i)

for all i ∈ N. It is easily verified that �β′ is exactly computable, each β′
i ∈ [ δ

2
, βi], and

�β′ ≈2 �β, whence Theorem 6.10 tells us that RAND
�β′

= RAND
�β .

Lemma 6.12. If δ > 0 and �β is a computable bias sequence with each βi ∈ [δ, 1−δ],

then every sequence R ∈ RAND
�β satisfies

Ln(�β)(R) = nHn(�β) + o(n)

as n → ∞.
Proof. Assume the hypothesis. By Corollary 6.11, we can assume that �β is exactly

computable. Let ε > 0. For each n ∈ N, define the set

Yn =
{
S ∈ C

∣∣∣ |Ln(�β)(S) − nHn(�β)| ≥ εn
}
,

and let

Xε = {S ∈ C | (∃∞n)S ∈ Yn}.
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It suffices to show that μ
�β
comp(Xε) = 0.

For each n ∈ N and w ∈ {0, 1}∗, let

dn(w) =

{
μ
�β(Yn|Cw) if |w| ≤ n,

dn(w[0..n− 1]) if |w| > n.

It is easily verified that each dn is a �β-martingale and that the function (n,w) �→ dn(w)
is computable. It is clear that Yn ⊆ S1[dn] for all n ∈ N, where S1[dn] =

⋃
dn(w)≥1Cw.

Finally, by Theorem 6.9, the series
∑∞

n=0dn(λ) is computably convergent, so the

computable first Borel–Cantelli lemma [20] (extended to �β as indicated in [4]) tells us

that μ
�β
comp(Xε) = 0.

Lemma 6.13. If δ > 0 and �β is a computable bias sequence with each βi ∈ [δ, 1
2
],

then cdim(RAND
�β) ≤ H−(�β) and cDim(RAND

�β) ≤ H+(�β).

Proof. Assume the hypothesis. By Corollary 6.11, we can assume that �β is exactly
computable. Let s ∈ [0,∞) be computable.

Define d : {0, 1}∗ → [0,∞) by

d(w) = 2s|w|μ�β(w)

for all w ∈ {0, 1}∗. Then d is a constructive (in fact, computable) s-gale. For each
R ∈ C and n ∈ N, if we write zn = R[0..n− 1], then

log d(zn) = sn + logμ
�β(zn)

for all n. In particular, if R ∈ RAND
�β , if follows by Lemma 6.12 that

(6.16) log d(zn) = n[s−Hn(�β)] + o(n)

as n → ∞. We now verify the two parts of the lemma. For both parts, we let

Iε = {n ∈ N | Hn(�β) < s− ε}.

To see that cdim(RAND
�β) ≤ H−(�β), let s > H−(�β), and let ε = s−H−(�β)

2
. Then

the set Iε is infinite, so (6.16) tells us that RAND
�β ⊆ S∞[d], whence cdim(RAND

�β) ≤
s.

To see that cDim(RAND
�β) ≤ H+(�β), let s > H+(�β), and let ε = s−H+(�β)

2
. Then

the set Iε is cofinite, so (6.16) tells us that RAND
�β ⊆ S∞

str[d], whence cDim(RAND
�β) ≤

s.
Lemma 6.14. Assume that δ > 0, �β is a computable bias sequence with each

βi ∈ [δ, 1 − δ], s ∈ [0,∞) is computable, and d is a constructive s-gale.

1. If s < H−(�β), then S∞[d]
⋂

RAND
�β = ∅.

2. If s < H+(�β), then S∞
str[d]

⋂
RAND

�β = ∅.
Proof. Assume the hypothesis. Define d′ : {0, 1}∗ → [0,∞) by

d′(w) =
d(w)

2s|w|μ�β(w)

for all w ∈ {0, 1}∗. Then d′ is a �β-martingale, and d′ is clearly constructive.
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Let R ∈ RAND
�β . Then d′ does not succeed on R, so there is a constant c > 0

such that, for all n ∈ N, if we write zn = R[0..n− 1], then d′(zn) ≤ 2c, whence

log d(zn) ≤ c + sn + logμ
�β(zn).

It follows by Lemma 6.12 that

log d(zn) ≤ c + n[s−Hn(�β)] + o(n)

as n → ∞. Hence, for any ε > 0, if we let

Iε = {n ∈ Z
+ | s < Hn(�β) − ε},

then log d(zn) < c for all sufficiently large n ∈ Iε. We now verify the two parts of the
lemma.

1. If s < H−(�β), let ε = H−(�β)−s
2

. Then Iε is cofinite, so log d(zn) < c for all
sufficiently large n ∈ Z

+, so R ∈ S∞[d].

2. If s < H+(�β), let ε = H+(�β)−s
2

. Then Iε is infinite, so log d(zn) < c for
infinitely many n ∈ Z

+, so R ∈ S∞
str[d].

We now have all we need to prove the main theorem of this section.

Proof of Theorem 6.6. Assume the hypothesis, and let R ∈ RAND
�β . By

Lemma 6.13, dim(R) ≤ H−(�β) and Dim(R) ≤ H+(�β). To see that dim(R) ≥ H−(�β)

and Dim(R) ≥ H+(�β), let s, t ∈ [0,∞) be computable with s < H−(�β) and t <

H+(�β), let d− be a constructive s-gale, and let d+ be a constructive t-gale. It suf-
fices to show that R ∈ S∞[d−] and R ∈ S∞

str[d
+]. But these follow immediately from

Lemma 6.14 and the �β-randomness of R.
Corollary 6.15. If �β is a computable sequence of coin-toss biases such that

H(�β) = limn→∞ Hn(�β) ∈ (0, 1), then every sequence R ∈ C that is random with

respect to �β is c-regular, with dim(R) = Dim(R) = H(�β).
Note that Corollary 6.15 strengthens Theorem 7.6 of [24] because the convergence

of Hn(�β) is a weaker hypothesis than the convergence of �β.
Generalizing the construction of Chaitin’s random real number Ω [6], Mayor-

domo [27] and, independently, Tadaki [42] defined for each s ∈ (0, 1] and each infinite
computably enumerable set A ⊆ {0, 1}∗ the real number

θsA =
∑{

2−
|π|
s

∣∣∣π ∈ {0, 1}∗ and U(π) ∈ A
}
,

where U is a universal self-delimiting Turing machine. Given (6.1) and Corollary 6.2
above, the following fact is implicit in Tadaki’s paper.

Theorem 6.16 (Tadaki [42]). For each s ∈ (0, 1] and each infinite computably
enumerable set A ⊆ {0, 1}∗, the (binary expansion of the) real number θsA is c-regular
with dim(θsA) = Dim(θsA) = s.

We define a set X ⊆ C to be self-similar if it has the form

X = A∞ = {S ∈ C | S = w0w1w2 . . . for some w0, w1, w2, . . . ∈ A},
where A ⊆ {0, 1}∗ is a finite prefix set. Self-similar sets are examples of c-regular sets.

Theorem 6.17. Let X = A∞ be self-similar, where A is a finite prefix set. Then
X is c-regular, with cdim(X) = cDim(X) = inf{s|∑w∈A 2−s|w| ≤ 1}.

Proof. We say that a string w is composite if there are strings w1, . . . , wk ∈ A
such that w = w1 · · ·wk. Let s be computable such that

∑
w∈A 2−s|w| ≤ 1. For



EFFECTIVE STRONG DIMENSION 693

any computable ε > 0 we define a constructive (s + ε)-supergale d as follows. Let
w ∈ {0, 1}∗, and let v be the maximal composite proper prefix of w. Then

d(w) =
∑

u∈A:w�vu

2ε|w|2−s(|vu|−|w|).

For all composite strings w, we have d(w) = 2ε|w|. It follows that A∞ ⊆ S∞
str[d], and

therefore cDim(A∞) ≤ s + ε.
Let s be such that

∑
w∈A 2−s|w| > 1, and let d be an s-gale. To show that

cdim(A∞) > s, it suffices to construct a sequence S ∈ A∞ − S∞[d]. Initially, we let
w0 = λ. Assume that wn has been defined, and let u ∈ A such that d(wnu) ≤ d(wn).
We know that such a u exists because of our choice of s. Then we let wn+1 = wnu.
Our sequence S is the unique one that has wn � S for all n.

Dai et al. [7] investigated the finite-state compression ratio ρFS(S), defined for
each sequence S ∈ C to be the infimum, taken over all information-lossless finite-
state compressors C (a model defined in Shannon’s 1948 paper [37]) of the (lower)
compression ratio

ρC(S) = lim inf
n→∞

|C(S[0..n− 1])|
n

.

They proved that

(6.17) ρFS(S) = dimFS(S)

for all S ∈ C. However, it has been pointed out that the compression ratio ρFS(S)
differs from the one investigated by Ziv [48]. Ziv was instead concerned with the ratio
RFS(S) defined by

RFS(S) = inf
k∈N

lim sup
n→∞

inf
C∈Ck

|C(S[0..n− 1])|
n

,

where Ck is the set of all k-state information-lossless finite-state compressors. The
following result, together with (6.17), clarifies the relationship between ρFS(S) and
RFS(S).

Theorem 6.18. For all S ∈ C, RFS(S) = DimFS(S).
The proof of Theorem 6.18 is based on the following lemma.
Lemma 6.19. Let C be the set of all finite-state compressors. For all S ∈ C,

RFS(S) = inf
C∈C

lim sup
n→∞

|C(S[0..n− 1])|
n

.

Proof. For each k ∈ N let C′
k be the set of all k-state information-lossless finite-

state compressors whose output length per input bit is bounded by k. Notice that C′
k

is a subset of Ck and that C′
k is finite. Ziv and Lempel implicitly prove in [49] that

the following equality holds:

RFS(S) = inf
k∈N

lim sup
n→∞

inf
C∈C′

k

|C(S[0..n− 1])|
n

.

Let

R′
FS(S) = inf

C∈C
lim sup
n→∞

|C(S[0..n− 1])|
n

.
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The inequality RFS(S) ≤ R′
FS(S) is trivial. We use several results from [7] to obtain

for each k ∈ N and ε > 0 a finite-state compressor Ck,ε that is nearly optimal for
all compressors in C′

k. From Lemma 7.7 in [7] we obtain a finite-state gambler for
each C ∈ C′

k. By Lemma 3.7 in [7], we can combine these gamblers into a single
finite-state gambler. Theorem 4.5 and Lemma 3.11 in [7] convert this single gambler
into a 1-account nonvanishing finite-state gambler, and finally Lemma 7.10 converts
this to the finite-state compressor Ck,ε. Combining the five cited constructions in [7],
we obtain that there is a constant ck,ε such that, for all w ∈ {0, 1}∗ and C ∈ C′

k,

|Ck,ε(w)| ≤ |C(w)| + ε|w| + ck,ε.

Then for all k ∈ N and ε > 0,

R′
FS(S) ≤ lim sup

n→∞
|Ck,ε(S[0..n− 1])|

n

≤ lim sup
n→∞

inf
C∈C′

k

|C(S[0..n− 1])|
n

+ ε,

so R′
FS(S) ≤ RFS(S).
Proof of Theorem 6.18. The equality

DimFS(S) = inf
C∈C

lim sup
n→∞

|C(S[0..n− 1])|
n

has a proof analogous to that of (6.17) given in [7]. Together with Lemma 6.19, this
implies that RFS(S) = DimFS(S).

Thus, mathematically, the compression ratios ρFS(S) and RFS(S) are both natu-
ral: they are the finite-state effectivizations of the Hausdorff and packing dimensions,
respectively.

7. Computational complexity. In this section we prove our third main theo-
rem, which says that the dimensions and strong dimensions of polynomial-time many-
one degrees in exponential time are essentially unrestricted. Our proof of this re-
sult uses Theorem 6.9 and convenient characterizations of p-dimension and strong
p-dimension in terms of feasible unpredictability.

Definition. A predictor is a function π : {0, 1}∗ × {0, 1} → [0, 1] such that, for
all w ∈ {0, 1}∗, π(w, 0) + π(w, 1) = 1.

We interpret π(w, b) as the predictor’s estimate of the probability that the bit b
will occur next, given that w has occurred. We write Π(p) for the class of all feasible
predictors.

Definition. Let w ∈ {0, 1}∗, S ∈ C, and X ⊆ C.
1. The cumulative log-loss of π on w is

Llog(π,w) =

|w|−1∑

i=0

log
1

π(w[0..i− 1], w[i])
.

2. The log-loss rate of π on S is

Llog(π, S) = lim inf
n→∞

Llog(π, S[0..n− 1])

n
.
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3. The strong log-loss rate of π on S is

Llog
str (π, S) = lim sup

n→∞
Llog(π, S[0..n− 1])

n
.

4. The (worst-case) log-loss of π on X is

Llog(π,X) = sup
S∈X

Llog(π, S).

5. The (worst-case) strong log-loss of π on X is

Llog
str (π,X) = sup

S∈X
Llog

str (π, S).

6. The feasible log-loss unpredictability of X is

unpredlog
p (X) = inf

π∈Π(p)
Llog(π,X).

7. The feasible strong log-loss unpredictability of X is

Unpredlog
p (X) = inf

π∈Π(p)
Llog

str (π,X).

Hitchcock [14] showed that feasible dimension exactly characterizes feasible log-
loss unpredictability; that is,

(7.1) unpredlog
p (X) = dimp(X)

for all X ⊆ C. The same argument proves the following dual result for strong dimen-
sion.

Theorem 7.1. For all X ⊆ C, Unpredlog
p (X) = Dimp(X).

The following theorem is the main result of this section. Recall that the polyno-
mial-time many-one degree of a language A ⊆ {0, 1}∗ is

degP
m(A) = Pm(A) ∩ P−1

m (A),

where the lower span Pm(A) and the upper span P−1
m (A) are defined by

Pm(A) = {B | B ≤P
m A}, P−1

m (A) = {B | A ≤P
m B}.

Theorem 7.2. For every pair of Δ0
2-computable real numbers x, y with 0 < x ≤

y ≤ 1, there exists A ∈ E such that

dimp(degP
m(A)) = dim(degP

m(A)|E) = x

and

Dimp(degP
m(A)) = Dim(degP

m(A)|E) = y.

Most of this section is devoted to proving Theorem 7.2. Our proof is motivated
by analogous, but simpler, arguments by Ambos-Spies et al. [1]. Like most dimension
calculations, our proof consists of separate lower and upper bound arguments. The
results from here through Lemma 7.7 are used for the lower bound. Lemma 7.8
uses Theorem 7.1 to establish the upper bound. The proof of Theorem 7.2 follows
Lemma 7.8.

The first part of the following theorem is due to Ambos-Spies et al. [1]. The
second part is an exact dual of the first part.

Theorem 7.3. Let A ∈ E.
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1. dimp(degP
m(A)) = dimp(Pm(A)) and dim(degP

m(A)|E) = dim(Pm(A)|E).

2. Dimp(degP
m(A)) = Dimp(Pm(A)) and Dim(degP

m(A)|E) = Dim(Pm(A)|E).
The following lemma is a time-bounded version of Lemma 6.14.
Lemma 7.4. Assume that k, l ∈ Z

+, δ > 0, �β is an exactly nl-time-computable
bias sequence with each βi ∈ Q ∩ [δ, 1 − δ], s ∈ Q ∩ [0,∞), and d is an nk-time-
computable s-gale.

1. If s < H−(�β), then S∞[d]
⋂

RAND
�β(nk+2l+1) = ∅.

2. If s < H+(�β), then S∞
str[d]

⋂
RAND

�β(nk+2l+1) = ∅.
Proof. We proceed exactly as in the proof of Lemma 6.14, noting that our present

hypothesis implies that the �β-martingale d′ is O(nk+2l+1)-time-computable.
Our proof of Theorem 7.2 also uses the martingale dilation technique, which was

introduced by Ambos-Spies, Terwijn, and Zheng [2] and extended by Breutzmann and
Lutz [4]. Recall the standard enumeration s0, s1, s2, . . . of {0, 1}∗, defined in section 2.

Definition. The restriction of a string w ∈ {0, 1}∗ to a language A ⊆ {0, 1}∗ is
the string w � A defined by the following recursion:

1. λ � A = λ.
2. For w ∈ {0, 1}∗ and b ∈ {0, 1},

(wb) � A =

{
(w � A)b if s|w| ∈ A,
w � A if s|w| ∈ A.

(That is, w � A is the concatenation of the successive bits w[i] for which si ∈ A.)
Definition. A function f : {0, 1}∗ −→ {0, 1}∗ is strictly increasing if, for all

x, y ∈ {0, 1}∗,

x < y =⇒ f(x) < f(y),

where < is the standard ordering of {0, 1}∗.
Notation. If f : {0, 1}∗ −→ {0, 1}∗, then for each n ∈ N, let nf be the unique

integer such that f(sn) = snf
.

Definition. If f : {0, 1}∗ −→ {0, 1}∗ is strictly increasing and �β is a bias

sequence, then the f -dilation of �β is the bias sequence �βf given by βf
n = βnf

for all
n ∈ N.

Observation 7.5. If f : {0, 1}∗ −→ {0, 1}∗ is strictly increasing and A ⊆ {0, 1}∗,
then for all n ∈ N,

χf−1(A)[0..n− 1] = χA[0..nf − 1] � range(f).

Definition. If f : {0, 1}∗ −→ {0, 1}∗ is strictly increasing and d is a martingale,
then the f -dilation of d is the function fˆd : {0, 1}∗ −→ [0,∞),

f d̂(w) = d(w � range(f)).

Intuitively, the f -dilation of d is a strategy for betting on a language A, assuming
that d itself is a good betting strategy for betting on the language f−1(A). Given an
opportunity to bet on the membership of a string y = f(x) in A, f d̂ bets exactly as
d would bet on the membership or nonmembership of x in f−1(A).

The following result is a special case of Theorem 6.3 in [4].
Theorem 7.6 (martingale dilation theorem; see Breutzmann and Lutz [4]). As-

sume that �β is a bias sequence with each βi ∈ (0, 1), f : {0, 1}∗ −→ {0, 1}∗ is strictly
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increasing, and d is a �βf -martingale. Then fˆd is a �β-martingale and, for every
language A ⊆ {0, 1}∗, if d succeeds on f−1(A), then fˆd succeeds on A.

Notation. For each k ∈ Z
+, define gk : {0, 1}∗ −→ {0, 1}∗ by gk(x) = 0k|x|1x.

Note that each gk is strictly increasing and computable in polynomial time.
Lemma 7.7. Assume that �β is a bias sequence with each βi ∈ (0, 1), and R ∈

RAND
�β(n2). Then, for each k ≥ 2, g−1

k (R) ∈ RAND�α(nk), where �α = �βgk .

Proof. Let �β, k, and �α be as given, and assume that g−1
k (R) ∈ RAND�α(nk). Then

there is an nk-time-computable �α-martingale d that succeeds on g−1
k (R). It follows

by Theorem 7.6 that gk d̂ is a �β-martingale that succeeds on R. The time required
to compute gk d̂(w) is O(|w|2 + |w′|k) steps, where w′ = w � range(gk). (This allows
O(|w|2) steps to compute w′ and then O(|w′|k) steps to compute d(w′).) Now |w′|
is bounded above by the number of strings x such that k|x| + |x| + 1 ≤ |s|w|| =

�log(1 + |w|)�. Therefore |w′| ≤ 21+log(1+|w|)/k, which implies |w′|k = O(|w|). Thus

gk d̂(w) is an O(n2)-time computable �β-martingale, so R ∈ RAND
�β(n2).

Notation. From here through the proof of Theorem 7.2, we assume that α and β
are Δ0

2-computable real numbers with 0 < α ≤ β ≤ 1/2. It is well known that a real
number is Δ0

2-computable if and only if there is a computable sequence of rationals
that converge to it. Slowing down this construction gives polynomial-time functions
α̂, β̂ : N → Q such that

lim
n→∞ α̂(n) = α, lim

n→∞ β̂(n) = β.

We assume that for some δ > 0, α̂(n) > δ for all n. We place the analogous assumption

on β̂(n). For each n, we let

κ(n) =

{
α̂(n) if n is even,

β̂(n) if n is odd,

and define a special-purpose bias sequence �γ by

γn = κ(log∗ n).

Note that �γ is O(n)-time-computable, H−(�γ) = H(α), and H+(�γ) = H(β).
We now use the unpredictability characterizations from the beginning of this

section to establish upper bounds on the dimensions and strong dimensions of lower
spans of sequences random relative to �γ.

Lemma 7.8. For each R ∈ RAND�γ(n5),

dimp(Pm(R)) ≤ H(α)

and

Dimp(Pm(R)) ≤ H(β).

Proof. Fix a polynomial-time function f : {0, 1}∗ → {0, 1}∗. The collision set of
f is

Cf = {j | (∃i < j)f(si) = f(sj)}.
For each n ∈ N, let

#Cf (n) = |Cf ∩ {0, . . . , n− 1}|.
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We use f to define the predictors

πf
0 (w, b) =

⎧
⎪⎨
⎪⎩

1
2

if |w| ∈ Cf ,

w[i] if |w| ∈ Cf , i = min{j | f(sj) = f(s|w|)}, and b = 1 ,

1 − w[i] if |w| ∈ Cf , i = min{j | f(sj) = f(s|w|)}, and b = 0 ,

and

πf
1 (w, b) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γf
|w| if |w| ∈ Cf and b = 1,

1 − γf
|w| if |w| ∈ Cf and b = 0,

w[i] if |w| ∈ Cf , i = min{j | f(sj) = f(s|w|)}, and b = 1 ,

1 − w[i] if |w| ∈ Cf , i = min{j | f(sj) = f(s|w|)}, and b = 0 ,

for all w ∈ {0, 1}∗ and b ∈ {0, 1}.
For each S ∈ C, we now define several objects to facilitate the proof. First, we

let

Af (S) = f−1(S);

that is, Af (S) is the language ≤P
m-reduced to S by f . Observe that for all w � Af (S),

(7.2) Llog(πf
0 , w) = |w| − #Cf (|w|).

Recall the sequence of towers defined by tj by t0 = 1 and tj+1 = 2tj . For any j ∈ N

and tj < n ≤ tj+1, define the entropy quantity

Hf
n =

∑

i<n
i �∈Cf and if>tj−1

H(γf
n)

and the random variable

Lf
n(S) =

∑

i<n
i �∈Cf and if>tj−1

log
1

πf
1 (Af (S)[0..i− 1], Af (S)[i])

.

(Recall that if is the unique number such that f(si) = sif .) We have

Llog(πf
1 , A

f (S)[0..n− 1]) =
∑

i<n

log
1

πf
1 (Af (S)[0..i− 1], Af (S)[i])

=
∑

i<n
i �∈Cf

log
1

πf
1 (Af (S)[0..i− 1], Af (S)[i])

= Lf
n(S) +

∑

i<n
i �∈Cf and if≤tj−1

log
1

πf
1 (Af (S)[0..i− 1], Af (S)[i])

≤ Lf
n(S) + (1 + tj−1) log 1

δ ,

so the bound

(7.3) Llog(πf
1 , A

f (S)[0..n− 1]) ≤ Lf
n(S) + (1 + logn) log 1

δ
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holds for all n. Finally, for any ε > 0 and θ ∈ (0, 1), define the set

Jf
θ,ε(S) = {n | #Cf (n) < (1 − θ)n and Lf

n(S) ≥ Hf
n + εn}

of natural numbers.
Claim. For any rational θ ∈ (0, 1) and ε > 0,

μ�γ
n5

(
{S | Jf

θ,ε(S) is finite}
)

= 1.

Proof of claim. The argument is similar to the proof of Lemma 6.12. For each
n ∈ N, define the set

Yn =

{
{S | Lf

n(S) ≥ Hf
n + εn} if #Cf (n) < (1 − θ)n,

∅ otherwise,

and let

Xε = {S ∈ C|(∃∞n)S ∈ Yn}.

To prove the claim, we will show that μ�γ
n5(Xε) = 0.

For each n ∈ N and w ∈ {0, 1}∗, let

dn(w) =

{
μ�γ(Yn|Cw) if |w| ≤ n,

dn(w[0..n− 1]) if |w| > n.

It is clear that each dn is a �γ-martingale and that Yn ⊆ S1[dn] for all n ∈ N.
Let S ∈ C. For each n, j ∈ N, let

Inj = {if | i < n, i ∈ Cf , and log∗ if = j}.

Also, define S+ = {i | S[i] = 1} and S− = {i | S[i] = 0}. Then, if n is large enough
to ensure that log∗ if ≤ 1 + log∗ n for all i < n, we have

Lf
n(S) =

(log∗ n)+1∑

k=(log∗ n)−1

∣∣Ink ∩ S+
∣∣ log

1

κ(k)
+
∣∣Ink ∩ S−∣∣ log

1

1 − κ(k)
.

For any n and k, write i(n, k) = |Ink |. Let Tn be the set of all tuples (l−1, l0, l1)
satisfying 0 ≤ lr ≤ i(n, j + r) for −1 ≤ r ≤ 1 and

1∑

r=−1

lr log
1

κ(j + r)
+ (i(n, j + r) − lr) log

1

1 − κ(j + r)
≥ Hf

n + εn,

where j = log∗ n. Then we have

μ�γ(Yn) =
∑

(l−1,l0,l1)∈Tn

1∏

r=−1

(
i(n, j + r)

lr

)
κ(j + r)

lr (1 − κ(j + r))
i(n,j+r)−lr .

We can write a similar formula for μ�γ(Yn|Cw) when w = λ. From this it follows that
the mapping (n,w) �→ dn(w) is exactly computable in O(n3) time.
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Since γ̂ is bounded away from 0 and 1, we can apply Theorem 6.9 to conclude
that there exists ρ ∈ (0, 1) such that for all n ∈ N with Yn = ∅ we have

μ�γ(Yn) < 2ρn−#Cf (n) < 2ρθn.

It follows that the series
∑∞

n=0 dn(λ) is p-convergent, so the polynomial-time first

Borel–Cantelli lemma [20] (extended to �γ as indicated in [4]) tells us that μ�γ
n5(Xε)

= 0.
Let R ∈ RAND�γ(n5). Let ε > 0 and θ < H(α)+ε be rational. Then by the above

claim, Jf
θ,ε(R) is finite. That is, for all but finitely many n,

(7.4) #Cf (n) ≥ (1 − θ)n or Lf
n(R) < Hf

n + εn.

Writing wn = Af (R)[0..n − 1], (7.4) combined with (7.2) and (7.3) implies that for
all but finitely many n,

(7.5) Llog(πf
0 , wn) ≤ θn < (H(α) + ε)n

or

(7.6) Llog(πf
1 , wn) < Hf

n + εn + (1 + logn) log 1
δ .

As

lim sup
n→∞

Hf
n

n
≤ H(β),

it follows that

(7.7) lim sup
n→∞

min{Llog(πf
0 , wn),Llog(πf

1 , wn)}
n

≤ H(β) + ε.

If (7.5) holds for infinitely many n, then

(7.8) Llog(πf
0 , A

f (R)) ≤ H(α) + ε.

Otherwise, (7.6) holds for almost all n. Assuming

(7.9) lim inf
n→∞

Hf
n

n
≤ H(α),

in this case we have

(7.10) Llog(πf
1 , A

f (R)) ≤ H(α) + ε.

We now verify (7.9). For each n, let m(n) = t2n. Then for sufficiently large n, we have
if < tn+1 for all i < m(n). Using the sets Ikn from the proof of the claim, we then
have

Hf
m(n)

=
∣∣∣Im(n)

n

∣∣∣H(κ(n)) +
∣∣∣Im(n)

n+1

∣∣∣H(κ(n + 1))

≤ (tn + 1)H(κ(n)) + m(n)H(κ(n + 1)).

As tn = o(m(n)) and κ(2n) → α as n → ∞, we have

lim inf
n→∞

Hf
n

n
≤ lim inf

n→∞
Hf

m(2n+1)

m(2n + 1)
≤ H(α).
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For each polynomial-time reduction f , we have defined and analyzed two pre-
dictors πf

0 and πf
1 . We now show how to combine all these predictors into a single

predictor that will establish the lemma.

Let {fj | j ∈ N} be a uniform enumeration of all polynomial-time functions
fj : {0, 1}∗ → {0, 1}∗ such that fj(x) is computable in O(2|x| + j) steps. For any
predictor ρ, define a probability measure μ[ρ] by

μ[ρ](w) =

|w|−1∏

i=0

ρ(w[0..i− 1], w[i])

for all w ∈ {0, 1}∗. For each m ∈ N and w ∈ {0, 1}m, let

μm(w) = 2−(2m+1) +

m−1∑

j=0

2−(2j+3)

(
μ[π

fj
0 ](w) +

1

2
μ[π

fj
1 ](w)

)
.

Then

μm+1(w0) + μm+1(w1) = 2−(2m+3) +

m∑

j=0

2−(2j+3)

(
μ[π

fj
0 ](w0) +

1

2
μ[π

fj
1 ](w0)

)

+ 2−(2m+3) +

m∑

j=0

2−(2j+3)

(
μ[π

fj
0 ](w1) +

1

2
μ[π

fj
1 ](w1)

)

= 2−(2m+2) +

m∑

j=0

2−(2j+3)

(
μ[π

fj
0 ](w) +

1

2
μ[π

fj
1 ](w)

)

= 2−(2m+3)

(
2 + μ[πfm

0 ](w) +
1

2
μ[πfm

1 ](w)

)

+μm(w) − 2−(2m+1)

≤ μm(w) + 2−(2m+3)

(
3 +

1

2

)
− 2−(2m+1)

< μm(w).

Now define a predictor π by

π(w, 1) =
μ|w|+1(w1)

μ|w|(w)
,

π(w, 0) = 1 − π(w, 1).

Then for all w ∈ {0, 1}∗ and b ∈ {0, 1},

π(w, b) ≥ μ|w|+1(wb)

μ|w|(w)
.
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For all w ∈ {0, 1}∗, k ∈ {0, 1}, and j < |w|, we have

Llog(π,w) =

|w|−1∑

i=0

log
1

π(w[0..i− 1], w[i])

≤
|w|−1∑

i=0

log
μi(w[0..i− 1])

μi+1(w[0..i])

= log
μ0(λ)

μ|w|(w)

≤ log
22j+3+k

μ[π
fj
k ](w)

= 2j + 3 + k + Llog(π
fj
k , w).

For any j ∈ N, it follows that

Llog
str (π,A

fj (R)) ≤ H(β) + ε

by using f = fj in (7.7). Also, since either (7.8) or (7.10) holds for f = fj , we have

Llog(π,Afj (R)) ≤ H(α) + ε.

As π is (exactly) polynomial-time computable, this establishes that

Pm(R) = {Afj (R) | j ∈ N}
has p-dimension at most H(α) + ε by (7.1) and strong p-dimension at most H(β) + ε
by Theorem 7.1. As ε > 0 was arbitrary, the statement of the lemma follows.

We now have the machinery we need to prove the main result of this section.
Proof of Theorem 7.2. Let x and y be Δ0

2-computable real numbers with 0 < x ≤
y ≤ 1. Then there exist Δ0

2-computable real numbers α and β with 0 < α ≤ β ≤ 1
2
,

H(α) = x, and H(β) = y. Let �γ be the bias sequence defined from α and β above
(just prior to Lemma 7.8). It is well known [20, 2] that almost every language in
E is n5-�γ-random. In particular, there exists a language A ∈ RAND�γ(n5) ∩ E. By
Theorem 7.3, it suffices to prove that

dimp(Pm(A)) = dim(Pm(A)|E) = H(α)

and

Dimp(Pm(A)) = Dim(Pm(A)|E) = H(β).

By Lemma 7.8, then, it suffices to prove that

(7.11) dim(Pm(A)|E) ≥ H(α)

and

(7.12) Dim(Pm(A)|E) ≥ H(β).

Let s ∈ [0,H(α)) ∩ Q, and let d− be an nk-time computable s-gale. Similarly, let
t ∈ [0,H(β))∩Q, and let d+ be an nk-time computable t-gale. It suffices to show that

(7.13) Pm(A) ∩ E ⊆ S∞[d−]
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and

(7.14) Pm(A) ∩ E ⊆ S∞
str[d

+].

Let B = g−1
k+3(A). It is clear that B ∈ Pm(A) ∩ E. Also, by Lemma 7.7, we have

B ∈ RAND�γ′
(nk), where �γ′ = �γgk+3 . Since

s < H(α) = H−(�γ) = H−(�γ′),

t < H(β) = H+(�γ) = H+(�γ′),

and �γ′ is O(n)-time-computable, Lemma 7.4 tells us that B ∈ S∞[d−] and B ∈
S∞

str[d
+]. Thus (7.13) and (7.14) hold.

In light of Theorem 7.2, the following question concerning the relativized feasible
dimension of NP is natural.

Open Question 7.9. For which pairs of real numbers α, β ∈ [0, 1] does there
exist an oracle A such that dimpA(NPA) = α and DimpA(NPA) = β?

We conclude this section with two brief observations.
Fortnow and Lutz [11] have recently established a tight quantitative relationship

between p-dimension and feasible predictability. Specifically, for each X ⊆ C, they
investigated the quantity Predp(X), which is the supremum, for all feasible predictors
π, of the (worst-case, upper) success rate

(7.15) π+(S) = inf
S∈X

lim sup
n→∞

π+(S[0..n− 1]),

where

π+(w) =
1

|w|
|w|−1∑

i=0

π(w[0..i− 1], w[i])

is the expected fraction of correct predictions that π will make on w. They proved
that Predp(X) is related to the p-dimension of X by

(7.16) 2(1 − Predp(X)) ≤ dimp(X) ≤ H(Predp(X))

(where H(α) is the Shannon entropy of α) and that these bounds are tight. If we
call Predp(X) the upper feasible predictability of X and define the lower feasible pre-
dictability of X, predp(X), in the same fashion, but with the limit superior in (7.15)
replaced by a limit inferior, then we have the following dual of (7.16).

Theorem 7.10. For all X ⊆ C,

2(1 − predp(X)) ≤ Dimp(X) ≤ H(predp(X)).

For each s : N → N, let SIZE(s(n)) be the class of all (characteristic sequences
of) languages A ⊆ {0, 1}∗ such that, for each n ∈ N, A=n is decided by a Boolean
circuit consisting of at most s(n) gates.

Theorem 7.11. For each α ∈ [0, 1], the class Xα = SIZE(α· 2n

n ) is pspace-regular,
with dimpspace(Xα) = Dimpspace(Xα) = dim(Xα|ESPACE) = Dim(Xα|ESPACE) =
α.

Proof. It was shown in [23] that dimpspace(Xα) = dim(Xα|ESPACE) = α. This
proof also shows that the strong dimensions are α.
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NEW APPROACHES FOR VIRTUAL PRIVATE NETWORK DESIGN∗

FRIEDRICH EISENBRAND† , FABRIZIO GRANDONI‡ , GIANPAOLO ORIOLO§ , AND

MARTIN SKUTELLA¶

Abstract. Virtual private network design is the following NP-hard problem. We are given a
communication network represented as a weighted graph with thresholds on the nodes which represent
the amount of flow that a node can send to and receive from the network. The task is to reserve
capacities at minimum cost and to specify paths between every ordered pair of nodes such that all
valid traffic-matrices can be routed along the corresponding paths. Recently, this network design
problem has received considerable attention in the literature. It is motivated by the fact that the
exact amount of flow which is exchanged between terminals is not known in advance and prediction
is often elusive. The main contributions of this paper are as follows: (1) Using Hu’s 2-commodity
flow theorem, we provide a new and considerably stronger lower bound on the cost of an optimum
solution. With this lower bound we reanalyze a simple routing scheme which has been described in
the literature many times, and provide an improved upper bound on its approximation ratio. (2)
We present a new randomized approximation algorithm. In contrast to earlier approaches from the
literature, the resulting solution does not have tree structure. A combination of our new algorithm
with the simple routing scheme yields an expected performance ratio of 3.79 for virtual private
network design. This is a considerable improvement of the previously best known 5.55-approximation
result [A. Gupta, A. Kumar, and T. Roughgarden, Simpler and better approximation algorithms for
network design, in Proceedings of the ACM Symposium on Theory of Computing, ACM, New York,
2003, pp. 365–372]. (3) Our VPND algorithm uses a Steiner tree approximation algorithm as a
subroutine. It is known that an optimum Steiner tree can be computed in polynomial time if the
number of terminals is logarithmic. Replacing the approximate Steiner tree computation with an
exact one whenever the number of terminals is sufficiently small, we finally reduce the approximation
ratio to 3.55. To the best of our knowledge, this is the first time that a nontrivial result from exact
(exponential) algorithms leads to an improved polynomial-time approximation algorithm.

Key words. approximation algorithms, randomized algorithms, network design
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DOI. 10.1137/060654827

1. Introduction. Consider a communication network which is represented by
an undirected graph G = (V,E) with edge-weights c : E → R+. Within this network
there is a set of terminals T ⊆ V which want to communicate with each other.
However, the exact amount of traffic between pairs of terminals is not known in
advance. Instead, each terminal v ∈ T has associated input and output thresholds
bin(v) ∈ Z≥0 and bout(v) ∈ Z≥0. A traffic-matrix D ∈ Q

TT
≥0 is valid if it respects the

lower and upper bounds on the incoming and outgoing traffic of the terminals, i.e., if
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the following holds for each terminal i ∈ T :
∑

j∈T,j �=i

D(i, j) ≤ bout(i) and
∑

j∈T,j �=i

D(j, i) ≤ bin(i).

The (asymmetric) virtual private network design (VPND) problem defined by G,
c, and T consists of finding capacities u(e), e ∈ E and paths Pij for each ordered pair
(i, j) ∈ TT such that the following conditions hold:

(i) All valid traffic-matrices can be routed without exceeding the installed capacities
where all traffic from terminal i to terminal j is routed along path Pij .

(ii) The total cost of the reservation
∑

e∈E u(e) c(e) is minimal.
A reservation of capacities u : E → R+ is a tree reservation if the subgraph of
G induced by the edges e ∈ E with u(e) > 0 is a tree. A general reservation is
sometimes referred to as a graph reservation.

The virtual private network design problem is NP-hard by the following reduction
from the Steiner tree problem [11]. Given an instance of the Steiner tree problem,
pick a terminal which has to be connected with the other terminals in a Steiner tree.
This terminal has thresholds bin(v) = 0 and bout(v) = 1. All other terminals u of the
Steiner tree instance have bin(u) = 1 and bout(u) = 0. A minimum cost Steiner tree
also yields an optimum reservation for this VPND instance.

The virtual private network design problem was independently defined by Finger-
hut, Suri, and Turner [10] and by Duffield et al. [6] and has since then been studied
by various authors in several variations which we next discuss. In the following list,
the last one (AsymG) is the one which we refer to as VPND.
(SymT ) Symmetric thresholds, tree reservation: In this variant, each terminal i ∈ T

has only one threshold b(i), which is an upper bound on the cumulative
amount of traffic that terminal i can send or receive. The task is to find
an optimal tree reservation which supports all valid traffic-matrices. Gupta
et al. [11] show that (SymT ) is polynomially solvable.

(SymG) Symmetric thresholds, graph reservation: This variant is defined in the same
way as (SymT ), except that the capacity reservation can be arbitrary and not
necessarily a tree. Gupta et al. [11] present a 2-approximation for (SymG).
It is not known whether SymG is NP-hard.

(BalT ) Balanced thresholds, tree reservation: The thresholds are balanced, which
means that

∑
v∈T bin(v) =

∑
v∈T bout(v). The reservation has to be a tree.

Italiano, Leonardi, and Oriolo [15] show that this variant can be solved in
polynomial time.

(BalG) Balanced thresholds, graph reservation: The same as (BalT ), except that an
arbitrary graph reservation is allowed.

(AsymT ) Asymmetric thresholds, tree reservation: This problem is NP-hard [11].
Constant approximation algorithms are presented in [11, 12]. Interestingly,
while the algorithm in [11] is deterministic, the algorithm in [12] is randomized
and seems difficult to derandomize.

(AsymG) Asymmetric thresholds, graph reservation: This is the VPND problem
defined above. We have seen that this problem is NP-hard. The randomized
5.55-approximation result presented in [12] in fact compares the computed
tree solution to an optimal graph reservation.

Simplifying assumptions and a lower bound. Following [12], we make some
simplifying assumptions without loss of generality. By duplicating nodes, we can
assume that each terminal is either a sender s, with bout(s) = 1 and bin(s) = 0, or a
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receiver r, with bout(r) = 0 and bin(r) = 1. This simplifying assumption is feasible
as long as we make sure that the selected paths in our solution between copies of a
terminal v and copies of a terminal u are all equal. The algorithms presented in this
paper can easily be adapted to run in polynomial time even when the thresholds are
not polynomially bounded and to satisfy the consistence property described above.
Let S and R be the set of senders and the set of receivers, respectively. By S = |S|
and R = |R| we denote the corresponding cardinalities. For symmetry reasons, we
always assume R ≥ S.

We can now interpret VPND as follows. Let B = (S ∪ R, EB) be the complete
bipartite graph with nodes partitioned into senders and receivers. We have to reserve
capacities on the edges of G and we have to specify a set of paths P in graph G
containing one path Psr for each edge sr ∈ EB such that each bipartite matching
of B can be routed along these paths. In other words, for each edge e ∈ E, the
reservation u(e) has to satisfy the following condition:

(1)
∣∣{Prs ∈ P | e ∈ Prs and rs ∈ M}∣∣ ≤ u(e) for each matching M in B.

Notice that for a fixed set of paths P, an optimal reservation of capacity is the compo-
nentwise minimal u satisfying (1). (In particular, given P, the integral capacity u(e)
of edge e can be obtained by a maximum bipartite matching computation.) Thus, a
solution to VPND can be encoded by specifying only a set of paths P in G.

The cost of a bipartite matching between senders and receivers in the metric
closure of G is obviously a lower bound on OPT , the value of an optimum solution
to the VPND instance. We denote the shortest path distance between nodes u and v
of G by �(u, v). Thus, if edges (r, s) in B are assigned weights �(r, s), then the cost
of any matching in B is a lower bound on OPT . This lower bound is used in the
analysis of all previous constant-factor approximation algorithms for VPND.

Lemma 1 (see [12]). Let B = (S + R, EB) be the complete bipartite graph on
the senders and receivers with edge-weights � : EB → R+ given by the shortest path
distances in the graph G. Then, the weight of any matching in B is a lower bound on
OPT .

Contribution of this paper. The design of good approximation results usually
requires two main ingredients—cleverly constructed algorithms and thoroughly chosen
lower bounds on the optimum such that the quality of the computed solutions can be
assessed in terms of the lower bounds. We considerably advance the state of the art
of approximating VPND by making contributions to both ingredients.

In section 2 we present a new lower bound which strengthens the one stated in
Lemma 1. We prove that the weight of any matching (not necessarily bipartite) on the
union of the senders and at most S receivers is at most OPT . The edge-weights in the
matching are again the shortest path distances in G. This new lower bound relies on
an interesting interrelation between a special case of VPND and 2-commodity flows.
Its proof is based on an application of Hu’s 2-commodity flow theorem [13].

In section 3 we employ the new lower bound in order to show that the following
simple algorithm achieves performance ratio 1 + R/S: Find a vertex v ∈ V which
minimizes the sum of the shortest path distances between v and the union of senders
and receivers; cumulatively install a capacity of one on each such shortest path. One
interesting consequence of this result is that (BalG), VPND with balanced thresholds
and graph reservation, has a 2-approximation. Thus our result improves upon the 3-
approximation of Italiano, Leonardi, and Oriolo [15] for this problem and generalizes
the 2-approximation for (SymG) by Gupta et al. [11].
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In section 4 we present a new randomized algorithm for VPND. The algorithm
chooses a random subset of receivers and connects each sender via its own Steiner tree
to this subset. The remaining receivers are then connected to the randomly chosen
subset of receivers by shortest paths. Due to the Steiner trees for each individual
sender, the resulting solution has in general no tree structure. In contrast to our new
approach, the previous algorithm by Gupta, Kumar, and Roughgarden [12] constructs
only one random “high-bandwidth core” which is a Steiner tree with high capacity.
All previous approximation algorithms for VPND produce tree solutions.

In section 4 we show also that our new algorithm in combination with the sim-
ple algorithm from above yields a 3.79 randomized approximation algorithm. The
previously best known algorithm [12] achieves performance ratio 5.55.

Our VPND algorithm uses a Steiner tree approximation algorithm as a subroutine.
Dreyfus and Wagner [5] showed how to compute optimum Steiner trees in polynomial
time when the number of terminals is logarithmic. In section 5, by replacing the
approximate Steiner tree computation with an exact one whenever the number of
terminals is sufficiently small, we eventually obtain a 3.55-approximation algorithm.
To the best of our knowledge, this is the first time a result from exact (exponential)
algorithms leads to an improved polynomial-time approximation algorithm, which
might be of independent interest.

Related work. We have seen that the Steiner tree problem is a special case of
VPND. The current best approximation ratio for the Steiner tree problem is ρst < 1.55
[18]. A related problem is buy-at-bulk network design (see, e.g., [1, 2]). Here, there is
a fixed demand di,j between each pair of nodes in the graph, specifying the amount
of flow which has to be sent from i to j. The costs of the capacities however is
a concave function on the amount purchased, which reflects “economies of scale.”
Gupta, Kumar, and Roughgarden [12] consider the single source buy-at-bulk network
design problem and present a simple constant-factor approximation algorithm.

Another important issue in this context is to cope with arc failures in the network
[3, 4]. Italiano, Rastogi, and Yener [16] consider the problem of restoring the network,
when at most one arc in a tree solution to VPND might fail and provide a constant-
factor approximation algorithm.

It is conjectured that (SymG) can be solved in polynomial time. It is in fact con-
jectured that an optimal solution to (SymT ) is also an optimal solution to (SymG).
Hurkens, Keijsper, and Stougie [14] show that this conjecture holds for rings. The
authors also describe an integer programming formulation for VPND, which proves
that a fractional version can be solved in polynomial time. This fractional version al-
lows us to specify several paths for each sender-receiver pair and requires the fraction
for each of these paths, which describes how the commodity has to be split.

2. A new lower bound via Hu’s 2-commodity flow theorem. This section
is devoted to proving a new lower bound on the cost of an optimal solution to VPND.
Generalizing Lemma 1, we prove that the cost of an arbitrary (not necessarily bipar-
tite) matching between terminals in S∪R′ is at most OPT for any subset of receivers
R′ ⊆ R of cardinality |R′| = S. The proof of this result is based on Hu’s classical
2-commodity flow theorem [13].

Theorem 1 (Hu’s 2-commodity flow theorem). Let G = (V,E) be a graph and
let s1, r1, s2, r2 be pairs of vertices of G; let u : E → R+ be a capacity function
on the edges and let d1, d2 ∈ R+. There exists a (fractional) 2-commodity flow of
value d1, d2 if and only if the cut condition is satisfied, i.e., if and only if u(δ(U)) ≥
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Fig. 1. An undirected graph with unit capacities on the edges. While there exist integral 2-
commodity flows satisfying unit demands for terminal pairs {s1, r1}, {s2, r2} and for terminal pairs
{s1, r2}, {s2, r1}, there is only a half-integral 2-commodity flow for terminal pairs {s1, s2}, {r1, r2}.

d1 χ1(U)+d2 χ2(U) for each U ⊆ V . Here δ(U) denotes the cut induced by U and, for
i ∈ {1, 2}, χi(U) = 1 if the cut δ(U) separates si from ri, and χi(U) = 0 otherwise.

Hu’s theorem immediately implies the following corollary.
Corollary 1. Let G = (V,E) be an undirected graph with edge capacity function

u : E → R+ and s1, s2, r1, r2 ∈ V . In the following, all demand values are equal to 1.
If there exists a feasible 2-commodity flow for terminal pairs {s1, r1}, {s2, r2} and for
terminal pairs {s1, r2}, {s2, r1}, then there also exists a feasible 2-commodity flow for
terminal pairs {s1, s2}, {r1, r2}.

Proof. Hu’s 2-commodity flow theorem states that there exists a feasible 2-
commodity flow if and only if the “cut condition” is satisfied. In the case of unit
demands, the cut condition says that, for all U ⊆ V , the capacity u(δ(U)) of the cut
induced by U must be at least the number of terminal pairs which are separated by
the cut.

It thus remains to show that the cut condition holds for terminal pairs {s1, s2},
{r1, r2} if it holds for {s1, r1}, {s2, r2} and for {s1, r2}, {s2, r1}. Consider an arbitrary
U ⊆ V . If the corresponding cut separates neither {s1, s2} nor {r1, r2}, nothing needs
to be shown. If δ(U) separates one terminal pair, say, {s1, s2}, then it separates either
{s1, r1} or {s2, r1} since s1 and s2 lie on different sides of the cut. In particular,
the capacity of the cut is at least 1. Finally, if δ(U) separates both terminal pairs
{s1, s2}, {r1, r2}, then it must separate either {s1, r1} and {s2, r2} or {s1, r2} and
{s2, r1}. In both cases the capacity of the cut is at least 2.

We remark that Corollary 1 is no longer true if we replace “2-commodity flow”
by “integral 2-commodity flow.” A counterexample is given in Figure 1. Even, Itai,
and Shamir show that finding an integer 2-commodity flow is NP-hard [9]. On the
other hand, Hu’s result states that there always exists a half-integral flow in this case.
For a more detailed account of results we refer the reader to Schrijver’s book [19,
Chapter 71].

The next lemma shows that a partition of the senders and receivers into k-subsets
each and the “addition” of the optimal solutions of the k subproblems induced by the
pairs of subsets provide a lower bound on the optimal solution.

Lemma 2. Suppose that S1, S2, . . . , Sk is a partition of S and that R1,R2, . . . ,Rk

is a partition of R. Let Ii be the VPND instance on graph G with senders Si and
receivers Ri, and let OPTi be the value of an optimal solution to instance Ii. Then
the following holds:

k∑

i=1

OPTi ≤ OPT.

Proof. Let P be an optimal set of paths for the original VPND instance with
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resulting capacity reservation u : E → R+. The subset Pi ⊆ P of paths with endpoints
in Si∪Ri defines a solution to subinstances Ii with capacity reservation ui : E → R+.

It suffices to show that u(e) ≥ ∑k
i=1 ui(e) for each edge e ∈ E.

It follows from (1) that for each i = 1, 2, . . . , k

ui(e) = max
Mi

|{Prs ∈ Pi | e ∈ Prs and rs ∈ Mi}|,

where Mi ranges over all bipartite matchings between senders Si and receivers Ri. We
denote the matching for which the maximum is attained by M̃i. Then, the disjoint
union M̃ :=

⋃k
i=1 M̃i is a bipartite matching between senders S and receivers R. It

thus follows from (1) that

u(e) ≥ |{Prs ∈ P | e ∈ Prs and rs ∈ M̃}|

=

k∑

I=1

|{Prs ∈ Pi | e ∈ Prs and rs ∈ M̃i}| =

k∑

i=1

ui(e)

for each edge e ∈ E. This concludes the proof.

We are now ready to prove the following theorem which gives a new lower bound
on the cost of an optimal VPND solution.

Theorem 2. Consider an arbitrary subset R′ ⊆ R of S receivers. Let M be a
matching in the complete graph on S ∪ R′. Then

∑

vw∈M

�(v, w) ≤ OPT.

Proof. Let S = {s1, s2, . . . , sS} and R′ = {r1, r2, . . . , rS}. It suffices to prove the
claim for perfect matchings. Suppose that the matching consists of the edges

s1s2, s3s4, . . . , s2k−1s2k and r1r2, r3r4, . . . , r2k−1r2k,

and s2k+1r2k+1, s2k+2r2k+2, . . . , sSrS .

Consider the following partition of S and R′ into S − k subsets Si and R′
i:

Si = {s2 i−1, s2 i}, R′
i = {r2 i−1, r2 i}, 1 ≤ i ≤ k,

Si = {si}, R′
i = {ri}, 2 k + 1 ≤ i ≤ S.

By Lemma 2, the sum of the optimum solutions OPTi of the VPND subinstances Ii
with senders Si and receivers R′

i is a lower bound on OPT . Thus we need only to
prove that �(s2 i−1, s2 i) + �(r2 i−1, r2 i) ≤ OPTi for each 1 ≤ i ≤ k.

An optimum solution to the subproblem Ii, 1 ≤ i ≤ k, is a reservation of ca-
pacities that supports 2-commodity flows with unit demands for the terminal pairs
{s2 i−1, r2 i−1}, {s2 i, r2 i} and for the terminal pairs {s2 i−1, r2 i}, {s2 i, r2 i−1}. By
Corollary 1, it must also support a 2-commodity flow for the terminal pairs {s2 i−1, s2 i},
{r2 i−1, r2 i}. Therefore, the cost of this solution is at least �(s2 i−1, s2 i)+�(r2 i−1, r2 i).
This concludes the proof.
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3. The quality of a simple routing scheme. Consider the following simple
VPND algorithm.

Algorithm 1 (simple routing scheme).

(1) Compute a vertex v ∈ V such that
∑

s∈S �(s, v) +
∑

r∈R �(r, v) is minimal.
(2) Add one unit of capacity along the shortest path between each u ∈ R ∪ S and

v.

Algorithm 1 selects the vertex v ∈ V which minimizes the sum of the distances
from v to the union of the senders and receivers, and reserves one unit of capacity
along each of the shortest paths. Note that the effects of installing capacities along
the shortest paths is cumulative. In other words, if k shortest paths share the same
edge, the algorithm adds k units of capacity to that edge. Moreover, we assume the
shortest paths are computed with a consistent tie-breaking rule. This way, the edges
with nonzero capacity form a tree.

Algorithm 1 produces an optimal tree reservation in the symmetric case (SymT )
[11] and in the balanced case (BalT ) [15]. In the symmetric case, Gupta et al. [11]
showed that the tree produced by the algorithm is a 2-approximate solution to the
optimum graph reservation. Italiano, Leonardi, and Oriolo [15] show that, in the
balanced case, the produced tree is a 3-approximate solution to the optimum graph
reservation.

In this section, we apply our new lower-bound result to show that the algorithm
produces a tree solution which is within 1+R/S from the optimum graph reservation.
Thus (BalG) can also be approximated within a factor of two. We first need the
following simple lower bound on OPT . Let �(E′) :=

∑
uv∈E′ �(u, v) for any subset of

edges E′.
Lemma 3. The sum of the distances between each sender-receiver pair is at most

R times the optimum:

(2)
∑

s∈S

∑

r∈R

�(s, r) ≤ R ·OPT.

Proof. Let B = (S + R, EB) be the complete bipartite graph on the senders and
receivers with edge-weights � : EB → R+ given by the shortest path distances in
the graph G. The edges of B can be partitioned into a set M of R matchings. By
Lemma 1, the cost �(M) of each M ∈ M is at most OPT . Hence

∑

s∈S

∑

r∈R

�(s, r) =
∑

M∈M

�(M) ≤ R ·OPT.

We are now ready to bound the approximation ratio provided by Algorithm 1.

Theorem 3. Algorithm 1 is a (1 + R/S)-approximation algorithm for VPND.

Proof. Let Gm = (R ∪ S, Em) be the metric closure of R ∪ S, i.e., the complete
graph on R ∪ S with edge-weight �(u, v) given by the shortest path distance between
u and v in G. We show that there exists a node u ∈ R ∪ S such that the cost of the
complete star centered at u satisfies

∑

v∈R∪S

�(u, v) ≤ (1 + R/S)OPT.

If R = S, the edges of Em can be partitioned into 2S − 1 perfect matchings. By
Theorem 2, the weight of each matching is a lower bound on OPT . Since each edge
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is contained in exactly two stars of Gm,

∑

v∈R∪S

∑

u∈R∪S

�(v, u) = 2�(Em) ≤ 2(2S − 1)OPT.

Thus there must exist one star, whose weight is at most 2(2S−1)OPT/(2S) < 2OPT .
Suppose for the remainder of the proof that R > S. In the following we denote by

MS and MR the set of matchings of cardinality at most �S/2	 involving only senders
and only receivers, respectively. Theorem 2 implies the inequality

(3) �(MS) + �(MR) ≤ OPT for each MS ∈ MS, MR ∈ MR.

In consideration of (3), we distinguish two cases.
(A) �(MS) ≤ OPT/2 for each MS ∈ MS. Consider the subgraph Gm

S of Gm which
is induced by the senders. The edges Em

S of Gm
S can be partitioned into S matchings.

Therefore

(4)
∑

s′∈S

∑

s∈S

�(s′, s) = 2 �(Em
S ) ≤ 2S

OPT

2
= S OPT.

Combining (4) and (2), one obtains

∑

s′∈S

(
∑

s∈S

�(s′, s) +
∑

r∈R

�(s′, r)

)
≤ (S + R)OPT.

Therefore there is a sender s∗ such that

∑

v∈S∪R

�(s∗, v) ≤ (1 + R/S)OPT.

(B) �(MS) > OPT/2 for some maximum weight matching MS ∈ MS. Let Gm
R

denote the subgraph of Gm which is induced by the receivers. We will show below
that, for any maximal matching M̃ in Gm

R ,

(5) �(M̃) ≤ (R/S)OPT/2.

Since the edges of Gm
R can be partitioned into at most R maximal matchings, we can

then argue in a similar manner as in case (A) that

∑

r′∈R

∑

r∈R

�(r, r′) ≤ 2R
R

S

OPT

2
= (R 2/S)OPT.

Together with (2) this implies

∑

r′∈R

(
∑

s∈S

�(s, r′) +
∑

r∈R

�(r, r′)

)
≤ (R + R 2/S)OPT,

from which we conclude that there is a receiver r∗ satisfying

∑

v∈S∪R

�(v, r∗) ≤ (1 + R/S)OPT.
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It remains to prove (5). We distinguish between the two subcases in which S is
even and S is odd.

(B.1) S is even. Theorem 2, together with the assumption �(MS) > OPT/2, im-
plies �(MR) ≤ OPT/2 for each matching MR ∈ MR. Note that |M̃ | = �R/2	 ≥ S/2.
Consider the S/2 most expensive edges M ′ of M̃ . Since M ′ ∈ MR, �(M ′) ≤ OPT/2.
Hence the average cost of one edge of M̃ is upper bounded by (OPT/2)/(S/2) =
OPT/S. Since M̃ has at most R/2 edges, we get

�(M̃) ≤ |M̃ |OPT

S
≤ R

2

OPT

S
= (R/S)OPT/2.

(B.2) S is odd. There is a sender s∗ which is missed by the maximum cost
matching MS of Gm

S . For each matching MR ∈ MR and r∗1 ∈ R which is not matched
by MR, Theorem 2 yields

�(MS) + �(MR) + �(s∗, r∗1) ≤ OPT,

and hence

�(MR) + �(s∗, r∗1) ≤ OPT/2.

Consider any other receiver r∗2 which is not matched by MR. This receiver must exist
since R > S. By the triangle inequality one has �(r∗1 , r

∗
2) ≤ �(s∗, r∗1) + �(s∗, r∗2). As a

result we get

(6) �(MR) + 1/2 �(r∗1 , r
∗
2) ≤ OPT/2

for each matching MR ∈ MR and receivers r∗1 , r
∗
2 which are missed by MR.

Now consider the (S−1)/2 most expensive edges M ′ of M̃ , and let e′ be the next
most expensive edge of M̃ . Since M ′ ∈ MR, by (6),

�(M ′) + 1/2 �(e′) ≤ OPT/2.

It follows that half the average cost of one edge of M̃ is upper bounded by (OPT/2)/(S−
1 + 1) = OPT/(2S), from which we conclude

�(M̃) ≤ 2 |M̃ |OPT

2S
≤ 2

R

2

OPT

2S
= (R/S)OPT/2.

4. A new algorithm for VPND. In section 3 we described an algorithm which
guarantees a good approximation ratio for R close to S. Here we present a better
approximation algorithm in case R is sufficiently larger than S.

The algorithm by Gupta et al. [12] constructs one random “high-bandwidth core,”
i.e., a small Steiner tree with high capacity, where the terminals are a random sender
and a random subset of receivers. Such a Steiner tree collects and distributes the
demands from outside, and routes them along its high capacity paths. Our algorithm
is also based on Steiner tree computations, but we proceed by connecting each sender
to a previously sampled subset of receivers via S distinct Steiner trees of low capacity,
and by connecting the other receivers along their shortest paths to the sampled subset
(see Figure 2). More precisely, our algorithm works as follows.

Algorithm 2.

(1) Partition R into S subsets uniformly at random. Select one subset R′ uni-
formly at random, among the nonempty subsets in the partition.
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Fig. 2. Intuitive comparison between Algorithm 2 (on the left) and the algorithm in [12]. Black
nodes form the randomly sampled subsets. Positive capacity is reserved on thick edges only: Dashed
thick edges correspond to Steiner trees, while full ones correspond to shortest paths.

(2) For each sender s ∈ S, compute a ρst-approximate Steiner tree T (s) on {s}∪
R′, and add one unit of capacity to each edge of T (s).

(3) Add one unit of capacity along the shortest path between each receiver r ∈ R

and R′.
It remains to specify the path between each sender-receiver pair (s, r). Assume

that the shortest paths are computed with a consistent tie-breaking rule. Let r∗ be
the receiver in R′ which is closest to r. The path Psr between s and r is obtained
by concatenating the (simple) path between s and r∗ in T (s), with the shortest path
between r∗ and r.

The thereby produced solution is not a tree solution. Though an optimal tree
solution is a constant-factor approximation to an optimal graph solution, it is known
[11] that an optimal solution to (AsymT ) is not an optimal solution to VPND. All pre-
vious constant-factor approximation algorithms for VPND, however [12, 7], produce
tree reservations.

Before we proceed with the analysis of Algorithm 2, we state a corollary of
Lemma 2. Here, given a subset V ′ of nodes, we denote the cost of the optimum
Steiner tree on V ′ by st(V ′).

Corollary 2 (see [12]). Let R1,R2, . . . ,Rs be a partition of R into S (disjoint)
subsets. Consider an arbitrary perfect matching between S and this family of subsets.
Let R(s) be the subset matched with sender s. The sum over S of the costs of the
optimum Steiner trees on {s} ∪ R(s) is a lower bound on OPT :

∑

s∈S

st({s} ∪ R(s)) ≤ OPT.

Proof. This follows from Lemma 2 since a solution of a subinstance {s},R(s)
contains a Steiner tree with terminals {s} ∪ R(s).

Theorem 4. Algorithm 2 is a (2+ρst)/(1− e−R/S)-approximation algorithm for
VPND.

Theorem 4 is a straightforward consequence of the following lemmas.

Lemma 4. For a uniformly chosen random sender s′,

E[st({s′} ∪ R′)] ≤ OPT

S(1 − e−R/S)
.

Proof. Consider the following random process. For each receiver r, we assign r to
a sender s chosen uniformly at random. Let R(s) be the subset of receivers assigned
to s. Note that the subsets R(s) partition R into S (possibly empty) subsets. Thus,
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by Corollary 2,

∑

s∈S

st({s} ∪ R(s)) ≤ OPT.

This means that, for the random sender s′,

E[st({s′} ∪ R(s′))] ≤ OPT/S.

Let A denote the event that R(s′) is empty. By elementary probability theory,

E[st({s′} ∪ R(s′))] = P (A)E[st({s′} ∪ R(s′)) | A] + P (A)E[st({s′} ∪ R(s′)) | A].

Now observe that

P (A) = 1 − (1 − 1/S)R ≥ 1 − e−R/S .

Moreover

E[st({s′} ∪ R(s′)) | A] = E[st({s′})] = 0.

Thus

E[st({s′} ∪ R(s′)) | A] =
E[st({s′} ∪ R(s′))]

P (A)
≤ OPT

S(1 − e−R/S)
.

The claim follows by observing that, given A, R(s′) and R′ are identically distributed.
Thus

E[st({s′} ∪ R′)] = E[st({s′} ∪ R(s′)) | A] ≤ OPT

S(1 − e−R/S)
.

Lemma 5. The expected cost of the capacity installed in the second step of Algo-
rithm 2 is at most

ρst OPT/(1 − e−R/S).

Proof. The expected cost considered is

E

[
∑

s∈S

c(T (s))

]
,

where c(T (s)) is the cost of the Steiner tree T (s). Of course

c(T (s)) ≤ ρst st({s} ∪ R′).

Let s′ be a sender chosen uniformly at random. By Lemma 4,

E

[
∑

s∈S

c(T (s))

]
≤ ρst E

[
∑

s∈S

st({s} ∪ R′)

]
= ρst S E[st({s′} ∪ R′)]

≤ ρst S
OPT

S(1 − e−R/S)
=

ρst OPT

1 − e−R/S
.
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Lemma 6. The expected cost of the capacity installed in the third step of Algo-
rithm 2 is at most

2OPT/(1 − e−R/S).

Proof. Let r′ be an arbitrary receiver in R′. Observe that the probability of any
other receiver r′′ being in R′, given that r′ is in R′, is 1/S. In fact, let R∗ be a random
(possibly empty) partition element. Then

P (r′ ∈ R′) = P (r′ ∈ R∗ | R∗ 
= ∅) =
P (r′ ∈ R∗ ∩ R∗ 
= ∅)

P (R∗ 
= ∅)

=
P (r′ ∈ R∗)
P (R∗ 
= ∅) =

1/S

1 − (1 − 1/S)R
.

By basically the same argument

P (r′ ∈ R′ ∩ r′′ ∈ R′) =
(1/S)2

1 − (1 − 1/S)R
.

Thus

P (r′′ ∈ R′ | r′ ∈ R′) =
P (r′′ ∈ R′ ∩ r′ ∈ R′)

P (r′ ∈ R′)
=

(1/S)2/(1 − (1 − 1/S)R)

(1/S)/(1 − (1 − 1/S)R)
=

1

S
.

Now consider the following random process. In step t, let At be the subset of receivers
considered so far, and let Bt be the bought receivers in At. Initially A1 = B1 = {r′},
where r′ is a random receiver. In step t, we consider the receiver rt ∈ R \At which is
closest to Bt, and we set At+1 = At ∪ {rt}. Then, with probability 1/S, we buy rt;
that is,

• we add S units of capacity along the shortest path from rt to Bt, and
• we set Bt+1 = Bt ∪ {rt}.

Otherwise, we rent rt; that is,

• we add one unit of capacity along the shortest path from rt to Bt, and
• we set Bt+1 = Bt.

Note that, at the end of the process, the set of bought receivers B′ has the same
distribution as the set R′ of selected receivers. Let �(v, V ′) = minv′∈V ′{�(v, v′)}
denote the minimum distance between a node v and a subset of nodes V ′. The
expected cost of the third step of the algorithm is upper bounded by the expected
cost crent of renting receivers

E

⎡
⎣

∑

r∈R\R′

�(r, R′)

⎤
⎦ = E

⎡
⎣

∑

rt∈R\B′

�(rt, B′)

⎤
⎦ ≤ E

⎡
⎣

∑

rt∈R\B′

�(rt, Bt)

⎤
⎦

= E

[
∑

rt∈R

(
1 − 1

S

)
�(rt, Bt)

]
= crent,

where the inequality comes from the fact that Bt ⊆ B′ for any t.
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The expected cost cbuy of buying receivers is an upper bound on crent:

crent = E

[
∑

rt∈R

(
1 − 1

S

)
�(rt, Bt)

]
≤ E

[
∑

rt∈R

(
1

S

)
S �(rt, Bt)

]

= E

[
∑

rt∈B′

S �(rt, Bt)

]
= cbuy .

Note that cbuy is equal to S times the expected cost of the Steiner tree on B′ which
is obtained via the minimum spanning tree heuristic (starting Prim’s algorithm from
node r′). It is well known that this heuristic provides a 2-approximate solution [17].
Thus

cbuy ≤ 2S E[st(B′)] = 2S E[st(R′)].

For a random sender s′, by Lemma 4,

E[st(R′)] ≤ E[st({s′} ∪ R′)] ≤ OPT

S(1 − e−R/S)
.

Altogether,

E

[
∑

r∈R

�(r,R′)

]
≤ crent ≤ cbuy ≤ 2S

OPT

S(1 − e−R/S)
=

2OPT

1 − e−R/S
.

In section 3 we described a (1 + R/S)-approximation algorithm. The factors
1 + R/S and (2 + ρst)/(1 − e−R/S) are equal for R/S = 2.78 . . . < 2.79. Note that
1+R/S is increasing in R/S and (2+ρst)/(1−e−R/S) is decreasing in R/S. It follows
that a combination (taking the minimum cost solution) of Algorithms 1 and 2 has an
expected approximation guarantee of 3.79, which is a considerable improvement com-
pared to the 5.55-approximation ratio achieved by Gupta, Kumar, and Roughgarden
[12].

Theorem 5. The combination (taking the cheaper solution) of Algorithms 1 and
2 is an expected 3.79-approximation algorithm for VPND.

5. Computing optimum Steiner trees. The performance ratios of Algo-
rithms 1 and 2 meet roughly at R/S  2.78. In this case, the sampled set R′ of
receivers has expected constant size. An optimum Steiner tree on a graph with n
nodes and t terminals can be computed in O(3t n+2t n2 +n3) time with the Dreyfus–
Wagner algorithm [5]. This suggests the following variant of Algorithm 2, which
computes optimal Steiner trees in step (2), instead of ρst-approximate ones, whenever
|R′| ≤ log n. Here n is the number of nodes in the original graph G. Without loss of
generality, we assume n is sufficiently large.

Algorithm 3.

(1) Partition R into S subsets uniformly at random. Select one subset R′ uni-
formly at random, among the nonempty subsets in the partition.

(2) For each sender s ∈ S, compute a ρst-approximate Steiner tree T (s) on {s}∪
R′ if |R′| > log n. Otherwise, compute an optimum Steiner tree T (s) on
{s} ∪ R′. In both cases, add one unit of capacity to each edge of T (s).

(3) Add one unit of capacity along the shortest path between each receiver r ∈ R

and R′.
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Clearly, Algorithm 3 is a polynomial-time algorithm whose expected approxima-
tion guarantee is not worse than the one of Algorithm 2. In particular, if R/S is very
large, say, R/S ≥ log log n, the approximation achieved is

2 + ρst
1 − e−R/S

≤ 2 + ρst
1 − 1/ log n

= 2 + ρst + o(1) < 3.55.

What can be said about the approximation guarantee if R/S ≤ log log n? In that
case, the expected size of R′ is 1 + (R − 1)/S < 1 + log log n. The probability that
the size of R′ exceeds log n is at most (1 + log log n)/ log n by Markov’s inequality.
Thus with high probability Algorithm 3 computes optimum Steiner trees. When this
happens, the approximation ratio is bounded by 3.325 . . . < 3.326. In the very unlikely
event that Algorithm 3 computes ρst-approximate Steiner trees, the approximation
guaranteed by Algorithm 1 alone is O(log log n). Hence this event contributes to the
expected approximation ratio with o(1) only. This is the intuition behind the following
theorem.

Theorem 6. For a sufficiently large n, the combination (taking the cheaper solu-
tion) of Algorithms 1 and 3 is an expected 3.55-approximation algorithm for VPND.

Proof. Following the discussion above, if R/S > log log n, the expected approxi-
mation ratio achieved is 2+ρst+o(1) < 3.55. Then we can restrict our analysis to the
case R/S ≤ log log n. Let APX denote the expected cost of the solution computed.
One has

APX ≤ E

[
min

{
(1 + R/S)OPT,

∑

s∈S

c(T (s)) +
∑

r∈R

�(r,R′)

}]
.

Of course,

(7) APX ≤ (1 + R/S)OPT,

and

APX ≤ E

[
∑

r∈R

�(r,R′)

]
+ E

[
min

{
(1 + R/S)OPT,

∑

s∈S

c(T (s))

}]
.

By Lemma 6,

(8) E

[
∑

r∈R

�(r,R′)

]
≤ 2OPT

1 − e−R/S
.

Let A denote the event that R′ = |R′| ≤ log n. By elementary probability theory one
has

E

[
min

{
(1 + R/S)OPT,

∑

s∈S

c(T (s))

}]
≤ P (A)E

[
(1 + R/S)OPT | A]

+ P (A)E

[
∑

s∈S

c(T (s)) | A
]
.

(9)
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We now consider both terms separately. By Markov’s inequality one has P (A) ≤
(1 + log logn)/ log n. Thus

P (A)E
[
(1 + R/S)OPT | A] ≤ P (A)E

[
(1 + log logn)OPT | A]

≤ (1 + log logn)2

log n
OPT.

Given A, Algorithm 3 computes optimal Steiner trees T (s) of cost st({s} ∪R′). Also
E
[
st({s} ∪ R′) | R′ ≤ h

]
is a nondecreasing function of h. Thus, from the proof of

Lemma 5, the second term on the right of (9) can be bounded by

P (A)E

[
∑

s∈S

c(T (s)) | A
]
≤ E

[
∑

s∈S

st({s} ∪ R′)

]
≤ OPT

1 − e−R/S
.

One therefore has

E

[
min

{
(1 + R/S)OPT,

∑

s∈S

c(T (s))

}]
≤ (1 + log logn)2

log n
OPT +

OPT

1 − e−R/S

≤
(

1 +
(1 + log logn)2

log n

)
OPT

1 − e−R/S
.(10)

Combining (7), (8), and (10), we conclude that

APX ≤ min

{
(1 + R/S)OPT,

(
3 +

(1 + log logn)2

log n

)
OPT

1 − e−R/S

}
.

Thus, for a sufficiently large n, the expected approximation ratio for R/S ≤ log log n
is upper bounded by 3.325 . . . < 3.326. Altogether, the approximation ratio is

min{3.326, 2 + ρst + o(1)} < 3.55.

Corollary 3. There is an expected 3.55-approximation algorithm for VPND.
Proof. When n is upper bounded by a constant, the optimum solution can be

computed in polynomial time by trivial enumeration. The claim follows from
Theorem 6.

REFERENCES

[1] M. Andrews and L. Zhang, The access network design problem, in Proceedings of the IEEE
Symposium on Foundations of Computer Science, IEEE Computer Society, Los Alamitos,
CA, 1998, pp. 40–49.

[2] B. Awerbuch and Y. Azar, Buy-at-bulk network design, in Proceedings of the IEEE Sym-
posium on Foundations of Computer Science, IEEE Computer Society, Los Alamitos, CA,
1997, pp. 542–547.

[3] G. Brightwell, G. Oriolo, and F. B. Shepherd, Reserving resilient capacity in a network,
SIAM J. Discrete Math., 14 (2001), pp. 524–539.

[4] G. Brightwell, G. Oriolo, and F. B. Shepherd, Reserving resilient capacity for a single
commodity with upper-bound constraints, Networks, 41 (2003), pp. 87–96.

[5] S. E. Dreyfus and R. A. Wagner, The Steiner problem in graphs, Networks, 1 (1971/1972),
pp. 195–207.

[6] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan, and J. E.

van der Merwe, A flexible model for resource management in virtual private networks,
in Proceedings of the ACH Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, Cambridge, MA, 1999, pp. 95–108.



NEW APPROACHES FOR VIRTUAL PRIVATE NETWORK DESIGN 721

[7] F. Eisenbrand and F. Grandoni, An improved approximation algorithm for virtual private
network design, in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms,
ACM, New York, SIAM, Philadelphia, 2005, pp. 928–932.

[8] F. Eisenbrand, F. Grandoni, G. Oriolo, and M. Skutella, New approaches for virtual
private network design, in Proceedings of the International Colloquium on Automata,
Languages and Programming, Lisbon, Portugal, 2005, pp. 1152–1162.

[9] S. Even, A. Itai, and A. Shamir, On the complexity of timetable and multicommodity flow
problems, SIAM J. Comput., 5 (1976), pp. 691–703.

[10] J. A. Fingerhut, S. Suri, and J. S. Turner, Designing least-cost nonblocking broadband
networks, J. Algorithms, 24 (1997), pp. 287–309.

[11] A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yener, Provisioning a virtual
private network: A network design problem for multicommodity flow, in Proceedings of
the ACM Symposium on Theory of Computing, ACM, New York, 2001, pp. 389–398.

[12] A. Gupta, A. Kumar, and T. Roughgarden, Simpler and better approximation algorithms
for network design, in Proceedings of the ACM Symposium on Theory of Computing,
ACM, New York, 2003, pp. 365–372.

[13] T. C. Hu, Multi-commodity network flows, Oper. Res., 11 (1963), pp. 344–360.
[14] C. Hurkens, J. Keijsper, and L. Stougie, Virtual private network design: A proof of the

tree routing conjecture on ring networks, in Proceedings of the International Conference on
Integer Programming and Combinatorial Optimization, Berlin, Germany, 2005, pp. 407–
421.

[15] G. Italiano, S. Leonardi, and G. Oriolo, Design of networks in the hose model, in Pro-
ceedings of ARACNE, Rome, Italy, 2002, pp. 65–76.

[16] G. F. Italiano, R. Rastogi, and B. Yener, Restoration algorithms for virtual private net-
works in the hose model, in Proceedings of the Annual Joint Conference of the IEEE
Computer and Communications Society, New York, NY, 2002, pp. 131–139.

[17] L. Kou, G. Markowsky, and L. Berman, A fast algorithm for Steiner trees, Acta Inform.,
15 (1981), pp. 141–145.

[18] G. Robins and A. Zelikovsky, Improved Steiner tree approximation in graphs, in Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, SIAM, Philadel-
phia, 2000, pp. 770–779.

[19] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Algorithms and Com-
binatorics 24, Springer-Verlag, Berlin, 2003.



SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 37, No. 3, pp. 722–756

THE TIME-COMPLEXITY OF LOCAL DECISION IN DISTRIBUTED
AGREEMENT∗

PARTHA DUTTA† , RACHID GUERRAOUI‡ , AND BASTIAN POCHON‡

Abstract. Agreement is at the heart of distributed computing. In its simple form, it requires a
set of processes to decide on a common value out of the values they propose. The time-complexity
of distributed agreement problems is generally measured in terms of the number of communication
rounds needed to achieve a global decision, i.e., for all nonfaulty (correct) processes to reach a
decision. This paper studies the time-complexity of local decisions in agreement problems, which
we define as the number of communication rounds needed for at least one correct process to decide.
We explore bounds for early local decision that depend on the number f of actual failures (that
occur in a given run of an algorithm), out of the maximum number t of failures tolerated (by the
algorithm). We first consider the synchronous message-passing model where we give tight local
decision bounds for three variants of agreement: consensus, uniform consensus, and (nonblocking)
atomic commit. We use these results to (1) show that, for consensus, local decision bounds are
not compatible with global decision bounds (roughly speaking, they cannot be reached by the same
algorithm), and (2) draw the first sharp line between the time-complexity of uniform consensus and
atomic commit. Then we consider the eventually synchronous model, where we give tight local
decision bounds for synchronous runs of uniform consensus. (In this model, consensus and uniform
consensus are similar, atomic commit is impossible, and one cannot bound the number of rounds
to reach a decision in nonsynchronous runs of consensus algorithms.) We prove a counterintuitive
result that the early local decision bound is the same as the early global decision bound. We also give
a matching early deciding consensus algorithm that is significantly better than previous eventually
synchronous consensus algorithms.

Key words. distributed systems, agreement problems, lower bounds
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1. Introduction.

Local versus global agreement decisions. Determining how long it takes to
reach agreement among a set of processes is an important question in distributed
computing. For instance, the performance of a replicated system is impacted by
the performance of the underlying consensus service used to ensure that the replica
processes agree on the same order to deliver client requests [20]. Similarly, the per-
formance of a distributed transactional system is impacted by the performance of the
underlying atomic commit service used to ensure that the database servers agree on
a transaction outcome [15].

Traditionally, lower bounds on the time-complexity of distributed agreement have
been stated in terms of the number of communication rounds (also called communi-
cation steps) needed for all correct processes to decide [21] (i.e., global decision), or
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even halt [6], possibly as a function of the number of failures f that actually occur in
a given run of an algorithm, out of the total number of failures t that are tolerated
by the algorithm. (In this paper we consider only crash-stop failures.)

From a practical perspective, what we might sometimes want to measure and
optimize is the number of rounds needed for at least one correct process to decide,
i.e., for a local decision. Indeed, a replicated service can respond to its clients as soon
as a single replica decides on a reply (and knows that other replicas will reach the
same decision). Similarly, the client of an atomic commit service might be happy to
know the outcome of a transaction once the outcome has been determined, even if
some database servers have yet to be informed of the outcome.

Motivations. Surprisingly, despite the large body of work on the performance
of agreement, so far, no study on local decision lower bounds has appeared in the
literature. To get an intuition of some of the specific ramifications underlying such a
study, consider the consensus problem [27, 22] in the synchronous model, where a set
of processes, {p1, p2, . . . , pn}, proceeds by exchanging messages in a round by round
manner, and t out of the n processes may fail by crashing [23].

In this problem, the processes must decide on a common final value, out of the
values they initially proposed, such that all correct processes eventually decide and
agree on a common decision. The following algorithm (from [16]) conveys the fact
that there can indeed be a difference between local and global decision lower bounds.
(Round numbers start from 1.) At the beginning of round 1, process p1 decides on its
proposal value and then sends its decision value to all processes. At the end of every
round i ≥ 1, process pi+1 decides on the value contained in the last received message,
and if pi+1 has not received any message, pi+1 decides on its proposal value. Process
pi+1 then sends its decision value to all processes in round i+1. (The correct process
with the lowest id, say, pj , succeeds in sending its decision value to all processes in
round j. Subsequently, all processes with higher ids decide and propagate the decision
value of pj .) If there are no failures, i.e., f = 0, then p1 decides before sending any
message in round 1, and we say that p1 decides in round 0. In runs of this algorithm
with at most 1 ≤ f ≤ t failures, at least one correct process decides by round f .
Hence, if we denote by lf the tight local decision lower bound for consensus in runs of
the synchronous model with f failures, the very existence of the algorithm means that
lf ≤ f . In fact, a closer look reveals that lf is exactly f . However, if we denote by
gf the tight global decision lower bound, we know from [21] that gf is exactly f + 1.
This observation opens several questions.

1. Can we match both lower bounds with the same algorithm? The synchronous
consensus algorithm we just sketched matches the lower bound lf = f but clearly does
not match the lower bound gf = f + 1. Is there any other algorithm that does so?
Otherwise, we would be highlighting a rather interesting trade-off in the design of
consensus algorithms.

2. What is the impact of the very nature of the agreement?
(i) Consider, for instance, the uniform variant of consensus [18], where no pro-

cess disagrees with any other process, even one that crashed. Clearly, the algorithm
sketched above needs to be revisited. We can easily exhibit a uniform consensus al-
gorithm in which at least one correct process decides by round f + 1, in runs with at
most f failures; i.e., lf ≤ f + 1. Additionally, we know from [4, 19] that, for most
values of f , gf = f + 2. Is gf = lf + 1?

(ii) Similarly, consider the nonblocking atomic commit problem [29, 18], where
the processes have to decide 0 if some process proposes 0, and have to decide 1 if no
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process proposes 0 or crashes. We know that the tight global decision lower bound for
atomic commit is the same as for uniform consensus [3, 10]. But, do the two problems
have the same tight local decision bounds as well?

3. What is the impact of the model? Consider consensus, for instance, in the
eventually synchronous model [11]. If we compare (a) the number of rounds gesf needed
for all correct processes to decide in synchronous runs with f process crashes, and
(b) the number of rounds lesf needed for at least one correct process to decide in such
runs, is gesf = lesf + 1?

Contributions. 1.We show in the synchronous model that, except for some
specific values of f (which we make precise in the paper), gf = lf + 1 for consensus,
uniform consensus, and nonblocking atomic commit. (In fact, to exhibit a matching
algorithm for uniform consensus and nonblocking atomic commit, we give an algorithm
for the “stronger” interactive consistency problem [27].) Furthermore, we highlight
an interesting trade-off in the design of consensus algorithms by showing that no
consensus algorithm can match both global and local decision bounds. More precisely,
no consensus algorithm can match both lf+1 and gf . In addition, we show that, for the
failure-free case (i.e., f = 0) of nonblocking atomic commit, the local decision bound
is higher than that of uniform consensus. Since both problems have identical global
decision lower bounds [3, 10], we draw the first line between their time-complexity.

2. We also consider uniform consensus in the eventually synchronous model. (In
this model, nonblocking atomic commit is not solvable when t ≥ 1, and consensus is
equivalent to uniform consensus [16].) We determine a local decision lower bound of
f + 2 rounds for synchronous runs of the model, with f failures (for f ≤ t− 3). Then
we present an algorithm that, in synchronous runs with f failures, globally (and hence
locally) decides in f + 2 rounds. In addition to matching the local decision bound, to
our knowledge, our algorithm is the first to match the f + 2 rounds global decision
lower bound presented in [4, 19, 9]. In other words, we show that, for synchronous
runs of the eventually synchronous model, tight local decision bounds are the same
as for global decision; i.e., gesf = lesf = f + 2.

Related work. The consensus problem was introduced in [27, 22] and (non-
blocking) atomic commit was defined in [15, 29]. The distinction between consensus
and uniform consensus, and the relationship with the atomic commit problem were
discussed in [18, 16]. Initial lower bound results on the time-complexity of agreement
problems were proved in [13] and studied further in [21, 7, 25, 12, 1]. The eventually
synchronous model was introduced in [5, 11].

In the synchronous model, one of the initial early halting agreement algorithms
was presented in [21]. The early halting lower bound for consensus was proved in [6].
The early decision lower bound for uniform consensus and its difference from the
nonuniform case were studied in [4, 19].

In the eventually synchronous model, the first consensus algorithm was presented
in [11]. The equivalence between consensus and uniform consensus in the eventually
synchronous model was shown in [16]. Tight bounds for synchronous runs of the
eventually synchronous model in the failure-free case (f = 0) were shown in [19, 28,
26] and in the worst-case (f = t) were shown in [9]. Techniques that use forward
inductions to prove lower bounds on agreement problems were introduced in [24, 1].

Roadmap. Section 2 recalls the models we consider. Section 3 recalls the defi-
nitions of the agreement problems we study. In section 4, we introduce the definition
of our local decision metric, and we recall other time-complexity metrics. We also
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devise a compact notation for presenting various lower bound results on agreement
problems. Section 5 recalls the layering technique of [24], also used in [19], which we
slightly extend to prove local decisions results. Sections 6 and 7 present our lower
bound results and matching algorithms in the synchronous model, respectively. The
lower bound results for the eventually synchronous model and the matching algorithm
are presented in sections 8 and 9, respectively. Section 10 concludes the paper.

2. Models. The distributed system we consider consists of a set of n ≥ 3 pro-
cesses, denoted by Π = {p1, p2, . . . , pn}, that communicate by message-passing: every
pair of processes is connected by a bidirectional communication channel that does
not create, duplicate, or alter messages. However, messages may be lost or reordered.
The processes may fail by crashing and do not recover from a crash. The computation
proceeds in rounds of message-exchange with round numbers starting from 1 and in-
creasing by 1 in every round. A distributed algorithm A is a collection of deterministic
automata, where the automaton for each process executes the following two phases
in every round: (a) in the send phase, the processes send messages to all processes;
(b) in the receive phase, the processes receive some messages sent in the send phase (of
the current round or of a lower round) and update local states (which might include
a decision event). A run of algorithm A is an infinite sequence of rounds of A. A
partial run is a finite prefix of some run. A (partial) run r extends some partial run
pr if pr is a prefix of r. A process that does not crash in a run is said to be correct
in that run; otherwise the process is faulty. We say that a message m sent in a run is
lost (in that run) if m is never received in that run.

In the distributed system described above, a model is a set of runs selected by
restricting when processes can crash and specifying which messages are received. A
submodel of a model M is a model that is a subset of M . We consider the following
models.

• For every t such that 0 ≤ t ≤ n−1, we define the t-resilient synchronous crash-
stop model [23], denoted SCS t, as follows. In every given run of SCS t, the
following properties hold: (1) if a process starts some round k then it either
completes that round or crashes; (2) at most t processes crash; and (3) in
round k, if pi completes the send phase of the round, then every process that
completes the receive phase of the round receives in that phase the round k
message sent by pi. (If pi crashes in the send phase of round k, then there are
no delivery guarantees—an arbitrary subset of messages sent by pi in round
k may be lost.)

• For every t such that 0 ≤ t ≤ n−1, we define SCS1t as the submodel of SCSt

that contains those runs of SCSt in which at most one process crashes in a
round.

• For every t such that 0 ≤ t ≤ n − 1, we define the t-resilient eventually
synchronous crash-stop model, denoted ES t, as follows. In ES t, the runs may
be “asynchronous” for an arbitrary yet finite number of rounds but eventually
become “synchronous.” A message sent in the “asynchronous period” may
be delayed for a finite number of rounds, i.e., received in a round higher than
the round in which it was sent. More precisely, in every given run of ES t,
the following properties hold: (1) if a process starts some round k then it
either completes that round or crashes; (2) (t-resilience) at most t processes
crash, and every process that completes any round k receives in that round
the round k messages from at least n − t processes; (3) (reliable channels)
every message sent by a correct process to a correct process in any round k
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is received in round k or in a higher round; (4) (eventual synchrony) there is
an unknown but finite round number GSR (global stabilization round) such
that, in every round k ≥ GSR, if pi completes the send phase of the round k,
then every process that completes the receive phase of the round receives in
that phase the round k message sent by pi. (If pi crashes in the send phase of
round k, then, similar to SCS t, there are no delivery guarantees; an arbitrary
subset of messages sent by pi in round k may be lost.) Also, we say that the
run is synchronous from round GSR.

Observe that, for every 0 ≤ f ≤ t ≤ n−1, SCS f is a submodel of SCS t, and ES f

is a submodel of ES t. Furthermore, every run of SCS t is a run of ES t with GSR = 1.
Thus, SCS t is a submodel of ES t.

Hereafter, we make a slight change in terminology: instead of saying that there
is a unique synchronous model, we say that each of the 2n models SCSt and SCS1t
(0 ≤ t ≤ n− 1) is a different synchronous model (i.e., there is no unique synchronous
model). Similarly, we say that each of the n models ESt (0 ≤ t ≤ n− 1) is a different
eventually synchronous model.

3. Agreement problems. We consider three agreement problems: consensus,
uniform consensus, and nonblocking atomic commit.

• In the (nonuniform) consensus problem [22], denoted NC, the processes start
with a proposal value and eventually decide on a final value such that the
following properties are satisfied: (validity) if a process decides v, then some
process has proposed v; (agreement) no two correct processes decide differ-
ently; and (termination) every correct process eventually decides.

• Uniform consensus [18], denoted UC, is a variant of consensus in which the
agreement property is replaced by the following uniform agreement property:
no two processes decide differently.

• In the nonblocking atomic commit problem [15, 29], denoted NBAC, each
process casts a vote of whether to abort or commit a transaction, and even-
tually decides. The termination and the uniform agreement properties are the
same as that for uniform consensus. Validity is defined in two parts: (abort
validity) abort can be decided only if some process proposes to abort or fails,
and (commit validity) commit can be decided only if all processes propose
to commit. For presentation uniformity, we make the following changes in
notation: (1) we say that a process proposes 0 (resp., 1) if the process votes
abort (resp., commit), and (2) we say that a process decides 0 (resp., 1) if
the process decides to abort (resp., to commit).

To prove our lower bounds, we consider variants of consensus and uniform consen-
sus. We define the weak binary agreement problem, denoted WA, where the processes
are allowed to propose either 0 or 1. WA satisfies the agreement and termination
properties of consensus, and the following weak validity property (from [19]): for ev-
ery value v ∈ {0, 1}, there is a failure-free run in which correct processes decide v.
The weak binary uniform agreement problem, denoted UA, is identical to WA except
that it also satisfies uniform agreement (no two processes decide differently).

Clearly, any NC, UC, or NBAC algorithm can solve WA without any additional
communication. Thus, our time-complexity lower bounds on WA immediately apply
to the three agreement problems. Similarly, any UC or NBAC algorithm can solve UA
without any additional communication, and hence, our time-complexity lower bounds
on UA immediately apply to UC and NBAC problems.
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In the synchronous models, we present the matching algorithms for uniform con-
sensus and nonblocking atomic commit by first devising an interactive consistency
algorithm, which we then transform to consensus and nonblocking atomic commit
algorithms. In the interactive consistency problem [27], denoted IC, each process
proposes an initial value and eventually decides on a vector of values. Termination
and agreement properties are the same as for uniform consensus. Validity is defined
as follows: for every decision vector V , the jth component of V is either the value
proposed by pj or ⊥, and may be ⊥ only if pj fails.

4. Time complexity metrics. Let r be any run of an algorithm that solves one
of the agreement problems described in section 3. We say that a process pi decides in
round k ≥ 1 in r if pi decides in the receive phase of round k, and a process decides
at round 0 if it decides before sending any message in round 1. We say that a process
halts in round k in r if it does not crash by round k, and does not take any step after
round k.

We distinguish four different time complexity metrics for runs of agreement algo-
rithms: global decision, global halting, local decision, and local halting. Consider any
run r of an algorithm that solves an agreement problem.

• We say that run r globally decides (resp., globally halts) in round k if all
correct processes decide (resp., halt) in round k, or in a lower round, and
some correct process decides (resp., halts) in round k [13, 6, 4, 19].

• We say that run r locally decides (resp., locally halts) in round k if all correct
processes decide (resp., halt) in round k, or in a higher round, and some
correct process decides (resp., halts) in round k.

We introduce the following notation. If a run r globally decides at round k, we
write (r, gd) = k. Similarly, the round at which run r globally halts, locally decides,
and locally halts are denoted by (r, gh), (r, ld), and (r, lh), respectively. Note that,
since every correct process decides before it halts, (r, ld) ≤ (r, lh), and (r, ld) ≤
(r, gd) ≤ (r, gh). Given a model M1, a submodel M2 of M1, an agreement problem P,
and a time complexity metric T, we denote by the ordered tuple (M1, M2, P, T) the
following tight bound. (M1, M2, P, T) is the round number k such that (1) (lower
bound) every algorithm that solves P in M1 has a run r in M2 such that (r, T ) ≥ k,
and (2) (matching algorithm) there is an algorithm Alg that solves P in M1 such that
every run r of Alg in M2 has (r, T ) ≤ k.

In other words, for algorithms that solve problem P in model M1, (M1, M2, P,
T) is the tight bound for achieving T in submodel M2. The notation captures the
common time-complexity tight bounds for agreement problems, where submodel M2
denotes the set of runs (e.g., failure-free runs) for which we want to optimize the
algorithms in M1. If we set M2 = M1, the tuple denotes the worst-case bound in M1.

Before delving into our lower bounds, we recall some known results on consensus
(NC) and uniform consensus (UC) using our notation. (For every pair of reals a ≤ b,
[a, b] denotes the set of integers x such that a ≤ x ≤ b; when a > b, [a, b] denotes the
emptyset.)

• ∀t ∈ [0, n − 2], (SCS t, SCS t, NC, gd) = t + 1. Every consensus algorithm
in SCS t has a run (in SCS t) in which some correct process decides in round
t+1 or in a higher round, and there is a consensus algorithm A in SCS t such
that, in every run of A (in SCS t), every correct process decides by round t+1
[13, 23].

• ∀t ∈ [2, n−2], ∀f ∈ [0, t−1], (SCS t, SCS f , NC, gh) = f+2. Every consensus
algorithm in SCS t has a run in SCS f in which some correct process halts in
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round f + 2 or in a higher round, and there is a consensus algorithm A in
SCS t such that, in every run of A in SCS f , every correct process halts by
round f + 2 [6].

• ∀t ∈ [2, n− 1], ∀f ∈ [0, t− 2], (SCS t, SCS f , UC, gd) = f + 2. Every uniform
consensus algorithm in SCS t has a run in SCS f in which some correct process
decides in round f +2 or in a higher round, and there is a uniform consensus
algorithm A in SCS t such that, in every run of A in SCS f every correct
process decides by round f + 2 [4, 19].

• ∀t ∈ [1, (n− 1)/2], (ES t, SCS t, NC, gd) = t + 2. Every consensus algorithm
in ES t has a run in SCS t in which some correct process decides in round t+2
or in a higher round, and there is a consensus algorithm A in ES t such that,
in every run of A in SCS t every correct process decides by round t + 2 [9].

Roughly speaking, in this paper we investigate tight bounds when the time-
complexity metric is local decision (ld). In particular, we determine (SCS t, SCS f ,
UC, ld), (SCS t, SCS f , NC, ld), and (ES t, SCS f , UC, ld).

5. Layering. Our lower bound proofs are devised following the layering tech-
nique of [24], which is also used in [19]. We first introduce some definitions and then
recall the notion of layering from [24, 19]. We then present two lemmas (that are
slightly modified from [19]) from which we derive our lower bound results. (In the
following, we point out when our notions differ from those in [19].)

5.1. Configurations and extensions. Consider a model M and an agreement
algorithm A devised in M. For each run r of algorithm A in model M, we denote by
val(r) the decision value of any correct process in r. (This definition is unambiguous
because, in every agreement problem we consider, no two correct processes decide
differently.) For a run r of A in M we define the configuration C at the end of round
k (also called round k configuration), as an ordered tuple of size n + n2, where the
element i, for 1 ≤ i ≤ n, is the state of process pi at the end of round k in run r, and
the rest of the elements contain the set of delayed messages in the n2 communication
channels at the end of round k in run r. (Since there are no delayed messages in
synchronous models, the channels are empty at the end of every round. Hence, in
a synchronous model, we ignore state of channels in configurations at the end of a
round.) The state of a process that has crashed is denoted by the special symbol ⊥.
We say that a process pi is alive in a configuration if pi has not crashed in that config-
uration. In the initial configuration (which we also call round 0 configuration) of run
r, the state of each process is its proposal value, and the state of every communication
channel is the emptyset ∅.

Given a round k configuration C of algorithm A in model M, we define the fol-
lowing concepts. A run r of algorithm A in model M is an extension of the round k
configuration C if the round k configuration of run r is C. A round k1 configuration
C′ of algorithm A in model M is an extension of the round k configuration C if k ≤ k1

and there is a run r of A in M such that the round k configuration of r is C and
round k1 configuration of r is C′. If M is a synchronous model, we denote by r(C)
the run which is an extension of C such that no process crashes after round k. We
define val(C) as val(r(C)). Observe that a process pi is alive in C if and only if pi is
correct in r(C).

5.2. Layering in synchronous models. In this subsection, we consider any
given weak binary agreement (WA) algorithm A in model SCS1t. (See section 2 and
section 3 for a definition of SCS1t and WA, respectively.)
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Extensions in SCS1t. A run of algorithm A is completely defined by its initial
configuration and its failure pattern. (The failure pattern for a run in SCS1t consists,
for each round k, of the process pi that crashes in round k and the set of processes
that did not receive the round k message from pi.) In model SCS1t, we denote an
extension by one round, of a round k configuration C, as follows: for 1 ≤ i ≤ n and
S ⊆ Π, C.(i, S) denotes the round k+1 configuration reached by crashing pi in round
k+1 such that a process pj does not receive a round k+1 message from pi if at least one
of the following holds: (1) pj = pi, (2) pj is crashed in C, or (3) pj ∈ S. Configuration
C.(0, ∅) denotes the one round extension of C in which no process crashes. Clearly,
C.(i, S) for i > 0 and S ⊆ Π is a possible extension of C if at most t − 1 processes
have crashed in C and pi is alive in C. We then say that (i, S) is applicable to C.
Configuration C.(0, ∅) is always applicable to C.

Layers. A layer L(C) is the set of configurations defined as {C.(i, S)|i ∈ Π,
S ⊆ Π, (i, S) is applicable to C}. (In other words, if C is a round k configuration,
then L(C) is the set of all round k+1 configurations that extend C in SCS1t.) For a
set of round k configurations SC, L(SC) is a set of round k+1 configurations defined
as ∪C∈SCL(C). Lk(SC) is recursively defined as follows: L0(SC) = SC and for k > 0,
Lk(SC) = L(Lk−1(SC)). (In other words, if SC is a set of round l configurations then
Lk(SC) is the set of all round (l + k) configurations that extend any configuration
in SC.)

Similar configurations. Consider a set of round k configurations SC. Two
configurations C and D in SC are similar, denoted C ∼ D, if they are identical or
they differ at exactly one process. A pair of configurations C and D in SC is similarity
connected if there are configurations C = C0, . . . , Cm = D in SC such that Ci ∼ Ci+1

for every i such that 0 ≤ i ≤ m− 1. The set SC is similarity connected if every pair
of configurations in SC is similarity connected. (Our definition of similarity does not
include the second requirement in the original definition of [19]: there exists a process
that is alive in both C and D and has identical states in C and D. When this property
is required in our lower bound proofs, we derive it directly from our assumption on
t and n.)

We now revisit Lemma 2.3 of [19]. Roughly speaking, this lemma says that, in
SCS1t, if we start with a similarity connected set SC of configurations, we can keep
the set of extensions from SC similarity connected, provided we can crash one process
in every round.

Lemma 5.1. In SCS1t, let SC = L0(SC) be a similarity connected set of con-
figurations such that in every configuration of SC no process has crashed. Then for
all k ∈ [1, t], Lk(SC) is a similarity connected set of configurations in which no more
than k processes have crashed in any configuration.

Proof. The proof is by induction on round number k. The base case k = 0 is
immediate. For the inductive step, assume that Lk−1(SC) is similarity connected and
in every configuration of Lk−1(SC) at most k−1 processes have crashed. Notice that,
in every extension by one round that is applicable to a configuration in Lk−1(SC),
at most one more process can crash. Therefore, in every configuration in Lk(SC) at
most k processes have crashed. We now show that Lk(SC) is similarity connected
through the following three claims.

1. For every configuration C ∈ Lk−1(SC), L(C) is similarity connected. Con-
sider any configuration in L(C) that is different from C.(0, ∅), say, C1 = C.(i, Q),
where Q ⊆ Π, and pi is alive in C. We claim that C1 and C.(0, ∅) are similarity
connected. Since C1 is arbitrarily selected from L(C), our claim implies that every
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configuration in L(C) is similarity connected to C.(0, ∅), and hence, L(C) is similarity
connected.

Now we prove our claim. C.(i, ∅) ∼ C.(0, ∅) since the configurations differ only at
pi. If Q = ∅ then we are done. Hence, let Q = {q1, q2, . . . , qm}. For every l in [1,m],
let Ql = {q1, . . . , ql}, and Q0 = ∅. For every l in [0,m − 1], C.(i, Ql) ∼ C.(i, Ql+1)
because the two configurations differ only at ql+1. Thus, C(i, ∅) = C.(i, Q0) and
C1 = C.(i, Qm) are similarity connected.

2. For every pair of configurations C,D ∈ Lk−1(SC), if C ∼ D then L(C)∪L(D)
is similarity connected. If C and D are identical then the claim immediately follows
from claim 1. So consider the case where C and D are distinct. As C ∼ D, there
is a process pi such that C and D are different only at pi. Then, configurations
C.(i,Π) and D.(i,Π) are identical because no process receives message from pi in
round k, and pi has crashed. Hence, C.(i,Π) ∼ D.(i,Π). We know from claim 1 that
L(C) and L(D) are each similarity connected. Thus every configuration in L(C) is
similarity connected to C.(i,Π) and every configuration in L(D) is similarity connected
to D.(i,Π). As, C.(i,Π) ∼ D.(i,Π), so every configuration in L(C) is similarity
connected to every configuration in L(D). Thus, L(C)∪L(D) is similarity connected.

3. Lk(SC) is similarity connected. Consider any pair of configurations C ′, D′ ∈
Lk(SC). Thus, there are configurations C,D ∈ Lk−1(SC) such that C ′ ∈ L(C) and
D′ ∈ L(D). As Lk−1(SC) is similarity connected, there is a chain of configurations
C = C0, . . . , Cm = D such that, for every l ∈ [0,m − 1], Cl ∼ Cl+1. Thus, from
claim 2, L(Cl) ∪ L(Cl+1) is similarity connected. A simple induction shows that
L(C1) ∪ . . . ∪ L(Cm) is similarity connected. Thus C ′ ∈ L(C = C0) is similarity
connected to D′ ∈ L(D = Cm). As C ′ and D′ are arbitrarily selected from Lk(SC),
Lk(SC) is similarity connected.

Remarks. The above lemma is a simple generalization of Lemma 2.3 of [19]. The
statement of the lemma is similar; however, the proof is slightly different because
our model SCS1t is slightly different from that of [19]. Their model is actually a
submodel of SCS1t. Consider any crashed process pi, and the set of processes J to
which messages from pi were lost in the round in which pi crashed. Then, in the
model of [19], J is allowed only to be a prefix of processes {p1, . . . , pk}, whereas in
SCS1t, J is allowed to be any subset of Π.

Informally, the next lemma says that, for any WA algorithm in SCS1t, there are
two round f configurations that are almost identical (they differ at only one process)
but have different decision values in failure-free extensions.

Recall that, for any configuration y in a synchronous model, val(y) is the decision
value of correct processes in a run which extends y and has no crashes after y.

Lemma 5.2. Consider any WA algorithm A in SCSt such that t ∈ [1, n−1]. For
every f ∈ [0, t], there are two runs of A in SCS1t such that their round f configu-
rations, y and y′, satisfy the following: (1) at most f processes have crashed in each
configuration, (2) the configurations differ at exactly one process, and (3) val(y) = 0,
whereas val(y′) = 1.

Proof. Consider any WA algorithm A in SCSt. We claim that A solves WA in
SCS1t as well. A maintains the agreement and termination properties in all runs of
SCS1t because every run in SCS1t is also a run in SCSt. The weak validity property
is bit different—it is a condition on the set of failure-free runs. However, observe that
the SCSt and SCS1t have the same set of failure-free runs. It follows that if A
satisfies the weak validity property in SCSt, then A also satisfies the property in
SCS1t. Thus, A solves WA in SCS1t.

Now consider WA algorithm A in SCS1t. Let C′ be any initial configuration
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of algorithm A and C be the initial configuration in which all processes propose 0.
Consider the following n− 1 (not necessarily distinct) initial configurations: for every
i in [1, n − 1], in configuration Ci, processes p1 to pi propose the same value as in
C′, and the remaining processes propose 0. Notice that, for every i in [1, n − 2], Ci

and Ci+1 may differ only at pi+1. Furthermore, C1 and C may differ only at p1,
and C′ and Cn−1 may differ only at pn. Thus C and C′ are connected through a
chain of configurations, such that any two adjacent configurations in the chain are
similar. Since C′ was arbitrarily selected, the set of initial configurations of A in
SCS1t is similarity connected. From Lemma 5.1 it follows that the set of round f
configurations of A in SCS1t is similarity connected.

Consider any failure-free run r0 of algorithm A in which correct processes decide 0.
(From the validity property of WA, such a run of A exists.) We denote by z the round
f configuration of r0. Similarly, consider any failure-free run r1 of A in which correct
processes decide 1. We denote by z′ the round f configuration of r1. Obviously,
val(z) = 0 and val(z′) = 1.

As the set of round f configurations of A in SCS1t is similarity connected, there
are some round f configurations of A in SCS1t, z = y0, y1, . . . , ym = z′, such that
yj ∼ yj+1 for every j in [0,m − 1]. Clearly, there is some yi ∈ {y0, . . . , ym−1} such
that val(y0) = · · · = val(yi) �= val(yi+1). (Otherwise, val(z) = val(y0) = val(y1) =
· · · = val(ym) = val(z′), which is a contradiction.)

As val(yi) = val(y0) and y = y0, val(yi) = 0. Therefore, val(yi+1) = 1. Since
both yi and yi+1 are round f configurations in SCS1t, at most f processes have
crashed in each configuration. As yi ∼ yi+1, the two configurations either are identical
or differ at exactly one process. Since val(yi) �= val(yi+1), the configurations cannot
be identical; i.e., they differ at exactly one process.

6. Synchronous lower bounds.

6.1. Consensus. In the following we show a local decision lower bound for weak
binary agreement (WA) in synchronous models (SCSt with 1 ≤ t ≤ n− 1). We then
show the impossibility of simultaneously matching both local decision and global
decision lower bounds of WA. Since any consensus (NC) algorithm solves WA, the
results immediately apply to consensus.

We observe that every run of an algorithm in SCS1t is also a run in SCSt. Thus,
Lemma 5.2 holds when SCS1t is replaced by SCSt.

Local decision. The following proposition states that any WA algorithm in
SCSt has a run in SCSf (i.e., a run with at most f crashes) in which every correct
process decides in round f or in a higher round.

Proposition 6.1. For all t ∈ [1, n− 1], for all f ∈ [0, t], (SCS t, SCS f , WA, ld)
≥ f .

Proof. Suppose by contradiction that there is a WA algorithm A in SCSt and an
integer f in [0, t] such that, in every run of A with f failures, some correct process
decides by round f−1. Notice that the contradiction is immediate for the case f = 0:
no process can decide by round −1. So we consider the case f ∈ [1, t]. (Also recall
that we define deciding at round 0 as deciding before sending any message in round 1.)

It follows from Lemma 5.2 that there are two runs of A in SCSt such that their
round f −1 configurations, y and y′, satisfy the following: (1) at most f −1 processes
have crashed in each configuration, (2) the configurations differ at exactly one process,
say, pi, and (3) val(y) = 0 and val(y′) = 1.
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As r(y) is a run with at most f − 1 crashes, it follows from our assumption on A
that, in r(y), there is a correct process q1 that has decided val(y) = 0 by round f −1.
As all correct processes in r(y) are alive in y, it follows that, in y, q1 is alive and has
decided val(y) = 0.

We now show that no alive process distinct from pi has decided in y (which implies
pi = q1). Suppose by contradiction that some alive process distinct from pi, say, q2,
has decided in y. Since q2 is alive in y, it is correct in r(y), and hence, q2 has decided
val(y) = 0 in y. As y and y′ differ only at pi, and pi is distinct from q2, q2 is alive and
has decided 0 in y′. Thus, in r(y′), q2 is a correct process and decides 0. However,
every correct process in r(y′) decides val(y′) = 1, which is a contradiction.

Thus, pi is the only alive process that has decided in y. Consider any run r′ that
extends y and in which only process pi crashes after round f −1. At most f processes
crash in r′. At the end of round f − 1 in r′, the only alive process that has decided
is pi, but pi is a faulty process in r′. Thus, r′ is a run with f failures in which no
correct process decides by round f − 1, which is a contradiction.

Incompatibility. It is easy to design a consensus algorithm that matches either
the early local decision or the early global decision lower bound. We now show that,
maybe surprisingly, no consensus algorithm can match both the early local decision
and the early global decision lower bounds, even for two consecutive values of f . This
is in contrast to uniform consensus, where a single algorithm can match both local
decision and global decision lower bounds (as we show in section 7).

Proposition 6.2. For all t ∈ [1, n − 2], for all f ∈ [0, t − 1], there is no WA
algorithm in SCSt that matches the following two conditions: (a) in every run with
at most f crashes, every correct process decides by round f + 1, and (b) in every run
with at most f + 1 crashes, some correct process decides by round f + 1.

Remarks. Condition (a) is for matching the global decision lower bound for f
crashes, and condition (b) is for matching the local decision lower bound for f + 1
crashes. Note that, we do not consider the case f = t, because when f = t, (a) im-
plies (b), as there is no run in SCSt with t + 1 crashes.

Proof. Suppose by contradiction that there is a WA algorithm A in SCSt and an
integer f in [0, t−1] such that (a) by round f +1 of every run with at most f failures,
every correct process decides, and (b) by round f + 1 of every run with at most f + 1
failures, some correct process decides.

It follows from Lemma 5.2 that, at the end of round f there are two configurations
y0 and y1 such that (a) at most f processes have crashed in each configuration,
(b) the configurations differ at exactly one process, say, pi, and (c) val(y0) = 0 and
val(y1) = 1.

Consider run r(y0). Obviously, r(y0) is a run with at most f failures, and from
our initial assumption, every correct process decides val(y0) = 0 at the end of round
f + 1. Similarly, we construct run r(y1), which is a failure-free extension of y1, and
every correct process decides val(y1) = 1 at the end of round f + 1. There are two
cases to consider.

Case 1. Process pi is alive in y0 and y1. Consider the extension of y0 to a run
r′(y0) such that pi crashes in round f +1 before sending any message, and no process
crashes thereafter. (Recall that f ≤ t − 1.) Notice that r′(y0) is a run with at most
f + 1 failures and pi is a faulty process in r′(y0). Thus, from our initial assumption
about A, it follows that there is a correct process pj(�= pi) in r′(y0) which decides
some value v ∈ {0, 1} at round f + 1. (Notice that, since pj �= pi, pj cannot decide
before round f + 1: as y0 and y1 differ only at pi, if pj decides by round f , then pj
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decides identical values in y0 and y1.) Also, as f ≤ n−3, there is a process pl distinct
from pi and pj such that pl decides 0 and 1 at the end of round f + 1 in r(y0) and
r(y1), respectively.

Now we construct a run r′′ by extending configuration y1−v: process pi crashes
in the send phase of round f +1 such that, in round f +1, pl receives a message from
pi but pj does not receive any message from pi. No process distinct from pi crashes
in round f + 1 or a higher round. Obviously, pj and pl are correct in r′′. At the end
of round f + 1 in run r′′, pj cannot distinguish r′′ from r′(y0) because the round f
configurations of the two runs differ only at pi, and pj does not receive any round
f +1 message from pi in both runs. Therefore, pj decides v at the end of round f +1
in r′′. However, since pl receives a message from pi in round f +1, at the end of round
f + 1, pl cannot distinguish r′′ from r(y1−v), and therefore, decides 1 − v at the end
of round f + 1, which is a contradiction to the agreement property of WA.

Case 2. Process pi has crashed in either y0 or y1. Without loss of generality, we
can assume that pi has crashed in y0, and hence, pi is alive in y1. (Recall that pi has
different states in the two configurations.) As at most f processes, including pi, have
crashed in y0, and pi has not crashed in y1, it follows that at most f − 1 processes
have crashed in y1. Since f ≤ n − 3 and at most f − 1 processes have crashed in
y1, there are at least two correct process pj and pl (both distinct from pi) in r(y1).
Consider the run r′ which extends y1 such that process pi crashes in round f + 1 and
the only alive process that does not receive the round f +1 message from pi is pl, and
no process crashes after round f + 1. Obviously pj and pl are correct in r′. At the
end of round f + 1, pl cannot distinguish r(y0) from r′ because pl does not receive
the round f + 1 message from pi in both runs. Thus, pl decides 0 at the end of round
f + 1 in r′. At the end of round f + 1, pj cannot distinguish r(y1) from r′ because
both runs extend y1 and pj receives round f + 1 message from pi in both runs. Thus,
pj decides 1 at the end of round f +1 in r′, which is a contradiction to the agreement
property of WA.

6.2. Uniform consensus. In the following, we show a local decision lower
bound for weak binary uniform agreement (UA) in the synchronous models (SCSt

with 1 ≤ t ≤ n − 1). Since any uniform consensus (UC) and nonblocking atomic
commit (NBAC) algorithm solves UA, the lower bound immediately applies to UC
and NBAC. In section 6.3, we show that the lower bound holds for IC as well.

The following proposition says that any UA algorithm in SCSt has a run in SCSf

(i.e., a run with at most f crashes) in which every correct process decides in round
f + 1 or in a higher round.

We observe that any UA algorithm also solves WA, and every run of an algorithm
in SCS1t is also a run in SCSt. Thus, Lemma 5.2 holds when WA and SCS1t are
replaced by UA and SCSt, respectively.

Proposition 6.3. For all t ∈ [1, n− 1], for all f ∈ [0, t− 1], (SCSt, SCSf , UA,
ld) ≥ f + 1.

Proof. Suppose by contradiction that there is a UA algorithm A in SCSt and an
integer f in [0, t−1] such that, in every run of A with f failures, some correct process
decides by round f .

As every UA algorithm solves WA, it follows from Lemma 5.2 that there are
two runs of A in SCSt such that their round f configurations, y and y′, satisfy
the following: (1) at most f processes have crashed in each configuration, (2) the
configurations differ at exactly one process, say, pi, and (3) val(y) = 0 and val(y′) = 1.

From our initial assumption about algorithm A, it follows that there is an alive
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process q1 in y that has already decided. (Otherwise, since every correct process in
r(y) is an alive process in y, r(y) is a run with at most f crashes in which no correct
process decides by round f .) Furthermore, q1 has decided val(y) = 0 in r(y) (and
hence, in y) because q1 is a correct process in r(y). Similarly, in y′, there is an alive
process q2 that has decided val(y′) = 1. There are two cases to consider.

(1) q1 �= pi: As y and y′ are identical at all processes different from pi, in y′, q1 is
alive and has decided 0. Thus in r(y′), q1 is a correct process and decides 0. However,
in r(y′) every correct process decides val(y′) = 1, which is a contradiction.

(2) q1 = pi: We distinguish two subcases:
• q2 = pi: Thus pi = q1 = q2, and hence, pi is alive in y and y′. Consider a run

r1 that extends y and in which pi crashes in round f + 1 before sending any
message. (Recall that f ≤ t−1.) As pi has decided 0 in y, it follows from the
uniform agreement property that every correct process decides 0 in r1. Since
t < n, there is at least one correct process, say, pl, in r1. Now consider a
run r2 that extends y′ and in which pi crashes in round f + 1 before sending
any message. Notice that no correct process can distinguish r1 from r2: at
the end of round f no alive process that is distinct from pi can distinguish
y from y′, and pi crashes before sending any message in round f + 1. Thus
every correct process decides the same value in r1 and r2; in particular, pl
decides 0 in r2. However, pi = q2 decides 1 in r2, which is a contradiction to
uniform agreement.

• q2 �= pi: Then, q2 has the same state in y and y′. Thus in y, q2 is alive and
has decided 1. In any run that extends y, pi = q1 has decided 0 and q2 has
decided 1, which is a contradiction to uniform agreement.

6.3. Nonblocking atomic commit and interactive consistency. Recall
that the local decision lower bound presented in section 6.2 holds for UC and NBAC.
In the following, we show that for NBAC and IC, the local decision lower bound for
the failure-free case (f = 0) can be shifted to 2. However, this result does not hold
for UC: in section 7.4 we exhibit a UC algorithm that locally decides in 1 round in
failure-free runs.

Proposition 6.4. For all t ∈ [2, n− 1], (SCSt, SCS0, NBAC, ld) ≥ 2.
Proof. Suppose by contradiction that there is an NBAC algorithm A such that, in

every failure-free run, some process decides in round 1. Let C1 be the initial configu-
ration in which all processes propose 1. Consider the failure-free run R1 starting from
C1; i.e., R1 = r(C1). Suppose that some process pi decides at the end of round 1.
From the abort validity property of NBAC, we know that pi cannot decide 0 (and
hence, pi decides 1) in R1.

Consider another run R2 starting from C1, but some process pj (�= pi) crashes in
round 1 and only pi receives the round 1 message from pj . Also, process pi crashes in
round 2, before sending the round 2 message to any process, and no process crashes
thereafter. At the end of round 1, pi cannot distinguish R1 from R2. Thus, pi decides
1 in R2. From uniform agreement, we know that every process distinct from pi and
pj decides 1. There exists at least one such process, say, pl, because t ≤ n− 1.

Let C0 be the initial configuration in which pj proposes 0 and all other processes
propose 1. Consider a run R3 starting from C0 with the same failure pattern as
R2; i.e., pj crashes in round 1 and only pi receives the round 1 message from pj , pi
crashes in round 2 before sending the round 2 message to any process, and no process
crashes thereafter. No process distinct from pi and pj can distinguish R2 from R3:
at the end of round 1, only pi receives the message from pj , but pi crashes before
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sending any message in round 2. Therefore, every process distinct from pi and pj
decides 1 (as in R2), particularly pl. But the commit validity property of NBAC
requires that no process decides 1 in R3 because some process pj has proposed 0,
which is a contradiction.

The above proposition highlights a fundamental difference between the time-
complexity of NBAC and UC in synchronous models. However, the proposition
extends to IC. In fact, any IC algorithm can be easily transformed to an NBAC algo-
rithm (without any additional rounds) as follows. Let V 1 denote an ordered n-tuple
in which every component is 1. Suppose we have an IC algorithm with IC-propose()
primitive. We implement the NBAC-propose() primitive of the NBAC specification
in the following way. When a process NBAC-proposes v ∈ {0, 1}, then if IC-proposes
v. If a process IC-decides V 1, then it NBAC-decides 1; if the process IC-decides an
n-tuple different from V 1, then it NBAC-decides 0. Note that the transformation
by itself does not require any additional communication and hence can be performed
even in an asynchronous model. Thus, this transformation immediately implies that
the bound in section 6.2 and Proposition 6.4 applies to IC.

In a related work [10], we show for NBAC algorithms, an incompatibility between
globally deciding by round 2 in the failure-free run where all processes propose 1 and
globally deciding by round 1 in every run where some process proposes 0. However,
that paper does not consider local decisions.

7. A matching synchronous algorithm. In [21], an NC algorithm was pro-
posed that matches the global decision and global halting lower bounds. The algo-
rithm can be easily modified to derive another algorithm that matches corresponding
bounds for UC. However, we knew of no UC algorithm that matches the local decision
lower bounds.

In this section, we present an algorithm for IC that simultaneously matches the
local decision, global decision, and global halting lower bounds for most values of f
and t. (We do not match the bounds in some boundary cases when f , t, and n are
close to each other.) From our IC algorithm, we then derive matching algorithms
for UC and NBAC. (Algorithms that match either the local decision or the global
decision of NC are straightforward, but, as we showed in Proposition 6.2, no single
NC algorithm can match both local and global decision lower bounds.)

7.1. IC algorithm overview. Our IC algorithm (Figure 7.1) is inspired by the
Byzantine Generals algorithm of [21]. The algorithm runs for at most t + 1 rounds.
Process pi maintains two primary variables: (1) an ordered n-tuple esti, component j
of which contains the proposal value of pj , provided pi has received that value (either
directly from pj or relayed by some other process), and ⊥ otherwise, and (2) a set
of processes halti that pi knows to have either crashed or halted. In each round, the
processes exchange estimate (est) messages containing their est values. If the halt
set at a process does not change in round k, then (1) if the est does not change in
round k as well, the process decides on its est in round k, and otherwise, (2) the
process decides on its est in round k + 1. Before halting, a process sends a special
decision (dec) message to all processes, so that the processes can distinguish a halt
from a crash.

Roughly speaking, if the halt set at a process pi does not change in some round
k, then at the end of round k, no alive process has seen more proposal values than
pi. Thus, pi can decide on its current esti value, provided pi ensures that all other
processes see its current esti. So pi sends its est to all processes in round k + 1 and
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at process pi:

1: propose(vi)
2: Ordered n-tuples esti and newesti: element i initialized to vi and all other elements initialized to ⊥
3: Set halti ← newhalti ← ∅
4: Boolean decidedi ← lastRoundi ← false
5: for 1 ≤ r ≤ t + 1 do Multiset Sr

i ← ∅
6: for round r from 1 to t + 1 do
7: halti ← newhalti
8: esti ← newesti

9: Send phase
10: if lastRoundi then
11: send(r, dec, esti) to all

12: else
13: send(r, est, esti) to all

14: Receive phase
15: Sr

i ← {estj | (r, est, estj) was received}
16: if lastRoundi then
17: if not decidedi then
18: decide(esti) {decision}
19: return {halt}
20: if received any (r,Dec, estj) then
21: newesti ← estj
22: lastRoundi ← true
23: else
24: newhalti ← Π\sender(Sr

i ) {processes from which pi did not receive any message}
25: for 1 ≤ j ≤ n do
26: if there is any est′ ∈ Sr

i s.t. est′[j] 
= ⊥ then newesti[j] ← est′[j] else newesti[j] ← ⊥
27: if newhalti = halti then
28: if esti = newesti then
29: decide(esti); decidedi ← true {decision}
30: lastRoundi ← true
31: if r = t + 1 then
32: if not decidedi then
33: decide(newesti) {decision}
34: return {halt}

Fig. 7.1. An early deciding (and halting) interactive consistency algorithm.

then decides. However, if the est of pi does not change in round k, then pi has already
sent that est to all processes in round k; so pi can decide at the end of that round.

7.2. Correctness. In the following, a variable var at a process pi is denoted
vari, and if pi reaches the end of any round r, the value of vari at the end of round
r is denoted varri ; var

0
i denotes the value of the variable at the end of line 5. (We

omit the subscript of the variable when we make a statement that applies to multiple
processes.) For 1 ≤ r ≤ t + 1, faultyr denotes the set of processes that have crashed
by round r, and faulty0 equals ∅. For any pair of ordered n-tuples d and d′, we say
that (1) d = d′ if for all j ∈ [1, n], d[j] = d′[j], (2) d � d′ if for all j ∈ [1, n], either
d[j] = ⊥ or d[j] = d′[j], and (3) d � d′ if d � d′ is false.

First, we make the following simple observations that we frequently use: (1) (Ob-
servation O1) For the est value at every process and every j ∈ [1, n], est[j] is either
the proposal value of pj or ⊥. (2) (Observation O2) If, before deciding, pj receives an
est message from some process pl in round k, then newestk−1

l � newestkj . (It follows

that newestk−1
j � newestkj .)

Every process decides on some est value; thus, validity immediately follows from
Observation O1. Termination follows from the simple observations that no process
halts without deciding and no process completes round t + 1 without halting (lines
31 to 34). Thus we detail only the proof of uniform agreement. We start with some
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general lemmas about the algorithm.
Lemma 7.1. If for some r ∈ [1, t] no process decides by round r, then the following

holds for every process pi that completes round r. If lastRoundri = true, then every
process pj that completes round r has newestrj � newestri .

Proof. We prove the lemma by induction on round number r, such that r ∈ [1, t].
Base case r = 1. Suppose lastRoundri = true and no process decides in round 1.

Then pi has executed either line 22 or line 30 of round 1. Observe that pi executes
line 22 only if some process sends dec message to pi. Since lastRound is initialized to
false and the processes send dec messages only when lastRound = true, no process
has sent a dec message in round 1. Thus pi has executed line 30. So newhalt1i =
halt1i = ∅, and hence, newest1i contains proposal values of all processes. Thus, every
process pj that completes round 1 has newest1j � newest1i .

Induction hypothesis r = k. If no process decides by round k, then the following
holds for every process pi that completes round k. If lastRoundki = true, then every
process pj that completes round k has newestkj � newestki .

Induction step r = k + 1 ≤ t. Suppose by contradiction that (1) no process
decides by round r = k + 1, (2) there is a process pi that completes round k + 1 such
that lastRoundk+1

i = true and newestk+1
i = d′, and (3) another process pj completes

round k + 1 with newestk+1
j = d such that d � d′. Process pi has executed either

line 22 or line 30. If pi executed line 22, then pi has received a (k + 1, dec, d′)
message from some process pl. To send a dec message in round k + 1, pl must have
set lastRoundl to true in round k. Thus, from the induction hypothesis, every process
that completes round k has newestk � d′. Since d � d′, process pj receives a round
k + 1 message from some process with an n-tuple d′′ such that d′′ � d′, which is a
contradiction because, for all processes that complete round k, we have newestk � d′.
Hence, pi executed line 30, and haltk+1

i = newhaltk+1
i . Since pj completes round

k + 1, pi received the round k + 1 message from pj containing newestkj , and hence,

newestkj � newestk+1
i = d′. As newestk+1

j = d � d′, it follows that pj received (k+1,

∗, d′′) from some process pm such that d′′ � d′, and pi did not receive (k + 1, ∗, d′′)
from pm (otherwise, d′′ � newestk+1

i = d′). Thus pm ∈ newhaltk+1
i . However, as pm

completed round k, pm /∈ newhaltki = haltk+1
i . Thus, haltk+1

i �= newhaltk+1
i , which

is a contradiction.
Lemma 7.2. If a process pi does not halt or crash by round r ∈ [0, t], then pi has

haltki �= newhaltki for all k ∈ [1, r − 1].
Proof. The proof is obvious from the algorithm.
Lemma 7.3. If no correct process halts by some round r − 1 ∈ [0, t − 1], and if

there is a process pi such that, for every round number r′ ∈ [1, r], haltr
′

i �= newhaltr
′

i ,
then |faultyr| ≥ r.

Proof (for uniformity of presentation, we slightly abuse the terminology and say
that for all runs, no process halts or crashes by round 0). Suppose there is a round
r such that no correct process halts by round r − 1 and there exists a process pi
such that, for every round number r′ ∈ [1, r], haltr

′

i �= newhaltr
′

i . Clearly, haltr
′

i =

newhaltr
′−1

i ⊆ newhaltr
′

i . Thus |newhaltri | ≥ r. Every process in newhaltri has either
halted by round r− 1 or crashed by round r. Since no correct process halts by round
r − 1, newhaltri ⊆ faultyr, and hence, |faultyr| ≥ r.

Lemma 7.4. If no correct process halts by round r+1 ∈ [1, t], then |faultyr| ≥ r.
Proof. The proof is trivial for r + 1 = 1. So we consider the case r + 1 ∈ [2, t].

Suppose that no correct process halts by round r + 1. Consider any correct process
pi. Since pi does not halt by round r + 1 ≤ t, it follows from Lemma 7.2 that for
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r′ ∈ [1, r], haltr
′

i �= newhaltr
′

i . Since no correct process halts by round r − 1 ≤ t− 1,
applying Lemma 7.3, we have |faultyr| ≥ r.

Lemma 7.5. If every process that decides decides in line 29 of round t + 1 or
line 33 of round t + 1, then |faultyt| = t.

Proof. The proof is trivial when t = 0. Thus we consider the case t ≥ 1. Suppose
that every process that decides decides in line 29 of round t+1 or line 33 of round t+1.
Consider any correct process pi. Since pi does not decide in line 18 of round t + 1,
lastRoundti = false. Thus newhaltti �= haltti (from lines 27 and 30). Furthermore, as
pi does not halt by round t, from Lemma 7.2 it follows that for every g ∈ [1, t − 1],
newhaltgi �= haltgi . Thus for every g ∈ [1, t], newhaltgi �= haltgi . Since no process
decides (and hence, halts) by round t, by applying Lemma 7.3 (with r − 1 = t − 1),
we have |faultyt| ≥ t. As at most t processes can crash in a run, |faultyt| = t.

Lemma 7.6 (uniform agreement). No two processes decide differently.

Proof. If no process decides, then the lemma trivially holds. Suppose some process
decides. Consider the lowest round number r in which some process decides. Let pi
be a process that decides in round r, say, on some n-tuple d. We divide the proof into
two parts: (a) pi does not decide in line 33 of round t + 1, and (b) r = t + 1 and pi
decides in line 33 of round t + 1.

(a) pi does not decide in line 33 of round t + 1: Thus, process pi decides either
in (1) line 18 or in (2) line 29 of round r ≤ t + 1. In both cases, we show the
following: no process can decide an n-tuple different from d in round r, and any
process that completes round r without deciding in line 18 and line 29 does so with
newestr = d. This implies uniform agreement because every process that decides in
round r has decision value the same as its newestr, and in subsequent rounds, d is
the only surviving newest and est value. (Note that, even if r = t + 1, and another
process pj decides in line 33 of round r, pj decides on newestrj = d.)

Process pi decides in line 18 of round r: Notice that r > 1 because no process
can decide at line 18 in round 1 (as lastRound0 = false). Since pi decides in line 18,
lastRoundr−1

i = true and pi sends a dec message in round r. We claim that every
dec message sent in round r is (r, dec, d). Suppose that another process pj sends
a (r, dec, d1) message. Then lastRoundr−1

j = true. Since no process decides by

round r − 1, applying Lemma 7.1 twice we have d1 = newestr−1
j � newestr−1

i = d

and d = newestr−1
i � newestr−1

j = d1, i.e., d1 = d. As pi completes the send phase
of round r, every process receives at least one (r, dec, d) message and either decides
d in line 18 or adopts d as newest in line 21.

Process pi decides in line 29 of round r: Thus esti = newesti is d in line 28 of
round r, and pi sent (r, est, d) in round r. We claim that no process decides a value
different from d in round r. Clearly, pi does not receive any dec message in round r
(otherwise, pi would not have executed line 29). Suppose some process pj decides d1
in round r. If process pj decides in line 18, then pj sends a dec message in round r,
and pi receives that message (as pj completes the send phase of round r, none of its
messages are lost), which is a contradiction. Suppose that pj decides in line 29. Thus
estj = newestj is d1 in line 28 of round r, and pi sent (r, est, d1) in round r. Since
pi receives a round r message from pj and vice versa, d1 � d and d � d1; i.e., d = d1.
If pj decides in line 33, then it decides on the newest value adopted in round t + 1.
We show below that every process that updates its newest in round k updates it to d.

We now show that any process that completes round r without deciding in line 18
or line 29 does so with newest = d. Suppose by contradiction that some process pj
completes round r with newest = d2 �= d and without deciding in line 18 and line 29.
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Process pj updates its variable newest in line 21 or line 26. Suppose pj updates
its newest in line 21. Then pj has received a dec message from some process pm.
Since pi decides at line 29, it does not receive any dec message in round r. Thus
pm ∈ newhaltri . Since pm completes round r − 1, pm /∈ newhaltr−1

i = haltri . (If
r = 1 then obviously pm /∈ haltri = ∅.) Hence, the predicate in line 27 evaluates
to false at pi, and pi cannot decide in line 29, which is a contradiction. Thus, pj
updates its newest in line 26. Since pi completes round r by deciding d and evaluates
the condition in line 28 to true, pi sends a (r, est, d) message in round r. Thus pj
receives (r, est, d) from pi, and hence, d � d2. As d2 �= d, it follows that d2 � d.
Consequently, there is a process pm such that pj receives d3 � d from pm, and pi does
not receive any message from pm in round r. Thus, pm ∈ newhaltri . However, pm
completes round r− 1 and hence, pm /∈ newhaltr−1

i = haltri . (If r = 1 then obviously
pm /∈ haltri = ∅.) Hence, the predicate in line 27 evaluates to false at pi, and pi cannot
decide in line 29, which is a contradiction.

(b) r = t + 1 and pi decides in line 33 of round r = t + 1: From the definition
of r, every process that decides decides in round t + 1. We have shown above that
if any process decides in line 18 or line 29 of round t + 1 then every process that
decides in round t + 1, decides the same value. Therefore, we need only to consider
the case where every process that decides does so at line 33 of round t + 1. From
Lemma 7.5, we have |faultyt| = t. Hence, every process that enters round t + 1 is a
correct process. Consequently, every process that enters round t+1 receives the same
set of messages in round t+1. Observe that no process sends a dec message in round
t + 1 (otherwise, that process decides in line 18 of round t + 1 or line 29 of round t,
which is a contradiction). Thus every process that enters round t+1 updates newest
to the same value in line 26 and decides on identical values in line 33.

7.3. Time-complexity. We now discuss the time-complexity of our IC algo-
rithm. We show through the following lemma that, in runs with at most f ≥ 1
failures, the algorithm achieves local decision in f + 1 rounds and global decision
in f + 2 rounds. However, when f = 0, the local decision takes the same number of
rounds as the global decision (2 rounds); recall that we showed in Proposition 6.4 that
NBAC (and hence, IC) algorithms require 2 rounds for local decision when f = 0.
(In section 7.4, we show a UC algorithm that achieves local decision in round 1 when
f = 0.)

We say that a process pi learns index l ∈ [1, n]\{i} in round k if newestk−1
i [l] = ⊥

and newestki [l] �= ⊥. (In other words, pi learns about the proposal value of pl in round
k.) We say that pi learns index i in round 0. Also, we say that pi learns index l from pj
in round k if newestk−1

i [l] = ⊥ and pi receives a round k message from pj containing
an est such that est[l] �= ⊥. On the other hand, if pj sends an est such that est[l] �= ⊥
in round k, then we say that pj propagates index l in round k. (Note that there may
be more than one process from which a process learns the same index in a round.)
Clearly, if pi propagates l in round k, then pi learns l in a lower round.

Lemma 7.7. In every run with at most f faulty processes, the following properties
hold:

(a) If f ∈ [1, t], then there is a correct process that decides by round f + 1.
(b) If f ∈ [0, t− 2], then any process that halts halts by round f + 2.
(c) Any process that halts does so by round t + 1.
Proof. (a) For f = t, the proof is trivial because every correct process decides by

round t+1. Consider a run in which at most f ∈ [1, t−1] processes crash, and suppose
by contradiction that no correct process decides by round f + 1. Thus, no process



740 PARTHA DUTTA, RACHID GUERRAOUI, AND BASTIAN POCHON

halts by round f + 1 ≤ t. It follows from Lemma 7.4 that |faultyf | ≥ f . Since at
most f processes crash in the run, |faultyf | = f and every process that enters round
f + 1 is correct. Furthermore, since no correct process halts by round f , Lemma 7.4
implies that |faultyf−1| ≥ f − 1. Since |faultyf | = f , at most one process crashes in
round f .

Let S be the set of processes that enter round f + 1. Since every process in S is
correct, all of them complete round f + 1. We establish a contradiction by showing
that some process in S decides in line 29 of round f + 1. We demonstrate this fact
indirectly by showing the following four claims for processes in S in round f + 1:
(1) every process has lastRound = false in line 16, (2) no process receives a dec

message in round f + 1, (3) every process evaluates the predicate in line 27 to true,
and (4) some process evaluates the predicate in line 28 to true.

Claim 1. Suppose by contradiction that, at some process in S, lastRound = true
in line 16 of round f + 1. Then that process halts in round f + 1. This leads to a
contradiction because we know that every process in S is correct, and (from our initial
assumption) correct processes do not decide (and hence, do not halt) by round f + 1.

Claim 2. Suppose by contradiction that some process pi ∈ S receives a dec

message from some process pj in round f + 1. Since every process that enters round
f +1 is correct, pj is a correct process, and hence, pj decides in line 18 of round f +1
or line 29 of round f , which is a contradiction. Thus no process in S receives a dec

message in round f + 1.
Claim 3. Suppose by contradiction that some process pi ∈ S evaluates the pred-

icate at line 27 to false; i.e., haltf+1
i �= newhaltf+1

i . Since pi does not halt by round
f + 1 ≤ t, from Lemma 7.2 we have haltki �= newhaltki for every k in [1, f ]. Thus
haltki �= newhaltki for every k in [1, f +1]. As no correct process halts by round f +1,
from Lemma 7.3 (with r − 1 = f ≤ t− 1) it follows that |faultyf+1| ≥ f + 1, which
is a contradiction.

Claim 4. Suppose by contradiction that every process in S evaluates the predicate
in line 28 to false. It follows that, in round f + 1, every process in S learns an index.
(Recall that every process that enters round f + 1 is correct and is in set S.)

Consider any process pi ∈ S which learns index l1 in round f + 1 from some
process px. Suppose px learns index l2 in round f +1 from process py. Since pi learns
from px and px learns from py, pi �= px and px �= py. (Note that pi and py may not
be distinct.) Since px propagates l1 and learns l2, l1 �= l2.

Since px is a correct process, px learns l1 in round f (otherwise, if px learned l1
in a round lower than f , px would have propagated l1 to pi by round f). Similarly,
py learns l2 in round f . Consider the process p′x from which px learns l1 in round
f . Process p′x must have crashed in round f ; otherwise, on receiving the round f
message from p′x, pi would have learned l1 in round f . Similarly, the process p′y from
which py learns l2 in round f must have crashed in round f ; otherwise, px would
have learned l2 from p′y in round f . We claim that p′x and p′y are distinct processes.
Otherwise, if p′x = p′y, then p′x propagates both l1 and l2 in round f , and when px
receives a message from p′x in round f , px learns both l1 and l2 in round f , which is
a contradiction. (Recall that we assumed px learned l2 in round f + 1.)

Thus two processes, p′x and p′y, crash in round f . However, recall that we have
already shown (in the first paragraph of this proof) that at most one process crashes
in round f , which is a contradiction.

(b) Consider a run in which at most f ∈ [0, t − 2] processes crash, and suppose
by contradiction that a process pi completes round f + 2 without halting. Observe
that if any process pj halts at round k ≤ f + 1, then pj sends a dec message in
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round k. Since pj completes round k, pi receives the dec message, sets lastRound to
true in round k, and halts in round k + 1 ≤ f + 2. Thus no process halts by f + 1.
As pi does not halt by round f + 2 ≤ t, from Lemma 7.2, for every g ∈ [1, f + 1],
we have newhaltgi �= haltgi . Applying Lemma 7.3 (with r − 1 = f ≤ t − 1) we have
|faultyf+1| ≥ f + 1, which is a contradiction.

(c) This part of the proof is obvious from the algorithm.

7.4. Deriving NBAC and UC algorithms. In section 6.3, we showed how to
transform any IC algorithm to an NBAC algorithm without any additional commu-
nication. An equally straightforward transformation generates a UC algorithm from
an IC algorithm: on UC-propose(v), a process invokes IC-propose(v), and if a process
IC-decides an n-tuple d, then it UC-decides d[l], where l is the lowest index such that
d[l] �= ⊥.

The IC algorithm of Figure 7.1 does not locally decide in round 1 in a failure-
free run (f = 0). Therefore, to match the local decision lower bound for UC when
f = 0, we modify the UC algorithm obtained from our IC algorithm by adding the
following: p1 UC-decides on its proposal value v1 in the receive phase of round 1. This
modification does not violate UC agreement because, if p1 completes the send phase of
round 1, then every process that completes round 1 has newest[1] = v1 at the end of
round 1. At the beginning of round 2, the processes set est to newest. Subsequently,
at all processes, newest[1] and est[1] are always v1. Thus, in our transformation of
IC algorithm to UC algorithm, no process can UC-decide a value different from v1.

7.5. Synchronous results summary. Combining our lower bound results with
the time-complexity of the IC algorithm, the derived NBAC and UC algorithms, and
the simple NC algorithm sketched in the introduction, we get the following tight
bounds:

1. ∀t ∈ [1, n− 1], ∀f ∈ [0, t], (SCS t, SCS f , NC, ld) = f . Local decision bound
for consensus.

2. ∀t ∈ [1, n− 1], ∀f ∈ [0, t− 1], (SCS t, SCS f , UC, ld) = f + 1. Local decision
bound for uniform consensus.

3. (a) ∀t ∈ [1, n − 1], ∀f ∈ [1, t − 1], ∀P ∈ {NBAC, IC}, (SCS t, SCS f , P,
ld) = f + 1. (b) ∀t ∈ [1, n − 1], ∀P ∈ {NBAC, IC}, (SCS t, SCS 0, P, ld) = 2. Local
decision bounds for nonblocking atomic commit and interactive consistency.

8. Eventually synchronous lower bound. In this section we investigate lower
bounds for UC in eventually synchronous models ESt. We do not consider lower
bounds for NBAC and IC in ESt because they are impossible to solve in ESt if t ≥ 1.
Furthermore, any algorithm that solves consensus also solves uniform consensus in
ESt [16]. Thus, in ESt, we investigate only lower bounds for uniform consensus.

We know from [14] that every UC algorithm in ESt has a run that requires an
arbitrary number of rounds for any correct process to decide (because a run may
remain “asynchronous” for an arbitrary number of rounds). Thus, we focus on syn-
chronous runs of ESt, i.e., runs in which GSR = 1. (In other words, a run of ESt is
synchronous if it is also a run of SCSt.)

As all runs of SCSt are synchronous runs of ESt, the local and global decision
lower bounds for UC in SCSt also hold for synchronous runs of ESt; i.e., roughly
speaking, the local decision lower bound is f + 1 and the global decision lower bound
is f + 2. However, we knew of no algorithm that showed that the bounds are tight,
except when f = 0 and f = t (the best and the worst case): the global decision tight
bound is 2 rounds in runs with f = 0 crashes [19, 28, 26], and t + 2 rounds in runs
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with at most f = t crashes [9].
In the following proposition, we show that, for most values of f , the local decision

lower bound is f +2 rounds, which is the same as the lower bound for global decision.
(We give a matching algorithm in section 9.) The proposition states that every UC
algorithm in ESt has a run in SCSf (i.e., a synchronous run with at most f crashes)
in which every correct process decides in round f + 2 or a higher round.

Proposition 8.1. For all t s.t. 1 ≤ t < n/2, for all f ∈ [0, t − 3], (ESt, SCSf ,
UC, ld) ≥ f + 2.

Remarks. We exclude the following two cases. (1) t = 0: In this case, processes
can decide after exchanging proposal values in the very first round in synchronous
runs (e.g., decide always on the proposal value of p1). (2) t ≥ n/2: In this case, we
know that there is no UC algorithm in ES t.

Proof. Suppose by contradiction that there is a UC algorithm A in ESt and an
integer f in [0, t − 3] such that in every synchronous run of A with f crashes some
correct process decides by round f + 1. Since SCSt is a submodel of ESt, A solves
UC in SCSt as well. We also observe that any UC algorithm also solves WA. Thus
A solves WA in SCSt. Thus from Lemma 5.2 we know that there are two runs of A
in SCSt such that their round f configurations, y and y′, satisfy the following: (1) at
most f processes have crashed in each configuration, (2) the configurations differ at
exactly one process, say, pi, and (3) val(y) = 0 and val(y′) = 1. (Recall that, given a
configuration C, r(C) and val(C) are defined only if C is a configuration of a run in
a synchronous model.)

We note that in y or y′, any alive process pj that is distinct from pi has not yet
decided. Otherwise, as y and y′ differ only at pi, process pj would decide the same
value v in y and y′, and hence, pj is a correct process that decides v in both r(y) and
r(y′), which is a contradiction.

Let z and z′ denote the configurations at the end of round f +1 of r(y) and r(y′),
respectively. Runs r(y) and r(y′) are runs of A in SCSt and hence synchronous runs
of A in ESt. As at most f processes crash in each run, r(y) and r(y′), it follows from
our assumption about algorithm A that some correct process decides by round f + 1
in each run. Thus, there is at least one alive process in z, say, q1, that has decided 0.
Similarly, there is at least one alive process in z′, say, q3, that has decided 1. There
are three cases to consider. (We now consider runs of A in ESt.)

Case 1. pi /∈ {q1, q3}. Thus we have (1) a round f + 1 configuration z and a
process q1 such that at most f processes have crashed in z, and q1 is alive and has
decided 0 in z, (2) a round f + 1 configuration z′ and a process q3 such that at most
f processes have crashed in z′, and q3 is alive and has decided 1 in z′, and (3) process
pi is distinct from both q1 and q3. (Processes q1 and q3 might not be distinct.) There
are two subcases to consider.

Case 1a. Process pi is alive in y and y′. Consider the following two synchronous
runs of A.

R1 is a run such that (1) the round f configuration is y, (2) pi crashes in the send
phase of round f + 1 such that only q1 and q3 receive the message from pi, (3) q1 and
q3 crash in round f + 2 before sending any message, and (4) no process distinct from
pi, q1, and q3 crashes after round f . Notice that q1 cannot distinguish the round f +1
configuration of R1 from z and therefore decides 0 at the end of round f + 1 in R1.
By uniform agreement, every correct process decides 0. Since t ≤ n − 1, there is at
least one correct process in R1, say, pl.

R2 is a run such that (1) the round f configuration is y′, (2) pi crashes in the
send phase of round f +1 such that only q1 and q3 receive the message from pi, (3) q1
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and q3 crash in round f + 2 before sending any message, and (4) no process distinct
from pi, q1, and q3 crashes after round f . Notice that q3 cannot distinguish the round
f + 1 configuration of R2 from z′ and therefore decides 1 at the end of round f + 1
in R2. However, pl cannot distinguish R1 from R2: at the end of round f + 1, the
two runs are different only at pi, q1, and q3, and none of the three processes sends
messages after round f + 1 in both runs. Thus (as in R1) pl decides 0 in R2, which
is a contradiction to uniform agreement.

Case 1b. Process pi has crashed in either y or y′. (Process pi has not crashed in
both y and y′ because pi has different states in y and y′.) Without loss of generality,
we can assume that pi has crashed in y, and hence, pi is alive in y′. Consider the
following two synchronous runs of A.

R12 is a run such that (1) the round f configuration is y (and hence, pi has
crashed before round f + 1), (2) no process crashes in round f + 1, (3) q1, and q3
crash in round f + 2 before sending any message, and (4) no process distinct from
pi, q1, and q3 crashes after round f . Observe that the round f + 1 configuration of
R12 is z, and hence, q1 decides 0 at the end of round f + 1 in R12. Due to uniform
agreement, every correct process decides 0 in R12. Since t ≤ n − 1, there is at least
one correct process in R12, say, pl.

R21 is a run such that (1) the round f configuration is y′, (2) pi crashes in the
send phase of round f +1 such that only q1 and q3 receive the message from pi, (3) q1
and q3 crash in round f + 2 before sending any message, and (4) no process distinct
from pi, q1, and q3 crashes after round f . Notice that q3 cannot distinguish the round
f +1 configuration of R21 from z′ because it receives the round f +1 message from pi
in both runs. Thus (as in z′) q3 decides 1 at the end of round f +1 in R21. However,
pl cannot distinguish R12 from R21: at the end of round f + 1, the two runs are
different only at pi, q1, and q3, and none of them sends messages after round f + 1 in
both runs. Thus (as in R12), pl decides 0 in R21, which is a contradiction to uniform
agreement.

Case 2. pi ∈ {q1, q3} and pi is alive in both y and y′.
Remark. To see why we cannot reuse the proof of Case 1, observe that if pi = q1,

then run R1 is not a valid run of A in SCSt: in SCSt, pi cannot decide in the receive
phase of round f + 1 while some of its messages from that round are lost. Similarly,
if pi = q3, then run R2 is not a valid run in SCSt. Hence, in this case, we construct
some runs of A in ESt that are not in SCSt (i.e., nonsynchronous runs) to derive a
contradiction.

Without loss of generality we can assume that pi = q1. (Note that the proof holds
even if pi = q1 = q3.) Consider the following three runs (R3 is a synchronous run,
whereas R4 and R5 are nonsynchronous runs. We would like to point out that, as
required by the properties of ESt, in all nonsynchronous runs that we construct, we
ensure that in every round, processes received at least n − t messages of the current
round, and channels are reliable):

R3 is a run such that (1) the round f configuration is y, (2) pi crashes in round
f + 1 before sending any message, (3) if q3 �= pi then q3 crashes in round f + 2 before
sending any message, and every message sent by q3 in round f +1 is received in round
f + 1, (4) no process distinct from pi and q3 crashes in round f + 1 or in a higher
round, and (5) no message is delayed. Since t < n/2 < n − 1, there is at least one
correct process in R3, say, pl. Suppose pl decides v ∈ {0, 1} in some round K1 ≥ f+1.
(To see why pl cannot decide before round f + 1 in R3, notice that the state of pl
at the end of round f is the same in runs r(y), r(y′), and R3, because pl �= pi. If pl
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decides v before round f + 1 in R3, then it also decides v in r(y) and r(y′). However,
val(y) �= val(y′).)

R4 is a run such that (1) the round f configuration is y, (2) pi and q3 crash in
round f + 2 before sending any message, and only pi and q3 receive the round f + 1
message from pi (all other round f + 1 messages from pi are lost1), (3) if q3 �= pi,
every process that completes round f + 1 receives a round f + 1 message from q3,
(4) no process distinct from pi and q3 crashes in round f + 1 or in a higher round,
and (5) no message is delayed. Notice that pi cannot distinguish the configuration at
the end of round f + 1 in R4 from z, and thus, pi decides 0 at the end of round f + 1
in R4 (because pi = q1 decides 0 in z). However, pl cannot distinguish the round K1
configuration of R4 from that of R3 because (a) at the end of round f , the two runs
are different only at pi, (b) all round f + 1 messages sent by pi to processes distinct
from pi and q3 are lost, and (c) pi and q3 do not send messages after round f + 1.
Thus (as in R3) pl decides v in round K1.

R5 extends y′ in the same way as R4 extends y. Namely, R5 is a run such that
(1) the round f configuration is y′, (2) pi and q3 crash in round f + 2 before sending
any message, and only pi and q3 receive the round f + 1 message from pi (all other
round f+1 messages from pi are lost), (3) if q3 �= pi, then every process that completes
round f + 1 receives the round f + 1 message from q3, (4) no process distinct from
pi and q3 crashes in round f + 1 or in a higher round, and (5) no message is delayed.
Notice that q3 cannot distinguish the configuration at the end of round f + 1 in R5
from z′ (because in both runs, q3 receives the round f +1 message from pi), and thus,
q3 decides 1 at the end of round f + 1 in R5. However, pl cannot distinguish the
round K1 configuration of R5 from that of R3 because, (a) at the end of round f the
two runs are different only at pi, (b) all round f + 1 messages sent by pi to processes
distinct from pi and q3 are lost, and (c) pi and q3 do not send messages after round
f + 1. Thus (as in R3) pl decides v in round K1.

Clearly, either R4 or R5 violates uniform agreement: pl decides v in both runs;
however, pi decides 0 in R4 and q3 decides 1 in R5.

Case 3. pi ∈ {q1, q3} and pi has crashed in either y or y′. (Process pi has not
crashed in both y and y′ because pi has different states in y and y′.) Notice that the
case pi = q1 = q3 is not possible because, in that case, pi is alive in both z and z′ and
hence in y and y′. We show the contradiction for the case when pi = q1 �= q3. (The
contradiction for pi = q3 �= q1 is symmetric.)

Since, pi = q1, pi is alive in z and hence alive in y. Thus pi has crashed in y′.
Consider the following nonsynchronous run.

R6 is a run such that (1) the round f configuration is y, (2) in round f + 1, only
pi receives the round f +1 message from itself (all other messages sent by pi in round
f+1 are lost), (3) pi crashes in round f+2 before sending any message, (4) no process
distinct from pi crashes in round f + 1 or in a higher round, and (5) no message is
delayed. At the end of round f + 1 in R6, pi cannot distinguish the configuration
from z and therefore decides 0 (because pi = q1 decides 0 in z). However, q3 does not
receive the round f + 1 message from pi in R6, and hence, q3 cannot distinguish the
configuration at the end of round f+1 in R6 from z′. (Observe that, in z′, q3 does not
receive the round f + 1 message from pi because pi has crashed in y′.) Consequently,
q3 decides 1 in R6, which is a contradiction to uniform agreement.

Remark. A closer look at the proof of Proposition 8.1 reveals that the non-

1From the definition of ESt, messages sent by a faulty process (pi) may be lost in a nonsyn-
chronous run.
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synchronous runs we construct (R4, R5, and R6) require only a small amount of
nonsynchrony in the model. The three runs are valid in a weakened synchronous
model where the following holds: even if some message from process pi is lost in
round f + 1, then pi might complete round f + 1. (Recall that, in a synchronous
model, if some message from pi is lost in round f + 1, then pi has necessarily crashed
in the send phase of round f + 1.) It is easy to see that such runs are also valid in
the synchronous send-omission model [17] as well as in an asynchronous round based
model enriched with a Perfect failure detector [2]. Thus the f +2 local decision lower
bound in synchronous runs also extends to these two models.

9. A matching eventually synchronous algorithm. In this section, we pre-
sent a UC algorithm in ESt that matches the local and global decision lower bounds
in synchronous runs. We assume that t < n/2, as UC is impossible to solve in ESt

if t ≥ n/2 [11]. As we pointed out earlier, [19, 28, 26] give a UC algorithm in ESt

that matches the global decision bound for synchronous runs with f = 0 crashes,
and [9] gives a UC algorithm in ESt that matches the global decision bound for
synchronous runs with f = t crashes. We knew of no UC algorithm that matches the
bounds for 1 ≤ f ≤ t− 1.

Figure 9.1 presents a uniform consensus algorithm Aes in ES t that globally decides
(and hence, locally decides) within f + 2 rounds in every synchronous run with at
most f crashes for 0 ≤ f ≤ t. In other words, our algorithm matches the f + 2 round
global (and local) decision lower bound for synchronous runs of UC algorithms in ESt.

9.1. Overview. Algorithm Aes is a generalization of the UC algorithm of [9]
modified for early decision. Aes assumes the following: (1) the model ES t with
0 ≤ t < n/2 (i.e., a majority of processes are correct), (2) any message sent by a
process pi to itself in any round k is received in round k, or pi crashes in round k, and
(3) the set of proposal values in a run is a totally ordered set, e.g., every process pi
can tag its proposal value with its index i and then the values can be ordered based
on this tag. (A matching algorithm that does not rely on each process receiving at
least n− t messages in every round is described in [8].)

The algorithm Aes proceeds in sessions, where each session is composed of t +
2 rounds of message exchange. A run globally decides within f + 2 rounds in a
“synchronous” session, provided at most f processes crash in the run. In each round
of a session, processes exchange their estimate (of the decision value), and, roughly
speaking, adopt the minimum estimate value seen in the round as the estimate for the
next round. In this respect, a session of Aes is similar to the IC algorithm presented
in section 7: if the model was synchronous, then a process pi could simply monitor
the set of processes from which pi did not receive any message (set Halti), and then,
pi could decide on its own estimate when Halti did not change for a round. Basically,
pi could do so because, in a synchronous model, Halti would be equal to the set of
crashed processes, and hence, if Halti did not change for a round, then pi would have
the smallest estimate among all alive processes.

However, in ESt, even if pi does not receive a message from some process pj , pj
might not have crashed, and pj can continue sending messages in subsequent rounds.
Thus, even if Halti does not change for a round, pi might not have the lowest estimate
among all alive processes. Therefore, in Aes, in addition to the estimate values, pro-
cesses also exchange the Halt sets to detect whether the current session is synchronous.
Furthermore, to ensure early decision, pi maintains and exchanges a variable statei

which indicates if pi considers the current session to be synchronous (sync1), or if pi
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at process pi:

1: propose(vi)
2: esti ← vi

3: for round si from 1 to ∞ do
4: ki ← ((si − 1) mod (t + 2)) + 1 {ki varies from 1 to t + 2}
5: if ki = 1 and statei 
= decide then
6: Halti ← ∅
7: statei ← sync1 {statei is either sync1, sync2, nsync, or decide}
8: Send phase
9: send(si, esti, statei, Halti) to all

10: Receive phase
11: wait until received messages in round si
12: if statei = decide then
13: return
14: if received any (si, est

′, decide, ∗) then
15: esti ← est′; decide(esti); statei ← decide; go to the next round {decision}
16: if statei ∈ {sync1, sync2} then
17: Halti ← Halti ∪ {pj | (pi received(si, ∗, nsync, ∗) from pj) or

(pi received(si, ∗, ∗, Haltj) from pj s.t. pi ∈ Haltj) or (pi did not receive any round si message

from pj)}
18: msgSeti ← { m | m is a round si message received from pj /∈ Halti}
19: esti ← Min{est | (∗, est, ∗, ∗) ∈ msgSeti}
20: if (statei = sync2) and (|Halti| ≤ t) and (state = sync2 for every message in msgSeti) then
21: decide(esti); statei ← decide; go to the next round {decision}
22: if |Halti| ≤ ki − 1 then
23: statei ← sync2

24: if ki ≤ |Halti| ≤ t then
25: statei ← sync1

26: if |Halti| > t then
27: statei ← nsync

28: if (state = nsync) and (received any (si, est
′, sync2, ∗)) then

29: esti ← est′

Fig. 9.1. A uniform consensus algorithm Aes in ESt.

considers the session to be synchronous with the possibility of a decision in the next
round (sync2), or whether pi considers the session to be asynchronous (nsync).

9.2. Description. The processes invoke propose(∗) with their respective pro-
posal values as a parameter, and the propose procedure progresses in sessions: a ses-
sion consists of t+2 rounds, and session sn contains rounds from ((sn−1)∗(t+2))+1
to sn∗(t+2). We call the kth round in a session sn (i.e., round ((sn−1)∗(t+2))+k)
step k of session sn. Recall that, for every run R in ESt, there is an unknown round
number GSR from which the system is synchronous (eventual synchrony property of
ESt). We say that a session is synchronous if the session starts in round GSR or in
a higher round.

Every process pi maintains the following variables:

ki is the current round number;
statei at pi reflects its view on how much progress is made toward achieving a

decision in the current session: (1) if statei is updated to nsync then pi
considers the current session to be asynchronous, (2) if statei is updated to
sync1 then pi considers the session to be synchronous but pi cannot decide
in the next round, (3) if statei is updated to sync2 then pi considers the
session to be synchronous with the possibility of a decision in the next round,
and (4) pi updates statei to decide upon decision;

esti is the estimate of the possible decision value, and, roughly speaking, the
minimum value seen by pi;

Halti is a set of processes pj such that, in the current round or a lower round of this
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session, at least one of the following occurred: pi received state = nsync

from pj , pi did not receive a message from pj , or pi received a messages from
pj with pi ∈ Haltj ;

msgSeti is a set of messages received by pi from processes that are not in Halti.
The variables are initialized as follows. Round number si starts from 1 and esti

is initialized to the proposal value of pi. Variables statei and Halti are initialized
to sync1 and ∅, respectively and, if pi has not yet decided, are reset to their initial
values at the beginning of each session. In each round, processes exchange est, state,
and Halt variables, update their own variables depending upon the messages received,
and possibly decide. In step k, pi updates its variables as follows.

1. If pi receives a decide message, then pi decides on the decision value received.
2. If statei is sync1 or sync2, then the following hold:
• pi updates Halti to include all processes already in Halti and also includes

the set of processes pj such that (a) pi has received an nsync message from
pj in step k, (b) pi has received a message from pj with pi ∈ Haltj in step k,
or (c) pi has not received any message from pj in step k.

• pi includes in msgSeti every message received in step k whose sender is not
in Halti, and pi computes esti to be the minimum est value among messages
in msgSeti.

• If statei is sync2, Halti is of size at most t, and all messages in msgSeti
contain state = sync2, then pi decides on its estimate.

• Depending on the size h of the set Halti, pi updates statei as follows: if h
is lower than the current step number, then statei is set to sync2; else if h
is at most t, then statei is set to sync1; otherwise, statei is set to nsync.

3. If state = nsync and pi receives a message with state = sync2, then pi
adopts the estimate contained in that message.

4. Upon decision in round k, pi sends the decision value to all processes in round
k + 1 and then halts.

9.3. Correctness. The validity property of the algorithm follows from the fol-
lowing three simple observations: (1) the est value of a process is initialized to the
proposal value of the process, (2) the est value of a process at the beginning of round
s ≥ 2 is the est value of some process at the beginning of round s− 1, and (3) every
process decides on the est value of some process. In the rest of the section, we prove
the uniform agreement property of the algorithm. We defer the proof of the termi-
nation property to the next subsection, where we prove termination along with the
time-complexity property of the algorithm.

For a given session, we introduce the following notation. For every variable vali
at process pi, we denote by vali[k] (k ≥ 1) the value of the variable vali immediately
after the completion of step k; vali[0] denotes the value of vali immediately before
sending messages in step 1. We assume that there is a symbol undefined that is
distinct from any possible value of the variables in the algorithm. If pi crashes before
completing step k, then vali[k] = undefined ; if pi crashes before sending messages
in step 1, then vali[0] = undefined. For every process pl that completes step k with
statel[k] ∈ {sync1, sync2}, let senderMSl[k] denote the set of processes that have
sent the messages in msgSetl[k]. We first prove the following lemma.

Lemma 9.1. Consider any session and a process pl that completes step k with
statel[k] ∈ {sync1, sync2}. Then, senderMSl[k] = Π −Haltl[k].

Proof. Process pl completes step k with state = sync1 or state = sync2 and
hence updates Halt and msgSet at line 17 and line 18 of step k, respectively. Consider
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any process pm ∈ Π. There are two cases concerning the message from pm to pl in
step k.

• If pl does not receive the messages from pm in step k, then from the third
condition in line 17, pm ∈ Haltl[k], and from line 18, pm /∈ senderMSl[k].

• If pl receives the step k message from pm, then from line 18, pm ∈ senderMSl[k]
if and only if pm /∈ Haltl[k].

Lemma 9.2 (uniform agreement). No two processes decide differently.

Proof. If no process ever decides, then the lemma is trivially true. Thus, consider
the lowest session sn in which some process decides. In session sn, consider the lowest
step in which some process decides, say, step k′ + 1 ≥ 2. (It is easy to see that no
process can decide in step 1 of sn.) If some process decides in line 15, then some other
process has decided in a lower step of sn or in a lower session, which is a contradiction
to the definition of k′ + 1 and sn. Thus some process decides in line 21 of step k′ + 1.
We claim the following.

Claim 9.3 (elimination). Consider the lowest session sn in which some process
decides. If k′ + 1 ≥ 2 is the lowest step in sn in which some process decides, then,
if there are two processes px and py such that statex[k′] ∈ {sync1,sync2} and
statey[k

′] = sync2, then estx[k′] ≥ esty[k
′].

Proof of Lemma 9.2 continued. For now, we assume the above claim and prove
uniform agreement. We later give a proof of Claim 9.3. Suppose that some process
pw decides d at line 21 of step k′ + 1. From lines 19 and 20 it follows that there is a
message in msgSetw[k′ + 1] that has state = sync2 and est = d, say, from process
pv. Consider another process pu that completes step k′ with state = sync2 and
est = d′. Applying Claim 9.3 twice with px = pv and py = pu, and vice-versa, we
get d′ = d. It follows that, every process that completes step k′ with state = sync2
does so with est = d. Notice that every process that decides at line 21 in step k′ + 1
(that includes pw) has only messages with state = sync2 in the msgSet[k′ +1], and
hence, all these messages have est = d. Consequently, every process that decides in
line 21 of step k′ + 1 sets its est to d in line 19 and then decides on its est = d in
line 21. Thus, every process that decides in step k′ + 1 decides d. (Recall that no
process can decide in line 15 of step k′ + 1.) It remains to be shown that no process
decides a different value in a higher step of sn or in a higher session.

From line 20 we have |Haltw[k′ + 1]| ≤ t, and hence, Lemma 9.1 implies that
msgSetw[k′ + 1] contains at least n − t messages, i.e., messages from a majority of
processes. Furthermore, the last condition in line 20 requires that every message in
msgSetw[k′+1] has state = sync2. Thus, a majority of the processes sent a message
with state = sync2 in step k′ + 1. As the round k′ + 1 message from process pv has
state = sync2 and est = d, by applying Claim 9.3, it follows that for messages in
round k′ +1, (1) every message with state = sync2 in round k′ +1 has est = d, and
(2) every message with state = sync1 has est ≥ d.

Now consider the est value of any process pi at the end of step k′+1. If statei[k
′+

1] = nsync, then pi has received at least one message with state = sync2 and
est = d (because a majority of processes have sent such messages and, in every step,
pi receives messages from at least n− t processes, a majority) and therefore updates
its est to d (line 28). On the other hand, if statei[k

′ + 1] ∈ {sync1, sync2} then
Halti[k

′ + 1] ≤ t (line 22 and line 24). Therefore, msgSeti[k
′ + 1] contains at least

n− t messages (Lemma 9.1). Furthermore, msgSeti[k
′ + 1] contains no message with

statei[k
′+1] = nsync (line 17 and line 18). Therefore, from Claim 9.3, every message

in msgSeti[k
′ + 1] has est ≥ d and there is at least one message with state = sync2
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and est = d (because, in step k′ + 1, a majority of processes sent messages with
state = sync2 and est = d). Therefore, in line 19, pi updates est to d.

Thus every process that completes step k′ + 1 updates its est to d, and every
process that decides in step k′ + 1 decides d. Suppose by contradiction that some
process decides a value different from d in a higher step of sn or in a higher session.
Consider the lowest session sn′′ and the lowest step k′′ in sn′′ in which some process
pj decides a value different from d, say, d′′. Observe that if pj decides in line 15 of
step k′′, then from line 14 it follows that some process has decided d′′ in a lower step
of sn′′ or in a lower session. Thus pj has decided on its est in line 21. Again observe
that, given a session sn′, the est value of a process at the end of some step k ≥ 2 is
the est value of some process at the end of step k − 1, and the est value of a process
at the end of the step k = 1 is the est value of some process at the end of step t+2 of
the previous session sn′ − 1. Therefore, the est value of any process in a step higher
than k′ + 1 in session sn, or in a higher session, cannot be different from d. Thus pj
cannot decide d′′ in step k′′ of sn′′, which is a contradiction.

Claim 9.3. Consider the lowest session sn in which some process decides. If
k′+1 ≥ 2 is the lowest step in sn in which some process decides, then, if there are two
processes px and py such that statex[k′] ∈ {sync1,sync2} and statey[k

′] = sync2,
then estx[k′] ≥ esty[k

′].
Proof. Suppose by contradiction that there are two processes px and py such that

the following holds.
Assumption A1. statex[k′] ∈ {sync1,sync2}, statey[k

′] = sync2, estx[k′] = c,
esty[k

′] = d, and c < d.
In the context of session sn, we show Claims 9.3.1–9.3.7 based on the definition

of k′ and the Assumption A1. Claim 9.3.4 contradicts Claim 9.3.7, which completes
the proof of Claim 9.3 by contradiction.

Let us define the following sets for k ∈ [1, k′ + 1]:
• C[k] = {pi|esti[k] ≤ c} (the set of processes that complete step k with est ≤

c).
• crashed[k] = the set of processes that crashed before completing step k.
• NSYN [k] = {pi|statei[k] = nsync}.
• Z[k] = C[k] ∪ crashed[k] ∪ NSYN [k].

Additionally, let us define C[0] to be the set of processes that start step 1 with est
less than or equal to c, crashed[0] to be the set of processes that crash before sending
any message in step 1, NSYN [0] = ∅, and Z[0] = C[0] ∪ crashed[0] ∪ NSYN [0]. We
make the following observation.

Observation A2. |C[0]| ≥ 1, and hence, |Z[0]| ≥ 1. Otherwise, if every pro-
cess starts step 1 with a value greater than c, then estx[k′] > c (which contradicts
Assumption A1).

Proof sketch. Before presenting Claims 9.3.1–9.3.7, we give a rough sketch of
the overall proof. Recall that Z is the set of processes that crashed, entered state
nsync, or have estimate less than or equal to c at the end of a step. Z[k] denotes
the set Z at the end of step k. We derive a contradiction on the size of set Z by
showing that (1) for py to complete step k′ with state = sync2 and est = d, we need
|Z[k′ − 1]| ≤ k′ − 1, but (2) for Assumption A1 to be satisfied, |Z| should increase in
every step, and hence, |Z[k′ − 1]| > k′ − 1.

We first note that, if a process is in set Z[k], then it remains in that set in all
higher steps. To see why, note that once a process crashes or enters state nsync, it
stays in those states. In addition, if a process has est ≤ c, then, unless it crashes or
enters state nsync, the process updates its estimate to the lowest estimate seen in
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that step, which cannot be more than c.

Now, from Assumption A1, process py completes step k′ with state sync2. From
the algorithm, this requires that Halty set of py at the end of step k′ is of size at
most k′ − 1. Now consider the message from a process pj in Z[k′ − 1] to py in step
k′. Either py does not receive a message from pj or it receives one with state nsync,
or with est ≤ c. In the first two cases, py puts pj in its Halty set, and the last case is
not possible because it requires py to update its est to a value lower than d. Thus the
set Z[k′− 1] is a subset of Halty at the end of step k′, and hence, |Z[k′− 1]| ≤ k′− 1.

From the definition of Z and Assumption A1, process px is in Z[k′]. We also show
that px is not in Z[k′ − 2]. To see why, assume otherwise. Then px sends step k′ − 1
messages with est ≤ c, and therefore, processes in Π − Z[k′ − 1] do not receive any
message from px (otherwise, they would update their estimate to a value at most c and
hence be in set Z[k′−1]). Note that the number of processes that are in Π−Z[k′−1]
is more than t as we have already shown |Z[k′ − 1]| ≤ k′ − 1 ≤ t < n/2. Thus, in
step k′, more than t processes send messages with px ∈ Halt. From the algorithm,
px puts all such processes in its Haltx set. However, a Haltx set of size more than t
requires px to enter state nsync, which is a contradiction.

We next show that at least one process enters the set Z in every step (until step
k′ − 2). For ease of presentation, in this proof sketch, we ignore crashed processes
and processes with state nsync. Suppose by contradiction that no process enters the
set Z in some step g; i.e., Z[g] = Z[g + 1]. Then, arguing as above, processes in
Π−Z[g+1] do not receive any message from processes in Z[g] (otherwise, they would
update their estimate to a value at most c, and hence be in set Z[g + 1]). It follows
from the algorithm that, in subsequent steps, every process in Π−Z[g+1] = Π−Z[g]
ignores estimate values received from any process in Z[g]. Thus no process in Π−Z[g]
adopts an est less than or equal to c. Thus set Z does not change after round g. This
contradicts our earlier observation that px is in Z[k′] but not in Z[k′−2]. (The actual
proof of this claim is bit involved because we need to consider crashed processes and
processes with state nsync.)

As |Z| increases by at least 1 in every step until step k′ − 2, we have |Z[k′ − 2]| ≥
k′−1. Using a slightly different argument we can show that |Z| increases by 1 in step
k′ − 1 as well. Thus, |Z[k′ − 1] > k′ − 1, which contradicts our earlier observation.
We now give the detailed proof of the claims.

Claim 9.3.1. (1) For all k ∈ [0, k′ − 1], (crashed[k] ∪ NSYN [k]) ⊆ (crashed[k +
1]∪NSYN [k + 1]). (2) For all k ∈ [1, k′], if pi /∈ (NSYN [k]∪crashed[k]) then pi sends
messages with state ∈ {sync1, sync2} in step k, and in all steps lower than k, of
this session.

Proof. (1) Suppose by contradiction that there is a process pi such that pi ∈
crashed[k] ∪ NSYN [k] and pi /∈ crashed[k + 1] ∪ NSYN [k + 1]. Since a crashed
process does not recover, crashed[k] ⊆ crashed[k + 1], and hence, pi /∈ crashed[k +
1] ∪ NSYN [k + 1] implies that pi /∈ crashed[k]. Thus, pi ∈ crashed[k] ∪ NSYN [k]
implies that pi ∈ NSYN [k]; i.e., pi completes step k with state = nsync. Notice
that by the definition of k′ (i.e., k′ + 1 is the lowest step in which some process
decides), the conditions of line 12 and line 14 cannot be true in step k + 1 < k′ + 1
for any process. Thus the state of pi remains nsync at the end of step k + 1, i.e.,
pi ∈ NSYN [k + 1], which is a contradiction.

(2) If pi /∈ (NSYN [k] ∪ crashed[k]), then, from Claim 9.3.1.1, it follows that
pi /∈ (NSYN [k1] ∪ crashed[k1]) for all k1 ≤ k; i.e., pi completes every step lower
than or equal to k with state �= nsync. Thus pi has not sent any message with



TIME-COMPLEXITY OF LOCAL DECISION 751

state = nsync in step k or in a lower step.
Claim 9.3.2. For all k ∈ [0, k′ − 1], Z[k] ⊆ Z[k + 1].
Proof. Suppose by contradiction that there is a process pi and some k ∈ [0, k′−1]

such that pi ∈ Z[k] and pi /∈ Z[k + 1]. Since pi /∈ Z[k + 1], then pi /∈ crashed[k + 1]∪
NSYN [k+ 1]. Applying Claim 9.3.1(1), we get pi /∈ crashed[k]∪NSYN [k]. However,
pi ∈ Z[k] = C[k] ∪ crashed[k] ∪ NSYN [k], and hence, pi ∈ C[k].

We first observe that pi sends messages with state �= nsync in the first k + 1
steps: this follows from pi /∈ crashed[k + 1] ∪ NSYN [k + 1] and Claim 9.3.1(2). As
pi always receives messages from itself and does not send any message with state �=
nsync in the first k+1 steps, it follows that pi /∈ Halti[k+1] (line 17). Furthermore,
pi /∈ crashed[k+ 1]∪NSYN [k+ 1] implies that pi completes step k+ 1 with state =
sync1 or state = sync2. Applying Lemma 9.1 we have pi ∈ senderMSi[k + 1].
Thus, the step k + 1 message from pi is in msgSeti[k + 1]. However, as pi ∈ C[k],
the step k + 1 message from pi contains esti[k] ≤ c. Thus, when pi evaluates est in
line 19 of step k + 1, pi considers its own message with esti[k] ≤ c and hence adopts
a value less than or equal to c as esti[k + 1]. Thus pi ∈ C[k + 1] ⊆ Z[k + 1], which is
a contradiction.

Claim 9.3.3. For all k ∈ [0, k′ − 1], for all pi /∈ Z[k + 1], Z[k] ⊆ Halti[k + 1].
Proof. Consider a process pj ∈ Z[k] and a process pi /∈ Z[k + 1]. In step k + 1,

msgSeti[k+1] either contains a message from pj or does not contain any message from
pj . In the second case, Lemma 9.1 implies that pj ∈ Halti[k + 1]. Consider the case
where msgSeti[k+1] contains a message m from pj . From line 17 and line 18, it follows
that m contains state �= nsync, and hence, pj /∈ NSYN [k]. Furthermore, pj has sent
a message in step k+1, and so, pj /∈ crashed[k]. Thus pj /∈ crashed[k]∪NSYN [k], but
we have assumed pj ∈ Z[k]. So, pj ∈ C[k], and hence, message m from pj contains
an est less than or equal to c. Since m ∈ msgSeti[k + 1], in step k + 1, pi evaluates
est to a value less than or equal to c. Thus pi ∈ C[k + 1] ⊆ Z[k + 1], which is a
contradiction. Thus msgSeti[k + 1] does not contain any message from pj .

Claim 9.3.4. |Z[k′ − 1]| ≤ k′ − 1.
Proof. From Assumption A1, it follows that py /∈ Z[k′]. Therefore, from Claim

9.3.3, Z[k′ − 1] ⊆ Halty[k
′]. On the other hand, statey[k

′] = sync2 implies that
|Halty[k

′]| ≤ k′ − 1 (line 22 and line 23). Thus, |Z[k′ − 1]| ≤ k′ − 1.
Claim 9.3.5. px ∈ Z[k′] and px /∈ Z[k′ − 2].
Proof. As estx[k′] = c, we have px ∈ C[k′] ⊆ Z[k′].
For the second part of the claim, suppose by contradiction that px ∈ Z[k′ − 2].

Then, from Claim 9.3.3, for every process pi /∈ Z[k′−1], px ∈ Halti[k
′−1]. Therefore,

in step k′, if any process in Π − Z[k′ − 1] sends a message m, then px ∈ m.Halt
(where m.Halt denotes the Halt field of m). If px receives m in step k′, then it
includes the sender of m in Haltx (because of condition 2 in line 17), and if pi
does not receive m in step k′, then pi includes the sender of m in Haltx (because
of condition 3 in line 17). Thus Π − Z[k′ − 1] ⊆ Haltx[k′]. Using Claim 9.3.4,
|Haltx[k′]| ≥ |Π−Z[k′ − 1]| ≥ n− (k′ − 1). Since k′ + 1 ≤ t+ 2 and t < n/2, we have
|Haltx[k′]| ≥ n − t > t. However, |Haltx[k′]| > t implies that statex[k′] = nsync

(line 26 and line 27), which is a contradiction.
Claim 9.3.6. (1) For all k ∈ [0, k′ − 3], Z[k] ⊂ Z[k + 1]. (Z[k] is a proper subset

of Z[k + 1].) (2) |Z[k′ − 2]| ≥ k′ − 1.
Proof. (1) From Claim 9.3.2, Z[k] ⊆ Z[k + 1] (k ∈ [0, k′ − 1]). Suppose by

contradiction that there is some g ∈ [0, k′ − 3] such that Z[g] = Z[g + 1].
We first show by induction on the step number k that, for all k ∈ [g + 1, k′ − 1],

C[k] − (NSYN [k] ∪ crashed[k]) ⊇ C[k + 1] − (NSYN [k + 1] ∪ crashed[k + 1]). (This
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statement corresponds to the brief argument presented in the proof sketch where we
showed that if we ignore crashed processes and processes with nsync state, then the
set Z does not increase after step g.)

Base case (k = g + 1). C[g + 1] − (NSYN [g + 1] ∪ crashed[g + 1]) ⊇ C[g + 2] −
(NSYN [g + 2] ∪ crashed[g + 2]). Suppose by contradiction that there is a process
pi such that pi ∈ C[g + 2] − (NSYN [g + 2] ∪ crashed[g + 2]) (Assumption A3) and
pi /∈ C[g + 1] − (NSYN [g + 1] ∪ crashed[g + 1]) (Assumption A4).

Assumption A3 implies that pi /∈ NSYN [g + 2]∪ crashed[g + 2]. Applying Claim
9.3.1.1, we have pi /∈ NSYN [g+1]∪crashed[g+1], and therefore, from Assumption A4,
it follows that pi /∈ C[g + 1]. Thus pi completes step g + 1 with est > c and state �=
nsync. Furthermore, Assumption A3 implies that pi completes step g+2 with est ≤ c
and state �= nsync. So, msgSeti[g + 2] contains a message with est ≤ c from some
process pj , i.e., pj ∈ senderMSi[g+2] (Observation A5). As pj sends a message with
est ≤ c in step g + 2, it follows that pj ∈ C[g + 1] ⊆ Z[g + 1].

As pi /∈ NSYN [g + 1] ∪ crashed[g + 1] and pi /∈ C[g + 1], from the definition of
Z[g+1] we have pi /∈ Z[g+1]. Claim 9.3.3 implies that Z[g] ⊆ Halti[g+1]. Recall that
we assumed Z[g] = Z[g+1] and, from line 17, Halti[g+1] ⊆ Halti[g+2]. Therefore,
Z[g + 1] ⊆ Halti[g + 2]. Thus pj ∈ C[g + 1] ⊆ Z[g + 1] implies that pj ∈ Halti[g + 2].
From Observation A5, pj ∈ senderMSi[g + 2] ∩Halti[g + 2].

As pi /∈ NSYN [g+2]∪ crashed[g+2], it follows that pi completed step g+2 with
state = sync1 or state = sync2. From Lemma 9.1 it follows that senderMSi[g +
2] ∩ Halti[g + 2] = ∅. However, pj ∈ senderMSi[g + 2] ∩ Halti[g + 2], which is a
contradiction.

Induction hypothesis (k ∈ [g+1, r]). C[k]− (NSYN [k]∪ crashed[k]) ⊇ C[k+1]−
(NSYN [k + 1] ∪ crashed[k + 1]) for some r < k′ − 1.

Induction step (k = r + 1). C[r + 1] − (NSYN [r + 1] ∪ crashed[r + 1]) ⊇ C[r +
2]− (NSYN [r+ 2]∪ crashed[r+ 2]). Suppose by contradiction that there is a process
pi such that pi ∈ C[r + 2] − (NSYN [r + 2] ∪ crashed[r + 2]) (Assumption A6) and
pi /∈ C[r + 1] − (NSYN [r + 1] ∪ crashed[r + 1]) (Assumption A7).

Similar to the base case, applying Assumptions A6 and A7, and Claim 9.3.1 gives
us pi /∈ NSYN [r + 2] ∪ crashed[r + 2], pi /∈ NSYN [r + 1] ∪ crashed[r + 1], and
pi /∈ C[r + 1]. Thus pi /∈ Z[r + 1]. Since g + 1 < r + 1, from Claim 9.3.2, we have
Z[g + 1] ⊆ Z[r + 1], and therefore, pi /∈ Z[g + 1].

Applying Claim 9.3.3 on pi /∈ Z[g + 1] implies that Z[g] ⊆ Halti[g + 1]. Recall
that we assumed Z[g] = Z[g + 1], and from line 17 and g + 1 < r + 2, Halti[g + 1] ⊆
Halti[r + 2]. Therefore, Z[g + 1] ⊆ Halti[r + 2] (Observation A8).

From the induction hypothesis, we have (C[g + 1]− (NSYN [g + 1] ∪ crashed[g +
1])) ⊇ (C[r + 1] − (NSYN [r + 1] ∪ crashed[r + 1])). From the definition of Z[g + 1],
C[g + 1] − (NSYN [g + 1] ∪ crashed[g + 1]) ⊆ C[g + 1] ⊆ Z[g + 1], and therefore,
C[r + 1]− (NSY N [r + 1]∪ crashed[r + 1]) ⊆ Z[g + 1]. Applying Observation A8, we
have (C[r + 1] − (NSYN [r + 1] ∪ crashed[r + 1])) ⊆ Halti[r + 2] (Observation A9).

As pi /∈ Z[r + 1], pi completes step r + 1 with est > c and state �= nsync.
Furthermore, Assumption A6 implies that pi completes step r + 2 with est ≤ c and
state �= nsync. Therefore, msgSeti[r+2] contains a message with est ≤ c from some
process pj , i.e., pj ∈ senderMSi[r + 2] (Observation A10). As pj sends a message
with est ≤ c in step r + 2, pj ∈ C[r + 1] ⊆ Z[r + 1].

As the step r + 2 message of pj is in msgSeti[r + 2], from line 17 it follows that
the message sent by pj had state �= nsync. Therefore, pj /∈ NSYN [r + 1], and
clearly, pj /∈ crashed[r+1]. Therefore, pj ∈ C[r+1]− (NSYN [r+1]∪crashed[r+1]).
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From Observation A9 it follows that pj ∈ Halti[r + 2]. From Observation A10,
pj ∈ senderMSi[r + 2] ∩Halti[r + 2].

As pi /∈ NSYN [r+2]∪crashed[r+2] (from Assumption A6), pi completed step r+2
with state = sync1 or state = sync2. Lemma 9.1 implies that senderMSi[r +
2] ∩ Halti[r + 2] = ∅. However, pj ∈ senderMSi[r + 2] ∩ Halti[r + 2], which is a
contradiction.

From the above result (that we proved by induction), we have C[k′−2]−(NSY N [k′

−2] ∪ crashed[k′ − 2]) ⊇ C[k′] − (NSY N [k′] ∪ crashed[k′]). From Assumption A1,
px ∈ C[k′] − (NSY N [k′] ∪ crashed[k′])). From Claim 9.3.5, we have px /∈ Z[k′ −
2] ⊇ (C[k′ − 2] − (NSY N [k′ − 2] ∪ crashed[k′ − 2]). In other words, px is in
C[k′]−(NSY N [k′]∪crashed[k′]) but not in C[k′−2]−(NSY N [k′−2]∪crashed[k′−2]),
which is a contradiction.

(2) Part (1) of this claim implies that for every k ∈ [0, k′−3], |Z[k+1]|−|Z[k]| ≥ 1.
From Observation A2, |Z[0]| ≥ 1. Therefore, |Z[k′ − 2]| ≥ k′ − 1.

Claim 9.3.7. |Z[k′ − 1]| > k′ − 1.
Proof. Suppose by contradiction that |Z[k′−1]| ≤ k′−1. Since Z[k′−2] ⊆ Z[k′−1]

(Claim 9.3.2) and |Z[k′ − 2]| ≥ k′ − 1 (Claim 9.3.6.2), we have Z[k′ − 2] = Z[k′ − 1]
and |Z[k′ − 2]| = |Z[k′ − 1]| = k′ − 1 (Assumption A11).

From Claim 9.3.5, we know that px /∈ Z[k′−2] = Z[k′−1]. Applying Claim 9.3.3,
we have Z[k′ − 2] ⊆ Haltx[k′ − 1]. As Z[k′ − 2] = Z[k′ − 1] (from Assumption A11),
it follows that Z[k′ − 1] ⊆ Haltx[k′ − 1].

Since px /∈ Z[k′ − 1], px completes step k′ − 1 with est > c and state �= nsync.
From Assumption A1, we also know that px completes step k′ with est ≤ c and
state �= nsync. Therefore, msgSetx[k′] contains a message, say, from process pj ,
with est ≤ c, i.e., pj ∈ senderMSx[k′]. From the definition of C[k′ − 1], pj ∈
C[k′ − 1] ⊆ Z[k′ − 1]. However, we showed earlier that Z[k′ − 1] ⊆ Haltx[k′ − 1], and
from line 17, it follows that Haltx[k′ − 1] ⊆ Haltx[k′]. Thus Z[k′ − 1] ⊆ Haltx[k′]
and pj ∈ Haltx[k′].

From Assumption A1, we know that px completed step k′ with state = sync1 or
state = sync2. Therefore, Lemma 9.1 implies that senderMSx[k′] ∩Haltx[k′] = ∅.
However, pj ∈ senderMSx[k′] ∩Haltx[k′], which is a contradiction.

9.4. Time-complexity. We now discuss the termination and the time-complexity
of the algorithm. From the definition of ESt, for every run R in ESt, there is an
unknown round number GSR from which the system is synchronous (eventual syn-
chrony property of ESt). Define a synchronous session as a session that starts in
round GSR or in a higher round. Let sn be the lowest synchronous session, and let
f be the number of processes that crash in R.

Lemma 9.4. Consider any process pi that completes step k ∈ [1, t + 2] of session
sn. If no correct process decides before step k, then every process in Halti[k] has
crashed by step k.

Proof. Suppose no correct process decides before step k in session sn. For every
step l ∈ [0, k] in sn, let H[l] be the union of all Haltj [l] such that Haltj [l] �= undefined.
We claim the following, which immediately implies the lemma: Every process in H[l]
(for all l ∈ [0, k]) crashes by step l.

We prove the claim by induction on step number l. For l = 0, the claim is trivially
true, because H[0] = ∅ (base case). Suppose that the claim is true for l ∈ [0, l′−1] (for
some l′ − 1 ≤ k − 1): every process in H[l] crashes by step l (induction hypothesis).
Consider the set H[l′] (induction step). If H[l′]−H[l′−1] = ∅ then the induction step is
trivial. Suppose by contradiction that there is a process pj ∈ H[l′]−H[l′−1] such that
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pj has not crashed by step l′. Thus there is a process pa such that pj /∈ Halta[l
′ − 1]

and pj ∈ Halta[l
′].

As pj has not crashed by step l′, no correct process has decided before round k,
and sn is a synchronous session, so pa must have received the step l′ message m of pj .
Since, pj ∈ Halta[l

′], m contains either (a) state = nsync or (b) set Haltj such that
pa ∈ Haltj . Now, we show both cases to be impossible and thus prove the induction
step by contradiction.

From our induction hypothesis, for every step l′′ < l′, every process in Haltj [l
′′]

has crashed by step l′′. Since no more than t processes can crash in a run, in rounds
lower than l′, |Haltj | is never higher than t. Thus pj cannot update its state to
nsync in rounds lower than l′ (line 26). Thus the round l′ message from pj does not
contain state = nsync.

If the round l′ message from pj contains Haltj , such that pa ∈ Haltj , then
pa ∈ Haltj [l

′ − 1] ⊆ H[l′ − 1]. However, from our induction hypothesis, every process
in H[l′ − 1] has crashed before completing round l′ − 1, which implies that pa has
crashed before completing round l′ − 1, which is a contradiction.

Lemma 9.5 (time-complexity). In every run of the algorithm in SCSf (for any
f ∈ [0, t]), every process that decides does so by round f + 2.

Proof. Consider any run R of the algorithm in SCSf . (Note that, for a run in
SCSf , the first session is synchronous.) If some correct process decides by round
f + 1, then every process receives a decide message (and decides) by round f + 2.
Therefore, suppose by contradiction that no correct process decides by round f + 1
in R, and some correct process pi completes round f + 2 without deciding.

Since at most f processes may crash in R, from Lemma 9.4, in every round,
|Halt| at every alive process is less than or equal to f . As pi does not decide in round
f + 2 and |Halti[f + 2]| ≤ f , one of the following is true: (1) statei[f + 1] = nsync,
(2) statei[f + 1] = sync1, or (3) some other process pj sent a message in round
f + 2 with state = sync1. Case 1 requires |Halti| > t in round f + 1 or in a lower
round (line 26), which is a contradiction. Cases 2 and 3 are not possible because
|Halt[f + 1]| ≤ f at pi and pj , and therefore, pi and pj set state to sync2 in round
f + 1.

Lemma 9.6 (termination). Every correct process eventually decides.
Proof. Suppose by contradiction that some correct process pi does not decide

in a run R. If some correct process decides, then every correct process receives a
decide message and decides. Thus, no correct process decides. Consider the lowest
synchronous session sn. Since no correct process decides in R, from Lemma 9.4, in
every step, |Halt| at every alive process in session sn is less than or equal to t (as t
is the maximum number of processes that may crash in R).

As pi does not decide by step t+2 of session sn, from line 20, one of the following is
true: (1) statei[t+1] = nsync, (2) statei[t+1] = sync1, or (3) some other process
pj sent a message in step t + 2 with state = sync1. Case 1 requires |Halti| > t in
step t + 1 or in a lower step (line 26),which is a contradiction. Cases 2 and 3 are not
possible because |Halt[t + 1]| ≤ t at pi and pj , and therefore, pi and pj set state to
sync2 in round t + 1.

9.5. Eventually synchronous results summary. Combining Proposition 8.1,
the global decision lower bounds in [19, 9], and the time-complexity of algorithm Aes,
we get the following tight bounds in eventually synchronous models:

1. ∀t ∈ [1, (n − 1)/2], ∀f ∈ [0, t − 3], (ES t, SCS f , UC, ld) = f + 2. Local
decision bound for uniform consensus.
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2. ∀t ∈ [1, (n− 1)/2], ∀f ∈ [0, t], (ES t, SCS f , UC, gd) = f + 2. Global decision
bound for uniform consensus.

10. Concluding remarks. The time-complexity of local decisions is a natural
measure in many agreement-based distributed systems. As pointed out in the intro-
duction, in a replication or a transactional system, it may be sufficient for a client
to receive the decision value from any process executing the agreement algorithm.
Besides, studying the local decision metric helps uncover fundamental differences be-
tween problems and between models that were not apparent with other metrics. For
example, in a synchronous model, uniform consensus and nonblocking atomic commit
have the same tight bound in terms of global decision but have different bounds when
we consider local decision. Similarly, considering a local decision metric allows us to
infer that early deciding uniform consensus algorithms are faster in a synchronous
model than in synchronous runs of an eventually synchronous model.
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A NEARLY LINEAR-TIME APPROXIMATION SCHEME FOR THE
EUCLIDEAN k-MEDIAN PROBLEM∗

STAVROS G. KOLLIOPOULOS† AND SATISH RAO‡

Abstract. This paper provides a randomized approximation scheme for the k-median problem
when the input points lie in the d-dimensional Euclidean space. The worst-case running time is

O(2O((log(1/ε)/ε)d−1)n logd+6 n), which is nearly linear for any fixed ε and d. Moreover, our method
provides the first polynomial-time approximation scheme for k-median and uncapacitated facility
location instances in d-dimensional Euclidean space for any fixed d > 2. Our work extends techniques
introduced originally by Arora for the Euclidean traveling salesman problem (TSP). To obtain the
improvement we develop a structure theorem to describe hierarchical decomposition of solutions. The
theorem is based on an adaptive decomposition scheme, which guesses at every level of the hierarchy
the structure of the optimal solution and accordingly modifies the parameters of the decomposition.
We believe that our methodology is of independent interest and may find applications to further
geometric problems.

Key words. approximation algorithms, approximation schemes, k-median, facility location,
Euclidean space, linear time
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1. Introduction. In the k-median problem we are given a set N of n points
in a metric space and a positive integer k. The objective is to locate k medians
(facilities) among the points so that the sum of the distances from each point in N
to its closest median is minimized. The version of the problem we study is sometimes
called the discrete k-median: the facilities must be located at input points. In the
continuous version facilities may be located anywhere in the underlying space. The k-
median problem is a well-studied, NP-hard problem which falls into the general class
of clustering problems: partition a set of points into clusters so that the points within
a cluster are close to each other with respect to some appropriate measure. Moreover,
k-median is closely related to uncapacitated facility location, a basic problem in the
operations research literature (see, e.g., [13]). In the latter problem, in addition to
the set N of points, we are given also a cost ci for opening a facility at point i.
The objective is to open an unspecified number of facilities at a subset of N so as
to minimize the sum of the cost to open the facilities (facility cost) plus the cost of
assigning each point to the nearest open facility (service cost). In this paper we provide
a fast approximation scheme for the problem when the input lies in a Euclidean space.

A ρ-approximation algorithm for a minimization problem, ρ > 1, computes in time
polynomial in the input size a feasible solution of cost at most ρ times the optimum.
An approximation scheme computes, for any fixed ε > 0, a (1+ε)-approximate feasible
solution in time polynomial in the input size and 1/ε.
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1.1. Previous work. The succession of results for k-median is as follows. Lin
and Vitter [23] used their filtering technique to obtain a solution of cost at most
(1 + ε) times the optimum but using (1 + 1/ε)(lnn+ 1)k medians. They later refined
their technique to obtain a solution of cost 2(1 + ε) while using at most (1 + 1/ε)k
medians [22]. The first nontrivial approximation algorithm that achieves feasibility
as well, i.e., uses k medians, combined the powerful randomized algorithm by Bartal
for approximation of metric spaces by trees [5, 6] with an approximation algorithm
by Hochbaum for k-median on trees [19]. The ratio thus achieved is O(log n log log n).
This algorithm was subsequently refined and derandomized by Charikar et al. [8] to
obtain a guarantee of O(log k log log k). Charikar and Guha and independently Tardos
and Shmoys reported the first constant-factor approximations [10]. In contrast, the
uncapacitated facility location problem, in which there is no a priori constraint on
the number of facilities, seems to be better understood. Shmoys, Tardos, and Aardal
[27] gave a 3.16 approximation algorithm. This was later improved by Guha and
Khuller [16] to 2.408 and to 1.736 by Chudak [12]. After a preliminary, and by now
obsolete, abstract1 of this work appeared in [21] some additional results on k-median
and facility location appeared by Charikar and Guha [9] and Jain and Vazirani [20]
and on the local search approach by Arya et al. [4]. Follow-up work on the Euclidean
case includes that by Har-Peled and Mazumdar [18], and work focusing on improving
the dependence on the dimension includes that by Chen [11].

In this paper we focus on the case when the underlying metric is Euclidean. Until
the work of Arora, Raghavan, and Rao [3], this case was not known to be any easier
to approximate than a general metric. These authors gave a randomized polynomial-
time approximation scheme for k-median when the points lie on the Euclidean plane
[3]. For any fixed ε > 0, their algorithm outputs a (1 + ε)-approximation with prob-
ability 1 − o(1) and runs in O(nknO(1/ε) log n) time in the worst case. For facility
location they gave an approximation scheme with running time O(n1+O(1/ε) log n).
This development followed the breakthrough approximation schemes of Arora [2] for
the traveling salesman problem (TSP) and other geometric problems. While the work
in [3] used techniques from the TSP approximation scheme, the different structure of
the optimal solutions for k-median and TSP necessitated the development of a new
structure theorem to hierarchically decompose solutions. We elaborate further on this
issue during the exposition of our results in the next paragraph. The dependence of
the running time achieved by the methods of Arora, Raghavan, and Rao on 1/ε is
particularly high. For example, the approximation scheme can be extended to higher-

dimensional instances but runs in quasi-polynomial time O(n(log n/ε)d−2

) for a set of
points in Rd with fixed d > 2.

1.2. Results and techniques. Results. We provide a randomized approxi-
mation scheme for k-median on the Euclidean plane. For any fixed ε > 0, our scheme
outputs in expectation a (1 + ε)-approximate solution, in time

O
(
2O( log(1/ε)

ε )n log8 n
)

in the worst case.2 Our time bound represents a drastic improvement on the result
in [3]. For any fixed accuracy ε desired, the dependence of the running time on 1/ε

1In the conference version [21] we had erroneously claimed a running time of O(21/εdn logn log k).
2For large ε, the term log(1/ε)

ε
should be interpreted throughout the paper as max{log(1/ε),Θ(1)}

ε
.

We omit the Θ(1) factor to avoid cumbersome notation.
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translates to a (large) constant hidden in the near-linear asymptotic bound O(n log8 n)
compared to the exponent of a term polynomial in n in the bound of Arora, Raghavan,
and Rao. Moreover, for inputs in Rd, our algorithm extends to yield a running time
of

O
(
2O(( log(1/ε)

ε )d−1)n logd+6 n
)
,

which yields for the first time a polynomial-time approximation scheme for any fixed
d > 2. The ideas behind the new k-median algorithm yield also improved, nearly
linear-time, approximation schemes for uncapacitated facility location. Our time
bounds for the latter problem hold under the assumption that a polynomial in n-
approximation is available for the value of the service cost. An example of such a case
is when all the interpoint distances are polynomially related. We now elaborate on
the techniques we use to obtain our results.

Techniques. Our main motivation for improving the running times of [3] was
to gain a better understanding of approximation schemes for geometric problems and
in particular the issues arising from Euclidean facility location problems. The actual
running time we obtain is mainly of theoretical interest. We believe that the main
contribution of the present paper lies in the new ideas we introduce to overcome
the limitations of the approach employed by Arora, Raghavan, and Rao in [3]. To
describe these ideas we sketch first some previous developments, starting with the
breakthrough results by Arora [2] (see also the work of Mitchell [24] for a different
approximation scheme for the Euclidean TSP).

A basic building block for Arora’s results on TSP [2] was a structure theorem
providing insight into how much the cost of an optimal tour could be affected in
the following situation. Roughly speaking, the plane is recursively dissected into a
collection of rectangles of geometrically decreasing area, represented by a quadtree
data structure. For every box in the dissection one places a fixed number, dependent
on the desired accuracy ε, of equidistant portals on the boundary of the box. The
optimal TSP tour can cross between adjacent rectangles any number of times; a
portal-respecting tour is allowed to cross only at portals. How bad can the cost of
a deflected, portal-respecting tour be compared to the optimum? Implicitly, Arora
used a charging argument on the edges in an optimal solution to show that the edges
could be made to be portal-respecting. We now sketch his approach, which was made
explicit and applied to k-median in [3].

Given a set of at most k open facilities, a k-median solution is a set of edges
assigning every point to an open facility. A portal-respecting solution is one in which
the assignment edges are actually paths that cross rectangle boundaries only at por-
tals. We can assume that the input is surrounded by a rectangle with sidelength
polynomial in n (cf. section 2). At level i of the dissection, the rectangles at this level
with sidelength 2i are cut by vertical and horizontal lines into rectangles of sidelength
2i−1. The x- and y-coordinates of the dissection are randomly shifted at the beginning
so that the probability that an edge e in a solution is cut at level i is O(length(e)/2i).
Let m denote the number of portals along the dissection lines. If e is cut at level i, it
must be deflected through a portal, paying additional cost O(2i/m). Summing over
all the O(log n) levels of the decomposition, the expected deflection cost of edge e in
a portal-respecting solution is at most

(1)

O(log n)∑

i=1

O

(
length(e)

2i
(2i/m)

)
.
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Selecting m = Θ(logn/ε) and applying the dissection to the optimal solution, we
obtain the existence of a portal-respecting solution of cost (1 + ε)OPT. Once the
existence has been shown, dynamic programming can be used to compute the best
portal-respecting solution. The running time of the dynamic programming contains
a k2O(m) term; hence we have the kn1/ε term in the overall running time.

Arora additionally used a “patching lemma” argument to show that the TSP
tour could be made to cross each box boundary O(1/ε) times. This yielded an
O(n(log n)O(1/ε)) time algorithm for the TSP. (This running time was subsequently

improved by Rao and Smith to O(2O(1/ε2) + n log n) [25] while still using Θ(logn/ε)
portals.) The k-median method did not, however, succumb to a patching lemma
argument; thus the running time for the algorithms in [3] remained O(knO(1/ε)).

Our method reduces the number m of portals to O(log(1/ε)/ε). That is, we re-
move the log n factor in the number of portals that appears to be inherent in Arora,
Raghavan, and Rao’s charging based methods and even in Arora’s charging plus patch-
ing based methods.

Adaptive dissection. We outline some of the ideas behind the reduced value for
m. The computation in (1) exploits linearity of expectation by showing that the “av-
erage” dissection line cutting an edge is short enough. The complicated dependencies
among the dissection lines across all O(log n) levels seem too complicated to reason
about directly. On the other hand, when summing the expectations across all levels
an O(log n) factor creeps in, which apparently has to be offset by setting m to log n/ε.
We provide a new structure theorem to characterize the structure of near-optimal so-
lutions. In contrast to previous approaches, given a rectangle at some level in the
decomposition, it seems a good idea to choose several possible “cuts” hoping that one
of them will hit a small number of segments from the optimum solution. This ap-
proach gives rise to the adaptive dissection idea, in which the algorithm “guesses” the
structure of the part of the solution contained in a given rectangle and tunes accord-
ingly the generation of the subrectangles created for the next level of the dissection.
In the k-median problem the guess consists of the area of the rectangle which is empty
of facilities. Let L be the maximum sidelength of the subrectangle containing facili-
ties. Cutting close to the middle of this subrectangle with a line of length L should,
in a probabilistic sense, mostly dissect segments from the optimal solution of length
Ω(L), forcing them to deflect by L/m = εL. A number of complications arise by the
fact that a segment may be cut by both horizontal and vertical dissection lines. We
note that the cost of “guessing” the empty area is incorporated into the size of the
dynamic programming lookup table by trying all possible configurations. Given the
preeminence of recursive dissection in approximation schemes for Euclidean problems
[2, 3, 25] we believe that the adaptive dissection technique is of independent interest
and may prove useful in other geometric problems as well.

Although the adaptive dissection technique succeeds in reducing the required
number of portals to Θ(log(1/ε)/ε) and thus asymptotically improves the dependence
of the running time on 1/ε, the dynamic program has still to enumerate all possible
rectangles. Compared to the algorithm in [3], we apparently have to enumerate even
more rectangles due to the “guess” for the areas without facilities and some amount
of randomization we introduce in the choice of subrectangle boundaries. We bound
the size of the lookup table by showing that the boundaries of the possible rectangles
can be appropriately spaced and still capture the structure of a near-optimal solution.

The outline of the paper is as follows. In section 2 we give definitions and pre-
processing steps. In section 3 we prove the new structure theorem and obtain the



NEARLY LINEAR-TIME APPROXIMATION SCHEME 761

reduced number of portals. In section 4 we provide a modified structure theorem
which yields a small size for the dynamic program table. In section 5 we present the
dynamic program and some extensions of the main result.

2. Preliminaries. An edge (u, v) is a line segment connecting input points u
and v. Given a selection of open facilities, an assignment edge is an edge (u, v) such
that exactly one of u or v is an open facility. An assignment is a set E of assignment
edges such that every point which does not host a facility appears exactly once as an
endpoint. In order to minimize the cost every point must of course be assigned to
its closest open facility. The sidelength of a rectangle with sides parallel to the axes
is the length of its largest side. For any two points p, p′ their Euclidean distance is
denoted by d(p, p′).

We assume that the input points are on a unit grid of size polynomial in the
number of input points. This assumption is enforced by a preprocessing phase de-
scribed in [3]; the preprocessing incurs an additive error of O(1/nc) times the optimal
value for some constant c > 0. The assumption is needed to ensure the depth of the
recursive dissection is O(log n). Within the same additive error we can assume that
no two input points lie on the same vertical grid line. The latter assumption simplifies
the presentation.

In [3] it is shown that if a polynomial-factor approximation is available for the
value of the service cost, i.e., a range [D,ncD] where this value must lie, then the
above assumptions on the points can be enforced by a simple plane sweep. An algo-
rithm to compute this range for the k-median problem is the 2-approximation minmax
clustering algorithm of Gonzalez [15]. A faster algorithm for the same problem was
given by Feder and Greene [14]. The latter runs in O(n log k) time on the plane. The
total preprocessing time for d = 2 is O(n log n). For general dimension d the prepro-
cessing time is O(dn log n + kdd log(kdd)) [14]. A faster 2-approximation algorithm
that runs in O(n + k log k) with high probability was given by Har-Peled in [17].

3. The Structure Theorem. In this section we prove our basic Structure
Theorem that shows the existence of approximately optimal solutions with a sim-
ple structure. This theorem can yield directly a dynamic programming algorithm
whose running time dependence on ε is no worse than 2O(log(1/ε)/ε). Our exposition
focuses on 2-dimensional Euclidean instances. It is easy to generalize to d dimensions.
Given a set of points N and a set of facilities F ⊂ N , we define the greedy cost under
F to be the cost of assigning each point to its closest facility. If F is the set of facilities
open in the optimal solution, the greedy cost under F is the optimal cost.

We proceed to define a recursive randomized decomposition. The decomposition
uses two processes: the Subrectangle process, and the Cutrectangle process.

Subrectangle:
Input: a rectangle B containing at least one facility.
Process: Find the minimal rectangle B′ containing all the facilities. Let its maximum
sidelength be s. Grow the rectangle by s/3 in each dimension. We call the grown
rectangle B′′.
Output: Bs = B′′ ∩B.

Notice that B−Bs contains no facilities. If Bs �= B, we call Bs a proper subrectangle.

Cutrectangle:
Input: a rectangle B containing at least one facility.
Process: Randomly cut the rectangle into two rectangles with a line that is orthogonal
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Fig. 1. Illustration of the Subrectangle process. The circles are input points. The solid black
ones indicate points with open facilities. (a) The intermediate rectangles created. (b) The input B
and the output Bs of the process.

to the middle third of the maximal side of the rectangle.
Output: The two created rectangles.

Remark 1. Given as input a rectangle with constant aspect ratio, both processes
output rectangles with constant aspect ratio. This remark will be useful in section 4.

See Figure 1 for an illustration of the Subrectangle process. The recursive
method alternately applies the Subrectangle and Cutrectangle processes to
produce a decomposition of the original rectangle containing the input. The method
stops when either the current rectangle contains one point or the current rectangle
contains no facilities—whichever happens earlier. We emphasize that in this section
we do not use an a priori random shift of the coordinate system as Arora does in
[2]. The Subrectangle process would diminish any randomization introduced at
the beginning of the dissection. The randomization required by the upcoming Facts 1
and 2 is introduced by Cutrectangle. We also observe that the original rectangle is
not necessarily covered by leaf rectangles in the decomposition, due to the subrectangle
steps.

We place m+ 1 evenly spaced points on each side of each rectangle in the dissec-
tion, where m will be defined later and depends on the accuracy ε of the sought ap-
proximation. We call these points portals. We define a portal-respecting path between
two points to be a path between the two points that crosses only rectangles that
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enclose one of the points at portals. We define the portal-respecting distance between
two points to be the length of the shortest portal-respecting path between the points.
We begin by giving three technical lemmas which will be of use in the main Structure
Theorem. Lemma 1 has a straightforward proof and gives the motivation behind the
decomposition. We want short assignment edges in a given solution to be separated
by rectangles of small sidelength.

Lemma 1. If the first rectangle R in the dissection to separate points v and w has
sidelength D, the difference between the portal-respecting distance and the geometric
distance between v and w is O(D/m).

We define a cutting line segment in the decomposition to be either (i) a line
segment l that is used in the Cutrectangle process to divide a rectangle R into two
rectangles or (ii) a line segment l used to form the boundary of a proper subrectangle
R in the Subrectangle procedure. In both cases we say that l cuts R. We define
the sidelength of a cutting line l as the sidelength of the rectangle cut by l. Observe
that the length of a cutting line is upperbounded by its sidelength.

Lemma 2. If any two parallel cutting line segments produced by the application
of Cutrectangle are within distance L, one of the line segments has sidelength at
most 3L.

Proof. Let l1, l2 be the two cutting segments at distance L. Assume without loss
of generality that they are both vertical, l1 is the longer of the two lines, and l1 is on
the left of l2 and cuts a rectangle R of sidelength greater than 3L into R1 and R2.
Then l1 is produced first in the decomposition. Thus l2 is contained within R2 (see
Figure 2) and since it comes second can only cut a rectangle R′

2 contained within R2.
By the definition of Cutrectangle, if s is the sidelength of R′

2, l2 is drawn at least
s/3 away from the left boundary of R′

2, which implies s/3 ≤ L. Thus s < 3L.

The next lemma relates the length of a cutting line segment produced by Sub-

rectangle to the length of any assignment edges it intersects. We slightly abuse
terminology and say that an edge (v, f) is separated when a cutting line separates v
and f.

Lemma 3. Let f be a facility and (v, f) an assignment edge of length D. If a
cutting line segment σ produced by Subrectangle separates v and f for the first
time, then σ has sidelength at most 5D.

Proof. Let Bs be the rectangle cut by σ; let s be its sidelength. Assume without
loss of generality that σ is a vertical line and that the horizontal dimension of Bs is
maximal. Let Bs be produced by a Subrectangle process with input B. We use
the notation of the process for the intermediate rectangles produced. Let y ≤ s be
the sidelength of the rectangle B′. Then the sidelength of B′′ is (5/3)y > s. The two
vertical strips at the side of B′′ are empty of facilities. Part of those strips may lie
outside B; see Figure 3. The intersection of the vertical strip which is crossed by (v, f)
with B must be a rectangle whose projection on the x-axis has length y/3. Therefore,
y/3 < D, which implies that s < 5D.

Consider the optimal solution with k given medians among the points. In the
Structure Theorem we will prove the existence of a near-optimal solution in which a
point v is always assigned to its closest or second-closest median. The modified cost
of an assignment E is the sum over all the points of the portal-respecting distances to
their respective assigned facilities. Since the Structure Theorem assumes that the set
of open facilities is given, it applies more generally to uncapacitated facility location.

We first provide two calculations that will be of use in the proof of the theorem.

Fact 1. Let E(Δ, Z) denote the event that an edge of length Δ is separated by a
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Fig. 2. Illustration of the proof of Lemma 2. Rectangle R′
2 is a descendant but not necessarily

a child of R2 in the decomposition.
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Fig. 3. Illustration of the proof of Lemma 3. The circles are input points. The solid black
ones indicate points with open facilities. (a) The intermediate rectangles created by Subrectangle.
(b) The input B and the output Bs of the process.
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cutting line of sidelength Z that is produced by Cutrectangle. We have that

Pr[E(Δ, Z)] ≤ 3Δ/Z.

Intuitively, sidelengths increase geometrically in the dissection. Therefore, a con-
sequence of Fact 1 is that the probability that an edge of length Δ is separated by a
cutting line of sidelength Z or more that is produced by Cutrectangle is at most
O((Δ/Z)).

Fact 2. Let E≥(Δ, Z) denote the event that an edge of length Δ is separated by
a cutting line of sidelength Z or more that is produced by Cutrectangle. Then

Pr[E≥(Δ, Z)] = O(Δ/Z).

The following lemma will also be of use.
Lemma 4. Let the distance from a point v to its closest open facility f be D and

the distance from v to its second closest open facility l be L. In the decomposition,
v and f are separated for the first time by a cutting line that has sidelength either
(i) larger than L/2 or (ii) smaller than 8D.

Proof. We know that v and l are separated by the time the sidelength of any
enclosing rectangle is at most L. Observe that by Lemma 3, a cutting line of side-
length > 5D separating v and f can only be produced by Cutrectangle. We
will show that Cutrectangle cannot produce such a cutting line with sidelength
in (8D,L/2).

Without loss of generality we assume the relative positioning of v, f, l given above.
See Figure 4 for an illustration. For any rectangle of sidelength L/2 containing v,
there are no facilities to the left of v. Thus, by the Subrectangle process on
input of sidelength s < L/2, the left boundary of any rectangle of sidelength s <
L/2 that contains v is within a distance of at most s/5 of v. This is because in
Subrectangle the maximal rectangle empty of facilities is grown by at most a third
in each direction. By the Cutrectangle process on input of sidelength s, any cutting
line for a rectangle box is at least s/3 to the right of its left boundary, which implies
that the cutting line is at least s/3 − s/5 = 2s/15 to the right of v. Thus, the length
D line segment cannot be cut until the sidelength of the enclosing rectangle is at most
(15/2)D.

Theorem 1 (Structure Theorem). Let m > 0 be any integer and F ⊂ N be a set
of open facilities. There is an assignment E such that the expected difference between
the modified cost of E and the greedy cost C under F is O(C max{1, log(m)}/m).

Proof. By linearity of expectation, it suffices to bound the expected cost increase
for a given assignment edge. For a point v we define f ∈ F as v’s closest facility
and assume f to be to the right of v (without loss of generality). We define l ∈ F
as the closest facility to the left of v. We denote the distance from v to f by D,
and the distance from v to l by L. The idea behind the analysis of the portal-
respecting solution is that assigning v to either f or l (a decision based on the amount
by which the decomposition distorts each distance) will be enough to show near-
optimal modified cost. The proof of the theorem shows how to actually construct the
assignment E.

We assume without loss of generality that v and f are separated for the first time
by a vertical cutting line. We can turn the configuration on its side and use the same
argument if this condition does not hold.

The semicircle of diameter 2L centered at v and lying entirely to the left of the
vertical line passing through v is empty in its interior. Therefore Lemma 4 applies.
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Fig. 4. Illustration of the proof of Lemma 4. In this case we depict s < 2D.

We proceed to a case analysis based on which of the two edges (v, l) or (v, f) is
separated first by the decomposition. Observe that (v, l) can be separated for the first
time by either a vertical or a horizontal line. If v and f are separated for the first time
by a line produced by Subrectangle, we assign v to f in E and the increase in cost
is 5D/m by Lemma 3. Therefore we can assume for the remainder of the proof that
v and f are first separated by a vertical cutting line produced by Cutrectangle.
Let μ, ξ denote the lines separating for the first time (v, l) and (v, f), respectively.

CASE A. Edge (v, l) is separated before (v, f).
We will now calculate the expectation of the cost increase for the two possible

subcases.
CASE A1. Edge (v, l) is separated for the first time by a vertical cutting line.

We assign v to f in E. With some probability p, ξ has sidelength L/2 or more.
By Lemma 4, ξ has sidelength at most 8D with probability (1 − p). Therefore, by
Lemma 1, the cost increase is O(D/m) with probability (1 − p). Now we turn to
the case in which ξ has length L/2 or more. If μ is produced by Subrectangle,
by Lemma 3, μ has sidelength at most 5L. If μ is produced by Cutrectangle, by
Lemma 2 either ξ or μ has length at most 6L. Moreover, ξ always has length smaller
than μ since it is produced second in the dissection. By Lemma 1 the cost increase is
O(L/m) regardless of the operation producing μ. By Fact 2, probability p is O(D/L).
Therefore, the expected cost increase for CASE A1 is at most

(1 − p)O(D/m) + pO(L/m) = O(D/m) + O((D/L)(L/m)) = O(D/m).

Remark 2. The probability calculation for Case A1 depended only on the choice
of which vertical line first cuts (v, f). This will be useful in section 4, when we restrict
our choices for vertical cutting lines.

CASE A2. Edge (v, l) is separated for the first time by a horizontal cutting line.
We assign v to f in E. We compute first the expectation of the cost increase condi-
tioned upon the sidelength X of line μ. See Figure 5. By Fact 1, (v, f) is cut by a line
of sidelength Y with probability at most 3D/Y. Observe that this is true regardless of
the value of X. Moreover, L/2 ≤ Y ≤ X or, by Lemma 4, Y ≤ 8D. The upper bound
of X holds since (v, f) is contained in the rectangle cut by μ. For some constant c,
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Fig. 5. Case A2 in the proof of Theorem 1.

the conditional expected cost increase is bounded by

∑

L/2≤Y≤X|∃i,Y =2i

(cD/Y )(Y/m) = O ((D/m) log(X/L)) .

We now remove the conditioning on X. If line μ was produced by Subrectangle,
by Lemma 3 it has length at most 5L. No matter how large the probability of this
event is, by the sum above the cost increase is O(D/m). If line μ is produced by
Cutrectangle, by Fact 1 it has sidelength X with probability at most 3L/X. The
expectation of the cost increase is at most

∑

X≥L|∃i,X=2i

3(L/X) log(X/L)O(D/m) = O(D/m).

Remark 3. To compute the probability of the event B that ξ has a given sidelength
Y, we used only the total probability theorem. We partitioned the event space into
the possible events A1, A2, . . . based on the different possible values of X and then
applied Pr[B] =

∑
i Pr[B|Ai]Pr[Ai]. This remark will be useful in section 4.

CASE B. Edge (v, f) is separated before (v, l).
CASE B1. Edge (v, l) is separated for the first time by a vertical cutting line.

The difference from CASE A1 is that we cannot argue that ξ has smaller sidelength
than μ; therefore, we follow a different strategy. If the sidelength of ξ is at most mL
we assign v to f ; else we assign v to l in E.

By Lemma 4, if the cost increase exceeds 8D/m the sidelength of ξ is L/2 or
higher. By Fact 1, there is a constant c such that assigning v to f yields an expected
cost increase of

c[(2D/L)(L/2m) + (D/L)(L/m) + (D/2L)(2L/m) + · · · + (D/mL)(mL/m)]

= O(D log(m)/m).
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By Fact 2, the probability that ξ has a sidelength of mL or more and hence that we
assign v to l is O( D

mL ). In this case Lemma 2 gives that the sidelength of μ is at most
3(L + D). Therefore, when v is assigned to l, the expected assignment cost (and not
just the increase) is

O

(
D

mL
(L + L/m)

)
= O(D/m + D/m2).

Therefore, regardless of whether v is assigned to f or l the expected cost increase is
O(D log(m)/m).

CASE B2. Edge (v, l) is separated for the first time by a horizontal cutting line.
We follow the same strategy as in Case B1: if the sidelength of ξ is at most mL we
assign v to f ; else we assign v to l in E.

By the same argument as in Case B1, if v is assigned to f the expected cost
increase is O(D log(m)/m). Consider the case where v is assigned to l. If μ is produced
by Subrectangle by Lemma 3 it has sidelength at most 5L and hence the expected
assignment cost is O(D/m + D/m2) by a calculation similar to Case B1.

If μ is produced by Cutrectangle it cannot have sidelength less than L. More-
over, by Fact 1 it has sidelength X with probability at most 3L/X. X cannot exceed
the sidelength Y of ξ but for every possible X in the range [L, Y ], the conditional
probability that μ has sidelength X is still at most 3L/X. Therefore, we obtain that
the expected assignment cost for v is

O

⎛
⎝

∑

mL≤Y |∃i,Y =2i

D

mL

∑

L≤X≤Y |∃i,X=2i

(L/X)(X + X/m)

⎞
⎠

= O

(
D

mL
(L + L/m)

)
= O(D/m + D/m2).

Remark 4. To compute the probability of the event B that μ has a given sidelength
X, we used only the total probability theorem. We partitioned the event space into
the possible events A1, A2, . . . based on the different possible values of Y and then
applied Pr[B] =

∑
i Pr[B|Ai]Pr[Ai]. This remark will be useful in section 4.

This is the end of the proof of the Structure Theorem.

4. Modifying the Structure Theorem. The Structure Theorem in the pre-
vious section demonstrates that a portal-respecting (1 + O(log(m)/m))-approximate
solution exists while only placing m portals on the boundary of the decomposition
rectangles. The randomization introduced by Cutrectangle is essential for the
Structure Theorem. However, it does pose the problem of how to enumerate all possi-
ble outputs of Cutrectangle in the context of a dynamic program such as the one
in [3]. In this section we show how to effectively bound the number of rectangles to be
enumerated by the dynamic program and in the process obtain a nearly linear-time
algorithm. To this end we introduce some discretization on the possible outcomes of
Subrectangle and Cutrectangle.

We first give some definitions. Consider the square of sidelength T that surrounds
the original input. We know from section 2 that T = O(nc) for some constant c > 0.
We assume that T = m2ρ for some integer ρ and that the leftmost lower corner of
the square lies at the origin of the axes. Call the vertical (horizontal) lines whose
x-coordinate (y-coordinate) is an integral multiple of m eligible. Then, we call the
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vertical (horizontal) eligible lines with x-coordinate (y-coordinate) congruent to 0
mod2i, 1 ≤ i ≤ ρ, i-allowable. Note that the top- and leftmost eligible lines are ρ-
allowable, and that any j-allowable line is i-allowable for all i < j. A rectangle R of
sidelength s is t-allowable if t is the maximum value such that any two parallel sides
of R of length s lie on t-allowable lines and s ≥ 2tm. Observe that when a rectangle is
t-allowable, the aspect ratio is not bounded. The definition guarantees only that the
smallest side has length 2tm. A rectangle which is t-allowable for some t and whose
sides have length within a factor of 5 + 1/2m of each other is called allowable.

We modify the Subrectangle and Cutrectangle processes as follows.

Subrectangle-new:
Input: An allowable rectangle containing at least one facility.
Process: Perform the Subrectangle process of the previous section. Let Bs be the
computed rectangle.
Output: The minimal allowable rectangle that contains Bs.

Cutrectangle-new:
Input: An allowable rectangle containing at least one facility.
Process: Choose a cutting line in the middle third of the maximal side of the rectangle,
uniformly at random among all lines that produce two allowable subrectangles.
Output: The two allowable subrectangles.

To illuminate further Cutrectangle-new consider an example that takes as
input a t-allowable rectangle with sidelength m2t. This implies that the rectangle is
a square. Let us consider the horizontal side as maximal. The middle third of the
maximal side has �m/3	 candidate t-allowable cutting lines. Choosing one yields two
subrectangles for which the horizontal side has length at least (m/3)2t and at most
(2/3)m2t. Accordingly the two subrectangles are each i-allowable for i ≥ t− 2.

Before proving the Modified Structure Theorem we examine the validity of the
deterministic lemmas from section 3 in the new setting. Clearly Lemma 2 continues to
hold. We have to be more careful with Lemmas 3 and 4 due to the extra requirement
that the output of Subrectangle-new should be allowable. This might cause the
rectangle output by Subrectangle to be “stretched.” We first show that this stretch
is small.

Lemma 5. Each side of the rectangle output by Subrectangle-new has length
at most 1 + 2/m the length of the corresponding side of the rectangle Bs computed
during the process.

Proof. Within the Subrectangle process, the rectangle B′ of sidelength s is
grown by s/3 in each dimension. It follows that the lengths of the sides of Bs are
within a factor of (s + 2s/3)/(2s/3) = 5 of each other. To meet the definition of an
allowable rectangle, we have only to move the boundaries of Bs so that they fall on
t-allowable lines. Here t is the maximum integer so that each side of Bs has length at
least 2tm. To achieve this, we have to extend each side by at most 2t in each direction
for a total increase of a 1 + 2/m factor.

Lemma 4 continues to hold with the modified decomposition. In fact it becomes
slightly stronger since (cf. proof of Lemma 4) the left boundary of any allowable
rectangle produced by Subrectangle-new that has sidelength s < L/2 and contains
v is within a distance of at most s(1/5 + 1/m) from v. We now give the equivalent to
Lemma 3 in the modified setting.

Lemma 6. Let f be a facility and (v, f) be an assignment edge of length D. If
a cutting line segment σ produced by Subrectangle-new separates v and f for the
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first time, then σ has sidelength at most (5 + 6/m)D.

Proof. We outline only the changes from the proof of Lemma 3. Keeping the
same notation, by Lemma 5 (5/3)y ≤ s ≤ (5/3 + 2/m)y. Since y/3 < D, we obtain
s < (5 + 6/m)D.

The difference between Lemmas 3 and 6 is negligible from the point of view of
the Modified Structure Theorem since it introduces only an additive O(D/m2) error
term. We can now focus on the probabilistic part of the modified decomposition.

The new dissection is similar to the one from section 3. The primary difference
is that the randomization in the Cutrectangle process has been diminished. If we
add back some randomization up front by shifting the original rectangle containing
the input, we can get the same result as in the Structure Theorem on the expected
increased cost of a portal-respecting solution. We define an (a, b)-shifted coordinate
system, 0 ≤ a, b ≤ T, as one in which the x and y coordinates are shifted by a and
b, respectively. The shifting uses wraparound as in [2]: a vertical line which had
x-coordinate x1 before the shifting has coordinate x1 + a mod T after. If a and b are
chosen at random, any vertical or horizontal line is equally likely to be i-allowable.
The new modified cost of an assignment is defined with respect to the new dissection
given above.

Theorem 2 (Modified Structure Theorem). Let m > 0 be any integer and F ⊂ N
be a set of open facilities. If the coordinate system is randomly shifted by (a, b), where
a and b are chosen independently in [0, T ], then there is an assignment E such that
the expected difference between the new modified cost of E and the greedy cost C under
F is O(C max{1, log(m)}/m).

Proof. As mentioned, minor variations of the deterministic lemmas from section 3
continue to hold in the restricted version of the dissection. The randomized portion in
the proof of Theorem 1 reasons only about two types of events. Moreover, it reasons
about each event in isolation (cf. Cases A1 and A2 in the proof; the rest are similar).
Thus, we need only be concerned with the probability of each event. The random
shift up front of the coordinate system along with the randomization inside the process
will ensure that these two types of events occur in our decomposition into allowable
rectangles with approximately the same probability as in the previous decomposition.

The first event (cf. Case A1) is that a line produced by Cutrectangle-new of
length X cuts a line segment of length D. The probability of this event is required to
be at most 3D/X in the proof of the Structure Theorem. We show that this continues
to hold albeit with a constant larger than 3.

We assume for simplicity that the line segment is in a rectangle R of sidelength
exactly X = m2i at some point. (This will be true to within a constant factor.) If D <
2i, we know that the segment is cut by at most one i-allowable line. The probability of
this event is at most D/2i due to the random shift. The Cutrectangle-new process
chooses from m/3 i-allowable lines uniformly at random. Thus, the line segment is
cut with probability 1/(m/3) times D/2i, which is 3D/X as required. If D > 2i,
we notice that D intersects at most 
D/2i� < 2D/2i i-allowable lines. By the union
bound the probability that this line segment is cut during Cutrectangle-new on
R is upperbounded by 2D/2i times 3/m, i.e., 6D/X.

The second event (cf. Case A2) is the intersection of two events; a horizontal line
of length X cuts a segment of length L and a vertical line of length Y cuts a segment
of length D. In the proof of the Structure Theorem, the probability was shown by
the total probability theorem to be upperbounded by the product of the probability
bounds of the two events, i.e., 3L/X times 3D/Y . The second term represented the
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conditional probability that edge (v, f) is cut by a line of sidelength Y given that
(v, l) was cut by a horizontal line of sidelength X. We argued that the conditional
probability does not depend on X.

For our restricted decomposition, the probability of each event in isolation can
be bounded by 6L/X and 6D/Y as argued above. Moreover, we chose the horizontal
and vertical shifts independently and we choose the horizontal and vertical cut-lines
in different processes. Thus, we can also argue that the probability of the intersection
of the two events is at most 6L/X times 6D/Y.

We now prove a lemma bounding the number of allowable rectangles.

Lemma 7. The number of allowable rectangles that contain l or more points from
the input set N is O(m4(n/l) log n).

Proof. Our proof uses a charging argument. Let Rl be a rectangle on the plane
that has minimum sidelength, say, L, and contains l points. We bound the cardinality
of the set Sl of allowable rectangles, which are distinct from Rl, contain at least l points
and have at least one point in common with Rl. Let Ra be such a rectangle. Then
Ra has sidelength at least L; otherwise it would have been chosen instead of Rl.

We bound the number of allowable rectangles in Sl with sidelength X ∈ [2i−1, 2i]m
by O(m4) as follows. The corners must fall on the intersection of two t-allowable lines
that are within distance X from some side of Rl. Since allowable rectangles have
bounded aspect ratio, the possible values for t are 2i−k, k = 0, 1, 2, 3.

The number of j-allowable lines that are within distance X from some side of Rl

is O(X/2j−1) since X ≥ L. Thus, the number of corner choices is O(m2). Two corners
must be chosen, so the number of rectangles in Sl of sidelength X ∈ [2i−1, 2i]m is
O(m4). Since there are O(log n) values of i, |Sl| = O(m4 log n).

Now, we remove Rl and its points from the decomposition and repeat the argu-
ment on the remaining n− l points. The number of repetitions until no points are left
is O(n/l); therefore, by induction, we get a bound of O(m4(n/l) log n) on the number
of allowable rectangles that contain at least l points.

5. The dynamic program. We have structural theorems relative to a partic-
ular decomposition. Unfortunately, the decompositions are defined with respect to
the facility locations. However, in reality they use only the facility locations in the
Subrectangle steps. Moreover, the number of subrectangles is at most polynomial
in the size of the original rectangle. Indeed, the number of allowable subrectangles
is polynomial in m and n. Thus, we can perform dynamic programming to find the
optimal solution. The structure of the lookup table is similar to the one used in [3].
We exploit our Structure Theorem and the analysis on the total number of allowable
rectangles to obtain a smaller number of entries.

We will develop two versions of our dynamic program, in order of increasing so-
phistication, each with a somewhat different time complexity. Our dynamic programs
have much in common with the one in [3]. For the sake of completeness we include
here all the relevant definitions from [3].

5.1. The table definition. In all our approaches the table will consist of a
set of entries for each allowable rectangle that contains at least one point. There
is a one-to-one correspondence between entries of the table and subproblems on the
corresponding rectangle. Subproblems on a given rectangle are generated by what
amounts to a guessing (enumeration) of the location of facilities that serve the points
in the rectangle. These facilities could be either inside the rectangle or outside. In
either case, since by the Structure Theorem it suffices to consider portal-respecting
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solutions, we store only the interaction pattern (defined by items 2 and 3 below) of the
portals to the facilities. For each allowable rectangle, we will enumerate the following:

1. the number of facilities in the rectangle,
2. a distance for each portal p to the nearest facility in the rectangle, and
3. a distance for each portal p to the nearest facility outside the rectangle, if one

exists that is nearer to p than all facilities inside the rectangle.

Every triple of this sort defines a subproblem. Given a subproblem which is
indexed by f for the number of facilities and is defined on a rectangle R, a solution
will be a set of f facilities among the points in R and a portal-respecting path from
each point in R to one of the facilities in R or to a portal on the boundary. The table
entry corresponding to the subproblem will store the minimum service cost under the
given constraints. Recall from section 3 that the decomposition stops as soon as a
rectangle is produced that contains no facilities. Formally, a leaf of the decomposition
is a rectangle R which has been produced by the decomposition, such that either
(i) R contains one point and this point is an open facility or (ii) R is a rectangle that
contains at least one point and no facilities.

The enumeration of the distances happens by using the inside and closest func-
tions on the portals as defined in [3]. In order to save on the size of the table the
definitions of the two functions follow three rules, as in [3]. We present them first,
establish their validity, and then provide the definitions that implement them.

Rule 1. We will only approximate the distances to the nearest facility inside and
outside of a rectangle R to a precision of s/m for a rectangle of sidelength s.

Rule 2. As far as the distance from a portal p to the closest facility is concerned
we do not consider distances of more than 6s. Clearly the distance from a portal p
on the boundary of R to the nearest facility within R cannot exceed 2s. Therefore
this rule affects only assignments to the outside of R, i.e., the upcoming definition of
the closest function. We want to ensure that no assignments are lost for the dynamic
program. A key remark is that a portal p is assigned to a facility η outside R only if
all facilities within R (if such exist) are further from p than η. Therefore if R contains
some facility, any facility outside R at a distance of more than 2s is of no interest to
the points in R. If R contains no facilities, it is a leaf of the decomposition. This leaf
rectangle must have been produced by Cutrectangle-new. Let R′ be the parent
rectangle that was cut. R′ −R must contain some facility, or else R′ itself must have
been a leaf. The sidelength s of R is at least one third the sidelength of R′. Hence by
a generous estimate there is a facility at distance at most 6s from every portal of R.

Rule 3. It suffices for neighboring portals to represent distances as offsets from
the previous distance. This is o.k. because the distance value at a portal changes only
by a constant from the distance value at an adjacent portal.

We are now ready to give the definitions of the inside and closest functions as
in [3]. Let Π be a subproblem defined on rectangle R, and let Π be indexed by a
number of facilities f ∈ [0, k]. For a portal p, inside (closest) encodes the distance to
the nearest facility to p within (outside) R, subject to Rules 1, 2, and 3.

• If f = 0, we set inside(p) = ∞ for every portal p on the boundary of R. This
should happen for all R that are leaves of the decomposition.

• If f > 0, we define an assignment inside of numbers [1, . . . , 4m] to the portals
of R, such that |inside(p) − inside(p′)| ≤ 1 if portals p and p′ are successive
along the boundary of R. The domain of the assignment expresses Rule 1,
i.e., the precision of the distances. The condition on the difference expresses
Rule 3; i.e., we represent distances as offsets from the previous distance.
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• If f < k, we define an assignment closest of numbers [1, . . . , 4m] to the
portals of R, such that (i) |closest(p)− closest(p′)| ≤ 1 if portals p and p′ are
successive along the boundary of R and (ii) closest(p) < inside(p). Since by
Rule 2 above, we can always assume that there is a facility within distance 6s
from p, the definition can fail only if one such facility within R is the nearest
to p, i.e., when condition (ii) fails. In this case we set closest(p) = ∞.

• If f = k, we set closest(p) = ∞ for every portal p on the boundary of R.

By the three rules above, as far as the distances are concerned we need only to
guess O(m) bits per entry. Taking into account the guess for the number of facilities
the total number of table entries (subproblems) corresponding to each allowable rect-
angle is bounded by k2O(m). We bound the table size by noting that the total number
of allowable rectangles is, by Lemma 7, at most O(m4n log n). Thus, we can bound
the total number of entries in the table by k2O(m)n log n.

5.2. Computing the table entries. With respect to the recursive decompo-
sition defined by the Modified Structure Theorem every subproblem defined on a
rectangle R has one or two children subproblems, the number depending on which
process, Cutrectangle-new or Subrectangle-new, is applied. The solution for a
subproblem Π defined on rectangle R is computed by looking at children subproblems
whose interaction patterns match with the interaction pattern of Π. The recursion
height of any subproblem defined on R is equal to the maximum length of a path lead-
ing to a leaf of the decomposition in the tree representing the dissection defined by the
Modified Structure Theorem. The maximum recursion height is obviously O(log n).
Based on which process is applied, we are looking for either (i) a pair of subproblems
defined on two allowable subrectangles that cover R and whose total number of facili-
ties equals that of Π or (ii) a subproblem defined on a single allowable subrectangle of
R whose number of facilities equals that of R. Among the matching combinations we
select the one of minimum cost, where the cost is computed as follows. After fixing
the values of the inside and closest functions on the portals of Π, for every point in R,
we know the location of the nearest facility, either within R or outside. For a portal
p on the boundary of R let n(p) be the total number of points assigned to p, i.e., the
total number of points that are served by a facility on the outside via p. Similarly to
[3], the cost of Π equals the total assignment cost within R plus

∑

portals p

closest(p)n(p)(s/m).

An important difference of our scheme from [3] is that we cannot a priori compute
the randomly shifted dissection and then apply dynamic programming on the rect-
angles of the dissection. Because of the Subrectangle-new process, for any given
subproblem we have to enumerate all possible outputs of either the Subrectangle-

new process or all different cuttings of the Cutrectangle-new process. This gives
rise to two different types of algorithmic steps, one for each case. Fortunately, by
Lemma 7 the total number of rectangles to be enumerated throughout the dynamic
program is O(m4n log n).

Let R be a rectangle of sidelength s at height i of the recursion, and assume
inductively that the algorithm has solved all subproblems at height i− 1. Consider a
subproblem Π defined on R and let Π be indexed by a number f of facilities. We now
give the details of the algorithm’s steps.
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Application of Subrectangle-new. To capture the outcome of Subrectangle-

new the algorithm enumerates all possible subproblems on allowable subrectangles
Ru of R such that the following hold.

S1. The number of facilities open in R and Ru is equal to f.
S2. For each portal p of R there is a portal p′ of Ru such that d(p, p′)+inside(p′)(su/m)

≤ inside(p)(s/m). Here su denotes the sidelength of Ru, with su ≤ s.
S3. For each portal p of Ru there is a portal p′ of R such that d(p, p′)+(s/m)closest(p′)

≤ closest(p)(su/m).

There does not seem to be a way to look up the cost of R, say, as a function of
the cost of the chosen Ru. Moreover, the number of possible candidates for Ru could
be large; we need to consider candidates of arbitrarily small sidelength. We take the
inverse view and enumerate the work done for each allowable rectangle S when it is
considered as a subrectangle of some R. The argument that follows is due to J. Remy.

For fixed t, any rectangle S is contained in O(1) t-allowable rectangles of con-
stant aspect ratio. Therefore, a fixed S is considered as a subrectangle O(log n)
times. Therefore, by Lemma 7 the total number of subrectangles, not necessarily dis-
tinct, that the dynamic program needs to enumerate is O(m4n log2 n). For every such
occurrence of S in the dynamic program we enumerate all the interaction patterns
and the possible number of facilities, which yields k2O(m) subproblems. We proceed
to bound the running time for each subproblem involving a rectangle R containing S.

A subproblem defined on S specifies the positions of facilities within R (up to an
additive sidelength(S)/m factor). We want to assign the points in R to the closest
facility within S or outside R without paying time proportional to the number of points
in R. The intuition behind the proof is that a higher additive error on the assignment
can be tolerated for points in R \ S that are “far” from S. The adaptive dissection
suggests at a high level guessing the rectangle S and accordingly the location of
facilities within R. To assign the points efficiently, the algorithm will be also adaptive
at a much lower level and tune the accuracy of the assignment for the different points.

Lemma 8 (due to J. Remy). Let ΠR and ΠS be two subproblems defined on
rectangles R and S where S is contained in R. The two subproblems agree as in S1–
S3 above. Let G be the assignment of every point in R to its closest facility where the
locations of facilities are specified by ΠR and ΠS . We can compute an assignment G′

such that the service cost of each point p has an additive error of O(1/m) times the
modified service cost of p in G. G′ and its total cost can be computed in O(m4 log2 n)
time worst-case.

Proof. The construction uses some ideas similar to the ones in [26]. We partition
the area of R \ S into rectangular moats M1,M2, . . . . Moat M1 is a 2d-shape created
by surrounding S by a rectangle S′ that strictly contains S and then removes S. Moat
Mi+1 is the area remaining from a rectangle surrounding moat Mi after (

⋃
j≤i Mj)∪S

has been removed. The radius ri of moat Mi is the maximum distance of an outer
vertical (or horizontal) side from the nearest vertical (horizontal) side of S. The radii
are set to be geometrically increasing with ri = sidelength(S)(1+1/m)i, i = 1, 2, . . . .
Any outer vertical (horizontal) side of Mi is at the maximum distance that does not
exceed ri from the closest vertical (horizontal) side of S. Hence a side at a distance
less than ri will fall on the boundary of R. See Figure 6 for an illustration. If the
area left uncovered in R at some point of the process is not wide enough to become a
moat by itself, we append it to the last moat produced and terminate. The number
of moats is O (m log(sidelength(R) − sidelength(S))) = O(m log n).
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Fig. 6. Illustration of the moat construction process. If all sides of S are equidistant from the
sides of R, each of the moats will be topologically equivalent to an annulus.

Each moat Mi is divided into O(m2) rectangular cells whose sides are each
Θ(ri/m) long. See Figure 7. The total number of cells across all moats is O(m3 log n).
For every point in R \ S we have to try O(m) portals on the boundaries of S and R
to find the closest facility. The algorithm identifies all points within a cell C with the
center of the cell and assigns them to the same portal. We calculate now the error
induced by this collapsing of points. For a point p in cell C of moat Ml, let d1 be its
distance from the nearest portal on the boundary of S. The estimated distance d′1 for
all points in the cell to the closest portal on the boundary of S will be at most

d1 + O(sidelength(C)) ≤ d1 + O

(
max{(1 + 1/m)d1, (1 + 1/m)sidelength(S)}

m

)

= d1 + O(1/m) max{d1, sidelength(S)}.
The second term in the max expression above is needed for points in M1. For the
same point p let d2 be its distance from the nearest portal on the boundary of R.
In the worst case the distortion is maximized when Ml is the outer moat, i.e., the
one touching the boundary of R. The estimated distance after collapsing p will be
at most d2 + O(sidelength(C)) ≤ d2 + O(sidelength(R)/m) which is fine since the
modified service cost through a portal on the boundary of R is already distorted by
O(sidelength(R)/m).

The total cost of assigning the points in R\S is the weighted sum of the assignment
costs of the cells where the cost for each cell is weighted by the number of points in the
cell. Computing this number can be done by orthogonal range searching techniques
in O(log n) time per cell (see [1]) after an O(n log n) global preprocessing. Therefore,
the total running time is O(m4 log2 n).

Remark 5. The analogue of Lemma 8 holds in d-dimensional space. The number
of cells is O(Md+1 log n), where M is the number of portals maintained on each face
of a parallelepiped. The range searching query time increases by a multiplicative
O(logd−2 n) factor [1]. The running time becomes O(Md+2 logd n).
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M1

M2

S

Fig. 7. Illustration of the cell construction process.

By Lemma 8 and the previous discussion the total computation time of the dy-
namic program due to Subrectangle-new is

Total time due to Subrectangle-new

= (Time per entry) × (number of entries)

= O(m4 log2 n) × k2O(m)n log2 n = O(k2O(m)n log4 n).(2)

This bound can be improved by amortization. By Lemma 7, the number of
allowable rectangles that contain k or more points is O(m4(n/k) log n). If an allowable
rectangle S contains fewer than l < k points from N, we need only to keep l2O(m) table
entries for it, since at most l facilities can be placed inside it. Moreover, the number
of allowable rectangles containing between l and 2l points is shown by Lemma 7 to be
O(m4(n/l) log n). We can now bound the total time due to Subrectangle-new by

O(m4 log2 n) ×
(
k2O(m)(n/k) log2 n +

l<k∑

l=2i

l2O(m)(n/l) log2 n

)

= 2O(m)n log4 n log k.

(3)

Application of Cutrectangle-new. The algorithm enumerates also all possible
cuttings of R according to the Cutrectangle-new process. It looks for combina-
tions of subrectangles R1, R2 of R whose interaction patterns match those of Π. The
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details are similar to the method outlined in [3], where four children rectangles are
considered instead of two. In particular, the algorithm enumerates pairs of subprob-
lems defined on allowable rectangles R1, R2 that partition R, fulfill the sidelength
requirements of Cutrectangle-new, and in addition fulfill the following.
C1. The sum of the number of facilities in R1 and R2 equals f.
C2. For each portal p of R there is a portal p′ on one of R1, R2 (call it R′) such that

d(p, p′) + inside(p′)(s′/m) ≤ inside(p)(s/m). Here s′ is the sidelength of R′,
with s′ ≥ s/3.

C3. For each portal p of Rj , j = 1, 2, there is either (i) a portal p′ on one of R1, R2

(call it R′) such that d(p, p′) + inside(p′)(s′/m) ≤ closest(p)(s(j)/m) or (ii)
a portal p′ of R such that d(p, p′) + closest(p′)(s/m) ≤ closest(p)(s(j)/m).
Here s(j) is the sidelength of Rj .

The total number of combinations of subrectangles and interaction patterns to
consider for Π, due to Cutrectangle-new, is 2O(m). We also need to search over all
possible splits of the facilities across pairs of subrectangles which gives an additional k
factor. Therefore, the total number of subproblems needed to determine the value for
the entry of subproblem Π is k2O(m). In contrast to the Subrectangle-new case,
computing the cost of every combination can be done via lookup. For every pair of
children subproblems that fulfill C1–C3, the cost of Π is equal to the sum of the two
costs. We have that

Total time due to Cutrectangle-new

= (Time per entry) × (number of entries)

= k2O(m) × k2O(m)n log n = O(k22O(m)n log n).(4)

Again we can improve the total time to O(k2O(m)n log k log n) by amortization.
By Lemma 7, the number of allowable rectangles that contain k or more points is
O(m4(n/k) log n). If an allowable rectangle contains fewer than l < k points from N,
we need only to keep l2O(m) entries for it, since at most l facilities can be placed inside
it. Moreover, the number of allowable rectangles containing between l and 2l points
is shown by Lemma 7 to be O(m4(n/l) log n). We can now bound the total number
of table entries by

(5) k2O(m)O(m4(n/k) log n) +

l<k∑

l=2i

2O(m)O(m4(n/l) log n)l = O(2O(m)n log k log n).

By (4), (5) the total running time due to Cutrectangle-new is

(6) O(k2O(m)n log2 n).

By (3) and (6) the total running time of the algorithm is O(max{k, log3 n}
2O(m)n log2 n) in the worst case.

5.3. Improving the dependence on k. In a second approach, we can further
replace the factor of k with a factor that depends only on m and logn. The idea is to
use indexing according to approximate cost. In this approach, the table entries are
indexed by

1. the total cost of the solution corresponding to the service cost required by the
clients (points) of the rectangle (this cost includes the possible assignments
of points to facilities outside the rectangle via the appropriate portals),
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2. a distance for each portal p to the nearest facility in the rectangle, and
3. a distance for each portal p to the nearest facility outside the rectangle if one

exists that is nearer to p than all facilities inside the rectangle.
The value of a table entry is the minimum number of facilities required inside the
rectangle to find a solution with the corresponding cost and interaction pattern. Nat-
urally, we disregard subproblems indexed by cost values that are too small to be
attainable with no more than k facilities.

How many different cost indexes are there? Given our initial assumption about
the points lying on a grid of polynomial size, the total number of interesting cost values
is polynomial in n. We quantize them further by considering only cost values that are
powers of (1 + δ). Then the number of distinct cost values becomes Θ(log1+δ n). The
effect of this quantizing is that for a single subproblem we approximate only its cost
value to within a factor of (1 + δ). These approximations pile up multiplicatively
over the O(log n) levels of the decomposition. To offset this effect we choose δ to be
Θ(m−1/ log n). The total number of cost indexes is then Θ(m log2 n). Accordingly,
the total number of table entries is (log2 n)2O(m)n log n = 2O(m)n log3 n.

Under the cost quantizing, the intended meaning of the table values is the follow-
ing. Let an entry be indexed by cost C = (1 + δ)y and some interaction pattern. Let
this entry correspond to height i of the recursion. The value f in the entry means
that the minimum number of facilities to achieve cost at most C/(1 + δ)i is at least
f + 1. In Lemma 9 below we will show that this intention can indeed be achieved.
Computing an entry involves searching over combinations of subrectangles, matching
interaction patterns, and cost splits, and choosing the combination that requires the
minimum number of facilities in order to be realized. As before, the number of match-
ing interaction patterns and subrectangles to be considered is 2O(m) per table entry.
The dynamic program computes entries defined on the same rectangle and with the
same interaction pattern by increasing order of cost index.

For the number of cost splits we reason as follows. Given a subproblem on a
rectangle R indexed by interaction pattern P and cost C one needs to consider all
three cases that follow. Cost-Split Case (i): All subproblems on R indexed by the
same interaction pattern P and with costs less than C. Cost-Split Case (ii): Due to
the Subrectangle-new process, all subproblems defined on subrectangles of R with
matching interaction pattern and costs less than or equal to C. Note that we might
also consider cost equal to C if the subrectangle might contain all the points of R.
Cost-Split Case (iii): Due to the Cutrectangle-new, all cost splits C1, C2, across
a pair of rectangles with appropriate interaction patterns, such that C1 + C2 = C.
The minimum number of facilities between (i), (ii), and (iii) will give the value for
the entry. Because everything is quantized at powers of (1 + δ), sums get distorted.
Therefore, for (iii), instead of considering all cost splits such that C1 + C2 = C, we
consider C1, C2 such that

C/(1 + δ) < C1 + C2 ≤ C.

The number of such splits is proportional to the total number of distinct cost values,
i.e., O(m log2 n).

To obtain the new running times we make the necessary changes to (2) and (4). In
(4) the k factor is replaced throughout with O(m log2 n), yielding time O(2O(m)n log5 n).
In (2) the corresponding number of entries is proportional to the square of the to-
tal number of cost values. Therefore the total time due to Subrectangle-new

is O(2O(m)n log8 n). Taking the maximum over the Subrectangle-new and the
Cutrectangle-new processes yields a worst-case running time of O(2O(m)n log8 n).
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Now, we should argue that at each level the table entry corresponds to the min-
imum number of facilities that achieve the specified connection cost or better. This
follows easily from the following lemma.

Lemma 9. If the table entry for a subproblem Π, which is indexed by cost C, is
filled with the number f , then there exists a set of f facilities within the corresponding
rectangle and a portal-respecting assignment of points to facilities that satisfies the
interaction patterns such that the total cost is no more than C. Furthermore, there
is no portal-respecting solution for Π that (i) uses fewer facilities and (ii) has actual
service cost less than or equal to C/(1 + δ)i, where i is the recursion height of the
subproblem Π.

Proof. We use induction on i. It is easy to compute table entries for rectangles that
are leaves of the decomposition. Then, we inductively assume the lemma and note
that the first part holds by construction. For the second part we consider the way the
dynamic program computed the entry for Π. Let R be the corresponding rectangle.
For the sake of contradiction assume that there is a better solution for Π, i.e., one
with g < f facilities and cost C∗ ≤ C/(1 + δ)i. Among these solutions, choose the
one that minimizes g. By our (Modified) Structure Theorem it must be decomposable
either via Subrectangle-new into a subproblem Πu or via Cutrectangle-new

into two subproblems Π1,Π2.
In the first case, let Ru be the subrectangle of R on which Πu is defined, and let

Cu ≤ C be the minimum cost for which Πu admits a solution with g facilities. The
cost C∗ equals Cu plus the assignment cost of the points in R − Ru. By induction
there is a computed entry for Πu filled with the value g and indexed by cost C ′

u ≤
(1 + δ)i−1Cu ≤ (1 + δ)i−1C∗ ≤ C/(1 + δ). Πu will be examined by the dynamic
program as per Cost-Split Case (ii) above. This contradicts the fact that the dynamic
program missed the solution with the g facilities.

In the second case, this better solution is defined by combining the solutions to the
two subproblems Π1 and Π2. Then, by induction we have solutions with the correct
number of facilities in the entries for Π1 and Π2 which are indexed by the appropriate
approximate cost; i.e., the table entries are indexed by costs C1 and C2 that are at
most (1 + δ)i−1 times the actual assignment cost for each subproblem. We show that
at combination one can further lose an additional factor of at most (1 + δ). Let Γ be
the smallest power of (1+δ) such that C1 +C2 ≤ Γ. The idea is that this combination
of Π1 and Π2 with actual service cost at most C1 + C2 will be considered by any
subproblem, with appropriate interaction pattern, defined on R at recursion height i
and whose cost index is at least Γ. In particular, we have that

Γ ≤ (1 + δ)(C1 + C2) ≤ (1 + δ)iC∗ ≤ C.

If Γ < C (recall that C is also a power of (1 + δ)), the induction step gives us
that the combination was examined as per Cost-Split Case (iii) when filling out the
entry of the subproblem on R, with the same interaction pattern as Π but indexed
by cost Γ. Therefore, it will be available when filling out the entry for Π and will be
examined as per Cost-Split Case (i), which is a contradiction.

If Γ = C, we have that C/(1+ δ) < C1 +C2 ≤ C. Therefore, the combination will
be examined when filling out the entry for Π as per Cost-Split Case (iii). Again this
contradicts the fact that the dynamic program missed this solution.

We are now ready to state the main result of the paper.
Theorem 3. Given an instance of the k-median problem in the 2-dimensional

Euclidean space, and any fixed m > 0, there are randomized algorithms that compute
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a (1 + O(log(m)/m))-approximation, in expectation, with worst-case running times
O(2O(m)n log8 n) and O(2O(m) max{k, log3 n}n log2 n), respectively.

Repeating the algorithm O(m log n) times gives a (1 + O(log(m)/m)) approxi-
mation guarantee with probability 1 − o(1). The algorithm can be easily extended
to instances in the d-dimensional Euclidean space. The main difference is that now
we work with rectangular parallelepipeds whose faces lie on i-allowable hyperplanes.
As a consequence the bound given in Lemma 7 increases by an O(m2d−4) factor and
in the dynamic program we have to maintain data for each of the 2d faces of each
parallelepiped where each face contains md−1 portals. Moreover, the increased cost
for range searching in Lemma 8 has to be taken into account. Following the same
steps as in the proof of Theorem 3, we obtain the following.

Theorem 4. Given an instance of the k-median problem in the d-dimensional
Euclidean space, and any fixed m > 0, there are randomized algorithms that compute
a (1 + O(log(m)/m))-approximation, in expectation, with worst-case running times

O(2O(md−1)n logd+6 n) and O(2O(md−1) max{k, logd+1 n}n log2 n), respectively.

For any given accuracy ε > 0, we want ln(m)/m ≤ cε, where m is the number
of portals and c an appropriately small constant. Let us assume c = 1, since we can
always decrease the given value of ε. Using the computer algebra package Maple [7]
we obtain that for m = ln(1/ε)/(0.5ε), ln(m)/m ≤ ε for any ε ∈ (0, 0.5), while at the
same time m > 2. On the other hand, setting m = 3 always yields an error less than
0.5. Therefore, the asymptotic number of portals required for an accuracy of ε in the
objective is

O(log(1/ε)/ε).

We obtain the following reinterpretation of Theorem 4.

Theorem 5. Given an instance of the k-median problem in the d-dimensional
Euclidean space, and any fixed ε > 0, there are randomized algorithms that compute
a (1 + ε)-approximation, in expectation, with worst-case running times

O
(
2O(( log(1/ε)

ε )d−1)n logd+6 n
)

and O
(
2O(( log(1/ε)

ε )d−1) max{k, logd+1 n}n log2 n
)
.

5.4. Uncapacitated facility location. In this section we extend the results
to uncapacitated facility location. Our structure theorems clearly hold as far as the
service cost is concerned. We need to implement a dynamic programming algorithm
that also keeps track of the facility cost. In order to be able to preprocess the points
so that they lie on a polynomial-size grid, we need the existence of a polynomial-factor
approximation for the service cost as explained in section 2. The discussion below is
predicated on such an estimate being available.

The second approach for the k-median problem enumerated the service cost and
computed for each service cost value the corresponding minimum number of facilities.
The analogue here is to compute the minimum facility cost. This yields an algorithm
that computes a (1 + ε)-approximation in expectation with worst-case running time

O
(
2O(( log(1/ε)

ε )d−1)n logd+6 n
)
.

Note that the latter time bound holds without any assumption on the range of the
facility costs.
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1. Introduction. In this paper, we use the notion of a graph product to define
a graph called the hypercube of cliques which is the product of an N/ logN -node
hypercube and a logN -node clique (also known as a complete graph). We then show
that an N -node hypercube of cliques can be embedded into an N -node hypercube
with load 1 and constant dilation and congestion. As a consequence, we find that
the hypercube has even stronger structural, algorithmic, and fault-tolerant properties
than previously realized.

To clarify terminology, an embedding σ of a network F into a network G is a
mapping of nodes of F to nodes of G and edges of F to paths in G such that the
endpoints of the path σ(e) for any edge e = (u, v) in F are σ(u) and σ(v). The load of
an embedding is the maximum number of nodes of F assigned to any one node of G.
The dilation is the maximum length in G of the image of an edge of F . The congestion
of an edge of G is the number of edges of F whose image passes through the edge of
G. The congestion of the embedding is the maximum congestion of any edge.

We denote the N -node (or n-dimensional) hypercube by HN where N = 2n

throughout. We denote the S-node clique by KS . We define the N -node hypercube of
cliques PN as the product of HN/2s with K2s , where s = �log(n+ 1)�. Formally, this
is written as PN = HN/2s ⊗K2s . The ⊗ operator will be defined in the next section.
For the purposes of the introduction, PN can be formed from HN by inserting an
edge between any pair of nodes whose first n − s bits of address are the same. Note
that for any (n − s)-bit binary string there are 2s such nodes which are completely
connected.
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Obviously, HN is a subgraph of PN . But can PN be nicely embedded into HN?
From the above characterization of PN , it is clear that one could embed PN into HN

with constant load given a constant-load embedding of a 2s-node clique into a 2s-node
hypercube.

But, of course, any constant-load embedding of K2s into H2s must have congestion
at least Ω(2s/s) = Ω(n/ log n) and dilation at least Ω(s) = Ω(log n).

In spite of this, we show that it is possible to construct an embedding of PN

in HN with load 1, dilation O(1), and congestion O(1). The embedding is described
in section 2 and makes use of 1-error-correcting codes in order to map the cliques
of PN to “stars” in HN . Roughly speaking, a star consists of a node u whose binary
address is a codeword together with its neighbors in the hypercube. The fact that
hypercubes can be partitioned into stars corresponding to codewords is well known
and has been exploited in many previous papers [2, 14, 18, 20].

In addition to mapping the cliques of PN to the stars of HN , we must find
paths between the stars in HN such that the stars have the connectivity of a lower
dimensional hypercube. In order to find the paths, we devise an algorithm to find
1-error-correcting codes with two properties: (1) any one bit of the cleartext affects
only a constant number of bits of the codeword (i.e., the codes are length preserving),
and (2) any one bit of the codeword is a function of only a constant number of bits
of the cleartext. It is well known how to generate codes with the first property. This
property ensures that our embedding has constant dilation. The second property is
novel to this paper, and it guarantees that the embedding has constant congestion.
To the best of our knowledge, codes satisfying the latter property were not previously
studied prior to the preliminary version of this paper [1].

As a consequence of proving that PN can be nicely embedded in HN , we can
resolve several problems concerning hypercube embeddings and robustness. For ex-
ample, an immediate corollary is the fact that an O(logN)-dilated N -node butterfly
can be embedded in an N -node hypercube with constant load, congestion, and di-
lation. (A network is said to be k-dilated if every edge is replaced with k parallel
edges.1) The O(logN)-dilated butterfly is a powerful network for circuit-switched
routing [2], and packet-switched routing [16]. The best previously known embeddings
of this network in HN have dilation Ω(logN) [2, 12] or congestion Ω(logN).

In section 3, we give several algorithms for embedding trees in hypercubes. First,
in section 3.1, we prove a general tree compression lemma. A similar lemma using
different techniques can be found in [10]. Then in section 3.2 we use the tree com-
pression lemma and the embedding of PN into HN to improve the results of Bhatt
et al. [6], and Greenberg and Bhatt [12]. In particular, we show how to (off-line)
embed any O(logN)-dilated M -node binary tree into an N -node hypercube with
O((M/N)+1) load and O(1) congestion and dilation. Embedding a O(logN)-dilated
tree into a hypercube is useful for simulating tree algorithms on a hypercube. If the
interprocessor messages of the tree algorithm are large, say of Ω(log2 N) length, then
one might be able to achieve an O(logN) speedup by breaking up the messages into
O(logN) pieces and sending each piece on a different path. Alternatively, by using
Reed–Solomon codes to break up the messages into O(logN) packets and sending
each packet along a different path, as done by Rabin [22] for hypercube routing, one
may be able to simulate the tree algorithm in the presence of edge faults. The off-line
embeddings of Bhatt et al. [6] apply only to undilated trees and require M = O(N)

1Note that k-dilated and O(k) dilation sound similar but have very different meanings. An
embedding has O(k) dilation if every edge of the embedded graph is stretched across at most O(k)
edges by the embedding.
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in order to achieve constant load and congestion. While Greenberg and Bhatt [12]
are able to embed logN -dilated grids into the hypercube with constant load, dilation,
and congestion, their embedding of logN -dilated trees has dilation Θ(log logN) and
requires M = O(N) to achieve constant load and Θ(log logN) congestion.

In section 3.3 we show how to dynamically (on-line) embed any M -node binary
tree in an N -node hypercube with O((M/N) + 1) load, O((M/N logN) + 1) conges-
tion, and O(1) dilation. Dynamic embeddings are important since, for many parallel
algorithms with tree structure, the growth pattern and eventual shape of the tree are
dependent on the input and are not known at compile-time. Our dynamic embed-
ding improves upon the on-line embedding of Leighton et al. [18] which has the same
(optimal) load and dilation but congestion Θ((M/N) + 1) which is only optimal for
M = O(N).

In section 4 we apply our embedding of PN into HN to the problem of recon-
figuring a hypercube around faults. Previously, Hastad, Leighton, and Newman [14]
showed that if each component of HN fails independently with any constant proba-
bility p < 1, then the functioning parts of the hypercube can be reconfigured using
only local control to simulate the original hypercube with constant slowdown. The
reconfiguration algorithm of [14] is probabilistic and runs in polylogarithmic time. In
section 4.1, we show how to embed PN in HN with constant load, congestion, and
dilation, even if the nodes and edges of HN fail with some small constant probability
p ≤ p0. Since HN is a subgraph of PN , this effectively reconfigures HN . Our embed-
ding algorithm is deterministic and uses only O(logN) rounds of communication.

In section 4.2 we extend the reconfiguration algorithm to work for any faulty hy-
percube containing up to logO(1) N worst-case faults. Previously, Bruck, Cypher,
and Soroker [9] had shown that an N -node hypercube with logO(1) N worst-case
faults can implement certain restricted hypercube computations with constant slow-
down. The best previous general simulations were by Becker and Simon [4] and
Livingston et al. [11] and can tolerate only O(log logN) worst-case faults. To obtain

the logO(1) N -fault bound we define the r-fold hypercube of cliques, PN,r, as

PN,r = HN/2sr ⊗
r︷ ︸︸ ︷

K2s ⊗ · · · ⊗K2s ,

where s = Θ(logn) is defined in the next section. For constant r, we show that PN,r

can be embedded in HN with constant load, dilation, and congestion. We then prove
that PN,r can tolerate O(logr−1 N) faults. No upperbound is known on the number
of worst-case faults that a hypercube can reconfigure around. We leave tight bounds
on the number of worst-case faults as an interesting subject for future research.

Subsequent to [1], Kaklamanis, Krizanc, and Rao [15] have used the fact that
PN,r can be embedded into HN with constant load, dilation, and congestion to show
that HN can emulate any constant-degree planar graph with constant slowdown.

2. Embedding HN/2s ⊗ K2s into HN . The main result of this section is an
embedding of the N -node hypercube of cliques PN = HN/2s⊗K2s , s = �log(logN+1)�
into the N -node hypercube. The embedding has load 1 and constant congestion and
dilation. Hence, HN can simulate the PN with a constant factor slowdown.

By virtue of the embedding, the hypercube of cliques is no more powerful than
the hypercube. Nonetheless, several routing, embedding, and robustness problems are
conceptually easier to solve when viewed on the hypercube of cliques. These will be
dealt with in later sections.
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Fig. 1. H2 ⊗K4 = P8.

Before we can state our main theorems, we need the following notation. Given
two graphs, G = (V,E) and G′ = (V ′, E′), define the product graph G⊗G′ to have a
vertex set which is the cartesian product of V and V ′ and to have an edge set which
is the union of “G edges”

{(〈v, s′〉, 〈u, s′〉) | (v, u) ∈ E, s′ ∈ V ′}
and “G′ edges”

{(〈s, v′〉, 〈s, u′〉) | s ∈ V, (v′, u′) ∈ E′}.
G(2) will denote G⊗G, and more generally, G(r) is G taken as a product with itself
r times, r ≥ 1.

We will denote the interval of consecutive integers from a to b inclusive by [a, b].
Let N = 2n. The complete graph on S vertices KS has vertex set [0, S − 1] and edge
set {(i, j) | 0 ≤ i 
= j ≤ S − 1}. The N -node hypercube HN is a network with vertex
set {0, 1}n. The edges of the network are between nodes whose labels differ by one
bit. In what follows we will use the notation u(j) to denote the jth bit of u ∈ {0, 1}n,
j ∈ [1, n]. For A ⊂ [1, n] we define uA to be the node such that uA(k) = 1− u(k) for
k ∈ A and uA(k) = u(k) for k 
∈ A. Define AΔB to be the symmetric difference of A
and B, i.e., AΔB = A∪B−A∩B. Then (uA)B is equivalent to uAΔB . When A has
small cardinality we will often omit its brackets, e.g., u{j} will be written as uj and
denotes the node adjacent to u across the jth dimension of the hypercube. Since bit
positions of a hypercube address start at 1, u0 will mean uφ which, of course, is just
u. The hypercube edges are the set {(u, uj)}, where u ∈ {0, 1}n and j ∈ [1, n]. It is

well known that H2n = H
(n)

2 .
Define the hypercube of cliques with N = 2n nodes, PN , as the product graph

H2n−s ⊗ K2s , where s = �log(n + 1)�. Note that if n = 2k − 1 for some positive
integer k, then s = k. Furthermore, s = k for the 2k values of n in the range
2k − 1 ≤ n < 2k+1 − 1. The edges of PN are the union of the “complete graph
edges” {(〈v, i〉, 〈v, j〉) | v ∈ {0, 1}n−s, 0 ≤ i 
= j ≤ 2s − 1} and the “hypercube edges”
{(〈v, i〉, 〈vj , i〉) | v ∈ {0, 1}n−s, i ∈ [0, 2s−1], j ∈ [1, n−s]}. The hypercube of cliques
for n = 3 = 22 − 1 is shown in Figure 1.

In addition to embedding the hypercube of cliques into a hypercube of the same
size, we will also embed the r-fold hypercube of cliques, defined below, into a hypercube
of the same size. The r-fold hypercube of cliques with N = 2n nodes, PN,r, is defined

as HN/2rs ⊗K
(r)
2s , where s is the largest integer such that 2s − 1 + (r − 1)s ≤ n.

The embedding of PN into HN relies crucially on the notion of a star partition.
This in turn relies on perfect 1-error-correcting codes which were first constructed
by Hamming [13] for binary strings of length 2k − k − 1 for some integer k. More
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specifically, Hamming showed that there is a mapping g from words m of length
2k − k− 1 to codewords g(m) of length 2k − 1 such that every string of length 2k − 1
is either a codeword or Hamming distance 1 from exactly one codeword.

To describe the mapping g, define Ck to be the k by 2k − 1 matrix where the
columns are all the binary strings of length k except for the all-zero string. Consider
strings of length l as column vectors in the vector space GF (2)l. That is, vector
addition is simply bitwise exclusive-or, and matrix-vector multiplication occurs with
the vector on the right. It is a property of perfect 1-error-correcting codes that
Ck · y = 0 iff y is a codeword, i.e., iff y = g(m) for some m. That is, the nullspace of
Ck consists precisely of the codewords. It is well known that the nullspace of Ck has
dimension 2k − k− 1 and so has a basis set B = {v1, . . . , v2k−k−1} of 2k − k− 1 basis
vectors. We will also let B denote the natural 2k − 1 by 2k − k− 1 matrix formed by
the column vectors vi. Given a basis B, the following mapping g clearly generates all
the codewords of length 2k − 1 from strings m of length 2k − k − 1:

g(m) = B ·m.

Consider the following measures of a basis. Let the weight of a vector (column) be
the number of 1’s in the vector. Define the height of the basis as the maximum weight
of any vector in the basis. Let the width of a dimension (row) be the number of basis
vectors with a 1 in that dimension. Define the width of the basis as the maximum
width of any dimension.

The lemma below shows that a basis with small height and width yields a good
embedding of PN into HN . After proving this lemma we will show how to find such
a basis.

Lemma 1. Given a basis of the nullspace of Ck with height h and width w for
some k ≥ 2, there is an embedding of H2n−k ⊗K2k into H2n with load 1, dilation h,
and congestion 2w + 2 for all n ≥ 2k − 1.

Proof. Assume we are given a basis B for the nullspace of Ck with height h and
width w for some k ≥ 2, and let g be the the encoding from strings of length η− k to
η defined by B. We will first describe the embedding of H2η−k ⊗K2k = P2η into H2η ,
where η = 2k − 1. We will then show that this embedding can be easily extended to
an embedding of H2n−k ⊗K2k into H2n for all n ≥ η. For simplicity we will treat both
H2η and P2η as directed graphs where each simple edge is replaced by two directed
edges, one in each direction.

Call a node u in H2η a star center if u is a codeword, i.e., if u ∈ {g(m)|m ∈
{0, 1}η−k}. Define a star to be a star center together with all of its neighbors. Since
g is a perfect 1-error-correcting code, every node in the hypercube is in exactly one
star. That is, the stars partition the nodes of H2η : there are 2η−k stars each with
η + 1 = 2k nodes.

The 2η−k cliques of size 2k in P2η = H2η−k ⊗ K2k will be mapped to the 2η−k

stars of size 2k in H2η . Furthermore, cliques which differ in one dimension in P2η will
be mapped to stars which are “close” in H2η .

Our map from nodes of P2η to nodes of H2η is defined as follows:

〈m, i〉 �→ g(m)i

for m ∈ {0, 1}η−k and i ∈ [0, η]. Observe that each clique is mapped to a unique star
and that each node in a clique is mapped to a unique node in the corresponding star.
Since the stars partition H2η , the embedding is one-to-one and onto.
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Fig. 2. The embedding of clique 0 of H2 ⊗K4 into H8 on the left, and the embedding of clique
1 into H8 on the right.

Embedding the clique edges of P2η is easy. The edge 〈m, 0〉 → 〈m, j〉, j ∈ [1, η], is
mapped to the edge g(m) → g(m)j in H2η . The edge 〈m, i〉 → 〈m, j〉, 1 ≤ i 
= j ≤ η,
is mapped to the path g(m)i → g(m)i,j → g(m)j . It is easy to verify that a directed
edge of H2η is used at most once as the first edge of these paths and at most once as
the second edge. Hence, the directed congestion due to the clique edges of P2η is at
most 2. The mapping of the nodes and clique edges of P8 to H8 is shown in Figure 2.

To embed the hypercube edges of P2η , {〈m, j〉 → 〈mi, j〉 | j ∈ [0, η], i ∈ [1, η−k]},
observe that g(mi) = g(m) ⊕ vi since

g(mi) = B ·mi = (B ·m) ⊕ vi = g(m) ⊕ vi.

This can also be written as g(mi) = g(m)Vi if we let Vi be the indicies of the bits
of vi which are 1. The edge 〈m, j〉 → 〈mi, j〉 is mapped to the path which starts at
g(m)j and goes to g(mi)j by changing the bits indicated by Vi. More formally, let
Vi = {li1 , li2 , . . . , lih′ }, where li1 < li2 < · · · < lih′ . Then the edge 〈m, j〉 ↔ 〈mi, j〉 is
mapped to the path

g(m){j} ↔ g(m){li1}Δ{j} ↔ g(m){li1 ,li2}Δ{j} ↔ · · · ↔ g(m)ViΔ{j} = g(mi)j .

That the dilation for embedding the hypercube edges of P2η is h follows directly
from the embedding above and from the definitions of dilation and height. Note that
h is an upper bound on the dilation for the entire embedding since Hamming codes
must have height at least 3 and the dilation due to the embedding of the clique edges
is just 2.

To bound the congestion in H2η due to the hypercube edges of P2η , consider a
hypercube edge u ↔ uj across dimension j. Let v be a basis vector with a 1 in dimen-
sion j, and further suppose v has 1’s in dimensions V = {l1, . . . , ld, j, ld+2, . . . , lh′},
where l1 < l2 < · · · < ld < j < ld+2 < · · · < lh′ . If we start at node s = u{l1,...,ld} and
take a path defined by changing the dimensions of V in increasing order, we will pass
through the edge u → uj and end up at the node t = u{j,ld+2,...,lh′}. The above path
may be a path of the embedding which passes through u ↔ uj if the appropriate nodes
of P2η have been mapped to s and t. Note that a path, which starts at sj , traverses
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the dimension of V in increasing order, and ends at tj , traverses the edge uj → u. If
the appropriate nodes of P2η have been mapped to sj and tj , then this latter path
will also pass through u ↔ uj . Hence, every basis vector with a 1 in dimension j may
contribute congestion 2 to the edge u ↔ uj . Obviously paths based on basis vectors
which don’t have a 1 in dimension j cannot cause congestion to u ↔ uj since these
paths do not even cross dimension j. Hence, the congestion in H2η due to hypercube
edges of P2η is at most 2w.

This completes the embedding of H2n−k ⊗K2k into H2n for the special case n = η.
To get an embedding of all n ≥ η the following lemma will be useful.

Lemma 2. Given an embedding E of F into G with load l, congestion c, and
dilation d and an embedding E ′ of F ′ into G′ with load l′, congestion c′, and dilation
d′, there is a natural embedding of F ⊗ F ′ into G⊗G′, called the product embedding,
which achieves load equal to ll′, congestion equal to max{cl′, c′l}, and dilation equal
to max{d, d′}.

Proof. The product embedding maps nodes 〈u, u′〉 to 〈E(u), E ′(u′)〉. If an edge
(u, v) of F is mapped to a path (E(u), w1, . . . , wk, E(v)) in G, then the F edge
(〈u, u′〉, 〈v, u′〉) of F ⊗ F ′ is mapped to the path

(〈E(u), E ′(u′)〉, 〈w1, E ′(u′)〉, . . . , 〈wk, E ′(u′)〉, 〈E(v), E ′(u′)〉)
in G ⊗ G′. F ′ edges are mapped similarly. The claimed bounds follow easily from
these mappings.

Since H2n is equivalent to H2 taken as a product with itself n times, it follows
that H2n can be written as the product of two smaller hypercubes. Hence we can
write H2n as H2n−η ⊗ H2η and H2n−k ⊗K2k as H2n−η ⊗ H2η−k ⊗K2k which is just
H2n−η ⊗ P2η . (Recall that we are assuming that n ≥ η and k ≥ 2 so that η − k > 0.)
Now we use the product embedding consisting of the identity embedding of H2n−η into
itself along with the previously described embedding of P2η into H2η . This finishes
the proof of Lemma 1.

Lemma 1 along with a basis B for the nullspace of Ck with constant height and
width for all k would yield an embedding P2n into H2n with load 1 and constant
dilation and congestion for all n. We describe an algorithm for constructing such a
basis in Appendix A where we prove the following.

Lemma 3. A basis of the nullspace of Ck with height 6 and width 9 can be found
in time polynomial in 2k.

Our original bounds in [1] were height 6 and width 28. The width was improved
in [17] to 11 before being further improved to 9 as presented here. Subsequently,
Pritikin [21] improved both the height and the width to 3 and 5, respectively.

For many values of k one can do even better. For example, it is well known that
cyclic codes based on primitive polynomials for GF (2)[x] with degree k and t nonzero
coefficients give a basis for the nullspace of Ck with height t. In Appendix A we give
an easy proof that the width of the basis is also bounded by t. Empirical work has
shown that for most degrees up to 137, the primitive polynomials have three nonzero
coefficients [23]. This means that for most practical values of k, the height and width
are both 3.

Finally, we can state our main theorem.
Theorem 1. There is an embedding of H2n−k⊗K2k into H2n with load 1, dilation

3, and congestion 12 for all k ≥ 2 and n ≥ 2k − 1. For most n ∈ [3, 2137 − 1] the
congestion can be reduced to 8.

As an obvious corollary, P2n can be embedded into H2n with the stated bounds
for n ≥ 3.
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The above theorem can also be used as a base case to yield an embedding for the
r-fold hypercube of cliques.

Theorem 2. There is an embedding of H2n−rk ⊗ K
(r)

2k into H2n with load 1,

dilation 3r, and congestion 12r for all k ≥ 2 and n ≥ 2k − 1 + (r − 1)k.
Proof. The proof will proceed by induction on r. The base case r = 1 is simply

Theorem 1 above. Assume Theorem 2 is true for r ≤ t − 1. Now given an n ≥
2k − 1 + (t− 1)k we will embed H2n−tk ⊗K

(t)

2k into H2n . Note that H2n−tk ⊗K
(t)

2k can

be written as H2(n−k)−(t−1)k ⊗K
(t−1)

2k ⊗K2k . The first two terms in this product can

be embedded into H2n−k by induction since n − k ≥ 2k − 1 + ((t − 1) − 1)k follows
immediately from the assumption that n ≥ 2k − 1 + (t − 1)k. The embedding has

load 1, dilation 3t−1, and congestion 12t−1. Hence, H2n−tk ⊗ K
(t−1)

2k ⊗ K2k can be
embedded into H2n−k ⊗ K2k with load 1, dilation 3t−1, and congestion 12t−1 using
the product embedding. The latter can now be embedded into H2n using the base
case. This multiplies the dilation and congestion by 3 and 12, respectively.

It follows immediately that PN,r can be embedded into HN with load 1 and
constant load and congestion for constant r.

3. Embedding trees into hypercubes.

3.1. The tree compression lemma. This section describes several results on
embedding binary trees into the hypercube. A main tool for these embeddings will be
the following lemma which is proved in Appendix B. A similar lemma using different
techniques appears in [10].

Lemma 4 (the tree compression lemma). For any M -node binary tree T and
any positive integer N < M , it is possible to partition T into N subtrees by removing
N − 1 edges so that every subtree has at most 12M

N + 1 nodes. Furthermore, if each
subtree is considered a single supernode, then the N − 1 removed edges and the N
supernodes form a binary tree.

As our first application of the tree compression lemma, we will generalize the
result of Bhatt et al. [6] who show that any binary tree of size N can be embedded
into HN with load 1, congestion O(1), dilation O(1), and node congestion O(1). By
node congestion we mean the maximum number of paths of the embedding that pass
through a hypercube node.2

Theorem 3. Any M -node binary tree can be embedded into HN with load O(MN +
1), congestion O(1), dilation O(1), and node congestion O(1).

Proof. Given an M -node tree T , M > N , use the tree compression lemma to get
a tree T ′ with N supernodes, each consisting of subtrees of size O(M/N). Now use
the theorem of [6] to embed T ′ into HN . This clearly gives O(1) dilation, congestion,
and node congestion. It also maps one supernode onto each hypercube node which
gives the desired bounds on the load.

3.2. Embedding dilated trees in a hypercube. As our second application of
the tree compression lemma, we will show how to embed O(logN)-dilated binary trees
in a hypercube with constant dilation and congestion. A tree is said to be k-dilated
if every edge is replaced with k edges.

Greenberg and Bhatt [12] studied the problem of embedding N -node, O(logN)-
dilated grids, and O(logN)-dilated trees into HN . Their motivation was as follows. If

2We do not count paths where both endpoints are mapped to the same node. Using such a
definition, one cannot do better than O(M/N) node congestion. Counting paths where one endpoint
is mapped to a node does not change the stated results.
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one is simulating a tree or grid algorithm on a hypercube in which the interprocessor
messages are large, say of Ω(log2 N) length, then one might be able to achieve an
O(logN) speedup by breaking up the messages into O(logN) pieces and sending each
piece on a path which is short and has low congestion. They were able to embed
the O(logN)-dilated grid into HN with O(1) load, congestion, and dilation, but they
were able to achieve only O(log logN) dilation and congestion for O(logN)-dilated
binary trees. In what follows, we show how to achieve O(1) dilation and congestion
for O(logN)-dilated binary trees.

Theorem 4. Any N -node O(logN)-dilated binary tree can be embedded into HN

with O(1) congestion, dilation, and load.
Proof. Let T be an O(logN)-dilated tree with N = 2n nodes. Apply the tree

compression lemma to get an O(logN)-dilated binary tree T ′ with N/2s supernodes,
where as before s = �log(n + 1)�. Each supernode is an O(logN)-dilated subtree of
size O(2s). Let T ′′ be the binary tree derived from T ′ by converting supernodes to
nodes and dilated edges to edges. Below we will embed T ′ into T ′′⊗K2s with dilation
3 and constant load and congestion. This will imply the theorem as follows. T ′′

can be embedded into HN/2s with O(1) load, dilation, and congestion by [6]. Hence
T ′′ ⊗K2s can be embedded into HN/2s ⊗K2s = PN with constant load, dilation, and
congestion by Lemma 2. PN is then embedded into HN by Theorem 1.

Our embedding of T ′ into T ′′ ⊗ K2s is as follows. Each supernode v of T ′ is
embedded into the clique labeled v in T ′′ ⊗K2s . The O(2s) nodes of a supernode v
are assigned evenly to the 2s nodes of clique v to achieve constant load. To analyze
the dilation and congestion we’ll analyze the dilated edges within a supernode and
between supernodes separately.

If two neighbors within supernode v of T ′ are mapped to different nodes of clique
v, then the O(logN) edges in the dilated edge between them are mapped evenly to
the 2s−1 paths of length 1 or 2 between the endpoints in clique v. Note that a pair of
neighbors within supernode v that are mapped to the pair of nodes {x, y} or the pair
{x, z} or the pair {w, y} in clique v contribute O(1) congestion to the edge (x, y) of
clique v. Since O(1) nodes of supernode v are mapped to any one node of clique v
and since each node of supernode v has at most three neighbors, it follows that the
congestion due to neighbors within supernodes of T ′ is O(1).

Suppose supernodes u and v are neighbors in T ′ by virtue of the fact that nodes
U ∈ u and V ∈ v are neighbors in T . U and V are mapped to nodes in neighboring
cliques u and v in T ′′ ⊗K2s . Between any two nodes, one each in neighboring cliques
in T ′′⊗K2s , there are 2s paths of length at most 3. Hence, the O(logN) edges in the
dilated edge between U and V can be evenly distributed among 2s paths of length
at most 3. These paths contribute at most O(1) congestion to the clique edges of
T ′′ ⊗K2s and O(1) congestion to the T ′′ edges of T ′′ ⊗K2s .

Corollary 1. Any M -node, O(logN)-dilated binary tree can be embedded into
HN with load O(�M/N�), congestion O(1), and dilation O(1).

Proof. Apply the tree compression lemma to get a dilated tree with supernodes
of size O(�M/N�). Now apply Theorem 4 treating each supernode as a node.

3.3. Embedding dynamic trees. The previous section dealt with off-line em-
beddings of arbitrary trees. However, for many parallel algorithms with a tree struc-
ture, the growth pattern and eventual shape of the tree are dependent on the input.
Bhatt and Cai [5] were the first to examine whether dynamic trees could be efficiently
simulated on the hypercube. Their results were improved by Leighton et al. [18] who
gave a probabilistic embedding of a dynamic tree of size M into HN which achieved,
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with high probability, O(MN +1) load, O(1) dilation, and O(MN +1) congestion. Their
bounds for load and dilation are clearly optimal (and, in fact, they show that a deter-
ministic algorithm cannot simultaneously achieve optimal load and dilation). Using
an algorithm similar to theirs we improve the congestion to O( M

N logN + 1), which is

a logN factor improvement. This is within a log(M/N) factor of the lower bound
Ω(M/N logN log(M/N)) on congestion for on-line algorithms implied in the work of
Bhatt et al. [7].

Theorem 5. An arbitrary binary tree T with M vertices can be dynamically
grown on an N -processor hypercube with constant dilation such that with high proba-
bility the maximum load per processor is O(MN + 1) and the maximum congestion on

any edge is O( M
N logN + 1).

Proof. The starting point of our proof is an algorithm by Leighton et al. [18] which
dynamically embeds an M -node binary tree into an N -input, logN -depth butterfly
BN with dilation 2 such that with high probability the number of tree nodes per
column is O(MN + logN) and the load is O( M

N logN + logN).

The essential idea will be to use the algorithm of [18] on a butterfly BN/2s of
size N/2s by logN − s and then adapt this algorithm to run on PN = HN/2s ⊗K2s

(where as before, N = 2n and s = �log(n + 1)�). Observe that the algorithm of [18]
will dynamically embed an M -node tree on BN/2s with dilation 2 such that with high

probability there are O( M
N/ logN + logN) nodes per column and O(MN + logN) load.

Call this algorithm A. Algorithm A′ will be the adapted version of this algorithm
which runs on PN .

We will rely on the following simple combinatorial lemma to help distribute load
and congestion.

Lemma 5. Assume a total of m balls are placed into n boxes one at a time. If at
each step a ball is placed in any one of the �αn� least occupied boxes, 0 < α < 1, then
after all balls have been assigned, at most m

n(1−α)
+ 1 balls are in any box.

Proof. Let �αn� = k. Let bi be the number of balls in box i, where the boxes
are sorted by increasing size after each ball is added. We first argue by induction
that bn − 1 ≤ bk ≤ bn. After the first ball has been added, bn = 1 and bk = 0. Now
assume the statement is true after many balls have been added. When the next ball
is added, the algorithm requires that it be added to a box i with bi < bk or a box
j with bj = bk. In the former case the inductive hypothesis clearly remains true. In
the latter case, there are two cases. If bk = bn, then adding a ball to any box j with
bj = bk and resorting will result in bn = bk + 1. If bk = bn − 1, then adding a ball to
any box j with bj = bk and resorting will result in bk = bn or bk = bn − 1 depending
on the configuration of boxes before the ball is added.

Now suppose to the contrary of the lemma that more than m
n(1−α)

+ 1 balls are

in one box. The fact that bn − 1 ≤ bk ≤ bn is an invariant implies that there are at
least n− �αn� + 1 boxes with more than m

n(1−α)
balls. Since n− �αn� + 1 is strictly

greater than n− αn, this implies that there are more than m balls.
If A embeds a tree node in column v in BN/2s , then A′ will embed the same tree

node in clique v in PN . If A embeds a root u into column v, then A′ will map u to
one of the � 4

5
2s� least loaded nodes of clique v. We will now describe how the children

of an arbitrary node u are embedded. To begin, assume that A has embedded u to
some node 〈v, i〉 of BN/2s and that A′ has embedded u into 〈v, j〉 in PN for some j.
Algorithm A will only embed the children of u in column v, vi+1, or vi+2 of BN/2s

(i.e., in 〈v, i + 1〉, 〈vi+1, i + 1〉, 〈v, i + 2〉, or 〈vi+2, i + 2〉). A′ will handle these three
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cases as follows. In the first case, A′ will map the child to 〈v, k〉 such that 〈v, k〉 is
among the � 4

5
2s� least loaded nodes of clique v and 〈v, j〉 → 〈v, k〉 is among the � 4

5
2s�

least congested edges with endpoint 〈v, j〉. Note that such an embedding can always
be found.

Now suppose that A embeds the child in column vi+1. A′ embeds the node across
a path of length 2:

〈v, j〉 → 〈v, k〉 → 〈vi+1, k〉
such that the first edge is among the � 4

5
2s� least congested edges with endpoint 〈v, j〉,

the second edge is among the � 4
5
2s� least congested edges between clique v and clique

vi+1, and 〈vi+1, k〉 is among the � 4
5
2s� least loaded nodes in clique vi+1. Note that

such a path can always be found.
When A embeds a child in column vi+2, A′ embeds the node across a path of

length 3:

〈v, j〉 → 〈v, k〉 → 〈vi+1, k〉 → 〈vi+2, k〉
such that the first edge is among the � 4

5
2s� least congested edges with endpoint 〈v, j〉,

the second edge is among the � 4
5
2s� least congested edges across dimension i + 1,

the third edge is among the � 4
5
2s� least congested edges across dimension i + 2, and

〈vi+2, k〉 is among the � 4
5
2s� least loaded nodes in clique vi+2. As before, such a path

can always be found.
That the load is O(�M/N�) with high probability easily follows from Lemma 5

and the fact that the number of tree nodes per column in A is O(MN logN + logN)
with high probability. To bound the congestion on clique edges of PN use the fact
that the load of A′ is O(�M/N�) with high probability. By the fact that each tree
node has at most two children and by Lemma 5, the congestion is O(� M

N logN �). To
bound the congestion on the hypercube edges of PN , first note that the congestion
on the butterfly edges due to A is at most O(MN + logN) with high probability. This

follows from the fact that the load due to A is O(MN + logN) with high probability
and the fact that each tree node has at most two children. That the congestion on
hypercube edges of PN is O(� M

N logN �) with high probability follows from Lemma 5

and the fact that each embedding by A′ uses at most two hypercube edges when A
uses a butterfly crossedge.

In the model just analyzed only one node is expanded at a time. It is more natural
to allow many tree nodes to expand in one time step. Because the algorithm embeds
nodes locally, it is not difficult to adapt the algorithm to run in an on-line fashion with
a polylogarithmic slowdown on the hypercube, even when many nodes are expanded
simultaneously.

4. Reconfiguring hypercubes around faults. In this section, we show how
to apply the techniques developed in sections 2 and 3 to devise improved algorithms
for using faulty hypercubes to simulate fault-free hypercubes. We will consider the
case of random faults in section 4.1 and the case of worst-case faults in section 4.2.

4.1. Random faults. Consider an N -node hypercube HN in which every edge
and node is faulty with some constant probability p < 1. We will assume that each
fault is independent of the location of other faults and that if a node is faulty, then
it cannot be used for any purpose (i.e., no communication can pass through it). In
what follows, we will prove that if p is a sufficiently small constant, then with high
probability we can embed PN into HN with constant load, dilation, and congestion
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so that every node of PN is mapped to a live node of HN and so that every edge
of PN is mapped to a path of live nodes and edges of HN . Since HN is a subgraph
of PN , we will have thus shown how a faulty hypercube can simulate a functioning
hypercube of the same size with constant slowdown.

The result is similar to that proved by Hastad, Leighton, and Newman [14], except
that the reconfiguration algorithm in [14] is probabilistic and uses a polylogarithmic
number of communication steps to achieve the reconfiguration. The only previously
known deterministic reconfiguration algorithm requires Ω(N) steps [3]. The algorithm
described in this section is simple and deterministic and uses only O(logN) local
communication steps. The algorithm is limited by the fact that the probability of
component failure p must be a small constant, but it should be possible to extend the
result to work for all p < 1 using the methods of [14] and section 4.2 of this paper.

Theorem 6. There is a deterministic embedding algorithm using O(logN) local
communication rounds such that if the components of HN fail independently with
probability p ≤ p0 (for some fixed constant p0), then PN can be embedded in the faulty
HN with O(1) load, dilation, and congestion with probability 1 − 1/NO(1).

Proof. The algorithm for embedding PN into a faulty hypercube is very similar to
the fault-free embedding described in section 2. To economize on space, we will only
sketch the additional steps needed to tolerate faults in what follows. We will assume
that N = 2n, where n = 2k − 1 for some integer k, so that PN = H2n−k ⊗K2k . As in
section 2 the extension of the result to general n is straightforward.

The first step of the embedding is to map the nodes of each clique of PN to the
nodes of the corresponding star in HN . For ease of exposition we will assume that
every star center is faulty. It is easy to show that, for any β > 0 and any ε1 > 0,
there exists a sufficiently small p (e.g., p ≤ 2−1−β/ε1) such that with probability at
least 1− 1/Nβ , at least (1− ε1)n nodes of each star are alive. Hence, we will map the
ith node of a clique to the ith live node of the corresponding star, using wraparound
as necessary. In particular, if ε1 ≤ 1/2, then at most two nodes of any clique will be
mapped to any star node by this process.

We next show how to interconnect the live nodes of each star into a clique. Given
any two live nodes vi, vj in a star centered at v, we will connect them with the path
vi → vij → vj provided that the path is fault-free. Note that the probability that
such a path is faulty is 1 − (1 − p)3 < 3p and that the path for vi → vj is disjoint
from the path for vi

′ → vj
′

whenever {i, j} 
= {i′, j′}. Hence, we can use a simple
probabilistic argument to show that, with high probability, every live node of every
star is connected to at least (1 − ε2)n live nodes in the same star with live disjoint
paths of length 2. These connections can be made in constant time on the hypercube.

We next show how to connect a pair of live nodes in a star vi, vj for which the path
vi → vij → vj contains a fault. For each such pair we will find a third live node vs for
which the paths vi → vis → vs and vs → vsj → vj are functioning. There are at least
(1−2ε2)n choices for s since both vi and vj are connected to at least (1−ε2)n other live
nodes with paths of length 2. In order to avoid congestion problems, we will choose
intermediate nodes in rounds as follows. In the first round, we will find intermediate
nodes for disconnected live pairs vi, vj , where j ≡ i + 1 (mod n). In particular,
the processors at node vi will select a value of s such that both vi → vis → vs and
vs → vsj → vj are live where j = i + 1. This step can be accomplished with O(1)
communication steps (where we allow logN bits to traverse each edge during a step)
and can increase the congestion of every edge by at most 2 (due to reconfiguring this
star). (Note that every edge in a path of length 4 is involved in reconfiguring at most
two stars.) In the rth round (1 ≤ r ≤ n), we will find intermediate nodes for live pairs
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vi, vj , where j ≡ i + r (mod n). In particular, the processor at node vi will select
a value of s such that every component along the path vi → vis → vs → vsj → vj

is alive and so that every edge along the path has congestion (due to reconfiguring
this star) at most C, where C is a predetermined, sufficiently large constant. We can
always find such an s since at most 2ε2n values of s are eliminated due to faults and
since at most 2n/C values are eliminated due to edge congestion. (Hence, it suffices
to choose C > 2/(1 − 2ε2).) Information about whether or not edges are congested
can be transmitted in O(1) communication steps, where we allow O(logN) bits of
data to be transmitted at each step. Note that we don’t need to coordinate among
selections being made in a given round since the congestion of any edge can go up by
at most 2 in a single round.

After n rounds, the previous algorithm will have connected every pair of live nodes
in a star with a live path of length at most 4. Moreover, the congestion is bounded
by O(1). This completes the embedding of the cliques of PN into the faulty HN . We
next show how to embed the hypercube edges of PN into the faulty HN .

By Theorem 1, the hypercube edges of PN are mapped to paths of constant length
in HN . For every pair of neighboring cliques in PN there are n paths in HN between
the stars corresponding to the cliques (excluding the path between the star centers).
For example, clique u and clique ut are neighbors across hypercube dimension t in PN .
Let P(u, ut) be the paths (nodes and edges, including endpoints) in HN between g(u)i

and g(ut)i, 1 ≤ i ≤ n, given by the embedding. It can be shown that at most three
paths in P(u, ut) can intersect in a single node of HN . Hence, these paths collectively
use Θ(n) nodes and edges of HN . If p is a sufficiently small constant, then with high
probability, at most ε3n of the nodes or edges in P(u, ut) will be faulty for any pair
u, ut and ε3 > 0. Since each faulty node or edge in P(u, ut) can destroy at most three
of the paths in P(u, ut), this means that with high probability, at least (1 − 3ε3)n of
the paths in P(u, ut) will be live. Hence, we embed the ith path along the ith live
path (counted with wraparound). Provided that ε3 ≤ 1/6, this results in at most a
factor of 2 increase in congestion.

Of course, we still have to hook up the endpoints of the live paths to the appro-
priate endpoints in each star. This is easily accomplished in the following manner. If
e is a dimension t edge of H2n−k whose path ends at vj in the star centered at v but
whose clique endpoint has been embedded at vi, we make the connection by routing
the path through the path of length at most 4 from vj to the tth live node of the star
and then through the path of length at most 4 from this node to vi. We use a similar
path at the other endpoint. Because each vi contains at most O(1) clique nodes and
each vj contains at most O(1) path endpoints for e in dimension t, this embedding
results in only constant congestion. This completes the proof of Theorem 6.

4.2. Worst-case faults. In this section we prove the following theorem.
Theorem 7. An N -node hypercube with logO(1) N worst-case faults contains an

embedding of a fully functioning N -node hypercube with constant load, dilation, and
congestion.

Proof. Below we will show that, for every constant r, the r-fold hypercube of
cliques PN,r with O(nr) faults contains an embedding of a fault-free PN,r with constant
load, dilation, and congestion. This implies Theorem 7 as follows. Let the number
of faults that an r-fold hypercube of cliques can tolerate (i.e., still reconfigure to run
with constant slowdown) be arn

r for some constant ar > 0. Suppose we embed PN,r

into an N -node hypercube with F faults. Consider nodes or edges of PN,r that are
embedded in a fault of HN to be faulty. Since one node fault in HN induces n edge
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faults in HN , by Theorem 2 at most bnF nodes or edges of PN,r are faulty for some

constant b that is independent of N . If F ≤ arn
r−1

b , then we can reconfigure PN,r

within itself so as to avoid these faults, thereby obtaining an embedding of PN,r into
HN that avoids the faulty components of HN . Since PN,r contains HN as a subgraph,

this means that an N -node hypercube can be reconfigured around arn
r−1

b faults with
O(1) load, dilation, and congestion for any constant r. Hence, the N -node hypercube

can tolerate logO(1) N faults, as claimed.
For simplicity we will assume that all the faults in PN,r are node faults. This af-

fects the bounds by only constant factors since for any set E of edge faults in PN,r there
is a set F of node faults of size at most 2|E| such that the set of edge faults induced
by the node faults contains E. We will show that a fault-free PN,r can be embedded
into a PN,r with cr2

sr = Θ(nr) faults, for some constant cr > 0 (and s as defined
previously), with constant load, dilation, and congestion for a fixed r. Recall that

PN,r = HN/2sr ⊗
r︷ ︸︸ ︷

K2s ⊗ · · · ⊗K2s = HN/2sr ⊗K
(r)
2s ,

where for convenience we will denote K
(r)
2s as the r-dimensional mesh of cliques. The

key to the reconfiguration of PN,r is the reconfiguration of the r-dimensional mesh

of cliques K
(r)
2s around cr2

sr faults. This is established in the following lemma. To
state the lemma let us define an M -relation on a set of nodes A to be a set of origin-
destination pairs such that any node in A is the origin in at most M pairs and the
destination in at most M pairs.

Lemma 6. Define cr = 2−(r+1)2 for r ≥ 1, and set d1 = 15
16

and dr =
(
1 − cr

cr−1

)

dr−1 for r > 1. Then if K
(r)
M has at most crM

r worst-case node faults, there exists

a set Γ of drM
r nonfaulty nodes in K

(r)
M for which the paths for any M -relation on

Γ can be routed in a fault-avoiding fashion through K
(r)
M using constant dilation and

congestion (where the constant depends on r but not on M). Moreover, there exists

a fault-free embedding of K
(r)
M in the faulty graph with constant load, dilation, and

congestion (where the constant depends on r but not on M) for which every node of

the fault-free K
(r)
M is mapped to a node in Γ.

Proof. The proof is by induction on r. The base case when r = 1 is easy since

K
(1)

M = KM and c1 = 1
16

. Then the set Γ will consist of the 15
16
M fault-free nodes. To

route any M -relation on K15M/16, we use the well-known fact that any M -relation
can be partitioned into M 1-relations [17]. A pair (i, j) in the tth 1-relation is then
routed along the path i → t → j in K15M/16, where t is computed modulo 15M/16.
It is easy to check that these paths have dilation 2 and congestion O(1). We can also
use any M/2 of the 15M/16 nodes in Γ to simulate the fault-free KM with load 2,
dilation 1, and congestion 4.

We now assume that the lemma is true for r− 1 dimensions, and we consider the
case for r dimensions. We start by showing how to find the set Γ.

By definition, K
(r)
M = KM⊗K

(r−1)

M . Hence, we can partition K
(r)
M into M copies of

K
(r−1)

M . At least (1 − cr
cr−1

)M of these copies contain at most cr−1M
r−1 faults each.

(Otherwise, we would have more than crM
r faults overall, which is not possible.)

Define these copies as the useful copies. The useful copies will be used for Γ and for

reconfiguring K
(r)
M .

The set of nodes Γ will be the union of Γ1,Γ2, . . . ,Γ(1−cr/(cr−1))M , where Γi is the

corresponding set of dr−1M
r−1 nodes in the ith useful copy of K

(r−1)

M (which exist
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by induction). Hence

|Γ| = dr−1M
r−1

(
1 − cr

cr−1

)
M = drM

r

as desired.
We next show how to route any M -relation on Γ using constant dilation and

congestion. Given any M -relation on Γ, we will first consider the congestion and

dilation necessary to route paths to the correct copy of K
(r−1)

M . If G is the subgraph

of K
(r)
M restricted to the useful copies of K

(r−1)

M and G′ is derived from G by viewing

each K
(r−1)

M as a supernode, then this part of the routing corresponds to an Mr-
relation on G′. The Mr-relation can be factored into Mr 1-relations which can then
be coalesced into M Mr−1-relations. A pair (i, j), i and j in G′, in the tth Mr−1-

relation will be routed in two parts: first from the ith useful copy of K
(r−1)

M to the
tth useful copy, and then from the tth useful copy to the jth useful copy. Overall, at

most O(Mr−1) paths will have to be routed between any pair of copies of K
(r−1)

M .

By definition, each useful copy of K
(r−1)

M contains dr−1M
r−1 nodes which can

be used for routing any M -relation. By definition, dr−1 ≥ 2/3. Hence, for any pair
of useful copies there must be at least (2dr−1 − 1)Mr−1 > Mr−1/3 of these nodes
which are common to both. These nodes will be used to interconnect the two copies.
A total of O(Mr−1) paths need to be routed between the two copies, and we will
use the Mr−1/3 available edges in an arbitrary fashion. Hence, we can route the

paths between each pair of K
(r−1)

M with constant dilation and congestion. Thus, all

the paths for any M -relation on Γ can be routed to the correct copy of K
(r−1)

M with
constant dilation and congestion. The remainder of the routing is handled within

each useful copy of K
(r−1)

M by induction.

We next show how to reconfigure K
(r)
M within Γ. Since cr < cr−1

2
, there will be

at least M
2

useful copies of K
(r−1)

M , each of which (by induction) can be reconfigured

to embed two fault-free copies of K
(r−1)

M (within the appropriate subsets of Γ) with
constant load, dilation, and congestion. It remains to hook up these M copies of

K
(r−1)

M to each other to produce a single copy of K
(r)
M = KM ⊗K

(r−1)

M .

To hook up any pair of copies of K
(r−1)

M , we need to route an edge connecting the
ith node of one copy to the ith node of the other copy for each i, 1 ≤ i ≤ Mr−1. These
edges are routed using the same method as before. In particular, we know that there
are at least Mr−1/3 edges connecting each pair of copies with endpoints in Γ. These
edges will be used to interconnect a pair of copies with congestion 3. The connection
is completed by routing a 3-relation in each copy.

To make connections between all pairs, we will load the edges between the useful

copies of K
(r−1)

M by a factor of at most 12 (4 pairs, each with load 3), and we will need
to embed a 6M -relation in each copy (4 pairs for each of M

2
faulty copies, each needing

a 3-relation). By the inductive hypothesis, this can be accomplished with constant

dilation and congestion. This concludes the proof that K
(r)
M can be reconfigured

around crM
r faults.

To complete the reconfiguration of PN,r we need to embed the hypercube edges
of PN,r into the faulty PN,r. This is shown with an argument similar to that used

in Lemma 6 for routing edges between two copies of K
(r−1)

2s in K
(r)
2s . By the lemma,

each mesh of cliques of the faulty PN,r has a set Γ of dr2
sr nodes through which

to route a 2s-relation. Since dr > 2/3, any pair of meshes of cliques, M and N ,
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which are neighbors across a hypercube dimension must share at least 1/3 of these
nodes. A total of 2sr edges will be routed between M and N using the 2sr/3 available
edges. The connection between the ith node of M and the ith node of N , for each i, is
completed by routing a 3-relation in each mesh of cliques. This embedding yields only
constant congestion on the hypercube edges of the faulty PN,r. Since each hypercube
dimension requires only the set Γ of each mesh of cliques to route an O(1)-relation
and there are n−rs = Θ(2s) dimensions, this routing adds another O(2s)-relation for
each Γ of each mesh of cliques to route. Hence, the additional load and congestion
on the nodes and edges, respectively, of the meshes of cliques in the faulty PN,r is
increased by at most a constant factor.

4.3. Remarks. We have shown how to embed PN,r into HN with load 1, dilation
O(1), and congestion O(1) for any constant r ≥ 1, and we have demonstrated several
applications of this embedding. Subsequent to [1], Kaklamanis, Krizanc and Rao have
used the result to show that the hypercube can emulate any bounded degree planar
graph with constant slowdown [15]. In addition the constants in the embedding have
been improved by finding Hamming codes with smaller height and width: first in
[17], then in the present paper, then in [21] in which a height 3, width 5 code is
claimed. Determining whether a height 3 Hamming code with width less than 5 can
be constructed is an interesting open problem.

Characterizing the height and width of other linear codes may yield other appli-
cations for hypercube routing, embedding, and emulation algorithms. Such character-
izations may also be of interest in their own right. Note that the height and width are
not parameters of the codewords themselves but rather of the particular mapping of
input strings to codewords. The height is the maximum distance between codewords
whose inverses differ by one bit. The width is equivalent to the number of input bits
needed to compute one bit of the codeword. Hence, linear codes with n-bit codewords
and width w can be computed by bounded degree circuits of depth O(logw) and size
O(nw).

Appendix A. Constructing a good basis for the codewords.
Proof of Lemma 3. Finding a basis with the above bounds for C1 and C2 is trivial.

Henceforth, assume that k ≥ 3. The basic approach is to take a well-defined basis of
height 3 but large width and manipulate it to get a basis with height 6 and width 9.
We will first need some definitions.

Let ci denote the ith column of Ck. For concreteness assume that the columns of
Ck are fixed as follows: the first k columns, c1, . . . , ck, are all the strings of length k
with weight 1; the next

(
k
2

)
columns are all the strings of weight 2; and so on. So, e.g.,

C3 =

⎛
⎝

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

⎞
⎠ .

Suppose a vector in the nullspace is nonzero in bit positions i1, . . . , ih, then
columns ci1 , . . . , cih when added up in GF (2)k yield the all zero vector of length
k. Conversely, any subset of columns ci1 , . . . , cih which add up to zero correspond
to a vector in the nullspace of Ck. Henceforth, we will assume that vectors in the
nullspace of Ck and subsets of columns of Ck which add up to zero are synonymous.

Let S be the set of all vectors of weight 3 which are in the nullspace of Ck. An
easy counting argument shows that there are 1

3

(
n
2

)
such vectors, where n ≡ 2k − 1.

Let S(i) be all the vectors in S which have a 1 in the ith dimension. Observe that
the size of S(i) is (n− 1)/2 for all i.
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Our starting basis B will be composed of n−k vectors from S. Obviously this basis
will have height 3. However, the width may be unbounded. The basis is constructed
as follows. For each column ci in Ck of weight 2 or more we will find two more columns
which when added to ci yield zero. This will obviously give us n− k vectors provided
that no triple of columns is chosen more than once. To do this, we need the following
definition. Recall that for a string s, s(i) denotes the ith bit of s. A k bit string s
contains another k bit string s′ if s(i) ≥ s′(i) for all i ∈ [1, k]. For each column c of
weight l ≥ 2, we will choose one of the l columns of weight l − 1 which are contained
by c. Call this c′. Obviously, there will be a unique vector of weight 1 which when
added to c and c′ will yield zero. We will pick c′ carefully among the l choices as
follows. It is well known that there is a surjection, f , from strings of weight l to
strings of weight l − 1 such that s contains f(s) for 1 ≤ l ≤ �k/2� [8]. There is also
an injection, g, from strings of length l to strings of length l− 1 such that s contains
g(s) for �k/2� + 1 ≤ l ≤ k. For 2 ≤ l ≤ �k/2�, let c′ = f(c). For �k/2� + 1 ≤ l ≤ k,
let c′ = g(c).

B as defined above contains n − k vectors. Since this is the dimension of the
nullspace, to show that B is a basis, we need show only that it spans.

Lemma 7. B spans the nullspace of Ck.
Proof. Consider a nonzero vector y, and let σ(y) be the largest nonzero dimension

of y, i.e., σ(y) = i when y(i) = 1 and y(j) = 0 for j > i. We will prove by induction
on l that all vectors in the nullspace with k ≤ σ ≤ l are spanned by B. The base case
is trivial since there are no vectors with σ = k in the nullspace of Ck. This is because
the columns 1 through k of Ck are a permutation of the k by k identity matrix and
so no subset of them can add up to zero.

Suppose by induction that all vectors in the nullspace with k ≤ σ ≤ l are spanned
by B. Let y be a vector in the nullspace with σ(y) = l + 1. Let v be the unique
vector in B with σ(v) = l + 1. The vector y′ = y⊕ v is in the nullspace since y and v
are. Furthermore, σ(y′) ≤ l. Hence, by the induction hypothesis, y′ is spanned by B.
Since y = y′ ⊕ v, y is spanned by B as well.

Before we begin manipulating B, let us first show that B is not too bad to begin
with. Define W (i) to be the set of basis vectors with a 1 in dimension i, and define
w(i) = |W (i)| to be the width of dimension i. Define Dq as the set of dimensions i
with w(i) = q and D>q ≡ D≥q+1 as the set of dimensions i with w(i) > q. Define
M>q ≡ M≥q+1 as

∑

i∈D>q

w(i) − q.

This is the mass of 1’s causing dimensions to have width more than q.
Lemma 8. The basis B given above has M≥3 ≤ (3/2)n− 3k for k ≥ 3.
Proof. First observe that the total number of 1’s in B is 3(n − k) since it is

composed of n − k vectors each of weight 3. It follows that |D1| + 2|D≥2| + M≥3 =
3(n−k). Every dimension of B has width at least 1 so that |D1|+ |D≥2| = n. Hence,
M≥3 = n−3k+ |D1|. To bound |D1| recall that f is a surjection and g is an injection.

This implies that the highest
∑k

i=�k/2�
(
k
i

)
dimensions have width 1 or 2 (and only

these dimensions can have width 1). It further implies that, of these,
∑k

i=�k/2�+1

(
k
i

)

have width 2. So, |D1| =
(

k
�k/2�

)
which is at most n/2 for k ≥ 3.

Now we will start the process of manipulating B to achieve bounded width. Our
main tool for doing this is the lemma below, for which we will need the following
definition. Given a basis B = {v1, . . . , vn−k} and vectors z and zB such that z = B·zB ,
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we say that vj contributes to z if zB(j) = 1; otherwise, we say that it does not
contribute.

Lemma 9. Given any z, any v in B which contributes to z, and any other basis
vector x, the following holds. If x does not contribute to z, then B′ = (B − {v, x}) ∪
{z, z ⊕ x} is a new basis. If x contributes to z, then B′ = (B − {v, x}) ∪ {z ⊕ v, z}
is a new basis.

Proof. Let us examine the first case. Since B′ has n − k vectors, we need argue
only that B′ spans. To do this we need show only how to produce v and x from B′.
We can produce x from B′ simply by adding z and z ⊕ x. To produce v, note that
by assumption z = v ⊕ a, where a is in the span of B − {v, x}. Hence, v is produced
from B′ simply by adding the basis vector z and the vector a.

The proof for the second case follows identical reasoning.
We will use Lemma 9 in the following way. Suppose i is a dimension with large

width, i.e., W (i) is a large set. Let z be any vector in S(i). Since B spans, there must
be at least one vector in B which contributes to z and is also in W (i) (otherwise z
could not have a 1 in dimension i). Call this vector v. Let x be any other vector in
W (i). If we use the above lemma, then the width of dimension i of B′ is w(i) − 1.
Of course, in the process we have increased the width of two other dimensions (since
the weight of z was 3). These must be dimensions which had small width. We will
ensure that this is the case as follows.

Let D≥g+2 be the bad dimensions where g will be determined below. Let the
dimensions with width less than g be the good dimensions. Below we will show
that for sufficiently large g, if i is a bad dimension, there is a z ∈ S(i) such that z’s
other two 1’s are in good dimensions (say j and k). Now when we apply Lemma 9,
since dimensions j and k increase their width by at most 2, they cannot become bad
dimensions.

Suppose we have just one more application of Lemma 9 left to make. That is, there
is one dimension, i, with width g+2, and the remainder of the dimensions have width
at most g+1. Recall that Dg+1 is the set of dimensions which have width exactly g+1
and that the size of S(i) is (n− 1)/2. Moreover, for any dimension other than i there
is a unique vector in S(i) with a 1 in that dimension. In order to be able to guarantee
that we can pick a z in S(i) with its other two 1’s in good dimensions, we need

n− 1

2
− |Dg+1| − |Dg| ≥ 1

(every dimension with width g or g + 1 may eliminate one vector from S(i)).
To check that we can satisfy the above inequality we need to calculate an upper

bound on the size of Dg ∪ Dg+1. This is maximized when the dimensions not in
Dg ∪Dg+1 (other than dimension i which has width g+2) have minimum width, i.e.,
width 1. That is,

(g + 2) + |Dg+1|(g + 1) + |Dg|g + n− (|Dg+1| + |Dg| + 1) ≤ T,

where T is the total number of 1’s in the basis before the last step.
T is bounded by the number of 1’s at the start (3(n− k)) plus the number of 1’s

added to the basis before the last step. To bound this latter quantity first note that
we add at most 1 to our basis with each application of Lemma 9. This follows from
the fact that z has weight 3, z ⊕ x has weight at most the weight of x plus 1, z ⊕ v
has weight at most the weight of v plus 1, and the weights of x and v are at least
3 since they are basis vectors. The number of applications of Lemma 9 is bounded
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by M≥g+2 − 1, where M≥g+2 is the mass of 1’s contributing to width ≥ g + 2 in our
original basis. But M≥g+2 ≤ M≥3 ≤ (3/2)n− 3k. Putting this all together we find

|Dg| + |Dg+1| ≤
7
2
n− 6k − g − 2

g − 1
.

Substituting this into n−1
2

− |Dg+1| − |Dg| ≥ 1 and doing some algebra, we find that
we require

(g − 8)n + 12k + 7 − g ≥ 0.

Hence, g = 8 suffices which bounds the width of our final basis by 9.
We have achieved a basis with the desired width, but let us check that we have not

unduly increased the height. When we eliminated a 1 in a vector in a bad dimension,
we added at most two 1’s in good dimensions. Since there were at most three 1’s in
bad dimensions at the start, the resulting vector has weight at most 6.

The algorithm for constructing the original B is polynomial in n (f and g are
efficiently constructable), and the manipulations to reduce the width of B require
only polynomial in n time. This completes the proof of Lemma 3.

An alternate construction. In what follows, we will describe a relationship
between the well-known cyclic codes and good bases. This will lead to a good basis
for Ck for k up to 137. This in turn gives us an alternative method for obtaining good
embeddings for hypercubes up to size 22137

.
Let p be a primitive polynomial of degree k in GF (2)[x]. By definition, xi mod

p, 0 ≤ i ≤ 2k − 1, generates all polynomials of degree k − 1 or less except for the
zero polynomial. For convenience, in this section we will assume that the dimensions
(bit positions) of a vector (string) of length n are labeled from 0 to n− 1. There is a
one-to-one correspondence between all polynomials of degree k− 1 or less and strings
of length k when the strings are regarded as a sequence of coefficients. Let the weight
of a polynomial be the weight of its associated string.

Lemma 10. If there exists a primitive polynomial of degree k in GF (2)[x] of
weight s, then there is a basis for the nullspace of Ck of height and width s.

Proof. Let column i, ci, of Ck be xi reduced modulo p for 0 ≤ i ≤ 2k − 1. Now
suppose for simplicity that p has weight 3: p = xk + xj + 1, where k > j. It will be
clear how the proof generalizes to primitive polynomials of arbitrary weight. Define vl
to be a vector of length 2k which is zero everywhere except for a 1 in the lth position,
a 1 in the (l + j)th position, and a 1 in the l + kth position. Let V be the set of all
vl with 0 ≤ l ≤ n− k − 1. This is the well-known cyclic code.

Claim 1. V is in the nullspace of Ck.
Proof. Ck · vl is just the sum cl ⊕ cl+j ⊕ cl+k, where addition is in GF (2)k. By

definition of ci this is equivalent to

xl(modp) + xl+j(modp) + xl+k(modp),

where addition is in GF (2)[x]. But this is just xl(1 + xj + xk) (mod p) which
is 0.

Claim 2. V is a basis for the nullspace of Ck.
Proof. Since V has the correct cardinality, it is enough to show that it spans. The

proof that V spans is nearly identical to the proof of Lemma 7 that B spans and so
we omit it.
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To finish the proof of the lemma observe that the number of 1’s in each vl ∈ V is
at most s, the weight of the primitive polynomial, and that the number of vl’s with a
1 in a given dimension is at most s as well.

It is not known whether there is a c such that for all degrees there is a primitive
polynomial of weight at most c. Nonetheless, small primitive polynomials of degree k
in GF (2)[x] have been tabulated for k up to 137 [23]. For each of these degrees there
is a polynomial of weight 3 or 5.

Appendix B. Proof of the tree compression lemma.
Proof of Lemma 4. The proof makes use of the following two simple lemmas. The

first is a well-known result which first appeared in [19].
Lemma 11. Given any M -node binary tree T , it is possible to partition T into

two subtrees, each with at least M−1
3

nodes, by removing a single edge from T .
Lemma 12. Let T be a weighted M -node binary tree for which di + wi ≤ 3 and

wi ∈ {0, 1, 2} for each i(1 ≤ i ≤ M), where di and wi are the degree and weight,

respectively, of the ith node in T . Then if
∑M

i=1 wi = 4, it is possible to partition T
into two subtrees each having total weight 2 by removing a single edge from T .

Proof. If T contains a node with weight 2, then this node has degree 1, and we
can form the desired partition by removing the edge incident to this node.

If T does not contain a node with weight 2, then it contains precisely four nodes
with weight 1. Define T ′ to be the subtree of T consisting of the simple paths that
interconnect the four weight-1 nodes. Since the weight-1 nodes can have degree at
most 2 in T , there are only three possibilities for the homeomorphic structure of T ′,
and it is easy to find the desired partition of T for each possibility.

We are now ready to prove Lemma 4. The partition is constructed by repeatedly
applying Lemma 11 to split T into smaller and smaller subtrees. However, we must
be careful not to remove too many edges from the same subtree. In order to keep
everything balanced, we will apply the following splitting process to subtrees in the
partially formed partition.

Let T1 be an M1-node subtree in the partially formed partition of T . We will
assume for now that T1 is incident to at most three previously removed edges of T .
We start by using Lemma 11 to split T1 into two subtrees, each having at least M1−1

3

nodes. Since T1 is incident to at most three removed edges, the two newly formed
subtrees are incident to two and three removed edges, respectively, or to one and four
removed edges, respectively. In the former case, we quit and repeat the entire process
on another subtree in the partially formed partition. In the latter case, we apply
Lemma 12 to further split the subtree that is incident to four removed edges. As a
consequence, we will have split T1 into three subtrees, each incident to at most three
removed edges and at least two of which have at least M1−1

6
nodes.

In order to split T into N subtrees, we repeatedly apply the process just described
to the largest remaining subtree until a total of N − 2 or N − 1 edges of T have been
removed. If N − 2 edges have been removed, then we apply Lemma 12 once more to
a subtree to produce a partition with precisely N subtrees.

By construction, we know that each of the subtrees in the partition is incident
to at most three removed edges. In what follows, we show that every subtree has at
most 12M

N +1 nodes. The proof is not difficult. Each time that we apply the splitting
process, we remove at most two edges from T , and we replace the largest current
subtree with two or three subtrees, at least two of which have size at least M1−1

6
,

where M1 is the size of the subtree being split. Thus, after the splitting process is
applied s times, at least s+1 of the subtrees will have size at least x−1

6
, where x is the



HAMMING CODES, HYPERCUBE EMBEDDINGS, FAULT TOLERANCE 803

size of the largest subtree at that point in the algorithm. Since the splitting process
is applied at least N

2
− 1 times during the formation of the partition, this means that

the largest subtree in the partition can have size at most x where

N

2

(x− 1)

6
≤ M.

Hence the largest subtree can have size at most 12M
N + 1, as claimed. This con-

cludes the proof of Lemma 4.

REFERENCES

[1] W. Aiello and F. T. Leighton, Coding theory, hypercube embeddings and fault tolerance, in
Proceedings of the 1991 ACM Symposium on Parallel Algorithms and Architectures, 1991,
pp. 125–136.

[2] W. Aiello, F. T. Leighton, B. Maggs, and M. Newman, Fast algorithms for bit-serial
routing on a hypercube, Math. Syst. Theory, 24 (1991), pp. 253–271.

[3] M. Baumslag, private communication, 1990.
[4] B. Becker and H. U. Simon, How robust is the n-cube?, Inform. Comput., 77 (1988), pp. 283–

291.
[5] S. N. Bhatt and J. Cai, Taking random walks to grow trees in hypercubes, J. ACM, 40 (1993),

pp. 741–764.
[6] S. N. Bhatt, F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg, Efficient embeddings

of trees in hypercubes, SIAM J. Comput., 21 (1992), pp. 151–162.
[7] S. N. Bhatt, D. Greenberg, F. T. Leighton, and P. Liu, Tight bounds for on-line tree

embeddings, SIAM J. Comput., 29 (1999), pp. 474–491.
[8] B. Bollobás, Combinatorics, Cambridge University Press, Cambridge, 1986.
[9] J. Bruck, R. Cypher, and D. Soroker, Tolerating faults in hypercubes using subcube parti-

tioning, IEEE Trans. Comput., 41 (1992), pp. 599–605.
[10] H. Gazit, G. L. Miller, and S. H. Teng, Optimal tree contraction in the erew model, in

Concurrent Computations, S. Tewsburg, B. Dickson, and S. Schwartz, eds., Plenum Press,
New York, 1988, pp. 139–156.

[11] N. Graham, F. Harary, M. Livingston, and Q. F. Stout, Subcube fault-tolerance in hyper-
cubes, Inf. Comput., 102 (1993), pp. 280–314.

[12] D. S. Greenberg and S. N. Bhatt, Routing multiple paths in hypercubes, Math. Syst. Theory,
24 (1991), pp. 295–321.

[13] R. W. Hamming, Error detecting and error correcting codes, Bell Syst. Tech. J., 29 (1950),
pp. 147–160.

[14] J. Hastad, F. T. Leighton, and M. Newman, Fast computation using faulty hypercubes, in
Proceedings of the 21st Annual ACM Symposium on Theory of Computing, 1989, pp. 251–
263.

[15] C. Kaklamanis, D. Krizanc, and S. Rao, New graph decompositions and fast emulations
in hypercubes and butterflies, in Proceedings of the 1993 ACM Symposium on Parallel
Algorithms and Architectures, 1993, pp. 325–334.

[16] R. R. Koch, Increasing the size of a network by a constant factor can increase performance
by more than a constant factor, SIAM J. Comput., 21 (1992), pp. 801–823.

[17] F. T. Leighton, An Introduction to Parallel Algorithms and Architectures, Morgan Kaufmann,
San Mateo, CA, 1992.

[18] F. T. Leighton, M. Newman, A. Ranade, and E. Schwabe, Dynamic tree embeddings in
butterflies and hypercubes, SIAM J. Comput., 21 (1992), pp. 639–654.

[19] P. M. Lewis, R. E. Stearns, and J. Hartmanis, Memory bounds for recognition of context-
free and context-sensitive languages, in Proceedings of the IEEE Conference on Switching
Theory and Logical Design, Washington, D.C., IEEE Computer Society, 1965, pp. 191–202.

[20] D. Peleg and J. Ullman, An optimal synchronizer for the hypercube, SIAM J. Comput., 18
(1989), pp. 740–747.

[21] D. Pritikin, Graph Embeddings from Hamming Bases, manuscript, 1992.
[22] M. O. Rabin, Efficient dispersal of information for security, load balancing, and fault tolerance,

J. ACM, 36 (1989), pp. 335–348.
[23] W. Stahnke, Primitive binary polynomials, Math. Comput., 27 (1973), pp. 977–980.



SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 37, No. 3, pp. 804–826

PLANAR EARTHMOVER IS NOT IN L1
∗

ASSAF NAOR† AND GIDEON SCHECHTMAN‡

Abstract. We show that any L1 embedding of the transportation cost (a.k.a. Earthmover) met-
ric on probability measures supported on the grid {0, 1, . . . , n}2 ⊆ R
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1. Introduction. For a finite metric space (X, dX) we denote by PX the space
of all probability measures on X. The transportation cost distance (also known as
the Earthmover distance in the computer vision/graphics literature) between two
probability measures μ, ν ∈ PX is defined by

τ(μ, ν) := min

{ ∑

x,y∈X

dX(x, y)π(x, y) : ∀x, y ∈ X, π(x, y) ≥ 0,

∑

z∈X

π(x, z) = μ(x),
∑

z∈X

π(z, y) = ν(y)

}
.

Observe that if μ and ν are the uniform probability distribution over k-point subsets
A ⊆ X and B ⊆ X, respectively, then by the fact that all the extreme points of the
k × k doubly stochastic matrices are permutation matrices,

(1.1) τ(μ, ν) = min

{
1

k

∑

a∈A

dX(a, f(a)) : f : A → B is a bijection

}
.

This quantity is also known as the minimum weight matching between A and B, cor-
responding to the weight function dX(·, ·) (see [42]). Thus, the Earthmover distance
is a natural measure of similarity between images [42, 15, 14]—the distance is the op-
timal way to match various features, where the cost of such a matching corresponds
to the sum of the distances between the features that were matched. Indeed, such
metrics occur in various contexts in computer science. Apart from being a popular
distance measure in graphics and vision [42, 15, 14, 26], they are used as LP relax-
ations for classification problems such as 0-extension and metric labeling [9, 8, 2].
Transportation cost metrics are also prevalent in several areas of analysis and PDEs
(see the book [53] and the references therein).
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Following extensive work on nearest neighbor search and data stream computa-
tions for L1 metrics (see [24, 20, 19, 10, 22]), it became of great interest to obtain
low distortion embeddings of useful metrics into L1 (here, and in what follows, L1

denotes the space of all Lebesgue measurable functions f : [0, 1] → R such that

‖f‖1 :=
∫ 1

0
|f(t)|dt < ∞). Indeed, such embeddings can be used to construct ap-

proximate nearest neighbor databases, with an approximation guarantee depending
on the distortion of the embedding (we are emphasizing here only one aspect of the
algorithmic applications of low distortion embeddings into L1—they are also crucial
for the study of various cut problems in graphs, and we refer the reader to [36, 23, 21]
for a discussion of these issues).

In the context of the Earthmover distance, nearest neighbor search (a.k.a. sim-
ilarity search in the vision literature) is of particular importance. It was therefore
asked (see, e.g., [35]) whether the Earthmover distance embeds into L1 with constant
distortion (the best known upper bounds on the L1 distortion were obtained in [8, 26]
and will be discussed further below). In [30] the case of the Hamming cube was set-
tled negatively: It is shown there that any embedding of the Earthmover distance
on {0, 1}d (equipped with the L1 metric) incurs distortion Ω(d). However, the most
interesting case is that of the Earthmover distance on the Euclidean plane, as this
corresponds to a natural similarity measure between images [14] (indeed, the case
of the L1 embeddability of planar Earthmover distance was explicitly asked about
in [35]). Here we settle this problem negatively by obtaining the first superconstant
lower bound on the L1 distortion of the planar Earthmover distance. To state it we
first recall some definitions.

Given two metric spaces (X, dX) and (Y, dY ), and a mapping f : X → Y , we
denote its Lipschitz constant by

‖f‖Lip := suppx,y∈X
x�=y

dY (f(x), f(y))

dX(x, y)
.

If f is one to one, then its distortion is defined as

dist(f) := ‖f‖Lip · ‖f−1‖Lip = suppx,y∈X
x�=y

dY (f(x), f(y))

dX(x, y)
· suppx,y∈X

x�=y

dX(x, y)

dY (f(x), f(y))
.

The smallest distortion with which X can be embedded into Y is denoted cY (X), i.e.,

cY (X) := inf {dist(f) : f : X ↪→ Y is one to one} .
When Y = Lp we use the shorter notation cY (X) = cp(X). Thus, the parameter
c2(X) is the Euclidean distortion of X, and c1(X) is the L1 distortion of X.

Our main result bounds from below the L1 distortion of the space of probability
measures on the n by n grid, equipped with the transportation cost distance.

Theorem 1.1. c1
(
P{0,1,...,n}2 , τ

)
= Ω

(√
log n

)
.

We note that the best known upper bound for c1
(
P{0,1,...,n}2 , τ

)
is O(log n), as

proved in [8, 26]. Later on (see Theorem 1.4) we will show a new embedding which
achieves this bound.

After reducing the problem to a functional analytic question, our proof of Theo-
rem 1.1 is a discretization of a theorem of Kislyakov from 1975 [32]. We attempted to
make the presentation self-contained by presenting here appropriate versions of the
various functional analytic lemmas that are used in the proof.

For readers who are more interested in the minimum cost matching metric (1.1),
we also prove the following lower bound.
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Theorem 1.2 (discretization). For arbitrarily large integers n there is a family

Y of n-point subsets of
{
0, 1 . . . , O

(√
n log log n

)}2
, with |Y | ≤ nO(log log n), such

that any L1 embedding of Y , equipped with the minimum weight matching metric τ ,
incurs distortion:

Ω
(√

log log log n
)

= Ω
(√

log log log |Y |
)
.

A metric space (X, dX) is said to embed into squared L2, or to be of negative
type, if the metric space

(
X,

√
dX
)

is isometric to a subset of L2. Squared L2 metrics
are important in various algorithmic applications since it is possible to efficiently
solve certain optimization problems on them using semidefinite programming (see the
discussion in [3, 31]). It turns out that planar Earthmover does not embed into any
squared L2 metric (see Remark 3.3 for a more general result).

Theorem 1.3 (nonembeddability into squared L2). limn→∞ c2
(
P{0,...,n}2 ,

√
τ
)

=
∞.

Motivated by the proof of Theorem 1.1, we also construct simple low-distortion
embeddings of the space

(
P{0,1,...,n}2 , τ

)
into L1. It is convenient to work with prob-

ability measures on the torus Z
2
n instead of the grid {0, 1, . . . , n}2. One easily checks

that {0, . . . , n}2 embeds with constant distortion into Z
2
2n (see, e.g., Lemma 6.12

in [37]). Every μ ∈ PZ2
n

can be written in the Fourier basis as

(1.2) μ =
∑

(u,v)∈Z2
n

μ̂(u, v)euv,

where

∀(a, b), (u, v) ∈ Z
2
n, euv(a, b) := e

2πi(au+bv)
n

and

∀(u, v) ∈ Z
2
n, μ̂(u, v) :=

1

n2

∑

(a,b)∈Z2
n

μ(a, b)euv(−a,−b).

Observe that for n = 2k +1, k ∈ N, the decomposition (1.2) can be computed in time
O
(
n2 log n

)
using the fast Fourier transform [45]. Motivated in part by the results

of [40] (see also [5, 41]), we define

(1.3) Aμ =
∑

(u,v)∈Z2
n\{(0,0)}

e
2πiu

n − 1
∣∣e 2πiu

n − 1
∣∣2 +

∣∣e 2πiv
n − 1

∣∣2 · μ̂(u, v) · euv

and

(1.4) Bμ =
∑

(u,v)∈Z2
n\{(0,0)}

e
2πiv
n − 1

∣∣e 2πiu
n − 1

∣∣2 +
∣∣e 2πiv

n − 1
∣∣2 · μ̂(u, v) · euv.

Theorem 1.4. The mapping μ �→ (Aμ,Bμ) from
(
PZ2

n
, τ
)

to L1

(
Z

2
n

)⊕L1

(
Z

2
n

)

has distortion O(log n).
The O(log n) distortion in Theorem 1.4 matches the best known distortion guar-

antee proved in [26, 8]. Our embedding has various nice features. First of all, it is a
simple closed-form linear mapping into a low dimensional L1 space, which is based on
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the computation of the Fourier transform. It is thus very fast to compute, and it is
versatile in the sense that it might behave better on images whose Fourier transform
is sparse (we do not study this issue here). Thus there is scope to apply the embed-
ding on certain subsets of the frequencies, and this might improve the performance
in practice. This is an interesting “applied” question which should be investigated
further (see section 5).

2. Preliminaries and notation. For the necessary background on measure
theory, we refer the reader to the book [46]; however, in the setting of the present
paper, our main results will deal with finitely supported measures, in which case no
background and measurabilty assumptions are necessary. We also refer the reader to
the book [53] for background on the theory of optimal transportation of measures.
Let (X, dX) be a metric space. We denote by MX the space of all Borel measures
on X with bounded total variation and by PX ⊆ MX the set of all Borel probability
measures on X. We also let M +

X ⊆ MX be the space of nonnegative measures on
X with finite total mass, and we denote by M 0

X ⊆ MX the space of all measures
μ ∈ MX with μ(X) = 0. Given a measure μ ∈ MX , we can decompose it in a unique
way as μ = μ+ − μ−, where μ+, μ− ∈ M +

X are disjointly supported. If μ, ν ∈ M +
X

have the same total mass, i.e., μ(X) = ν(X) < ∞, then we let Π(μ, ν) be the space of
all couplings of μ and ν, i.e., all nonnegative Borel measures π on X ×X, such that
for every measurable bounded f : X → R,

∫

X×X

f(x)dπ(x, y) =

∫

X

f(x)dμ(x) and

∫

X×X

f(y)dπ(x, y) =

∫

X

f(y)dν(y).

Observe that in the case of finitely supported measures, this condition translates to
the standard formulation, in which we require that the marginals of π are μ and ν,
i.e.,

∀x, y ∈ X,
∑

z∈X

π(x, z) = μ(x) and
∑

z∈X

π(z, y) = ν(y).

The transportation cost distance between μ and ν, denoted here by τ(μ, ν) = τ(X,dX)(μ, ν)
(and also referred to in the literature as the Wasserstein 1 distance, Monge–Kantorovich
distance, or the Earthmover distance), is

(2.1) τ(μ, ν) := inf

{∫

X×X

dX(x, y) dπ(x, y) : π ∈ Π(μ, ν)

}
.

For μ ∈ M 0
X , μ+(X) = μ−(X), and so we may write ‖μ‖τ := τ(μ+, μ−). This is

easily seen to be a norm on the vector space M 0
X,τ :=

{
μ ∈ M 0

X : ‖μ‖τ < ∞}
. It is

easy to check that for any two nonnegative measures μ, ν with the same total mass,
and for every nonnegative measure σ, we have τ(μ + σ, ν + σ) = τ(μ, ν). It follows
that

‖μ− ν‖τ = τ
(
(μ− ν)+, (μ− ν)−

)

= τ
(
(μ− ν)+ + min{μ, ν}, (μ− ν)− + min{μ, ν})

= τ(μ, ν).(2.2)

Fix some x0 ∈ X, and let Lip0(X) = Lipx0
(X) be the linear space of all Lipschitz

mappings f : X → R with f(x0) = 0, equipped with the norm ‖ · ‖Lip (i.e., the norm
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of a function equals its Lipschitz constant). Any μ ∈ M 0
X,τ can be thought of as a

bounded linear functional on Lip0(X), given by f �→ ∫
X
fdμ. The famous Kantorovich

duality theorem (see Theorem 1.14 in [53]) implies that Lip0(X)∗ = M 0
X,τ , in the sense

that every bounded linear functional on Lip0(X) is obtained in this way, and for every
μ ∈ M 0

X,τ ,

‖μ‖τ = ‖μ‖Lip0(X)∗ := supp

{∫

X

fdμ : f ∈ Lip0(X), ‖f‖Lip ≤ 1

}
.

(We note that this identity amounts to duality of linear programming.)

3. Proof of Theorem 1.1. Fix an integer n ≥ 2, and denote X = {0, 1, . . . , n−
1}2, equipped with the standard Euclidean metric. In what follows, for concreteness,
Lip0 := Lip0(X) is defined using the base point x0 = (0, 0). Also, for ease of notation
we denote M = M 0

X,τ . Observe that Lip0 and M are vector spaces of dimension

n2 − 1, and by Kantorovich duality, Lip∗
0 = M and M ∗ = Lip0.

Assume that F : PX → L1 is a bi-Lipschitz embedding satisfying, for any two
probability measures μ, ν ∈ PX ,

(3.1) τ(μ, ν) ≤ ‖F (μ) − F (ν)‖1 ≤ L · τ(μ, ν).

Our goal is to bound L from below. We begin by reducing the problem to the case of
linear mappings. Recall that given two normed spaces (Z, ‖ · ‖Z) and (W, ‖ · ‖W ), the

norm of a linear mapping T : Z → W is defined as ‖T‖ = suppz∈Z\{0}
‖Tz‖W

‖z‖Z
(observe

that in this case ‖T‖ = ‖T‖Lip).
Lemma 3.1 (reduction to a linear embedding of M into �N1 ). Under the as-

sumption of an existence of an embedding F : PX → L1 satisfying (3.1), there exists
an integer N , and an invertible linear operator T : M → �N1 , with ‖T‖ ≤ 2L and
‖T (μ)‖1 ≥ ‖μ‖τ for all μ ∈ M (the factor 2 can be replaced by 1 + ε for every ε > 0,
but this is irrelevant for us here).

Proof. By translation we may assume that F maps the uniform measure on X
to 0. For μ ∈ M denote ‖μ‖∞ := maxx∈X |μ(x)|. Observe that it is always the case
that ‖μ‖∞ ≤ ‖μ‖τ . Indeed, if π ∈ Π(μ+, μ−), then

∫

X×X

‖x− y‖2dπ(x, y) ≥
∫

X×X

dπ(x, y) = μ+(X) = μ−(X) ≥ ‖μ‖∞.

Let BM denote the unit ball of M . Define for μ ∈ BM a probability measure

ψ(μ) ∈ PX by ψ(μ)(x) := μ(x)+1

n2 . It is clear that for every μ, ν ∈ M , ‖μ − ν‖τ =
n2‖ψ(μ) − ψ(ν)‖τ . The mapping h := 1

n2 · F ◦ ψ : BM → L1 satisfies h(0) = 0,
‖h‖Lip ≤ L, and ‖h(μ)−h(ν)‖1 ≥ ‖μ−ν‖τ , where we have used (3.1) and (2.2). This

implies that there exists a map h̃ : M → L1 satisfying the same inequalities. We shall
present two arguments establishing this fact: The first is a soft nonconstructive proof,
using the notion of ultraproducts, and the second argument is more elementary but
does not preserve the Lipschitz constant.

Let U be a free ultrafilter on N, and denote by (L1)U the corresponding ultra-
power of L1. (See [16] for the necessary background on ultrapowers of Banach spaces.
In particular, it is shown there that (L1)U is isometric to an L1(σ) space for some
measure σ.) Define for μ ∈ M , h̃(μ) = (j · h(μ/j))

∞
j=1 /U , where we set, say, h(ν) = 0

for ν ∈ M \BM . Then, by standard arguments, ‖h̃‖Lip ≤ L and ‖h̃−1‖Lip ≤ 1. More-

over, h̃(M ) spans a separable subspace of (L1)U , and thus we may assume without
loss of generality that h̃ takes values in L1.
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An alternative proof (for those of us who do not mind losing a constant factor)
proceeds as follows. For every f ∈ L1 let χ(f) : [0, 1]×R → {−1, 0, 1} be the function
given by

χ(f)(s, t) = sign(f(s)) · 1[
0,|f(s)|

](t) =

⎧
⎨
⎩

1, f(s) > 0, 0 ≤ t ≤ f(s),
−1, f(s) < 0, 0 ≤ t ≤ −f(s),
0 otherwise.

It is straightforward to check that ‖χ(f) − χ(g)‖L1([0,1]×R) = ‖f − g‖1 for every
f, g ∈ L1. (We note here that the space L1([0, 1] × R) is isometric to L1.) Define
h̃ : M → L1([0, 1] × R) by setting h̃(μ) = ‖μ‖τ · χ ◦ h(μ/‖μ‖τ ) for μ ∈ M \ {0},
and h̃(0) = 0. Since for every f ∈ L1, χ(f) takes values in {−1, 0, 1}, we have the
following pointwise identity for every μ, ν ∈ M with ‖μ||τ ≥ ‖ν‖τ :

∣∣∣h̃(μ) − h̃(ν)
∣∣∣ = ‖ν‖τ ·

∣∣∣∣χ ◦ h
(

μ

‖μ‖τ

)
− χ ◦ h

(
ν

‖ν‖τ

)∣∣∣∣

+ (‖μ‖τ − ‖ν‖τ ) ·
∣∣∣∣χ ◦ h

(
μ

‖μ‖τ

)∣∣∣∣ .

Thus

∥∥∥h̃(μ) − h̃(ν)
∥∥∥
L1([0,1]×R)

= ‖ν‖τ ·
∥∥∥∥h
(

μ

‖μ‖τ

)
− h

(
ν

‖ν‖τ

)∥∥∥∥
1

(3.2)

+ (‖μ‖τ − ‖ν‖τ ) ·
∥∥∥∥h
(

μ

‖μ‖τ

)∥∥∥∥
1

≥ ‖ν‖τ ·
∥∥∥∥

μ

‖μ‖τ − ν

‖ν‖τ

∥∥∥∥
τ

+ ‖μ‖τ − ‖ν‖τ

≥ ‖ν − μ‖τ −
∥∥∥∥μ− ‖ν‖τ

‖μ‖τ μ
∥∥∥∥
τ

+ ‖μ‖τ − ‖ν‖τ
= ‖ν − μ‖τ .

It also follows from the identity (3.2) that

∥∥∥h̃(μ) − h̃(ν)
∥∥∥
L1([0,1]×R)

≤ L‖ν‖τ ·
∥∥∥∥

μ

‖μ‖τ − ν

‖ν‖τ

∥∥∥∥
τ

+ L‖μ− ν‖τ

≤ L‖μ− ν‖τ + L‖ν‖τ‖μ‖τ ·
∣∣∣∣

1

‖μ‖τ − 1

‖ν‖τ

∣∣∣∣+ L‖μ− ν‖τ
≤ 3L‖μ− ν‖τ .

We are now in position to use a theorem of Ribe [44] (see also [17], and Corol-
lary 7.10 in [4], for softer proofs), which implies that there is an into linear isomorphism
S : M → L∗∗

1 satisfying ‖S‖ ≤ L and ‖S−1‖ ≤ 1. Since M is finite dimensional, by
the principle of local reflexivity [33] (alternatively by Kakutani’s representation theo-
rem [27, 34]), and a simple approximation argument, we get that there exists an integer
N and an into linear isomorphism T : M → �N1 satisfying ‖T‖ ≤ 2L and ‖T−1‖ ≤ 1.
(The value of N is irrelevant for us here, and indeed it is possible to conclude
the proof without passing to a finite dimensional L1 space, but this slightly sim-
plifies some of the ensuing arguments. For completeness we note here that using a
theorem of Talagrand [50] we can ensure that N = O(n2 log n).)
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Remark 3.1. The first argument above is not special for L1 and can be generalized
to show that for every finite dimensional Banach space Y , if the unit ball of Y admits
a bi-Lipschitz embedding into a Banach space Z, then Y embeds linearly with the
same distortion into Z.

From now on let T : M → �N1 be the linear operator guaranteed by Lemma 3.1.
Since T is an isomorphism, the adjoint operator T ∗ : �N∞ → M ∗ = Lip0 is a quotient
mapping, i.e., ‖T ∗‖ ≤ 2L, and the image of the unit ball of �N∞ under T ∗ contains the
unit ball of Lip0.

The rest of the proof follows that of Kislyakov [32] and is a discretization of his
argument. The idea is to compose T ∗ with a map F which is the imaginary part
of the discrete two dimensional Fourier transform (see the exact definition below),
seen as a map from Lip0 to �2(X), and to prove two properties of the composed map:
Using the fact that ‖T ∗‖ ≤ 2L, we shall show that F ◦T ∗ is order bounded with good
bound, that is,

F
(
T ∗ (B�N∞

)) ⊆ {y ∈ �2(X) : |y| ≤ x},

for some x ∈ �2(X) such that ‖x‖2 ≤ 4Ln. Then, using the quotient property of T ∗,
we find a family of functions {φi ∈ B�N∞

}i∈I such that if F (T ∗(φi))) ≤ x for all i ∈ I,

then necessarily ‖x‖2 ≥ cn
√

log n for some universal c > 0.

We now define two more auxiliary linear operators. The first is the formal identity
Id : Lip0 → W , where W is the space of all functions f : X → R with f(0) = 0,
equipped with the (discrete Sobolev) norm

‖f‖W :=

n−1∑

i=0

n−2∑

j=0

|f(i, j + 1) − f(i, j)| +
n−1∑

j=0

n−2∑

i=0

|f(i + 1, j) − f(i, j)|

+ n

n−2∑

i=0

|f(i + 1, 0) − f(i, 0)| + n

n−2∑

j=0

|f(0, j + 1) − f(0, j)|.

The second operator is also a formal identity (discrete Sobolev embedding) S : W →
�2(X), where the Euclidean norm on �2(X) is taken with respect to the counting
measure on X. The final operator that we will use is the imaginary part of the
Fourier operator, already referred to above, which we denote by F : �2(X) → �2(X).
It is defined for f : X → R by

F (f)(u, v) := �
(

1

n2

∑

(k,�)∈X

f(k, �)e
2πi(uk+v�)

n

)
=

1

n2

∑

(k,�)∈X

f(k, �) sin

(
2π(uk + v�)

n

)
.

The following lemma summarizes known estimates on the norms of these operators.

Lemma 3.2 (operator norm bounds). The following operator norm bounds hold
true:

• ‖Id‖ ≤ 4n(n− 1).
• ‖S‖ ≤ 1

2
.

• ‖F‖ ≤ 1
n .

Proof. The first statement means that for every f : X → R with f(0) = 0,
‖f‖W ≤ 4n(n− 1)‖f‖Lip, which is obvious from the definitions. The second assertion
is that ‖f‖2 ≤ 1

2
‖f‖W . This is a discrete version of Sobolev’s inequality [41] (with
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nonoptimal constant), which can be proved as follows. First of all, since f(0) = 0, for
every (u, v) ∈ X,

|f(u, v)| =

∣∣∣∣∣

u−1∑

k=0

[f(k + 1, v) − f(k, v)] +

v−1∑

�=0

[f(0, � + 1) − f(0, �)]

∣∣∣∣∣

≤
n−2∑

k=0

|f(k + 1, v) − f(k, v)| +
n−2∑

�=0

|f(0, � + 1) − f(0, �)| := A(v).(3.3)

Analogously,

(3.4) |f(u, v)| ≤
n−2∑

�=0

|f(u, � + 1) − f(u, �)| +
n−2∑

k=0

|f(k + 1, 0) − f(k, 0)| := B(u).

Multiplying (3.3) and (3.4), and summing over X, we see that

‖f‖2
2 ≤

∑

(u,v)∈X

A(v)B(u) =

(
n−1∑

v=0

A(v)

)
·
(

n−1∑

u=0

B(u)

)

≤ 1

4

(
n−1∑

v=0

A(v) +

n−1∑

u=0

B(u)

)2

=
1

4
‖f‖2

W .

The final assertion follows since the system of functions {(k, �) �→ e
2πi(uk+v�)

n }(u,v)∈X

are orthogonal in �C

2 (X) (the space of complex-valued functions on X) and have norms
bounded by n.

We now recall some facts related to absolutely summing operators on Banach
spaces (we refer the interested reader to [51, 54] for more information on this topic).
Given two Banach spaces Y and Z, the π1 norm of an operator A : Y → Z, denoted
π1(A), is defined to be the smallest constant K > 0 such that for every m ∈ N and
every y1, . . . , ym ∈ Y there exists a norm 1 linear functional y∗ ∈ Y ∗ satisfying

(3.5)
m∑

j=1

‖Ayj‖Z ≤ K

m∑

j=1

|y∗(yj)|.

This defines an ideal norm in the sense that it is a norm, and for every two operators
P : W → Y and Q : Z → V we have π1(QAP ) ≤ ‖Q‖ · π1(A) · ‖P‖. Observe that it
is always the case that π1(A) ≥ ‖A‖.

Lemma 3.3. Using the above notation, π1(Id) ≤ 4n(n−1). Therefore, Lemma 3.2
implies that

π1(F ◦ S ◦ Id ◦ T ∗) ≤ 4nL.



812 ASSAF NAOR AND GIDEON SCHECHTMAN

Proof. Fix f1, . . . , fm : X → R with f1(0) = · · · = fm(0) = 0. Then

m∑

j=1

‖fj‖W =

n−1∑

s=1

n−2∑

t=0

m∑

j=1

(|fj(s, t + 1) − fj(s, t)| + |fj(t + 1, s) − fj(t, s)|
)

+ (n + 1)

n−2∑

t=0

m∑

j=1

(|fj(0, t + 1) − fj(0, t)| + |fj(t + 1, 0) − fj(t, 0)|)

≤ 4n(n− 1) max

{
max

0≤s≤n−1
0≤t≤n−2

m∑

j=1

|fj(s, t + 1) − fj(s, t)|,

max
0≤s≤n−1
0≤t≤n−2

m∑

j=1

|fj(t + 1, s) − fj(t, s)|
}
.

Assume without loss of generality that the maximum above equals
∑m

j=1 |fj(s0, t0 +
1) − fj(s0, t0)| for some 0 ≤ s0 ≤ n − 1 and 0 ≤ t0 ≤ n − 2. Consider the measure
μ = δ(s0,t0+1)− δ(s0,t0) ∈ M = Lip∗

0. One checks that ‖μ‖τ = 1, and
∑m

j=1 |fj(s0, t0 +

1) − fj(s0, t0)| =
∑m

j=1 |μ(fj)|, implying the required result.

The fundamental property of the π1 norm is the Pietsch factorization theorem
(see [51]), a special (particularly easy) case of which is the following lemma. We
present a proof for the sake of completeness.

Lemma 3.4 (Pietsch factorization). Let Y be a Banach space, and fix a linear
operator A : �N∞ → Y . Then there exists a probability measure σ on {1, . . . , N} and
a linear operator R : L1(σ) → Y such that A = R ◦ I, where I is the formal identity
from �N∞ to L1(σ), and ‖R‖ = π1(A).

Proof. Recall that A : �N∞ → Y satisfies, for all x1, . . . , xm ∈ �N∞,

(3.6)
m∑

j=1

‖Axj‖ ≤ π1(A) · suppx∗∈(�N∞)
∗

‖x∗‖=1

m∑

j=1

|x∗(xj)| = π1(A) · max
1≤k≤N

m∑

j=1

|xj(k)|,

where the last equality follows from the fact that the evaluation functionals x �→ x(k)
are the extreme points of the unit ball of �N1 =

(
�N∞
)∗

.

Denoting by e1, . . . , eN the standard basis of R
N , we deduce from (3.6) that

π1(A) ≥ ∑N
j=1 ‖Aej‖. Define a probability measure σ on {1, . . . , N} by σ(k) =

‖Aek‖∑N
j=1 ‖Aej‖ . Then for every x ∈ �N∞ we see that

‖Ax‖ =

∥∥∥∥∥

N∑

k=1

x(k)Aek

∥∥∥∥∥ ≤
N∑

k=1

|x(k)| · ‖Aek‖

=

(
N∑

j=1

‖Aej‖
)∫

{1,...,N}
|x(k)|dσ(k) ≤ π1(A)

∫

{1,...,N}
|x(k)|dσ(k).

Defining Rx = Ax, this implies the required result.

From now on let R and σ be the operator and probability measure corresponding
to A = F ◦ S ◦ Id ◦ T ∗ in Lemma 3.4. Thus R ◦ I = F ◦ S ◦ Id ◦ T ∗ and ‖R‖ ≤ 4nL.
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Schematically, we have the following commuting diagram:

We need only one more simple result from classical Banach space theory. This
result can be generalized to the case in which the target space �2 is replaced by a
more general Banach lattice. For the sake of simplicity we shall prove here only what
is needed to conclude the proof of Theorem 1.1.

Lemma 3.5. Let R : L1(σ) → �2 be a linear operator. Fix f : {0, . . . , N} →
[0,∞). Then there is x ∈ �2 with nonnegative coordinates such that

R ({g : {0, . . . , N} → R : ∀j, |g(j)| ≤ f(j)}) ⊆ {y ∈ �2 : ∀j, |yj | ≤ xj},

and ‖x‖2 ≤ ‖R‖ · ‖f‖L1(σ).
Proof. R is given by a matrix (Rij : i = 1, . . . , N , j ∈ N). In other words, for

every j, (Rf)j =
∑N

i=1 Rijf(i). Observe that using this notation,

(3.7) ‖R‖ = max
1≤i≤N

(
1

σ(i)2

∞∑

j=1

R2
ij

)1/2

.

Fix g ∈ L1(σ) such that for all i ∈ {1, . . . , N}, |g(i)| ≤ f(i). Then for all j,

|(Rg)j | ≤
N∑

i=1

|Rij |f(i) := xj .

Now

‖x‖2 =

⎡
⎣

∞∑

j=1

(
N∑

i=1

|Rij |f(i)

)2
⎤
⎦

1/2

≤
N∑

i=1

( ∞∑

j=1

|Rij |2f(i)2

)1/2

=

n∑

i=1

σ(i)f(i)

(
1

σ(i)2

∞∑

j=1

R2
ij

)1/2

≤ ‖R‖ · ‖f‖L1(σ),

where we have used (3.7).
We are now in position to conclude the proof of Theorem 1.1.
Proof of Theorem 1.1. For (u, v) ∈ {1, . . . , n− 1}2 define ϕu,v : X → R by

ϕu,v(k, �) :=
1

u + v
· sin

(
2π(uk + v�)

n

)
.

Then ϕu,v(0) = 0, and one computes that ‖ϕu,v‖Lip < 4π
n . By the fact that T ∗ maps

the unit ball of �N∞ onto the unit ball of Lip0, it follows that there is φu,v ∈ �N∞ with
‖φu,v‖∞ ≤ 4π

n and T ∗φu,v = ϕu,v. Now the functions |I(φu,v)| ∈ L1(σ) are pointwise
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bounded by the constant 4π
n , and so by Lemma 3.5 there exists x ∈ �2(X) of norm at

most 4π
n ‖R‖ ≤ 16πL such that |R(I(φu,v))| is bounded pointwise by x.

Note that

R ◦ I(φu,v)(u, v)

= F ◦ S ◦ Id ◦ T ∗(φu,v)(u, v)

= F (ϕu,v)(u, v)

=
1

n2

∑

(k,�)∈X

1

u + v
· sin2

(
2π(uk + v�)

n

)

=
1

n2(u + v)

n−1∑

k=0

n−1∑

�=0

(
1

2
− 1

4
· e2πi· 2uk

n · e2πi· 2v�
n − 1

4
· e−2πi· 2uk

n · e−2πi· 2v�
n

)

=

{
1

2(u+v)
, (u, v) �= (

n
2
, n

2

)
,

0, (u, v) =
(
n
2
, n

2

)
.

But

(16πL)2 ≥ ‖x‖2
2 ≥

n−1∑

u,v=1

x2
u,v ≥

n−1∑

u,v=1

[
R ◦ I(φu,v)(u, v)

]2
≥ 1

8

n−1∑

u,v=1

1

(u + v)2
≥ log n

16
,

where the last bound follows from comparison with the appropriate integrals. The
proof of Theorem 1.1 is complete.

3.1. Discretization and minimum weight matching. In this section we
deduce Theorem 1.2 from Theorem 1.1. The main tool is the following theorem of
Bourgain [6], which gives a quantitative version of Ribe’s theorem [44].

Theorem 3.6 (Bourgain’s quantitative version of Ribe’s theorem [6]). There
exists a universal constant C with the following property. Let Y and Z be Banach
spaces, dim(Y ) = d. Assume that Y is an ε-net in the unit ball of Y , that f : Y → Z
satisfies dist(f) ≤ D, and that log log 1

ε ≥ Cd logD. Then there exists an invertible
linear operator T : Y → Z satisfying ‖T‖ · ‖T−1‖ ≤ C ·D.

Proof of Theorem 1.2. Observe that for every μ ∈ M , the measure 1
μ+(X)

·
(μ+ ⊗ μ−) is in Π(μ+, μ−). Thus

‖μ‖τ ≤ 1

μ+(X)

∫

X×X

‖x− y‖2dμ
+(x)dμ−(y)

≤
√

2 · (n− 1) · μ+(X)

≤ 2n · |supp(μ+)| · ‖μ‖∞
≤ 2n3‖μ‖∞.

On the other hand, as we have seen in the proof of Lemma 3.1, for every μ ∈ M ,
‖μ‖∞ ≤ ‖μ‖τ . It follows from these considerations, and Theorems 1.1 and 3.6, that for

every integer N ≥ ee
C′n2 log log n

, the set of probability measures Y ⊆ PX consisting
of measures μ ∈ PX such that for all x ∈ X, μ(x) = k/N for some k ∈ {0, . . . , N},
satisfies c1(Y , τ) = Ω

(√
log n

)
. We pass to a family of subsets as follows. Let

M be an integer which will be determined later. For every μ ∈ Y we assign a
subset Sμ ⊆ {0, . . . , nM}2 as follows. For every (u, v) ∈ X = {0, . . . , n − 1}2, if
μ(u, v) = k/N , where k ∈ {0, . . . , N}, then Sμ will contain arbitrary k distinct points
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from the set (uM, vM) + {0, . . . , �√N�}2. Provided M ≥ 4
√
N , the sets {Sμ}μ∈Y

thus obtained are N point subsets of {0, . . . , nM}2, and it is straightforward to check
that the minimum weight matching metric on {Sμ}μ∈Y is bi-Lipschitz equivalent to
(Y , τ) with constant distortion.

3.2. Uniform and coarse nonembeddability into Hilbert space. In this
section we prove Theorem 1.3. We shall prove, in fact, that the space M[0,1]2,τ does not
embed uniformly or coarsely into L2. We first recall the definitions of these important
notions (see [4, 37] and the references therein for background on these concepts). Let
(X, dX) and (Y, dY ) be metric spaces. For f : X → Y and t > 0 we define

Ωf (t) = supp{dY (f(x), f(y)); dX(x, y) ≤ t}
and

ωf (t) = inf{dY (f(x), f(y)); dN (x, y) ≥ t}.
Clearly, Ωf and ωf are nondecreasing, and for every x, y ∈ X,

ωf (dX(x, y)) ≤ dY (f(x), f(y)) ≤ Ωf (dX(x, y)) .

With these definitions, f is uniformly continuous if limt→0 Ωf (t) = 0, and f is said to
be a uniform embedding if f is injective and both f and f−1 are uniformly continuous.
Also, f is said to be a coarse embedding if Ωf (t) < ∞ for all t > 0 and limt→∞ ωf (t) =
∞.

In what follows we will use the following standard notation: Given a sequence
of Banach spaces

{
(Zj , ‖ · ‖Zj )

}∞
j=1

, the Banach space (
⊕∞

j=1 Zj)1 is the space of all

sequences z = (zj)
∞
j=1 ∈ ∏∞

j=1 Zj such that ‖z‖ :=
∑∞

j=1 ‖zj‖Zj < ∞. If for every

j ∈ N, Zj = Z1, we write �1(Z1) = (
⊕∞

j=1 Zj)1.

Theorem 3.7. The spaces {M 0
{0,...,n}2,τ}∞n=1 do not admit a uniform or coarse

embedding into L2 with moduli uniformly bounded in n; i.e., there do not exist increas-
ing functions ω,Ω : [0,∞) → [0,∞) which either satisfy limt→0 ω(t) = limt→0 Ω(t) =
0, or limt→∞ ω(t) = ∞, and mappings fn : M 0

{0,...,n}2 → L2, such that ω(‖μ−ν‖τ ) ≤
‖fn(μ) − fn(ν)‖2 ≤ Ω(‖μ− ν‖τ ) for all μ, ν ∈ M 0

{0,...,n}2 and all n.
Proof. If this is not the case, then by passing to a limit along an ultrafilter we

easily deduce that M 0
[0,1]2,τ uniformly or coarsely embeds into an ultraproduct of

Hilbert spaces and thus into L2 (see [16, 17]). By a theorem of Aharoni, Maurey, and
Mityagin [1] in the case of uniform embeddings, and a result of Randrianarivony [43]
in the case of coarse embeddings, this implies that M 0

[0,1]2 is linearly isomorphic to a

subspace of L0. By a theorem of Nikǐsin [39], it follows that M 0
[0,1]2 is isomorphic to

a subspace of L1−ε for any ε ∈ (0, 1). We recall that it is an open problem posed by
Kwapien (see the discussion in [28, 4]) whether a Banach space which linearly embeds
into L0 is linearly isomorphic to a subspace of L1. If this were the case, we would
have finished by Theorem 1.1. Since the solution of Kwapien’s problem is unknown,
we proceed as follows.

Let {Sj}∞j=1 be a sequence of disjoint squares in [0, 1]2 with

(3.8) d(Sj , Sk) = min
a∈Sj , b∈Sk

‖a− b‖2 > max {diamSj ,diamSk} .

Consider the linear subspace Y of M 0
[0,1]2 consisting of all measures μ satisfying

supp(μ) ⊆ ⋃∞
j=1 Sj and μ(Sj) = 0 for all j. It is intuitively clear that in the compu-

tation of ‖μ‖τ for μ ∈ Y the best transportation leaves each of the Sj invariant; i.e.,
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it is enough to take the infimum in (2.1) only over measures π ∈ Π(μ, ν) which are
supported on

⋃∞
j=1(Sj ×Sj). This is proved formally as follows: Fix μ ∈ Y , and write

μ =
∑∞

j=1 μj , where supp(μj) ⊆ Sj and μj(Sj) = 0 for all j ∈ N. We claim that

(3.9) ‖μ‖[0,1]2,τ =

∞∑

j=1

‖μj‖Sj ,τ .

If πj ∈ Π(μ+
j , μ

−
j ), then π :=

∑∞
j=1 πj ∈ Π(μ+, μ−). Thus ‖μ‖[0,1]2,τ ≤∑∞

j=1 ‖μj‖Sj ,τ .

To prove the reverse inequality take π ∈ Π(μ+, μ−). For every j = 1, 2, . . . define a
measure σj on Sj as follows: For A ⊆ Sj set σj(A) := π(A × ⋃

k �=j Sk). Thus, in
particular, by our assumption (3.8) for every y ∈ Sj ,
(3.10)∫

Sj

‖x− y‖2dσj(x) =

∫

Sj×
⋃

k �=j Sk

‖x− y‖2dπ(x, z) ≤
∫

Sj×
⋃

k �=j Sk

‖x− z‖2dπ(x, z).

Writing

π̃ := π · 1⋃∞
j=1(Sj×Sj) +

∞∑

j=1

1

σj(Sj)
· σj ⊗ σj

= π · 1⋃∞
j=1(Sj×Sj) +

∞∑

j=1

1

π
(
Sj ×

⋃
k �=j Sk

) · σj ⊗ σj ,

it follows from our definitions that π̃ ∈ Π(μ+, μ−) and π̃ is supported on
⋃∞

j=1(Sj×Sj).

Moreover, for each j, π̃j := π̃|Sj
∈ Π(μ+

j , μ
−
j ), so that

∞∑

j=1

‖μj‖Sj ,τ ≤
∞∑

j=1

∫

Sj×Sj

‖x− y‖2dπ̃j(x, y)

=

∫
⋃∞

j=1(Sj×Sj)

‖x− y‖2dπ(x, y)

+
∞∑

j=1

1

π
(
Sj ×

⋃
k �=j Sk

) ·
∫

Sj×Sj

‖x− y‖2dσj(x)dσj(y)

(3.10)

≤
∫
⋃∞

j=1(Sj×Sj)

‖x− y‖2dπ(x, y) +

∞∑

j=1

∫

Sj×
⋃

k �=j Sk

‖x− z‖2dπ(x, z)

=

∫

(
⋃∞

j=1 Sj)×(
⋃∞

j=1 Sj)
‖x− y‖2dπ(x, y).

This concludes the proof of (3.9). It follows that Y is isometric to (
⊕∞

n=1 M 0
Sn,τ

)1,

which in turn is isometric to �1(M 0
[0,1]2,τ ). Now Kalton proved in [28] that if for some

Banach space X, �1(X) is isomorphic to a subspace of L0, then X is isomorphic to a
subspace of L1, and we finish by Theorem 1.1.

Proof of Theorem 1.3. Assume for the sake of contradiction that there exists
C < ∞ such that for all n ∈ N, c2

(
P{0,...,n}2 ,

√
τ
)
< C. By the proof of Lemma 3.1,

we know that the unit ball of M{0,...,n}2,τ is isometric to a subset of (P{0,...,n}2 , τ).
Thus by our assumption there exist mappings fn : M{0,...,n}2 → L2 such that for
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every μ, ν ∈ M{0,...,n}2 with ‖μ‖τ , ‖ν‖τ ≤ 1,

(3.11)
√
‖μ− ν‖τ ≤ ‖fn(μ) − fn(ν)‖2 ≤ C ·

√
‖μ− ν‖τ .

Let U be a free ultrafilter on N. Define f̃n : M{0,...,n}2 → (L2)U by f̃n(μ) =(√
j · fn(μ/j)

)∞
j=1

/U . Inequalities (3.11) imply that all μ, ν ∈ M{0,...,n}2 satisfy
√‖μ− ν‖τ ≤ ‖f̃n(μ) − f̃n(ν)‖(L2)U ≤ C ·√‖μ− ν‖τ . Since the ultrapower (L2)U
is isometric to a Hilbert space (see [16]), we arrive at a contradiction with Theo-
rem 3.7.

Remark 3.2. We believe that Theorem 1.3 can be made quantitative; i.e., one
can give explicit quantitative estimates on the rate with which c2

(
P{0,...,n}2 ,

√
τ
)

tends to infinity. This would involve obtaining quantitative versions of the proofs in
[1, 28, 43], which seems easy but somewhat tedious. We did not attempt to obtain
such bounds.

Remark 3.3. We do not know whether
(
P[0,1]2 , τ

)
admits a uniform embedding

into Hilbert space. The proof above actually gives that for all α ∈ (0, 1],
(
P[0,1]2,τ , τ

α
)

does not embed bi-Lipschitzly into Hilbert space. But, our proof exploits the homo-
geneity of the function t �→ tα in an essential way, and so it does not apply to the
case of more general moduli.

4. Upper bounds via Fourier analysis. In this section we prove Theorem 1.4
and discuss some related upper bounds. Given a measure μ on Z

2
n, we decompose

it as in (1.2), and we consider the linear operators A and B, from MZ2
n

to L1

(
Z

2
n

)
,

defined in (1.3) and (1.4), respectively. One checks that the duals of these operators,
A∗, B∗ : L∞

(
Z

2
n

)→ M ∗
Z2
n

= Lip0

(
Z

2
n

)
, are given by

(4.1) A∗f =
∑

(u,v)∈Z2
n\{(0,0)}

e−
2πiu

n − 1
∣∣e 2πiu

n − 1
∣∣2 +

∣∣e 2πiv
n − 1

∣∣2 · f̂(u, v) · (euv − 1)

and

(4.2) B∗f =
∑

(u,v)∈Z2
n\{(0,0)}

e−
2πiv
n − 1

∣∣e 2πiu
n − 1

∣∣2 +
∣∣e 2πiv

n − 1
∣∣2 · f̂(u, v) · (euv − 1).

To check these identities the reader should verify that for all μ ∈ MZ2
n
,
∫

Z2
n
fd(Aμ) =∫

Z2
n
(A∗f)dμ, and similarly for B. (To this end, recall that μ

(
Z

2
n

)
= 0, so that

μ̂(0, 0) = 0. This explains the subtraction of 1 in the identities (4.1) and (4.2).)
We claim that for every μ ∈ MZ2

n
,

(4.3) ‖μ‖τ ≤ ‖Aμ‖L1(Z2
n) + ‖Bμ‖L1(Z2

n) ≤ C log n · ‖μ‖τ ,

where C is a universal constant. This will imply Theorem 1.4 since the mapping
μ �→ μ − U , where U is the uniform probability measure on Z2

n, is an isometric
embedding of PZ2

n
into MZ

n
2
.

By duality, (4.3) is equivalent to the fact that the mapping (f, g) �→ A∗f + B∗g
from L∞

(
Z

2
n

)⊕L∞
(
Z

2
n

)
to Lip0

(
Z

2
n

)
is a C log n quotient map; i.e., for every (f, g) ∈

L∞
(
Z

2
n

)⊕ L∞
(
Z

2
n

)
,

(4.4) ‖A∗f + B∗g‖Lip ≤ C log n · max {‖f‖∞, ‖g‖∞} ,
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and for every h ∈ Lip0

(
Z

2
n

)
, there is some (f, g) ∈ L∞

(
Z

2
n

) ⊕ L∞
(
Z

2
n

)
satisfying

A∗f + B∗g = h and max{‖f‖∞, ‖g‖∞} ≤ ‖h‖Lip. The second assertion is proved as
follows: Take f = ∂1h and g = ∂2h, where for j = 1, 2, ∂jh(x) = h(x + ej) − h(x)
(here e1 = (1, 0) and e2 = (0, 1)). Clearly, ‖f‖∞, ‖g‖∞ ≤ ‖h‖Lip, and

A∗f + B∗g

=
∑

(u,v)∈Z2
n\{(0,0)}

⎛
⎝

(
e−

2πiu
n − 1

)
· ∂̂1h(u, v) +

(
e−

2πiv
n − 1

)
· ∂̂2h(u, v)

∣∣e 2πiu
n − 1

∣∣2 +
∣∣e 2πiv

n − 1
∣∣2

⎞
⎠ (euv − 1)

=
∑

(u,v)∈Z2
n\{(0,0)}

⎛
⎝

(
e−

2πiu
n − 1

)
·
(
e

2πiu
n − 1

)
+
(
e−

2πiv
n − 1

)
·
(
e

2πiv
n − 1

)

∣∣e 2πiu
n − 1

∣∣2 +
∣∣e 2πiv

n − 1
∣∣2

⎞
⎠

· ĥ(u, v)(euv − 1)

=
∑

(u,v)∈Z2
n\{(0,0)}

ĥ(u, v)euv −
∑

(u,v)∈Z2
n\{(0,0)}

ĥ(u, v)

=
∑

(u,v)∈Z2
n

ĥ(u, v)euv = h,

where we used the fact that h(0) = 0.
It remains to prove (4.4). To this end, it is enough to show that ‖A∗f‖Lip ≤

O(log n) · ‖f‖∞ and ‖B∗g‖Lip ≤ O(log n) · ‖g‖∞. We will establish this for A∗—the
case of B∗ is entirely analogous. Observe that

‖A∗f‖Lip ≤ ‖∂1A
∗f‖∞ + ‖∂2A

∗f‖∞,

and so it is enough to establish the following two inequalities:

(4.5)

∥∥∥∥∥∥

∑

(u,v)∈Z2
n\{(0,0)}

∣∣e 2πiu
n − 1

∣∣2
∣∣e 2πiu

n − 1
∣∣2 +

∣∣e 2πiv
n − 1

∣∣2 · f̂(u, v)euv

∥∥∥∥∥∥
∞

≤ O(log n) · ‖f‖∞

and

(4.6)

∥∥∥∥∥∥

∑

(u,v)∈Z2
n\{(0,0)}

(
e−

2πiu
n − 1

)
·
(
e

2πiv
n − 1

)

∣∣e 2πiu
n − 1

∣∣2 +
∣∣e 2πiv

n − 1
∣∣2 · f̂(u, v)euv

∥∥∥∥∥∥
∞

≤ O(log n) · ‖f‖∞.

Since for p > 0 the norms on L∞
(
Z

2
n

)
and Lp

(
Z

2
n

)
are equivalent with constant n2/p

(by Hölder’s inequality), it is enough to show that for p ≥ 2,

(4.7)

∥∥∥∥∥∥

∑

(u,v)∈Z2
n\{(0,0)}

∣∣e 2πiu
n − 1

∣∣2
∣∣e 2πiu

n − 1
∣∣2 +

∣∣e 2πiv
n − 1

∣∣2 · f̂(u, v)euv

∥∥∥∥∥∥
p

≤ O(p) · ‖f‖p

and

(4.8)

∥∥∥∥∥∥

∑

(u,v)∈Z2
n\{(0,0)}

(
e−

2πiu
n − 1

)
·
(
e

2πiv
n − 1

)

∣∣e 2πiu
n − 1

∣∣2 +
∣∣e 2πiv

n − 1
∣∣2 · f̂(u, v)euv

∥∥∥∥∥∥
p

≤ O(p) · ‖f‖p.
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To prove inequalities (4.7) and (4.8) we will assume that n is odd (all of our results
are valid for even n as well, and the proofs in this case require minor modifications).
We think of Z

2
n as [−(n − 1)/2, (n − 1)/2]2 ∩ Z

2. As before, given m : Z
2
n → C, we

denote

∂1m(x, y) = m(x + 1, y) −m(x, y) and ∂2m(x, y) = m(x, y + 1) −m(x, y).

Thus

∂2
1m(x, y) = m(x + 2, y) − 2m(x + 1, y) + m(x, y) and

∂2
2m(x, y) = m(x, y + 2) − 2m(x, y + 1) + m(x, y),

and

∂1∂2m(x, y) = ∂2∂1m(x, y) = m(x + 1, y + 1) −m(x + 1, y) −m(x, y + 1) + m(x, y).

In what follows we think of m as a Fourier multiplier in the sense that it corre-
sponds to a translation invariant operator Tm on L2

(
Z

2
n

)
given by

(4.9) Tm(f) :=
∑

(u,v)∈Z2
n

m(u, v) · f̂(u, v) · euv.

Recall that an operator T : L1

(
Z

2
n

) → L1

(
Z

2
n

)
is said to be weak (1, 1) with

constant K if for every f : Z
2
n → C and every a > 0,

∣∣{((u, v) ∈ Z
2
n : |Tf(u, v)| ≥ a

}∣∣ ≤ K

a
· ‖f‖1 =

K

a
·

∑

(u,v)∈Z2
n

|f(u, v)|.

We will use the following discrete version of the Hörmander–Mihlin multiplier
theorem [38, 18].

Theorem 4.1 (Hörmander–Mihlin multiplier criterion on Z
2
n). For j ∈ N denote

Qj = [−2j , 2j ] × [−2j , 2j ]. Fix B > 0 and m : Z
2
n → C with m(0, 0) = 0, and assume

that for all j = 0, 1, . . . , �log2(n− 1)� − 1,

∑

(u,v)∈(Qj\Qj−1)∩Z2
n

[
2−2j |m(u, v)|2 + |∂1m(u, v)|2 + |∂2m(u, v)|2

+22j |∂2
1m(u, v)|2 + 22j |∂2

2m(u, v)|2 + 22j |∂1∂2m(u, v)|2] ≤ B2.

Then the translation invariant operator Tm corresponding to m is weak (1, 1) with
constant O(B).

While the continuous version of the Hörmander–Mihlin multiplier theorem is a
powerful tool which appears in several texts (e.g., in the books [12, 48, 52]), we could
not locate a statement of the above discrete version in the literature. It is, however,
possible to prove it using several minor modifications of the existing proofs. The
standard proof of the Hörmander–Mihlin criterion is usually split into two parts. The
first part, which is based on the Calderón–Zygmund decomposition, transfers virtually
verbatim to the discrete setting—see Theorem 3 in Chapter 1 of [48] and Remark 8.1
there, which explains how this part of the proof transfers from R

n to the setting
of finitely generated groups of polynomial growth (in fact, the Calderón–Zygmund
decomposition itself, as presented in Theorem 2 in Chapter 1 of [48], is valid in the
setting of general metric spaces equipped with a doubling measure). The second part
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of the proof of the Hörmander–Mihlin theorem, as presented in Theorem 2.5 of [18],
requires several straightforward modifications in order to pass to the discrete setting.
We leave the simple details to the reader. For the sake of readers that are not familiar
with these aspects of Fourier analysis, we will later present a complete reduction to a
continuous problem whose proof appears in print, which yields slightly worse bounds
on the distortion guarantee.

In order to apply Theorem 4.1, we consider the following two multipliers,
(4.10)

m1(u, v) :=

∣∣e 2πiu
n − 1

∣∣2
∣∣e 2πiu

n − 1
∣∣2 +

∣∣e 2πiv
n − 1

∣∣2 and m2(u, v) :=

(
e−

2πiu
n − 1

)
·
(
e

2πiv
n − 1

)

∣∣e 2πiu
n − 1

∣∣2 +
∣∣e 2πiv

n − 1
∣∣2 ,

where we set m1(0, 0) = m2(0, 0) = 0. A direct (albeit tedious!) computation shows
that m1 and m2 satisfy the conditions of Theorem 4.1 with B = O(1). Thus, the
operators Tm1 and Tm2 are weak (1, 1) with constant O(1). Since m1 and m2 are
bounded functions, the operator norms ‖Tm1

‖L2(Z2
n)→L2(Z2

n) and ‖Tm2‖L2(Z2
n)→L2(Z2

n)

are O(1). Since these operators are self-adjoint, by the Marcinkiewicz interpolation
theorem (see [56]) it follows that for p ≥ 2, the operator norms ‖Tm1‖Lp(Z2

n)→Lp(Z2
n)

and ‖Tm2‖Lp(Z2
n)→Lp(Z2

n) are O(p). This is precisely (4.7) and (4.8).
The above argument is based on Theorem 4.1, which does not appear exactly as

stated in the literature, but its proof is a straightforward adaptation of existing proofs
(which is too simple to justify rewriting the lengthy argument here). However, making
the necessary changes easily does require some familiarity with Calderón–Zygmund
theory. We therefore now present another argument which gives a polylog(n) bound on
the distortion but uses only statements which appear in the literature. This alternative
approach appears to be quite versatile and might be useful elsewhere.

The following lemma reduces the problem of proving inequalities such as (4.7)
and (4.8) (with perhaps a different dependence on p) to a continuous inequality.
The argument is based on the proof of a theorem of Marcinkiewicz from [56] (see
Theorem 7.5 in Chapter X there). In what follows we denote by T the Euclidean unit
circle in the plane.

Proposition 4.2 (transferring multipliers from the torus to Z
2
n). Fix an odd in-

teger n. Let {λ(u, v)}∞u,v=0 be complex numbers such that λ(u, v) = 0 for max{u, v} ≥
n. Consider the operators M : Lp

(
T

2
)→ Lp

(
T

2
)

and Mn : Lp

(
Z

2
n

)→ Lp

(
Z

2
n

)
given

by

M

( ∞∑

u,v=−∞
f̂(u, v)e2πi(ux+vy)

)
=

∞∑

u,v=0

λ(u, v)f̂(u, v)e2πi(ux+vy)

and

Mn

(
n−1∑

u,v=0

f̂(u, v)e
2πi
n (ua+vb)

)
=

n−1∑

u,v=0

λ(u, v)f̂(u, v)e
2πi
n (ua+vb).

Then

‖Mn‖Lp(Z2
n)→Lp(Z2

n) ≤ 81 · ‖M‖Lp(T2)→Lp(T2).

Proof. The proof is a variant of the first part of the proof of Theorem 7.5 in
Chapter X in [56] and a small twist on the second part. Since the terminology in [56]
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is different from ours, we repeat the proof of the first part as well. Recall that the
Dirichlet kernels D� : [0, 1] → C are defined as

D�(x) =

�∑

j=−�

e2πijx,

and the Fejér kernels Km : [0, 1] → C are

Km(x) =
1

m + 1

m∑

�=0

D�x =

m∑

j=−m

(
1 − |j|

m + 1

)
e2πijx.

A basic property of D� is that for any trigonometric polynomial S(x) of degree at most

�, namely S(x) =
∑�

j=−� aje
2πijx, we have that S(x) = S∗D�(x) =

∫ 1

0
S(t)D�(x−t)dt.

The same is true with any other function all of whose jth Fourier coefficients for j
between −� and � are 1, in particular for the de la Vallée Poussin kernel 2K2�−1−K�−1

(see [29]). The well-known advantage of the Fejér kernel over the Dirichlet kernel is

that it is everywhere (real and) nonnegative. Note also that
∫ 1

0
Km(t)dt = 1 for all m.

Thus, by convexity of the function tp, for any trigonometric polynomial S of degree
at most �, and for all x ∈ [0, 1],

|S(x)|p = |2S ∗K2�−1(x) − S ∗K�(x)|p

≤ 3p
(

2

3

∫ 1

0

|S(t)|pK2�−1(x− t)dt +
1

3

∫ 1

0

|S(t)|pK�−1(x− t)dt

)
.(4.11)

Now let ω2�+1 be the measure which assigns mass 1
2�+1

to each of 2� + 1 equally
spaced points on [0, 1]. Then it is easy to check that

∫ 1

0

Km(x− t)dω2�+1(x) =

∫ 1

0

Km(x− t)dx = 1

for all m ≤ 2� and for all t ∈ [0, 1]. Integrating (4.11) with respect to ω2�+1, we get
that for any trigonometric polynomial S of degree at most �

(4.12)

∫ 1

0

|S(x)|pdω2�+1(x) ≤ 3p
∫ 1

0

|S(x)|pdx.

It follows that if S(x, y) is a two-variable trigonometric polynomial of degree at most

� in each of the variables, i.e., S(x, y) =
∑�

u,v=−� auve
2πi(ux+vy), then

∫

[0,1]2
|S(x, y)|pdω2�+1(x)dω2�+1(y) ≤ 9p

∫

[0,1]2
|S(x, y)|pdxdy.

It follows from this that, since n is odd, for every f ∈ Lp

(
T

2
)
,

∥∥∥∥∥Mn

(
n−1∑

u,v=0

f̂(u, v)e
2πi
n (ua+vb)

)∥∥∥∥∥
Lp(Z2

n)

≤ 9

∥∥∥∥∥M
( ∞∑

u,v=−∞
f̂(u, v)e2πi(ux+vy)

)∥∥∥∥∥
Lp(T2)

.

For each trigonometric polynomial of the form P (x, y) =
∑n−1

u,v=−n+1 auve
2πi(ux+vy),

note that
∫

[0,1]2
P (x, y)dωn(x)dωn(y) = a0 =

∫

[0,1]2
P (x, y)dxdy.
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Fix f ∈ Lp

(
Z

2
n

)
, 1 < p < ∞. By the first part of the proof and duality, there is

g ∈ Lp∗(T2) (p∗ = p/(p− 1)) with ‖g‖p∗ = 1 such that

‖Mnf‖Lp(Z2
n)

≤ 9

∫

[0,1]2

(
n−1∑

u,v=0

λj f̂(u, v)e2πi(ux+vy)

)
g(x, y)dxdy

= 9

∫

[0,1]2

(
n−1∑

u,v=0

λ(u, v)f̂(u, v)e2πi(ux+vy)

)(
n−1∑

u,v=0

ĝ(u, v)e−2πi(ux+vy)

)
dxdy

= 9

∫

[0,1]2

(
n−1∑

u,v=0

λ(u, v)f̂(u, v)e2πi(ux+vy)

)(
n−1∑

u,v=0

ĝ(u, v)e−2πi(ux+vy)

)
dωn(x)dωn(y)

= 9

∫

[0,1]2

(
n−1∑

u,v=0

f̂(u, v)e2πi(ux+vy)

)(
n−1∑

u,v=0

λ(u, v)ĝ(u, v)e−2πi(ux+vy)

)
dωn(x)dωn(y)

≤ 9

(∫

[0,1]2

∣∣∣∣∣

n−1∑

u,v=0

f̂(u, v)e2πi(ux+vy)

∣∣∣∣∣

p

dωn(x)dωn(y)

)1/p

·
⎛
⎝
∫

[0,1]2

∣∣∣∣∣

n−1∑

u,v=0

λ(u, v)ĝ(u, v)e−2πi(ux+vy)

∣∣∣∣∣

p∗

dωn(x)ωn(y)

⎞
⎠

1/p∗

≤ 81 · ‖f‖Lp(Z2
n)

⎛
⎝
∫

[0,1]2

∣∣∣∣∣

n−1∑

u,v=0

λ(u, v)ĝ(u, v)e2πi(ux+vy)

∣∣∣∣∣

p∗

dx

⎞
⎠

1/p∗

≤ 81 · ‖f‖Lp(Z2
n) · ‖M‖Lp(T2)→Lp(T2),

where the second to last inequality follows from (4.12) and the last inequality (that
is, the fact that the norm of a multiplier in Lp

(
T

2
)

is the same as the norm of the

conjugate multiplier in Lp∗
(
T

2
)
) follows from duality. The case p = 1 (and also a

similar inequality for the ∞ norm) follows easily from the Lp cases.
Proposition 4.2 implies that it is enough to obtain Lp to Lp bounds for the

operators Tm1
and Tm2 , where m1,m2 are as in (4.10), as operators on functions on

the torus T
2. By a theorem of de Leeuw [11], it is enough to obtain such bounds

when we think of Tm1 and Tm2 as operators on functions on R
2 (see [55] for the

respective result in the case of weak (1, 1) bounds). The continuous version of the
Hörmander–Mihlin multiplier theorem now applies, but unfortunately its conditions
are not satisfied. However, a (once again tedious) computation shows it is possible
to apply the Marcinkiewicz multiplier theorem (see [47, 52]), in combination with
bounds on the Hilbert transform [47, 52], to obtain bounds similar to (4.7) and (4.8)
with O(p) replaced by O(poly(p)). (It is quite easy to obtain a bound of O(p3), and
with more work this can be reduced to O(p2). However, we do not see a simple way
to obtain O(p) using this approach.)

Remark 4.1. Consider the mapping S : PZ2
n
→ L1

(
Z

2
n

)
given by

Sμ :=
∑

(u,v)∈Z2
n\{(0,0)}

(∣∣∣e
2πiu

n − 1
∣∣∣+

∣∣∣e
2πiv
n − 1

∣∣∣
)
· μ̂(u, v)euv.

Using considerations similar to the above (see Proposition III.A.3 in [54] for a
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continuous counterpart), it is possible to show that S has distortion O(polylog(n)).
However, we were unable to get this bound down to O(log n) as in Theorem 1.4. Nev-
ertheless, this embedding might be of interest since it reduces the dimension of the
ambient L1 space by a factor of 2.

5. Discussion and open problems. There are several interesting problems
that arise from the results presented in this paper—we shall discuss some of them in
the list below.

1. The most natural problem that is left open is to determine the asymptotic
behavior of c1

({0, 1 . . . , n}2, τ
)
. It seems hard to use the ideas in section 4

to obtain an embedding of distortion O
(√

log n
)
, as the known bounds on

multipliers usually give a weak (1, 1) inequality at best. We do not know the
actual distortion of the embedding in Theorem 1.4.

2. Remark 4.1 implies that the Banach–Mazur distance between the (n2 − 1)-

dimensional normed space MZ2
n,τ

and �n
2−1

1 is O(polylog(n)). It would be
interesting to determine the asymptotic behavior of this distance. In partic-
ular, it is not clear whether the L1 (embedding) distortion of MZ2

n,τ
behaves

differently from its Banach–Mazur distance from �n
2−1

1 .
3. We did not attempt to study the L1 distortion of M{0,1,...,n}d,τ for d ≥ 3.

Observe that this space contains M{0,1,...,n}2,τ , and so the Ω
(√

log n
)

lower
bound still applies. But the result of [30] shows that the transportation
cost metric on the Hamming cube {0, 1}d has distortion Θ(d), and so some
improvements are still possible. Note that in higher dimensions it becomes
interesting to study the transportation cost distance when R

d is equipped
with other norms. The Banach–Mazur distance between �d1 and arbitrary
d-dimensional norms has been studied in [7, 49, 13]. In particular, the result
of [13] states that any d-dimensional Banach space is at distance O

(
d5/6

)

from �d1. Combining this fact with the lower bound on the L1 distortion of
the transportation cost distance on the Hamming (�1) cube cited above, we
see that for any norm ‖ · ‖ on R

d, c1
(
P(Rd,‖·‖),τ

)
= Ω

(
d1/6

)
. It would be

interesting to study the dependence on d for general norms on R
d.

4. As stated in Remark 3.2, it would be interesting to study the rate with which
the Euclidean distortion c2

(
P{0,...,n}2 ,

√
τ
)

tends to infinity.

5. As stated in Remark 3.3, we do not know whether
(
P[0,1]2 , τ

)
admits a uni-

form embedding into Hilbert space.
6. The present paper rules out the “low distortion approach” to nearest neighbor

search in the Earthmover metric via embeddings into L1. However, it might
still be possible to find nearest neighbor preserving embeddings into L1 in the
sense of [25].

7. On the more “applied side,” as stated in the introduction, there is a possibil-
ity that the embedding of Theorem 1.4 behaves better than the theoretical
distortion guarantee of O(log n) in “real life” situations, since it is often the
case that the bulk of the Fourier spectrum is concentrated on a sparse set
of frequencies. Additionally, it might be worthwhile to “thin out” some fre-
quencies of the given set of images before embedding into L1 (and then using
the known L1 nearest neighbor search databases). It would be interesting to
carry out such “tweaking” of our algorithm in a more experimental setting.
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Abstract. We give an algorithm that learns any monotone Boolean function f : {−1, 1}n →
{−1, 1} to any constant accuracy, under the uniform distribution, in time polynomial in n and in
the decision tree size of f. This is the first algorithm that can learn arbitrary monotone Boolean
functions to high accuracy, using random examples only, in time polynomial in a reasonable measure
of the complexity of f. A key ingredient of the result is a new bound showing that the average sensi-
tivity of any monotone function computed by a decision tree of size s must be at most

√
log s. This

bound has proved to be of independent utility in the study of decision tree complexity [O. Schramm,
R. O’Donnell, M. Saks, and R. Servedio, Every decision tree has an influential variable, in Proceed-
ings of the 46th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society, Los Alamitos, CA, 2005, pp. 31–39]. We generalize the basic inequality and learning re-
sult described above in various ways—specifically, to partition size (a stronger complexity measure
than decision tree size), p-biased measures over the Boolean cube (rather than just the uniform
distribution), and real-valued (rather than just Boolean-valued) functions.
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1. Introduction.

1.1. Computationally efficient learning from random examples. In the
two decades since Valiant introduced the probably approximately correct (PAC) learn-
ing model [31], a major goal in computational learning theory has been the design
of computationally efficient algorithms for learning Boolean functions from random
examples. The original distribution-free PAC learning model of Valiant required that
for any distribution D over the domain of examples (which throughout this paper is
{−1, 1}n), the learning algorithm must with high probability succeed in generating
a hypothesis for the unknown target function which is highly accurate relative to D.
Despite much effort over a twenty year span, very few efficient learning algorithms
have been obtained in this demanding model. Thus the focus of much work has shifted
to the natural uniform distribution PAC learning model, in which the examples used
for learning are uniformly distributed over {−1, 1}n (we give a precise definition of
this learning model in section 2).

An easy information-theoretic argument shows that no poly(n)-time algorithm
can learn arbitrary Boolean functions f : {−1, 1}n → {−1, 1} to accuracy nonnegli-
gibly better than 1/2. Consequently, the most ambitious conceivable goal in uniform
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distribution learning is to obtain an algorithm that can learn any Boolean function
f : {−1, 1}n → {−1, 1} in time polynomial in n and in a reasonable measure of the
“size” or complexity of f . Different complexity measures for Boolean functions thus
give rise to different notions of efficient learnability; for example, one might hope for an
algorithm that can learn any Boolean function f in time polynomial in n and DT (f)
the number of leaves in the smallest Boolean decision tree that computes f (this is the
well-studied—and notoriously difficult—problem of “learning decision trees under the
uniform distribution”). A more ambitious goal would be to learn in time polynomial
in DNF (f), the number of terms in the smallest disjunctive normal form formula for
f , or AC0

d(f), the size of the smallest depth-d AND/OR/NOT circuit for f.

Unfortunately, learning arbitrary Boolean functions in polynomial time in this
sense has proved to be intractably difficult for all “reasonable” size measures. For
the strongest reasonable size measure (Boolean circuit size), Valiant already observed
in [31] that the existence of cryptographic pseudorandom functions [11] implies the
nonexistence of uniform distribution algorithms that can learn any function f in time
polynomial in the Boolean circuit size of f. This negative result was strengthened by
Kharitonov [20], who showed that (under a strong but plausible assumption on the
hardness of integer factorization) no uniform distribution algorithm can learn every
f in time polynomial in AC0

d(f) for some fixed constant d. In fact, despite intensive
research, no algorithm is currently known that learns arbitrary Boolean functions in
time polynomial in any reasonable size measure; such an algorithm would constitute a
tremendous breakthrough in computational learning theory; see, e.g., [2]. (We stress
that simple arguments such as those in [5] show that there is no information-theoretic
impediment to learning from a polynomial number of examples; the apparent difficulty
is in designing a polynomial-time algorithm.)

1.2. Background: Learning monotone functions. Confronted with the dif-
ficulties described above, researchers have tried to learn various restricted classes of
Boolean functions. The most natural and intensively studied such class is the class of
all monotone functions f : {−1, 1}n → {−1, 1}, i.e., functions that satisfy f(x) ≥ f(y)
whenever x ≥ y in the partial order on {−1, 1}n.

Many partial results on learning restricted subclasses of monotone functions under
the uniform distribution have been obtained. Sakai and Maruoka [27] gave a poly(n)-
time algorithm that can learn any monotone size-O(log n) disjunctive normal form
(DNF) under the uniform distribution; this result was subsequently generalized by
Bshouty [6] to a somewhat broader class than the O(log n)-term DNF. The main
result of Bshouty and Tamon in [7] is a proof that any monotone function can be

learned to accuracy ε in 2Õ(
√
n/ε) time; they used this result to obtain a poly(n)-time

algorithm (for ε constant) that can learn a class of functions that includes monotone
O(log2 n/(log log n)3)-term DNF. More recently, Servedio [30] showed that monotone

2O(
√

logn)-term DNF can be learned to constant accuracy ε in poly(n) time. Other
researchers have also studied the problem of learning monotone functions under the
uniform distribution (see, e.g., [18, 3, 34, 12, 21]), but prior to the current work no
algorithms were known for learning arbitrary monotone functions in time polynomial
in a reasonable size measure.

1.3. The main learning result. We give the first algorithm that learns any
monotone Boolean function f , under the uniform distribution, in time polynomial in a
reasonable measure of the size of f . Given a Boolean function f : {−1, 1}n → {−1, 1},
the partition size P (f) of f is the minimum size partition of the Boolean cube {−1, 1}n
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into disjoint subcubes such that f is constant on each subcube. Note that this is a
strictly stronger measure of complexity than decision tree size; i.e., P (f) ≤ DT (f).
Our main learning result is the following.

Theorem 1. There is an algorithm that (with confidence 1 − δ) can learn any
monotone Boolean function f : {−1, 1}n → {−1, 1} to accuracy ε, given uniform

random examples (x, f(x)), in time poly(n, P (f)1/ε
2

) · log(1/δ).
For any constant accuracy ε = Θ(1), the algorithm runs in time polynomial in

the partition size of f and hence also in the decision tree size of f . We feel that
this constitutes progress toward learning monotone functions in time polynomial in
their DNF size, an open problem in computational learning theory (see, e.g., the open
questions posed in [15, 3, 1]).

1.4. The approach: Bounding average sensitivity of monotone func-
tions. The main ingredient of our learning algorithm is a new inequality bounding
the average sensitivity (sum of influences of all coordinates) of monotone Boolean
functions. We give here a simplified version of the theorem (the full result is given in
Theorem 3).

Theorem 2. Every monotone Boolean function f has average sensitivity at most√
logP (f).1

This edge-isoperimetric-type result is of independent interest; indeed, our most
general version of it, Theorem 7, recently played a critical role in a new lower bound
on the randomized decision tree complexity of monotone graph properties—see [29].

Combining this new inequality with a result of Friedgut [8] that says that Boolean
functions with low average sensitivity essentially depend on only a small number of
coordinates, we can show that (i) there is a set of P (f)O(1/ε2) many Fourier coeffi-
cients of f which contain all but ε of the “Fourier weight” of f , and (ii) this set of
Fourier coefficients can be efficiently identified from uniform random examples only.
Applying standard machinery on approximating Boolean functions via their Fourier
representations, we obtain Theorem 1.

Our approach seems quite robust. We generalize the basic scenario described
above by (i) considering real-valued monotone functions that map {−1, 1}n into the
continuous interval [−1, 1] rather than the discrete range {−1, 1}, and (ii) considering
general p-biased product measures over {−1, 1}n rather than the uniform distribution.
We show that suitable variants of all of our intermediate results hold and that our
main learning result holds exactly as before (i.e., runs in time P (f)O(1/ε2)) in these
generalized scenarios.

2. Preliminaries.

2.1. Boolean functions and complexity measures. As is standard in com-
plexity theory and learning theory, we will be interested in complexity measures for
Boolean functions f given by the syntactic size of the smallest representation of f
under various natural representation schemes. We will chiefly be concerned with
partition size and decision tree size, two complexity measures that we now define.

Given a Boolean function f : {−1, 1}n → {−1, 1}, the decision tree size of f ,
denoted DT (f), is the number of leaves in the smallest Boolean decision tree (with
variables x1, . . . , xn at the internal nodes and bits −1, 1 at the leaves) that computes
f . The partition size P (f) of f is the minimum number of disjoint subcubes that the
Boolean cube {−1, 1}n can be partitioned into such that f is constant on each subcube.

1Here and throughout the paper “log” denotes logarithm to the base two.
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Since any s-leaf decision tree induces a partition of {−1, 1}n into s disjoint subcubes
(corresponding to the root-to-leaf paths in the tree), we have that P (f) ≤ DT (f) for
all f. In fact, P (·) is known to be a superpolynomially stronger measure than DT (·)
even for monotone functions; Savický [28] has given a monotone Boolean function

g : {−1, 1}n → {−1, 1} which has P (g) = poly(n) and DT (g) = 2Ω(log1.26(n)).

2.2. Background: Uniform distribution learning. A concept class F is
a collection ∪n≥1Fn of Boolean functions where each f ∈ Fn is a function from
{−1, 1}n to {−1, 1}. Throughout this paper we consider the concept class consisting
of all monotone Boolean functions.

The uniform distribution probably approximately correct (PAC) learning model
has been studied by many authors; see, e.g., [4, 7, 13, 14, 20, 22, 24, 27, 30, 33]. In
this framework a learning algorithm has access to an example oracle EX(f), where
f ∈ Fn is the unknown target function the algorithm is trying to learn. The oracle
EX(f) takes no inputs and, when queried, in one time step outputs a labeled example
(x, f(x)), where x is drawn from the uniform distribution U over {−1, 1}n.

We say that a Boolean function h : {−1, 1}n → {−1, 1} is an ε-approximator for
f if it satisfies Prx∈U [h(x) = f(x)] ≥ 1 − ε. The goal of a uniform distribution PAC
learning algorithm is to generate an ε-approximator for the unknown target function
f. More precisely, an algorithm A is a learning algorithm for concept class F if the
following condition holds: for all n ≥ 1, all f ∈ Fn, and all 0 < ε, δ < 1, if A is given ε
and δ as input and has access to EX(f), then with probability at least 1−δ algorithm
A outputs an ε-approximator for f . We further say that A PAC learns F in time t if
A runs for at most t time steps and outputs a hypothesis h which can be evaluated
on any point x ∈ {−1, 1}n in time t. Here t will depend on the dimension n and the
size s of f under some complexity measure, as well as on ε and δ. We note that for
the learning algorithm presented and analyzed in this paper, the dominant ingredient
in the running time t is collecting a sample of essentially t labeled examples using the
oracle EX(f); the computation that is performed after this sample has been obtained
is relatively simple and inexpensive.

2.3. Fourier representation. Fourier techniques have proven to be a powerful
tool for obtaining uniform distribution learning algorithms; see the survey of Mansour
[23] for an overview.

Except in section 5, we will always view {−1, 1}n as a probability space under the
uniform distribution which we denote by U . Let f : {−1, 1}n → R be a real-valued
function. Recall that the Fourier expansion of f is

f(x) =
∑

S⊆[n]

f̂(S)χS(x),

where χS(x) denotes
∏

i∈S xi and f̂(S) denotes Ex∈U [f(x)χS(x)]. It is well known
that every f has a unique Fourier expansion. Parseval’s theorem states that for any
f : {−1, 1}n → R we have

∑
S⊆[n] f̂(S)2 = Ex∈U [f(x)2], which is clearly 1 if f ’s range

is {−1, 1}.
For Boolean-valued functions f : {−1, 1}n → {−1, 1}, the influence of coordinate

i on f is defined as Infi(f) = Prx∈U [f(x) �= f(x(⊕i))], where x(⊕i) denotes x with the

ith bit flipped. In general we have Infi(f) =
∑

S	i f̂(S)2; it is also well known (see,

e.g., [17]) that if f is monotone then Infi(f) = f̂({i}). For notational ease we will

henceforth write f̂(i) in place of f̂({i}). The average sensitivity of a Boolean function
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f is I(f) =
∑n

i=1 Infi(f); this is the expected number of sensitive coordinates for a

random input x ∈ {−1, 1}n. Note that I(f) =
∑n

i=1 f̂(i) for monotone f.

3. The average sensitivity of monotone functions. A well-known, folk-
loric edge-isoperimetric inequality for the Boolean cube states that for any monotone
function f : {−1, 1}n → {−1, 1}, we have I(f) ≤ I(Majn) = Θ(

√
n). (This follows

from, e.g., the Kruskal–Katona theorem; see [9] for an explicit proof.) This bound
I(f) ≤ O(

√
n) is the key to the main result of [7] that any monotone Boolean function

can be learned to accuracy ε in time 2Õ(
√
n/ε).

In this section we give a more refined bound on I(f) that depends on P (f), the
partition size of f . Our new bound states that I(f) ≤ √

logP (f) for any monotone
f . This yields the usual isoperimetric inequality mentioned as a special case but is
much stronger for functions f which have partition size P (f) = 2o(n).

3.1. Subcube partitions. Let f : {−1, 1}n → {−1, 1} be a Boolean function
and let C = {C1, . . . , Cs} be a subcube partition for f , so C1, . . . , Cs partition
{−1, 1}n into s subcubes on each of which f is constant. By abuse of notation we will
also identify a cube Ct with a length-n vector over {−1, 0, 1} in the obvious way; i.e.,
the ith coordinate of the string Ct is

(Ct)i =

⎧
⎪⎨
⎪⎩

1 if xi = 1 for all x ∈ Ct,

−1 if xi = −1 for all x ∈ Ct,

0 otherwise.

Let us also introduce notation for the sets of coordinates which cubes fix:

pluses(Ct) = {i : (Ct)i = 1}, minuses(Ct) = {i : (Ct)i = −1},

fixed(Ct) = pluses(Ct) ∪ minuses(Ct).

Given an input x ∈ {−1, 1}n, we write C(x) to denote the subcube Ct in C to
which x belongs. We also write δi to denote Prx∈U [i ∈ fixed(C(x))], the probability
that the subcube partition “queries” xi. Note that

∑n
i=1 δi equals Ex∈U [|fixed(C(x))|],

the average number of coordinates C “queries.”
When we draw x ∈ U , this determines C(x). However, we can equally well view

the random determination of (x,C(x)) the other way around. Indeed, we will almost
always consider choosing a uniformly random string x as follows:

1. Pick a random subcube R from C by choosing each Ct with probability
2−|fixed(Ct)|. In general we will write R ∈ C to indicate that R is a ran-
dom variable given by choosing a subcube from among C1, . . . , Cs according
to this natural probability distribution on subcubes.

2. Now choose x uniformly at random from the strings in R. We will write
x ∈ R to indicate that x is chosen randomly in this way.

After this procedure, x indeed has the uniform distribution. Furthermore, note that
the value f(x) is determined as soon as R is chosen; thus we may abuse notation and
write f(R) for this quantity.

We will require the following very easy lemmas.
Lemma 1. Let R be any subcube and let i �= j be in [n]. Then Ex∈R[xi] = Ri

and Ex∈R[xixj ] = RiRj.
Proof. The proof is immediate from the definitions.



832 RYAN O’DONNELL AND ROCCO A. SERVEDIO

Lemma 2. Let i �= j be in [n]. Then ER∈C [Ri] = 0 and ER∈C [RiRj ] = 0.
Proof. We prove the second statement, with the first being even easier:

0 = E
x∈U

[xixj ] = E
R∈C

E
x∈R

[xixj ] = E
R∈C

[RiRj ],

where in the last step we used Lemma 1.

3.2. Proof of the main inequality. The proof requires one basic lemma.
Lemma 3. Let f : {−1, 1}n → {−1, 1} be a Boolean function with a subcube

partition C = {C1, . . . , Cs}. Then for each i = 1, . . . , n we have f̂(i) = ER∈C [f(R)Ri],

and hence we have
∑n

i=1 f̂(i) = ER∈C [f(R) ·∑n
i=1 Ri].

Proof. Fix any i in {1, . . . , n}. We have

f̂(i) = E
x∈U

[f(x)xi] = E
R∈C

E
x∈R

[f(x)xi] = E
R∈C

[
f(R) E

x∈R
[xi]

]
= E

R∈C
[f(R)Ri],

where in the last step we used Lemma 1.
With this lemma in hand we can give the proof that I(f) ≤ √

logP (f) for mono-
tone f .

Theorem 3. Let f : {−1, 1}n → {−1, 1} be a Boolean function with a subcube
partition C = {C1, . . . , Cs}. Then we have

n∑

i=1

f̂(i) ≤
√√√√

n∑

i=1

δi ≤
√

log s,

and if f is monotone we may thus write I(f) ≤ √
log s.

Proof. Since f is ±1-valued, from Lemma 3 we have

n∑

i=1

f̂(i) ≤ E
R∈C

[∣∣∣
n∑

i=1

Ri

∣∣∣
]

(1)

with equality iff f(x) = sgn(
∑n

i=1 C(x)i) for all x, i.e., f(x) is the majority of the bits
that are set in C(x). Applying Cauchy–Schwarz, we have

E
R∈C

[∣∣∣
n∑

i=1

Ri

∣∣∣
]
≤

√√√√ E
R∈C

[( n∑

i=1

Ri

)2]
=

√√√√ E
R∈C

[ n∑

i=1

R2
i + 2

∑

i<j

RiRj

]

=

√
E

R∈C

[
|fixed(R)|

]
(2)

=

√
E

x∈U

[
|fixed(C(x))|

]
=

√√√√
n∑

i=1

δi,

where (2) uses Lemma 2.
This proves the first inequality; to finish the proof we must show that

∑n
i=1 δi ≤

log s. We have

n∑

i=1

δi = E
R∈C

[|fixed(R)|] =

s∑

t=1

2−|fixed(Ct)| · |fixed(Ct)| = H(R),

where H(R) denotes the binary entropy of the random variable R ∈ C. Since C, the
support of R, is of cardinality s, this entropy is at most log s.
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Remarks.
1. We note that our proof can easily be used to recover the standard upper bound

I(f) ≤ I(Majn) for any monotone Boolean function f on n variables. (Recall

that I(Majn) ∼
√

2
π

√
n.) This is because in upper-bounding ER∈C [|∑n

i=1 Ri|],
we may assume without loss of generality that each subcube Ct ∈ C fixes
exactly n bits. (To see this, suppose that Ct fixes n′ < n bits and we subdivide
Ct into two subcubes each fixing one more bit. If

∑n
i=1(C

t)i �= 0 then the
contribution of Ct to ER∈C [|∑n

i=1 Ri|] is unchanged by this subdivision, and
if

∑n
i=1(C

t)i = 0 then the contribution increases.) But now observe that
equality occurs in inequality (1), as noted above, if f(x) always equals the
majority of the bits set in C(x), i.e., if f(x) = Majn(x) for all x.

2. The bound I(f) ≤ √
logP (f) need not hold for nonmonotone f ; an easy

example is the parity function on n variables for which I(f) = logP (f) = n.

4. Learning monotone Boolean functions.

4.1. Spectral concentration. In this subsection we show that any monotone
Boolean function has all but ε of its Fourier spectrum concentrated on a set of
P (f)O(1/ε2) many Fourier coefficients.

In [8] Friedgut showed that any Boolean function with “low” average sensitiv-
ity is well approximated by a function that depends only on a “small” number of
coordinates. In particular, the proof of Corollary 3.2 in [8] yields the following.

Theorem 4. There is a universal constant K < ∞ such that for all f : {−1, 1}n →
{−1, 1} and ε > 0, if

t = 2I(f)/ε, J = {i : Infi(f) ≥ K−t}, S = {S : S ⊆ J, |S| ≤ t},
then

∑
S �∈S f̂(S)2 ≤ ε.

Combining this result with Theorem 3, we obtain the following theorem.
Theorem 5. Let f : {−1, 1}n → {−1, 1} be a monotone function, ε > 0, and

t = 2
√

logP (f)/ε. Let J and S be as in Theorem 4. Then |S| = P (f)O(1/ε2) and∑
S �∈S f̂(S)2 ≤ ε.

Proof. The second part of the conclusion follows immediately from combining
Theorems 3 and 4. As for bounding |S|, we have |S| =

∑t
i=0

(|J|
i

) ≤ O(|J |t). But we

also have |J | ≤ I(f)Kt ≤ tKt using Theorem 3, and so |J |t ≤ 2O(t2) = P (f)O(1/ε2),
as claimed.

4.2. Approximating Boolean functions with spectral concentration. The
following proposition is a straightforward generalization of the “low-degree” algorithm
of Linial, Mansour, and Nisan [22].

Proposition 4. There is an algorithm A with the following property: Let f :
{−1, 1}n → [−1, 1] and let S ⊆ 2[n] be a collection of subsets of [n] with the property

that
∑

S∈S f̂(S)2 ≥ 1 − ε. Then if A is given S, access to EX(f), and parameters
δ, θ > 0, it runs in poly(n, |S|, 1/θ) · log(1/δ) time and with probability 1 − δ outputs
a real-valued function g : {−1, 1}n → R of the form g(x) =

∑
S∈S cSχS(x) such that

Ex∈U [(f(x) − g(x))2] ≤ ε + θ.
Proof sketch. Algorithm A draws a sample of m labeled examples from EX(f)

and uses them to empirically estimate each of the Fourier coefficients f̂(S) for S ∈
S, using the fact that f̂(S) = E[f(x)χS(x)]; the coefficients cS are the empirical
estimates thus obtained. A standard analysis (see, e.g., Theorem 4.3 of [23]) shows
that m = poly(|S|, 1/θ) · log(1/δ) suffices to give the proposition.
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We remark that if f : {−1, 1}n → {−1, 1} is Boolean-valued, and g : {−1, 1}n →
R satisfies Ex∈U [(f(x) − g(x))2] ≤ ε′, then defining h : {−1, 1}n → {−1, 1} by
h(x) = sgn(g(x)), it is easily seen that Prx∈U [h(x) �= f(x)] ≤ ε′ (see, e.g., [22, 23]).

4.3. Learning monotone Boolean functions in polynomial time. We now
give the proof of Theorem 1. Given Theorem 5 and Proposition 4, the idea behind our
main learning algorithm is obvious: Given uniform examples from a target function

f , identify all coordinates with influence at least 2−O(
√

logP (f)/ε), and then run the
algorithm from Proposition 4 using the set S from Theorem 5. (We note that a similar
algorithm is used by Servedio in [30], though the analysis is completely different.)

By a standard doubling argument, we may assume the partition size P (f) is
known to the learner (see Exercise 1.5 of [19]). We now show that the learner can ac-
tually identify the sufficiently influential coordinates. This is because f is monotone,
and consequently Infi(f) = f̂(i) = Ex∈U [f(x)xi]. Since the learner can empirically
estimate this latter quantity to within ±θ in time poly(n, 1/θ) · log(1/δ) (with con-
fidence 1 − δ) by sampling, the learner can determine each influence Infi(f) of f to

within an additive 2−O(
√

logP (f)/ε) in poly(n, 2O(
√

logP (f)/ε)) time steps, and it is easy
to see this is sufficient to maintain correctness and the same time bounds. Complete
details can be found in a more general setting in Appendix B.

5. Generalizations: Real-valued functions and p-biased measures. In
this section we extend our learning result to real-valued functions f : {−1, 1}n →
[−1, 1] on the p-biased discrete cube. As in the Boolean case, we say a real-valued
function f is monotone if f(x) ≥ f(y) whenever x ≥ y. The partition size P (f) of
f : {−1, 1}n → [−1, 1] is still defined as the minimum number of disjoint subcubes
that {−1, 1}n can be partitioned into such that f is constant on each subcube.

The p-biased measure on {−1, 1}n is the probability distribution assigning prob-
ability p|pluses(x)|q|minuses(x)| to the input x ∈ {−1, 1}n. (Here and throughout q
denotes 1−p.) We will write {−1, 1}n

(p) to indicate that {−1, 1}n is endowed with the

p-biased measure and write Prp[·] and Ep[·] to denote probabilities and expectations
over x ∈ {−1, 1}n

(p).

We use standard notions of PAC learning for functions f : {−1, 1}n
(p) → [−1, 1].

This involves only slightly altering the definitions from section 2.2. Specifically, ex-
amples are now from the p-biased distribution {−1, 1}n

(p) instead of the uniform dis-

tribution;2 and, the definition of an ε-approximator is a function h : {−1, 1}n
(p) → R

satisfying Ep[(h− f)2] ≤ ε (note that we use the “square loss” as is common in learn-
ing or approximating real-valued functions). For other work studying PAC learning
under the p-biased distribution, see, e.g., [10, 12, 25, 30].

Our main learning theorem completely extends to the p-biased, real-valued case,
as follows.

Theorem 6. There is an algorithm that (with confidence 1 − δ) can learn any
monotone Boolean function f : {−1, 1}n

(p) → [−1, 1] to accuracy ε, given p-biased

random examples (x, f(x)), in time poly(n, P (f)1/ε
2

) · log(1/δ).
Again, note that for any constant accuracy ε = Θ(1), the algorithm runs in

polynomial time in the partition size of f . Further note that unlike some p-biased PAC
learning algorithms such as [10, 30], our algorithm’s running time has no dependence

2There is a question as to whether or not the learning algorithm “knows” the value of p in
advance. We show in Appendix B that we may assume without loss of generality that the learning
algorithm knows p.
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on p and thus we have the claimed runtime bound even if p depends on n or P (f),
such as p = 1/

√
n.

5.1. Background: Fourier analysis under p-biased measures. Given two
functions f, g : {−1, 1}n

(p) → R, the p-biased inner product is defined as 〈f, g〉p =

Ep[f(x)g(x)]. For S ⊆ [n] the function φS(x) : {−1, 1}n
(p) → R is defined by

φS(x) =
∏

i∈S

φ(xi), where φ(xi) =

{√
q/p if xi = 1,

−√
p/q if xi = −1.

The functions {φS}S⊆[n] form an orthonormal basis with respect to 〈·, ·〉p. The p-

biased Fourier expansion of f : {−1, 1}n
(p) → R is f(x) =

∑
S⊆[n] f̃(S)φS(x), where

f̃(S) = Ep[f(x)φS(x)]; note that we write f̃ rather than f̂ to denote p-biased Fourier

coefficients. Parseval’s identity continues to hold: Ep[f
2] =

∑
S f̃(S)2.

We define the operator Di on functions f : {−1, 1}n
(p) → R by (Dif)(x) =√

pq (f(x(i=1)) − f(x(i=−1))), where x(i=b) denotes x with the ith bit set to b. It is

not difficult to verify that (Dif)(x) =
∑

S	i f̃(S)φS\i(x). We now give the definition
of p-biased influence.

Definition 1. The p-biased influence of the ith coordinate on f : {−1, 1}n
(p) → R

is

Inf
(p)
i (f) = Ep[(Dif)2] =

∑

S	i

f̃(S)2.

Note that if f : {−1, 1}n
(p) → {−1, 1}, then Inf

(p)
i (f) = 4pqPrp[f(x) �= f(x⊕i)].

We remark that this definition differs from the ones in [8, 9] by a multiplicative fac-

tor of 4pq. We define the p-biased average sensitivity to be I(p)(f) =
∑n

i=1 Inf
(p)
i (f) =∑

S⊆[n] |S|f̃(S)2. Note that in the case when p = 1/2 and f ’s range is {−1, 1}, these
definitions agree with the standard uniform distribution definitions from section 2.3.

We conclude this section with a useful relationship in the p-biased case between
influences of monotone real-valued functions and singleton Fourier coefficients.

Fact 5. For any monotone f : {−1, 1}n → [−1, 1] we have Inf
(p)
i (f) ≤ 2

√
pq·f̃(i),

with equality iff the range of f is {−1, 1}.
Proof. We have Inf

(p)
i (f) = Ep[(Dif)2]. Since f is monotone and has range [−1, 1]

it is easy to see that 0 ≤ (Dif)(x) ≤ 2
√
pq for all x. Thus (Dif)2 ≤ 2

√
pq · (Dif)

with equality iff f ’s range is {−1, 1}, and hence Inf
(p)
i (f) ≤ 2

√
pq · Ep[Dif ] = 2

√
pq ·

f̃(i).

5.2. Bounding influence in monotone real-valued functions under p-
biased measures. In this section we describe our analogue of Theorem 3 for real
functions under p-biased measures. We first set up some p-biased preliminaries before
proving the theorem. Let C = {C1, . . . , Cs} be a subcube partition of {−1, 1}n. We
now identify the Ct’s with length-n vectors in a way compatible with the φ-basis, i.e.,

(Ct)i =

⎧
⎪⎨
⎪⎩

φ(1) =
√
q/p if xi = 1 for all x ∈ Ct,

φ(−1) = −√
p/q if xi = −1 for all x ∈ Ct,

0 otherwise.
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The definitions of pluses(Ct), minuses(Ct), and fixed(Ct) are as before. We now

define δ
(p)
i to be the p-biased version of δi:

δ
(p)
i = Pr

x∈{−1,1}n
(p)

[i ∈ fixed(C(x))].

The observation that choosing x ∈ {−1, 1}n
(p) and considering (x,C(x)) can be

viewed as choosing R ∈ C and then x ∈ R still holds with the obvious p-biased
interpretation. Specifically, the random choice R ∈ C means selecting the cube Ct

with probability p|pluses(Ct)|q|minuses(Ct)|; then the choice x ∈ R means picking the
unfixed coordinates according to the p-biased distribution.

The analogue of Lemma 2 and the analogue of Lemma 3 (for functions f :
{−1, 1}n

(p) → R) now hold with no changes in the statements. To prove them we
simply repeat their proofs and also the statement and proof of Lemma 1, everywhere
replacing xi and xj with φ(xi) and φ(xj). As a consequence, we have the following
additional lemma.

Lemma 6. Given α, β ∈ R, the quantity ER∈C [α · |pluses(R)| + β · |minuses(R)|]
depends only on pα + qβ.

Proof. Sum the first statement of the p-biased analogue of Lemma 2 over all i,
and then expand the definition of Ri; one gets

E
R∈C

[√
q/p · |pluses(R)| −

√
p/q · |minuses(R)|

]
= 0

⇒ E
R∈C

[|minuses(R)|] = (q/p) · E
R∈C

[|pluses(R)|].(3)

So substituting this in, we get

E
R∈C

[α · |pluses(R)| + β · |minuses(R)|] = E
R∈C

[α · |pluses(R)| + (q/p)β · |pluses(R)|]

= (1/p) E
R∈C

[(pα + qβ) · |pluses(R)|],

completing the proof.

With this preparation in hand, we now give our p-biased, real-valued generaliza-
tion of Theorem 3.

Theorem 7. Let f : {−1, 1}n
(p) → R be a function with subcube partition C =

{C1, . . . , Cs}. Then we have

n∑

i=1

f̃(i) ≤ ‖f‖2 ·
√√√√

n∑

i=1

δ
(p)
i ≤ ‖f‖2 ·

√
log s/

√
H(p),

where H(p) = p log(1/p) + q log(1/q). If f : {−1, 1}n
(p) → [−1, 1] is monotone then by

Fact 5 we may write I(p)(f) ≤ √
4pq/H(p)

√
log s.

Proof. Applying Cauchy–Schwarz directly to the analogue of Lemma 3, we have

n∑

i=1

f̃(i) ≤
√

E
R∈C

[
f(R)2

]
·
√√√√ E

R∈C

[( n∑

i=1

Ri

)2]
= ‖f‖2 ·

√√√√ E
R∈C

[ n∑

i=1

R2
i

]
,
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where we used the p-biased analogue of the second statement of Lemma 2 in the
equality, just as in the proof of Theorem 3. Let us now consider the quantity inside
the square root. By definition,

(4) E
R∈C

[ n∑

i=1

R2
i

]
= E

R∈C

[
(q/p) · pluses(R) + (p/q) · minuses(R)

]
.

Using (3) twice, we have

E
R∈C

[
(q/p) · pluses(R) + (p/q) · minuses(R)

]
= E

R∈C
[pluses(R) + minuses(R)]

= E
R∈C

[|fixed(R)|] =

n∑

i=1

δ
(p)
i ,

completing the proof of the first inequality. As for the second inequality, note that
the binary entropy H(R) of the random variable R ∈ C is

H(R) = E
R∈C

[
log(1/Pr[R])

]

= E
R∈C

[
log(1/p) · pluses(R) + log(1/q) · minuses(R)

]

= H(p) · E
R∈C

[
log(1/p)

H(p)
· pluses(R) +

log(1/q)

H(p)
· minuses(R)

]
.

But since p log(1/p)
H(p) + q log(1/q)

H(p) = 1 as well, applying Lemma 6 again yields

(4) = H(R)/H(p).

But H(R) ≤ log s as observed in the proof of Theorem 3, and the proof is
complete.

Using the bound pq log(1/pq) ≤ H(p), we have the following corollary.
Corollary 7. If f : {−1, 1}n

(p) → [−1, 1] is monotone then I(p)(f) ≤ 2
√

logP (f)/√
log(1/pq).

5.3. Spectral concentration under p-biased measures. We now need to
extend Friedgut’s result to the p-biased, real-valued case. There are some difficulties
involved. In [8], Friedgut gave a p-biased version of Theorem 4; however, he left the
quantitative details of the dependence on p unspecified. More seriously, Friedgut’s
theorem is simply not true for [−1, 1]-valued functions, even in the p = 1/2 case. (See
Appendix A for an example demonstrating this.)

However, we are able to circumvent this problem. The necessary insight is the
following: A real-valued function with small average sensitivity depends on only a
small number of coordinates if its range is sufficiently “discrete.” And for the purposes
of learning an unknown function to some prescribed accuracy, we do not lose much
by “rounding” the function’s values to a discrete range.

For γ > 0, let γZ denote the set of real numbers of the form γm, where m is an
integer. By making some small changes to Friedgut’s proof we can derive the following
result (the proof is in Appendix A).
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Theorem 8. There is a universal constant K < ∞ such that for all 0 < ε, γ < 1/2
and all f : {−1, 1}n

(p) → [−1, 1] ∩ (γZ), if

t = 2I(p)(f)/ε, τ = γK(pq)Kt, J = {i : Inf
(p)
i (f) ≥ τ}, S = {S : S ⊆ J, |S| ≤ t},

then
∑

S �∈S f̃(S)2 ≤ ε.
We now combine Theorem 8 with Corollary 7, exactly in the manner of Theorem 5.

The
√

log(1/pq) saved in Corollary 7 cancels with the pq paid in the τ from Theorem 8,
and the factor of γO(1) becomes negligible if we take γ = ε (indeed, even γ = 2−O(1/ε)

would be negligible). We get the following theorem.
Theorem 9. Let ε > 0, f : {−1, 1}n

(p) → [−1, 1] ∩ (εZ) be a monotone function,

and let t = 4
√

logP (f)/(ε
√

log(1/pq)). Let J = {i : Infi(f) ≥ (K ′)−t log(1/pq)},
where K ′ < ∞ is a universal constant, and let S = {S : S ⊆ J, |S| ≤ t}. Then

|S| = P (f)O(1/ε2) and
∑

S �∈S f̃(S)2 ≤ ε.

5.4. Learning monotone real-valued functions under p-biased measures.
With Theorem 9 in hand, the proof of our main learning result Theorem 6 is now not
very difficult. Given an unknown target function f : {−1, 1}n

(p) → [−1, 1] and ε > 0,
let fε denote f with its values “rounded” to the nearest integer multiples of ε. Clearly,
given examples from EX(f, p), we can simulate examples from EX(fε, p). We now
simply try to learn fε. It is easy to check that an ε-approximator hypothesis for fε
is also an O(ε)-approximator for f . Further, we have P (fε) ≤ P (f) so a P (fε)

O(1/ε2)

runtime is also P (f)O(1/ε2) as desired. The p-biased analogue of Proposition 4 holds
with essentially the same proof. The only new difficulty is that we cannot exactly
estimate the quantities Infi(fε). However from Fact 5, the quantities f̃(i)—which we
can estimate empirically—are upper bounds on the influences; so by taking all the
coordinates i with f̃(i) ≥ τ , we get all the sufficiently influential coordinates. There
cannot be too many coordinates with large f̃(i), since

∑n
i=1 f̃(i)2 ≤ 1.

For completeness, we give all the details of the proof of Theorem 6 in Appendix B.

6. Extension to stronger complexity measures?. It is natural to wonder
whether our results can be extended to stronger complexity measures than decision
tree size and partition size. An obvious next complexity measure to consider is the
minimum number of (not necessarily disjoint) subcubes that cover {−1, 1}n and are
such that f is constant on each subcube. We refer to this as the subcube covering
complexity of f and denote it by CDNF (f), since it is equal to the minimum number
of terms in any DNF formula for f plus the minimum number of clauses in any CNF
formula for f .

The following theorem shows that Theorem 3 does not hold for subcube covering
complexity.

Theorem 10. There is a monotone Boolean function g : {−1, 1}n → {−1, 1} for

which I(g) = Ω(nlog4(6−2
√

5)) = Ω(n0.305) but
√

logCDNF (g) = O(n1/4).
The proof is by the probabilistic method. We define a distribution D over mono-

tone Boolean functions and show that some function g that is assigned nonzero weight
under D must satisfy the bounds of the theorem. See Appendix C.

7. Conclusion. In this paper we established a new bound on average sensitivity
of monotone functions and used this bound to give the first algorithm that uses random
examples to learn any monotone function to high accuracy in time polynomial in the
function’s decision tree or partition size.
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A natural goal for future work is to obtain even stronger learning results for
monotone functions. Can the boosting methods used by Jackson in his harmonic
sieve algorithm [13] be applied here? We note that while the harmonic sieve algorithm
makes essential use of membership queries, related algorithms that combine boosting
with Fourier techniques have been successfully developed for the framework of learning
from random examples only [14].

Appendix A. Proof of Theorem 8 and a counterexample.
Proof of Theorem 8. Recall that we have

Dif(x) =
√
pq(f(x(i=1)) − f(x(i=−1))) =

∑

S: i∈S

f̃(S)φS\i(x)

and that Inf
(p)
i (f) = Ep[(Dif)2] = ‖Dif‖2

2, where throughout this section ‖·‖ denotes
the norm induced by the p-biased measure.

Since I(p)(f) =
∑

S |S|f̃(S)2, Markov’s inequality immediately gives that∑
S: |S|>t f̃(S)2 < ε/2. Let J ′ = [n] \ J . It now suffices to show that

∑

S: S∩J ′ �=∅,|S|≤t

f̃(S)2 ≤ ε/2.(5)

Certainly the left side of (5) is at most

(6)
∑

i∈J′

∑

S: i∈S,|S|≤t

f̃(S)2 =
∑

i∈J′

‖Dif
≤t‖2

2 =
∑

i∈J′

〈Dif
≤t, Dif〉,

where we use the notation f≤t to denote the function f≤t(x) =
∑

|S|≤t f̃(S)φS . Now
we have

〈Dif
≤t, Di〉 ≤ ‖Dif

≤t‖4 ‖Dif‖4/3(7)

≤ (1 + 1/
√
pq)t/2 ‖Dif

≤t‖2 ‖Dif‖4/3(8)

≤ (1/pq)t Inf
(p)
i (f)1/2 E[|Dif |4/3]3/4.(9)

Here (7) is Hölder’s inequality, inequality (8) follows from a p-biased version of
Bonami–Beckner (here with the best bounds provided by [26]), and inequality (9)
uses the generous bound (1 + 1/

√
pq)1/2 < (1/pq) and also ‖Dif

≤t‖2 ≤ ‖Dif‖2 =

Inf
(p)
i (f)1/2.
We now observe that by virtue of the assumption that f ’s range is contained in

γZ, we have that |Dif(x)| is always either 0 or at least γ
√
pq. This implies that (9)

is at most

(1/pq)t Inf
(p)
i (f)1/2 Ep[(γ

√
pq)−2/3 · |Dif |2]3/4 = (1/pq)t+1/4 γ−1/2 Inf

(p)
i (f)5/4

≤ (1/pq)t+1/4 γ−1/2 Inf
(p)
i (f) τ1/4,(10)

where we have used the definitions of Inf
(p)
i (f) and τ . Using the fact that

∑
i∈J′

Inf
(p)
i (f) ≤ I(p)(f), we can sum (10) and conclude that (6) is at most

(1/pq)t+1/4 γ−1/2 I(p)(f) τ1/4.
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Thus to ensure (5) holds we need only

t(1/pq)t+1/4 γ−1/2 τ1/4 ≤ 1;

upper-bounding t(1/pq)t+1/4 by (1/pq)O(t) (acceptable for all t ≥ 0), we see that
τ = γO(1)(pq)O(t) suffices. Thus the choice of τ given in the definition of Theorem 8
suffices and the proof of this theorem is complete.

We now justify the remark from section 5.3 indicating that Friedgut’s theorem
does not in general hold for real-valued functions; in other words, the condition that
f ’s range is contained in γZ cannot be removed.

To see this, consider (in the uniform measure case) the function f : {−1, 1}n →
[−1, 1] defined by

f(x) =

{
sgn(

∑n
i=1 xi) if |∑n

i=1 xi| >
√
n,

1√
n

∑n
i=1 xi if |∑n

i=1 xi| ≤
√
n.

It is easy to see that for each i = 1, . . . , n, Dif(x) is always either 0 or 1/
√
n and is

1/
√
n for a Θ(1) fraction of all x’s. Consequently we have Infi(f) = Θ(1/n) and thus

I(f) = Θ(1). In addition, it is clear that both E[f(x)] = 0 and |f(x)| ≥ 1/2 for a

Θ(1) fraction of all x’s; hence we have
∑

|S|>0 f̂(S)2 ≥ Ω(1). But now if we take ε to

be any constant smaller than this Ω(1), then we get a contradiction, since the choice
of τ in Theorem 8 will be a constant, and so J and hence S will be empty (for all n
sufficiently large).

Appendix B. Technical details for learning. We begin with some basic
learning details for the p-biased measure. First, as mentioned earlier, we may assume
without loss of generality that the learning algorithm “knows” p. The proof is quite
similar to the proof that a noise-tolerant learning algorithm can be assumed to know
the exact noise rate (see [19]). The basic idea is that we can run the learning algorithm
repeatedly using successively finer estimates (easily obtained from sampling) for the
value of p. If the original algorithm runs for T time steps, then if the guessed value
for p is within Δ/T of the true value, the statistical distance between the algorithm’s
output when run with the guessed value versus the true value will be at most Δ. It
can be shown that at most a polynomial factor runtime overhead is incurred in coming
up with a sufficiently accurate guess.

Next, we remark that low-degree algorithm of Linial, Mansour, and Nisan, Propo-
sition 4, easily carries over to the real-valued p-biased case with essentially the same
proof.

Proposition 8. There is an algorithm A with the following property: Let f :
{−1, 1}n

(p) → [−1, 1] and let S ⊆ 2[n] be a collection of subsets of [n] with the property

that
∑

S:S/∈S f̃(S)2 ≤ ε. Then if A is given p, S, access to a source EX(f, p) of p-
biased random examples, and parameters δ, θ > 0, it runs in poly(n, |S|, 1/θ) · log(1/δ)
time and with probability 1− δ outputs a real-valued function g : {−1, 1}n → R of the
form g(x) =

∑
S∈S cSφS(x) such that Ep[(f − g)2] ≤ ε + τ .

We now proceed to discuss the proof of Theorem 6. Let f : {−1, 1}n
(p) → [−1, 1]

be the target function. Given ε > 0, let fε denote the “rounded” version of f in
which each of its values is rounded to the nearest integer multiple of ε. It is clear
that given access to EX(p, f) we can simulate access to EX(p, fε). Our algorithm

will use EX(p, fε) to learn fε in time poly(n, P (fε)
O(1/ε2)) · log(1/δ). This is sufficient
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for learning f in the same time bound, because P (fε) ≤ P (f) and because if Ep[(h−
fε)

2] ≤ ε then

Ep[(h− f)2] = Ep[((h− fε) + (fε − f))2] ≤ 2Ep[(h− fε)
2] + 2Ep[(fε − f)2]

≤ 2ε + ε2/2 = O(ε).

Our goal is now essentially to use Proposition 8 given Theorem 9. As mentioned in
section 5.4, unlike in the algorithm for Boolean-valued functions, we cannot estimate

the influences of fε directly since the relationship Inf
(p)
i (fε) = f̃ε(i) does not hold in

the real-valued case. We may, however, use Fact 5 which says that f̃ε(i)—a quantity

we can empirically estimate—is an upper bound on Inf
(p)
i (fε).

We now describe the algorithm to learn fε using EX(p, fε). As in section 4.3 we
may assume that the partition size P (fε) is known. The algorithm is as follows:

1. For i = 1, . . . , n empirically estimate f̃ε(i) = Ep[fε(x)φi(x)] to within an

additive ±τ/4 (with confidence 1 − δ), where τ = (C ′)−t log(1/pq) and t is
defined in Theorem 9. Let J ⊆ [n] be the set of those i for which the obtained
estimate is greater than τ/2.

2. Now run algorithm A from Proposition 8 with S = {S : S ⊆ J, |S| ≤ t} and
θ = ε, outputting its hypothesis g.

Let us first confirm the running time of this algorithm. In step 1, standard sam-
pling bounds ensure that poly(n, 1/τ) · log(1/δ) samples suffice. We may then con-
clude that |J | ≤ O(1/τ2), since

∑n
i=1 f̃ε(S)2 ≤ 1. It follows that |S| ≤ poly(1/τ t) =

P (fε)
O(1/ε2), as necessary to bound the running time. Finally, we still have

∑
S �∈S f̃ε(S)2

≤ ε because (with confidence 1−δ) the J the algorithm finds is a superset of the J from
Theorem 9. Hence the algorithm correctly gives an O(ε)-approximator hypothesis g
with confidence 1 −O(δ), and the proof of Theorem 6 is complete.

Appendix C. Proof of Theorem 10. Let n = 4k. Let f1(a, b, c, d) be the
“AND/OR” function on four Boolean variables f1(a, b, c, d) = (a ∧ b) ∨ (c ∧ d). An
important property of f1 is that if each of its four arguments is independently set to
be 1 (true) with probability p, then Pr[f1 = 1] equals 2p2 − p4. For i = 2, 3, . . . , we
define the function fi on 4i variables to be fi = f1(f

1
i−1, f

2
i−1, f

3
i−1, f

4
i−1), where the

superscripts indicate distinct copies of fi−1 on disjoint sets of variables. Thus fk is
a function on n variables computed by a read-once Boolean formula that is a tree of
ANDs and ORs at alternating levels.

We now define distributions D1, . . . ,Dk over monotone Boolean functions, where
Di is a distribution over functions from {−1, 1}4i

to {−1, 1}. The distribution Di is
defined in the following way: a random draw from Di is obtained by independently
substituting 1 for each of the 4i Boolean arguments to fi with probability α, where
α =

√
5 − 2 ≈ 0.236. (This construction and some of the subsequent analysis are

reminiscent of [32].) Note that for a random g drawn from D1 and a random x
drawn uniformly from {−1, 1}4, we have that each of the four arguments to f1 is

independently 1 with probability 1
2

+ α
2

=
√

5−1
2

; we denote this value by ρ. Con-
sequently we have Prg∈D1,x∈{−1,1}4 [g(x) = 1] = 2ρ2 − ρ4, but this is easily seen to
equal ρ. It follows from the recursive definition of fi that for all i = 1, 2, . . . we have
Prg∈Di,x∈{−1,1}4i [g(x) = 1] = ρ.

It is not difficult to show (see Theorem 2.4 of [16]) that CDNF (fk) ≤ 22k+1; as an

immediate consequence we have that CDNF (g) ≤ 22k+1 (and thus
√

logCDNF (g) =
O(2k/2) = O(n1/4)) for every g that is in the support of Dk. But by Lemma 9 below
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we have that Eg∈Dk
[I(g)] = Θ((6 − 2

√
5)k); clearly this implies that there is some g

in the support of Dk for which I(g) is Ω((6 − 2
√

5)k) = Ω(nlog4(6−2
√

5)). This proves
Theorem 10.

Lemma 9. For i = 1, 2, . . . we have Eg∈Di
[I(g)] = (3 −√

5)(6 − 2
√

5)i.

Proof. It is clear from symmetry that Eg∈Di [I(g)] = 4i · Eg∈Di
[Inf1(g)]. We have

Eg∈Di [Inf1(g)] = Eg∈Di,x∈{−1,1}4i [Pr[g(1, x2, . . . , x4i) �= g(−1, x2, . . . , x4i)]]

= Pr
g∈Di,x∈{−1,1}4i

[g(1, x2, . . . , x4i) �= g(−1, x2, . . . , x4i)].

From the definition of Di, we have that with probability α =
√

5 − 2 the con-
stant 1 is substituted for the first argument of fi in g; if this occurs, then clearly
g(1, x2, . . . , x4i) = g(−1, x2, . . . , x4i) for all x since g does not depend on its first ar-
gument. If this does not occur, then we have (for a random g ∈ Di and a uniform

x ∈ {−1, 1}4i

) that each of the other 4i−1 arguments to fi independently takes value

1 with probability ρ =
√

5−1
2

.

Under the distribution on inputs to fi described in the previous paragraph, if
i = 1 it is easy to see that flipping the first argument of f1 flips the value of f1

iff the second argument is 1 (probability ρ) and the AND of the third and fourth
arguments is 0 (probability 1 − ρ2). Thus flipping the first argument of f1 flips the
value of f1 with probability precisely ρ(1 − ρ2) which is easily seen to equal 1 − ρ,
using the fact that 2ρ2 − ρ4 = ρ. Similarly, if i = 2, then flipping the first of the
16 arguments to f2 = f1(f

1
1 , f

2
1 , f

3
1 , f

4
1 ) (again under the distribution of inputs to fi

described above) will flip the value of f2 iff the value of f1
1 flips (probability 1 − ρ as

shown above), f2
1 equals 1 (probability ρ), and f3

1 ∧f4
1 equals 0 (probability 1−ρ2). We

thus have that flipping the first argument of f2 flips the value of f2 with probability
(1−ρ)ρ(1−ρ2) = (1−ρ)2. An easy induction in this fashion shows that for all i, under
the distribution of inputs described above flipping the first argument of fi causes fi
to flip with probability (1 − ρ)i.

We thus have that

Pr
g∈Di,x∈{−1,1}4i

[g(1, x2, . . . , x4i) �= g(−1, x2, . . . , x4i)] = (1 − α)(1 − ρ)i

= (3 −
√

5)

(
3 −√

5

2

)i

,

which proves the lemma.
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Abstract. We prove that an ω(log4 n) lower bound for the three-party number-on-the-forehead
(NOF) communication complexity of the set-disjointness function implies an nω(1) size lower bound
for treelike Lovász–Schrijver systems that refute unsatisfiable formulas in conjunctive normal form
(CNFs). More generally, we prove that an nΩ(1) lower bound for the (k + 1)-party NOF communi-

cation complexity of set disjointness implies a 2n
Ω(1)

size lower bound for all treelike proof systems
whose formulas are degree k polynomial inequalities.
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1. Introduction. Zero-one programming is the problem of optimizing a linear
objective function over the zero-one points of a polytope. It is a useful framework for
expressing optimization problems. In particular, Boolean conjunctive normal form
(CNF) satisfiability can be easily recast as a zero-one programming problem, and for
this reason zero-one programming was among the first discrete optimization prob-
lems proved to be NP-complete. In contrast, linear programming, the problem of
optimizing a linear objective function over all points of a polytope, is polynomial-
time solvable [19]. Many attempts have been made to transfer efficient techniques
from linear programming to zero-one programming, and among them are the Lovász–
Schrijver “lift-and-project” methods. In this paper we establish limitations on using
such methods to prove unsatisfiability for CNFs, modulo a conjecture in communica-
tion complexity.

Techniques for zero-one programming often come from the slightly more general
realm of optimizing over the integral points of a polytope. One approach for reducing
these integer programming problems to linear programming problems is to begin with
the polytope defined by the original linear program without integrality constraints and
systematically pare down the polytope by repeatedly refining the linear program with
“cutting planes” that remove only nonintegral solutions until we are left with the
convex hull of the integral solutions. These are local methods in which an initial
polytope Q is transformed by a sequence of local operations to smaller and smaller
subpolytopes until the integral hull of Q is reached. At this point, rational linear
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programming finds the correct solution. Note that, for decision problems, this proce-
dure terminates with the empty polytope if and only if the initial polytope contains
no integral points. A well-known method of this kind is the use of Gomory–Chvátal
cuts [10] which derive each new cutting plane as a linear combination and shift of
existing facet constraints.

For zero-one programming, there are more subtle methods available. Lovász and
Schrijver [21] introduced a variety of cutting planes methods that derive new cutting
planes by first “lifting” the inequalities to higher degree polynomial inequalities (in
particular, quadratic inequalities) and then “projecting” them down to linear inequal-
ities using polynomial identities and the fact that x2 = x for x ∈ {0, 1}.

The Lovász–Schrijver methods for solving zero-one programs can be naturally
used for propositional proof systems. Consider the problem of proving that a CNF is
unsatisfiable (equivalently, proving that a formula in disjunctive normal form (DNF)
is a tautology). Each clause is mapped to an equivalent linear inequality; for example,
x∨¬y∨z is mapped to x+1−y+z ≥ 1. By repeated application of the lift-and-project
rules and elementary linear algebra, inequalities of quadratic polynomials are derived
from the translated clauses, and we can arrive at the inconsistent inequality 1 ≥ 0
if and only if the CNF is unsatisfiable.1 In this way, we obtain propositional proof
systems for CNF unsatisfiability in which the formulas are quadratic inequalities, and
the rules of inference are the algebraic manipulations coming from the lift-and-project
steps and elementary linear algebra. Collectively, these propositional proof systems
are known as Lovász–Schrijver (LS) systems. An important feature of the LS systems
is that they can provide exponentially smaller proofs for certain tautologies, such as
the pigeonhole principle, than the ones possible with systems such as resolution or
constant-depth Frege systems.

There are two complexity measures that are commonly studied for cutting-planes-
based proof systems such as the LS and the Gomory–Chvatal cutting planes system:
size and rank. Intuitively, rank is the number of intermediate polytopes that must be
passed through before arriving at the integral hull. In [21] it was shown that for any
(relaxed) polytope P , if the rank of P is d, then the optimization and decision problems
for P can be solved exactly deterministically in time nO(d). This makes LS systems
especially appealing for solving or approximating NP-hard optimization problems via
semidefinite programming. A variety of rank lower bounds for the exact solution are
known, even for the case of unsatisfiable systems [4, 11, 14, 9, 15]. Moreover, inter-
esting bounds on the rank required to obtain good approximations to the problems of
finding a minimum sized vertex cover for a graph and finding an assignment that satis-
fies a maximum number of clauses in a CNF. This, in turn, implies inapproximability
results for these problems for any polynomial-time algorithm based on rank.

While there is a rich and growing body of results concerning rank, very little is
known about the size of LS proofs. From the proof theoretic perspective, the size of
a proof is defined in the usual manner, but from an informal geometric perspective,
the size of a LS procedure with respect to some polytope P is the smallest number
of hyperplanes defining all of the polytopes that we need to pass through before
arriving at the integral hull. Clearly size lower bounds imply rank lower bounds, and
indeed, size lower bounds for treelike proofs2 imply rank lower bounds, but whether
the converse holds is open.

1The proof systems are made more precise in subsection 2.2.
2A proof is treelike if each formula is used at most once as an antecedent to an inference. That

is, each time a formula is reused, it must be rederived. For many proof systems, there are CNFs
for which the smallest treelike proofs of unsatisfiability are exponentially larger than the smallest
unrestricted proofs of unsatisfiability, but it is open whether or not this holds for LS proofs.
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At the time of this writing, it is unknown whether or not every unsatisfiable CNF
Φ possesses a treelike LS proof of unsatisfiability whose size is bounded by a polyno-
mial in the number of symbols in Φ. Of course, if every unsatisfiable CNF has such a
small refutation, then NP = coNP, so one might say that because this is unlikely, the
problem is “resolved modulo a plausible complexity theoretic conjecture.” However,
this is really begging the question as one would expect that establishing limitations
for specific proof methods is prerequisite to establishing limitations for all proposi-
tional proof systems. Moreover, there are several similar results and conditional lower
bounds based on weaker assumptions:

1. The results of Pudlák [25], extended by Dash [12], establish that certain
formulations of the LS refutation systems possess “effective interpolation.”
Therefore, under the conjecture that there are disjoint NP pairs that are not
separable by a polynomial-size circuit, these systems require superpolynomial
size to refute some CNFs. The hypothesis that some NP disjoint pairs cannot
be separated by polynomial-size circuits is not known to imply NP �= coNP, so
these results provide further evidence that LS proofs require superpolynomial
size to refute some CNFs.

2. Grigoriev, Hirsch, and Pasechnik showed that there are unconditional su-
perpolynomial size lower bounds known for treelike LS proofs that certain
“non-CNF” polytopes contain no zero-one points [15].

3. Several unconditional lower bounds are known for similar systems that are
incomparable with or apparently weaker than treelike LS systems with respect
to proof size. An exciting series of papers, culminating in the celebrated
result of Pudlák, unconditionally showed that the cutting planes proof system
(a kind of logic whose formulas are linear inequalities and whose inference
rules are based on Gomory–Chvatal cuts) requires superpolynomial size to
refute certain CNFs [16, 5, 24]. Dash has extended this work and proved
unconditionally that a restricted form of the LS system (one that makes
only “noncommutative cuts”) requires superpolynomial size to refute certain
CNFs [12].

In this paper, we develop a new method for approaching size lower bounds for
treelike LS and for systems that generalize treelike LS. Our main result is that
lower bounds on the three-party communication complexity of set disjointness (in
the number-on-the-forehead (NOF) model) imply lower bounds on the size of treelike
LS proofs for a particular family of unsatisfiable CNF formulas. We also generalize
this result to a much more general family of proof systems known as semantic Th(k),
where lines are now degree k polynomial inequalities. All versions of LS are special
cases of Th(2), and Chvátal’s cutting planes proof system is a special case of Th(1).

More generally, we show that proving lower bounds on the (k + 1)-party com-
munication complexity of set disjointness implies lower bounds on the size of treelike
semantic Th(k) proofs. A lower bound showing that Disjk is not in (k + 1)-RPcc

would give excellent lower bounds for Th(k) proofs.
Admittedly, this is another conditional result towards proving size lower bounds

for treelike LS proofs. However, we feel that there is a significant difference between
an approach that is based on the conjecture “set disjointness requires ω(log4 n) bits of
communication in the three-player number-on-the-forehead model” and assumptions
such as “NP �= coNP” or “there exists an NP disjoint pair that cannot be separated
by a polynomial size circuit.” The latter problems both imply that P �= NP, one of
the most famous and difficult problems in contemporary computer science and math-
ematics, with few persons making serious claims of substantial progress towards its
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resolution, and the task of establishing proof-size lower bounds can be viewed as es-
tablishing partial evidence in support of these conjectures. On the other hand, NOF
communication complexity is an area in which there has been substantial progress in
the decades since its introduction in 1983 [8]. There are specific, concrete functions on
n-bit inputs for which the three-player NOF communication complexity is known to
require Ω(n) bits of communication, so the problem is one of establishing the bound
for the set-disjointness function in particular. Moreover, in the two-player model, set
disjointness is known to require Ω(n) bits of communication. Finally, the authors of
this paper with Avi Wigderson have established nΩ(1) lower bounds for the computa-
tion of the set-disjointness function by certain restricted protocols in the NOF model.

Our proof can be seen as a generalization of [16] to arbitrary k, but the extension
requires a number of new ideas and a substantially more complicated argument that
includes a detailed analysis of large sets of vertex-disjoint paths in expander graphs.

Our work is incomparable to the interpolation-based results of Pudlák and Dash.
While our bound is conditional, based upon what seems to be a more earthly con-
jecture than strengthenings of P �= NP, our bounds apply only for the treelike case,
whereas the results of Pudlák and Dash apply to the DAG-like case as well. On the
other hand, their interpolation theorems depend highly on the form of the cuts used,
whereas our semantic approach allows the result to apply to almost any system for
manipulating polynomial inequalities with reasonable inference rules.

While the results of Grigoriev, Hirsch, and Pasechnik [15] are unconditional, they
do not apply to systems of inequalities that arise from the translation of CNFs.
Rather, an exponential size lower bound was proved for all treelike LS refutations of
the equality x1 + · · · + xn = α, where α is a noninteger in the range (�n/4�, �3n/4	).
As this equality cannot arise as the translation of a CNF into inequalities, their bound
says nothing about the LS systems for propositional unsatisfiability. Indeed, proving
treelike size lower bounds for CNF polytopes was given as one of the main problems
left open in their paper.

Recently Kojevnikov and Itsykson [17] have released a proof of a 2Ω(n) size lower
bound for treelike LS+ refutations of the Tseitin principles over a constant degree
expander. This is result is incomparable to ours because while their proof is uncondi-
tional, it does not apply to systems that use inference rules besides those of LS+, nor
does it clearly generalize to systems that take inequalities of degree higher than two.

2. Definitions.

2.1. Multiparty communication complexity and set disjointness. The
k-party NOF model of communication complexity computes functions (or relations)
of input vectors (x1, . . . , xk) ∈ X1 × · · · ×Xk distributed among k parties such that
party i ∈ [k] sees all xj for all j ∈ [k], j �= i. It is as if player i has the ith input
on his forehead, hence the name. The players communicate by transmitting bits over
a channel shared by all players. The communication complexity of a protocol is the
number of bits exchanged. For a function f : X1×· · ·×Xk → {0, 1}, we define Rk

ε (f)
to be the minimum cost of a randomized protocol that computes f with a probability
of error at most ε. For a more thorough treatment of communication complexity, see
the monograph by Kushilevitz and Nisan [20].

The k-party set-disjointness problem Disjk,m : ({0, 1}m)k → {0, 1} is defined
by Disjk,m(�x) = 1 if and only if there is some j ∈ [n] such that xi,j = 1 for all
i ∈ [k]. Although it might be more appropriate to call this function set intersection
rather than disjointness, we follow standard terminology. A (0, ε)-error k-party NOF
communication protocol for set disjointness is a protocol that for every disjoint input
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produces output 0 and for intersecting inputs outputs 1 with probability at least
1 − ε.

It is conjectured that for all constants k ≥ 2 the k-party set-disjointness problem
of length n requires randomized NOF communication complexity that is Ω(n/2k) [3].
This conjecture is equivalent to showing that nondeterministic k-party communication
complexity can be almost optimally separated from randomized k-party communica-
tion complexity. The conjecture is proven for k = 2 [18], but the best known lower
bound for k ≥ 3 is Ω(log n) for general models and Ω(n1/k) for more restricted mod-
els [3].

2.2. Threshold logics. The best known classes of threshold logics are Gomory–
Chvátal cutting planes [10], the matrix cuts of Lovász and Schrijver [21], and the lift-
and-project relaxations of Sherali and Adams [27]. First we briefly describe Gomory–
Chvátal cutting planes, which is referred to in the literature as simply cutting planes
(CP). A CP proof of unsatisfiability of a set of integer linear inequalities f = {�a1 ·�x ≥
b1, . . .�am ·�x ≥ bm} is a sequence of integer linear inequalities �c1 ·�x ≥ t1, . . . ,�cq ·�x ≥ tq
such that each �ci ·�x ≥ ti is either an inequality from f , an axiom (x ≥ 0 or 1−x ≥ 0),
or is obtained by one of the two rules: (i) �ci · �x ≥ ti is a positive integer linear
combination of some previously derived inequalities, or (ii) �ci ·�x ≥ ti is obtained from
a previous inequality d�ci · �x ≥ ti by rounding (to obtain �ci · �x ≥ �ti/d�).

There are several cutting planes proof systems defined by Lovász and Schrijver
[21], collectively referred to as matrix cuts. These systems allow one to “lift” the linear
inequalities to degree-two polynomials and then project back to degree one, using the
fact that x2 = x for x ∈ {0, 1}. To see that the definitions below are equivalent to
the original definitions of Lovász and Schrijver, see [12].

Definition 2.1. Given a polytope P ⊆ Q
n defined by �ai · �x ≥ bi for i =

1, 2, . . . ,m:
(1) An inequality d− �c · �x ≥ 0 is called an N -cut for P if

d− �c · �x =
∑

i,j

αij(bi − �ai · �x)xj +
∑

ij

βij(bi − �ai · �x)(1 − xj)

+
∑

j

λj(x
2
j − xj),

where αij , βij ≥ 0 and λj ∈ R for i = 1, . . . ,m, j = 1, . . . , n.
(2) A weakening of N -cuts, called N0-cuts, can be obtained if, when simplifying

to the term d− �c · �x, we view xixj as distinct from xjxi.
(3) An inequality d− �c · �x is called an N+-cut if

d− �c · �x =
∑

i,j

αij(bi − �ai · �x)xj +
∑

ij

βij(bi − �ai · �x)(1 − xj)

+
∑

j

λj(x
2
j − xj) +

∑

k

(gk + �hk · �x)2,

where again αij , βij ≥ 0, λj ∈ R for i = 1, . . . ,m, j = 1, . . . , n, and gk +�hk ·�x
is an affine function for k = 1, . . . , n + 1.

The operators N , N0, and N+ are called the commutative, noncommutative, and
semidefinite operators, respectively. All three are collectively called matrix-cut oper-
ators.

Definition 2.2. A LS refutation for f is a sequence of inequalities g1, . . . , gq
such that each gi is either an inequality from f or follows from previous inequalities
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by an N -cut as defined above and such that the final inequality is 0 ≥ 1. Similarly, a
LS0 refutation uses N0-cuts and LS+ uses N+-cuts.

Definition 2.3. Let P be one of the proof systems CP, LS, LS0, or LS+. Let S
be an P-refutation of f , viewed as a directed acyclic graph. If the underlying directed
acyclic graph is a tree, then S is a treelike P-refutation of f . The inequalities in S
are represented with all coefficients in binary notation. The size of S is the sum of
the sizes of all inequalities in S; the rank of S is the depth of the underlying directed
acyclic graph. For a set of Boolean inequalities f , the P-size of f is the minimal size
over all P refutations of f . Similarly the P-treesize of f is the minimal size over all
treelike P-refutations of f .

The inference rules and axioms for the CP, LS, LS0, and LS+ systems are easily
seen to be sound. Furthermore, it has been shown that, in their treelike forms, each
of CP, LS, LS0, and LS+ can p-simulate treelike resolution (cf. [3]). Therefore, by the
completeness of treelike resolution, the treelike systems CP, LS, LS0, and LS+ can
refute every unsatisfiable CNF.

All of the above proof systems are special cases of the more general seman-
tic threshold logic proof systems which we define now. A k-threshold formula over
Boolean variables x1, . . . , xn is a formula of the form

∑
j γjmj ≥ t, where γj , t are

integers, and for all j, mj is a multilinear monomial of degree at most k. The size of
a k-threshold formula is the sum of the sizes of γj and t, written in binary notation.
Let f1, f2, g be k-threshold formulas in the variables �x. We say that g is semantically
entailed by f1 and f2 if, for every 0/1 assignment to �x that satisfies both f1 and f2,
g is also satisfied.

Let f be an unsatisfiable CNF formula over x1, . . . , xn, and let t1, . . . , tm be the
underlying set of clauses of f , written as 1-threshold inequalities. A Th(k) refutation
of f , P, is a sequence of k-threshold formulas L1, . . . , Lq, where each Lj is one of the
inequalities ti, i ∈ [m], or is semantically entailed by two formulas Li and Li′ , with
i, i′ < j, and the final formula Lq is 0 ≥ 1. The size of P is the sum of the sizes of all
k-threshold formulas occurring in P. The proof is treelike if the underlying directed
acyclic graph, representing the implication structure of the proof, is a tree. (That is,
every formula in the proof is used at most once as an antecedent of an implication.
It is allowed, and quite often necessary, that Li = Lj , and Li and Lj are used as
antecedents for two different inferences. In this way, a formula must be rederived
each time it is used.)

Note that, in our definition of these cutting planes systems, we can derive a new
inequality from any number of previous inequalities in one step, whereas in the Th(k)
proof system, we are restricted to fan-in two. Because the vector space of degree-at-
most-one inequalities has dimension at most n+1, in light of Caratheodory’s theorem,
every inequality derived by purely linear operations in a CP refutation can be derived
from at most n + 2 many previous equations. Therefore, we can assume without loss
of generality that the fan-in is at most n+2 in CP and, similarly, at most

(
n
2

)
+n+2

in LS, LS0, and LS+. Because of this bound on fan-in, refutation size increases by at
most an O(n2) factor when the sums are taken by fan-in two inferences of the form
“from f ≥ a and g ≥ b infer f + g ≥ a+ b.” Thus, superpolynomial size lower bounds
for treelike Th(2) semantic refutations imply superpolynomial size lower bounds for
all treelike LS systems.

Because the inference rule in Th(k) is semantic entailment, lower bounds for the
Th(k) system apply to almost any treelike system for deriving polynomial inequalities
with reasonable axioms and inference rules, not only the LS systems. For example,
division operators such as “from �c · �x > 0 and (b − �a · �x)�c · �x ≥ 0 infer �a · �x ≥ b”
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are semantically valid inference rules of fan-in two, and variants of the LS system
incorporating such rules fall under our analysis. Furthermore, CP refutations are a
special case of Th(1) semantic refutations, and thus lower bounds for treelike Th(1)
semantic refutations imply similar lower bounds for treelike CP. This connection was
exploited to prove lower bounds for treelike CP [16].

2.3. Miscellaneous notation. We use the standard asymptotic notation of Ω,
O, ω, and o that is found in theoretical computer science and discrete mathematics.
We use the ± notation in the following nonstandard way: When we write x = a± b,
we mean that x ∈ [a − b, a + b]. We use this in the asymptotic sense as well. When
we write x = (1 ± o(1))M , we mean that there is a value t with |t| = o(1) so that
x ∈ [(1 − t)M, (1 + t)M ].

3. Relating the size of threshold logic refutations to the communica-
tion complexity of search problems. Let f be an unsatisfiable CNF formula.
We will be interested in the following search problem, Searchf associated with f :
Given a truth assignment α, find a clause from f which is falsified by α. The model
for this computation is a decision tree whose nodes evaluate polynomial threshold
functions.

A k-threshold decision tree is a rooted, directed tree whose vertices are labeled
with k-threshold functions and edges are labeled with either 0 or 1. The leaves of
the tree are labeled with clauses of f . A k-threshold decision tree solves Searchf

in the obvious way: Start at the root and evaluate the threshold function; follow
the edge that is consistent with the value of the threshold function; continue until
the computation reaches a leaf and output the associated clause. The size S of a
k-threshold decision tree is the sum of the sizes of all threshold formulas in the tree,
where the coefficients are written in binary. The depth of a k-threshold decision tree
is the depth of the underlying tree.

The following lemma, similar to the degree 1 case in [16], shows that from a
small treelike Th(k) refutation of an unsatisfiable formula f a small-size, small-depth
k-threshold decision tree for Searchf can be extracted.

Lemma 3.1. Let P be a treelike Th(k) refutation of f of size S. Then there is a
k-threshold decision tree for Searchf of depth O(logS) and size O(S). Furthermore,
every threshold formula labeling a node of the decision tree is either a formula in the
refutation P or the vacuously true inequality 0 ≥ 0.

Proof. Assume that P is a size S treelike Th(k) refutation of f . We will describe
a depth O(logS), size O(S), k-threshold decision tree which computes the search
problem associated with f . The proof is by induction on S; clearly if S = 1, then the
unsatisfiable formula is a single, false threshold formula, so the lemma holds. For the
inductive statement, assume that the size of P is S > 1. Because the DAG of the
proof is a binary tree, there is an intermediate formula f in P such that the number
of formulas above f (ancestors in the tree) is at least S/3 and at most 2S/3. Let the
subtree of P with root formula f be denoted by A, and write B for the remainder of
P, that is, all formulas of P that are not in A and with f replaced by 0 ≥ 0. In the
decision tree, the root is labeled with f . Beneath the edge labeled 0, we inductively
apply the lemma to the subtree A, and beneath the edge labeled 1, we inductively
apply the lemma on the subtree B. Both A and B have size at most 2S/3, so we
may apply the induction hypothesis and conclude that the height of the decision tree
obtained will be at most log3/2(S) + 1, which is O(logS). To see that the decision
tree computes the search function, notice that if f evaluates to false on a given truth
assignment φ, then we proceed on the subproof A. By soundness of the proof, at least
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one of the leaf formulas of A must be falsified by φ. A similar argument holds when
f evaluates to true.

The next lemmas, adapted from arguments in [23], show that any relation com-
puted by a shallow k-threshold decision tree can also be efficiently computed by a k+1
player communication complexity protocol in the NOF model, over any partition of
the variables.

Lemma 3.2. Suppose that a relation R(x1, . . . , xkn) is computed by a depth d
k-threshold decision tree in which all coefficients are bounded by N ≥ n. For any
partition of the inputs into k sets, there is a k + 1-party deterministic NOF com-
munication complexity protocol for R in which O(d logN) bits are communicated in
total.

Proof. Fix a partition of x1, . . . xkn. Observe that for each monomial in each
k-threshold formula there is at least one party that can evaluate the monomial. Let
α1m1 + · · · + αqmq ≥ t be the k-threshold formula queried at the root of the k-
threshold decision tree for f . The set of monomials mj can be partitioned into k + 1
groups, where group i contains monomials that can be “seen” by the ith player. Each
player (in turn) communicates the weighted linear combination of their monomials to
the other players. After all players have spoken, each player can simply add up the
total sum and see if it is greater than the target t, in order to evaluate the k-threshold
formula. The k+1 players then continue on the half of the decision tree which agrees
with the value of this formula. The protocol terminates after d rounds, and each
round requires O(logN) bits of communication.

In order to prove the randomized version of the above lemma we use a standard
randomized protocol for testing linear inequalities. The protocol works in the number-
in-hand model which is more restricted than the NOF model. In the number-in-the-
hand model, each player i = 1, . . . k has private access to the input xi (whereas in the
NOF model, player i sees inputs x1, . . . xi−1, xi+1, . . . xk).

Lemma 3.3. Let y1, . . . , yk+1 be (signed) integers with n-bit binary representa-
tions, and let c > 0. Then there is an O(k log2 n)-bit (k + 1)-player number-in-hand
probabilistic protocol with an error less than 1/nc for determining whether y1 + · · · +
yk+1 ≥ 0.

Proof. The players follow a binary search strategy on the bits of the yi.
Suppose n ≥ 2. (If n ≤ 2, the parties simply send their inputs.) Let yHi be the

high order �n/2� bits that underapproximate yi/2
�n/2� and yLi be the corresponding

low order bits for 1 ≤ i ≤ k + 1. (Some of the yi may be negative, but then the
yLi will all be positive.) If

∑
i y

H
i > 0, then

∑
i yi > 0; similarly, if

∑
i y

H
i < −k,

then
∑

i yi < 0. Thus, unless
∑

i y
H
i ∈ {−k, . . . , 0}, the answer can be found by

determining whether yH1 + · · · + yHk+1 ≥ 0. If
∑

i y
H
i = −j ∈ {−k, . . . , 0}, then the

answer can be found by comparing yL1 + · · · + yLk + yLk+1 − j · 2�n/2� to 0.
Player 1 randomly selects a prime number p ∈ [nc+2 log n, 2nc+2 log n] and sends

(p, yH1 mod p). For i = 2 to k, player i sends yHi mod p. Then, using these values and

his own private input, player k + 1 computes z =
∑k+1

i=1 yHi mod p.
If z �≡ −j (mod p) for j ∈ {0, . . . , k}, then player k + 1 sends the bit 1, and the

protocol continues recursively, using yH1 , . . . , yHk+1 instead of y1, . . . , yk+1.
If z ≡ −j (mod p) for j ∈ {0, . . . , k}, then player k+1 sends the bit 0 and j, and

the protocol continues recursively with players 1 to j using (yL1 − 2�n/2�), . . . , (yLj −
2�n/2�) instead of y1, . . . , yj and players j + 1 to k + 1 using yLj+1, . . . , y

L
k+1 instead of

yj+1, . . . , yk+1.
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In both of the recursive calls the integers each have at most �n/2	 + 1 bits. At
each stage, we send O(log n) bits, and the total number of stages is O(log n) for a
total of O(log n)2 bits sent. The probability of error at each stage is O(1/nc+1), and
therefore the total error is less than 1/nc (for sufficiently large n).

Lemma 3.4. Suppose that a relation R(x1, . . . , xkn) is computed by a depth d
k-threshold decision tree in which all coefficients are bounded by N ≥ n. For any
partition of the inputs into k sets, there is a (k+1)-party randomized NOF communi-
cation complexity protocol for R in which O(d(log logN)2) bits are communicated in
total, which is correct with probability at least 1 − 1/n.

Proof. As in the proof of Lemma 3.2, the players proceed in d rounds, at each
step evaluating the threshold formula and proceeding on the consistent subtree. Let
p(�x) ≥ t be the threshold formula at the root of the decision tree. As before, partition
the monomials of p(�x) into k+1 groups where the ith player can “see” the monomials
in group i. Each of the k + 1 players computes the weighted sum of their respective
monomials. Call these sums y1, . . . , yk+1, respectively. Player k + 1 uses y′k+1 =
yk+1− t, and by applying Lemma 3.3 with n = log2 N and c such that 1/nc < 1/(dn),
there is a probabilistic protocol allowing the players to determine with an error at
most 1/(dn) whether the sum of the yi’s is at least t, where O((log logN)2) bits are
exchanged. After evaluating p(�x) ≥ t, the players then continue on the branch of the
decision tree which agrees with the value of p(�x) ≥ t. The protocol terminates after
d rounds, for a total of O(d(log logN)2) bits of communication. By the union bound,
the probability of encountering an error at some level of the recursion is at most
d · 1/(dn) = 1/n.

The following theorem is an easy corollary of the above lemmas.
Theorem 3.5. Suppose that f has a treelike Th(k) refutation of size S. Then

there exists a (k + 1)-party randomized NOF communication complexity protocol for
Searchf (over any partition of the variables into k groups) that communicates
O(log3 S) bits and has an error probability at most 1/n.

Further, if all k-threshold formulas in the Th(k) refutation have coefficients
bounded by a polynomial in n, then there is a randomized protocol using O(logS(log
log n)2) many bits and an error probability at most 1/n and a deterministic protocol
using O(logS log n) bits.

Proof. We apply Lemma 3.1 to produce a k-threshold decision tree for Searchf

of depth O(logS) and size O(S). Because every label of a node of the decision tree is
a formula of the refutation, or the triviality 0 ≥ 0, N is no larger than the maximum
absolute value of a coefficient in the refutation.

For the first claim, set N to be the maximum absolute value of any coefficient
appearing in the decision tree; by the definition of the size of a proof, N = 2O(S).
For the second claim, we find by hypothesis that N = nO(1). We apply Lemmas 3.2
and 3.4 to this decision tree to yield the claimed size and error bounds.

4. The difficult CNFs, their search problems, and an outline of the
lower bound proof. Our hard examples are based on the well-known Tseitin graph
formulas. Let G = (V,E) be any connected, undirected graph, and let �c ∈ {0, 1}V .
The Tseitin formula for G with respect to charge vector �c, TS(G,�c), has variables
Vars(G) = {ye | e ∈ E}. The formula states that, for every vertex v ∈ V , the parity
of the edges incident with v is equal to the charge cv at node v. It is expressed
propositionally as the conjunction of the clauses obtained by expanding ⊕e�vye = cv
for each v ∈ V . Note that, for a graph with maximum degree d, each clause is of
width at most d and the number of clauses is at most |V |2d.
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Notice that TS(G,�c) is satisfiable if and only if
∑

v∈V cv is even. For odd �c, the
search problem SearchTS(G,�c) takes a 0/1 assignment α to Vars(G) and outputs a
clause of TS(G,�c) that is unsatisfied. In other words, a solution to SearchTS(G,�c) on
input α is a vertex v such that a parity equation at the vertex v is violated by α.

To make the search problem hard for k-party NOF communication protocols and,
by Theorem 3.5, hard for (k − 1)-threshold decision trees, we modify TS(G,�c) by

replacing each variable ye by the conjunction of k variables
∧k

i=1 y
i
e and expanding

the result into clauses by use of deMorgan’s law. We call the resulting k-fold Tseitin
formula TSk(G,�c) and its variable set Varsk(G) = {yie | e ∈ E, i ∈ [k]}.

For a fixed graph G and different odd-charge vectors �c ∈ {0, 1}V (G), the problems
SearchTSk(G,�c) are very closely related. Define OddCharge

k(G) to be the k-party
NOF communication search problem which takes as input an odd charge vector �c ∈
{0, 1}V (G), seen by all players, and an assignment α to Varsk(G), in which player i
sees all values but the assignment αi

e to yie for e ∈ E(G), and requires that the players
output a vertex v that is a solution to SearchTSk(G,�c).

The communication complexity of OddCharge
k(G) depends on the graph G,

and we use a carefully modified expander to obtain our lower bounds. We use a
family of graphs Hn such that each Hn is the union of two edge-disjoint graphs on
the same set of n vertices [n], Gn, and Tn. Gn is a Δ-regular expander graph of
the form defined by Lubotzky, Phillips, and Sarnak [22] for Δ = Θ(logn). Since Gn

has degree > n/2, there is a spanning tree Tn of maximum degree 2 (one can take
the Hamiltonian path guaranteed by Dirac’s theorem; cf. [13]) in Gn. Clearly Hn

also has maximum degree Θ(log n), and thus TSk(Hn,�c) has size nO(k). (Notice that
the graph Hn has degree O(log n), so the CNF TSk(Hn,�c) has size nO(1) and width
O(log n).)

Now we are ready to describe the sequence of reductions to show that an efficient
k-party NOF communication complexity protocol for OddCharge

k(Hn) will imply
an efficient 1-sided error randomized k-party NOF protocol for the set-disjointness
relation. The reduction passes through two intermediate problems: a search problem
called EvenCharge

k(Hn) and set disjointness with the promise that, for every input
under consideration, the size of the intersection is either zero or one. Reducing the
general set-disjointness problem to this zero/one set-disjointness problem is a standard
application of Valiant–Vazirani isolation (Lemma 5.4, after [28]). Our reduction from
zero/one set disjointness to OddCharge

k(Hn) goes via an intermediate problem
EvenCharge

k(Hn), which is the exact analog of OddCharge
k(Hn) except that

the input charge vector �c is even rather than odd and the task is either to find a
charge violation or to determine that no charge violation exists. For an assignment α
and a charge vector �c, we define Err(α,�c) to be the set of vertices at which the parity
constraints are violated by α.

Theorem 4.1. Let k ≥ 2 and m = n1/3/ log n. For each n there is an odd charge
vector �c ∈ {0, 1}n such that for any ε < 1/2 the size of any treelike Th(k-1) refutation

of TSk(Hn,�c) is at least 2Ω((Rk
ε (Disjk,m)/ logn)1/3). Further, if the coefficients in the

Th(k-1) refutations are bounded by a polynomial in n, then the refutation size must

be at least 2Ω(Rk
ε (Disjk,m)/(log n(log log n)2)).

The proof of Theorem 4.1 is presented at the end of section 5. Here we provide
a high-level outline of the proof and its component lemmas. In the sketch, quantities
are left out, and definitions are not precise.

Proof sketch. Suppose for the sake of contradiction that there is a small
Th(k − 1) refutation of TSk(Hn,�c).
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1. We apply the refutation-to-search conversion of Theorem 3.5 to obtain a
low-communication k-player NOF protocol for the OddCharge

k(Hn) search
problem.

2. Using Lemma 5.1, we convert the search protocol for OddCharge
k(G) to a

search protocol for EvenCharge
k(Hn) that correctly solves “most”

EvenCharge
k(Hn) instances. “Most” is measured by a distribution Dt

on the EvenCharge
k(Hn) instances in which there are exactly 2t nodes at

which the parity constraints are violated. The distribution is Dt defined in
Definition 5.2 of section 5.

3. In Lemma 5.2 we show that the 0/1 set-disjointness problem randomly re-
duces to EvenCharge

k(Hn) in the following sense: For each set-disjointness
instance �x, there is a distribution R(�x) on EvenCharge

k(Hn) instances so
that if | ∩�x| = 0, the instance generated satisfies all parity constraints, and if
| ∩ �x| = 1, the instance generated has exactly two nodes at which the parity
constraints are violated.

4. The distributions R(�x) and Dt do not coincide, but they are close enough.
In Lemma 5.3, it is shown that when | ∩ �x| = 0, R(�x) and D0 are ε-close
in l1 distance, and similarly, when | ∩ �x| = 1, R(�x) and D1 are ε-close in l1
distance. Therefore, using the protocol of Lemma 5.1 on inputs generated by
R(�x) correctly solves 0/1 set disjointness with an added probability of error
at most ε. Lemma 5.3 is the most delicate part of the argument, and it is
where most of the work is invested.

A simple argument shows that the lower bound of Theorem 4.1 holds for all odd
charge vectors.

Theorem 4.2. The same lower bounds as Theorem 4.1 hold for every odd charge
vector �c ∈ {0, 1}n.

Proof. Observe that distributions Dt and R(�x) on the assignments to Varsk(Hn)
both have the property that for each edge e of Tn, α1

e = · · · = αk
e . Therefore in

the proof of Theorem 4.1 observe that we can replace TSk(Hn,�c) by T̃ S
k
(Hn,�c) =

TSk(Hn,�c) ∧ EQ(Tn), where EQ(Tn) is the conjunction of (¬yie ∨ yje) for every i �=
j ∈ [k] and every e ∈ Tn. The size of any Th(k-1) refutation of TSk(Hn,�c) is at least

that of T̃ S
k
(Hn,�c). Moreover, it is not hard to see that, for any odd weight vectors

�c, �d ∈ {0, 1}n, T̃ S
k
(Hn,�c) and T̃ S

k
(Hn, �d) have proof sizes that differ by at most a

polynomial additive term: Given a small proof of T̃ S
k
(Hn, �d), let S ⊂ [n] be the set

of vertices v for which cv �= dv. Since both c and d are odd weight vectors, |S| is even.
Let M ⊂ E(Tn) be the set of edges of corresponding to |S|/2 disjoint subpaths in Tn

that match the elements in S.
Applying the substitution of yie = ¬yie for each e ∈ M and i ∈ [k] almost converts

a refutation of T̃ S
k
(Hn, �d) into a refutation of T̃ S

k
(Hn,�c). A positive literal yie

in a clause from TSk(Hn,�c), with e on a toggled path, becomes ¬yie rather than

¬y1
e ∨· · ·∨¬yke , which is the proper form for negative literals in clauses of TSk(Hn, �d).

This is corrected by application of the subsumption rule. A disjunction of negative
literals ¬y1

e ∨· · ·∨¬yke in a clause from TSk(Hn,�c), with e on a toggled path, becomes
y1
e ∨ · · · ∨ yke rather than one of y1

e , . . . , y
k
e , as is the proper form for positive literals

in clauses of TSk(Hn, �d). Application of the axioms ¬yje ∨ yie, with resolution steps,
corrects this. These corrections increase the size of the proof by at most an O(k)
factor.
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5. Reduction from set disjointness to OddChargeOddChargeOddCharge. The reduction from
EvenCharge

k(Hn) to OddCharge
k(Hn) works by planting a single randomly cho-

sen additional charge violation. This yields a protocol for EvenCharge
k(Hn) that

works well on average for each class of inputs with a given number of charge viola-
tions. This is similar in spirit to a reduction by Raz and Wigderson [26], and the
reader might profit by first becoming familiar with that argument.

The difficult part of our argument is the reduction from zero/one set disjoint-
ness to EvenCharge

k(Hn). The key idea is that for even �c, charge violations of
TSk(Hn,�c) come in pairs: Given an instance �x ∈ ({0, 1}m)k of zero/one set disjoint-
ness, using the public coins, the players randomly choose an even charge vector �c and
m vertex-disjoint paths in Hn, p1, . . . , pm, for each j ∈ [m], the players plant the
x1,j , . . . , xk,j as the assignment along each edge of path pj , in a random solution that
otherwise meets the chosen charge constraint. By construction, a charge violation
can occur only at the end points of a path and only if there is an intersection in the
set-disjointness problem.

The challenges arise when we would like to apply the average case properties of
the EvenCharge

k(Hn) protocol to the instances created by the above distribution.
Unfortunately, this distribution is not quite uniform, and we need the distribution
to be close to uniform. The bulk of the work is in using the properties of Hn, rapid
mixing, modest degree, and high girth, to show that the distribution generated by the
reduction is sufficiently close to uniform.

Distributions on labeled graphs. Let n be given, let Hn be the graph de-
scribed in section 4, and let �c be an even charge vector.

Definition 5.1. We define Sol(Hn,�c) to be the set of all 0/1 assignments to
the edges of Hn so that, for each vertex v ∈ [n], the parity of edges incident with v is
equal to cv. A uniform random distribution over Sol(Hn,�c) can be obtained by first
selecting 0/1 values uniformly at random for all edges in Gn and then choosing the
unique assignment to the edges of Tn that fulfill the charge constraints given by �c.

Given a bit value b associated with an edge e ∈ Gn, we can define a uniform
distribution Lk(b) over the corresponding variables yie, i ∈ [k]. Such an assignment is
chosen randomly from Lk on input b by the following experiment. If b = 1, then set
all variables associated with edge e, yie, i ∈ [k] to 1. Otherwise, if b = 0, set the vector
(�ye)i∈[k] by choosing uniformly at random from the set of 2k−1 not-all-1 vectors (i.e.,

{0, 1}k \ {0k}).
Definition 5.2. For any t ≥ 0 let Dt be a distribution given by the following

experiment on input Hn = Gn ∪ Tn:
(1) Choose an even charge vector �c ∈ {0, 1}n uniformly at random.
(2) Choose β ∈ Sol(Hn,�c) uniformly at random.
(3) For each e ∈ Gn, select the values for the vector (ye)i∈[k] from Lk(βe), and,

for each e ∈ Tn, set yie = βe for all i ∈ [k].
(4) Select a random subset U ⊆ [n] of 2t vertices, and produce charge vector �c U

from �c by toggling all bits cv for v ∈ U .
(5) Return the pair (α,�c U ), where α is the Boolean assignment to the variables

yie, i ∈ [k], e ∈ Hn.

Reduction from EvenChargeEvenChargeEvenCharge to OddChargeOddChargeOddCharge.
Lemma 5.1. Let n be given, and let Δ be the maximum degree of a vertex in Hn.

Suppose that Πodd is a randomized k-party NOF protocol for OddCharge
k(Hn) that

produces a vertex with a probability at least 1 − ε, is correct whenever it produces a
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vertex, and uses at most s bits of communication. Then there is a randomized k-party
NOF protocol Πeven for EvenCharge

k(Hn) that uses s + Δ bits of communication
and has the following performance:

Pr
(α,�c)∈D0

[Πeven(α,�c) = true] = 1,

Pr
(α,�c)∈Dt

[Πeven(α,�c) ∈ Err(α,�c)] ≥ 2/3 − ε for t ≥ 1.

Proof. Let Πodd be a protocol for OddCharge
k(Hn). We give a protocol Πeven

for EvenCharge
k(Hn). On input (α,�c) and random public string r, using r, choose

a random vertex v ∈ [n]. Check whether the parity equation associated with vertex
v is satisfied by α using at most Δ(G) bits of communication. (This can be done by
having player 1 broadcast y2

e for each e � v and then having player 2 compute whether
the constraint at v is obeyed or violated.) If it is not, return v. Otherwise, create an
odd charge vector �c {v}, which is just like �c except that the value of cv is replaced by
1 − cv. Now run Πodd on input (�c {v}, α). If Πodd returns the planted error v or if
Πodd does not return a value, then return “true”; if Πodd returns u �= v, output u.

Suppose that (α,�c) ∈ D0. Then α satisfies all charges specified by �c, so when
Πodd returns a vertex, the above protocol must output “true” because Πodd has a
one-sided error–that is, Πodd will return a vertex u only when there is an error on the
parity equation associated with u. Now suppose that (α,�c) ∈ Dt, so exactly 2t parity
equations are violated. If the parity constraint about the vertex v is not satisfied,
then the protocol detects this and correctly reports the location of the error. The
remaining case is when the parity constraint at v is satisfied, and in this case we call
Πodd on a pair (α,�c {v}) where exactly 2t + 1 parity equations are violated.

We show the probability bound by conditioning separately on the events Err(α,

�c {v}) = T for each T ∈ (
[n]

2t+1

)
. Because the events Err(α, �c′) = T partition the prob-

ability space, this proves the claim. By symmetry, for T ∈ (
[n]

2t+1

)
and any function g

whose range is a subset of T , we have that Prα,�c,v[g(α,�c
{v}) = v | Err(α,�c {v}) = T ] =

1/(2t+1) since it is equally likely for �c′ = �c {v} to be generated as �c {u} for any u ∈ T .
Thus we obtain

Pr
α,�c,v

[Πeven(α,�c {v}) errs | Err(α,�c {v}) = T ]

= Pr
α,�c,v

[Πodd(α,�c
{v}) = v or Πodd(α,�c

{v}) is not defined | Err(α,�c {v}) = T ]

≤ 1/(2t + 1) + ε ≤ 1/3 + ε

for t ≥ 1.

Reduction from zero/one set disjointness to EvenChargeEvenChargeEvenCharge. We now show
how to use a k-party NOF communication complexity protocol Πeven for
EvenCharge

k(Hn) as guaranteed by Lemma 5.1 to produce a k-party NOF pro-
tocol for the zero/one set-disjointness problem which uses the following definition. In
this reduction, we place the set-disjointness variables on the variables labeling some
randomly chosen paths in the graph Gn. For the purposes of analyzing the distribu-
tion, the paths are chosen to be of length l = � log n

log log n� where c1 > 0 is a constant.
The constant c1 is determined by Proposition 6.6. This is necessary for the proof of
Lemma 5.3. For a more thorough discussion of this choice, see section 6.2.

Definition 5.3. Let P
(m)

l be the set of all sequences of m vertex-disjoint length
l paths in Gn.
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Lemma 5.2. Let m = n1/3/ log n. For sufficiently large n and for any even charge
vector �c, if there is a probabilistic k-party NOF communication complexity protocol
Πeven for EvenCharge

k(Hn) using s bits, satisfying the conditions in Lemma 5.1
for D0 and D1, then there is a randomized (0, 1/3 + ε + o(1)) error k-party NOF
communication complexity protocol Π01disj for zero/one set disjointness on input �x ∈
({0, 1}m)k that uses s bits of communication.

Proof. Let �x be an instance of zero/one set disjointness. Protocol Π01disj will call
Πeven on the graph Hn, on a pair (α,�c) chosen according to the following distribu-
tion/experiment:

1. On input �x with public coins r:
(a) Using public coins r, choose a random even charge vector �c ∈ {0, 1}n.
(b) Using public coins r, choose a sequence of m vertex-disjoint length l

paths p1, . . . pm uniformly at random from P
(m)

l .
(c) Using the public coins r, choose β ∈ Sol(Hn −⋃m

j=1 pj ,�c).

2. For all edges e ∈ Hn, all players other than player i compute αi
e as follows:

(a) If e ∈ pj for j ∈ [m], set αi
e = xi,j .

(b) If e ∈ Gn and e �∈ ⋃m
j=1 pj , choose the vector α1

e . . . α
k
e according to the

distribution Lk(βe).
(c) For the remaining edges e ∈ Tn, set all variables αi

e for i ∈ [k] equal to
βe.

3. Return (α,�c).
We write R(�x) to denote the distribution on assignment/charge pairs produced

by reduction Π01disj when given an input �x. The following lemma shows that when
| ∩ �x| = 1, although R(�x) is not the same as D1, R(�x) is close to the distribution
D1 in the 
1 norm. This is the main technical lemma in the proof. The proof of this
lemma can be found in the next section.

Lemma 5.3. Let �x ∈ ({0, 1}m)k and | ∩ �x| = 1. Then ||R(�x) −D1||1 is o(1).
The protocol Π01disj will output 0 if Πeven returns “true” and 1 otherwise. If

∩�x = ∅, by the above construction, the support of R(�x) is contained in that of D0

and thus on R(�x), Πeven must answer “true” and the vector �x is correctly identified
as being disjoint. In the case that ∩�x contains exactly one element, Pr[Π01disj(�x) =
0] ≥ 2/3 − ε− o(1). This completes the proof of Lemma 5.2.

Reduction from set disjointness to zero/one set disjointness.
Lemma 5.4. If there is an (0, ε) randomized NOF protocol for the k-party zero-

one set-disjointness problem that uses s bits of communication where ε is a constant
< 1, then there is a (0, 1

3
) randomized NOF protocol for the k-party set-disjointness

problem that uses O(s log n) bits of communication.
Naturally, our starting point is the well-known result of Valiant and Vazirani [28].
Lemma 5.5 (Valiant–Vazirani). Let a be a positive integer. Fix a nonempty S ⊆

{0, 1}a, and choose w1, . . . wa ∈ {0, 1}a independently and uniformly. With probability
at least 1/4, there exists j ∈ {0, . . . , a} so that |{x ∈ S | ∀i ≤ j, x · wi = 0}| = 1.

Proof of Lemma 5.4. Let Π be the protocol for the promise problem. Set a =
�log n�. Using public coins, independently and uniformly choose w1, . . . wl ∈ {0, 1}a.
For j ∈ {0, . . . a}, the players run the protocol Π, using the following rule for evaluating
the input xi,r for i ∈ [k], r ∈ [m]: Interpret r as a vector in {0, 1}a, and replace the
value of xi,r by zero if for some j′ ≤ j, wj′ ·r �= 0, and use the value xi,r if for all j′ ≤ j,
wj′ · r = 0. If the protocol Π returns 1, the players halt and output 1; otherwise, the
players proceed to round j + 1. If no intersection is found after all a + 1 rounds, the
players announce that the inputs are disjoint.



LOWER BOUNDS FOR LOVÁSZ–SCHRIJVER SYSTEMS 859

Clearly, this protocol uses O(s log n) bits of communication, and by the 0-error
property of Π on disjoint inputs, it never outputs 1 when the inputs are disjoint.
When the inputs are nondisjoint, the Valiant–Vazirani construction ensures that, with
probability at least 1/4, at some round j the protocol Π is used on an input with a
unique intersection, and therefore, conditioned on this event, the correct answer is
returned with a probability at least 1 − ε. Therefore, the correct answer is returned
with a probability at least 1

4
− ε

4
. Because ε is bounded away from 1 and the error

is one-sided, a constant number of repetitions decreases the probability of error to
1/3.

Combining the reductions to prove Theorem 4.1.
Proof of Theorem 4.1. By Theorem 3.5 and the definition of OddCharge

k(Hn),
if for every �c ∈ {0, 1}n there is treelike Th(k-1) refutation of TSk(Hn,�c) of size at
most S, then there is a 1/n-error randomized k-party NOF communication complexity
protocol for OddCharge

k(Hn) in which at most O(log3 S) bits are communicated.
By communicating the values of the edges incident to the vertex to be output by
this OddCharge

k(Hn) protocol, the players can check that this vertex is indeed in
error and not produce a vertex otherwise. This gives a 0-error protocol that outputs
the correct answer with a probability at least 1 − 1/n. By Lemma 5.1 this yields a
randomized 0-error k-party NOF protocol Πeven for EvenCharge

k(Hn) that uses
O(log3 S+log n) bits, produces the correct answer for all inputs in the support of D0,
and for inputs randomly chosen according to D1 produces a correct answer with a
probability at least 2/3−1/n. Applying Lemma 5.2 this yields a (0, 1/3+1/n+o(1))-
error k-party protocol for zero/one set disjointness on ({0, 1}m)k also of complexity
O(log3 S+log n). Finally applying Lemma 5.4 yields an error 1/3 randomized k-party
NOF protocol for Disjk,m of complexity O(log3 S log n + log2 n) bits in total. The
deterministic bound is obtained by applying a similar reduction using the other parts
of Theorem 3.5.

6. Proximity of distributions D1 and R(�x) when |∩�x| = 1. In this section
we prove Lemma 5.3, that for |∩�x| = 1 the distributions R(�x) and D1 are close in the

1 norm. Let μD1 and μR(�x) be their associated probability measures. We will show
that, for all but a set of (α,�c) with μD1 measure o(1), μD1(α,�c) = (1±o(1))μR(�x)(α,�c).

Given an instance of the set-disjointness variables �x = ({0, 1}m)k, for j ∈ [m] we
say that the color of j is the tuple (x1,j , . . . , xk,j) ∈ {0, 1}k. By construction, the
assignment R(�x) has color (x1,j , . . . , xk,j) on each edge of the path pj .

Definition 6.1. Given an ordered sequence of paths �p ∈ P
(m)

l , an �x ∈ ({0, 1}m)k,
and an assignment α, write χ(α�p) = �x if and only if every edge on path pj has color
(x1,j , . . . , xk,j) for every j ∈ [m].

We first observe that for any (α,�c) with |Err(α,�c)| = 2 the probability μD1(α,�c)
depends only on the number of edges e ∈ Gn having color 1k in α.

Definition 6.2. Let φ(a, b) = 2−a(2k − 1)−(a−b).
Lemma 6.1. For any (α,�c) with |Err(α,�c)| = 2 and m1 = |{e ∈ E(Gn) | αe =

1k}|,

μD1(α,�c) =
φ(|E(Gn)|,m1)

2n−1
(
n
2

) .

Proof. Let U = Err(α,�c). The probability under D1 that U is chosen to be
flipped is 1/

(
n
2

)
, and, given U , the probability that the charge vector �c is produced
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by the experiment is simply the probability that �cU is generated by the uniform
distribution over all 2n−1 many even charge vectors, that is, 2−(n−1). Conditioned
on the event that U is chosen to be flipped, and that the charge vector is �c, the
chance that α labels the edges for the randomly selected element of Sol(Hn,�c) is
2−|E(Gn)|(2k − 1)−(|E(Gn)|−m1) = φ(|E(Gn)|,m1).

Definition 6.3. For U ⊂ V , with |U | = 2, let P
(m)

l (U) be the set of all elements

of P
(m)

l that have a path whose end points are U .
Now consider the measure μR(�x)(α,�c). Let {i} = ∩�x ⊆ [n], U = Err(α,�c), with

|U | = 2, and m1 = |{e ∈ E(Gn) | αe = 1k}|. By the definition of R(�x),

μR(�x)(α,�c) = Pr
�p∈P

(m)
l

[Ends(pi) = Err(α,�c) ∧ χ(α�p) = �x]

· Pr
�c′∈{0,1}n

α′∈Lk(Sol(Hn−�p,�c′))

[α′ = αGn−�p and �c′ = �c]

= Pr
�p∈P

(m)
l

[Ends(pi) = Err(U)] · Pr
�p∈P

(m)
l (U)

[χ(α�p) = �x]

· φ(|E(Gn)| −ml,m1 − l)/2n−1.

Observe that pi is a uniformly chosen element of Pl, and we can analyze the
first term using the following property of random paths on Lubotzky–Phillips–Sarnak
(LPS) expanders proved as part of Lemma 6.9 in section 6.2.2.

Lemma 6.2. For u �= v ∈ V (Gn) and l ≥ c1 log n/ log log n, Prp∈Pl
[Ends(p) =

{u, v}] = (1 ± o(1))/
(
n
2

)
.

Thus

μR(�x)(α,�c) = (1 ± o(1))
φ(|E(Gn)| −ml,m1 − l)(

n
2

)
2n−1

· Pr
�p∈P

(m)
l (U)

[χ(α�p) = �x]

= (1 ± o(1))
μD1

(α,�c)

φ(ml, l)
· Pr
�p∈P

(m)
l (U)

[χ(α�p) = �x].

It follows that we will obtain the desired result if we can show that, for all but a o(1)
measure of (α,�c) under μD1 ,

Pr
�p∈P

(m)
l (U)

[χ(α�p) = �x] = (1 ± o(1))φ(ml, l) = (1 ± o(1))2−ml(2k − 1)−(m−1)l,

where U = Err(α,�c). In the case that this happens, we say that (α,�c) is well-
distributed for �x.

Using the second moment method we prove the following lemma, which shows
that, for all but a o(1) measure of (α,�c) under μD1 , (α,�c) is indeed well-distributed
for �x. The detailed proof is given in section 6.1.

Lemma 6.3. Let m ≤ n1/3/ log n, l = 2�c1 log n/ log log n�, and �x ∈ ({0, 1}m)
k
,

with | ∩ �x| = 1. For almost all U ⊂ [n], with |U | = 2,

Pr
(α,�c)∈D1

[(α,�c) is well-distributed for �x | Err(α,�c) = U ] = 1 − o(1).

Lemma 5.3 follows from this almost immediately.
Proof of Lemma 5.3. Let �x ∈ ({0, 1}m)k and | ∩ �x| = 1. By Lemma 6.3 and the

preceding argument, for all U ∈ (
[n]

2

)
except for a set B that forms an o(1) fraction
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of
(
[n]

2

)
,

Pr
(α,�c)∈D1

[μR(�x)(α,�c) = (1 ± o(1))μD1
(α,�c) | Err(α,�c) = U ] = 1 − o(1).

By Lemma 6.2, Pr(α,�c)∈D1
[Err(α,�c) ∈ B] = o(1). Therefore by summing over distinct

choices of U , we obtain that, with probability 1− o(1) over (α,�c) ∈ D1, μR(�x)(α,�c) =
(1 ± o(1))μD1

(α,�c). This is equivalent to the desired conclusion that ||D1 − R(�x)||1
is o(1).

6.1. Most (α,�c) are well-distributed. In this section we use the second mo-
ment method to prove Lemma 6.3. For this purpose we will need the following prop-
erty of the LPS expander graphs Gn, proved in section 6.2, which will allow us to
show that the correlations considered in the second moment method are low.

Definition 6.4. For �p, �q ∈ P
(m)

l we write �p ∼s �q when �p and �q share exactly s
edges. Let γ > 0 be a positive real number. We say that U ⊂ V (Gn) is γ-nice if, for
all s ≥ 0, Pr

�p,�q∈P
(m)
l (U)

[�p ∼s �q] ≤ γs.

Theorem 6.4 (proved in section 6.2). Suppose that m ≤ n1/3/ log n and l =
2�c1 log n/ log log n�. There are constants c > 0 and c′ such that, for all but a o(1)

fraction of sets U = {u, v} ⊂ V (Gn), for all �q ∈ P
(m)

l (U) and every integer s ≥ 0,

Pr
�p∈P

(m)
l (U)

[�p ∼s �q] ≤ (c′/(log log n)1/4 + (logn)−c)s;

i.e., almost every U ∈ V (2) is (c′/(log log n)1/4 + 1/ logc n)-nice.
We now use this in our application of the second moment method to prove that

most (α,�c) pairs are well-distributed:

Lemma 6.5. Let m ≤ n1/3/ log n, l = 2�c1 log n/ log log n�, �x ∈ ({0, 1}m)
k
, with

| ∩ �x| = 1, and |U | = 2. If U is γ-nice, with γ = o(2−k), then

Pr
(α,�c)∈D1

[(α,�c) is well-distributed for �x | Err(α,�c) = U ] = 1 − o(1)

Proof. For each �p ∈ P
(m)

l (U), let X�p denote the indicator variable for the event
that χ(α�p) = �x.

We now calculate E(α,�c)∈D1
[X�p]. For (α,�c) chosen according to D1, the assignment

α�p is distributed according to (Lk)
ml; therefore, since for χ(α�p) to equal �x, α�p must

have precisely l edges whose color is 1k and l(m − 1) edges whose color is a lift of
label 0,

E(α,�c)∈D1
[X�p] = Pr

(α,�c)∈D1

[X�p = 1] = φ(ml, l) = 2−ml(2k − 1)−(m−1)l.

Let X =
∑

�p∈P
(m)
l (U)

X�p. X is the random variable denoting the number of sequences

�p ∈ P
(m)

l (U) for which χ(α�p) = �x. By the linearity of expectation, E(α,�c)[X] =

φ(ml, l) · |P (m)

l (U)|.
We use the second moment method to show that X is concentrated near its

expectation. For �p, �q ∈ P
(m)

l (U), the random variables X�p and X�q are correlated if
and only if �p and �q share an edge. Because U is γ-nice, Pr

�p,�q∈P
(m)
l (U)

[�p ∼s �q] ≤ γs.
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When X�p = 1, the colors of all edges of �p are determined. Therefore given
X�p = 1, if �p ∼ �q, either some edge that �p and �q share ensures that X�q = 0 or
the probability that X�p = X�q = 1 is nonzero. In the latter case consider G′ =⋃m

i=1(pi ∪ qi), which contains 2ml − s edges. Because the marginal distribution of α
to the edges of G′ independently assigns each e of G′ a label using the distribution Lk

(per Definition 5.1), we have that the probability that χ(α�p) = χ(α�q) = �x is larger
than [φ(ml, l)]2 by a factor of either 2 or 2(2k − 1) per shared edge depending on
whether that edge has a label 1 or 0.

Let D =
∑

�p∼s�q
Pr(α,�c)[X�p = X�q = 1].

D =

ml∑

s=1

∑

�p∼s�q

Pr
(α,�c)

[X�p = X�q = 1]

≤
ml∑

s=1

∑

�p∼s�q

(2(2k − 1))s Pr
(α,�c)∈D1

[X�p = 1] Pr
(α,�c)∈D1

[X�q = 1]

=

ml∑

s=1

∑

�p∼s�q

(2(2k − 1))s(φ(ml, l))2

=

ml∑

s=1

|P (m)

l (U)|2 Pr
�p,�q∈P

(m)
l (U)

[�p ∼s �q](2(2k − 1))s(φ(ml, l))2

= (|P (m)

l (U)| · φ(ml, l))2
lm∑

s=1

Pr
�p,�q∈P

(m)
l (U)

[�p ∼s �q](2(2k − 1))s

= (E(α,�c)∈D1
[X])2

ml∑

s=1

Pr
�p,�q∈P

(m)
l (U)

[�p ∼s �q](2(2k − 1))s

≤ (E(α,�c)∈D1
[X])2

ml∑

s=1

γs(2(2k − 1))s.

Since γ = o(2−k) by hypothesis,
∑∞

s=1 γ
s(2(2k − 1))s is o(1), and thus D is

o((E(α,�c)∈D1
[X])2). Therefore, E(α,�c)(X

2) = D + E(α,�c)(X) = o((E(α,�c)[X])2) +
E(α,�c)(X), and by the second moment method,

Pr
(α,�c)∈D1

[|X − E(α,�c)∈D1
(X)| ≥ εE(α,�c)∈D1

(X)] ≤ D + E(α,�c)∈D1
[X]

ε2E(α,�c)(X)2
= o(1).

By choosing ε as an appropriate function that is o(1), we obtain that, with proba-

bility 1−o(1) in the choice of (α,�c) ∈ D1, X = (1±o(1))φ(ml, l) · |P (m)

l (U)| and there-
fore, with probability 1 − o(1) in (α,�c), Pr

�p∈P
(m)
l (U)

[χ(α�p) = �x] = (1 ± o(1))φ(ml, l)

and thus (α,�c) is well-distributed for �x.
Proof of Lemma 6.3. Let �x ∈ ({0, 1}m)k and | ∩ �x| = 1. By Theorem 6.4 there

is a δ > 0 so that for all but a o(1) fraction of sets U ⊂ V (Gn), with |U | = 2, U
is γ-nice for γ = c′′/(log log n)1/4 for some constant c′′ and γ is o(2−k). Therefore,
Pr(α,�c)∈D1

[Err(α,�c) is γ-nice] = 1− o(1), and by Lemma 6.5, Pr(α,�c)∈D1
[(α,�c) is well-

distributed for �x | Err(α,�c) = U ] = 1 − o(1).
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6.2. Graph theoretic properties of LPS expanders.

6.2.1. The LPS expanders. In the analysis of R(�x), we want the end points
of the random paths in Gn to be almost uniformly distributed. We base our proof
of this upon the fact that the end points of random walks in expander graphs are
almost uniformly distributed (Proposition 6.6). Since a walk is allowed to repeat
vertices but a path does not repeat vertices, the length of the walk is too large with
respect to the degree, and it is very likely that a random walk will not be a path. To
transfer Proposition 6.6 from walks to paths, we use a graph in which random walks
of length l will have their end points almost uniformly distributed, but the walks are
short enough with respect to the degree so that a random walk is very likely to be a
path. We use the LPS expanders. The crucial properties of the expander graphs Gn

constructed in [22] that we need are as follows:
1. Gn is regular of degree Δ = Θ(logn).
2. Gn is connected and nonbipartite.
3. The second eigenvalue of Gn is O(

√
log n).

4. The girth of Gn is Ω(log n/ log log n).
A walk in Gn is chosen by selecting a start node and repeatedly following one of

the Δ edges adjacent to the current node.
Proposition 6.6. There exists c1 > 0 so that for every u, v ∈ V (Gn) a random

walk in Gn of length l ≥ c1 log n/ log log n starting at u ends at vertex v with a
probability at least 1/n− 1/n2 and at most 1/n + 1/n2.

We consider random walks and random paths in the Gn graphs of a fixed length
l = l(n) = 2�c1 log n/ log log n� that is twice the minimum length specified in Propo-
sition 6.6 so that their midpoints are nearly uniformly distributed.

6.2.2. Approximating paths by walks.
Remark 1. In principle one might replace disjoint paths in the definition of Π01disj

by disjoint walks of the same length, conditioned on each having distinct end points.
However, in that case it would be overwhelmingly likely that many walks will repeat
edges, and therefore, as graphs, they would contain different numbers of edges. This
would significantly complicate the second moment argument of Lemma 6.5.

We show that, because Gn is expanding and has high girth, random walks in Gn

not only mix well but they are paths almost surely as well. We state some folklore
properties of random walks and observe how they translate into properties of random
paths.

For v ∈ V (Gn), let Wl(v) be the set of all Δl walks of length l in Gn starting at
v, and let Pl(v) be the set of all paths of length l in Gn with one end point v. Let
μWl(v) be the measure given by a uniform distribution over Wl(v), and let μPl(v) be
the measure given by a uniform distribution over Pl(v).

Lemma 6.7. There exists a universal constant c3 so that, for every v ∈ V (Gn)
and for each path p ∈ Pl(v), (1 − c3/ log log n)μPl(v)(p) ≤ μWl(v)(p) ≤ μPl(v)(p).
Moreover, for w uniformly chosen from Wl(v) the probability that w is not a path is
at most c3/ log log n.

Proof. Observe that every p ∈ Pl(v) has equal measure under μWl(v) so μWl(v)(p) ≤
μPl(v)(p), and, moreover, μWl(v)(p) = μPl(v)(p)μWl(v)(Pl(v)).

Set g = girth(Gn). By the properties of Gn, g ≥ c0 log n/ log log n for some
constant c0 > 0 and its degree Δ ≥ c2 log n for some constant c2 ≥ 0. Notice that for
any walk w of length l each vertex in w can have at most l/(g−3) many neighbors also
in w. (If u is a vertex in w that has two neighbors u′ and u′′ in Gn within distance
g − 3 on w, then there is a cycle of length g − 1 in w ∪ {(u, u′), (u, u′′)} which is a
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subgraph of Gn.) Therefore

μWl(v)(Pl(v)) ≥
(

Δ − l/(g − 3)

Δ

)l

≥ 1 − l2

Δ(g − 3)

≥ 1 − 2�c1 log n/ log log n�2
c2 log n · (c0 log n/ log log n− 3)

≥ 1 − c3/ log log n

for some constant c3.
The following are folklore properties of random walks in Gn.
Proposition 6.8. Let Wl be the set of all walks of length l in Gn.
1. For each v ∈ V (Gn), Prw∈Wl

[v ∈ V (w)] ≤ (l + 1)/n.
2. For each u �= v ∈ V (Gn), Prw∈Wl

[Ends(w) = {u, v}] = (1 ± 2/n)/
(
n
2

)
.

Proof. There is a sequence of l+1 vertices (not necessarily distinct) on each walk
w in Wl and precisely Δl walks in which v is the ith vertex in w. Therefore, in total
there are at most (l + 1)Δl walks with v ∈ V (w). (This is an overcount since v may
appear more than once in w.) Since there are precisely nΔl random walks in Gn of
length l, Prw∈Wl

[v ∈ V (w)] ≤ (l + 1)/n.
By Proposition 6.6 the chance that a particular pair of distinct vertices {u, v}

appear as end points of w is 2
n (1/n± 1/n2), which is (1 ± 2/n)/

(
n
2

)
.

We obtain the following easy corollary which includes a proof of Lemma 6.2.
Lemma 6.9. Let Pl be the set of all paths in Gn of length l.
1. Let V ′ ⊆ V (Gn). There exists a constant c so that

Pr
p∈Pl

[V (p) ∩ V ′ �= ∅] ≤ (1 + c/ log log n)
|V ′|(l + 1)

n
.

2. Let u �= v ∈ V (Gn). Then Prp∈Pl
[Ends(p) = {u, v}] = (1 ± o(1))/

(
n
2

)
.

Proof. By Proposition 6.8, for w a randomly chosen walk of length l in Gn,

Pr
w∈Wl

[V (w) ∩ V ′ �= ∅] ≤ |V ′|(l + 1)

n
,

and by Lemma 6.7, Prw∈Wl
[w is a path] ≥ 1− c3/ log log n. The random distribution

of paths p of length l in Gn is the same as the random distribution of walks w of
length l in Gn conditioned on w being a path. Therefore

Pr
p∈Pl

[V ∩ V (p) �= ∅] = Pr
w∈Wl

[V ∩ V (w) �= ∅ | w is a path]

≤ |V |(l + 1)

(1 − c3/ log log n)n

≤ (1 + c/ log log n)
|V |(l + 1)

n

for some constant c.
For u �= v ∈ V (Gn), by Lemma 6.7 Prp∈Pl

[Ends(p) = {u, v}] is within a 1 ± o(1)
factor of Prw∈Wl

[Ends(w) = {u, v}], and by Proposition 6.8 the latter is (1±o(1))/
(
n
2

)
,

which yields the desired property.

6.2.3. The proof of Theorem 6.4. In this subsection we prove Theorem 6.4.

We will actually prove a slightly stronger result in which �q ∈ P
(m)

l (U) is replaced by
any subgraph of Gn with at most m(l+1) vertices and a maximum degree at most 2.
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It will be convenient to consider sequences of length l paths Pm
l that are not

necessarily vertex-disjoint. Let μ
P

(m)
l

be the uniform measure on P
(m)

l and μPm
l

be

the uniform distribution on Pm
l .

Lemma 6.10. Suppose that m ≤ n1/3/ log n and l = 2�c1 log n/ log log n�. For

any �p ∈ P
(m)

l , (1 − o(1))μ
P

(m)
l

(�p) ≤ μPm
l

(�p) ≤ μ
P

(m)
l

(�p).

Proof. Conditioned on the paths in �p ∈ Pm
l being vertex-disjoint, μPm

l
is uni-

form over P
(m)

l . By Lemma 6.9, the probability that the ith path shares a vertex
with paths p1, . . . , pi−1 is at most (1 + c/ log log n)(l + 1)2(m − 1)/n ≤ 2l2m/n, and
the probability that the paths in Pm

l are not vertex-disjoint is at most 2l2m2/n ≤
1/n1/3.

We first observe that if we required only that �p ∈ P
(m)

l rather than �p ∈ P
(m)

l (U)—
i.e., we had no requirement that one path in �p have its end points in U—then the
exponentially decaying bound on intersection size of Theorem 6.4 would be relatively
easy.

Lemma 6.11. Suppose that m ≤ n1/3/ log n and l = 2�c1 log n/ log log n�. There
is some constant c ≥ 0 such that, for all subgraphs G′ of Gn with at most m(l + 1)
vertices and every integer s ≥ 0,

Pr
�p∈P

(m)
l

[|E(∪�p) ∩ E(G′)| ≥ s] ≤ (log n)−cs.

Proof. For �p ∈ P
(m)

l , because each component of �p is a path of length l, if
|E(∪�p) ∩ E(G′)| ≥ s, then there are at least �s/l� paths pi in �p that share an edge
(and therefore a vertex) with G′. By Lemma 6.9, the probability that a random pi
from Pl shares a vertex with G′ is at most (1 + c/ log log n)(l + 1)2m/n < 2l2m/n.
Therefore for elements of Pm

l , the probability that there are least r = �s/l� such paths
is at most

(
m
r

)
(2l2m/n)r < (2l2m2/n)r/2. By Lemma 6.10, the probability that this

happens for elements of P
(m)

l is at most (2l2m2/n)r ≤ ns/(3l) = (logn)−cs for some
constant c > 0.

The major complication of the proof of Theorem 6.4 is the assumption that �p
contains a path with end points u and v for U = {u, v}, u �= v. We base the analysis
of paths with end points U on the analysis of walks with end points U . For some sets
U , for example, if u and v are adjacent in Gn, the distributions of random walks and
random paths with end points U may not be close to each other.3 We will see that,
for most choices of U , the probabilities under the two distributions are close to each
other, and this will be enough to obtain the bound required by Theorem 6.4.

Definition 6.5. For U = {u, v} ∈ V (Gn) let Wl(U) be the set of all walks in
Gn of length n that have end points U .

Lemma 6.12. There is a constant c4 such that, for all but at most a c4/ log log n
fraction of pairs u �= v ∈ V (Gn),

Pr
w∈Wl({u,v})

[w is a path] ≥ 2/3.

Proof. By Lemma 6.7,

Pr
w∈Wl

[w is not a path] ≤ c3/ log log n.

3Even in these cases the distributions may be sufficiently close, but we do not need to analyze
them.
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Therefore by definition,

∑

u �=v∈V (Gn)

Pr
w∈Wl

[Ends(w) = {u, v}] Pr
w∈Wl({u,v})

[w is not a path] ≤ c3/ log log n.

By Proposition 6.8, Prw∈Wl
[Ends(w) = {u, v}] ≥ (1 − 2/n)

(
n
2

)−1
, and thus

(1 − 2/n)

(
n

2

)−1 ∑

u �=v∈V (Gn)

Pr
w∈Wl({u,v})

[w is not a path] ≤ c3/ log log n,

which says that the expected value

Eu �=v∈V (Gn)( Pr
w∈Wl({u,v})

[w is not a path]) ≤ c3/ log log n

(1 − 2/n)
.

We now apply Markov’s inequality to obtain that the fraction of pairs u �= v ∈
V (Gn) for which Prw∈Wl({u,v})[w is not a path] ≥ 1/3, is at most c3/ log log n

(1−2/n)/3 ≤
c4/ log log n for some constant c4.

Bounding intersection size of random walks. Lemma 6.12 will allow us to
use the following analysis involving a random walk with end points in U rather than
a random path.

Lemma 6.13. Let G′ be a subgraph of Gn with the property that every vertex has
a degree at most d in G′. For fixed v ∈ V (Gn),

Pr
w∈Wl(v)

[|E(w) ∩ E(G′)| ≥ s] ≤
(
l

s

)(
d

Δ

)s

.

Proof. There are at most
(
l
s

)
many choices of steps in the random walk in which

the first s shared edges can occur. Fix some such set of steps S ⊆ [l]. For each i ∈ S
a necessary condition for the ith edge in the walk to lie in E(G′) is that the end point
u after step i − 1 must lie in V (G′). Since degG′(u) ≤ d, given that u ∈ V (G′), the
probability that the ith edge lies in E(G′) is then at most d/Δ. That is, conditioned
on a shared edge in each of the first j elements in S, the chance of a shared edge in
the j + 1st element in S is at most d/Δ because every vertex has a degree at most d
in G′. This yields a total probability at most

(
l
s

)
(d/Δ)s as required.

In order to analyze the random walks in Wl(U) we need more than the result
of Lemma 6.13, since it constrains only one end point of the random walk rather
than both end points. We can view each half of a random walk in which both end
points are constrained as two random walks of half the length with only one end point
constrained. (Obviously, these two half-length walks are highly correlated.)

Lemma 6.14. Let l = 2�c1 log n/ log log n�. Let G′ be a subgraph of Gn in which
every vertex has a degree at most d. For u �= v ∈ V (Gn),

Pr
w∈Wl({u,v})

[|E(w) ∩ E(G′)| ≥ s] <

(
2dl

Δ

)s/2

.

Proof. Without loss of generality, walk w ∈ Wl({u, v}) starts at u and ends at
v. Let l′ = l/2. Let w = (wu, wv), where wu and wv each have length l′. We first
observe that wu is nearly uniformly distributed in Wl′(u):
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Let w∗ ∈ Wl′(u), and let v∗ be the end of w∗.

Pr
w∈Wl({u,v})

[wu = w∗ | w starts at u]

=
Prw∈Wl(u)[wu = w∗ and wv, starts at v∗, ends at v]

Prw∈Wl(u)[w ends at v]

=
Prwu∈Wl′ (u)[wu = w∗] · Prwv∈Wl′ (v

∗)[wv ends at v]

Prw∈Wl(u)[w ends at v]
.

Clearly Prwu∈Wl′ (u)[wu = w∗] = Δ−l′ = Δ−l/2, and since l > l′ ≥ c1 log n/ log log n
by Proposition 6.6, both Prwv∈Wl′ (v

∗)[wv ends at v] and Prw∈Wl(u)[w ends at v] are
1/n± 1/n2; thus

Pr
w∈Wl({u,v})

[wu = w∗ | w starts at u] = (1 ±O(1/n))Δ−l/2.

Since Gn is a regular undirected graph, a length l random walk from u to v has
the same distribution as a length l random walk from v to u. Thus by symmetry
with the above argument, within a 1 ±O(1/n) factor, wv is distributed as a (nearly)
uniform random walk of length l′ starting at v.

Now if there are a total of s edges in common between w and G′, then at least �s/2�
must be shared between G′ and one of the two halves of w, wu and wv. By Lemma 6.13
and the above argument each of these probabilities is at most (1 +O(1/n))(dl

′

Δ
)�s/2,

and the total probability is at most 2(1 + O(1/n))( dl
2Δ

)�s/2 ≤ (2dl
Δ

)�s/2.

Deriving the bound.
Lemma 6.15. Let l = 2�c1 log n/ log log n� and m ≤ n1/3/ log n. For any fixed

subgraph G′ of Gn with at most m(l + 1) vertices and a maximum degree at most 2,
and any set U = {u, v} ⊂ V (Gn),

Pr
(w,�p))∈Wl(U)×Pm−1

l

[|(E(w) ∪ E(�p)) ∩ E(G′)| ≥ s] ≤ (c′′/ log log n)s/4 + (logn)−cs/2.

Proof. If there are s edge intersections between E(w) ∪ E(�p) and G′, then at
least s/2 of them occur in either w or �p. Lemma 6.14 implies that Prw∈Wl(U)[|E(w)∩
E(G′)| ≥ s/2] ≤ (

4l
Δ

)s/4 ≤ (c′′/ log log n)s/4.
By Lemma 6.11, Pr�p∈Pm−1

l
[|E(�p) ∩ E(G′)| ≥ s/2] ≤ Pr�p∈Pm

l
[|E(�p) ∩ E(G′)| ≥

s/2] ≤ (log n)−cs/2.
We now obtain Theorem 6.4.
Lemma 6.16. Suppose that m ≤ n1/3/ log n and l = 2�c1 log n/ log log n�. For

all but a c4/ log log n fraction of all U = {u, v}, u �= v ∈ V (Gn), there are constants
c, c′ > 0 such that, for all subgraphs G′ of Gn with at most m(l + 1) vertices and a
maximum degree 2 and for every integer s ≥ 0,

Pr
�p∈P

(m)
l (U)

[|E(∪�p) ∩ E(G′)| ≥ s] ≤ ((c′/ log log n)1/4 + (logn)−c)s.

Proof. By Lemma 6.12, for all but a c4/ log log n fraction of U , Prw∈Wl(U)[w is a
path] ≥ 2/3. For any such U , since the distribution of w ∈ Wl(U) conditional on w
being a path is uniform over Pl(U), the measure of any event on Pl(U) × Pm−1

l is at
most 3/2 times that on Wl(U)×Pm−1

l . Further, by the same argument as Lemma 6.10,
the probability that the paths in �p chosen from Pl(U)×Pm−1

l are vertex-disjoint is at
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least 1−o(1) conditioned on being vertex-disjoint the distribution of �p is uniform over

P
(m)

l (U). Therefore the measure of any event on P
(m)

l (U) is at most (1+o(1))3/2 ≤ 2
times that on Wl(U) × Pm−1

l . Applying Lemma 6.15 and adjusting constants c and
c′ yields the bound.

7. Discussion. There are a couple of interesting open problems related to our
work beyond the natural problem of the communication complexity of Disjk.

The first regards automatizability and the existence of separation oracles. In [21]
it was shown that if a system of 0/1 inequalities has a rank ≤ d LS refutation, then
the system of inequalities possesses a separation oracle that runs in time nO(d). (A
separation oracle is a procedure that takes a polytope P and a point �x and returns
either “true” if �x ∈ P or a hyperplane separating �x and P .) Does semantic Th(k)
have an efficiently computable separation oracle as LS does? A refutation system R is
said to be automatizable ([6], cf. [2]) if there is an algorithm that, given unsatisifable
CNF Ψ, the algorithm finds a refutation of Ψ in time SO(1), where S is the minimum
size of an R refutation of ψ. The question of the existence of a separation oracle for
Th(k) is closely related to whether or not Th(k) is automatizable, and we conjecture
that the answer to both questions is negative.

The second question is whether or not it is possible to extend our lower bounds
to other tautologies that would imply inapproximability results for polynomial-time
Th(k)-based algorithms. For example, if we could prove superpolynomial lower
bounds for treelike Th(k) proofs of random 3CNF formulas, this would imply in-
approximability results for Th(k)-based linear programming algorithms for MaxSAT
[7]. Of course, lower bounds for random 3CNF formulas are open for the Th(1) sys-
tems and even for treelike cutting planes with unary coefficients. A first step towards
analyzing random 3CNFs in the Th(k) systems would be to improve the analysis of
this paper to apply to a graph of degree 3 rather than one of degree Θ(logn).

Acknowledgment. We are indebted to Avi Wigderson for helpful discussions
and insights.
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IMPROVED BOUNDS ON NONBLOCKING 3-STAGE
CLOS NETWORKS∗

JOSÉ R. CORREA† AND MICHEL X. GOEMANS‡

Abstract. We consider a generalization of edge coloring bipartite graphs in which every edge
has a weight in [0, 1] and the coloring of the edges must satisfy that the sum of the weights of the
edges incident to a vertex v of any color must be at most 1. For unit weights, König’s theorem
says that the number of colors needed is exactly the maximum degree. For this generalization, we
show that 2.557n + o(n) colors are sufficient, where n is the maximum total weight adjacent to
any vertex, improving the previously best bound of 2.833n + O(1) due to Du et al. Our analysis
is interesting on its own and involves a novel decomposition result for bipartite graphs and the
introduction of an associated continuous one-dimensional bin packing instance which we can prove
allows perfect packing. This question is motivated by the question of the rearrangeability of 3-stage
Clos networks. In that context, the corresponding parameter n of interest in the edge coloring
problem is the maximum over all vertices of the number of unit-sized bins needed to pack the
weights of the incident edges. In that setting, we are able to improve the bound to 2.5480n + o(n),
also improving a bound of 2.5625n + O(1) of Du et al. We also consider the online version of this
problem in which edges have to be colored as soon as they are revealed. In this context, we can
show that 5n colors are enough. This contrasts with the best known lower bound of 3n− 2 by Tsai,
Wang, and Hwang but improves upon the previous best upper bound of 5.75n obtained by Gao and
Hwang. Additionally, we show several improved bounds for more restricted versions of the problem.
These online bounds are achieved by simple and easy-to-implement algorithms, inspired by the first
fit heuristic for bin packing.

Key words. bipartite edge coloring, rearrangeability of 3-stage Clos networks, bin packing

AMS subject classifications. 68W40, 68R10, 90C27, 90C59

DOI. 10.1137/060656413

1. Introduction.

1.1. Clos networks. Suppose we need to connect a set of inlets i1, . . . , ik—
which may represent telephone calls, parallel machines, or any kind of connection
request—to a set of outlets j1, . . . , jk, through an interconnection network, in such a
way that any request permutation (i.e., a permutation of {1, . . . , k}) can be routed
simultaneously. More precisely, let us define a connection request as a pair, (i, j),
where i is an inlet and j an outlet, and a request frame as any collection of requests
such that every inlet and every outlet are associated with at most one request. The
goal is to design a network that can route any request frame; such a network is called
nonblocking.

Naturally, the simplest way to achieve this is to directly connect every inlet to
every outlet by a different link. This solution, called crossbar, was already developed
and implemented for telephone communications in the late 1930’s by Western Electric
(the Bell System). Despite the simplicity and nice properties of crossbar networks,
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their main drawback is that they require too many links to achieve their goal: If
we have k inlets and k outlets, they require k2 links. In 1953, Clos [9] introduced a
new type of interconnection network with the same property but that requires only
O(k3/2) links. These networks have been widely used for data communications and
parallel computing systems (see, e.g., [3, 16]).

Formally, a 3-stage Clos network C(n1, r1,m, n2, r2) is an interconnection network
where the first stage consists of r1 crossbars of size n1 × m, the last stage has r2
crossbars of size m×n2, and the middle stage has m crossbars of size r1×r2. Moreover,
each of the r1 input switches is connected to each of the m middle switches. Similarly,
the middle stage and the last stage are fully connected. We focus on the case in which
n1 = n2 = n; i.e., the number of inlets or inputs of the input stage switches is equal
to the number of outlets or outputs of the output stage switches. We also assume that
r1 = r2 = r, even though all our results hold independently of what r1 and r2 are.
The resulting Clos network is denoted by C(n,m, r).

In a Clos network, a request frame is said to be routable if all requests can be
routed through a middle switch so that no two requests share a link. The main
question related to 3-stage Clos networks is to determine the number m of middle
switches (crossbars) needed to route any request frame, i.e., for the network to be
nonblocking. The answer, however, depends on the model we consider. Essentially
there are three settings in which this question has been studied and used:

• Rearrangeably nonblocking: An interconnection network is rearrangeably non-
blocking (or just rearrangeable) if every request frame is routable. This is the
relevant question in an offline setting.

• Strictly nonblocking: An interconnection network is strictly nonblocking if
any new connection request, compatible with a request frame, can be routed,
independent of how the rest of the request frame is routed (i.e., independent
of the state of the network). This is a relevant question in an online setting.

• Wide-sense nonblocking: If connection requests are revealed over time, an
interconnection network is wide-sense nonblocking if any new connection re-
quest, compatible with a request frame, can be routed, provided that the
rest of the request frame was routed according to a given routing algorithm.
This question is the most important in practice, since it is motivated by the
online environment, but it is less restrictive than the strictly nonblocking
requirement. It is important to mention that several authors consider the
more restrictive definition of wide-sense nonblocking in which the algorithm
has to be able to route new connection requests even if previous connections
terminate (see, e.g., Benes’ original book [5]).

Clos himself noted that C(n, 2n−1, r) is strictly nonblocking (which implies that
it is wide-sense nonblocking as well), while, shortly after, Slepian [29] (see also [5])
proved that C(n, n, r) is rearrangeable. Moreover, both results are best possible. It
is then clear that if the total number of inlets is k and we choose n = r =

√
k, the

number of links required in a 3-stage Clos network is 5× k3/2 or 8× k3/2, depending
on whether we need it to be rearrangeably or strictly nonblocking.

Although our focus here will be the study of 3-stage Clos networks, let us briefly
mention a few results for general interconnection networks. Shannon [27] showed that
Ω(k log k) links are needed for an interconnection network to even be rearrangeable.
Surprisingly, this lower bound was matched by Benes [6] and Beizer [4], who designed
rearrangeable networks of size O(k log k). Later, Bassalygo and Pinsker [2] construc-
tively showed the existence of strictly nonblocking networks of size O(k log k).
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The multirate environment. We just described the classic switching environ-
ment, in which connection requests fully use a link and have all the same bandwidth.
However, in modern communications, different requests may have different band-
widths and may be combined in a given link if the “link capacity” is large enough to
carry both requests. This setting is usually called the multirate environment. In such
a setting, a connection request is a triple (i, j, w), where i is an inlet, j an outlet, and
w the weight (thus, the classic environment corresponds to the special case in which
all weights are 1). A request frame is a collection of requests such that the total weight
of all requests in the frame involving a fixed inlet or outlet does not exceed 1. In a
Clos network, all r×m links between the input switches and middle switches and all
m×r links between the middle switches and the output switches also have capacity 1.
A request frame is said to be routable if all requests can be routed through a middle
switch so that none of the link capacities is violated. For a recent survey on multirate
Clos networks, we refer the reader to the excellent survey by Turner and Melen [30],
who also initiated the research on multirate switching networks [23]. As in the classic
environment, the question is to determine the minimum value of m of middle switches
such that any request frame can be routed; the network is then said to be multirate
nonblocking. Again, the answer depends on whether the problem is considered online
or offline. However, the questions are still wide open and need further investigations.

• Rearrangeably nonblocking (offline): An interconnection network is said to be
multirate rearrangeably nonblocking (or just rearrangeable) if every request
frame is routable. The question is thus to determine the minimum value of m
of middle switches such that C(n,m, r) is multirate rearrangeable, and this
minimum value is denoted by m(n, r). It is particularly interesting to obtain
bounds that are independent of r.

• Wide-sense nonblocking (online): If connection requests are revealed over
time (both the inlet-outlet pair and its weight), an interconnection network
is said to be wide-sense nonblocking if any new connection request, compatible
with a request frame, can be routed, provided that all the rest of the request
frame was routed according to a given routing algorithm. Thus, the question
is again to determine the minimum value m of middle switches such that
C(n,m, r) is wide-sense nonblocking, and this value is denoted by mW (n, r).
Let us emphasize again that we assume that the requests never terminate,
i.e., that we have no deletions during the execution; this is the same weaker
setting as in [13], for example.

• Strictly nonblocking: In the multirate environment, we say that an intercon-
nection network is strictly nonblocking if any new connection request, com-
patible with a request frame, can be routed, independent of how the rest of
the request frame is routed (i.e., independent of the state of the network).

1.2. Problem definition. The question of rearrangeability and nonblocking
properties of a 3-stage Clos network can be translated in graph-theoretic terms in
the following way. We are given a bipartite (multi)graph G = (V,E) with bipartition
A,B (say with |A| = |B| = r); in what follows, all our graphs will be multigraphs.
A and B represent the input and output switches, respectively. Edge e = (i, j)
represents a request between input switch i and output switch j and carries a weight
0 ≤ w(e) ≤ 1. The assumption of the requests being a request frame can be translated
into the assumption that the weights on the edges incident to v ∈ V can be packed
into n unit-sized bins. That is, for all v ∈ V , the set δ(v) of edges incident to v can
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be partitioned into n groups Cv
i , i = 1, . . . , n, satisfying

(1)
∑

e∈Cv
i

w(e) ≤ 1 for all i = 1 . . . , n.

Following the notation in [24], let Bn
r be the collection of such edge-weighted bipartite

multigraphs.
A Clos network C(n,m, r) is then (multirate) rearrangeable if, for every graph in

Bn
r , the edges can be colored with m colors so that the total weight of all edges of the

same color incident to a vertex v is at most 1. The question is thus to determine the
minimum number m(n, r) of colors needed to properly color every weighted bipartite
graph in Bn

r . In the online setting, we know only a priori that the graph belongs to Bn
r ,

but the edges and their weight are revealed over time. Similar to the rearrangeable
case, a Clos network C(n,m, r) is (multirate) wide-sense nonblocking if there exists
an online algorithm A such that, for every graph in Bn

r , the edges can be colored with
m colors so that the total weight of all edges of the same color incident to a vertex
v is at most 1. The question is thus to determine the minimum number mW (n, r)
for which there is an online algorithm that properly colors every weighted bipartite
graph in Bn

r using no more than mW (n, r) colors. In the same manner, C(n,m, r)
is (multirate) strictly nonblocking if, for any G = (V,E) ∈ Bn

r and any proper m-
coloring of (V,E \ {e}), for any e ∈ E, edge e can be colored without changing the
color of any already colored edge and using any extra color. Now mS(n, r) is the
minimum number of colors such that C(n,mS(n, r), r) is strictly nonblocking.

If all weights are forced to belong to a subset I ⊂ [0, 1], let Bn
r (I) denote the

natural extension of Bn
r . In this case, mI(n, r) is the smallest integer such that

every graph in Bn
r (I) admits a proper coloring with mI(n, r) colors. The quantities

mWI(n, r) and mSI(n, r) are the natural counterparts of mI(n, r) in the wide-sense
and strictly nonblocking setting.

Another special case that has attracted attention is when all edge weights can
take only k different values (known, in Clos network terminology, as the bounded rate
environment, or k-rate environment). We denote by mk(n, r) the minimum number
of middle switches so that C(mk(n, r), n, r) is multirate rearrangeable when all re-
quest frames have weights with only k different values. Similarly, mk

W (n, r) is the
corresponding counterpart of mk(n, r).

In section 3, we focus on a generalized bipartite edge-coloring problem, very
similar to the one just described, except that we require only the weights incident to
any vertex to add up to at most n. That is, condition (1) is replaced by the following
weaker condition:

(2)
∑

e∈δ(v)

w(e) ≤ n for all v ∈ V.

Here Dn
r denotes the natural counterpart of Bn

r . As Bn
r ⊆ Dn

r , the required number
of colors in this case, denoted by M(n, r), is clearly greater than or equal to m(n, r).
If all weights are forced to belong to a subset I ⊂ [0, 1], Dn

r (I) and MI(n, r) denote
the natural counterparts of Bn

r (I) and mI(n, r).

1.3. Discussion of previous work. Let us review some existing results on this
problem. We start by giving the most relevant results on rearrangeability, and later
we focus on wide-sense and strictly nonblocking properties.

Rearrangeability. The first important result was proved shortly after the introduc-
tion of 3-stage Clos networks and is due to Slepian [29] (see also [5]). He used König’s
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edge-coloring theorem [19] (see also [11]) to prove that m[1,1](n, r) = n. Melen and
Turner [23] initiated the research on multirate switching networks and proved that
m[0,1/2](n, r) ≤ M[0,1/2](n, r) ≤ 2n− 1. More generally, they proved that

m[0,B](n, r) ≤ M[0,B](n, r) ≤ n

1 −B
.

On the other hand, it is easy to prove that m[b,1](n, r) ≤ n� 1
b � and that M[b,1](n, r) ≤

n
b .

Previous to this work, the best bounds known on m(n, r) in the general setting
are 5n

4
≤ m(n, r) ≤ 41n

16
+O(1) and were obtained by Ngo and Vu [24] (lower bound)

and Du et al. [12] (upper bound). The latter authors also obtained the previously
best bounds for M(n, r), namely 2n− 1 ≤ M(n, r) ≤ 17n

6
+ O(1).

In the k-rate environment, better bounds have been proved. For k = 2, one can
actually verify the Chung–Ross conjecture, namely, that the 2n − 1 bound holds in
this case [8]. Moreover, Lin et al. [21] proved that

m3(n, r) ≤ 9n

4
+ O(1) and m3

( 1
5 ,1]

(n, r) ≤ 2n.

The first bound is an improvement over the 7n
3

bound obtained by Lin et al. [20].
Unfortunately, the proofs of all bounds for the finite rate environment rely on rather
tedious case analysis.

Wide-sense and strictly nonblocking. Let us now survey some of the most relevant
results concerning nonblocking properties of 3-stage Clos networks. In the classical en-
vironment, Clos [9] proved that C(n, 2n−1, r) is strictly nonblocking. Unfortunately,
as first noted in [23], in the multirate environment, C(n,m, r) cannot be strictly non-
blocking unless m is infinity. Indeed, consider the network C(n,m, 1) and assume that
there is a connection request of weight 1 and (n− 1)/ε connection requests of weight
ε = (n−1)/m between the only input and output switch pair in the network. A possi-
ble current state for the network is that each small connection request is routed along
a different middle switch, and thus the large request cannot be routed, implying that
the network is in a blocking state. However, if connection requests are restricted to
have weights within some interval, finite bounds can be obtained. Indeed, Melen and
Turner [23] proved that mS [b,1](n, r) ≤ 2�(n− 1)/b� + 3, which was further improved
by Chung and Ross [8] to mS [b,1](n, r) ≤ 2�1/b�(n − 1) + 1. The latter authors also

proved that mS(0,B] ≤ 2	n−B
1−B 
 + 1.

The bad example above motivated the algorithmic concept of wide-sense non-
blocking. Indeed, already in [23] it was noted that 8n middle switches are enough to
ensure the wide-sense nonblocking condition, i.e., mW (n, r) ≤ 8n. Later, Chung and
Ross [8] used their bounds on mS [b,1](n, r) and mS(0,B](n, r) to improve the bound.
Indeed, their algorithm would split connection requests according to their weight: the
smaller than or equal to 1/2 and those strictly larger than 1/2. The bound is therefore

mW (n, r) ≤ mS(1/2,1](n, r) + mS(0,1/2](n, r) ≤ 2n− 2 + 1 + 4n + 1 = 6n.

The best known bound previous to our result was obtained by Gao and Hwang [13].
They used a quota scheme, which consists of reserving some middle switches for large
connections while letting the rest carry any connection request. This approach led
them to the bound mW [0,1/2] ≤ 3.75n, implying, in the same manner as above, that

mW (n, r) ≤ 5.75n.
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The study of lower bounds for wide-sense nonblocking properties has been much
more recent. Bar-Noy, Motwani, and Naor [1] were the first to prove that in the
classical setting mW [1,1](n, r) ≥ 2n−1 for exponentially large r. This surprising result
essentially says that in the classical single-rate environment the strictly nonblocking
and wide-sense nonblocking conditions are the same. Moreover, recent work by Haxell
et al. [14] shows that this lower bound holds even for r = Ω(n2). In the multirate
environment, there is only a recent improvement on the previous bound. Tsai, Wang,
and Hwang [31] proved that mW (n, r) ≥ 3n − 2, and their proof also works in the
more restricted 2-rate environment.

1.4. Overview and main results in the paper. The main goal of this paper
is to present bounds on M(n, r), m(n, r), and mW (n, r). Indeed, we will show that
2.557n, 2.548n, and 5n are, respectively, upper bounds on these numbers.

We start in section 2 by showing a result on balanced decomposition of bipartite
graphs into matchings. In the context of Clos networks, this result becomes useful only
in section 3; however, we believe it is interesting on its own, and so we have decided to
present it in a separate section. The question that is addressed is as follows: Given a
bipartite graph G and nonnegative numbers γ1, . . . , γl summing to 1, decompose the
graph into F1, . . . , Fl such that the degree of any vertex v in Fi is approximately γi
times the degree of v in G. We show that the decomposition can be done such that
for all i and all vertices, the degree of v in Fi differs from its required value by an
additive constant less than 3. The question whether this constant can be decreased
to 1 is to the best of our knowledge open.

Our main contribution in this paper, proved in section 3, is the following result.
Theorem 1. The number of colors required to properly color every weighted

bipartite graph in Dn
r is at most 2.557n + o(n). In other words,

M(n, r) ≤ 2.557n + o(n).

Observe that this does not improve only upon Du et al.’s bound of 17
6
n+O(1) on

M(n, r) but even slightly upon their bound of 41
16
n+O(1) = 2.5625n+O(1) on m(n, r).

In fact, our approach can also be applied to bounding m(n, r) directly, and this gives
us a slightly improved bound of m(n, r) ≤ 2.5480n+ o(n). The latter improvement is
sketched in section 3.7.

For most of section 3, we consider the generalized bipartite edge coloring problem
in which the weights on edges incident to any vertex sum to at most n, i.e., graphs
in Dn

r . The approach we consider to attack this problem associates a bin packing
instance with every such generalized edge coloring instance. For this purpose, we first
decompose the edge weighted bipartite graph G = (V,E) into a union of matchings.
We then create a bin packing instance in which all bins have size 1. We create an
item of our bin packing instance for each matching in our decomposition, and we
set its size to be the maximum weight of any edge in the matching. A packing with
k bins immediately leads to a valid k-coloring by simply coloring the edges of all
matchings (items) placed in the same bin with the same unique color. As we shall
see in section 3.1, this approach needs that we first discard all edges whose weight is
less than some parameter α (to be determined). This can be done using the following
result implicit in Du et al. [12].

Lemma 2. Consider G = (V,E) ∈ Dn
r with bipartition V = A∪B and assume that

we have used at least 2n
1−α colors to color all edges except some edges e with w(e) ≤ α.

Then we can greedily color these remaining edges without using any additional color.
In particular, if M(α,1](n, r) ≤ 	2n/(1 − α)
, then M(n, r) ≤ 	2n/(1 − α)
.
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Proof. If e = (u, v) ∈ E with w(e) ≤ α cannot be colored then the total weight of
edges of a given color i incident to either u or v is greater than 1− α. Summing over
all 2n

1−α colors, we get a contradiction with sum of conditions (2) for u and v.

Therefore, we can focus on instances in which all weights are in [α, 1], provided
that we are willing to use 	 2n

1−α
 colors. As the proof of this last result used only any
greedy algorithm, the result also holds in the wide-sense nonblocking setting.

Our main contribution is to show that, for any generalized edge coloring problem
with weights in [α, 1], we can decompose the bipartite graph into matchings in such a
way that the corresponding bin packing instance can be packed into at most n+ o(n)
bins plus the number of bins required to pack a continuous bin packing instance with
density n

x2 for x ∈ [α, 1] (i.e., the number of items with size in the interval (x, x+ dx)
is n

x2 dx). We should emphasize that our bin packing instance is independent of the
given bipartite graph G; it is based only on the fact that G ∈ Dn

r . Although it
is easier to refer in the statements here to the continuous bin packing instance, we
actually deal only with an arbitrarily fine discretization of it and consider discrete bin
packing instances. Our decomposition of the graph into matchings relies on the result
of section 2 and is described in section 3.2, while the construction of our bin packing
instance is detailed in section 3.3.

Once the continuous bin packing instance with density n
x2 for x ∈ [α, 1] is con-

structed, in sections 3.4, 3.5, and 3.6, we turn to compute the number of bins it
requires. First, we observe that all items of size greater than 1− α need to be placed

alone in bins; they therefore require
∫ 1

1−α
n
x2 dx = α

1−αn bins. For the remaining
items with density n

x2 for x ∈ [α, 1 − α], we prove that they can be perfectly packed.
This means that the number of bins they require is simply their total size, up to
lower-order terms (accounting for the discretization). This means that they require∫ 1−α

α
x n
x2 dx = n ln 1−α

α additional bins. This relies on a result of Rhee and Talagrand

[26]. The total number of bins used is thus (1 + α
1−α + ln 1−α

α )n, and we choose α

so that this equals 2
1−αn in order to be able to greedily color the edges with weight

lower than α. For α = 0.217811 . . . , we obtain that the number of colors needed is
less than 2.557n.

It is worth mentioning that our main result can be done algorithmically. Indeed,
the continuous bin packing instance is independent of the input; therefore, a dis-
cretization of it can be solved optimally a priori by exhaustive search (or by using
any good algorithm for bin packing). The matching decomposition, for edges with
weight in [α, 1], can be efficiently done using network flows techniques (see Lemma 5).
Finally, the edges with weight in (0, α) can be greedily colored as in Lemma 2.

In section 4, we will use simple adaptations of the first fit (FF) heuristic for the
classical bin packing problem to obtain improved bounds on the wide-sense nonblock-
ing properties of 3-stage Clos networks. In the bin packing setting, FF places a new
item in the first bin that has space available for it; in our online setting, it will simply
color an edge with the smallest possible color (under some arbitrary order on the
colors) as long as it does not violate condition (1). Our main result, proved in sec-
tion 4.1, is to show that C(n, 5n, r) is wide-sense nonblocking, i.e., mW (n, r) ≤ 5n.
Later, in section 4.2, we show that mW (0,1/2] ≤ 3.601n + 3. Both bounds improve
upon the bounds obtained by Gao and Hwang [13] of 5.75n and 3.75n, respectively.

Additionally, in section 4.3 we are able to show that in the 2-rate environment,
there is an online algorithm that uses no more than 3n middle switches to schedule
any request frame. This not only improves the previous best known bound of 4n
[13] but also almost matches the lower bound on mW (n, r) of 3n − 2 obtained by
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Tsai, Wang, and Hwang [31] which is also valid in the 2-rate case. We can therefore
conclude that

3n− 2 ≤ m2
W (n, r) ≤ 3n.

Finally, in section 5 we prove that using an analogue of the FF decreasing heuristic
for bin packing, no more than 8n

3
middle switches are needed to route any request

frame. As sorting is needed, this bound holds only in the offline setting, and it does
not improve upon the bound of m(n, r) ≤ 2.548n+ o(n) given in section 3. However,
it has the following advantages: (i) it is a nonasymptotic result; (ii) it is a very simple
to implement algorithm; and (iii) it can be implemented to run in time O(n log n).

2. Balanced decompositions of bipartite graphs. Given a subset of edges
F of a graph G and a vertex v, we let degF (v) denote the degree of vertex v in F , that
is, |δ(v) ∩ F |, where δ(v) is the set of edges incident to v in the graph. The following
result follows easily from network flow theory.

Lemma 3 (Hoffman [15]). Consider a bipartite graph G = (V,E) and let 0 ≤
μ1, μ2 with μ1 + μ2 = 1. Then there exists a partition of E into E1 and E2 such that

�μi degE(v)� ≤ degEi
(v) ≤ 	μi degE(v)


for i = 1, 2 and all v ∈ V .
Proof. Let A,B be the bipartition of the bipartite graph G. Orient all edges

from A to B. Add a source with arcs to all vertices in A and a sink with arcs from
all vertices in B. Set the capacity of all the arcs in E to be 1, and set upper and
lower capacities on the arcs adjacent to the source and sink to be 	μ1 degE(v)
 and
�μ1 degE(v)�, where v is the corresponding adjacent vertex. As a feasible flow can
be obtained by setting the flow on every arc in E to be μ1, there exists an integer
feasible flow, and this flow corresponds to the edge set E1. The remaining edges E2

also satisfy the required property.
The next theorem is an extension of Hoffman’s result.
Theorem 4. Consider a bipartite graph G = (V,E) and let γ1, . . . , γl ∈ (0, 1)

such that
∑l

i=1 γi = 1. Then there exists a partition E1, . . . , El of E such that for all
v ∈ V and all i = 1, . . . , l,

γi degE(v) − ei(v) < degEi
(v) < γi degE(v) + ei(v).

Here ei(v) < 3, and
∑l

i=1 ei(v) ≤ 2(l − 1).
Proof. Let L = {1, . . . , l}. We construct a binary tree T with l− 1 internal nodes

and l leaves, each node being labelled by a subset of L. The root is labelled with L,
and the l leaves are labelled by a distinct singleton subset of L. If an internal node is
labelled with N , then its two children are labelled with I and N \ I, where I,N \ I is
the most balanced number partition of N ; i.e., I is such that max{γ(I), γ(N \ I)} is
minimized (for a set S, γ(S) denotes

∑
i∈S γi ).

With every node with label I, we also associate an edge set E(I). We first set
E(L) = E. Given E(N) for an internal node N , we obtain E(I) and E(N \ I)
for its children by applying Lemma 3 to the graph with edge set E(N) and with
μ1 = γ(I)/γ(N) and μ2 = 1 − μ1. The leaves are thus associated with subgraphs
E({i}) which make a partition of E. We claim that E({i}) satisfies the required
properties for Ei.

Fix a vertex v ∈ V (for simplicity, we just drop v when writing deg∗(v)) and an
index i ∈ L. Let {i} = A0 ⊂ A1 ⊂ · · · ⊂ Ak = L be the labels on the path from
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the leaf {i} to the root. We now derive an upper bound on degEi
(v) (and we could

proceed similarly for the lower bound). From Lemma 3, we have that

degEi
(v) = degE(A0)

<
γ(A0)

γ(A1)
degE(A1)

+1

<
γ(A0)

γ(A1)

(
γ(A1)

γ(A2)
degE(A2)

+1

)
+ 1

<
γ(A0)

γ(A1)

(
γ(A1)

γ(A2)

(
· · ·

(
γ(Ak−1)

γ(Ak)
degE +1

)
· · ·

)
+ 1

)
+ 1

=
γ(A0)

γ(Ak)
degE +1 +

γ(A0)

γ(A1)
+

γ(A0)

γ(A2)
+ · · · + γ(A0)

γ(Ak−1)

= γi degE +ei(v),

where ei(v) = 1 + γ(A0)

γ(A1)
+ γ(A0)

γ(A2)
+ · · · + γ(A0)

γ(Ak−1)
. Let η = mini∈A1 γi and let j be

the arg min. Let a = γ(A0) ≥ η. Thus we have γ(A1) ≥ a + η. In general, when
considering Ak, we split it into Ak−1 and Ak \ Ak−1, while we could have split it
into Ak−1 \ {j} and the rest. This implies that γ(Ak−1)− η ≤ γ(Ak)− γ(Ak−1), i.e.,
γ(Ak) ≥ 2γ(Ak−1)−η. Using this repeatedly, we get γ(A2) ≥ 2a+η, γ(A3) ≥ 4a+η,
and, generally, γ(Ak−1) ≥ 2ka + η. Thus the bound becomes

ei(v) ≤ 1 +
a

a + η
+

a

2a + η
+

a

4a + η
+

a

8a + η
+ · · ·

≤ 1 +
a

a
+

a

2a
+

a

4a
+

a

8a
+ · · · < 3.

Finally, in order to get a bound on
∑

i ei(v), observe that

l∑

i=1

ei(v) =
∑

(all labels N except the root)

∑

i∈N

γi
γ(N)

= 2(l − 1),

since there are 2l−1 nodes in the binary tree. A proof of the lower bound on degEi
(v)

is identical.
We suspect that the bound can be further improved. If γi = 1/l for every i, de

Werra [10] has shown that we can impose �γi degE(v)� ≤ degEi
(v) ≤ 	γi degE(v)


for every i, while Theorem 4 implies �γi degE(v)� − 2 ≤ degEi
(v) ≤ 	γi degE(v)
 + 2

for every i (without making assumptions on the γi’s). We do not know whether the
tighter condition (without the +2) can be imposed in the general case. The proof
technique used here, however, cannot even improve the +2 term into a +1 term.
Indeed, for γi = 1/13 for i = 1, . . . , 13, one can see that no partitioning scheme would
give a bound on ei(v) (using the analysis in the proof of Theorem 4) better than
1 + 1

2
+ 1

4
+ 1

5
+ 1

13
= 2 + 7

260
(and this can be shown to be the worst when all γi’s are

equal).
As stated, the proof of Theorem 4 is not algorithmic, since we need to solve num-

ber partition as a subroutine. However, we used in the proof only the fact that the
partitioning of N used is locally optimum in the sense that no item can be moved
to the other side of the partition while making it more balanced. A locally opti-
mum number partition can be obtained in polynomial time in several ways. Brucker,
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Hurink, and Werne [7] show (in the context of scheduling parallel machines) that
iteratively improving the partition until a local optimum is reached takes O(|N |2)
iterations. Schuurman and Vredeveld [28] noted that iteratively finding the best lo-
cal improvement requires O(|N |) iterations, which implies an overall running time of
O(|N | log |N |). One can also use the differencing method of Karmarkar and Karp
[18]. This differencing method, which also runs in O(|N | log |N |) time, consists of
repeatedly replacing the largest two items by one new item whose size (i.e., γ value)
equals the difference in sizes of these largest two items until only one item of size
say Δ remains. By inverting the process, one can easily obtain a partition (I,N \ I)
with γ(I) = γ(N \ I) + Δ. A simple inductive argument shows that all items in I
have γi ≥ Δ, and therefore the partition obtained is locally optimum. Using any of
these algorithms to find a local optimum, a partition of the edge set satisfying the
conditions of Theorem 4 can be obtained in polynomial time.

3. Rearrangeably nonblocking Clos networks. In this section, we consider
the generalized bipartite edge coloring problem in which the weights on edges incident
to any vertex sum to at most n, i.e., graphs in Dn

r . As described earlier, we associate
a bin packing instance with every such generalized edge coloring instance by decom-
posing the edge weighted bipartite graph G = (V,E) into a union of matchings. We
then create a bin packing instance in which all bins have size 1. We create an item
of our bin packing instance for each matching in our decomposition, and we set its
size to be the maximum weight of any edge in the matching. A packing with k bins
immediately leads to a valid k-coloring by simply coloring the edges of all matchings
(items) placed in the same bin with the same unique color.

3.1. Limitations. Consider the following trivial instance of our generalized edge
coloring problem. Let X be a finite subset of (0, 1] and create a vertex in A and
in B for each element x ∈ X and �n

x � edges between them. In this case, 2n − 1
colors are sufficient (and needed if 1

2
+ ε ∈ X for some small ε). No matter what

decomposition into matchings we consider, our bin packing instance has at least �n
x �

items (matchings) of size at least x for every x ∈ X. If X = {x0, x1, . . . , xl} with
x0 > x1 > · · · > xl, this bin packing instance requires no fewer bins than another bin
packing instance with � n

xi
� − � n

xi−1
� items of size xi for every i ≥ 1 and � n

xi
� items

of size x0. As X gets denser in (0, 1], this bin packing instance tends to a continuous
bin packing instance with density n

x2 (i.e., the number of items of size in (x, x + dx)
is n

x2 dx) after having removed the n items of size 1. Now the number of bins required

is at least the total size of all items n +
∫ 1

0
x n
x2 dx, which is unbounded!

To overcome this problem, we first discard all edges whose weight is less than
some parameter α (to be determined) by using Lemma 2. This said, we can turn to
proving the graph partitioning result in which our work is based.

3.2. Partitioning the graph. From now on we fix a parameter 0 < α < 1
and work with graphs in Dn

r (α, 1). The decomposition we need to construct our bin
packing instance is given below.

Lemma 5. Consider the sequence α0 = 1 > α1 > α2 > · · · > αp = α ≥ 0. Let
G = (V,E) ∈ Dn

r (α, 1). Then there exist sets F1, . . . , Fp partitioning E such that the
following hold:

(i) maxe∈Fk
w(e) ≤ αk−1.
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(ii) For all vertices v ∈ V ,

degFk
(v) ≤

(
1

αk
− 1

αk−1

)
n + ak(v) for all 2 ≤ k ≤ p,

degF1
(v) ≤ n

α1

+ a1(v),

where ak(v) ≤ 3(p− k + 1).

Proof. Consider an instance G = (L,R,E) with weight function w and let

Di = {e ∈ E : w(e) ∈ (αi, αi−1]}

for i = 1, . . . , p. From inequality (2) we can easily deduce that for all v ∈ L ∪R,

(3)

p∑

i=k

αi degDi
(v) ≤ n for all k = 1 . . . , p.

If we divide the inequality (3) corresponding to k = 1 by α1 and multiply the kth
inequality (3) by ( 1

αk
− 1

αk−1
), we obtain the following set of inequalities:

(
1

α1

)
α1 degD1

(v) +

(
1

α1

)
α2 degD2

(v) + · · · +
(

1

α1

)
αp degDp

(v) ≤
(

1

α1

)
n

(
1

α2

− 1

α1

)
α2 degD2

(v) +

(
1

α2

− 1

α1

)
α3 degD3

(v) + · · · +
(

1

α2

− 1

α1

)
αp degDp

(v)

≤
(

1

α2

− 1

α1

)
n

...

(
1

αp
− 1

αp−1

)
αp degDp

(v) ≤
(

1

αp
− 1

αp−1

)
n.

Note that, for all i = 1, . . . , p, the coefficients in front of degDi
(v) over the above

inequalities sum to 1. Therefore, for each Di we can apply Theorem 4 with

γi
1 =

1

α1

αi, γ
i
2 =

(
1

α2

− 1

α1

)
αi, . . . , γ

i
i =

(
1

αi
− 1

αi−1

)
αi

to partition Di into sets D1
i , . . . , D

i
i such that for all k = 1, . . . , i and all v ∈ V ,

γi
k degDi

(v) − eik(v) < degDk
i
(v) < γi

k degDi
(v) + eik(v),

where eik(v) ≤ 3 and
∑i

k=1 e
i
k(v) ≤ 2(i− 1).

We are now ready to finish the proof. Define Fk = Dk
k ∪Dk

k+1 ∪ · · · ∪Dk
p for all
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k = 1, . . . , p. Thus letting ak(v) =
∑p

i=k e
i
k(v) ≤ 3(p− k + 1), we have the following:

degF1
(v) ≤

p∑

i=1

(
γi
1 degDi

(v) + ei1(v)
)

≤
(

1

α1

)
n + a1(v);

degFk
(v) ≤

p∑

i=k

(
γi
k degDi

(v) + eik(v)
)

≤
(

1

αk
− 1

αk−1

)
n + ak(v), 2 ≤ k ≤ p.

3.3. The associated bin packing problem. Let us now consider a bipartite
graph G = (V,E) ∈ Dn

r (α, 1) and F1, . . . , Fp as in Lemma 5. By König’s theorem, Fk

can be decomposed into no more than

(
1

αk
− 1

αk−1

)
n + max

v∈V
ak(v)

matchings, for all k = 2, . . . , p and F1 can be decomposed into n
α1

+ maxv∈V a1(v)
matchings. We now construct an instance of the one-dimensional bin packing problem
with unit-sized bins. Arbitrarily select ( 1

αk
− 1

αk−1
)n matchings (or, more formally,

the floor of this quantity) in the decomposition of Fk for k = 2, . . . , p and assign
each of them an item of size αk−1. Similarly, arbitrarily select n

α1
matchings in the

decomposition of F1 and assign each of them an item of size α0. Let M be those
matchings selected in F1, . . . , Fp, and, by construction, we have an item for each
element of M. Our bin packing instance is thus the following:

Input: n
α1

items of size 1 and ( 1
αk

− 1
αk−1

)n items of size αk−1 for k = 2, . . . , p.

Output: A packing of the items into the minimum number of bins.
Observe that this bin packing instance is independent of G = (V,E) ∈ Dn

r (α, 1) and
depends only on n and the values of αi selected.

Given any solution to this bin packing instance, say with k opened bins, we can
easily obtain a coloring of all the edges in the union of the matchings in M using
just k colors. Indeed, we can simply color an edge belonging to a matching by a color
representing the bin in which the corresponding item is packed. In constructing the
bin packing instance, we have discarded at most

p∑

k=1

max
v∈V

ak(v) ≤ 3

p∑

k=1

(p− k + 1) =
3

2
p(p + 1)

matchings, and they can be colored with a new color for each of them. In summary,
the number of colors we need is at most the optimal number of bins of our bin packing
instance plus 3

2
p(p + 1). An interesting feature of the results on the previous section

is that they do not assume any conditions on p. We will see later that the optimal
value for p is Θ(n1/3), which implies that the number of additional colors we need
to accommodate the matchings not in M is 3

2
p(p + 1) = O(n2/3) = o(n) and hence

negligible.
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As an example of the associated bin packing instance, consider the case with
p = 3 and α1 = 1

2
, α2 = 1

3
, and α3 = α = 1

4
. The bin packing instance then consists

of 2n items of size 1, n items of size 1
2
, and n items of size 1

3
, and these items can

be packed into 2n + n
2

+ n
3

= 17
6
n bins (plus O(1) bins for fractionally opened bins).

The argument above regarding discarded items shows that we need O(p2) = O(1)
additional bins. Using Lemma 2, we then obtain that M(n, r) ≤ 17

6
n + O(1). This

derivation is essentially identical to the result of Du et al. [12], and the approach taken
here can be viewed as an extension of it.

Our goal now is to focus on our general bin packing instance and analyze the
number of bins it requires. Since all items in the bin packing instance have size at
least α = αp, it is clear that items whose size is more that 1−α are forced to use a full
bin in any feasible packing. Hence, without loss of generality, we can let α1 = 1 − α.
With this, an optimal packing always needs n/(1 − α) bins to pack items of size 1
plus a certain number of bins to pack the remaining items (of size α1, . . . , αp).

3.4. A lower bound. A trivial lower bound on the number of unit bins required
to pack our discrete instance is n/(1−α) bins (for the items of size greater than 1−α)
plus the total size of the remaining items:

n

1 − α
+

p∑

k=2

αk−1

(
1

αk
− 1

αk−1

)
n.

This can be lower bounded in the following way. Let g : [α, 1− α] → R be defined by
g(x) = 1/x2. As n

∫ αk−1

αk
g(x)dx = ( 1

αk
− 1

αk−1
)n is the number of items of size αk−1

and αk−1 ≥ x for any x ∈ [αk, αk−1], we have that

p∑

k=2

αk−1

(
1

αk
− 1

αk−1

)
n ≥ n

∫ 1−α

α

xg(x)dx

=

∫ 1−α

α

(n
x

)
dx = n ln

1 − α

α
.

Therefore, from Lemma 2, we derive that our analysis cannot give an upper bound
on M[α,1](n, r) better than

min
α∈(0,1]

max

{
2n

1 − α
,

n

1 − α
+ n ln

1 − α

α

}
= M · n,

with 2.5569 ≤ M ≤ 2.5570. The term 2n
1−α comes from Lemma 2, while the other

term is the bound just obtained. The value of α for which the minimum is attained
is α ≈ 0.2178117. From now on, we fix α to be the argmin of the above expression.
In what follows, we show that this lower bound is actually achievable by relating
the number of bins required by our bin packing instance to a continuous bin packing
instance and analyzing it. For this purpose, we assume that the αi’s in the definition
of our bin packing instance are equally spaced in [α, 1−α], i.e., αk−1−αk = Δ = 1−2α

p−1

with α1 = 1 − α and αp = α.

3.5. The continuous packing problem. We round our bin packing instance
to a continuous bin packing problem for which packing strategies with sublinear waste
exist. We first define what we mean by a continuous bin packing instance. Consider
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a finite positive measure μ with density g defined over [a, b] (with 0 ≤ a ≤ b ≤ 1)
and, for any integer q, consider a uniform discretization a = x1 < · · · < xq = b of the
interval [a, b]. Let Qq

n be the optimal number of bins needed to pack the bin packing
instance in which, for all 1 ≤ i < q, there are 	nμ([xi, xi+1))
 items of size xi+1. The

value of our bin packing instance is then defined as limq→∞ limn→∞
Qq

n

n . By simply
considering the total size of the items, we see that the value of a continuous instance
is never smaller than

∫ b

a

xdμ(x) =

∫ b

a

xg(x)dx.

We say that μ admits a perfect packing if we have equality

lim
q→∞ lim

n→∞
Qq

n

n
=

∫ b

a

xdμ(x) =

∫ b

a

xg(x)dx.

The lower bound in the previous section suggests that we consider the continuous
bin packing instance with the continuous density g(x) = 1

x2 over x ∈ [α, 1 − α]. In
the next section, we show that a result of Rhee and Talagrand [26] can be applied
to prove that g actually admits a perfect packing. What we show now is that the
difference between the number of bins we need in our discrete instance and the value
of this continuous instance times n is O(np ) and hence sublinear whenever p grows

with n. For this purpose, we show that we can discard O(n/p) items in our discrete
instance and obtain an instance which is dominated by discrete realizations of our
continuous instance. Indeed, as

∫ αk−2

αk−1
g(x)dx = 1

αk−1
− 1

αk−2
, the continuous instance

would dominate the discrete instance if we had only ( 1
αk−1

− 1
αk−2

)n items of size

αk−1. We therefore need to discard a number of items of size αk−1 equal to
(

1

αk
− 1

αk−1

)
n−

(
1

αk−1

− 1

αk−2

)
n

=
2Δ2

αkαk−1αk−2

n ≤ 2Δ2

α3
n.

Over all values of k, this amounts to discarding p 2Δ2

α3 n = Θ(np ) items, and they can
each be packed in a separate bin.

As announced, we show in the next section that g admits a perfect packing. This
implies that the total number of colors needed to color any graph G ∈ Dn

r (α, 1) is
at most M · n + O(p2) + O (n/p) , which is optimized choosing p = Θ(n1/3). For the
optimal choice of α, which is approximately 0.2178117, the previous quantity becomes

M · n + O(n
2
3 ) < 2.557 · n + O(n

2
3 ),

concluding the proof of Theorem 1.

3.6. Perfect packing. Consider the positive measure μ defined over the interval
[α, 1 − α] with density g(x) = 1/x2 for the optimal parameter α just obtained. To
show that a perfect packing exists, we decompose g as the sum of three other positive
functions, f1, f2 and f3, all of which allow perfect packing. Furthermore, all bins used
for the items corresponding to fi will contain exactly i + 1 items. With this, μ is a
mixture of the corresponding measures μ1, μ2 and μ3. The decomposition is depicted
in Figure 1.

Consider the following functions:
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1. f1(x) =

⎧
⎪⎨
⎪⎩

g(1 − x) if x ∈ [α, 1/2),

g(x) if x ∈ [1/2, 1 − α],

0 otherwise,

2. f2(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

g(x) − f1(x) − c if x ∈ [1/4, β),

d if x ∈ [β, δ),

g(x) − f1(x) if x ∈ [δ, 1/2),

0 otherwise,

3. f3(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

g(x) − f1(x) if x ∈ [α, 1/4),

c if x ∈ [1/4, β),

g(x) − f1(x) − d if x ∈ [β, δ),

0 otherwise.

0.2 0.60.4 0.80.3 0.5 0.7
0

5

15

20

10

f1

f1 + f2

g = f1 + f2 + f3

Fig. 1. Decomposition of g into f1, f2, and f3.

Here c = g(β)−f1(β)−d and d = g(δ)−f1(δ) (so that f2 is continuous). Clearly,
for all x ∈ [α, 1−α], g(x) = f1(x)+ f2(x)+ f3(x). The values of β and δ are uniquely
determined by imposing that the average value of f2 is 1/3 and that of f3 is 1/4.
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Namely, if β ≈ 0.2900708 and δ ≈ 0.3465256, then

∫ 1−α

α
xf1(x)dx

∫ 1−α

α
f1(x)dx

=
1

2
,

∫ 1/2

1/4
xf2(x)dx

∫ 1/2

1/4
f2(x)dx

=
1

3
,

∫ δ

α
xf3(x)dx

∫ δ

α
f3(x)dx

=
1

4
.

To prove that all f1, f2, and f3 allow perfect packing, we use a perfect packing
result proved by Karmarkar [17] and by Loulou [22] and a powerful theorem by Rhee
and Talagrand [26]. The former result says that measures that are symmetric around
1/2k for some integer k allow perfect packing. The latter can be stated as follows.

Theorem 6 (Rhee and Talagrand [26]). Consider a decreasing measure μ defined
over [a, b] (with 0 ≤ a ≤ b ≤ 1) and an integer p ≥ 3 such that 1/p ∈ [a, b]. Then μ
allows perfect packing if the following are satisfied:

(i) (p− 1)a + b ≤ 1.

(ii)
∫ b

a
xdμ(x) = 1

p

∫ b

a
dμ(x).

In what follows, we briefly outline this result. Let 0 ≤ a ≤ b ≤ c ≤ 1 be such
that (p − 1)a + c ≤ 1 and a + b < 2/p < a + c. The L-shaped function, denoted by
L(a, b, c), is the unique (up to a multiplicative constant) nondecreasing real function
defined over [a, c], which is constant on [a, b] and constant on (b, c], and whose average
value is 1/p, i.e.,

∫ c

a
xL(a, b, c)(x)dx∫ c

a
L(a, b, c)(x)dx

=
1

p
.

In order to prove Theorem 6, Rhee and Talagrand first showed how to decompose
a density satisfying the assumptions of the theorem as the limit of sum of L-shaped
functions with the above properties. Then the central part of their work was to show
that all such L-shaped functions do allow perfect packing. Unfortunately, they did
not find a simple perfect packing strategy, and so they overcame the problem using
a perfect packing characterization by Rhee [25], together with a complicated (and
implicit) “exhaustion method,” that decomposes an L-shaped function into possibly
uncountably many perfectly packable functions.

Let us mention, however, that although the previous result was proved in a prob-
abilistic setting (namely, under the following definition: μ allows perfect packing if
and only if the expected number of bins needed to pack n independent and identi-
cally distributed random variables drawn according to μ divided by n approaches the
expected size of an item), the proof also applies to our setting here.

Lemma 7. The measure μ with density function g : [α, 1 − α] → R with g(x) =
1/x2 allows perfect packing.

Proof. As g = f1 + f2 + f3, we need only show that each fi, i = 1, 2, 3, allows
perfect packing. The result follows immediately for f1. Indeed, f1 is symmetric
around 1/2. It remains to prove that both f2 and f3 satisfy the conditions of the
previous theorem.
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(1) The density f2 is clearly decreasing in [1/4, 1/2]. Moreover,

∫ 1/2

1/4

xf2(x)dx =
1

3

∫ 1/2

1/4

f2(x)dx.

Finally, (3 − 1) 1
4

+ 1
2

= 1. Thus all conditions are satisfied.
(2) Again, the density f3 is decreasing in [α, δ]. In this case,

∫ δ

α

xf3(x)dx =
1

4

∫ δ

α

f3(x)dx,

and (4 − 1)α + δ < 1 (indeed, (4 − 1)α + δ ≈ 0.9999607).

3.7. Improved analysis for the rearrangeability of 3-stage Clos net-
works. In this section, we briefly discuss how a slight improvement of the 2.557n
bound can be achieved when considering graphs belonging to Bn

r . Specifically, we
establish that m(n, r) ≤ 2.5480n + o(n). The analysis is essentially the same as the
one for the bound on M(n, r); therefore, we give only the main differences.

Let G = (V,E) ∈ Bn
r . Since the weights satisfy condition (1), we can strengthen

the main inequality used in Lemma 5 to be
∑p

i=k degDi
(v) ≤ 4n whenever αp > 1/5

(this is a strengthening only for αk ≤ 1/4). This inequality, combined with the ideas
in Lemma 5, can be used to prove the following result.

Lemma 8. Let G = (V,E) ∈ Bn
r (α, 1) and consider a sequence α0 = 1 > α1 >

· · · > αl = 1/4 > · · · > αp = α > 1/5. Then there exist sets F1, . . . , Fp partitioning E
such that the following hold:

(i) maxe∈Fk
w(e) ≤ αk−1.

(ii) For all vertices v ∈ V ,

degF1
(v) ≤ n

α1

+ a1(v),

degFk
(v) ≤

(
1

αk
− 1

αk−1

)
n + ak(v), 2 ≤ k ≤ l,

degFk
(v) ≤ 16 (αk−1 − αk)n + ak(v), l + 1 ≤ k ≤ p,

where ak(v) ≤ 3(p− k + 1).

By mimicking the analysis in section 3.3, the problem now translates into packing
the function g : [α, 1 − α] → R such that g(x) = 16 if x ∈ [α, 1/4], and g(x) = 1/x2

otherwise. The value of α now has to be taken a bit smaller than it used to be:
α ≈ 0.2151 is the optimal choice. For that value of α, a decomposition of g very
similar to that in section 3.6 can be found. Applying again the result in [26], such
decomposition amounts to concluding that g allows perfect packing. The total number
of colors needed is therefore

n

∫ 1−α

α

xg(x)dx +
n

1 − α
+ o(n) =

2n

1 − α
+ o(n)

< 2.5480 · n + o(n),

where the inequality comes from the choice of α.
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4. Wide-sense nonblocking Clos networks. In what follows, we consider
the online coloring formulation of the problem, assuming that edge weights satisfy
condition (1). We start by describing two variants of the FF heuristic in the context
of wide-sense nonblocking 3-stage Clos networks. Let G = (V,E) be the bipartite
graph with bipartition V = A∪B such that edge weights satisfy (1). Let {1, . . . ,M}
be the colors with which we attempt to find a valid coloring of G. Assume all edges
in Ẽ ⊂ E have been revealed and colored so far, and a new edge e = (u, v) �∈ Ẽ
is revealed. The first-fit-min (FF-Min) heuristic assigns c(e) = j (i.e., colors e with
color j), where j is the smallest color for which adding e does not violate the valid
coloring condition. In other words,

c(e) = j = min

{
1 ≤ i ≤ M : w(e) +

∑

f : f∈δ(v)∩Ẽ, c(f)=i

w(f) ≤ 1,

w(e) +
∑

f : f∈δ(u)∩Ẽ, c(f)=i

w(f) ≤ 1

}
.

In the first-fit-max (FF-Max) heuristic, the above minimization is replaced by a max-
imization.

The main issue now is to determine the smallest M such that FF-Min can always
assign a color to a given edge. In order to establish our main result, we need a
preliminary definition regarding the blocking number of Bn

r ([0, 1]) under algorithm
FF-Min. For an interval I ⊂ [0, 1], we define the blocking number of Bn

r (I) under
algorithm A (or simply the blocking number of algorithm A) as the maximum over
all vertices v ∈ V and over any graph G = (V,E) ∈ Bn

r (I) of the number of colors
whose total weight adjacent to v is more than 1/2. We denote it by BI(A):

BI(A) = max
G=(V,E)∈Bn

r (I)
max
v∈V

⎧
⎨
⎩number of colors i :

∑

f : f∈δ(v) c(f)=i

w(f) >
1

2
under A

⎫
⎬
⎭ .

By definition of Bn
r (I), we have that, for any algorithm A and for any I ⊆ [0, 1],

BI(A) ≤ 2n− 1. This bound, for interval [0, 1], is exactly what we need to establish
our main result.

We remark that our results do not hold for the more restrictive definition of
wide-sense nonblocking in which the algorithm has to be able to route new connec-
tion requests even if previous connections terminate. In terms of the graph coloring
problem, the more restrictive condition allows not only additions but also deletions
of edges over time.

4.1. Wide-sense nonblocking for general connection requests. We now
give the main result of this section, namely the bound on mW (n, r) in the general
case.

Theorem 9. The number of colors needed to color any graph in Bn
r using algo-

rithm FF-Min is at most 5n, i.e.,

mW (n, r) ≤ 5n.

Proof. Consider algorithm FF-Min, with M = 5n, applied to G ∈ Bn
r . Let A,

B be the bipartition of V , i.e., V = A ∪ B. Let us say that an edge e is large if
w(e) > 1/2 and small if w(e) ≤ 1/2.
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Consider iteration k of the algorithm and assume ek = e = (u, v) for some u ∈ A,
v ∈ B. To see that the algorithm indeed works, we prove that edge e can be colored
with some of 5n available colors. For this we consider two cases:

• Edge e = ek is small (w(e) ≤ 1/2). Since FF-Min is a greedy-type heuristic,
by Lemma 2, 2n

1−1/2 = 4n colors are enough; and thus a color smaller than or

equal to 4n is assigned to e.
• Edge e = ek is large (w(e) > 1/2). In this case, assume e cannot be colored.

Let Sk
uv be the set of colors 1 ≤ i ≤ 5n such that there exists an edge et with

t < k satisfying that
– et is colored with i,
– w(et) > 1/2, and
– et is adjacent to either u or v.

The bound BI(A) ≤ 2n−1 for any algorithm implies that |Sk
uv| ≤ 2(2n−1) =

4n − 2. Now consider s, the smallest color in Sk
uv, such that i > s implies

that i ∈ Sk
uv. Since |Sk

uv| ≤ 4n − 2, we have that s ≥ n + 3. By definition,
there is a small edge, say f = (u, t), colored with s − 1. The fact that f is
small amounts to concluding that for all i < s− 1, either

∑

e: e∈δ(u),c(e)=i

w(e) >
1

2
or

∑

e: e∈δ(t),c(e)=i

w(e) >
1

2
.

The latter can happen for at most 2n−1 colors (see the bound on the blocking
number above), and therefore the former holds for at least s− 2− (2n− 1) =
s− 2n− 1 colors. (As the former can happen only for at most 2n− 1 colors,
this actually also implies s ≤ 4n.) On the other hand, the number of large
edges adjacent to u or v which are colored with j ≥ s is at least 5n− s + 1.
Since, by condition (1), at most n of these can be adjacent to v, at least
5n− s− n + 1 = 4n− s + 1 are adjacent to u.
Overall we have that

∑

e: e∈δ(u)

w(e) >
s− 2n− 1

2
+

4n− s + 1

2
= n,

which contradicts (1).

4.2. Improved bounds for the case of small connection requests. We
now turn to the case in which all connection requests have weights in [0, 1/2]. In
terms of our graph coloring problem, this means considering graphs in Bn

r ([0, 1/2]).
Gao and Hwang [13] have proved that mW [0,1/2](n, r) ≤ 3.75n. Let us now see how
an improvement of this result can be obtained.

Lemma 10. The number of colors needed to color any graph in Bn
r ([0, 1/2]) using

algorithm FF-Min is at most 3.601n + 3, i.e.,

mW [0,1/2](n, r) ≤ 3.601n + 3.

Proof. Observe first that from Lemma 2, if e is an edge with weight w(e), FF-Min
actually assigns to it a color c(e) satisfying c(e) ≤ 2n

1−w(e) + 1, or

(4) w(e) ≥ 1 − 2n

c(e) − 1
.

This immediately implies that edges with weight below 1
4

are assigned to the first
	 8n

3

 colors.
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Let M be the number of colors needed by FF-Min and let e = (u, v) be an edge
that could not be assigned to any of the first M−1 colors. Consider a color j ≤ M−1,
since e was not assigned to j (and w(e) ≤ 1/2); then

∑
f : f∈δ(u),c(f)=j w(f) > 1/2 or∑

f : f∈δ(v),c(f)=j w(f) > 1/2. Assume, without loss of generality, that the latter holds.

Since all weights are at most 1/2, at least two edges in δ(v) are colored j, and thus

∑

f : f∈δ(v),c(f)=j

w(f) ≥ 2

(
1 − 2n

j − 1

)
.

We can now compute
∑

g∈δ(v) w(g) +
∑

g∈δ(u) w(g) using the previous equation, the

fact that for a color j ≤ 	 8n
3

 either

∑
f : f∈δ(u),c(f)=j w(f) > 1/2 or

∑
f : f∈δ(v),c(f)=j

w(f) > 1/2, and (4):

∑

g∈δ(v)

w(g) +
∑

g∈δ(u)

w(g) > 2w(e) +

⌈
8n

3

⌉
1

2
+

M−1∑

j=	 8n
3 
+1

2

(
1 − 2n

j − 1

)

≥
⌈

8n

3

⌉
1

2
+

M∑

j=	 8n
3 
+1

2

(
1 − 2n

j − 1

)

≥ 2M − 3

2

⌈
8n

3

⌉
− 4n

∫ M−1

�8n/3	−1

1

x
dx

≥ 2M − 4n− 3

2
− 4n

∫ M−1

8n/3−1

1

x
dx

= 2M − 4n− 3

2
+ 4n ln

(
8n− 3

3M − 3

)

= 2M − 4n− 3

2
+ 4n ln

(
8n

3M − 9

)

+ 4n ln

(
(3M − 9)(8n− 3)

(3M − 3)8n

)
.

However, for M ≥ 3.601n + 3, the above quantity surpasses 2n, leading to a contra-
diction. Indeed, for this choice of M , the last term is greater than −4, and so the
previous quantity is greater than 2 · 3.601n− 4n + 4n ln(8/10.803) > 2n.

4.3. The 2-rate environment. We now prove the bound on mW (n, r) when
connection requests can take only two values, which are known beforehand. As men-
tioned before, this result almost closes the gap with the best known lower bound in
this environment. Indeed, the result in this section, together with results in [13, 31],
implies that

3n− 2 ≤ m2
W (n, r) ≤ 3n.

In what follows, we denote by b and B the two rates (or edge weights) and assume
that 0 < b < B ≤ 1. Gao and Hwang [13] already proved the bound in the case
B ≤ 1/2.
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Lemma 11 (Gao and Hwang [13]). If 0 < b < B ≤ 1/2 are the two rates, then
m2

W (n, r) ≤ 3n.

We complete Gao and Hwang’s result by proving a slightly better bound when
B > 1/2. Of course, we may assume b ≤ 1/2, for otherwise condition (1) allows us to
reason that every vertex has degree at most n, and thus an even stronger bound of
2n holds for any online algorithm. Let k be the largest integer such that B + kb ≤ 1
and 	 be the largest integer such that 	b ≤ 1. Let us associate a height of 1 with every
edge of weight b and a height of (	−k) to every edge of weight B; and denote by h(e)
the height of an edge. As at most one item of size B can fit into a bin, (1) implies
that the height of edges in any bin is at most l, and thus

∑
e∈δ(v) h(e) ≤ n	.

The algorithm we need to consider is the following.

Algorithm FF-Min-Max

(1) Assume the edges are revealed in the order {e1, . . . , em}.
(2) For p = 1 to m do:

(a) If w(ep) = B, assign a color 1 ≤ i ≤ 3n−1 to ep using FF-Max.
(b) If w(ep) = b:

∗ Assign any color 1 ≤ i ≤ 3n − 1 to ep such that at most
k − 1 small edges adjacent to u have been colored i, and
at most k − 1 small edges adjacent to v have been colored
i, if one such color exists.

∗ Otherwise, assign a color 1 ≤ i ≤ 3n − 1 to ep using FF-
Min.

Lemma 12. The number of colors needed to color any graph in Bn
r ({b,B}), with

0 < b ≤ 1/2 < B ≤ 1, using Algorithm FF-Min-Max is at most 3n− 1.

Proof. Consider the graph G = (V,E) ∈ Bn
r ({b,B}) and assume the set of colors

is {1, . . . , 3n − 1}. For the purpose of this proof, let us say that an edge e is large if
w(e) = B and small if w(e) = b.

Consider step (1) of the algorithm and let ei = (u, v) ∈ E be the edge currently
considered.

Let us first see that in step (2)(b) of the algorithm, FF-Min does not attempt to
color ei using a color larger than 2n− 1 (assuming thus that no color could be found
such that either u or v has at most k − 1 edges adjacent to it of that color). Indeed,
it is enough to observe that FF-Min is a greedy-type algorithm. With this in mind,
assume that FF-Min could not color ei (which is a small edge) with a color j ≤ 2n−1.
Then, for any color j ≤ 2n− 1, one of the following is satisfied:

• There are 	 small edges f1 . . . , f� such that c(fr) = j for all r = 1, . . . , 	, and
either {f1, . . . , f�} ⊆ δ(u) or {f1, . . . , f�} ⊆ δ(u).

• There are k small edges f1, . . . , fk and one large edge f such that c(fr) =
c(f) = j for all r = 1 . . . , k, and either {f1, . . . , fk, f} ⊆ δ(u) or {f1, . . . ,
fk, f} ⊆ δ(u).

We can therefore assume that there is a set of n colors c1, . . . , cn such that for each
cr, 	 small edges or k small and one large edge are colored with cr and are adjacent
to u (otherwise, the property is true with v). Since also ei is adjacent to u, we obtain
that the total height of edges adjacent to u is at least n	 + 1 > n	, a contradiction
with condition (1).

We conclude that the algorithm will always find a feasible color for a small edge.
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Suppose now that the algorithm cannot assign any color to ei = (u, v) because ei
is a large edge (w(ei) = B). Then Algorithm FF-Min-Max attempted to color ei in
step (2)(a) using FF-Max, but no color was found. We see in what follows that this
is impossible.

Let j be the largest color having at least k + 1 small edges adjacent to either u
or v. From the analysis above, no color i with i ≥ 2n has more than k small edges
adjacent to it, and thus j < 2n. In addition, for any color i with i > j, there must
already be a large edge colored i adjacent to either u or v, and as this can happen to
at most 2n− 2 edges, we have j > n. Thus, n < j < 2n. Without loss of generality,
assume that at least k + 1 small edges of color j are adjacent to u and let f = (u, t)
be one of those edges that was colored using FF-min (there is at least one such f ,
since there are at least k+1 edges in total). Since f was colored by FF-min, for every
color 1 ≤ r ≤ 3n − 1, at least k small edges of color r are adjacent to u or t. Also,
by definition of FF-min, for every color 1 ≤ r < j, there is a set of edges colored with
r, of total height 	, adjacent to u or t (such a set consists of either 	 small edges or k
small and one large edge). Overall we have that

∑

e∈δ(u)∪δ(t):w(e)=b

h(e)+
∑

e∈δ(u)∪δ(t):w(e)=B and c(e)<j

h(e) ≥ (3n−1)k+(j−1)(	−k)+1,

where the final +1 comes from the fact that k+1 small edges adjacent to u are colored
with j. Thus, since n	 is the maximum total height of edges adjacent to t,

(5)
∑

e∈δ(u):w(e)=b

h(e)+
∑

e∈δ(u):w(e)=B and c(e)<j

h(e) ≥ (3n−1)k+(j−1)(	−k)+1−n	.

On the other hand, for every color r with j < r ≤ 3n− 1, there is a large edge of
color r adjacent to u or v. Since at most n − 1 (already colored) large edges can be
adjacent to v, at least 3n− 1− j − (n− 1) = 2n− j large edges of color larger than j
are adjacent to u. Thus,

∑

e∈δ(u):w(e)=B and c(e)>j

h(e) ≥ (2n− j)(	− k).

Combining this with (5) and the fact that ei is large, we conclude that the total height
of edges adjacent to u is at least

[	− k] + [(3n− 1)k + (j − 1)(	− k) + 1 − nl] + [(	− k)(2n− j)],

where the first term corresponds to the height of ei, the second to inequality (5),
and the third to large edges adjacent to u of color r > j. The above quantity equals
(3n− 1)k − n	 + 2n(	− k) + 1 = (n− 1)k + n	 + 1 > n	, which is impossible.

5. A simple algorithm for multirate rearrangeability. In this section, we
reconsider the offline setting and present a simple algorithm that is multirate rear-
rangeably nonblocking and that uses no more than 8n/3 colors. In comparison, the
algorithm of section 3 uses 2.548n + o(n) colors but is more complex. The algorithm
we consider is the following.
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Algorithm FF-Min-Decreasing

(1) Sort the edges according to their weight such that w(e1) ≥ w(e2) ≥
· · · ≥ w(em). Let k = 1.

(2) While k ≤ m do:
(a) Assign a color 1 ≤ i ≤ 	8n/3
 to ek using FF-Min.
(b) k = k + 1.

As is the case for FF decreasing for bin packing, Algorithm FF-Min-Decreasing
can be implemented in time O(n log n). As it involves sorting, it is applicable only to
the offline setting. We have the following result.

Theorem 13. The number of colors needed to color any graph in Bn
r using

Algorithm FF-Min-Decreasing is at most 	8n/3
.
Proof. Consider the graph G = (V,E) ∈ Bn

r and let k be the smallest index such
that w(ek) ≤ 1

4
. As FF-Min-Decreasing is a greedy algorithm, we know from Lemma 2

that our algorithm will always be able to color {ek, . . . , em}. Thus we can assume
that w(ei) >

1
4

for all i = 1 . . . ,m; i.e., we can assume G = (V,E) ∈ Bn
r (]1/4, 1]).

Let e = e� = (u, v) be the first edge that could not be colored by FF-Min-
Decreasing. We distinguish two cases:

(i) w(e) = α > 1/3. In this case, we will prove that FF-Min-Decreasing colors e
with a color no larger than 2n. We define the function gα : [0, 1] → [0, 1] as

gα(x) =

⎧
⎪⎨
⎪⎩

1 if 1 − α < x,

1/2 if α ≤ x ≤ 1 − α,

0 if x < α

and consider the modified edge weights w′(ei) = gα(w(ei)). We know that
G� = (V, {e1, . . . , e�}) together with w satisfies condition (1), and from the
sorting step w(ei) ≥ α for all i = 1, . . . , 	. Thus, G, together with w′, also
satisfies condition (1). Now, as e could not be colored using the first 2n colors,
for all 1 ≤ i ≤ 2n either

∑

e:e∈δ(u),c(e)=i

w(e) > 1 − α or
∑

e:e∈δ(v),c(e)=i

w(e) > 1 − α.

We can then assume that for a set B ⊂ {1, . . . , 2n} with |B| ≥ n the first
inequality holds. For i ∈ B, the previous condition implies that the edges in
δ(u) colored with i are either one edge f with w(f) > 1−α or two edges f, g
with w(f) ≥ α and w(g) ≥ α. In both cases,

∑

e:e∈δ(u),c(e)=i

w′(e) = 1.

It follows that

∑

e:e∈δ(u)

w′(e) >
∑

e:e∈δ(u),c(e)∈B

w′(e) ≥ n,

a contradiction with condition (1).
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(ii) 1/3 ≥ w(e) = α > 1
4
. We define the function fα : [0, 1] → [0, 1] as

fα(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 if 1 − α < x,

1/2 if 1−α
2

< x ≤ 1 − α,

1/4 if α ≤ x ≤ 1−α
2

,

0 if x < α

and consider the modified edge weights w′(ei) = fα(w(ei)). As in the previous
case, G� = (V, {e1, . . . , e�}), together with w, satisfies condition (1). Thus,
from the sorting step w(ei) ≥ α for all i = 1, . . . , 	, and it is easy to check
that G�, together with w′, also satisfies condition (1).
Additionally, as e could not be colored using the 	 8n

3

 colors, for all 1 ≤ i ≤

	 8n
3

 either

∑

e:e∈δ(u),c(e)=i

w(e) > 1 − α or
∑

e:e∈δ(v),c(e)=i

w(e) > 1 − α.

We can then assume that for a set B ⊂ {1, . . . , 	8n/3
} with |B| ≥ 4n/3 the
first inequality holds. For i ∈ B, the previous condition implies that the edges
in δ(u) colored with i are either one edge f with w(f) > 1 − α; two edges
f, g with at least one of them (the largest), say f , satisfying w(f) > 1−α

2
; or

three edges f, g, h (all with weights greater than α). In any case,

∑

e:e∈δ(u),c(e)=i

w′(e) ≥ 3

4
.

It follows that

∑

e:e∈δ(u)

w′(e) >
∑

e:e∈δ(u),c(e)∈B

w′(e) ≥ |B| · 3

4
≥ n.
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894 JOSÉ R. CORREA AND MICHEL X. GOEMANS

[11] R. Diestel, Graph Theory, Grad. Texts in Math. 173, Springer-Verlag, New York, 1997.
[12] D. Z. Du, B. Gao, F. K. Hwang, and J. H. Kim, On multirate rearrangeable Clos networks,

SIAM J. Comput., 28 (1998), pp. 463–470.
[13] B. Gao and F. Hwang, Wide-sense nonblocking for multirate 3-stage Clos networks, Theoret.

Comput. Sci., 182 (1997), pp. 171–182.
[14] P. Haxell, A. Rasala, G. Wilfong, and P. Winkler, Wide-sense nonblocking WDM cross-

connects, in Proceedings of the 10th European Symposium on Algorithms (ESA 2002),
Lecture Notes in Comput. Sci. 2461, Springer-Verlag, Berlin, 2002, pp. 538–550.

[15] A. J. Hoffman, Generalization of a theorem of König, J. Washington Acad. Sci., 46 (1956),
pp. 211–212.

[16] A. Itoh, W. Takahashi, H. Nagano, M. Kurisaka, and S. Iwasaki, Practical implementation
and packaging technologies for a large-scale ATM switching system, IEEE J. Selected Areas
in Comm., 9 (1991), pp. 1280–1288.

[17] N. Karmarkar, Probabilistic analysis of some bin-packing algorithms, in Proceedings of the
23rd Annual IEEE Symposium on Foundations of Computer Science, 1982, pp. 107–111.

[18] N. Karmarkar and R. M. Karp, The Differencing Method of Set Partitioning, Technical
report UCB/CSD 82/113, University of California, Berkeley, CA, 1982.

[19] D. König, Graphok és alkalmazásuk a determinánsok és a halmazok elméletére, Mathematikai
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Abstract. We consider random instances of constraint satisfaction problems where each variable
has domain size d and each constraint contains t restrictions on k variables. For each (d, k, t) we
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1. Introduction. A constraint satisfaction problem (CSP) is a generalized form
of satisfiability which is widely studied in the artificial intelligence community. For
example, the journal Constraints is devoted to these problems. Roughly speaking, a
CSP generalizes SAT1 in the sense that variables can draw their values from a more
general domain than simply {T, F}, and each clause (also known as a constraint)
forms a set of restrictions on the values that the variables in the clause may jointly
take.

Random instances of k-SAT have been extremely well studied over the past few
decades (see [1] for many references). More recently, the interest in this area has
expanded into random instances of various generalizations of k-SAT, such as NAE-
SAT [3], XOR-SAT [14, 18, 19], (2+p)-SAT [35, 37, 38, 4, 2], and many others. All of
these can be expressed as CSPs. It was natural for this interest to eventually spread to
random instances of CSPs, rigorously in [5, 15, 33, 20, 31, 32, 40] and experimentally
even earlier (see [24] for a good survey).

One of the most important results regarding random k-SAT is that of Chvátal and
Szemerédi [13], who showed that for any k ≥ 3 and c > 0 a random instance of k-SAT
with n variables and cn clauses will almost surely (a.s.)2 have no resolution proof of
unsatisfiabilty of length less than 2Θ(n). It is easy to show that, for large values of
c, such random instances are a.s. unsatisfiable. This immediately implied that, for
sufficiently large values of c, any Davis–Putnam-style algorithm will take exponential
time on such an input. Furthermore, it provided an astoundingly vast and rich class
to the, beforehand rather sparse [26, 39], list of unsatisfiable instances of k-SAT for
which there is no polytime resolution proof of unsatisfiability. Such instances are
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2Formal definitions of these and other terms will appear in the next section.
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Fig. 1. Resolution complexities.

of great interest, since their existence can be viewed as a step toward proving that
there are some unsatisfiable instances with no polytime proof of unsatisfiability of any
kind, i.e., that NP �= co − NP . Chvátal and Szemerédi’s paper spawned numerous
extensions and generalizations, e.g., [7, 8, 2, 6], including a general framework for
proving lower bounds on resolution complexity by Ben-Sasson and Wigderson [9].

Mitchell [31, 32] extended the framework of Ben-Sasson and Wigderson to the set-
ting of CSPs. He then used this framework to prove exponential lower bounds on the
resolution complexity of a very natural class of random CSPs—one where the number
of restrictions per constraint is fixed. Specifically, he considered random CSPs with
domain size d ≥ 2 and every constraint containing precisely t restrictions on k ≥ 2
variables.3 Note that these CSPs are trivial if either d or k is equal to 1 and that
they are the well-studied 2-SAT when d = k = 2 and t = 1. Mitchell showed that, for
t ≤ (d− 1)/2, k = 2, for t ≤ d− 1, k ≥ 3, and for any constant c > 0, such a random
instance with cn constraints will a.s. have no subexponential proof of unsatisfiability.4

Again, it is easy to see that, for sufficiently large c, these instances are a.s. unsatisfi-
able (for t > 0). In contrast, Achlioptas et al. [5] showed that for t ≥ dk−1, and any
c > 0, such a random instance will a.s. have an unsatisfiable subproblem of size O(1)
and thus will have a O(1)-length resolution proof of unsatisfiability. In this paper, we

fill in the gap between d−1 and dk−1. Using Fd,k,t
n,M to denote such a random CSP with

M constraints, we prove the following theorems which are summarized in Figure 1.
Theorem 1. For any constants d, k ≥ 2 and 1 ≤ t < (d− 1)dk−2, and for every

constant c > 0, Fd,k,t
n,M=cn a.s. has resolution complexity at least 2Θ(n).

For d, k ≥ 2 and t ≥ (d− 1)dk−2, we define

c∗(d, k, t) = 1
dk(k−1)

(
dk

t

)/(
dk − (d− 1)dk−2

t− (d− 1)dk−2

)
.

3This natural model was, historically, one of the first two random models of a random CSP to
be studied; the other turned out to be problematic and a.s. has O(1) length resolution proofs of
unsatisfiablity for any nontrivial number of constraints. See [33] or [24] for more details; the latter
reference contains more than 30 references to the study of the model considered here.

4In [31], Mitchell claims to prove that this holds for t ≤ (d − 1)(k − 1) so long as d, k are not
both 2. But there is an unfortunate error in his Lemmas 8 and 10, and his proof holds only for
t ≤ (d− 1)/2, k = 2 and t ≤ d− 1, k ≥ 3.
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(An explanation of the derivation of this expression will have to wait until the end of
the next section—see Lemma 9.)

Theorem 2. For any constants d, k ≥ 2 and (d − 1)dk−2 ≤ t < dk−1, and for

every c < c∗(d, k, t), Fd,k,t
n,M=cn a.s. has resolution complexity at least 2Θ(n).

Theorem 3. For any constants d, k ≥ 2 and (d − 1)dk−2 ≤ t < dk−1, and for

every constant c > c∗(d, k, t), Fd,k,t
n,M=cn a.s. has resolution complexity poly(n).

Trivially, the resolution complexity of a satisfiable CSP is infinite, so Theorem 2
is of no interest if, for all c < c∗(d, k, t), Fd,k,t

n,M is a.s. satisfiable. This is, in fact, well
known to be the case for d = 2, k = 2, t = 1 (i.e., 2-SAT), and we prove here that it
is also the case for d = 2, k = 3, t = 3 (see Theorem 5 below). We prove that it is not
the case for d = 2, k = 3, t = 2 and for all other d, k (note that when d = 2, k = 3,
and t is as in Theorem 2, then t ∈ {2, 3}).

Theorem 4. (a) For any constants d, k ≥ 2 and for every c > ln d/ ln[dk/(dk−t)],

Fd,k,t
n,M=cn is a.s. unsatisfiable.

(b) For any constants d, k ≥ 2, (d, k) /∈ {(2, 2), (2, 3)}, and (d−1)dk−2 ≤ t < dk−1,

ln d

ln[dk/(dk − t)]
< c∗(d, k, t).

(c) For every c > 2.114, F2,3,2
n,M=cn is a.s. unsatisfiable.

Parts (a) and (b) of Theorem 4 prove that Fd,k,t
n,M is a.s. unsatisfiable for some

values of c < c∗(d, k, t) for d, k ≥ 2, (d, k) /∈ {(2, 2), (2, 3)}, and (d−1)dk−2 ≤ t < dk−1.
Part (c) proves the same for the case d = 2, k = 3, t = 2 since c∗(2, 3, 2) = 7/3 > 2.114.
The next theorem shows that this is not the case for d = 2, k = 3, t = 3, and that
here, just as in 2-SAT, there are short resolution proofs of unsatisfiability for every
value of c above the threshold of satisfiability.

Theorem 5. For every c < 7/9 = c∗(2, 3, 3), F2,3,3
n,M=cn is a.s. satisfiable. Thus,

7/9 is the (sharp) threshold of satisfiability for F2,3,3
n,M=cn.

As mentioned above, when t ≥ dk−1, the resolution complexity of Fd,k,t
n,M=cn is a.s.

O(1). So these theorems completely characterize the resolution complexity of Fd,k,t
n,M=cn

for every constant d, k, t, c except for (d− 1)dk−2 ≤ t < dk−1 and c = c∗(d, k, t). Here
we have a sharp threshold for resolution complexity, similar to that found in [2], where
the main technical result was the following.

Theorem 6. For any Δ, ε > 0, consider a random conjunctive normal form
(CNF) formula F on n variables with Δn 3-clauses and (1 − ε)n 2-clauses where
every such formula is equally likely. F a.s. has resolution complexity at least 2Θ(n).

(The other side of the “sharp threshold,” i.e., that if the number of 2-clauses is
(1 + ε)n for some ε > 0, then a.s. the resolution complexity of F is poly(n), was
previously known to follow from the work in [12, 21, 25].)

Theorems 2 and 3 are at heart very similar to Theorem 6. For (d− 1)dk−2 ≤ t <
dk−1, a certain type of constraint called a forcer arises. Forcers play, essentially, the
same role that 2-clauses play in random CNF formulas. We show that if c > c∗, then
the forcers alone provide an unsatisfiable CSP with low resolution complexity, while if
c < c∗, then, even along with the additional nonforcer constraints, the CSP has high
resolution complexity.

Independently, Gao and Culberson [23] proved Theorem 3 for the special case
d = 2. Essentially, they showed that in this case the forcers imply 2-clauses and for
c > c∗ these 2-clauses form a random instance of 2-SAT which is above the satisfiability
threshold. It is well known that such an instance will have low resolution complexity.
We remark more on this at the end of subsection 2.3.
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At first, we tried to adapt the lengthy proof of Theorem 6 to the setting of
Theorem 2, but we were unsuccessful. Fortunately, we found an alternate proof
technique, and to our pleasant surprise, it produced a proof of Theorem 2 which was
dramatically shorter than the proof from [2] of Theorem 6. In fact, our technique
yields a short proof of Theorem 6 which we provide in Appendix A. This technique
looks like it will be of value to those who wish to prove future similar theorems.

We close this section by mentioning that the class of models of random CSPs
considered here is a subset of the more general class introduced in [15, 33]. That class
contains a much wider range of problems, including XOR-SAT and d-colorability. It
would be very nice to characterize which models from that larger class exhibit high
resolution complexity, but thus far we are unable to do so.

2. Preliminaries. Here we give formal definitions of some of the concepts dis-
cussed in the introduction, along with other concepts required for the remainder of
the paper.

2.1. The random model. In our setting, the variables of our problem all have
the same domain of permissible values, D = {1, . . . , d}, and all constraints will be on
k variables, for some fixed integers d, k ≥ 2. Given a k-tuple of variables, (x1, . . . , xk),
a restriction on (x1, . . . , xk) is a k-tuple of values R = (δ1, . . . δk), where each δi ∈ D.
A set of restrictions on a k-tuple (x1, . . . , xk) is called a constraint (or a clause). An
assignment of values to the variables of a constraint C satisfies C if that assignment is
not one of the restrictions in C. A CSP consists of a set of variables and a collection
of constraints on subsets of those variables. An assignment of values to all variables
in a CSP satisfies that CSP if every constraint is simultaneously satisfied. A CSP is
satisfiable if there is at least one such satisfying assignment. The degree of a variable
is the number of constraints in which it lies.

A subproblem of a CSP I is a CSP which is obtained by removing some of the
variables and some of the constraints from I, where, of course, if a variable x is
removed, then every constraint containing x is also removed. When there is no possi-
bility of confusion we often use, for example, I − {C1, C2} to denote the subproblem
obtained by deleting the constraints C1 and C2 from I and I − {x1, x2} to denote
the subproblem obtained by deleting the variables x1 and x2 from I, along with any
constraints containing them.

Recall that a k-uniform hypergraph is a generalization of a graph, where each edge
contains k vertices. The constraint hypergraph of a CSP is the k-uniform hypergraph
whose vertices correspond to the variables and whose edges correspond to the k-tuples
of variables which have (nonempty) constraints. Of course, when k = 2, the constraint
hypergraph is simply a graph, and so we often call it the constraint graph.

We define Ωd,k,t to be the set of CSPs in which every variable has domain
{1, . . . , d}, every constraint has k variables and t restrictions, and no two constraints
use the same k-tuple of variables.

The random model: Specify c, n, d, k, t, and let M = cn. First choose a random
constraint hypergraph with n vertices and M edges of size k, where each such hyper-
graph is equally likely. Next, for each edge e, we choose a random constraint on the
k variables of e, with domains D = {1, . . . , d}, uniformly from among all constraints
with exactly t restrictions.

Note that every member of Ωd,k,t with n variables and M clauses is equally likely
to be chosen. We use Fd,k,t

n,M to denote a random CSP drawn from this model. We
say that a property holds a.s. if the probability that it holds tends to 1 as n tends to
infinity.
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Remark. Alternatively, we could have chosen the constraint hypergraph by mak-
ing an independent choice for each potential edge and deciding to put it in the hy-
pergraph with probability p = c×k!

nk−1 . We denote the resulting random CSP by Fd,k,t
n,p .

This model is, in many senses, equivalent to Fd,k,t
n,M , as we describe in Appendix B.

In particular, Lemma 25 implies that all of the theorems in this paper translate to
Fd,k,t

n,p . We will make use of the equivalence of these models in the proofs of Lemmas
15 and 16.

2.2. Resolution complexity. For a Boolean CNF formula F , a resolution refu-
tation of F with length r is a sequence of clauses C1, . . . , Cr = ∅ such that each Ci

is either a clause of F or is derived from two earlier clauses Cj , Cj′ for j, j′ < i by
the following rule: Cj = (A ∨ x), Cj′ = (B ∨ x), and Ci = (A ∨B), for some variable
x. The resolution complexity of F , denoted RES(F ), is the length of the shortest
resolution refutation of F . (If F is satisfiable, then RES(F ) = ∞.)

Mitchell [32] discusses two natural ways to extend the notion of resolution com-
plexity to the setting of a CSP. These two measures of resolution complexity are
denoted C − RES and NG − RES. The latter appears on the surface to be the
most natural extension in that it extends resolution rules to the setting of a CSP and
then carries them out. C − RES, on the other hand, converts a CSP to a Boolean
CNF formula and then carries out CNF resolution on that formula. Mitchell shows
that, for every CSP instance I, C − RES(I) ≤ poly(NG − RES(I)), whereas there
are many choices for I for which the converse is not true. Furthermore, all commonly
used resolution-type CSP algorithms correspond nicely to the C − RES complexity
of the input, but there are some that do not correspond to the NG − RES. For that
reason, we focus in this paper on the C − RES complexity, as did Mitchell in [31].

Given an instance I of a CSP in which every variable has domain {1, . . . , d}, we
construct a Boolean CNF formula CNF(I) as follows. For each variable x of I, there
are d variables in CNF(I), denoted x : 1, x : 2, . . . , x : d, and there is a domain clause
(x : 1 ∨ · · · ∨ x : d). For each restriction (δ1, . . . , δk) on variables (x1, . . . , xk) in any
constraint of I, CNF(I) has a conflict clause (x1 : δ1 ∨ · · · ∨ xk : δk). It is easy to see
that CNF(I) has a satisfying assignment iff I does—if I has a satisfying assignment,
then we produce one for CNF(I) by setting x : δ to True iff x = δ; if CNF(I) has a
satisfying assignment, then we produce one for I by setting x = δ, where δ is any one
of the values for which x : δ is True.

Remark. It is natural to consider adding an extra set of constraints for each
variable x which specifies that x : δ can be true for at most one value of δ. But it is
easily verified that each of the results in this paper (in particular, Lemma 7) holds
regardless of whether we include these clauses; to be specific, we do not include them.

We define the resolution complexity of I, denoted C − RES(I), to be equal to
RES(CNF(I)).

In most previous papers bounding the resolution complexity of random instances
of SAT or CSP for k ≥ 3, a key lemma has been to establish that the following two
conditions hold a.s. for some constants α, ζ > 0:

(A) Every subproblem on at most αn variables is satisfiable.
(B) Every subproblem on v variables, where 1

2
αn ≤ v ≤ αn, has at least ζn

variables of degree 1.
For SAT, these two facts imply that a.s. the resolution complexity is exponential

in n using principles introduced in [13] and refined to easily applied tools in [8, 9].
For more general instances of CSP, one needs to establish an additional fact (which
is trivially true for SAT):
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(C) If x is a variable of degree 1 in a CSP f , then, letting f ′ be the subproblem
obtained by removing x and its constraint, any satisfying assignment of f ′ can be
extended to a satisfying assignment of f by assigning some value to x.

In our setting, (C) holds if t < d, but for t ≥ d, it is easy to see that it fails:
Suppose that the constraint x lies in contains the d restrictions: (1, 1, 1, . . . , 1, 1),
(1, 1, 1, . . . , 1, 2), . . . , (1, 1, 1, . . . , 1, d), where x is the last variable in the constraint.
Then any satisfying assignment for f ′ in which all of the other variables of the clause
receive 1 cannot be extended to f . For k ≥ 3 Mitchell’s proof [31] applies precisely
to the range of t for which (C) holds. For k = 2, Mitchell modifies the conditions,
replacing “degree 1” by “degree 2” in (B) and (C); this revised condition (C) holds
precisely when t ≤ (d− 1)/2.

For higher values of t, we need to replace “degree 1” in condition (B) by a more
complicated notion and then prove that something similar to condition (C) still holds.
We describe how to do this in the next section, after presenting several necessary
definitions.

2.3. Some new boundaries. A constraint C on variables x1, . . . , xk forbids
xi : δ if each of the dk−1 possible k-tuples (δ1, . . . , δk), with δi = δ, is a restriction
of C. Such a C is called a forbidder. As explained in [5] (and expanded on in [33]),

it is the presence of forbidders that causes C − RES(Fd,k,t
n,M=cn) = O(1) a.s. for all c

when t ≥ dk−1. C permits (xi : δ, xj : γ) if at least one of the dk−2 possible k-tuples
(δ1, . . . , δk), with δi = δ and δj = γ, is not a restriction of C. C is a (xi : δ) → (xj : γ)
forcer if C does not permit (xi : δ, xj : γ′) for any γ′ �= γ, i.e., if each of the (d−1)dk−2

possible k-tuples (δ1, . . . , δk), with δi = δ and δj �= γ, is a restriction of C. Thus C
implies “if xi = δ, then xj = γ.” In this case, we say that the forcer C starts at xi

(or, more specifically, xi : δ) and finishes at xj (or xj : γ). As predicted by Mitchell

[32], it is the presence of forcers that causes C − RES(Fd,k,t
n,M=cn) = poly(n) a.s. for

large c when (d− 1)dk−2 ≤ t < dk−1.
A path of length r in a k-uniform hypergraph H is a sequence of r edges e1, e2, . . . , er

such that:
• for 1 ≤ i ≤ r − 1, ei ∩ ei+1 = xi—this is called a connecting vertex;
• for all 1 ≤ i ≤ r − 2 and j > i + 1, ei ∩ ej = ∅;
• there are specified vertices x0 ∈ e1 and xr ∈ er, called the endpoints of the

path.
If e1, . . . , er is a path and there is an edge e0 ∈ H whose intersection with the

vertices of e1, . . . , er is only {x0, xr}, then e0, . . . , er form a cycle in H.
A pendant path is a path in which no vertices other than the endpoints lie in any

edges of H off the path. In other words, there is no restriction on the degrees of the
endpoints, each connecting vertex has degree 2 in H, and every other vertex in the
path has degree 1 in H.

A (pendant) path of length r in a CSP is a sequence of r constraints whose
underlying edges form a (pendant) path of length r in the underlying hypergraph. If
there are values δ0, . . . , δr such that the constraint on each ei is a (xi−1 : δi−1) →
(xi : δi) forcer, then we say that the (pendant) path is a (x0 : δ0) → (xr : δr) forcing
(pendant) path. It will be convenient to consider a single variable x to be a forcing
path of length zero (note that we trivially have (x : δ) → (x : δ) for every δ); in this
case, both endpoints of the forcing path are considered to be x.

A constraint on the edge ei of a path is a P forcer if it is a (xi−1 : δ) → (xi, γ)
forcer or a (xi : γ) → (xi−1, δ) forcer for some δ, γ.
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For any I ∈ Ωd,k,t:
• the first boundary of I, denoted by B1(I), is the set of nonforbidding con-

straints of I which contain at most one variable of degree greater than 1;
• the second boundary of I, denoted by B2(I), is the set of pendant paths of

length 4 in I which have no P forcers;
• the third boundary of I, denoted by B3(I), is the set of pendant paths

of length 2 where one of the two constraints is a P forcer that starts at
the connecting vertex, and the other is not a P forcer that finishes at the
connecting vertex.

The boundary of I is B(I) = B1(I) ∪ B2(I) ∪ B3(I).
Our main lemma corresponds to conditions (A) and (B) from section 2.2.
Lemma 7. Consider any I ∈ Ωd,k,t on n variables, where t < dk−1. If, for some

α, ζ > 0, we have the following:
(a) every subproblem on at most αn variables is satisfiable, and
(b) every subproblem I ′ on v variables, where 1

2
αn ≤ v ≤ αn, has |B(I ′)| ≥ ζn,

then C − RES(I) ≥ 2Θ(n).
To prove Lemma 7, we require the following lemma, which corresponds to condi-

tion (C) from section 2.2.
Lemma 8. Consider any I ∈ Ωd,k,t, where t < dk−1, and any X ∈ B(I). Any

satisfying assignment of I −X can be extended to a satisfying assignment of I.
Proof. Suppose X ∈ B1(I). Then the lemma follows from the fact that, since

t < dk−1, X cannot be a forbidding constraint.
Suppose X ∈ B2(I), and consider any satisfying assignment of I − X where

x0, x4 are assigned δ0, δ4. (I −X is the subproblem obtained by removing all clauses
of X and all variables of X other than the endpoints.) Since e1 is not an (x0, x1)
forcer, there are at least two choices for δ1 such that e1 permits (x0 : δ0, x1 : δ1).
Similarly, there are at least two choices for δ3 which can be assigned to x3 so e4

permits (x3 : δ3, x4 : δ4). We will show that, for at least one of these four choices
for the pair (δ1, δ3), there is a value δ2 such that e2 permits (x1 : δ1, x2 : δ2) and e3

permits (x2 : δ2, x1 : δ3). If this were not the case, then for every δ2 ∈ {1, . . . , d}
either (i) e2 does not permit (x1 : δ1, x2 : δ2) for either of the two choices of δ1 (this
requires 2dk−2 restrictions) or (ii) e3 does not permit (x2 : δ2, x3 : δ3) for either of
the two choices of δ3 (this also requires 2dk−2 restrictions). Thus e2, e3 would have a
total of at least 2dk−1 restrictions, which is not possible by hypothesis.

Suppose X ∈ B3(H). Let the endpoints of X be x0, x2, the connecting variable
of X be x1, and the constraints of X be C1, C2, where C1 is a forcer starting at x1

and ending at x0 and C2 is not a forcer that starts at x2 and ends at x1. Consider
any satisfying assignment of I −X where x0, x2 are assigned δ0, δ2. There are at least
d− 1 choices for δ1 such that C1 permits (x0 : δ0, x1 : δ1), and there are at least two
choices for δ1 such that C2 permits (x1 : δ1, x2 : δ2). At least one choice for δ1 lies in
the intersection of these sets, and so the lemma follows.

With Lemma 8 in hand, the proof of Lemma 7 is straightforward, following
Mitchell’s framework [31].

Proof of Lemma 7. Consider any resolution refutation of CNF(I). Mitchell [31,
Lemma 1], proves that hypothesis (a) implies there must be a clause C in the refutation
and a subproblem J of I on between 1

2
αn and αn variables such that J minimally

implies C in the following sense: (i) Every satisfying assignment of J satisfies C,
and (ii) for subproblem J ′ of J , there is a satisfying assignment of J ′ that does not
satisfy C.

We will next prove that C must have at least ζn/4 variables.
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Consider any clause X ∈ B1(J ); we will show that some variable of X appears in
C. To see this, consider any assignment α which satisfies J −X but does not satisfy
C. By Lemma 8, it is possible to extend α to a satisfying assignment α′ of J , and,
since J implies C, α′ satisfies C. Thus, there is some variable of C that is assigned
a value in α′ but not in α; that variable must be in X.

Nearly identical arguments show that C must contain a non-end-point variable of
every member of B2(J ) and that C must contain the connecting variable from every
member of B3(J ). No variable can be a non-end-point variable of more than four
members of B2(J ). So C contains at least |B1(J )| + |B2(J )|/4 + |B3(J )| variables.
Since by hypothesis (b), |B(J )| ≥ ζn, C must contain at least ζn/4 variables, as
required.

This allows us to apply the now standard “width lemma” of Ben-Sasson and
Wigderson [9, Corollary 3.6], to prove our lemma. In particular, if we let w1 = k
be the maximum clause size in CNF(I), and w2 ≥ ζn/4 be the minimum over all
resolution refutations of CNF(I) of the maximum clause size in the refutation, then
the width lemma states that

C − RES(I) = eΩ((w2−w1)
2/n) ≥ 2Θ(n).

We close this section with a lemma explaining the significance of c∗(d, k, t).
Lemma 9. For d, k ≥ 2 and t ≥ (d − 1)dk−2, let c = c∗(d, k, t) = 1

dk(k−1)

(
dk

t

)
/

(dk−(d−1)dk−2

t−(d−1)dk−2

)
. Specify any variable x and value δ ∈ {1, . . . , d}. The expected number

of forcers in Fd,k,t
n,M=cn starting with x : δ is 1.

Proof. Let L = (d − 1)dk−2. The expected number of constraints containing x
is ck. For each of the d(k − 1) choices of x′ �= x, δ′ ∈ {1, . . . , d} for a particular
constraint containing x, the probability that the constraint forms a (x : δ) → (x′ : δ′)
forcer is

(
dk−L
t−L

)
/
(
dk

t

)
, as there are exactly

(
dk−L
t−L

)
choices for such a forcer. Therefore,

the expected number of forcers from x : δ is

cdk(k − 1) ×
(
dk−L
t−L

)
(
dk

t

) =

(
dk

t

)

dk(k − 1)
(
dk−L
t−L

) × dk(k − 1) ×
(
dk−L
t−L

)
(
dk

t

) = 1.

It is instructive to consider the case k = d = 2 and t = (d − 1)dk−2 = 1,
which is the more familiar random 2-SAT. Here every 2-clause can be viewed as the
union of two forcers, e.g., (x1 ∨ x2) is equivalent to the conjunction of the two forcers
(x1 : F ) → (x2 : T ) and (x2 : F ) → (x1 : T ). (Of course, we are considering the
domain to be {T(rue),F(alse)} rather than {1, 2}. Note that c∗ = 1, which is the
satisfiability threshold for 2-SAT. The reader who is familiar with random 2-SAT will
recognize that the property guaranteed by Lemma 9 corresponds very closely to what
happens to cause the random 2-SAT to be unsatisfiable. Thus, it is not surprising
that, for general d, k, at c > c∗ the forcers alone produce an unsatisfiable formula and
that it, like random 2-SAT, has small resolution complexity.

For d = 2 and general k, it is easy to see that an (x : F ) → (y : T ) forcer is
also an (y : F ) → (x : T ) forcer. Thus, such a forcer implies the 2-clause (x ∨ y).
Extending this reasoning shows that for c > c∗ the forcers alone will contain a random
instance of 2-SAT where the number of 2-clauses is above the satisfiability threshold.
As mentioned earlier, this was discovered independently by Gao and Culberson [23].

3. Proof of Theorem 1. We begin with a lemma of a type that has become
standard in papers on the resolution complexity of random formulas. It says that a.s.
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every subproblem of Fd,k,t
n,M with at most αn variables has a very low clause-vertex

ratio. Thus, to prove that the conditions of Lemma 7 hold, it suffices to prove that
certain types of subproblems must have a high clause-vertex ratio.

Lemma 10. Let c > 0 and k ≥ 2, and let H be the random k-uniform hypergraph
with n vertices and m = cn edges. Then for any δ > 0 there exists α = α(c, k, δ) > 0
such that a.s. H has no subgraph with 0 < h ≤ �αn vertices and at least ( 1+δ

k−1
)h

edges.
Proof. This proof follows a straightforward first moment calculation of a type

that has been carried out many times in similar settings, starting with �Luczak [30].
Let μ = 1+δ

k−1
, Sh be the number of subgraphs of H with h vertices and exactly

�μh� edges, and set S =
∑�αn�

h=1 Sh. Note that if Sh = 0, then there are no subgraphs
of H with h vertices and at least μh edges. To count E(Sh), we multiply the number
of choices of h vertices by the number of choices for �μh� of the cn random edges and
the probability that each of those random edges lies entirely in that set of h vertices:

E(Sh) ≤
(
n

h

)(
cn

�μh�
)(

h

n

)k�μh�
.

This yields:

E(S) =

�αn�∑

h=1

E(Sh)

≤
�αn�∑

h=1

(
n

h

)(
cn

�μh�
)(

h

n

)k�μh�

≤
�αn�∑

h=1

(en
h

)h
(

ecn

�μh�
)�μh� (

h

n

)k�μh�

≤ ec

μ

�αn�∑

h=1

[(
h

n

)(k−1)μ−1

eμ+1(c/μ)μ

]h

=
ec

μ

�αn�∑

h=1

[(
h

n

)δ

c′
]h

for c′ = eμ+1(c/μ)μ

≤ ec

μ

⎛
⎝

�logn�∑

h=1

[(�log n
n

)δ

c′
]

+

�αn�∑

h=�logn�+1

[(�αn
n

)δ

c′
]�log n�⎞

⎠

≤ O

(
log1+δ n

nδ

)
+

�αn�∑

h=�logn�+1

O

(
1

n2

)
for sufficiently small α

= o(1).

The next lemma will allow us to show that subproblems with small boundaries
must have a high clause-variable ratio and hence, by the previous lemma, must be
large.

Lemma 11. Let r ≥ 2 be a constant and H be a k-uniform hypergraph on n
vertices and m edges that does not have any component which is a cycle. Let B1 be
the set of edges which have at most one vertex of degree greater than 1 and B2 be
the set of pendant paths of length r. If |B1| + |B2| ≤ n/(72r2k3), then for δ = 1

3rk2 :

m ≥ n( 1+δ
k−1

).
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Intuitively, the lemma is clear: If |B1| = 0 and if no vertex has degree greater
than 2, then it is easy to see that we would have m = n/(k − 1). So, in order for m
to not be much bigger, either B1 must be large or there must be very few vertices of
degree greater than 2. If the latter is true and B1 is small, then H must contain long
pendant paths, and so B2 will be big. Our formal proof is a bit lengthy, and so we
defer it to the end of the section.

These two lemmas are enough to prove the first of our main theorems.
Proof of Theorem 1. It suffices to prove that a.s. conditions (a) and (b) of

Lemma 7 hold for Fd,k,t
n,M=cn, where α = α(c, k, δ = 1/(12k2)) from Lemma 10 and

ζ = min(1/(72 × 16k3), α/10k).

Since t < (d− 1)dk−2, Fd,k,t
n,M has no forcer constraints. Using this fact, our proof

would follow immediately from Lemmas 10 and 11, if it were not for the fact that
Lemma 11 applies only to hypergraphs with no cycle components.

We begin with condition (a). Suppose that J is a minimally unsatisfiable sub-

problem of Fd,k,t
n,M . Thus, the underlying hypergraph of J is connected. Furthermore,

since t < (d− 1)dk−2, it is easily verified that the underlying hypergraph of J cannot
be a single cycle. Finally, Lemma 8 implies that |B1(J )| = |B2(J )| = 0. Therefore,
since J has no forcers, Lemma 11 with r = 4 applies to the underlying hypergraph
of J , and so J has a clause-variable ratio of at least (1 + δ)/(k + 1). Thus Lemma

10 implies that a.s. Fd,k,t
n,M has no minimally unsatisfiable subproblems of size at most

αn. Therefore a.s. Fd,k,t
n,M has no unsatisfiable subproblems of size at most αn.

Next is condition (b). We will use the easy fact, provided as Lemma 24 in Ap-

pendix B, that a.s. the underlying random hypergraph of Fd,k,t
n,M has fewer than logn

cycles of length at most 4. Suppose, by contradiction, that J is a subproblem of Fd,k,t
n,M

with v variables, where 1
2
αn ≤ v ≤ αn, and with |B1(J )|+|B2(J )| ≤ ζn. (Since there

are no forcers, |B3(J )| = 0.) Let H ′ be the subhypergraph obtained by removing all
of the cycle components from the underlying hypergraph of J . By Lemma 11 (with
r = 4), H ′ has at least |H ′| 1+δ

k−1
edges, and note also that |H ′| ≤ |J | ≤ ζn < αn.

By Lemma 10, a.s. every such H ′ is empty. Thus a.s. for every such subproblem J ,
every component in the underlying hypergraph of J is a cycle. Every vertex in such a
cycle of length at least 5 must lie in a member of B2(J ), and every member of B2(J )
contains fewer than 4k vertices; so there are at most 4kζn vertices in those cycles. As
mentioned above, a.s. there are at most 4 log n vertices which lie in cycles of length
at most 4 in Fd,k,t

n,M . Since 4kζn+ 4 log n < 1
2
αn ≤ |J |, we have a contradiction.

We now close this section with the proof of Lemma 11.
Proof of Lemma 11. We say that a pendant path p of length at least 1 is con-

tractible if (i) both of its endpoints have degree 2 and (ii) p is maximal in the sense
that it is not part of a longer pendant path whose endpoints both have degree 2. Let
P be the set of contractible pendant paths in H.

We form a hypergraph H ′ with no long pendant paths as follows.
For each p ∈ P with endpoints x, y, we remove all edges and vertices of p except

for x, y and do the following: If x, y do not both lie in some edge outside of p, then
we contract x, y into a single vertex. Otherwise, we create a new edge containing
x, y and k − 2 new degree 1 vertices; this edge is called a reduced edge, and x, y are
its endpoints. Note that, since H has no cycle components, this operation does not
create any new contractible paths, and it does not destroy any contractible paths.
So there is no need to iterate this process, and we contract every path from P. For
convenience, we first contract all paths of length at least r in phase A and then all of
the remaining paths in phase B.
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The resulting hypergraph is H ′. Every nonreduced edge in H ′ either (i) has a
vertex of degree at least 3, (ii) has at least three degree 2 vertices, or (iii) is in B1.

n′ is the number of vertices in H ′; s is the number of vertices of degree greater
than 1; m′ is the number of edges in H ′; m2 is the number of reduced edges; m∗ is
the number of edges with at least one degree 3 vertex.

Since H has no cycle components, the endpoints of any reduced edge must lie
in a nonreduced edge. Since those endpoints have degree 2, each edge can hold
the endpoints of at most k/2 reduced edges. Therefore, m2 ≤ m′ · k

2
/(k

2
+ 1) =

m′(k/(k + 2)).
The sum of the degrees of the vertices is n′ + s plus the sum of all vertices v with

deg(v) ≥ 3 of deg(v)− 2. Each such vertex v lies in deg(v) edges, and so by counting
(deg(v) − 2)/deg(v) ≥ 1

3
for each of those edges, it follows that this latter sum is at

least m∗/3. Therefore, since the sum of the degrees of all vertices is km′, we have

km′ ≥ n′ + s + m∗/3.

Furthermore, by counting the number of degree 1 variables in each edge, we have

s ≥ n′ − (k − 3)m′ − (m∗ + m2) − 2|B1|.

These two equations combine to yield

km′ ≥ 2n′ − (k − 2)m′ + (m′ − 2m∗/3 −m2) − 2|B1|
≥ 2n′ − (k − 2)m′ +

1

3
(m′ −m2) − 2|B1|

≥ 2n′ −m′
(
k − 2 − 2

3(k + 2)

)
− 2|B1|,

and so m′ ≥ (2n′−2|B1|)/(2k−2− 2
3(k+2)

) ≥ n′( 1+2δ
k−1

)−2|B1|, since δ < 1
3k(k+2)

and

2k − 2 − 2
3(k+2)

> 1.

Now we observe that very few vertices were removed during phase A. Any pendant
path of length l ≥ r contains at least l − r + 1 pendant paths of length r. So the
total of the lengths of all such paths in H is at most r|B2|. Therefore, the number of
vertices in the hypergraph at the end of phase A is at least n− rk|B2|.

Now we consider what happened during phase B. Every time we contracted a
contractible path p of length l < r to a vertex, the net loss in edges was l and the net
loss of vertices was (k − 1)l − 1, and each time we contracted one to an edge, those
net losses were l − 1 and (k − 1)(l − 1) − 1, respectively. Thus, for some v, we lost v
vertices and at least v(r− 1)/((r− 1)(k− 1)− 1) > v(1+ 1

rk )/(k− 1) ≥ v( 1+2δ
k−1

) edges

during phase B, since δ ≤ 1
2rk .

Therefore, the hypergraph remaining at the end of phase A has at least

(n− rk|B2|)
(

1 + 2δ

k − 1

)
− 2|B1| ≥ n

(
1 + δ

k − 1

)
+

nδ

k − 1
− 3r|B2| − 2|B1| > n

(
1 + δ

k − 1

)

edges. Since phase A does not increase the number of edges, this proves our
Lemma.

4. Proof of Theorem 2. A Zq-configuration is a collection of q vertex-disjoint
forcing paths in I, each with possibly length zero (i.e., a single vertex), plus q( 1+γ

k−1
)

other edges, each containing k endpoints of the paths, where γ = 1/(300k2).
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For I ∈ Ωd,k,t and t ≥ (d − 1)kd−2, let P = p1, . . . , pq be a collection of forcing
paths of I such that: (i) every vertex lies in exactly one of these paths, and (ii) it is
not possible to transform P into a collection of q − 1 paths meeting condition (i) by
adding another forcer from I. Obviously a collection of paths of length 0, one for each
variable of I, satisfies (i), and so some collection exists which satisfies (i) and (ii).

Lemma 12. For any I,P as described above: If |B(I)| < q/(72000k3) and
if the underlying hypergraph of I has no cycle components, then I contains a Zq-
configuration.

Proof. Suppose that, among the paths in P, exactly p1, . . . , pr (r ≤ q) have at
least one edge each; the others have length 0. Consider a path pi (1 ≤ i ≤ r), and
suppose it has l ≥ 1 edges. Let x0 and xl be the start and end points of this path,
respectively; so pi is a (x0 :δ0) → (xl :δl) forcer for some values δ0, δl. Remove from I
all of the clauses and variables of pi other than x0, xl. Then add k − 2 new variables
and a (x0 :δ0) → (xl :δl) forcer. The new forcer is called a reduced forcer. We do this
for every pi, 1 ≤ i ≤ r. The new CSP obtained after these operations is denoted by
I ′. Note that n′, the number of variables in I ′, is q + r(k − 1). Note also that since
p1, . . . , pq are vertex-disjoint, no two reduced forcers in I ′ share a vertex.

Claim 13. There is no forcer path of length at least 4 in I ′.
Proof. By contradiction, assume that p = e1e2e3e4 is a forcer path in I ′, with

ui−1 and ui being the start and end points of ei, respectively. If e2 is not a reduced
forcer, then adding the forcer e2 to P would concatenate the path in P containing u1

with the one containing u2 without violating condition (i). This contradicts condition
(ii). If e2 is a reduced forcer, then e3 cannot be (since no two reduced forcers share a
variable). Thus a similar contradiction arises when we consider adding the forcer e3

to P.
Claim 14. Every pendant path of length 10 in I ′ has a subpath which is in

B2(I) ∪ B3(I).
Proof. Let P ′ be a pendant path in I ′. By replacing each reduced edge of P ′

by its corresponding path from P, we obtain a path P in I. Every nonforcer in P ′

is a nonforcer in P . Assume P = e1, . . . , el, where xi = ei ∩ ei+1, and that ea and
eb, b > a, are two nonforcers in P ′, and hence in P , such that there is no other
nonforcer between them. If b − a > 1, then ea+1 is a forcer, and it must start at
xa+1; otherwise, {ea, ea+1} ∈ B3(I), and we are done. Similarly, eb−1 must be a
forcer starting at xb−2; otherwise, {eb−1, eb} ∈ B3(I). But these two imply that
along the path ea+1, . . . , eb−1 there is a member of B3(I). Thus, we can assume that
b− a = 1, i.e., that the nonforcers in P ′ are consecutive. Also, if i is the largest index
for which ei is a nonforcer in P , then elel−1 . . . ei+1 must be a forcing path going into
xi; otherwise, there is a member of B3(I) along this path. Therefore the portions of
P ′ on the sides of these nonforcers form forcing paths. Similar arguments show that
if P ′ has no nonforcers, then it contains at most two forcing paths starting at the
endpoints of P ′, or else P ′ contains a member of B3(I).

By Claim 13, the length of each forcing path is at most 3. Therefore, if P ′ has
length 10, then P ′ has at least 4 consecutive nonforcers, and so that subpath of P ′ is
in B2(I).

Let B1 be the set of clauses which have at most one variable of degree greater than
1 in I ′ and B2 be the set of pendant paths of length 10 in I ′. Note that |B1(I)| ≥ |B1|.
Since no subpath can lie in more than 10 members of B2, Claim 14 implies that |B2| ≤
10(|B2(I) + B3(I)|). Therefore, |B1| + |B2| ≤ 10|B(I)| ≤ q/(7200k3) < n′/(7200k3),
as n′, the number of variables in I ′, is q + r(k − 1). So, applying Lemma 11 with
r = 10 to the underlying hypergraph of I ′, the number of clauses in I ′ is at least
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n′( 1+γ
k−1

), and at least n′( 1+γ
k−1

) − r ≥ q( 1+γ
k−1

) are not reduced forcers. Those clauses
and the paths in P will form a Zq-configuration in I.

Lemma 15. For any constants d, k ≥ 2 and (d−1)dk−2 ≤ t < dk−1, and for every

c < c∗(d, k, t), there exists σ > 0, such that a.s. Fd,k,t
n,M=cn has no Zq-configuration with

q ≤ σn.
Proof. For this proof, it will be convenient to work in the Fd,k,t

n,p model described

in section 2.1, where each of the
(
n
k

)
potential edges is chosen for the constraint

hypergraph with probability ck!/nk−1. Lemma 25 in Appendix B shows that proving
this model a.s. has no Zq-configuration with q ≤ σn will imply that a.s. neither does

Fd,k,t
n,M=cn.

We compute the expected number of Zq-configurations. To do so, we suppose
that the q forcing paths are ordered p1, . . . , pq when we count the number of ways to
choose them. Since the forcing paths of a Zq-configuration are actually unordered,
this produces an overcount, which we correct by dividing by q!.

We start with the computations related to the forcing paths: For each i, let ai ≥ 0
be the number of forcers in pi, and set A =

∑q
i=1 ai. The number of ways to choose

the endpoints of the paths is at most n2q (fewer if some of the path lengths are 0).
For each pi, there are at most nai−1 choices for the connecting variables and dai+1

choices of values to use on the variables to form a forcing path. Also, for each edge
of each pi, there are

(
n

k−2

)
choices for the set of degree 1 variables. The probability

that all of the specified hyperedges exist is (ck!/nk−1)A. The probability that the
constraints all form the specified forcers is, as we argued in the proof of Lemma 9,

(
(dk−(d−1)dk−2

t−(d−1)dk−2

)
/
(
dk

t

)
)A.

Now we turn our attention to the additional edges: There are at most
(
2q
k

)
po-

tential edges containing only endpoints of the paths, and we must choose B = q( 1+γ
k−1

)

of them; there are
((2q

k )
B

)
ways to do so. The probability that the B chosen edges are

all present in H is (ck!/nk−1)B .
Letting c = (1 − ε)c∗, this yields

E(|Zq|) ≤ n2q

q!
×

∑

a1,...,aq≥0

nA−qdA+q

(
n

k − 2

)A [
(1 − ε)c∗k!

nk−1

]A
⎡
⎣
(dk−(d−1)dk−2

t−(d−1)dk−2

)

(
dk

t

)

⎤
⎦
A

×
((2q

k

)

B

)(
ck!

nk−1

)B

≤ n2q

q!

((2q
k

)

B

)(
ck!

nk−1

)B

×
∑

a1,...,aq≥0

(
n

k − 2

)A

nA−qdA+q

[
(1 − ε)(k − 2)!

dnk−1

]A

≤ n2q

q!

(
(2q)ke

k!B

ck!

nk−1

)B

×
∑

a1,...,aq≥0

n(k−2)A+A−qdA+q

(k − 2)!A

[
(1 − ε)(k − 2)!

dnk−1

]A

≤ n2q

q!

(
(2q)kec

nk−1(q/k − 1)

)q(1+γ)/(k−1)

× dq

nq

∑

a1,...,aq≥0

(1 − ε)A

≤
(
ψq

n

)γq
⎡
⎣
∑

i≥0

(1 − ε)i

⎤
⎦
q

≤
(
ψ′q
n

)γq

,
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where ψ,ψ′ > 0 are functions of c, d, k, ε, γ, and hence of c, d, k, t since ε, γ can be
derived from c, d, k, t. Therefore,

σn∑

q=1

E(|Zq|) ≤
�logn�∑

q=1

(
ψ′q
n

)γq

+

σn∑

q=�logn�+1

(
ψ′q
n

)γq

≤ O

(
log2 n

n

)
+

σn∑

q=�log n�+1

O(n−2) = o(1)

for σ > 0 sufficiently small that (ψ′σ)γ < e−3. Thus σ is a function of c, d, k, t, γ and
hence of c, d, k, t.

Lemma 16. For c < c∗(d, k, t), and for every constant integer θ > 0, a.s. the

number of variables of Fd,k,t
n,M=cn that are part of a maximal forcing path of length

greater than θ is at most 3θd(c/c∗)θ.
Proof. Assume that c = (1 − ε)c∗. We will again work in the Hn,p model where

p = c× k!/nk−1. Lemma 25 from Appendix B permits us to do so.
For any value of θ, let Xθ be the number of forcing paths of length θ, and let

Yθ be the number of maximal forcing paths of length at least θ. Obviously, Xθ is an
upper bound for Yθ (since for every forcing path of length θ there is a unique maximal
forcing path of length at least θ). Our goal is to upper bound Yθ for constant values
of θ and for that we upper bound Xθ. We first compute the expected value of Xθ. We
have to choose θ+1 variables for the connecting points and the endpoints of the path;
there are

(
n

θ+1

)
ways to do so. We order them; there are (θ+ 1)! ways to do so. Then

we choose one of d values for each; there are dθ+1 ways to do so. Then we choose the

remaining k− 2 vertices for each of the θ constraints; there are
(
n−θ−1

(k−2)θ

)
[(k−2)θ]!
(k−2)!θ

ways

to do so. Finally, we multiply by the probability that the edge for each constraint is
chosen in the underlying hypergraph and that the random constraints chosen for those
edges are the specified forcers; the first of these probabilities is pθ, and the second is
(dk(k − 1)/c∗)θ (the latter computation uses the same arguments found in the proof
of Lemma 9). This yields

E(Xθ) =

(
n

θ + 1

)
(θ + 1)!dθ+1

(
n− θ − 1

(k − 2)θ

)
[(k − 2)θ]!

(k − 2)!θ

(
(1 − ε)(k − 2)!

dnk−1

)θ

=
n!

[n− θ − 1 − (k − 2)θ]!
· (1 − ε)θd

n(k−1)θ

= (1 + o(1))nd(1 − ε)θ for constant values of θ.

Now we bound the probability of Xθ > 2E(Xθ) using the second moment method.
By Chebychev’s inequality, this probability is at most (E(X2

θ )−E(Xθ)
2)/E(Xθ)

2. So
to prove that this probability is o(1), it will suffice to prove that E(X2

θ ) ≤ E(Xθ)
2(1+

o(1)).
Consider a fixed forcing path A of length θ. For each i, j ≥ 1 we bound the

number of potential forcing paths B of length θ which have exactly i constraints in
common with A and for which these i constraints form j segments in A. To compute
this, we first choose the j segments by choosing the vertices of their endpoints from A

and the positions of those endpoints in B; there are
(
θ
2j

)2
ways to make this selection.

Then we match the j segments of A to the j segments of B; there are j! choices for
this. Then we select θ + 1 − i− j points (the rest of the connecting variables of path



RESOLUTION COMPLEXITY OF RANDOM CSPs 909

B) and a value for each; there are at most (nd)θ+1−i−j ways to do this. Then for
each of the θ − i constraints in B − A we select the remaining k − 2 variables; there

are
(

n
(k−2)(θ−i)

)
[(k−2)(θ−i)!]
(k−2)!(θ−i) possible choices. Finally we multiply by the probability

that the θ − i constraints in B − A are selected and are forcers; as in the previous

calculation, this probability is ( (1−ε)(k−2)!

dnk−1 )θ−i. For any potential forcing path A of
length θ, let QA be its indicator variable.

E(X2
θ ) =

∑

A,B

Pr(QA = 1 ∩QB = 1)

=
∑

A

∑

B:A∩B=∅
Pr(QA = 1)Pr(QB = 1) +

∑

A

∑

B:A∩B �=∅
Pr(QA = 1 ∩QB = 1)

≤ E(Xθ)
2 +

∑

A

Pr(QA = 1) ×
θ∑

i=1

i∑

j=1

(
θ

2j

)2

j!nθ+1−i−jdθ+1−i−j

×
(

n

(k − 2)(θ − i)

)
[(k − 2)(θ − i)!]

(k − 2)!(θ−i)

(
(1 − ε)(k − 2)!

dnk−1

)θ−i

≤ E(Xθ)
2 + E(Xθ)9

θ∑

i=1

i∑

j=1

(
e2θ2

4j2

)2j

jjn1−jd1−j(1 − ε)θ−i

≤ E(Xθ)
2 + E(Xθ) · nd(1 − ε)θ

θ∑

i=1

i∑

j=1

(
αθ4

j3nd

)j

(1 − ε)−i (for a constant α > 0)

≤ E(Xθ)
2 + E(Xθ)

2 · (1 + o(1)) ·O
(

1

n

)
.

Therefore, a.s. Xθ ≤ 2(1+o(1))nd(1−ε)θ. Thus the number of variables which lie
on a maximal forcing path of length at least θ is a.s. at most 2(1+ o(1))θnd(1− ε)θ <
3θd(c/c∗)θ.

Proof of Theorem 2. The proof is nearly identical to that of Theorem 1, this
time using Lemmas 12 and 15 rather than Lemmas 11 and 10. We will prove that
conditions (a) and (b) of Lemma 7 hold with α = 1

2
σ and ζ = α/(4θ × 72000k3),

where θ is a positive integer such that 3θd(c/c∗)θ ≤ α/8.
We start with condition (a). Let J be a minimally unsatisfiable subproblem of

Fd,k,t
n,M and H be the underlying hypergraph of J . Clearly H is connected. Next we

show that H cannot be a single cycle. By way of contradiction suppose that H is
a cycle with constraints C1, . . . , C�. Since t < dk−1 we have the following: For any
constraint Ci and any pair of variable/value (x : δ), with x ∈ Ci, there is a satisfying
assignment of values to the variables of Ci in which x gets value δ. Let x1 = C1 ∩C2

and x� = C1 ∩ C�, and consider J − C1. Consider any value δ ∈ D. There is a
satisfying assignment for C1 in which x gets δ—let δ2 be the value assigned to x2

in that assignment. There is a satisfying assignment for C2 in which x2 gets δ2—let
δ3 be the value assigned to x3 in that assignment. Repeating this argument yields a
satisfying assignment for J − C1 in which x1 gets δ. Since this is true of every value
δ, there are at least d pairs (δ, δ′) in which there is a satisfying assignment for J −C1

in which x1 gets δ and x� gets δ′. Since C1 contains fewer than d× dk−2 restrictions,
at least one of these pairs (δ, δ′) is such that there is a satisfying assignment to C1 in
which x1 gets δ and x� gets δ′. Therefore, J is satisfiable, which is a contradiction.
Thus H is connected and is not a cycle. Since J is minimally unsatisfiable, Lemma
8 implies that |B(J )| = 0. So by Lemma 12, J has a Zq-configuration, and, by
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Lemma 15, that configuration has q ≥ σn. Since the paths of the Zq-configuration
are vertex-disjoint, we have |J | ≥ σn > αn as required.

Now we prove that condition (b) of Lemma 7 holds. Consider a subproblem J
on 1

2
αn ≤ v ≤ αn variables, and let H ′ be the hypergraph remaining after removing

all cycle components from the underlying hypergraph of J .
Case 1. |H ′| ≤ 1

4
αn. Since |J | ≥ 1

2
αn, the total size of the cycle components is

at least 1
4
αn. By Lemma 24 in Appendix B, a.s. at most logn vertices lie on cycles

of size at most 4. Every vertex on any other cycle component lies on a member of
B2(J ), and each member of B2(J ) contains fewer than 4k vertices. So |B2(J )| >
1
4k ( 1

4
αn− log n) > 1

20kαn > ζn.

Case 2. |H ′| > 1
4
αn. Since 3θd(c/c∗)θ ≤ α/8, Lemma 16 yields that at least

αn/4 − αn/8 > αn/8 of the variables in H ′ do not lie on any forcer paths of length
at least θ. Thus, any collection of forcer paths which covers all of the variables of H ′

must contain at least α
8θn paths. So we can apply Lemma 12, where I is the CSP on

H ′ formed by removing all cycle components from J and where α
4θn ≤ q ≤ |I| ≤ αn.

Since q ≤ αn < σn, Lemma 15 implies that a.s. the entire random CSP has no Zq-
configuration and so neither does H ′. Since H ′ has no cycle components, Lemma
12 implies that B(I) ≥ q/(72000k3) ≥ ζn. Every boundary element of I is also a
boundary element of J , and so this establishes condition (b).

5. Proof of Theorem 3. We will show that a.s. Fd,k,t
n,M contains a small unsat-

isfiable subproblem with a structure that is inspired by the snakes of [12]. Our proof
is similar to the corresponding proof in [12].

A forbidding cycle is a x : δ → x′ : δ′ forcing path along with a x′ : δ′ → x : δ′′

forcer where δ �= δ′′. Thus, there is no satisfying assignment where x = δ. We say
that the cycle forbids x : δ. Consecutive clauses in the cycle intersect in exactly one
variable; such variables are called connecting variables.

An r-flower is the union of d forcing cycles C1, . . . , Cd such that: (i) each has
exactly r forcers; (ii) each cycle contains a particular variable x; (iii) no other variable
lies in more than one of the cycles; (iv) each cycle Ci forbids x : i. We call x the
center variable. Thus, any r-flower is unsatisfiable.

Lemma 17. For any constants d, k ≥ 2, d + k > 4 and (d − 1)dk−2 ≤ t < dk−1,

and for every constant c > c∗(d, k, t), Fd,k,t
n,M=cn a.s. contains all constraints of an

r-flower, where r = λ log n, for some sufficiently large constant λ.
Theorem 3 follows immediately since if Fd,k,t

n,M , contains an r-flower, with r =
λ log n, then we can use an exhaustive search to prove that the r-flower, and hence
Fd,k,t

n,M , is unsatisfiable in exp(r) = poly(n) steps. Such a proof can be simulated by

a resolution proof with only a polynomial increase in length, so a.s. RES(Fd,k,t
n,M ) =

poly(n). (The case k = d = 2, i.e., 2-SAT, is already known [12].)
Proof. For any potential flower A, we let XA be the indicator variable for the

event that the clauses of A all appear in the random CSP. With X =
∑

A XA, it is
enough to show that E(X2) ≤ E(X)2(1+o(1)). Then the theorem follows easily from
the Chebyshev inequality.

First, we compute E(X). We must choose s = dr − d + 1 connecting variables
(including the center variable) and the (k − 2)dr other variables. There are s! ways
to arrange the connecting variables and then [(k − 2)dr]!/(k − 2)!dr ways to arrange
the other variables into the flower. For each Ci, we need to choose some value other
than i for the center variable and an arbitrary value for each of the other connecting
variables. Then we multiply by the probability of all our forcers being present. We
have c = (1 + ε)c∗ for some ε > 0. For fixed variables x, y and values u, v ∈ D, the
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probability that there exists a (x :u) −→ (y :v) forcer is p = (1+ ε) (k−2)!

dnk−1 , by the same
calculations as in Lemma 9.

E(X) =

(
n

s

)
s!

(
n− s

(k − 2)dr

)
[(k − 2)dr]!

(k − 2)!
dr

× (d− 1)dd(r−1)dpdr

= (1 + o(1))(1 + ε)dr
(
d− 1

d

)r

n1−d

= Ω(n2)

for sufficiently large λ. Next we compute an upper bound for E(X2). Consider a
fixed r-flower A and its underlying hypergraph HA. For each i, j ≥ 1 we will upper
bound the number of potential r-flowers B that have exactly i constraints in common
with A where these constraints form j connected components in HA. (A very loose
upper bound will suffice.) First, we consider choosing the j components. At most
one component contains the center variable—for each Ci, such a component contains
either all of Ci, none of Ci, or the portion of Ci between 2 variables. So there are at
most (2+r2)d choices for such a component. Each of the other components is specified
by 2 variables on the same cycle. Thus, the number of choices for the components of
HA is at most (2 + r2)d(dr2)j−1. To obtain a very loose upper bound on the number
of ways that these components can fit into B, we simply multiply by the number of
ways to choose j components from B and then multiply by j! for the number of ways
to pair them up with the components of A. Note that, since t < dk−1 and d, k are not
both 2, no constraint can be a a : δ → b : γ forcer for more than one choice of a, b, δ, γ.
Therefore, if an edge lies in the underlying hypergraph of both A and B, then its
forcer in B must be identical to its forcer in A. Therefore, to choose the rest of B, we
choose the remaining at most s− i− j variables and a value for each of them (d values
if one of them is the center variable) and then choose k − 2 nonconnecting variables
for each of the remaining clauses. Thus, the total number of potential such r-flowers

is at most ((2 + r2)d(dr2)j−1)2j!ns−i−jds−i−j+d−1
(

n
k−2

)dr−i
. Therefore, E(X2) is

∑

A,B

Pr(XA = 1 ∧XB = 1)

=
∑

A

∑

B:A∩B=∅
Pr(XA = 1)Pr(XB = 1) +

∑

A

∑

B:HA∩HB �=∅
Pr(XA = 1 ∧XB = 1)

< E(X)2 +
∑

A

Pr(XA = 1)

×
s∑

i=1

i∑

j=1

[
(
(2 + r2)d(dr2)j−1

)2 × j!ns−i−jds−i−j+d−1

(
n

k − 2

)dr−i

pdr−i

]

= E(X)2 + E(X)

s∑

i=1

⎡
⎣(2 + r2)2dr−4ns−ids−i+d−3 ×

(
n

k − 2

)dr−i

pdr−i
i∑

j=1

(
dr4j

n

)j
⎤
⎦

≤ E(X)2 + E(X) × E(X) ×O(r4d−4) ×
s∑

i=1

(1 + ε)−iO

(
r4

n

)

≤ E(X)2
(

1 + O

(
r4d

n

))
,

which completes the proof since r = O(log n).
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6. Proofs of Theorems 4 and 5. We close the paper with the proofs of The-
orems 4 and 5. Part (a) of Theorem 4 uses a very standard technique whereby we
compute the expected number of satisfying assignments. There are other standard
techniques around which to improve this theorem (e.g., the techniques from [29]); we

made no attempt to do so in part (a) as our only goal was to show that Fd,k,t
n,M=cn is

a.s. unsatisfiable for some c < c∗(d, k, t). However, we need to work a bit harder for
part (c), and so we use the simplest of the techniques from [29].

Proof of Theorem 4. Part (a). Consider any instance I chosen from Fd,k,t
n,M=cn.

There are dn assignments to the variables of I. For each such assignment, the proba-
bility that all constraints are satisfied is easily seen to be ((dk − t)/dk)cn. Therefore,
the expected number of assignments that satisfy I is

dn
(
dk − t

dk

)cn

= e(ln d−c ln(dk/dk−t))n,

which is o(1), if c > ln d
ln(dk/dk−t)

. This implies that for such c a.s. I is unsatisfiable.

Part (b). It is straightforward to verify that the statement holds for d = 2 and

k ∈ {4, 5}. Also, c∗(d, k, t) > 1
dk(k−1)

× (d
k

t )(d−1)dk−2

> d(d−1)dk−2

dk(k−1)
. So it is enough to

show that for d ≥ 2, k ≥ 6 and for d ≥ 3, 3 ≤ k ≤ 5

ln d

ln[dk/(dk − t)]
<

d(d−1)dk−2

dk(k − 1)
.(6.1)

A simple inductive argument shows that, for k ≥ 6, k(k−1) < 2k and k < 2k−2−4,

which implies 2k(k − 1) < 22k−2−3 ≤ d(d−1)dk−2−3. Similarly, for d ≥ 3 and k ≥ 3,

2k(k − 1) < 3k and k ≤ 2 × 3k−2 − 3, which implies 2k(k − 1) < 32×3k−2−3 ≤
d(d−1)dk−2−3. Therefore, in both cases

2dk(k − 1) ln d < d(d−1)dk−2−2 ln d,

2dk(k − 1) ln d

d(d−1)dk−2 <
ln d

d2
<

(d− 1)dk−2

dk − (d− 1)dk−2
.(6.2)

Using (6.2) and the fact that, for 0 < x < 1, ex < 1 + 2x

exp

(
dk(k − 1) ln d

d(d−1)dk−2

)
≤ 1 +

(d− 1)dk−2

dk − (d− 1)dk−2

≤ dk

dk − t
,

dk(k − 1) ln d

d(d−1)dk−2 < ln

(
dk

dk − t

)
,

ln d

ln[dk/(dk − t)]
<

d(d−1)dk−2

dk(k − 1)
,

thus establishing (6.1) as required.
Part (c). For the case d = 2, k = 3, t = 2, we strengthen the bound from part

(a) by applying the so-called “1-flips” technique from [29]. We say that a satisfying
assignment is 1-maximal if, for every variable x with value 1, changing the value of x to
2 will result in a nonsatisfying assignment. It is easy to see that if an instance I chosen
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from Fd,k,t
n,M=cn is satisfiable, then it has a 1-maximal satisfying assignment; indeed,

consider an assignment which, among all satisfying assignments, has the greatest
number of variables with value 2.

Consider any instance I chosen from Fd,k,t
n,M=cn. For each 0 ≤ a ≤ n, consider one

of the
(
n
a

)
value assignments ν to the variables of I in which exactly a variables have

value 1. As described in the proof of part (a), the probability that this is a satisfying
assignment is (6/8)cn. We condition on the fact that it is a satisfying assignment; the
effect of this conditioning is that the M constraints are chosen uniformly at random
from among the

(
7

2

)(
n
3

)
constraints that are not violated by ν.

For ν to be 1-maximal, it must be the case that, for each variable x with value
ν(x) = 1, there is a constraint on x and two other variables, say, y, z, that contains
x = 2, y = ν(y), z = ν(z) as a restriction; we say that such a constraint blocks x. There
are 6

(
n−1

2

)
possible constraints of this form, 6 for each choice of y, z. Conditional on

ν being satisfying, the probability that no constraint blocks x is

((7
2

)(
n
3

)− 6
(
n−1

2

)

M

)/((7
2

)(
n
3

)

M

)
= e−6c/7 + o(1).

Given two variables x1, x2, with ν(x1) = ν(x2) = 1, the events that at least one
constraint blocks x1 and at least one constraint blocks x2 are not independent—given
that one blocks x1, it is less likely that that constraint blocks x2, and so the probability
that x2 is blocked is a bit smaller. However, it is easy to see that this dependence
goes in the right direction for our purposes, and so the probability that all a variables
that are assigned 1 by ν are blocked is less than (1 − e−6c/7 + o(1))a. Therefore, the
expected number of 1-maximal satisfying assignments is

n∑

a=0

(
n

a

)(
6

8

)cn

(1 − e−6c/7)a =

(
6

8

)cn

(2 − e−6c/7)n =

((
3

4

)c

(2 − e−6c/7)

)n

.

For c > 2.114 we have ( 3
4
)c(2 − e−6c/7) < 1, and so this expected number is o(1).

Thus a.s. I has no 1-maximal satisfying assignments and so I is unsatisfiable.
(Clearly, this technique will easily give an improvement to the bound in part (a)

for any d, k, t. It is not hard to see that further techniques from [29] will obtain even
better bounds.)

Our final proof follows the, now rather standard, technique of using a differential
equation analysis to show that a particular algorithm will a.s. find a satisfying assign-
ment. See [1] for a good presentation of this method and survey of some of its most
important applications.

Proof of Theorem 5. Recall that our assumption is that c < c∗(2, 3, 3) = 7/9 and
that we wish to show that F2,3,3

n,M=cn is a.s. satisfiable.

We will make use of the fact that F2,3,3
n,M=cn has a sharp threshold in the sense of

Friedgut’s theorem [22]. This fact was first proven independently by Creignou and
Daudé [16] and by Istrate [27]. These papers each proved special cases of a more
general conjecture from [15], which was proved in [17], where Creignou and Daudé
classified which members of a large family of random CSPs with domain size two
exhibit a sharp threshold.

More formally, this fact says that there is a function c∗(n) such that, for every
ε > 0, F2,3,3

n,M=(c∗(n)−ε)n is a.s. satisfiable and F2,3,3
n,M=(c∗+ε)n is a.s. unsatisfiable. This

implies that if, for some constant c, F2,3,3
n,M=cn is satisfiable with probability at least
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γ for some γ > 0, then F2,3,3
n,M=c′n is a.s. satisfiable for every constant c′ < c: The

only alternative is that F2,3,3
n,M=cn and F2,3,3

n,M=c′n are neither a.s satisfiable nor a.s.
unsatisfiable. But this contradicts the existence of c∗(n) since, for ε = (c − c′)/3,
either c′ < c∗(n) − ε or c > c∗(n) + ε.

Thus, it will suffice to prove that, for every c < 7/9, F2,3,3
n,M=cn is satisfiable with

probability at least γ for some γ = γ(c) > 0, which we do now.
We consider the following algorithm, which we denote the unit constraint (UC).
The initial CSP is the input CSP, which is drawn from F2,3,3

n,M=cn. Repeatedly,
we select a variable x and assign it a value i. We then modify each constraint C
containing x as follows. If C contains any restrictions involving x : i, then we form
a new constraint C ′ on the variables of C other than x, by taking each restriction of
C that contains x : i, removing x : i from that restriction, and placing the shortened
restriction in C ′. Thus, C ′ can be thought of as the constraint that is implied by C
and setting x = i. Note that this might result in a constraint on exactly one variable
in which each restriction simply dictates a value which that variable is not allowed to
receive. We remove C and, if C contained any restrictions involving x : i, we replace
it with C ′, unless:

• If C ′ is on two variables, say, a and b, and if there is some value j for which C ′

forbids both (a = 1, b = j) and (a = 2, b = j), then we simplify by replacing
C with the constraint whose only variable is b and whose only restriction is
(j), i.e., a 1-variable constraint that forbids b from taking the value j. If C ′

also forbids both (a = j′, b = 1) and (a = j′, b = 2), then we replace C by two
1-variable constraints which forbid a = j′ and b = j, respectively. Note that
this latter case occurs iff C ′ contains 3 restrictions (since C ′ cannot contain
more than t = 3 restrictions).

• If C has exactly one variable, and if it forbids x = i, then C ′ will contain no
variables, so we remove C but do not add C ′, and we say that we formed a
null constraint. This indicates that our assignment violated one of the original
constraints. However, we will continue to run the algorithm, as this will be
convenient for its analysis.

Since no constraint has more than t = 3 restrictions, it is easy to see that we will
never generate a 1-variable constraint with two restrictions.

We choose x and i as follows:
• If there are any clauses on 1 variable, choose one of them uniformly at random,

and set its variable so as to satisfy that clause. (As described above, no such
clause will ever contain 2 restrictions, and so there is always a unique such
setting for that variable.)

• Otherwise, pick x uniformly at random from all unset variables, and pick i
uniformly at random from the domain {1, 2}.

After r variables have been set, we define the following:
• C3(r)—the number of constraints on 3 variables,
• H1(r)—the number of constraints on 2 variables with 1 restriction,
• H2(r)—the number of constraints on 2 variables with 2 restrictions,
• C1(r)—the number of constraints on 1 variable.

Note that the total number of remaining constraints is the sum of these values
since every constraint formed has at least one restriction, and no constraint on 2
variables with 3 restrictions is ever added (since, instead of adding such a constraint,
we would add the equivalent pair of constraints each on 1 variable).

Claim 18. For each r, the CSP remaining after r steps of UC is uniformly ran-
dom from amongst all CSPs with C3(r) constraints with 3 variables and 3 restrictions,
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H1(r) constraints with 2 variables and 1 restriction, H2(r) constraints with 2 variables
and 2 restrictions, and C1(r) constraints with 1 variable and 1 restriction.

Proof. Consider two CSPs H1 and H2 each with C3(r) constraints with 3 variables
and 3 restrictions, H1(r) constraints with 2 variables and 1 restriction, H2(r) con-
straints with 2 variables and 2 restrictions, and C1(r) constraints with 1 variable and
1 restriction. Consider any input CSP F1 with n variables and with cn constraints,
each having 3 variables and 3 restrictions, and any sequence of random choices of
variables, such that running UC with input F1 for r steps with that sequence of ran-
dom choices will result in H1. It is trivial to see how to modify F1 into F2, also
with n variables and with cn constraints each having 3 variables and 3 restrictions,
such that running UC with input F2 for r steps with that same sequence of random
choices will result in H2. (Essentially, you simply replace all original constraints in F1

that became constraints in H1 with constraints that will instead become constraints
of H2.) This implies that the probability of ending up with H1 is the same as the
probability of ending up with H2. This, in turn, implies the claim.

Next, we consider the expected changes in the first 3 variables after step r + 1.
By examining all

(
8

3

)
possible constraints on 3 variables, it is straightforward (but

tedious) to verify that we have the following, regardless of whether step r+1 sets the
variable of a 1-clause or a uniformly random unset variable:

• Exp(C3(r + 1) − C3(r)) = − 3C3(r)
n−r ,

• Exp(H1(r + 1) −H1(r)) = 9
7
× C3(r)

n−r − 2H1(r)
n−r ,

• Exp(H2(r + 1)) −H2(r)) = 3
7
× C3(r)

n−r − 2H2(r)
n−r .

Furthermore, the expected number of new 1-variable constraints that are formed
during step r + 1 is

F (r) =
9

7
× C3(r)

n− r
+

H1(r)

n− r
+

2H2(r)

n− r
.

As is standard with this sort of analysis, our goal is to prove that a.s. F (r) is
always less than 1 − ζ for some ζ > 0, as this will imply that, with sufficiently high
probability, no null constraints are formed, i.e., that a.s. our assignment does not
violate any of the original constraints.

Consider the following functions:
• c3(x) = c(1 − x)3,
• h1(x) = 9c

7
x(1 − x)2, and

• h2(x) = 3c
7
x(1 − x)2.

Note that their derivatives satisfy
• c′3(x) = − 3c3

1−x ,

• h′
1(x) = 9

7
× c3(x)

1−x − 2h1(x)

1−x , and

• h′
2(x) = 3

7
× c3(x)

1−x − 2h2(x)

1−x
and that C3(0) = c1(0)n = n,H1(0) = h1(0)n = 0, and H2(0) = h2(0)n = 0.

We also need to note that, with very high probability, none of these parameters
change much during any one iteration. In particular, it is straightforward to show
that the probability of either C3, H1, or H2 changing by more than logn during any
one iteration is less than n−10.

Noting the correspondence between these derivatives and the expected values
computed above, Wormald’s theorem [36] implies that for any α > 0 a.s. for every
r ≤ (1 − α)n we have the following:

• C3(r) = c3(r/n)n + o(n),
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• H1(r) = h1(r/n)n + o(n), and
• H2(r) = h2(r/n)n + o(n).

(See [1] for a statement of Wormald’s theorem and a good discussion of how to apply
it in settings like this one.)

Thus, a.s. for every r ≤ (1 − α)n, setting x = r/n we have

F (r) =
9

7
× c3(x)

1 − x
+

h1(x)

1 − x
+

2h2(x)

1 − x
+ o(1) =

9c

7
(1−x)

(
1 +

2

3
x

)
+ o(1) ≤ 9c

7
+ o(1),

over the relevant range of 0 ≤ x ≤ 1. Thus, a.s. F (r) < 1− ζ for some small constant
ζ > 0, so long as c < 7/9.

We will run UC until a point where at least αn variables remain unset, for some
particular small constant α to be named later. First, we bound the probability of
creating a null constraint. The sequence C1(r) follows the pattern of a random walk
on the positive integers, with a barrier at 0 and with drift always bounded above

by −ζ. Standard arguments imply that a.s.
∑(1−α)n

r=1 C1(r) ≤ Wn for some constant
W . Note that, during step r, the probability that no null constraint is formed is (if
C1(r) > 0) equal to (1 − 1

2(n−r) )
C1(r)−1 > (1 − 1

2αn )C1(r). Therefore, the probability

that no null constraints are formed at all is at least (1 − 1
2αn )Wn = e−W/2α + o(1).

Again, using the fact that C1(r) has negative drift, it is straightforward to show
that a.s. there is some (1−α)n− log2 n < r ≤ (1−α)n such that C1(r) = 0. It will be
convenient to halt UC there. With high probability, we are left with c3(1−α)n+o(n) <
α3n constraints on 3 variables and (h1(1−α)+h2(1−α))n+o(n) < 2α2n constraints
on 2 variables. Let G be the hypergraph whose vertices are the unset variables and
where a group of vertices form a hyperedge iff they are the set of variables covered by
a constraint.

It is straightforward to show that this random hypergraph G a.s. does not have a
giant component. Perhaps the easiest way to see this is to add a third random vertex to
each hyperedge of size 2 and call the resulting 3-uniform hypergraph G′. This leaves
us with a random 3-uniform hypergraph on n′ = αn vertices and with fewer than
3αn′ < n′/12 hyperedges for α < 1/36. It is well known that the threshold for such
a random hypergraph to have a giant component is when the number of hyperedges
is n′/6 and, in particular, that with probability at least γ′ for some γ′ > 0, every
component of G′ will be a tree. This would imply that every component of G is a tree.
It is easy to see that if every component of G is a tree, then the formula is satisfiable.

Thus, the probability that the original formula is satisfiable is at least γ′ ×
e−W/2α + o(1) > 0, as required.

Appendix A: A short proof of Theorem 6. Each variable v has two literals:
v and v, and we say that they are complements of each other. A literal of a variable
in a CNF formula F is pure if does not appear in any clause of F . As explained in
[2], it suffices to prove the following.

Lemma 19. For any Δ, ε > 0, consider a random CNF formula F on n variables
with Δn 3-clauses and (1 − ε)n 2-clauses where every such formula is equally likely.
A.s.:

(a) every subformula on at most αn variables is satisfiable, and
(b) every subformula on v variables, where 1

2
αn ≤ v ≤ αn, has at least ζn pure

literals.
Consider any CNF formula F containing only 2-clauses and 3-clauses. Let H2

be the graph defined as follows: The vertices of H2 are the variables of F , and two
vertices are joined iff their variables form at least one 2-clause.
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An isolated cycle of F is a 2-SAT subformula F ′ such that (i) F ′ forms a compo-
nent of H2 that is a cycle, (ii) no variable of F ′ lies in a 3-clause, and (iii) no variable
of F ′ has a pure literal.

A pendant path of F is a path of H2 whose internal vertices each have degree 2
in H2 and do not lie in any 3-clauses. Consider such a path whose variables are, in
order, x0, x1, . . . , xl, and suppose that C1, . . . , Cl is the corresponding set of 2-clauses
in F . If, for each xi, the literal of xi appearing in Ci is the complement of the literal
appearing in Ci+1, then we say that it is a forcing path. Note that such a path is
bidirectional in the sense that there are two literals a and b such that, in any satisfying
assignment, if x0 = a, then xl = b, and if xl = b, then x0 = a. Trivially, a single
vertex is a forcing path of length 0.

For any r ≥ 1, a Yr-configuration consists of:
• r forcing paths and
• a collection of t2 additional 2-clauses and t3 3-clauses whose variables are all

endpoints of the r forcing paths for some t2, t3, with 3
2
t2 + 3t3 ≥ 5

3
r.

Consider a collection of forcing paths P = P1, . . . , Pr of F such that (i) every
variable of F appears on exactly one path and (ii) P is minimal in the sense that it is
impossible to form a collection P1, . . . , Pr−1 satisfying (i) by adding a 2-clause from F
to P. Obviously a collection of paths of length 0, one for each variable of F , satisfies
(i), and so some collection exists which satisfies (i) and (ii).

Lemma 20. If F has at most r/3 pure literals and no isolated cycles, then F has
a Yr-configuration.

Proof. We call the clauses of P path clauses and the other clauses in F nonpath
clauses. Note that every nonpath clause contains only variables that are endpoints of
the paths in P. We define a set X of literals as follows: For each Pi of length 0, we
place both literals of the variable of Pi into X. For each Pi of length at least 1, and
for each endpoint v of Pi, we place the literal of v that does not appear on a clause of
Pi into X. Thus, |X| = 2r, and any literal of X that does not appear in a nonpath
clause is pure.

We form a graph G with vertex set X as follows: Every nonpath 2-clause (a ∨ b)
forms an edge of G: x(a) is defined to be a if a ∈ X and the complement of a
otherwise; x(b) is defined in the same way; the edge of G is between x(a) and x(b).

Let s be the number of pure literals in F , t2 = |E(G)| be the number of 2-clauses,
and t3 be the number of 3-clauses.

Claim 21. Every component of G with either 1 or 2 literals contains a literal
which is either pure or in a 3-clause.

Proof: If the component has 1 literal, then it is either pure or in a 3-clause. So
suppose the component has 2 literals and the edge joining them corresponds to the
clause (a ∨ b). If at least one of a, b is not in X, then the complement of that literal
is either pure or in a 3-clause. If a and b are both in X and if their variables are the
endpoints of the same path in P, then one of them must be in a 3-clause, or else that
path plus (a ∨ b) would form an isolated cycle. If a and b are both in X and their
variables are the endpoints of different paths of P, then it is easy to see that those
two paths plus (a∨ b) form a forcing path. This contradicts the minimality of P, i.e.,
condition (ii) in the definition of P.

Let �1 be the number of components with exactly 1 literal and �2 be the number
with exactly 2 literals. The remaining components have 2r − �1 − 2�2 literals and at
least 2

3
(2r − �1 − 2�2) edges (since the components on those literals each have a size

of at least 3). Therefore, t2 ≥ �2 + 2
3
(2r − �1 − 2�2); i.e. 3

2
t2 ≥ 2r − �1 − 1

2
�2. By
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Claim 18, 3t3 + s ≥ �1 + �2. These combine to yield:

3

2
t2 + 3t3 + s ≥ 2r.

Since s ≤ r/3, F has a Yr-configuration.
Lemma 22. For any Δ, ε > 0, consider a random CNF formula F on n variables

with Δn 3-clauses and (1 − ε)n 2-clauses where every such formula is equally likely.
There is some constant α > 0 such that a.s. F has no Yr-configuration for any r ≤
αn.

Proof. Given r, t2 we specify t3 = � 5
9
r − 1

2
t2� to be the smallest integer t3 such

that 3
2
t2+3t3 ≥ 5

3
r. Clearly, it suffices to show that a.s. there are no Yr-configurations

with such a pair t2, t3. First, we compute the expected number of Yr-configurations
for any choice of t2, t3 that are both at least r/100.

Consider any list of 2-clauses C1, . . . , Cs. The probability that they all appear in
F is

( 4(n2)−s

(1−ε)n−s

)

( 4(n2)
(1−ε)n

) <

(
1 − ε

2(n− 1)

)s

<

(
1 − ε′

2n

)s

for some 0 < ε′ < ε.
We have at most

(
n
r

)
nr choices for the r pairs of endpoints. Suppose that the

numbers of 2-clauses in the paths are l1, . . . , lr, and set L = l1 + · · · + lr. Then
there are nL−r choices for the interior variables on the paths and 2L+r choices for the
literals. We multiply by the probability that all L of these clauses appear and that
there are t2 other 2-clauses and t3 3-clauses on the endpoints. This gives us an upper
bound of

∑

l1,...,lr≥0

(
n

r

)
nL2L+r

(
1 − ε′

2n

)L (
(1 − ε)n

t2

)(
Δn

t3

)(
2r

n

)2t2+3t3

≤
(

2en

r

)r (
en

t2

)t2 (eΔn

t3

)t3 (2r

n

)2t2+3t3 ∑

l1,...,lr≥0

(1 − ε′)L

≤
(γr
n

)t2+2t3−r

⎛
⎝
∑

l≥0

(1 − ε′)l

⎞
⎠

r

for some γ > 0, since t2, t3 ≥ r/100

≤
(
γ′r
n

)r/9

.

For some constant γ′ > 0 since t2 + 2t3 − r = 2
3
( 3
2
t2 + 3t3) − r ≥ 2

3
× 5

3
r − r = r

9
.

If t2 ≤ r/100, then t3 ≥ ( 5
9
− 1

200
)r. For such t2, we compute the expected

number of collections of r vertex-disjoint forcing paths along with t3 3-clauses on their
endpoints. Clearly, if there are no such collections, then there is no Yr-configuration
with those values of t2, t3. As above, we upper bound this expected number with

(
2en

r

)r (
eΔn

t3

)t3 (2r

n

)3t3

⎛
⎝
∑

l≥0

(1 − ε′)l

⎞
⎠

r

<

(
γ′r
n

)r/10

,

with possibly an increase in γ′. If t3 ≤ r/100, then we compute the expected number of
collections of r vertex-disjoint forcing paths along with t2 additional 2-clauses on their
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endpoints. Clearly, if there are no such collections, then there is no Yr-configuration

with those values of t2, t3. Again, this expected number is at most (γ
′r
n )r/10. Thus,

considering that there are O(r) choices for t2, t3, it suffices to show that

αn∑

r=1

r

(
γ′r
n

)r/10

= o(1).

The first log n terms of this sum add up to at most O(log n/n1/10), and if α < 1
2γ′ ,

then the rest add up to at most
∑

i≥logn(1/2)i = o(1).
Lemma 23. A.s. our random F has at most log n variables lying on isolated

cycles.
Proof. Consider the subformula F2 formed by the 2-clauses of F . For any variable

v lying in an isolated cycle of F , there must be a sequence of 2-clauses in F2 of the
form: (v ∨ x1), (x1 ∨ x2), . . . , (xi ∨ v). A well-known property of random 2-SAT (see,
e.g., [11]) says that a.s. there are at most log n such variables.

Proof of Lemma 19. If F ′ is a minimally unsatisfiable subformula of F , then F ′

must be connected and F ′ cannot be an isolated cycle. Therefore F ′ can have no
isolated cycles. Furthermore F ′ can have no pure literals. Therefore, by Lemma 20,
F ′ must have a Yr-configuration for some r ≥ 1. Therefore, by Lemma 22, F a.s. has
no minimally unsatisfiable subformula on at most αn variables, and hence a.s. has no
unsatisfiable subformula on at most αn variables. This establishes part (a).

Consider any subformula on v variables, where 1
2
αn ≤ v ≤ αn. By Lemma 23, F

is a.s. such that, after removing all isolated cycles from such a subformula, we are left
with a subformula F ′ on v′ variables, where 1

2
αn− log n ≤ v′ ≤ αn. It will suffice to

show that a.s. every such F ′ has at least ζn pure literals. By Lemma 22, F is a.s. such
that every subformula on at most αn variables does not have a Yr-configuration for any
r ≥ 1. Therefore, by Lemma 20, there is some r ≥ 1 such that F ′ has at least r/3 pure
literals and F ′ has a collection P of r forcer paths which contain all of its variables.

Well-known properties of random 2-SAT (see, e.g., [11]) imply that there is some
π > 0 such that for every θ > 0 a.s. F has fewer than e−πθ variables that lie on forcing
paths of length at least θ. In fact, the same would be true if we removed from the
definition of forcing path the stipulation that no internal variables lie in any 3-clauses,
thus reducing forcing paths to be defined only in terms of the (1 − ε)n random 2-
clauses of F . Pick θ so that e−πθ < α/4. Thus, at least (α/4)n − log n variables of
F ′ lie on paths in P of length less than θ. Therefore, r > αn/(5θ), and so F ′ has at
least ζn pure literals for ζ = α/(15θ). This establishes part (b).

Appendix B: Two simple lemmas. Here we translate two standard facts from
random graph theory into the setting of this paper.

Lemma 24. A.s. the underlying random hypergraph of Fd,k,t
n,M has fewer than log n

cycles of length at most 4.
Remark. This statement remains true when “4” is replaced by any constant.

It is well known for random graphs, but we can’t find the statement for random
hypergraphs recorded in the literature. So we include the simple proof here.

Proof. For each constant integer r ≥ 2, we compute the expected number of
cycles of length r, by pretending that the vertices of degree 2 in the cycle are labeled
v1 . . . , vr, in order around the cycle; this creates an overcount, which we correct by
dividing by 2r, the number of ways to label each cycle. (For k = 2, we take r ≥ 3
since a simple graph contains no 2-cycles; for r = 2, we must divide by r instead of
2r since there are only 2 ways to label each cycle.)
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There are at most nr choices for v1, . . . , vr and at most
(
n−r
k−2

)r
choices for the other

vertices. This specifies the r edges. There are Mr = (cn)r choices for which random
edges correspond to the edges of the cycle. The probability that each such random

edge is the desired one is
(
n
k

)−r
. So the expected number of cycles of length r is

1

2r
nr

(
n− r

k − 2

)r

(cn)r
(
n

k

)−r

= O(1).

(For r = 2 we replace 1
2r by 1

r .) Thus, the expected number of cycles of length
2 ≤ r ≤ 4 is O(1). So by Markov’s inequality, the probability that this number is at
least log n is O(1/ log n) = o(1) as required.

Remark. With more work, one can show that the probability is much lower than
O(1/ log n); but that is not needed here.

Our second lemma shows how the Fd,k,t
n,M and Fd,k,t

n,p models are, in many senses,

equivalent and, in particular, allows us to use the Fd,k,t
n,p model in the proofs of Lemmas

15 and 16.
We say that a property A of CSPs in Ωd,k,t is monotone increasing if for every

F1, F2 ∈ Ωd,k,t with every constraint of F1 also in F2, if F1 has A, then so does F2.
A is monotone decreasing if the same holds whenever every constraint of F2 is also in
F1. A is monotone if it is either monotone increasing or monotone decreasing.

For example, it is easy to see that the properties considered in the statements of
Lemmas 15 and 16 are both monotone decreasing.

Lemma 25. Let A be any monotone property of CSPs in Ωd,k,t, and let c > 0 be
any positive constant. A holds a.s. for Fd,k,t

n,p , with p = c× k!/nk−1 iff for every real

constant x, A holds a.s. for Fd,k,t
n,M , with M = �cn + x

√
n�.

In particular, taking x = 0 allows us to show that A holds a.s. in Fd,k,t
n,M by proving

that it holds a.s. in Fd,k,t
n,p , as we do in the proofs of Lemmas 15 and 16. The proof is

very straightforward and follows similar proofs in, e.g., [10, 28].
Proof. We assume that A is monotone increasing (the monotone decreasing case

is nearly identical).
Suppose that Fd,k,t

n,p a.s. has A. Fix any real x, and set M = �cn + x
√
n�. Let

γ(n) = Pr(Fd,k,t
n,M does not have A). The probability that the number of edges in

Fd,k,t
n,p is at most M is well known to be at least a positive constant g(x), since this

number is a binomial variable with mean cn. By the monotonicity of A, the probability
that Fd,k,t

n,p does not have A is at least g(x) × γ(n). Therefore, limn→∞ γ(n) = 0, as
required.

For the other direction, suppose that, for every real constant x, A holds a.s. for
Fd,k,t

n,M , with M = �cn + x
√
n�. For any ε > 0, there exists x1 < 0 < x2 such that

the probability that the number of edges in Fd,k,t
n,p is in �cn+x1

√
n�, . . . , �cn+x2

√
n�

is at least 1 − ε. Therefore, the probability that Fd,k,t
n,p does not have A is at most

ε+ o(1). Since this is true for every ε > 0, Fd,k,t
n,p a.s. has A. (Note that this part did

not require A to be monotonic.)
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[13] V. Chvátal and E. Szemerédi, Many hard examples for resolution, J. ACM, 35 (1988),
pp. 759–768.

[14] N. Creignou and H. Daude, Satisfiability threshold for random XOR-CNF formulas, Discrete
Appl. Math., 96-97 (1999), pp. 41–53.
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Abstract. We present a structural characterization of all tournaments T = (V,A) such that,
for any nonnegative integral weight function defined on V , the maximum size of a feedback vertex
set packing is equal to the minimum weight of a triangle in T . We also answer a question of Frank
by showing that it is NP -complete to decide whether the vertex set of a given tournament can be
partitioned into two feedback vertex sets. In addition, we give exact and approximation algorithms
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1. Introduction. A rich variety of combinatorial optimization problems falls
within the general framework of packing and covering in hypergraphs. A hypergraph
is a pair H = (V, E), where V is a finite set and E is a family of subsets of V . Elements
of V and E are called the vertices and edges of H, respectively. A vertex cover of H is
a vertex subset that intersects all edges of H. Let w be a nonnegative integral weight
function defined on V . A family S of edges (repetition is allowed) of H is called a
w-packing of H if each v ∈ V belongs to at most w(v) members of S. Let νw(H)
denote the maximum size of a w-packing of H, and let τw(H) denote the minimum
total weight of a vertex cover. Clearly νw(H) ≤ τw(H); this inequality, however,
need not hold equality in general. We say that H is Mengerian if the min-max
relation νw(H) = τw(H) is satisfied for any nonnegative integral function w defined
on V . Many celebrated results and conjectures in combinatorial optimization can be
rephrased by saying that certain hypergraphs are Mengerian (see section 79.1 of [19]),
so Mengerian hypergraphs have been subjects of extensive research. As conjectured
by Edmonds and Giles [9, 18] and proved recently by Ding, Feng, and Zang [4], the
problem of recognizing Mengerian hypergraphs is NP -hard in general, and hence it
cannot be solved in polynomial time unless NP = P . In this paper we study a
special class of Mengerian hypergraphs; our work is a continuation of those done in
[1, 2, 3, 5, 6].

Let G = (V,E) be a graph (directed or undirected), and let CG = (V, E), where E
consists of V (C), for all induced cycles C in G. Throughout this paper, by a cycle in
a digraph we always mean a directed one. In [6], Ding and Zang obtained a structural
description of all undirected graphs G for which CG is Mengerian. Due to the long
list of forbidden structures, to find a good characterization of all digraphs G with
Mengerian CG seems to be extremely difficult. While this characterization problem
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Fig. 1. Forbidden subtournaments F1 and F2, where the two arcs not shown in F1 may take
any directions.

remains open in general, it was completely solved on tournaments by Cai, Deng, and
Zang [1], where a tournament is an orientation of an undirected complete graph.

Theorem 1.1 ([1]). Let T be a tournament. Then hypergraph CT is Mengerian
if and only if T has no subtournament isomorphic to F1 nor F2.

(Note that F2 is the tournament in which every vertex is incident with precisely
two incoming arcs and two outgoing arcs.) One objective of this paper is to establish
a closely related min-max relation which is motivated as follows.

Every hypergraph H = (V, E) is naturally associated with another hypergraph
b(H) = (V, E ′), where E ′ consists of all minimal (with respect to set inclusion) vertex
covers of H. Usually b(H) is called the blocker of H. Although in general the blocker
of a Mengerian hypergraph does not have to be Mengerian (see section 79.2 of [19]),
the famous max-flow-min-cut theorem and a Fulkerson theorem [11] (see p. 115 of
[18]) assert that both the hypergraph of r-s paths in a graph and its blocker are
Mengerian; so are the hypergraph of r-arborescences and its blocker by Edmonds’
disjoint arborescence theorem [7] and Fulkerson’s optimum arborescence theorem [12].
Recently, Chen et al. [3] managed to characterize all undirected graphs G for which
b(CG) is Mengerian; it turns out that b(CG) is Mengerian if and only if CG is. So a
natural question is to ask: What is the blocker version of Theorem 1.1?

Theorem 1.2. Let T be a tournament. Then hypergraph b(CT ) is Mengerian if
and only if T has no subtournament isomorphic to F1 nor F2 (see Figure 1).

An immediate corollary of Theorems 1.1 and 1.2 is the following.
Corollary 1.3. Let T be a tournament. Then b(CT ) is Mengerian if and only

if CT is.
Let us define a few terms before presenting an equivalent of the above statements.

Let G = (V,E) be a digraph with a nonnegative integral weight w(v) on each vertex
v. A feedback vertex set (FVS) of G is a vertex subset that intersects each cycle in G,
and a w-FVS packing of G is a collection F of minimal FVSs (repetition is allowed)
such that each vertex v is contained in at most w(v) members of F . Similarly, a w-
cycle packing of G is a collection C of induced cycles (repetition is allowed) such that
each vertex v is contained in at most w(v) members of C. The weight of a cycle (resp.,
an FVS) is the sum of weights of all vertices in this cycle (resp., FVS). Observe that
every minimal FVS of G uniquely corresponds to an edge of b(CG), and vice versa.
So there is 1 − 1 correspondence between a w-FVS packing of G and a w-packing of
b(CG) and 1 − 1 correspondence between a w-cycle packing of G and a w-packing of
CG. Moreover, if G is a tournament, then every cycle in a cycle packing is a triangle
(a cycle of length three), and hence a cycle packing is actually a triangle packing.

Let Z+ denote the set of nonnegative integers. Then Theorems 1.1 and 1.2 can
be restated as follows.
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Theorem 1.4. The following three statements are equivalent for a tournament
T = (V,A):

(i) For any weight function w ∈ ZV
+, the minimum weight of an FVS in T is

equal to the maximum size of a w-triangle packing of T ;
(ii) for any weight function w ∈ ZV

+, the minimum weight of a triangle in T is
equal to the maximum size of a w-FVS packing of T ;

(iii) T has no subtournament isomorphic to F1 nor F2.
It is worthwhile pointing out that the above statement (i) is closely related to the

famous Lucchesi–Younger theorem [15], which, when restricted to a planar digraph
G = (V,E), is equivalent to saying that for any w ∈ ZE

+ the minimum weight of a
feedback arc set in G is equal to the maximum size of a cycle packing of G, where
a feedback arc set of G is a set of arcs that intersects each cycle in G; statement (ii)
is closely related to the well-known Woodall conjecture [20] on packing feedback arc
sets and the Edmonds–Giles conjecture [8, 17] on packing directed cut covers.

Given a digraph G = (V,E) with a nonnegative integral weight w(v) on each
vertex v, the FVS packing problem is to find a w-FVS packing of maximum size in G.
In connection with this problem, Frank suggested the following question.

Question 1.5 ([10]). Given a digraph G, can we decide in polynomial time
whether each vertex of G can be colored by red or blue so that every cycle contains
at least one red vertex and at least one blue vertex? Or is this an NP-complete
problem?

Our next theorem states that Frank’s problem is NP -complete even when G is
restricted to a tournament.

Theorem 1.6. It is NP-complete to decide whether the vertex set of a given
tournament can be partitioned into two feedback vertex sets.

We shall also present algorithms for the FVS packing problem.
Theorem 1.7. The FVS packing problem on a tournament T = (V,A) with no

F1 nor F2 can be solved exactly in O(|V |4) time.
For the problem on a general tournament, we shall give an approximation algo-

rithm.
Theorem 1.8. The FVS packing problem on a general tournament can be ap-

proximated within a factor of 2/5.
The remainder of this paper is organized as follows: In section 2, we give a proof

of Theorem 1.2, which relies heavily on the structural description of tournaments with
no F1 nor F2 obtained in [1]. In section 3, we prove Theorem 1.6 by using the so-called
Not-All-Equal 3-Satisfiability problem as the source problem. In section 4, we
present an exact algorithm for the FVS packing problem on tournaments with no
F1 nor F2 and describe a 2/5-approximation algorithm for the problem on general
tournaments. In section 5, we conclude this paper with some open problems.

2. Min-max relation. The purpose of this section is to prove Theorem 1.2. We
break the proof into a series of lemmas and shall implicitly and frequently use the
fact that a vertex subset of a tournament is an FVS if and only if it intersects every
triangle. As usual, a digraph G is called strongly connected if, for any two vertices x
and y, there exist a (directed) path from x to y and a (directed) path from y to x in
G. Our proof relies heavily on the following structural description obtained in [1].

Lemma 2.1 ([1]). Let T = (V,A) be a strongly connected tournament. Then T
has no subtournament isomorphic to F1 nor F2 if and only if V can be partitioned
into V1, V2, . . . , Vk for some 3 ≤ k ≤ |V |, which have the following properties:

(i) For any i, j with 1 ≤ i ≤ j−2 ≤ k−2, each arc between Vi and Vj is directed
from Vj to Vi.
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F1

u1

u4u5

u2 u3

F1

u1

u5

u2

u4

u3

F2

u5

u3

u2

u4

u1

Fig. 2. Three triangles u1u2u3u1, u2u3u4u2, and u1u4u5u1 in F1 and F2.

(ii) For any triangle xyzx in T , there exists an i with 1 ≤ i ≤ k − 2 such that
x ∈ Vi, y ∈ Vi+1, and z ∈ Vi+2 (renaming x, y, and z if necessary).

We make two remarks on the above lemma: First, for notational convenience, the
order of the indices used in the above partition V1, V2, . . . , Vk is precisely the reverse
of the one used in [1]. Second, as depicted in Figure 2, the vertices of both F1 and F2

can be labeled as u1, u2, . . . , u5 such that {u1, u2, u3}, {u2, u3, u4}, and {u1, u4, u5}
are vertex sets of three triangles. Using these triangles, we can immediately see the
sufficiency.

Let T = (V,A) be a tournament and u, v ∈ V . The arc in T with tail u and head
v is written as (u, v) and called the arc from u to v. For any subtournament K of
T , let V (K) and A(K) denote the vertex set and arc set of K, respectively. For any
vertex u of T , let T\u denote the tournament obtained from T by deleting u, and
let T 〈u〉 denote the tournament obtained from T by introducing a new vertex u′ and
then adding arcs in such a way that

(1∗)
for each v ∈ V − {u}, (u′, v) is an arc in T 〈u〉 if and only if (u, v) is an arc in T .

(There is no direction constraint on the arc between u and u′.) We propose to call u′

the image of u and call T 〈u〉 an augmentation of T (with respect to u). It can be seen
from (1∗) that

(2∗) no triangle in T 〈u〉 contains {u, u′}.
Lemma 2.2. Let T 〈u〉 be an augmentation of a tournament T = (V,A). If T

contains no F1 nor F2, then neither does T 〈u〉.
Proof. Assume the contrary: T 〈u〉 contains a subtournament F isomorphic to F1

or F2. Let u′ be the image of u. Then F contains both u and u′, for otherwise, by
(1∗), V (F\u′) ∪ {u} would induce a subtournament in T isomorphic to F , which is a
contradiction.

(1) We may assume that T is strongly connected.
Suppose not, let K be the strongly connected component of T 〈u〉 that contains F

(such K is available since F is strongly connected). Then K\u′ is strongly connected,
for otherwise the vertex set of K\u′ can be partitioned into X and Y such that all
arcs between X and Y are directed to Y . Without loss of generality, we assume that
u ∈ X. Since u′ is the image of u, all arcs in K between X ∪ {u′} and Y are directed
to Y , contradicting the strong connectivity of K. Since K is an augmentation of K\u′

(with respect to u), we get (1); otherwise, replace T by K\u′ and T 〈u〉 by K.
It follows from (1) that the vertex set V of T admits a partition V1, V2, . . . , Vk with

properties (i) and (ii) as described in Lemma 2.1. Suppose u ∈ Vh. Let us partition the
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vertex set V ∪{u′} of T 〈u〉 into k sets V ′
i such that V ′

h = Vh∪{u′} and V ′
j = Vj for all

other j with 1 ≤ j ≤ k. From (1∗), we see that the partition V ′
1 , V

′
2 , . . . , V

′
k satisfies

(i) in Lemma 2.1 with respect to T 〈u〉. Since F is contained in T 〈u〉, Lemma 2.1
guarantees the existence of a triangle xyzx in T 〈u〉 that violates (ii) in the lemma
with respect to the partition V ′

1 , V
′
2 , . . . , V

′
k. Note that {x, y, z} contains at most one

of u and u′ by (2∗). Set Q = {x, y, z} if u′ �∈ {x, y, z} and Q = ({x, y, z}−{u′})∪{u}
otherwise. Then Q would induce a triangle in T that violates Lemma 2.1(ii) with
respect to the partition V1, V2, . . . , Vk, which is a contradiction.

Let T = (V,A) be a tournament, and let S ⊆ V . We shall use the following
notations in our proof:

(3∗) DS := {C : Cis a triangle in T and |V (C) ∩ S| = 2},
(4∗) FS := {C : C is a triangle in T, V (C) ⊆ S, and

|V (C) ∩ V (C ′)| ≤ 1 for every C ′ ∈ DS},
(5∗) F+

S := {C : C is a triangle in T, V (C) ⊆ S, and
|V (C) ∩ V (C ′)| = 2 for some C ′ ∈ DS}.

Let C be a collection of some triangles in T . Write V (C ) = ∪C∈CV (C). It follows
from the definition that V (DS) − S �= ∅ if DS �= ∅ and that V (FS) ∪ V (F+

S ) ⊆ S.
Lemma 2.3. Let T = (V,A) be a tournament with no subtournament isomorphic

to F1 nor F2. Suppose S is a subset of V such that DS �= ∅ and that |S ∩ V (C)| ≥ 2
for every triangle C of T . Then there exists R ⊆ S such that |R∩V (C)| = 1 for every
triangle C ∈ DS. Moreover, given S, such an R can be found in O(|V |3) time.

Proof. Let us first construct an undirected graph G with vertex set S as follows:
uv is an edge of G if and only if there is a triangle C in T such that {u, v} = S∩V (C).
If G is a bipartite graph, let R be one color class of G, and then R is as desired. So
we assume that G is nonbipartite and aim to reach a contradiction. To this end, let
x1x2 . . . x2l+1x1 be the shortest odd cycle of G. From the construction of G, we see
that, for every i with 1 ≤ i ≤ 2l + 1, there exists a vertex yi in V − S such that
{xi, xi+1, yi} induces a triangle, denoted by �i, in DS . Note that yi’s may not be
distinct.

Let T0 denote the subtournament of T induced by vertex subset {xi, yi : 1 ≤ i ≤
2l + 1}. Then

(1) �i, for i = 1, 2, . . . , 2l + 1, are 2l + 1 triangles in T0, where x2l+2 = x1.
Let us perform a sequence of 2l + 1 augmentations in the following iterative

way: Ti := Ti−1〈yi〉; that is, Ti is an augmentation of Ti−1 with respect to yi, for
i = 1, 2, . . . , 2l+1. Let y′i be the image of yi involved in the construction of Ti, and let
Ci denote the triangle y′ixixi+1y

′
i if �i = yixixi+1yi and y′ixi+1xiy

′
i otherwise. Since

{x1, x2, . . . , x2l+1} ∩ {y1, y2, . . . , y2l+1} = ∅ = {y′1, y′2, . . . , y′2l+1} ∩ {y1, y2, . . . , y2l+1},
and since x1, x2, . . . , x2l+1, y

′
1, y

′
2, . . . , y

′
2l+1 are distinct vertices, by (1) we have

(2) Ci, for i = 1, 2, . . . , 2l+1, are 2l+1 triangles in T2l+1, with the property that
no vertex of T2l+1 is contained in more than two of them.

Since T0 is a subtournament of T , it contains no F1 nor F2. Repeated applications
of Lemma 2.2 yield the following:

(3) For any 0 ≤ i ≤ 2l + 1, tournament Ti contains no F1 nor F2.
Let us make one more simple observation.
(4) For any 0 ≤ i ≤ 2l+1, every triangle in Ti contains at least two vertices from

{x1, x2, . . . , x2l+1}.
To justify (4), we apply induction on i. For i = 0, since S ∩ V (T0) = {x1, x2, . . . ,

x2l+1} and |S ∩ V (C)| ≥ 2 for every triangle C of T0 (by hypothesis), the desired
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statement follows. Suppose we have established the assertion for Ti−1. Let us proceed
to the induction step for Ti. Let xyzx be an arbitrary triangle in Ti. Set Q = {x, y, z}
if y′i /∈ {x, y, z} and Q = ({x, y, z} − {y′i}) ∪ {yi} otherwise. It follows from (1∗) and
(2∗) that Q induces a triangle in Ti−1. So it contains at least two vertices from
{x1, x2, . . . , x2l+1} by induction hypothesis. We can thus deduce that the triangle
xyzx also contains at least two vertices from {x1, x2, . . . , x2l+1} as yi and y′i are both
outside {x1, x2, . . . , x2l+1}. So (4) is proved.

It can be seen from (2) that the minimum size of an FVS of T2l+1 is at least
l+ 1. In view of (3), Theorem 1.1 (which is equivalent to Theorem 1.4(i)) guarantees
the existence of at least l + 1 vertex-disjoint triangles in T2l+1. By (4), each of these
l + 1 triangles contains at least two vertices from {x1, x2, . . . , x2l+1}. Hence the size
of {x1, x2, . . . , x2l+1} is at least 2(l + 1), which is a contradiction.

Since there are O(|V |3) triangles altogether in T , it takes O(|V |3) time to find
the edge set of G. From the proof we see that G is a bipartite graph. Since the two
color classes of G can be obtained in linear time by using depth first search, R can be
found in O(|V |3) time.

Lemma 2.4. Let T = (V,A) be a tournament with no subtournament isomorphic
to F1 nor F2. Suppose S is a subset of V that contains at least two vertices from
every triangle in T . Then V (C) � V (DS) for every triangle C ∈ FS.

Proof. We may assume that T is strongly connected; otherwise, we turn to con-
sider the strongly connected components of T separately. Thus V admits a partition
V1, V2, . . . , Vk as described in Lemma 2.1. For every v ∈ V , we use l(v) to denote
the index i such that v ∈ Vi. Let D = (V,B) be the digraph obtained from T by
deleting all arcs from Vj to Vi with i ≤ j − 2; in other words, (u, v) ∈ B if and only if
(u, v) ∈ A and |l(u) − l(v)| ≤ 1. So each arc (u, v) in D falls into precisely one of the
following three categories: We call (u, v) an upward arc if l(u) = l(v)− 1, a downward
arc if l(u) = l(v) + 1, and a level arc if l(u) = l(v). By Lemma 2.1(ii), we have the
following:

(1) D contains no triangle. A (directed) path in D is called upward if it consists
of three vertices and two upward arcs. It follows from Lemma 2.1 that an upward
path P in D corresponds to a triangle in T (induced by V (P )), and vice versa. By
the hypothesis on S, we get

(2) |V (P ) ∩ S| ≥ 2 for any upward path P in D. We prove the lemma by
contradiction. Assume the contrary: {a, b, c} ⊆ V (DS) for some triangle abca ∈ FS .
Suppose i = l(a) = l(b)−1 = l(c)−2 for some 1 ≤ i ≤ k−2. Then (4∗) guarantees the
existence of three triangles xx′x′′x, yy′y′′y, and zz′z′′z in DS such that a ∈ {x, x′, x′′},
b ∈ {y, y′, y′′}, and c ∈ {z, z′, z′′} and that

(3) xx′x′′, yy′y′′, and zz′z′′ are upward paths; that is, l(x) = l(x′)−1 = l(x′′)−2,
l(y) = l(y′) − 1 = l(y′′) − 2, and l(z) = l(z′) − 1 = l(z′′) − 2.

Since each upward path in D corresponds to a triangle in T , it follows from (4∗)
that

(4) no upward path in D can go through two vertices in {a, b, c} and a vertex in
V − S. In particular, for any u ∈ V − S and v ∈ {a, b, c} with |l(u) − l(v)| = 1, the
arc between u and v is downward unless v ∈ {a, c} and l(u) = i + 1.

Using (1), (3), (4), and the fact |{x, x′, x′′} ∩ S| = |{y, y′, y′′} ∩ S| = |{z, z′, z′′} ∩
S| = 2 (by (3∗)), we can enumerate all possible configurations of the three triangles
xx′x′′x, yy′y′′y, and zz′z′′z, which are described in (5), (6), and (7), respectively;
see Figure 3 for an illustration, where vertices in S are indicated by black points and
those outside S by small circles.



A MIN-MAX THEOREM ON TOURNAMENTS 929

( )51.

x

x'

x''=a

b

c

( )52.

x''

x

x'=a

b

c

( )53.

x

x'

x''

=a

b

c

( )54.

x

x'

x''

=a

b

c

( )61.

y'a

y''=b

c

y

( )62.

c

a

=by

y''

y'

( )71.

z'b

=cz''

za

( )72.

b

=cz''

a z

z' b

=cz'

z''

z

a

( )73. ( )74.

z'

z''

z c=

b

a

Fig. 3. Possible configurations of triangles xx′x′′x, yy′y′′y, and zz′z′′z.

(5) For triangle xx′x′′x, exactly one of the following holds:
(5.1) x ∈ Vi−2 − S, x′ ∈ Vi−1 ∩ S, x′′ = a ∈ Vi ∩ S;
(5.2) x ∈ Vi−1 ∩ S, x′ = a ∈ Vi ∩ S, x′′ ∈ Vi+1 − S, and downward (c, x′′) ∈ B,

level (b, x′′) ∈ B;
(5.3) x = a ∈ Vi ∩ S, x′ ∈ Vi+1 − S, x′′ ∈ Vi+2 ∩ S, and downward (c, x′) ∈ B,

level (b, x′) ∈ B;
(5.4) x = a ∈ Vi ∩ S, x′ ∈ Vi+1 ∩ S, x′′ ∈ Vi+2 − S, and downward (x′′, b) ∈ B,

level (x′′, c) ∈ B.
(6) For triangle yy′y′′y, exactly one of the following holds:
(6.1) y ∈ Vi−1 − S, y′ ∈ Vi ∩ S, y′′ = b ∈ Vi+1 ∩ S, and downward (a, y) ∈ B;
(6.2) y = b ∈ Vi+1 ∩ S, y′ = Vi+2 ∩ S, y′′ ∈ Vi+3 − S, and downward (y′′, c) ∈ B.
(7) For triangle zz′z′′z, exactly one of the following holds:
(7.1) z ∈ Vi −S, z′ ∈ Vi+1 ∩S, z′′ = c ∈ Vi+2 ∩S, and downward (b, z) ∈ B, level

(a, z) ∈ B;
(7.2) z ∈ Vi ∩ S, z′ ∈ Vi+1 − S, z′′ = c ∈ Vi+2 ∩ S, and downward (z′, a) ∈ B,

level (z′, b) ∈ B;
(7.3) z ∈ Vi+1 − S, z′ = c ∈ Vi+2 ∩ S, z′′ ∈ Vi+3 ∩ S, and downward (z, a) ∈ B,

level (z, b) ∈ B;
(7.4) z = c ∈ Vi+2 ∩ S, z′ ∈ Vi+3 ∩ S, z′′ ∈ Vi+4 − S.
(8) The following statements hold:
(8.1) Either (5.1) or (6.1) fails;
(8.2) either (6.2) or (7.4) fails;
(8.3) either (5.4) or (6.2) fails;
(8.4) either (6.1) or (7.1) fails.
To justify (8.1), suppose to the contrary that both (5.1) and (6.1) hold. Using

(1) and path x′x′′y = x′ay, we get level (x′, y) ∈ B, which in turn gives upward
(x, y) ∈ B (as path xx′y does not correspond to a triangle in D). Thus xyy′ is an
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upward path with x, y outside S, contradicting (2). Hence we have (8.1). Similarly,
the violation of (8.2) (resp., (8.3), (8.4)) would give {(y′′, z′), (y′′, z′′)} ⊆ B (resp.,
{(x′′, y′), (x′′, y′′)} ⊆ B, {(y′, z), (y, z)} ⊆ B) and upward path y′y′′z′′ (resp., x′x′′y′′,
yzz′), contradicting (2) again.

(9) The following statements hold:
(9.1) Either (5.1) or (7.1) fails;
(9.2) either (5.4) or (7.4) fails.
Indeed, if both (5.1) and (7.1) hold, then, using (1) and path x′az, we have upward

(x′, z) ∈ B and hence have the upward path xx′z with {x, z} ⊆ V − S, contradicting
(2). Similarly, if both (5.4) and (7.4) hold, then (x′′, z′) ∈ B, and so the upward path
x′′z′z′′ contradicts (2).

(10) The following statements hold:
(10.1) Either (5.4) or (7.2) fails;
(10.2) either (5.3) or (7.1) fails.
Indeed, if both (5.4) and (7.2) hold, then, using (1) and path z′ax′, we have level

(z′, x′) ∈ B. In view of path z′x′x′′, we further have upward (z′, x′′) ∈ B. Thus zz′x′′

contradicts (2). Similarly, if both (5.3) and (7.1) hold, then we have level (z′, x′) ∈ B
and upward (z, x′) ∈ B. It follows that the upward path zx′x′′ contradicts (2).

(11) The following statements hold:
(11.1) Either (5.4) or (7.3) fails;
(11.2) either (5.2) or (7.1) fails.
Indeed, if both (5.4) and (7.3) hold, then, using (1) and paths x′′cz′′ and zax′, we

have upward (x′′, z′′) ∈ B and level (z, x′) ∈ B, respectively. Using path zx′x′′, we
obtain upward (z, x′′) ∈ B. Thus the upward path zx′′z′′ contradicts (2). Similarly,
if both (5.2) and (7.1) hold, then we have {(x, z), (z′, x′′), (z, x′′)} ⊆ B. Thus the
upward path xzx′′ contradicts (2).

(12) Either (5.4) or (6.2) holds.
Suppose otherwise; then from (6) and (5), we see that (6.1) and one of (5.1)–(5.3)

hold. In view of (8.1), we further conclude that (5.2) or (5.3) holds. From (5.2) and
(5.3), it follows that {u} = {x′, x′′} ∩ Vi+1 ⊆ V − S and (b, u) ∈ B is level. Using (1)
and path y′y′′u, we have upward (y′, u) ∈ B and hence the upward path yy′u with
{y, u} ⊆ V − S, contradicting (2).

(13) Either (6.1) or (7.1) holds.
Suppose otherwise; then (6) and (7) imply that (6.2) and one of (7.2)–(7.4) hold.

Using (8.2), we further conclude that (7.2) or (7.3) holds. By (7.2) and (7.3), we have
{u} = {z, z′} ∩ Vi+1 − S and level (u, b) ∈ B. Using (1) and path uby′ = uyy′, we get
upward (u, y′) ∈ B and hence upward path uy′y′′, which contradicts (2).

(14) (6.2) holds (so (6.1) fails).
Suppose otherwise; (6.2) fails (so (6.1) holds by (6)). It follows from (12) and

(8.4) that (5.4) holds and (7.1) fails. Hence, by (7), one of (7.2), (7.3), and (7.4)
holds, which leads to a contradiction to one of (10.1), (11.1), and (9.2).

It follows from (14) and (13) that (7.1) holds, which, together with (9.1) and
(10.2), implies that neither (5.1) nor (5.3) holds. Moreover, the combination of (14)
and (8.3) yields the failure of (5.4). Thus from (5) we see that (5.2) holds, contra-
dicting (11.2).

Lemma 2.5. Let T = (V,A) be a tournament with no subtournament isomorphic
to F1 nor F2. Suppose S is a subset of V such that DS∪FS �= ∅ and that |S∩V (C)| ≥ 2
for every triangle C of T . Then there exists R ⊆ S such that |R∩V (C)| = 1 for every
triangle C in DS ∪FS. Moreover, given S, such an R can be found in O(|V |3) time.
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Proof. We prove by contradiction. Assume (T, S) is a counterexample with min-
imum |S|. It follows instantly from Lemma 2.3 that FS �= ∅. Let C0 be a triangle in
FS . Then Lemma 2.4 guarantees the existence of some v ∈ V (C0) with v �∈ V (DS).
By considering (T, S − {v}), we deduce from the minimality of S that there exists
R ⊆ S−{v} which contains exactly one vertex from each triangle in DS−{v}∪FS−{v}.
Note that C0 ∈ DS−{v}. So |R ∩ V (C)| = 1 for every triangle C in DS ∪ FS , which
is a contradiction.

Let s1, s2, . . . , sk be all of the vertices in S. We apply the following algorithm to
S. While i ≤ k, do: set S = S − {si} if si is contained in no triangle C such that
|V (C) ∩ S| = 2.

Since there are O(|V |2) triangles altogether in T containing si, each iteration takes
O(|V |2) time, and hence the whole algorithm runs in O(|V |3) time. Let S′ denote the
resulting S. From the above proof, we see that FS′ = ∅ and that DS′ = DS ∪ FS ,
where S is the initial one. By Lemma 2.3 (with S′ in place of S over there), we can
find a subset R of S′ in O(|V |3) time, such that |R ∩ V (C)| = 1 for every triangle
C ∈ DS′ . This R is clearly as desired.

Now we are ready to establish the min-max relation.
Proof of Theorem 1.2. We shall actually show that statements (ii) and (iii) in

Theorem 1.4 are equivalent. For convenience, we use the following notations in our
proof. Given a tournament T = (V,A) and a weight function w ∈ ZV

+, let τw denote
the minimum weight of a triangle in T , and let νw denote the maximum size of a
w-FVS packing of T . Recall that we always have

(1) νw ≤ τw.
(ii)⇒(iii) Suppose the contrary: T = (V,A) contains a subtournament F isomor-

phic to F1 or F2. Define w ∈ ZV
+ as w(v) = 1 for each v ∈ V . Then τw = 3. It is easy

to see that each FVS of T contains at least two vertices in F . Since |V (F )| = 5, we
have νw ≤ 2. Hence τw �= νw, contradicting (ii).

(iii)⇒(ii) Let T = (V,A) be a tournament with no F1 nor F2. To prove that
νw = τw for any w ∈ ZV

+, we apply induction on |V |.
The min-max relation holds trivially when |V | ≤ 3. So we proceed to the induction

step and assume that we have already proved the assertion for any tournament with
no F1 nor F2 and with fewer vertices than T .

To establish the induction step, we apply induction on τw. Clearly, τw = νw if
τw = 0. So we assume τw > 0 and distinguish between two cases.

Case 1. w(z) ≥ τw for some vertex z ∈ V . Set w′ = w|V−{z}. By the induction
hypothesis on T\z (with respect to the weight function w′), we get νw′ = τw′ . So it
can be seen that

• either T\z is acyclic,
• or there exists a w′-FVS packing S ′ of T\z with size τw (for τw′ ≥ τw).

In the former case, define S to be the multiset consisting of τw copies of {z}; in the
latter case, define S := {S′ ∪{z} : S′ ∈ S ′}. Then S is a collection of FVSs of T with
size τw, which clearly yields a w-FVS packing of T with size τw (by the assumption
of case 1). So by (1) we have νw = τw.

Case 2. w(z) < τw for any vertex z ∈ V . Set S := {v ∈ V : w(v) ≥ 1}. It follows
from the assumption of the present case that

(2) |S ∩ V (C)| ≥ 2 for every triangle C in T .
In view of (2), the set of triangles of T is the disjoint union of three sets DS , FS ,

and F+
S (recall (3∗)–(5∗)). It follows from the definition of F+

S that
(3) all triangles C with

∑
v∈V (C) w(v) = τw are contained in DS ∪ FS .



932 XUJIN CHEN, XIAODONG HU, AND WENAN ZANG

By Lemma 2.5, there exists R ⊆ S such that |R ∩ V (C)| = 1 for every triangle
C in DS ∪ FS . From the definition of F+

S , we see that R is an FVS of T . Set

δ = min{w(v) : v ∈ R}. Then δ ≥ 1. Define w′ ∈ ZV
+ as w′(v) = w(v) − δ|R ∩ {v}|

for all v ∈ V .
(4) τw′ = τw − δ.
To justify (4), it suffices to show that |R ∩ V (C)| ≤ 2 for every C ∈ F+

S (by (3)
and the selection of R). It is the case since any such C shares with some triangle in
DS two vertices, one of which is in S −R. So (4) follows.

By the induction hypothesis on τw′ and by (4), T has a w′-FVS packing S of size
τw − δ. Clearly, {R,R, . . . , R}∪S is a collection of FVSs of T with size τw, where the
multiplicity of R is δ. This collection clearly yields a w-FVS packing of T with size
τw. So by (1) we have νw = τw.

Combining the above two cases, we complete the proof of the induction step and
hence our min-max theorem.

3. NP-completeness. For convenience, let us call the problem addressed in
Theorem 1.6 the partition problem. We show its NP -completeness in this section.

Proof of Theorem 1.6. Clearly, the partition problem is in NP . To prove the
assertion, we appeal to the following Not-All-Equal 3-Satisfiability problem
(Not-All-Equal-3SAT): Given n Boolean variables λ1, λ2, . . . , λn and m clauses
c1, c2, . . . , cm in CNF, each of which contains exactly three literals (variables or their
negation), determine whether there exists an assignment of Boolean values to the
variables such that for each clause at least one literal is true and at least one literal
is false. It was shown by Schaefer [16] that Not-All-Equal-3SAT is NP -complete.
Our objective is to reduce Not-All-Equal-3SAT to the partition problem.

For this purpose, let λ1, λ2, . . . , λn be the set of variables, and let c1, c2, . . . , cm
be the set of clauses in an arbitrary instance of Not-All-Equal-3SAT. We propose
to construct a tournament T with 5n + 3m + 3 vertices such that the vertex set of T
can be partitioned into two FVSs if and only if c1 ∧ c2 ∧ · · · ∧ cm is satisfiable (with
respect to Not-All-Equal-3SAT). The construction goes as follows (see Figures 4
and 5 for an illustration):

(i) To every variable λi, 1 ≤ i ≤ n, we associate a tournament Xi with vertex
set

V (Xi) = {xh
i : h = 1, 2, 3, 4, 5}

and arc set

A(Xi) = {(xg
i , x

h
i ) : 1 ≤ g < h ≤ 5 and

(g, h) �∈ {(1, 5), (2, 4)}} ∪ {(x5
i , x

1
i ), (x

4
i , x

2
i )};

(ii) to every clause cj = c1j ∨ c2j ∨ c3j , 1 ≤ j ≤ m, we associate a triangle Zj =

z1
j z

2
j z

3
j z

1
j ;

(iii) let V := (∪n
i=1V (Xi))∪V (Y )∪(∪m

j=1V (Zj)), where Y = y1y2y3y1 is a triangle,
and all Xi’s, Y , and Zj ’s are pairwise disjoint;

(iv) to every z = zkl ∈ ∪m
j=1V (Zj), 1 ≤ k ≤ 3, 1 ≤ l ≤ m, we associate an arc αz

from zkl to x1
i if ckl = λi and from zkl to x5

i if ckl = λ̄i;
(v) let A be the disjoint union of ∪n

i=1A(Xi), A(Y ), ∪m
j=1(A(Zj) ∪ {αz : z ∈

V (Zj)}), and {(u, v) : u and v satisfy one of (a)–(e)}:
(a) u ∈ V (Xi), v ∈ V (Xi′), and i < i′;
(b) u ∈ ∪n

i=1V (Xi) and v ∈ V (Y );
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Zj

xi
1 xi

2 xi
3 xi

4 xi
5

zj
1 zj

2 zj
3

Xi

z z= k
l

αz

z z= p
q

αz'

'

y1

y2

y
3

Y

. . .. . . . . .. . .

. . .. . .

Fig. 4. An illustration of constructions (i)–(iv), where ckl = λi and cpq = λ̄i.

.. . ... ... Y

Z1

X1 X2x2
1 X3x1

3
1 X4x4

1

z1 z2 z3
11 1

Z2

z1 z2 z3
22 2

.. .

...
...

x11
1 x5x5

1 x5
2 x5x5

3 x5
4

Fig. 5. Tournament T resulting from the instance (λ1 ∨ λ̄3 ∨ λ̄4) ∧ (λ̄1 ∨ λ2 ∨ λ̄4).

(c) u ∈ ∪n
i=1V (Xi), v ∈ ∪m

j=1V (Zj), and αv is not directed to u;
(d) u ∈ V (Y ) and v ∈ ∪m

j=1V (Zj);
(e) u ∈ V (Zj), v ∈ V (Zj′), and j < j′.

The construction is completed. It is easy to see that the construction can be ac-
complished in polynomial time, and the resulting digraph T = (V,A) is a tournament.
The tournament T resulting from the Not-All-Equal-3SAT instance with n = 4,
m = 2, c1 = λ1 ∨ λ̄3 ∨ λ̄4, and c2 = λ̄1 ∨ λ2 ∨ λ̄4 is illustrated in Figure 5.

Let us define a linear order ≺ on the vertex set of T as follows: x1
1 ≺ x2

1 ≺ x3
1 ≺

x4
1 ≺ x5

1 ≺ x1
2 ≺ x2

2 ≺ x3
2 ≺ x4

2 ≺ x5
2 ≺ · · · ≺ x1

n ≺ x2
n ≺ x3

n ≺ x4
n ≺ x5

n ≺ y1 ≺ y2 ≺
y3 ≺ z1

1 ≺ z2
1 ≺ z3

1 ≺ z1
2 ≺ z2

2 ≺ z3
2 ≺ · · · ≺ z1

m ≺ z2
m ≺ z3

m. Observe
(1) Set

B := {(x5
i , x

1
i ), (x

4
i , x

2
i ) : 1 ≤ i ≤ n} ∪ {(y3, y1)}

∪{(z3
j , z

1
j ) : 1 ≤ j ≤ m} ∪ {αz : z ∈ ∪m

j=1V (Zj)}.
(In Figure 4, the arcs in B are bold lined.) Then for any u, v ∈ V with u ≺ v,
arc (v, u) ∈ A if and only if (v, u) ∈ B;

(2) for every 1 ≤ i ≤ n, there are four triangles

X1
i = x2

ix
3
ix

4
ix

2
i and Xh

i = x1
ix

h
i x

5
ix

1
i , h = 2, 3, 4,

altogether in tournament Xi; and
(3) for every z ∈ ∪m

j=1V (Zj), there are three triangles Y i
z , i = 1, 2, 3, altogether

in T through αz and yi.



934 XUJIN CHEN, XIAODONG HU, AND WENAN ZANG

It follows from (1) that every triangle in T contains one or two arcs in B. Fur-
thermore, since no two arcs in B − {αz : z ∈ ∪m

j=1V (Zj)} have a common end, from
the construction of T and (2) we see that

(4) every triangle of T is either in {Xh
i : 1 ≤ h ≤ 4, 1 ≤ i ≤ n} ∪ {Y } ∪ {Zj : 1 ≤

j ≤ m} or contains αz for some z ∈ ∪m
j=1V (Zj).

Now we are ready to show that the vertex set of T can be partitioned into two
FVSs if and only if the Not-All-Equal-3SAT instance c1∧c2∧· · ·∧cm is satisfiable.

Sufficiency. Suppose there is a truth assignment for {λ1, λ2, . . . , λn} such that
each clause cj , 1 ≤ j ≤ m, contains at least one true literal and at least one false
literal. Set

• X := {x1
i : λi is true, 1 ≤ i ≤ n} ∪ {x5

i : λi is false, 1 ≤ i ≤ n};
• X̄ := {x1

i : λi is false, 1 ≤ i ≤ n} ∪ {x5
i : λi is true, 1 ≤ i ≤ n};

• Z := {z ∈ ∪m
j=1V (Zj) : αz = (z, x), x ∈ X}; and

• Z̄ := ∪m
j=1V (Zj) − Z = {z ∈ ∪m

j=1V (Zj) : αz = (z, x), x ∈ X̄}.
It is easy to see that

(5) |X ∩ V (Xh
i )| = |X̄ ∩ V (Xh

i )| = 1 for every h = 2, 3, 4 and 1 ≤ i ≤ n;
(6) for every z ∈ ∪m

j=1V (Zj), if the head of αz is in X (resp., X̄), then its tail is

in Z (resp., Z̄); and
(7) V is the disjoint union of two sets

– S1 := X ∪ Z̄ ∪ {x2
i : 1 ≤ i ≤ n} ∪ {y1} and

– S2 := X̄ ∪ Z ∪ {x3
i , x

4
i : 1 ≤ i ≤ n} ∪ {y2, y3}.

We claim that both S1 and S2 are FVSs of T . To justify this, let C be an
arbitrary triangle C of T . Let us show that C meets both S1 and S2. By (5) and (6),
the statement holds if C ∈ {Xh

i : h = 2, 3, 4; 1 ≤ i ≤ n} or if C contains some αz. If
C = X1

i for some 1 ≤ i ≤ n, then we derive from (2) and (7) that x2
i ∈ V (C) ∩ S1

and x3
i ∈ V (C) ∩ S2. If C = Y , then y1 ∈ V (C) ∩ S1 and y2 ∈ V (C) ∩ S2. So by

(4) it remains to consider the case when C = Zj for some 1 ≤ j ≤ m. Recall that
chj is true and cij is false for some 1 ≤ h �= i ≤ 3. From (iv) and the definitions of

X and X̄, we deduce that x ∈ X and x′ ∈ X̄, where (zhj , x) and (zij , x
′) are arcs

associated to zhj and zij , respectively, as described in (iv). It follows from (6) and (7)

that zhj ∈ Z ∩ V (C) ⊆ S2 ∩ V (C) and zij ∈ Z̄ ∩ V (C) ⊆ S1 ∩ V (C). Therefore both
S1 and S2 are FVSs of T , as claimed. By (7), we are done.

Necessity. Suppose the vertex set of T can be partitioned into two FVSs S1 and
S2. For 1 ≤ i ≤ n, set λi to be true if x1

i ∈ S1 and false otherwise. Let us show that
this assignment enables every cj , 1 ≤ j ≤ m, to contain at least one true literal and
at least one false literal. To this end, we first show that

(8) |{x1
i , x

5
i } ∩ S1| = |{x1

i , x
5
i } ∩ S2| = 1 for all 1 ≤ i ≤ n.

Indeed, by (2), we have xg
i ∈ S1 ∩ V (X1

i ) and xh
i ∈ S2 ∩ V (X1

i ) for some 2 ≤
g �= h ≤ 4. This, in turn, implies that {x1

i , x
5
i } ∩ S2 �= ∅ and {x1

i , x
5
i } ∩ S1 �= ∅ by

considering triangles Xg
i = x1

ix
g
i x

5
ix

1
i and Xh

i = x1
ix

h
i x

5
ix

1
i . So (8) is established.

Next we observe that
(9) |{x, z} ∩ S1| = |{x, z} ∩ S2| = 1 for all αz = (z, x) with z ∈ ∪m

j=1V (Zj) and

x ∈ {x1
i , x

5
i : 1 ≤ i ≤ n}.

Indeed, by (iii) and the definition of S1 and S2, triangle y1y2y3y1 contains yg ∈ S1

and yh ∈ S2 for some 1 ≤ g �= h ≤ 3. Recall (3), T contains triangles Y i
z = xyizx, i =

1, 2, 3. Now using triangles Y g
z and Y h

z , we obtain {x, z}∩S2 �= ∅ and {x, z}∩S1 �= ∅.
Hence (9) holds.

For 1 ≤ j ≤ m, by (ii) triangle Zj contains some zgj ∈ S1 and zhj ∈ S2. Suppose

(zgj , x) and (zhj , x
′) are arcs associated to zgj and zhj , respectively, as described in (iv),
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where {x, x′} ⊆ {x1
i , x

5
i : 1 ≤ i ≤ n}. It follows from (9) that x ∈ S2 and x′ ∈ S1.

Suppose x ∈ {x1
i , x

5
i } for some 1 ≤ i ≤ n.

• If x = x1
i , then, by (iv), cgj = λi is false as x1

i �∈ S1;

• if x = x5
i , then, by (8), x1

i ∈ S1. So λi is true, and hence, by (iv), cgj = λ̄i is
false.

Therefore cgj is false (in either case). Similarly, it can be deduced from x′ ∈ S1 that

chj is true. Hence cj contains both false literal cgj and true literal chj ; equivalently,
c1 ∧ c2 ∧ · · · ∧ cm is satisfiable, completing the proof.

4. Algorithms. For simplicity, we use the same notations as introduced before.
In particular, given a tournament T = (V,A) and a weight function w ∈ ZV

+, let τw
denote the minimum weight of a triangle in T , and let νw denote the maximum size
of a w-FVS packing of T .

For the case when T contains no F1 nor F2, we present the following algorithm
for finding an optimal w-FVS packing of size νw.

Algorithm Opt Pack Optimal FVS Packing

Input A tournament T = (V,A) with no F1 nor F2 and a weight w ∈ ZV
+

Output A maximum w-FVS packing S of T with |S| = νw
1. τw ← the minimum weight of a triangle in T
2. if τw = 0 or T is acyclic, then return S ← ∅
3. if ∃ z ∈ V with w(z) ≥ τw, then
4. if T\z is acyclic, then return S ← {Si : Si = {z}, i = 1, 2, . . . , τw}
5. else {Si : 1 ≤ i ≤ τw|V −{z}} ← Opt Pack(T\z, w|V−{z})

return S ← {{z} ∪ Si : 1 ≤ i ≤ τw}
6. S ← {v ∈ V : w(v) ≥ 1}, R ← a subset of S with |R ∩ V (C)| = 1 for all

C ∈ DS ∪ FS

7. δ ← min{w(v) : v ∈ R}, w′(v) ← w(v) − δ|R ∩ {v}| for all v ∈ V
8. return S ← {Si : Si = R, i = 1, 2, . . . , δ}∪ Opt Pack(T,w′)

Remark. Note that S is a collection of FVSs of T with size νw, which obviously
yields a w-FVS packing of T with the same size.

Theorem 4.1. Let T = (V,A) be a tournament with no F1 nor F2. Then
Algorithm Optimal FVS Packing solves the FVS packing problem on T exactly in
O(|V |4) time.

Proof. The correctness of the algorithm follows instantly from the proof of The-
orem 1.2. Let us now estimate the time complexity of the algorithm.

Note that either in steps 3–5 one vertex z is eliminated from our consideration
or in step 7 the weight of at least one vertex becomes zero (from nonzero one). So
the whole algorithm takes O(|V |) iterations. From Lemma 2.5, we can conclude that
each iteration takes O(|V |3) time. Hence the total running time of the algorithm is
O(|V |4).

Let us proceed to the FVS packing problem on a general tournament T . For this
general case, we can easily obtain a 1/3-approximation algorithm: Set R = ∅. While
T contains a triangle C, do: let v be a vertex in V (C) of maximum weight. Set
R = R ∪ {v} and T = T\v. Obviously, {R,R, . . . , R}, where the multiplicity of R is
min{w(v) : v ∈ R}, is an FVS packing in the original T with size at least 1

3
νw. By
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exploiting the structural characterization given in our min-max theorem and using
the above exact algorithm as a subroutine, we can obtain a better approximation
algorithm based on the subgraph removal technique.

Algorithm Apx Pack Approximate FVS Packing

Input A tournament T = (V,A) and a weight w ∈ ZV
+

Output A w-FVS packing S of T with |S| ≥ 2
5
νw

1. τw ← the minimum weight of a triangle in T , R ← ∅
2. if τw = 0 or T is acyclic, then return S ← ∅
3. while T contains a subtournament F isomorphic to F1 or F2 do
4. v ← a vertex in V (F ) of maximum weight, R ← R ∪ {v}, T ← T\v
5. end-while
6. S ′ = {Si : 1 ≤ i ≤ τw|V (T )

} ← Opt Pack(T,w|V (T )), δ ← min{w(v) : v ∈ R}
7. if S ′ = ∅, then return S ← {Si : Si = R, i = 1, 2, . . . , δ}
8. else return S ← {Si ∪R : i = 1, 2, . . . ,min{τw|V (T )

, δ}}

Remark. Again S is a collection of FVSs of T , which obviously yields a w-FVS
packing of T with the same size.

Theorem 4.2. Let T = (V,A) be an arbitrary tournament. Then Algorithm
Approximate FVS Packing approximates the FVS packing problem on T within a
factor of 2/5 in O(|V |4) time.

Proof. Clearly, S is a collection of FVSs of T . To get the approximation ratio, it
suffices to prove that

(1) |S| ≥ 2
5
νw.

For this purpose, we turn to show that
(2) δ ≥ 2

5
νw if δ > 0.

To justify (2), let u be a vertex in R with w(u) = δ. Suppose u is added to R
because of subtournament F (recall the while-loop of the algorithm), and suppose S∗

is a w-FVS packing of T with size νw. Since we need to delete at least two vertices in
F in order to destroy all triangles in F , each FVS in S∗ contains at least two vertices
in F . From the definition of a w-FVS packing, we deduce that 2|S∗| ≤ ∑

v∈V (F ) w(v).

Since u is a vertex with maximum weight in F and |V (F )| = 5, we have 2νw = 2|S∗| ≤
5w(u) = 5δ, yielding (2).

To establish (1), we may assume τw > 0, for otherwise the statement holds triv-
ially. So we have δ > 0 when R �= ∅. If S ′ = ∅, then it follows from (2) and step 7 of
the algorithm that (1) holds. Otherwise, τw|V (T )

in step 6 of the algorithm is at least
τw(≥ νw). Thus from step 8 of the algorithm we can also conclude (1).

It was shown in [1] that F in step 3 can be obtained in O(|V |2) time if it ex-
ists. Thus we deduce from Theorem 4.1 that Approximate FVS Packing runs in
O(|V |4) time.

It is easy to see that Theorems 1.7 and 1.8 follow from the above two theorems,
respectively.

5. Concluding remarks. In this paper we have characterized all tournaments
T with Mengerian hypergraph b(CT ). Coincidently, b(CT ) is Mengerian if and only if
CT is. Major open problems in this research direction are to characterize all digraphs
G with Mengerian CG and those with Mengerian b(CG). The arc versions of these
problems are equally interesting. While these problems are extremely hard in general,
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Guenin and Thomas [14] successfully characterized all digraphs that pack, where a
digraph G packs if for any subdigraph H of G the maximum number of disjoint cycles
is equal to the minimum number of vertices in a feedback vertex set in H. Guenin
strongly believes that the blocker version of their theorem holds on exactly the same
digraphs.

Conjecture 5.1 ([13]). A digraph G packs if and only if for any subdigraph H of
G the maximum number of disjoint feedback vertex sets is equal to the length of the
shortest cycle in H.

We close this paper by the aforementioned Woodall’s conjecture on packing feed-
back arc sets.

Conjecture 5.2 ([20]). In any planar digraph the maximum number of disjoint
feedback arc sets is equal to the length of the shortest cycle.

Certainly, these two beautiful conjectures deserve arduous research efforts.

Acknowledgment. The authors are grateful to two anonymous referees for their
invaluable comments and suggestions.
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subgroup problem is the problem of determining the subgroup H from such a function.
Algorithms for these problems typically adopt the approach detailed below, called
Fourier sampling [3].

Step 1. Prepare two registers, the first in a uniform superposition over the ele-
ments of a group G and the second with the value zero, yielding the state

ψ1 =
1√|G|
∑

g∈G

|g〉 ⊗ |0〉 .

Step 2. Calculate (or, if it is an oracle, query) the function f defined on G and
XOR it with the second register. This entangles the two registers and results in the
state

ψ2 =
1√|G|
∑

g∈G

|g〉 ⊗ |f(g)〉 .

Step 3. Measure the second register. This produces a uniform superposition over
one of f ’s level sets, i.e., the set of group elements g for which f(g) takes the measured
value f0. As the level sets of f are the cosets of H, this puts the first register in a
uniform distribution over superpositions on one of those cosets, namely cH, where
f(c) = f0 for some f0. Moreover, it disentangles the two registers, resulting in the
state ψ3 ⊗ |f0〉, where ψ3 is a so-called coset state,

ψ3 = |cH〉 =
1√|H|

∑

h∈H

|ch〉 .

Alternately, since the value f0 we observe has no bearing on the algorithm, we can
use the formulation in which the environment, rather than the user, measures f . In
that case, tracing over f yields a mixed state with density matrix

ρH =
1

[G : H]

∑

f0

|ψ3〉 〈ψ3| =
1

|G|
∑

c

|cH〉 〈cH| ,

i.e., a classical mixture consisting of one pure state ψ3 for each coset. Kuperberg
refers to this as the coherent hidden subgroup problem [18].

Step 4. Carry out the quantum Fourier transform on ψ3 or ρH and measure the
result.

For example, in Simon’s algorithm [26], the “ambient” group G over which the
Fourier transform is performed is Z

n
2 , f is an oracle with the promise that f(x) = f(x+

y) for some y, and H = {0, y} is a subgroup of order 2. In Shor’s factoring algorithm
[25] G is the group Z

∗
n, where n is the number we wish to factor, f(x) = rx mod n

for a random r < n, and H is the subgroup of Z
∗
n of index order(r). (However, since

|Z∗
n| is unknown, Shor’s algorithm actually performs the transform over Zq, where q

is polynomially bounded by n; see [25] or [11, 12].)
These are all abelian instances of the hidden subgroup problem (HSP). Interest

in nonabelian versions of the HSP evolved from the relation to the elusive Graph
Automorphism problem: if one could efficiently solve the HSP over the symmetric
group Sn, this would yield an efficient quantum algorithm for graph automorphism
(see, e.g., Jozsa [16] for a review). This was the impetus behind the development of
the first nonabelian quantum Fourier transform [2] and is, in part, the reason that the
nonabelian HSP has remained such an active area of research in quantum algorithms.



940 MOORE, ROCKMORE, RUSSELL, AND SCHULMAN

In general, we will say that the HSP for a family of groups G has a Fourier
sampling algorithm if a procedure similar to that outlined above works. Specifically,
the algorithm prepares a coset state as defined above,

|cH〉 =
1√|H|

∑

h∈H

|ch〉 ,

over a random coset cH of the hidden subgroup H, computes the (quantum) Fourier
transform of this state, and measures the result. After a polynomial number of such
trials, a polynomial amount of classical computation, and, perhaps, a polynomial
number of classical queries to the function h to confirm the result, the algorithm
produces a set of generators for the subgroup H with high probability.

When G is abelian, measuring a state’s Fourier transform has a clear meaning:
one observes the frequency χ with probability equal to the squared magnitude of the
transform at that frequency. In the case where G is a nonabelian group, however,
in order to define a full measurement it is necessary to select bases for each repre-
sentation of G. (We explain this in more detail below.) The subject of this article
is the relationship between this choice of basis and the information gleaned from the
measurement: are some bases more useful for computation than others?

Since we are typically interested in exponentially large groups, we will take the
size of our input to be n = log |G|. Throughout, “polynomial” means polynomial in
n and thus polylogarithmic in |G|.

1.1. Nonabelian hidden subgroup problems. Although a number of inter-
esting results have been obtained on the nonabelian HSP, the groups for which efficient
solutions are known remain woefully few. On the positive side, Roetteler and Beth
[22] give an algorithm for the wreath product Z

k
2 � Z2. Ivanyos, Magniez, and Santha

[15] extend this to the more general case of semidirect products K�Z
k
2 , where K is of

polynomial size, and also give an algorithm for groups whose commutator subgroup is
of polynomial size. Friedl, Ivanyos, Magniez, Santha, and Sen [8] solve a problem they
call hidden translation and thus generalize this further to what they call “smoothly
solvable” groups: these are solvable groups whose derived series is of constant length
and whose abelian factors are each the direct product of an abelian group of bounded
exponent and one of polynomial size. (See also section 8.)

In another vein, Ettinger and Høyer [6] show that the HSP is solvable for the
dihedral groups in an information-theoretic sense; namely, a polynomial number of
quantum queries to the function oracle gives enough information to reconstruct the
subgroup, but the best known reconstruction algorithm takes exponential time. More
generally, Ettinger, Høyer, and Knill [7] show that for arbitrary groups the HSP can be
solved information-theoretically with a finite number of quantum queries. However,
their algorithm calls for a quantum measurement for each possible subgroup, and since
there might be |G|Ω(log |G|) of these, it requires an exponential number of quantum
operations.

Our current understanding of the HSP, then, divides group families into three
classes.

I. Fully reconstructible. Subgroups of a family of groups {Gi} are fully recon-
structible if the HSP can be solved with high probability by a quantum circuit of size
polynomial in log |Gi|.

II. Information-theoretically reconstructible. Subgroups of a family of groups {Gi}
are information-theoretically reconstructible if the solution to the HSP for Gi is de-
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termined information-theoretically by the fully measured result of a quantum circuit
of size polynomial in log |Gi|.

III. Quantum information-theoretically reconstructible. Subgroups of a family of
groups {Gi} are quantum information-theoretically reconstructible if the solution to
the HSP for Gi is determined by the quantum state resulting from a quantum circuit
of polynomial size in log |Gi|, in the sense that there exists a positive operator-valued
measurement (POVM) that yields the subgroup H with constant probability but
where it may or may not be possible to carry out this POVM with a quantum circuit
of polynomial size.

In each case, the quantum circuit has oracle access to a function f : G → S, for
some set S, with the property that f is constant on each left coset of a subgroup H
and distinct on distinct cosets.

In this language, then, subgroups of abelian groups are fully reconstructible, while
the result of [7] shows that subgroups of arbitrary groups are quantum information-
theoretically reconstructible. The other work cited above has labored to place specific
families of nonabelian groups into the more algorithmically meaningful classes I and II.

1.2. Nonabelian Fourier transforms. In this section we give a brief review
of nonabelian Fourier analysis but only to the extent needed to set down notation.
We refer the reader to [9, 24] for a more complete exposition.

Fourier analysis over a finite abelian group A expresses a function φ : A → C as
a linear combination of homomorphisms χ : A → C. If A = Zp, for example, these
are the familiar basis functions χt : z �→ ωtz

p , where ωp denotes the pth root of unity

e2πi/p. Any function φ : A → C can be uniquely expressed as a linear combination of
these χt, and this change of basis is the Fourier transform.

When G is a nonabelian group, however, this same procedure cannot work: in
particular, there are not enough homomorphisms of G into C to span the space of
all C-valued functions on G. To define a sufficient basis, the representation theory of
finite groups considers more general functions, namely homomorphisms from G into
groups of unitary matrices.

A representation of a finite group G is a homomorphism ρ : G → U(d), where
U(d) denotes the group of unitary d×d matrices (with entries from C); the dimension
d = dρ is referred to as the dimension of ρ. If ρ : G → U(d) is a representation, a
subspace W of C

d is said to be invariant if ρ(g)(W ) ⊂ W for all g. A representation
is said to be irreducible if the only invariant subspaces are the trivial subspaces C

d

and {�0}.
For a function φ : G → C and an irreducible representation ρ, φ̂(ρ) denotes the

Fourier transform of φ at ρ and is defined by

φ̂(ρ) =

√
dρ
|G|

∑

g

φ(g)ρ(g).

Note that φ takes values in C while ρ is matrix-valued. It is a fact that a finite
group has a finite number of distinct irreducible representations up to isomorphism
(i.e., up to a unitary change of basis). The Fourier transform of a function φ : G →
C is then the collection of matrices φ̂(ρ), taken over all nonisomorphic irreducible
representations ρ.

Fixing a group G and a subgroup H, we shall focus primarily on the functions
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ϕc : G → C of the form

ϕc(g) =

{
1/
√|H| if g ∈ cH,

0 otherwise,

corresponding to the first register of the state ψ3 resulting from Step 3 above, which is
a uniform superposition over the coset cH. The Fourier transform of such a function
is

ϕ̂c(ρ) =

√
dρ

|G||H| ρ(c) ·
∑

h∈H

ρ(h).

Note, as above, that ϕ̂c(ρ) is a dρ × dρ matrix.
For any subgroup H, the sum

∑
h ρ(h) is precisely |H| times a projection operator

(see, e.g., [13]); we write

∑

h

ρ(h) = |H|πH(ρ).

With this notation, we can express ϕ̂c(ρ) as
√
nρ ρ(c) · πH(ρ), where nρ = dρ|H|/|G|.

For a d× d matrix M , we let ‖M‖ denote the matrix norm given by

‖M‖2
= tr

(
M†M

)
=
∑

ij

|Mij |2 ,

where M† denotes the conjugate transpose of M . Then the probability that we observe
the representation ρ is

‖ϕ̂c(ρ)‖2
=
∥∥√nρ ρ(c)πH(ρ)

∥∥2

= nρ ‖πH(ρ)‖2

= nρ rk πH(ρ),(1)

where rk πH(ρ) denotes the rank of the projection operator πH(ρ). See [13] for more
discussion.

1.3. Weak vs. strong sampling and the choice of basis. Hallgren, Russell,
and Ta-Shma [13] show that by measuring only the names of representations—the so-
called weak standard method in the terminology of [10]—it is possible to reconstruct
normal subgroups (and thus solve the HSP for Hamiltonian groups, all of whose
subgroups are normal). More generally, this method reconstructs the normal core of
a subgroup, i.e., the intersection of all its conjugates. On the other hand, they show
that this is insufficient to solve Graph Automorphism, since even in an information-
theoretic sense this method cannot distinguish between the trivial subgroup of Sn and
subgroups of order 2 consisting of the identity and an involution.

Therefore, in order to solve the HSP for nonabelian groups, we need to measure
not just the name of the representation we are in but also the row and column. In
order for this measurement to be well defined, we need to choose a basis for U(dρ)
for each ρ. Grigni, Schulman, Vazirani, and Vazirani [10] call this the strong stan-
dard method. They show that if we measure using a uniformly random basis, then
trivial and nontrivial subgroups are still information-theoretically indistinguishable.
However, they leave open the question of whether the strong standard method with
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a clever choice of basis, rather than a random one, allows us to solve the HSP in
nonabelian groups, yielding an algorithm for Graph Automorphism.

Indeed, from a computational perspective the representation theory of a finite
group G does distinguish certain “preferred” bases, those which give the matrices ρ(g)
unusually structured or sparse form. In particular, Moore, Rockmore, and Russell [20]
showed that so-called adapted bases yield highly efficient algorithms for the quantum
Fourier transform.

1.4. Contributions of this paper. As stated above, [13] and [10] leave an
important open question, namely, whether there are cases where the strong standard
method, with the proper choice of basis, offers an advantage over a simple abelian
transform or the weak standard method. We settle this question in the affirmative.
Our results deal primarily with the q-hedral groups, i.e., semidirect products of the
form Zq � Zp, where q | (p− 1), and in particular the affine groups Ap

∼= Z
∗
p � Zp.

We begin in section 3 by focusing on full reconstructibility. We define the hidden
conjugate problem (HCP) as follows: given a group G, a nonnormal subgroup H, and a
function which is promised to be constant on the cosets of some conjugate Hb = bHb−1

of H (and distinct on distinct cosets), determine the subgroup Hb by finding an
element c ∈ G so that Hc = Hb. We adopt the above classification (fully, information-
theoretically, quantum information-theoretically) for this problem in the natural way.
Then we show that given a subgroup of sufficiently small (but still exponentially large)
index, hidden conjugates in Ap are fully reconstructible (Theorem 1). This almost
immediately implies that, for prime q = (p− 1)/polylog(p), subgroups of the q-hedral
groups Zq � Zp are fully reconstructible (Theorem 2).

Section 4 concerns itself with information-theoretic reconstructibility. We gener-
alize the results of Ettinger and Høyer on the dihedral group and show that hidden
conjugates of any subgroup are information-theoretically reconstructible in the affine
groups and, more generally, the q-hedral groups for all q (Theorem 3). We then show
that we can identify the order, and thus the conjugacy class, of a hidden subgroup,
and this implies that all subgroups of the affine and q-hedral groups are information-
theoretically reconstructible (Theorem 5).

The results of sections 3 and 4 rely crucially on measuring the high-dimensional
representations of the affine and q-hedral groups in a well-chosen basis, namely an
adapted basis that respects the group’s subgroup structure. We show in section 5
that we lose information-theoretic reconstructibility if we measure in a random basis
instead. Specifically, we need an exponential number of measurements to distinguish
conjugates of small subgroups of Ap. This establishes for the first time that the strong
standard method is indeed stronger than measuring in a random basis: some bases
provide much more information about the hidden subgroup than others.

For some nonabelian groups, the HSP can be solved with a “forgetful” approach,
where we erase the group’s nonabelian structure and perform an abelian Fourier trans-
form instead. In section 6 we show that this is not the case for the affine groups.
Specifically, if we treat Ap as a direct product rather than a semidirect one, its con-
jugate subgroups become indistinguishable.

As an application, in section 7 we consider hidden shift problems. In the setting
we consider, one must reconstruct a “hidden shift” s ∈ Zp from an oracle fs(x) =
f(x − s), where f is any function that is constant on the (multiplicative) cosets of
a known multiplicative subgroup of Z

∗
p. These functions have been studied in some

depth for their pseudorandom properties, and several instances have been suggested
as cryptographically strong pseudorandom generators. By associating fs with its



944 MOORE, ROCKMORE, RUSSELL, AND SCHULMAN

isotropy subgroup, and using our reconstruction algorithm to find that subgroup, we
give an efficient quantum algorithm for the hidden shift problem in the case where
f(x) is a function of x’s multiplicative order mod r for some r = polylog(p). This
generalizes the work of van Dam, Hallgren, and Ip [4], who give an algorithm for
hidden shift problems in the case where f is precisely a multiplicative character.

Finally, in section 8 we show that the set of groups for which the HSP can be
solved in polynomial time has the following closure property: if H = {Hn} is a family
of groups for which we can efficiently solve the HSP and K = {Kn} is a family of
groups for which |Kn| = polylog(|Hn|), we can also efficiently solve the HSP for the
family {Gn}, where each Gn is any extension of Kn by Hn. This subsumes the results
of [13] on Hamiltonian groups, and also those of [15] on groups with commutator
subgroups of polynomial size.

We note that subsequent to this work, Bacon, Childs, and van Dam [1] found
additional algorithms for the HSP in the affine groups. Their approach uses the
“pretty good measurement,” which they showed is optimal for certain cases of the
HSP (see also [21]). Their work extends to a number of other group families, such as
the Heisenberg groups.

2. The affine and q-hedral groups. Let Ap be the affine group, consisting
of ordered pairs (a, b) ∈ Z

∗
p × Zp, where p is prime, under the multiplication rule

(a1, b1) · (a2, b2) = (a1a2, b1 + a1b2). Ap can be viewed as the set of affine functions
f(a,b) : Zp → Zp given by f(a,b) : x �→ ax + b where multiplication in Ap is given by
function composition. Structurally, Ap is a semidirect product Z

∗
p � Zp

∼= Zp−1 � Zp.
Its subgroups can be described as follows:

• Let N ∼= Zp be the normal subgroup of size p consisting of elements of the
form (1, b). Geometrically, this is the set of affine functions with slope 1.

• Let H ∼= Z
∗
p
∼= Zp−1 be the nonnormal subgroup of size p − 1 consisting of

the elements of the form (a, 0). Geometrically, this is the set of lines passing
through the origin.

• For each b ∈ Zp, the conjugate subgroup Hb = (1, b) ·H · (1,−b) consists of
elements of the form (a, (1− a)b). In the action on Zp, H

b is the stabilizer of
b; geometrically, Hb is the set of lines intersecting the diagonal at (b, b).

• If a ∈ Z
∗
p has order q, where q divides p− 1, let Nq

∼= Zq � Zp be the normal
subgroup consisting of all elements of the form (at, b). Geometrically, Nq is
the set of lines whose slope is a power of a.

• Similarly, if a ∈ Zp has order q, let Hq be the nonnormal subgroup Hq =
〈(a, 0)〉 of size q. Then Hq consists of the elements of the form (at, 0), and
its conjugates Hb

q = (1, b) · Hq · (1,−b) consist of the elements of the form

(at, (1−at)b). Geometrically, these are the subsets of H and Hb, respectively,
consisting of lines whose slope is a power of a.

Construction of the representations of Ap requires that we fix a generator γ of
Z
∗
p. Define log : Z

∗
p → Zp−1 to be the isomorphism log γt = t. Let ωp denote the pth

root of unity e2πi/p. Then Ap has p − 1 one-dimensional representations σs, namely

the representations of Z
∗
p
∼= Zp−1 given by σt((a, b)) = ωt log a

p−1 . In addition, Ap has
one (p− 1)-dimensional representation ρ given by

(2) ρ((a, b))j,k =

{
ωbj
p , k = aj mod p,

0 otherwise,
1 ≤ j, k < p,
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where the indices i and j are elements of Z
∗
p. See [24, section 8.2] for a more detailed

discussion.
Similarly, given a prime p and a divisor q of p−1, we consider the q-hedral groups,

namely semidirect products Zq � Zp. These embed in Ap in a natural way, namely,
as the normal subgroups Nq defined above. The dihedral groups are the special case
where q = 2.

The representations of Zq � Zp include the q one-dimensional representations of
Zq given by σ�((a

t, b)) = ω�t
q for � ∈ Zq and the (p − 1)/q distinct q-dimensional

representations ρk given by

ρk((a
u, b))s,t =

{
ωkasb
p , t = s + u mod q,

0 otherwise

for each 0 ≤ s, t < q. Here k ranges over the elements of Z
∗
p/Zq, or, to put it differently,

k takes values in Z
∗
p, but ρk and ρk′ are isomorphic if k and k′ are in the same coset

of 〈a〉.
The representations of the affine and q-hedral groups are related as follows. The

restriction of the (p− 1)-dimensional representation ρ of Ap to Nq is reducible and is
isomorphic to the direct product of the ρk. Moreover, if we measure ρ in a Gel’fand–
Tsetlin basis such as (2) which is adapted to the tower of subgroups

Ap > Nq > {1},
then ρ becomes block-diagonal, with (p − 1)/q blocks of size q, and these blocks are
exactly the representations ρk of Nq. (See [20] for an introduction to adapted bases
and their uses in quantum computation.) We will use this fact in sections 4 and 5
below.

The affine and q-hedral groups are metacyclic groups, i.e., extensions of a cyclic
group Zp by a cyclic group Zq. In [14], Høyer shows how to perform the nonabelian
Fourier transform over such groups (up to an overall phase factor) with a polynomial,
i.e., polylog(p), number of elementary quantum operations.

3. Full reconstructibility. In this section we show that conjugates of suffi-
ciently large subgroups of the affine groups are fully reconstructible in polynomial
time. For some values of p and q, this allows us to completely solve the HSP for the
q-hedral group Zq � Zp.

Theorem 1. Let p be prime and let q be a divisor of p− 1 for which (p− 1)/q =
polylog(p). Then the hidden conjugates Hb

q of Hq in Ap are fully reconstructible.
Proof. First, consider the maximal nonnormal subgroup H = 〈(γ, 0)〉, where γ is

a generator of Z
∗
p. Carrying out Steps 1 through 3 of the Fourier sampling procedure

outlined in the introduction results in a state ψ3 over the group G which is uniformly
supported on a random left coset of the conjugate Hb. Using the procedure of [14],
we now compute the quantum Fourier transform of this state over Ap in the basis (2).
The associated projection operator is

πHb(ρ)j,k =
1

p− 1
ωb(j−k)
p

for 1 ≤ j, k < p. This is a circulant matrix of rank 1. More specifically, every column
is some root of unity times the vector

(ub)j =
1

p− 1
ωbj
p ,
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1 ≤ j < p. This is also true of ρ(c) · πHb(ρ); since ρ(c) has one nonzero entry per
column, left multiplying by ρ(c) simply multiplies each column of πHb(ρ) by a phase.
Note that in this case

nρ = dρ|H|/|G| = (p− 1)/p = 1 − 1/p,

and so by (1) we observe the (p− 1)-dimensional representation ρ with overwhelming
probability 1 − 1/p.

Assuming that we observe ρ, we perform another change of basis: namely, we
Fourier transform each column by left multiplying ρ(cH) by the unitary matrix

Q�,j =
1√
p− 1

ω−�j
p−1.

In terms of quantum operations, we apply the quantum Fourier transform over Zp−1 to
the row register, while leaving the column register unchanged. We can now infer b by
measuring the frequency �. Specifically, we observe a given value of � with probability

(3) P (�) =

∣∣∣∣∣∣
1

p− 1

p−1∑

j=1

ωbj
p ω−�j

p−1

∣∣∣∣∣∣

2

=
1

(p− 1)2

∣∣∣∣∣∣

p−1∑

j=1

e2iθj

∣∣∣∣∣∣

2

=
1

(p− 1)2
sin2(p− 1)θ

sin2 θ
,

where

θ =

(
b

p
− �

p− 1

)
π.

Now note that for any b there is an � such that |θ| ≤ π/(2(p− 1)). Since

(2x/π)2 ≤ sin2 x ≤ x2

for |x| ≤ π/2, this gives P (�) ≥ (2/π)2.
Recall that the probability that we observed the (p−1)-dimensional representation

ρ in the first place is nρ = 1 − 1/p. Thus if we measure ρ, the column, and then �
and then guess that b minimizes |θ|, we will be correct with constant probability.
This can be boosted to high probability, i.e., 1− o(1), by repeating the experiment a
polynomial number of times. Alternately, we can use a POVM rather than the von
Neumann measurement presented here and obtain the correct value of b with high
probability in a single measurement [1].

Now consider the more general case, where the hidden subgroup is a conjugate of
the subgroup Hq of order q. For convenience, let 〈(a, 0)〉 be a generator for Hq; then
a given conjugate Hb

q consists of the elements of the form (at, (1 − at)b). We have

πHb
q
(ρ)j,k =

1

q

{
ω
b(j−k)
p , k = atj for some t,

0 otherwise

for 1 ≤ j, k < p. In other words, the nonzero entries are those for which j and k lie in
the same coset of 〈a〉 ⊂ Z

∗
p. The rank of this projection operator is thus the number

of cosets equal to the index (p − 1)/q of 〈a〉 in Z
∗
p. Since nρ is now q/p, we again

observe ρ with probability

nρ rk πHq (ρ) = (p− 1)/p = 1 − 1/p.
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Following the same procedure as before, we carry out a partial measurement on
the columns of ρ and then Fourier transform the rows. After changing the variable
of summation from t to −t and adding a phase shift of e−iθ(p−1) inside the | · |2, we
obtain the probability that we observe a frequency � conditional on finding ourselves
in the kth column:

P (�) =

∣∣∣∣∣
1√

q(p− 1)

q−1∑

t=0

ωb(atk mod p)
p ω

−�(atk mod p)
p−1

∣∣∣∣∣

2

(4)

=
1

q(p− 1)

∣∣∣∣∣

q−1∑

t=0

e2iθ(atk mod p)

∣∣∣∣∣

2

.

Now note that the terms in the sum are of the form eiφ, where (assuming without
loss of generality that θ is positive)

φ ∈ [−θ(p− 1), θ(p− 1)].

If we again take � so that |θ| ≤ π/(2(p−1)), then φ ∈ [−π/2, π/2] and all the terms in
the sum have nonnegative real parts. We will obtain a lower bound on the real part
of the sum by showing that a constant fraction of the terms have φ ∈ (−π/3, π/3)
and thus have real part more than 1/2. This is the case whenever atk ∈ (p/6, 5p/6),
and so it is sufficient to prove the following lemma.

Lemma 1. Let a have order q = p/polylog(p) in Z
∗
p, where p is prime. Then at

least (1/3 − o(1))q of the elements in the coset 〈a〉k are in the interval (p/6, 5p/6).
Proof. We will prove this using Gauss sums, which quantify the interplay between

the characters of Zp and the characters of Z
∗
p. In particular, Gauss sums establish

bounds on the distribution of powers of a. Specifically, if a has order q in Z
∗
p, then

for any integer k �≡ 0 mod p we have

q−1∑

t=0

ωatk
p = O(p1/2) = o(p).

(See [17] and Appendix A.)
Now suppose s of the elements x in 〈a〉k are in the set (p/6, 5p/6), for which

Reωx
p ≥ −1, and the other q− s elements are in [0, p/6]∪ [5p/6, p), for which Reωx

p ≥
1/2. Thus we have

Re

q−1∑

t=0

ωatk
p ≥ (q/2) − (3s/2).

If s ≤ (1/3 − ε)q for any ε > 0, this is Θ(q), a contradiction.
Now that we know that a fraction 1/3 − ε of the terms in (4) have real part at

least 1/2 and the others have real part at least 0, we can take ε = 1/12 (say) and
write

P (�) ≥ 1

q(p− 1)

(q
8

)2

=
1

64

q

p− 1
=

1

polylog(p)
.

Thus we observe the correct frequency with polynomially small probability, and this
can be boosted to high probability by a polynomial number of repetitions.
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As we will now show, Theorem 1 implies that we can completely solve the HSP
for certain q-hedral groups.

Theorem 2. Let p and q be prime with q = (p− 1)/polylog(p). Then subgroups
of the q-hedral group Zq � Zp are fully reconstructible.

Proof. First, note that we can fully reconstruct H if it is nontrivial and normal.
We do this by reconstructing the normal core of H,

C(H) =
⋂

γ∈G

γHγ−1,

using the techniques of [13] (the weak standard method). The q-hedral groups have
the special property that nonnormal subgroups contain no nontrivial normal sub-
groups; in particular, if H is nonnormal, then C(H) is the trivial subgroup. Thus by
reconstructing C(H), we either learn that H = C(H) or learn that H is either trivial
or nonnormal. Furthermore, if H is trivial, we will learn this by checking our recon-
struction against the oracle f and finding that it is incorrect. Therefore, it suffices to
consider the nonnormal subgroups.

If q is prime, then the nonnormal subgroups of Zq � Zp are all conjugate to a
single subgroup K ∼= Zq, as any such subgroup has the form {(a, (1− a)z) | a ∈ Zq <
Aut(Zp) ∼= Z

∗
p}; in this case the HSP reduces to the HCP for K. While one can

construct a proof similar to that of Theorem 1 directly for the q-hedral groups, it is
convenient to embed them in Ap using the isomorphisms Nq

∼= Zq � Zp and Hq
∼= K

and appeal to Theorem 1.
Now suppose we have an oracle f : Zq × Zp → S. We extend this to an oracle f ′

on Ap as follows. Choose a generator γ ∈ Z
∗
p and one of the q − 1 elements a ∈ Z

∗
p of

order q, and let

f ′ : Ap → S × 〈a〉,

where

f ′((a, b)) =

(
f

((⌊
log a

(p− 1)/q

⌋
, b

))
, aq
)
,

recalling that log γt = t. The second component of f ′ serves to distinguish the cosets
of Nq from each other, while the first component maps each coset of Nq to Zq � Zp

with the element of Zq written additively, rather than multiplicatively. (This last
step is not strictly necessary—after all, we could have written the elements of Ap in
additive form in the first place—but it can be carried out with Shor’s algorithm for
the discrete logarithm [25].) This reduces the HCP for K (and therefore the HSP) on
Zq � Zp to the HCP for Hq on Ap, completing the proof.

As an example of Theorem 2, if q is a Sophie Germain prime, i.e., one for which
p = 2q + 1 is also a prime, we can completely solve the HSP for Zq � Zp.

4. Information-theoretic reconstructibility. In this section, we show that
all subgroups of the affine and q-hedral groups, regardless of their size, are information-
theoretically reconstructible. We start by considering the HCP for subgroups Hq in
Ap. Then in Theorem 5 we show that we can identify the conjugacy class of a hidden
subgroup and therefore the subgroup itself. This generalizes the results of Ettinger and
Høyer [6], who show information-theoretic reconstructibility for the dihedral groups,
i.e., the case q = 2.
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Theorem 3. Let p be prime and let q divide p− 1. Then the hidden conjugates
of Hq in Ap are information-theoretically reconstructible.

Proof. Suppose a ∈ Z
∗
p has order q. Recall that Hq and its conjugates Hb

q are
maximal in the subgroup Nq

∼= Zq �Zp. We wish to show that there is a measurement
whose outcomes, given two distinct values of b, have large (i.e., 1/polylog(p)) total
variation distance. First, we perform a series of partial measurements as follows:

(i) Measure the name of the representation of Ap. If this is not ρ, try again.
Otherwise, continue.

(ii) Measure the name of the representation ρk of Nq inside ρ.
(iii) Measure the column of ρk.
(iv) Perform a POVM with q outcomes, in each of which the row s ∈ Zq is u or

(u + 1) mod q.
As in Theorem 1, we measure the (p−1)-dimensional representation of Ap in a chosen
basis. Recall that in the adapted basis (2) the restriction of ρ to Nq is block-diagonal,
where the (p− 1)/q blocks are the q-dimensional representations ρk of Nq. Therefore,
the projection operator πHb

q
(ρ) is block-diagonal, and each of its blocks is one of the

projection operators πHb
q
(ρk). Summing ρk over Hb

q = {(at, (1 − at)b)} gives

(
πHb

q
(ρk)

)

s,t
=

1

q
ωk(as−at)b
p

for 0 ≤ s, t < q. This is a matrix of rank 1, where each column (even after left
multiplication by ρk(c)) is some root of unity times the vector (uk)s = (1/q) ωkasb

p .
Since nρ = q/p, the probability that we observe a particular ρk is q/p. Since πHb

q
(ρ)

has (p− 1)/q blocks of this kind, it has rank (p− 1)/q, and the total probability that
we observe ρ is (p− 1)/p = 1 − 1/p as before.

Then these four partial measurements determine k, remove the effect of the coset,
and determine that the row has one of two values, u or u+ 1. Up to an overall phase
we can write this as a two-dimensional vector:

1√
2

(
ωkaub
p

ωkau+1b
p

)
.

Our only goal in doing this is to create a one-qubit state where the relative phase
between the two basis vectors depends on the conjugate b. Moreover, the relative
phase is multiplied by the irrep label k, which is uniformly random. As a result, the
typical angle between the states corresponding to any two distinct cosets b, b′ will be
Ω(1), and a simple measurement yields a constant variation distance between them.

To make this precise, apply the Hadamard transform

1√
2

(
1 1
1 −1

)

and measure according to the resulting basis. The probability that we observe the
first or second basis vector is then cos2 θ and sin2 θ, respectively, where θ = (kau(a−
1)bπ)/p. Now when we observe a q-dimensional representation ρk of Nk, the observed
label k is uniformly distributed over Z

∗
p/Zq. Moreover, when we perform the POVM

in step (iv) above, the u we observe is uniformly distributed over Zq. It follows that
the coefficient m = kau(u− 1) is uniformly distributed over Z

∗
p. For any two distinct

b, b′, the total variation distance is then

1

2(p− 1)

∑

m∈Z∗
p

(∣∣∣∣cos2
πmb

p
− cos2

πmb′

p

∣∣∣∣+
∣∣∣∣sin

2 πmb

p
− sin2 πmb′

p

∣∣∣∣
)
.
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This we rewrite

1

p− 1

∑

m∈Z∗
p

∣∣∣∣cos2
πmb

p
− cos2

πmb′

p

∣∣∣∣

=
1

2(p− 1)

∑

m∈Zp

∣∣∣∣cos
2πmb

p
− cos

2πmb′

p

∣∣∣∣

≥ 1

4(p− 1)

∑

m∈Zp

(
cos

2πmb

p
− cos

2πmb′

p

)2

=
p

4(p− 1)
>

1

4
.

(Adding the m = 0 term contributes zero to the sum in the second line. In the third
line we use the facts that |x| ≤ x2/2 for all |x| ≤ 2, the average of cos2 x is 1/2, and
the two cosines have zero inner product.)

Since the total variation distance between any two distinct conjugates is bounded
below by a constant, we can distinguish between the p different conjugates with
only O(log p) = poly(n) samples. Thus, hidden conjugates in Ap are information-
theoretically reconstructible, completing the proof.

By embedding the q-hedral groups in Ap as in Theorem 2, we can generalize
Theorem 3 to the q-hedral groups (q not necessarily prime) as follows. Let p be prime,
let q be a divisor of p − 1, and let q′ be a divisor of q. The q-hedral group Zq � Zp

has a unique normal subgroup K ∼= Zq′ � Zp, in which there is a maximal subgroup
Hq′ of order q′. Moreover, all nonnormal subgroups of order q′ are conjugates of Hq′ .

Theorem 4. If p, q, q′, and Hq′ are as above, then the hidden conjugates of Hq′

in Zq � Zp are information-theoretically reconstructible.

We now wish to information-theoretically reconstruct all subgroups of the affine
and q-hedral groups. We can do this by using the fact that, except for normal sub-
groups, there is a unique conjugacy class of each order q′, namely the conjugates of
Hq′ . Thus if we can determine the order of H, this determines its conjugacy class, and
we can information-theoretically reconstruct which conjugate it is using, Theorem 3
or Theorem 4.

Theorem 5. Subgroups of the q-hedral groups Zq�Zp, including the affine groups
Ap, are information-theoretically reconstructible.

Proof. As in Theorem 2, we can (fully) reconstruct normal subgroups, and so it
suffices to consider nonnormal subgroups H. As discussed above, if we can determine
|H| = q′, then we know that it is one of the conjugates of Hq′ , and we can reconstruct
it information-theoretically using Theorem 3 or Theorem 4.

Now let the oracle be f : Zq � Zp → S, and let pα1
1 . . . pαk

k be the prime factor-
ization of q, in which case k ≤ ∑i αi = O(log q). For each i ∈ {1, . . . , k} and each
α ∈ {0, . . . , αi}, we will determine if pαi | |H|, and taking the largest such α for each
i gives the prime factorization of |H|.

To do this, for each i ∈ [k] and 1 ≤ α ≤ αi, let Υα
i : Zq � Zp → Zq/pα

i
be the

homomorphism given by

Υα
i : (a, b) �→ ap

α
i .
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Then let

Aαi
i = ker Υα

i = {γ ∈ Zq � Zp | γp
αi
i = 1},

where 1 denotes the identity element of Zq � Zp. Aαi
i is the subgroup of Zq � Zp

consisting of all elements whose orders are a multiple of pαi . Now consider the function

f ′ : Zq � Zp → S × Zq/pα
i

given by

f ′(γ) = (f(γ),Υα
i (γ)) .

Observe that f ′ is constant (and distinct) on the left cosets of H∩Aα
i and, furthermore,

the subgroup H∩Aα
i has order pα if and only if pα divides |H|. We may then determine

if H ∩ Aα
i has order pα by assuming that it does, reconstructing H with Theorem 4

using f ′ as the oracle, and checking the result against the original oracle f . This
allows us to determine the prime factorization of |H| as desired, and the theorem
follows.

As in the dihedral case [6], we know of no polynomial-time algorithm which can
reconstruct the most likely b from these queries. However, Kuperberg [18] gives a
quantum algorithm for the HSP in the dihedral group, and more generally the hidden

shift problem, that runs in subexponential (eO(log1/2 p)) time. Since we can reduce
the HSP on Zq � Zp to a hidden shift problem by focusing on two cosets of Zp, this
algorithm applies to the q-hedral groups as well.

5. Random vs. adapted bases. In Theorems 3 and 5, we measured the high-
dimensional representation ρ in a specific basis which is adapted to the subgroup
structure of Ap and the q-hedral groups. In contrast, we show in this section that if
we measure ρ in a random basis instead, then for all but the largest values of q we
need an exponential number of measurements in order to information-theoretically
distinguish conjugate subgroups from each other.

Theorem 6. Let p be prime and let q be a divisor of p−1 for which q < p1−ε for
some ε > 0. Let Pb(v) be the probability that we observe a basis vector v in the Fourier
basis if the hidden subgroup is Hb

q . If we measure ρ in a random basis, then for any
two b, b′, with high probability the �1 distance between these probability distributions is
exponentially small. In particular, there exists β > 0, depending only on ε, such that

∑

v

|Pb(v) − Pb′(v)| < p−β .

Thus it takes an exponentially large number of measurements to distinguish the con-
jugates Hb

q and Hb′

q .
Proof. Since we observe the high-dimensional representation ρ with probability

1−1/p, it suffices to consider the �1 distance summed over the dρ = p−1 basis vectors
of ρ. In fact, we will show that Pb(v) is exponentially close to the uniform distribution
for all b.

Write π = πHb
q
(ρ). Then the probability that we observe a given basis vector v,

conditioned on observing ρ, is

Pb(v) =
1

rk π
|π · v|2 .
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If v is uniformly random with norm 1, the expectation of |π · v|22 is (rk π)/dρ, and so
the expectation of Pb(v) is 1/dρ. We will use the following lemma to show that when
rk π is sufficiently large, Pb(v) is tightly concentrated around this expectation.

Lemma 2. Let π be a projection operator of rank r in a d-dimensional space, and
let v be a random d-dimensional vector of unit length. Then for all 0 < δ < 2,

Pr
[ ∣∣∣|π · v|22 −

r

d

∣∣∣ > δ
r

d

]
< 4e−rδ2/48.

Proof. We use an argument similar to [10]. We can think of a random d-
dimensional complex vector v as a random 2d-dimensional real vector of the same
length, and we can think of this in turn as

vi =
wi∑2d
i=1 w

2
i

,

where the wi are independent Gaussian variables with zero mean and unit variance.
By choosing a basis in which π projects onto the first r (complex) components of v,
we have

|π · v|22 =

∑2r
i=1 w

2
i∑2d

i=1 w
2
i

=
r

d

(1/2r)
∑2r

i=1 w
2
i

(1/2d)
∑2d

i=1 w
2
i

.

Now we use the following Chernoff bound, which can be derived from the moment
generating function. For any t, we have

Pr

[ ∣∣∣∣∣

(
1

t

t∑

i=1

w2
i

)
− 1

∣∣∣∣∣ > ε

]
< 2
[
(1 + ε)1/2 e−ε/2

]t
.

For |ε| < 1/2, we have ln(1 + ε) < ε− ε2/3, and this becomes

(5) Pr

[ ∣∣∣∣∣

(
1

t

t∑

i=1

w2
i

)
− 1

∣∣∣∣∣ > ε

]
< 2e−tε2/6.

Now, for any a, b, if |a/b − 1| > δ, where δ < 2, then either |a − 1| > δ/4 or

|b − 1| > δ/4. Taking the union bound over these events where a = (1/2r)
∑2r

i=1 w
2
i

and b = (1/2d)
∑2d

i=1 w
2
i , setting ε = δ/4 and t = 2r ≤ 2d in (5) gives the stated

bound.
Setting d = dρ and r = rk π, Lemma 2 and the union bound imply that, for any

constant A >
√

48, if

(6) δ = A

√
log dρ
rk π

,

then, with high probability, for all dρ basis vectors v we have

∣∣∣∣Pb(v) − 1

dρ

∣∣∣∣ <
δ

dρ
.

Summing over all v, this implies that the �1 distance between Pb(v) and the uniform
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distribution is at most δ. Now recall that rk π = (p − 1)/q. If q < p1−ε, then
rk π > pε, and (6) gives δ < p−β , where β = ε/3, say. Since Pb(v) is within δ of
the uniform distribution for all b, doubling the constant A and using the triangle
inequality completes the proof.

Several remarks are in order. First, just as for the dihedral group, we can
information-theoretically distinguish conjugate subgroups if we use a random basis
within each q-dimensional block of ρ. The problem is that rather than having this
block-diagonal structure, a random basis cuts across these blocks, mixing different
“frequencies” ρk and canceling out the useful information. To be more precise, a
random basis is not adapted to the subgroup structure of Ap; it does not “know” that
ρ decomposes into a direct sum of the ρk when restricted to Nq.

Second, it is worth noting that for the values of q for which we have an algorithm
for full (as opposed to information-theoretic) reconstruction, namely q = p/polylog(p),
a random basis works as well, since the �1 distance δ becomes 1/polylog(p). Based
on the strong evidence from representation theory that some bases are much better
for computation than others, we conjecture that, for some families of groups, adapted
bases allow full reconstruction while random bases do not; but this remains an open
question.

Third, while we focused above on distinguishing conjugate subgroups from each
other, in fact our proof shows that if q < p1−ε, a random basis is incapable of distin-
guishing Hq from the trivial subgroup. In contrast, Theorems 3 and 5 show that an
adapted basis allows us to do this.

6. Failure of the abelian Fourier transform. In [6] the abelian Fourier trans-
form over Z2×Zp is used in a reconstruction algorithm for the dihedral groups. Using
this sort of “forgetful” abelian Fourier analysis it is similarly information-theoretically
possible to reconstruct subgroups of the q-hedral groups when q is small enough.

However, it does not seem possible to reconstruct subgroups of Ap using the
abelian Fourier transform. In particular, we show in this section that if we think of
the affine group as a direct product Z

∗
p×Zp rather than a semidirect product, then the

conjugates of the maximal subgroup become indistinguishable. This is not surprising,
since in an abelian group conjugates are identical by definition, but it helps illustrate
that nonabelian HSPs require nonabelian approaches (most naturally, in our view,
representation theory).

Let us consider the HCP for the maximal subgroup H = 〈(γ, 0)〉, where γ is
a generator of Z

∗
p. In that case, the characters of Z

∗
p × Zp are simply ρk,�(γ

t, b) =

ωkt
p−1ω

�b
p . Summing these over Hq = {(z, (1− z)b | z ∈ Z

∗
p} shows that we observe the

character (k, �) with probability

P (k, �) =
1

p (p− 1)2

∣∣∣∣∣∣

∑

t∈Zp−1

ωkt
p−1ω

�(1−γt)b
p

∣∣∣∣∣∣

2

=
1

p (p− 1)2

∣∣∣∣∣∣

∑

x∈Z∗
p

ω
k logγ x

p−1 ω−�xb
p

∣∣∣∣∣∣

2

.

This is the inner product of a multiplicative character with an additive one, which is
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another Gauss sum. In particular, assuming b �= 0, we have

P (0, 0) = 1/p,

P (0, � �= 0) = 1/(p (p− 1)2),

P (k �= 0, 0) = 0,

P (k �= 0, � �= 0) = 1/(p− 1)2

(see Appendix A). Since these probabilities do not depend on b, the different conju-
gates Hb with b �= 0 are indistinguishable from each other. Thus it appears essential
to use the nonabelian Fourier transform and the high-dimensional representations of
Ap.

7. Hidden shift problems. Using the natural action of the affine group on Zp,
we can apply our algorithm for the HCP studied above to a natural family of hidden
shift problems. Specifically, let M be a multiplicative subgroup of Z

∗
p of index r > 1,

let S be some set of r + 1 symbols, and let f : Zp → S be a function for which

f(x) = f(mx) ⇔ m ∈ M

for every x ∈ Zp. Observe that f is constant on the (multiplicative) cosets of M
and takes distinct values on distinct cosets; to put it differently, f(x) is an injective
function of the multiplicative order of x mod r. Furthermore, f(0) �= f(x) for any
nonzero x. The hidden shift problem associated with f is the problem of determining
an unknown element s ∈ Zp given oracle access to the shifted function

fs(x) = f(x− s).

Such functions have remarkable pseudorandom properties, and have been proposed
as pseudorandom generators for cryptographic purposes, where s acts as the seed to
generate the sequence (see, e.g., [5]).

The special case when f : Zp → C is a Legendre symbol, that is, a multiplicative
character of Z

∗
p extended to all of Zp by setting f(0) = 0, was studied by van Dam,

Hallgren, and Ip [4]. They give efficient quantum algorithms for these hidden shift
problems for all characters of Z

∗
p. Their algorithms, however, make explicit use of

the complex values taken by the character, whereas the algorithms we present here
depend only on the symmetries of the underlying function f ; in particular, in our case
f can be an arbitrary injective function from a multiplicative character into a set S.
On the other hand, their algorithms are efficient for characters of any order, while
our algorithms require that r be at most polylogarithmic in p.

Returning to the general problem defined above, let F(Zp, S) denote the collection
of S-valued functions on Zp. Note that the affine group Ap acts on the set F(Zp, S)
by assigning α · g(x) = g(α−1(x)) for each α ∈ Ap and g ∈ F (Zp, S). In particular,
fs = (1, s) · f .

Now note that the isotropy subgroup of f , namely the subgroup of Ap that fixes
the cosets of M , is precisely Hq = 〈(a, 0)〉, where a ∈ Z

∗
p has order q = (p − 1)/r.

As we have fs = (1, s) · f , the isotropy subgroup of fs is the conjugate subgroup
Hs

q = (1, s) ·Hq · (1,−s). Now observe that if we define Fs : Ap → (Zp)
p so that Fs(α)

is the p-tuple (αfs(0), αfs(1), . . . , αfs(p− 1)), then

(7) Fs(α) = Fs(β) ⇔ α−1β ∈ Hs
q ;
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i.e., Fs is constant precisely on the left cosets of Hs
q . Evidently, then, the solution to

the HCP given by the oracle Fs determines the solution to the hidden shift problem
given by fs. Unfortunately, the values of the oracle Fs are of exponential size—
we cannot afford to evaluate αfs(x) for all x ∈ Zp. The same symmetry expressed
in (7), however, can be obtained efficiently by selecting an appropriate subset R =
{x1, . . . , xm} ⊂ Zp and considering the oracle that samples αfs on R, that is,

FR
s (α) = (αfs(x1), . . . , αfs(xm)).

Of course, we have αfs = βfs ⇒ FR
s (α) = FR

s (β) regardless of R; the difficulty is
finding a small set R for which FR

s (α) = FR
s (β) ⇒ αfs = βfs. We show below that a

set of O(log p) elements selected uniformly at random from Zp has this property with
high probability.

Considering that αfs(x) = α · (1, s) · f(x), it suffices to show that if αf �= βf ,
then

Pr
x

[αf(x) = βf(x)] ≤ 1/2,

where x is selected uniformly at random in Zp. Note that for affine functions α and
β and an element x ∈ Zp for which β−1(x) �= 0,

αf(x) = βf(x) ⇔ α−1(x)

β−1(x)
∈ M.

The function α−1(x)/β−1(x) is a fractional linear transform, i.e., the ratio of two linear
functions; such functions are the discrete analogues of the Möbius transformations in
the complex plane. As in the complex case, the fractional linear transform γ(x)/δ(x)
is a bijection on the projective space Zp ∪ {∞} unless γ and δ share a root, or,
equivalently, there is a scalar z ∈ Z

∗
p such that γ(x) = zδ(x). If α−1(x)/β−1(x) is

injective, we can immediately conclude that

Pr
x

[αf(x) = βf(x)] ≤ |M |/(p− 1) = 1/r ≤ 1/2.

Otherwise, α−1(x)/β−1(x) = z for some scalar z. Since αf �= βf , however, in this
case we must have z ∈ Z

∗
p \M . In particular, f(zy) �= f(y) for any y �= 0, and so

Pr
x

[αf(x) = βf(x)] = 1/p,

since this occurs only at the unique root x of α−1(x) = 0.
In either case, then, αf and βf differ on at least half the elements of Zp whenever

α and β belong to different cosets of Hs
q . It follows that if R ⊂ Zp consists of m

elements chosen independently and uniformly at random from Zp, we have

Pr
R

[∀x ∈ R,αf(x) = βf(x)] ≤ 1/2m

for any α, β ∈ Ap with α−1β /∈ Hq. Taking a union bound over all pairs of left cosets
of Hq,

Pr
R

[∃α, β ∈ Ap : α−1β /∈ Hq ∀x ∈ R,αf(x) = βf(x)
] ≤
(
p(p− 1)

|Hq|
)2

1

2m
.

Selecting m = 5 log p ensures that this probability is less than 1/p.
Since we showed in section 3 that we can identify a hidden conjugate of Hq

whenever Hq is of polylogarithmic index in Z
∗
p, this provides an efficient solution to

the hidden shift problem so long as p/q = polylog(p).
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8. Closure under extending small groups. In this section we show that for
any polynomial-size group K and any H for which we can solve the HSP, we can
also solve the HSP for any extension of K by H, i.e., any group G with K � G and
G/K ∼= H. (Note that this is more general than split extensions, i.e., semidirect
products H � K.) This includes the case discussed in [13] of Hamiltonian groups,
since all such groups are direct products (and hence extensions) by abelian groups of
the quaternion group Q8 [23]. It also includes the case discussed in [8] of groups with
commutator subgroups of polynomial size, such as extra-special p-groups, since in that
case K = G′ and H ∼= G/G′ is abelian. Indeed, our proof is an easy generalization of
that in [8].

Theorem 7. Let H be a group for which hidden subgroups are fully reconstructible
and K a group of polynomial size in log |H|. Then hidden subgroups in any extension
of K by H, i.e., any group G with K � G and G/K ∼= H, are fully reconstructible.

Proof. We assume that G and K are encoded in such a way that multiplication
can be carried out in classical polynomial time. We fix some transversal t(h) of the
left cosets of K. First, note that any subgroup L ⊆ G can be described in terms
of (i) its intersection L ∩ K, (ii) its projection LH = L/(L ∩ K) ⊆ H, and (iii) a
representative η(h) ∈ L ∩ (t(h) · K) for each h ∈ LH . Then each element of LH is
associated with some left coset of L∩K, i.e., L =

⋃
h∈LH

η(h) · (L∩K). Moreover, if
S is a set of generators for L ∩K and T is a set of generators for LH , then S ∪ η(T )
is a set of generators for L.

We can reconstruct S in classical polynomial time simply by querying the function
h on all of K. Then L∩K is the set of all k such that f(k) = f(1), and we construct
S by adding elements of L ∩K to it one at a time until they generate all of L ∩K.

To identify LH , as in [8] we define a new function f ′ on H consisting of the
unordered collection of the values of f on the corresponding left coset of K:

f ′(h) = {f(g) | g ∈ t(h) ·K}.

Each query to f ′ consists of |K| = poly(n) queries to f . The level sets of f ′ are clearly
the cosets of LH , and so we reconstruct LH by solving the HSP on H. This yields a
set T of generators for LH .

It remains to find a representative η(h) in L ∩ (t(h) · K) for each h ∈ T . We
simply query f(g) for all g ∈ t(h) · K and set η(h) to any g such that f(g) = f(1).
Since |T | = O(log |H|) = poly(n), this can be done in polynomial time, completing
the proof.

Unfortunately, we cannot iterate this construction more than a constant number
of times, since doing so would require a superpolynomial number of queries to f for
each query of f ′. If K has superpolynomial size, it is not clear how to obtain η(h),
even when H has only two elements. Indeed, this is precisely the difficulty with the
dihedral group.

9. Conclusion and directions for further work. We have shown that the
“strong standard method,” applied with adapted bases, solves certain nonabelian
HSPs in quantum polynomial time that cannot be solved using measurements in
random bases or “forgetful” abelian approaches.

While we are still very far from an algorithm for HSP in the symmetric group Sn

or for Graph Automorphism, a global understanding of the power of strong Fourier
sampling remains an important goal. Perhaps the next class of groups to try beyond
the affine and q-hedral groups are matrix groups such as PSL2(p), whose maximal
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subgroups are isomorphic to Ap, and which include one of the infinite families of
finite simple groups.

Appendix A. Notes on exponential sums. The basic Gauss sum bounds the
inner products of additive and multiplicative characters of Fp, the finite field of prime
cardinality p. Definitive treatments appear in [19, section 5] and [17]. Considering
Fp as an additive group with p elements, we have p additive characters χs : Fp → C,
for s ∈ Fp, given by χs : z �→ ωsz

p , where, as above, ωp = e2πi/p is a primitive pth
root of unity. Likewise considering the elements of F

∗
p = Fp \ {0} as a multiplicative

group, we have p − 1 characters ψt : F
∗
p → C, for t ∈ F

∗
p, given by ψt : gz �→ ωtz

p−1,

where ωp−1 = e2πi/(p−1) is a primitive (p−1)th root of unity and g is a multiplicative
generator for the (cyclic) group F

∗
p.

With this notation the basic Gauss sum is the following.
Theorem 8. Let χs be an additive character and ψt a multiplicative character

of Fp. If s �= 0 and t �= 1, then

∣∣∣
∑

z∈F∗
p

χs(z)ψt(z)
∣∣∣ =

√
p.

Otherwise

∑

z∈F∗
p

χs(z)ψt(z) =

⎧
⎪⎨
⎪⎩

p− 1 if s = 0, t = 1,

−1 if s = 0, t �= 1,

0 if s �= 0, t = 1.

See [19, section 5.11] for a proof.
This basic result has been spectacularly generalized. In the body of the paper we

require bounds on additive characters taken over multiplicative subgroups of F
∗
p. Such

sums are discussed in detail in [17]. The specific bound we require is the following.
Theorem 9. Let χt be a nontrivial additive character of Fp and a ∈ F

∗
p an

element of multiplicative order q. Then

q−1∑

z=0

χt(a
z) =

⎧
⎪⎨
⎪⎩

O(p1/2) if q ≥ p2/3,

O(p1/4q3/8) if p1/2 ≤ q ≤ p2/3,

O(p1/8q5/8) if p1/3 ≤ q ≤ p1/2.

See [17, section 2] for a proof.
Note that in the body of the paper, we use Zp to denote the additive group of

integers modulo p and Z
∗
p to denote the multiplicative group of integers modulo p.
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Abstract. Alon et. al. [N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy, Combinatorica,
20 (2000), pp. 451–476] showed that every property that is characterized by a finite collection of
forbidden induced subgraphs is ε-testable. However, the complexity of the test is double-tower with
respect to 1/ε, as the only tool known to construct such tests uses a variant of Szemerédi’s regularity
lemma. Here we show that any property of bipartite graphs that is characterized by a finite collection
of forbidden induced subgraphs is ε-testable, with a number of queries that is polynomial in 1/ε. Our
main tool is a new “conditional” version of the regularity lemma for binary matrices, which may be
interesting on its own.
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1. Introduction. Property testing, first started in [6] and [17], deals with the
following general question: Given a property P and an input which is assumed to come
in the form of an oracle, how many queries to the input are required to distinguish
between an input which satisfies P and an input which is ε-far (in the normalized
Hamming distance) from any input that satisfies P? Property testing in general, and
the investigation of graph testing that was started in [14], in particular, has become an
active research area in recent years (see, for example, [14, 3, 8, 15, 1, 4] and the surveys
[16, 9]). In particular, it was shown in [3] that every property that is characterized
by a finite collection of forbidden induced subgraphs is ε-testable, that is, one can
distinguish between graphs that satisfy it and graphs that are ε-far from satisfying it,
with a number of queries that is bounded by a function of ε only, and is independent
of the size of the input graph. However, the complexity of the test is double-tower
with respect to 1/ε, as the only tool known to prove this testability is a variant of
Szemerédi’s regularity lemma.

More recently, Alon and Shapira [1, 4] initiated a study of those graph properties
that are characterized by forbidden subgraphs and can be tested “very efficiently”
in the sense that they can be tested with only poly(1/ε) many queries. In [1] it is
shown that the property of not containing a given subgraph (where the subgraph is
not necessarily induced) is testable with a number of queries polynomial in 1/ε if and
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only if the forbidden subgraph is bipartite. In the context of testing digraphs for a
forbidden structure, [4] contains a similar (but more complex) classification. The only
known upper bounds for the cases where the number of queries is not polynomial are
the tower (or worse) functions that result from Szemerédi’s regularity lemma and its
variants.

Here we concentrate on graph properties that are characterized by a finite family
of forbidden induced subgraphs. For general graphs, the only known upper bound
is the tower of towers; it was obtained from the proof in [3] that this is testable at
all. We consider here the special case of bipartite input graphs and show, in contrast
to the above, that any property of bipartite graphs that is characterized by a finite
collection of forbidden induced subgraphs is ε-testable with a number of queries that
is polynomial in 1/ε.

Our main tool is a new “conditional” version of the regularity lemma for binary
matrices (Lemma 1.6 below), which may be interesting on its own. We combine this
with some methods similar to those of [11] to obtain the desired result ([11] is an
expanded version of the results from [10] about matrix-poset properties, while this
paper expands the results from [10] about testing of bipartite graphs; the original
bounds in [10] for bipartite graphs, while better than the previously known tower of
towers, were not polynomial in 1/ε).

Our results are stated for graphs that are already given with a bipartition of
their vertices (with the definition of a forbidden subgraph also relating to subgraphs
with a compatible bipartition). However, in the case of bipartite input graphs whose
bipartition is not given in advance (and general induced forbidden subgraphs), we can
first use the approximate bipartition oracle given in [14] to reduce that setting to our
setting.

We now note that the study of such bipartite graph properties is an extension of
the poset model studied in [11], in which the testability of properties is related to the
logical complexity of their description (for the purpose here a model is the language
in which the properties are expressed, so a model is essentially identifiable with its
family of expressible properties). In this case the poset is the 2-dimensional n × n
grid, which as a poset is the product of two n-size total orders (lines). The language
(syntax) includes the poset relation, the label unary relation (being labeled “1”), and
in addition, the relations row(x1, x2) which state that x1 is on the same row as x2,
and similarly col(x1, x2) for columns. ∀-properties in this model are properties that
can be described by a finite formula over a fixed number of variables with only ∀-
quantifiers in prenex normal form. Such properties would then correspond to exactly
the properties that are characterized by a finite collection of forbidden submatrices
(in a manner similar to what was done in [11] for the ∀-poset model). We call this
model the “submatrix model.” The submatrix model is closely related to a submodel
of the (not always testable) ∀∃-poset model, defined in [11].

The model “submatrix” includes some interesting properties. In particular, the
permutation-invariant properties in it are tightly connected to bipartite graph prop-
erties that are characterized by a collection of forbidden induced subgraphs.

Definition 1.1. For a finite collection F of 0/1 matrices, we denote by SF all
0/1-matrices that do not contain as a submatrix any row and/or column permutation
of a member of F .

Observation 1.2. Every bipartite graph property (where a bipartite graph is
identified with its adjacency matrix in the usual way) that is characterized by a finite
collection of forbidden induced subgraphs is equivalent to a property SF for some
finite set F of matrices. In addition, every SF -property in the “submatrix” model is
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equivalent to a bipartite graph property as above.

It is important to note that here we discuss forbidden induced subgraphs. Not
having a forbidden subgraph (rather than induced subgraph) is a monotone decreasing
property. In this case, the test for the property is trivial, by density. For a large enough
density, a Zarankiewicz (see [21], [13]) type theorem asserts that the answer “No” is
correct (as the graph will have a large enough complete bipartite graph), while if the
density is low then the answer is trivially “Yes,” as the graph is close to the empty
(edgeless) one. A thorough treatment of this case is found in [1]. The main result in
the present paper is the following.

Theorem 1.3. Let F be a fixed finite collection of 0/1 matrices. Property SF is
(ε, poly( 1

ε ))-testable for every ε > 0, by a 2-sided error algorithm.

The test above, however, is not only 2-sided but also very computation-intensive
(despite this computation using only a relatively small set of queries as data). Using
some additional tools we then derive a 1-sided error test which is also efficient in terms
of its running time.

Theorem 1.4. Let F be a fixed finite collection of 0/1 matrices. Property SF

is (ε, poly( 1
ε ))-testable for every ε > 0, by a one sided error algorithm whose running

time is polynomial in the time it takes to make the queries.

The derivation of Theorem 1.4 from the main tool used in Theorem 1.3 is done
in two stages, in sections 5 and 6. To present the test proving Theorem 1.3, we will
need some machinery.

Let M be a 0/1-labeled, n× n matrix (to simplify notation we restrict ourselves
to square matrices, but all arguments and theorems in this paper hold word-for-word
for rectangular n × m matrices as well). We denote by R(M) and C(M) the set of
rows and the set of columns of M , respectively. For an integer r, an r-partition of M
is a partition of the set R(M) into r′ ≤ r parts {R1, . . . , Rr′} and a partition of the
set C(M) into r′′ ≤ r parts {C1, . . . , Cr′′}. Each submatrix of the form Ri × Cj will
be called a block (note that the coordinate sets defining the blocks do not necessarily
consist of consecutive matrix coordinates). The weight of the (i, j) block is defined as
1
n2 |Ri||Cj |. We also define similar weights for the Ri’s and Cj ’s, e.g., w(Ri) = 1

n |Ri|.
For a block B of a 0/1-matrix M and δ ≥ 0, we say that B is δ-homogeneous if

all but a δ-fraction of its values are identical. If B is δ-homogeneous we call the value
that appears in at least a 1− δ fraction of the places the δ-dominant value of B. Note
that this value is also α-dominant for any δ < α < 1/2. We say that a value is the
dominant value of B if it is simply the majority value in B.

Definition 1.5. Let P = {R1, . . . Rr′}×{C1, . . . Cr′′} be an r-partition of M , and
let δ > 0. We say that P is a (δ, r)-partition if the total weight of the δ-homogeneous
blocks is at least 1 − δ.

The key result is that an input that does not admit some (δ, r)-partition can be
rejected easily, because it will then contain many copies of every possible k×k matrix
(including the forbidden ones) as submatrices.

Lemma 1.6. Let k be fixed. For every δ > 0 and an n × n, 0/1-matrix M with
n > (k/δ)O(k), either M has a (δ, r)-partition for r = r(δ, k) ≤ (k/δ)O(k), or for every

0/1-labeled k× k matrix B, a (g(δ, k) ≥ (δ/k)O(k2))-fraction of the k× k submatrices
of M are B.

This lemma allows us to reduce the testing problem to matrices that admit a
(δ, r)-partition for certain δ, r; as for matrices that do not admit such partitions, the
lemma asserts that querying a random submatrix will find a counterexample with suf-
ficiently high probability. We note that the lemma is essentially a conditional version
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of Szemerédi’s regularity lemma ([19]; see also [7, Chapter 7]), as a (δ, r)-partition is in
particular a regular partition in the sense of Szemerédi of the corresponding bipartite
graph. The improvement over directly using the regularity lemma is achieved because
of this conditioning. The proof of the lemma will be presented in section 4.

We then construct a test for matrices admitting a (δ, r)-partition. This test will
be very similar to the 2-sided boolean matrix poset test in [11]. However, the situation
in the poset test is that the partition can be fixed in advance, while in our case there
is the problem of “learning” enough of the partition by sampling. The main tool for
doing so is Lemma 2.3 below. For stating it we need some more definitions, which are
described in section 2 along with the framework of the proof of Theorem 1.3.

The plan of the paper is as follows. Section 2 includes some preliminaries, as well
as a proof of Theorem 1.3 from two main lemmas—Lemma 1.6 above and Lemma
2.3 which is stated there. The lemmas themselves are proven in sections 4 and 3,
respectively. We then turn to proving Theorem 1.4. This is done in two stages. First,
a special case is proven in section 5, and then this case is used as a lemma in section
6 to prove the full result. In both stages we need the main tool that was used in the
proof of Theorem 1.3, namely, Lemma 1.6. Finally, section 7 contains some concluding
open problems.

2. Partitions, signatures, and Theorem 1.3. Assume that M has a (δ, r)-
partition. We have no hope, of course, of finding it using O(1) many queries, as we
cannot even sample a single point from every matrix row. Hence, we will need to
define the “high-level features” of the (δ, r)-partitions of M that can be detected by
sampling.

In the following, whenever we refer to a δ-fraction of the members of a weighted
set Q, we mean a subset Q′, the total weight of whose members is δ (where we assume
that the total weight of the members of Q is normalized to be 1). Let M be a matrix
with a (δ, r)-partition P defined by the row partition {R1, . . . , Rs} and the column
partition {C1, . . . , Ct}, s, t ≤ r. Then P naturally defines a high-level pattern which
is an s× t matrix of the dominant labels of the blocks.

Definition 2.1. Let P be a partition as above, and let P be a 0/1-labeled, s× t
matrix. A block Ri ×Cj is called δ-good with respect to P if it is δ-homogeneous and
its dominant label is Pi,j. P is called a δ-pattern of P if all but at most a δ-fraction
of the weighted blocks in P are δ-good with respect to P .

It is immediate from the definition that if a partition has a δ-good pattern of
size s× t, then it is a (δ, r)-partition with r = max{s, t}. Conversely, if P is a (δ, r)-
partition, then it has an r × r δ-pattern (by possibly introducing empty blocks). As
the block sizes of a (δ, r)-partition need not be fixed, we will also need information
about the weights of Ri and Cj , (i, j) ∈ [s] × [t].

Definition 2.2. Let M be an n×n matrix with a (δ, r)-partition P defined by the
row partition {R1, . . . , Rs} and the column partition {C1, . . . , Ct}. Then a δ-signature
of P is an s × t, 0/1-labeled matrix P and two sequences {αi}s1, {βi}t1, where P is a

δ-pattern of P, and in addition
∑s

i=1 | |Ri|
n − αi| ≤ δ and

∑t
j=1 | |Rj |

n − βj | ≤ δ.
Note that the signature of a partition is closed under permutations of rows and

columns; namely, any row/column permutation of P with the respective permutations
of {αi}s1 and {βi}t1 is also a δ-signature of any matrix for which P is a δ-signature.
Moreover, a signature of M is also a signature of all row/column permutations of M .

The signature of a partition has sufficient properties for constructing a test as
we shall see in the proof of Theorem 1.3. The following also asserts that it can be
approximated by sampling.
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Lemma 2.3. Let δ < 1/81 and assume that an n × n, 0/1-matrix M has a
(δ, r)-partition. By making q = (r/δ)O(1) many queries, a 26δ1/6-signature of a
(16δ1/6, 10r2/(4δ1/3) + 1)-partition can be found, with success probability 3

4
.

We note that a test for a much closer approximation of the original (δ, r)-partition
can also be deduced from [14], with exponentially worse running time and query
complexity. The proof of Lemma 2.3 is given in section 3. We end the discussion by
showing that together with Lemma 1.6 this indeed implies a 2-sided error test.

Proof of Theorem 1.3. Assume that we want to ε-test M for a permutation-
invariant collection of forbidden induced k×k submatrices. Blocks will now correspond
to partition-blocks: Let δ = ( ε

300
)6, and let g = g(δ, k), r = r(δ, k) be those of Lemma

1.6. For 4/g = (k/ε)O(k2) iterations, independently, we choose k random rows and
k random columns of M and query all k2 points in the k × k matrix that is defined
by them. If we find a counterexample in the queried points we answer “No” and
terminate the algorithm, and otherwise we continue. Let E1 denote the event that
M has no (δ, r)-partition and yet the algorithm continues. For inputs with a (δ, r)-
partition, this event (by definition) never happens, while for other inputs, by Lemma
1.6, the probability of this event is bounded by 1

12
.

We now work under the assumption that M has a (δ, r)-partition and use the
algorithm given in Lemma 2.3 to try finding an ε

8
-signature of an ( ε

8
, 10r2/4( ε

300
)2+1)-

partition by sampling (r/δ)O(1) = (k/ε)O(k) queries. Let P with {αi}s1 and {βi}t1 be
the signature obtained by the algorithm, and let E2 be the event that it is not an
ε
8
-signature of an ( ε

8
, 10r2/4( ε

300
)2 + 1)-partition of M . If M in fact did not have a

(δ, r)-partition, then this event has the same probability as E1 (which is bounded by
1
12

), and otherwise by Lemma 2.3 the probability of E2 is bounded by 1
4
.

We now form an n × n matrix MQ that represents our knowledge of M : We
partition the rows of MQ into s parts of weights {αi}s1 and the columns into t parts
of weights {βi}t1. For every block of P , we set every entry of the corresponding block
of MQ to have the same label as in P . Now, let MQ,ε be the set of all matrices that
can be obtained from MQ by changing at most εn2/2 entries in any possible way.
We check if any of the members of MQ,ε has the property SF . If there is such a
member, the algorithm answers “Yes.” Otherwise, if every member MQ,ε contains a
permutation of a forbidden submatrix, then the answer is “No.” Note that this last
phase of the algorithm involves no additional queries and is just a computation phase.

To see that the algorithm is correct we first note that if a counterexample is found
in the first phase of the algorithm, then the input M does not have the property with
probability 1. Hence the algorithm can err only in the second phase.

We claim that unless E2 happened the following hold: (a) some row/column
permutation of M is a member of MQ,ε, and (b) every two members of MQ,ε are of
distance at most εn2. Indeed, assume that the signature that has been found is an ε

8
-

signature of an ( ε
8
, 10r2/4( ε

300
)2 + 1)-partition of M . Then MQ can be obtained from

M by changing at most an ε
8
-fraction of the entries in each ε

8
-good block, followed by

changing any of the entries in the non– ε
8
-homogeneous blocks, and finally changing

entries that are in strips around every block to compensate for the inaccuracy of the
size sequences of the signature (whose sizes sum up to no more than ε

8
for the rows and

ε
8

for the columns). The first two types of changes contribute at most an ε
8
-fraction of

changes to the whole matrix each, and the last type contributes at most an ε
4
-fraction

of changes. Thus M is at most εn2/2-far from MQ, and, in particular, M is in MQ,ε.
This proves (a), while (b) follows automatically from the definition of MQ,ε and the
triangle inequality.
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Hence, we may assume that with probability at least 3
4

(which is the lower bound
on E2 not happening), the ε

8
-signature is computed correctly and (a) and (b) above

are satisfied. We conclude that if M has the property then certainly some member
of MQ,ε will have the property (as M itself is such a member by (a)), and thus the
algorithm will accept. On the other hand, if M is more than εn2-far from having the
property, then no member of MQ,ε can have the property by (b).

Clearly the query complexity of the test is O(k/ε)O(k2), which for a fixed family
F (and hence a fixed k) is polynomial in ε.

The above test, while using only a constant number of queries, has a bad depen-
dence of the calculation time on the input size (this can be alleviated somewhat, but
in light of the following we omit the details). Unfortunately, this dependence is such
that the automatic conversion by Alon of 2-sided tests to 1-sided ones, described in
[15, Appendix D], will not work here. Instead we will go on a different route to show
that a (δ, r)-partition of the matrix not only contains the necessary information about
its farness from our property, but also implies the existence of many witnesses. But
first, we turn back to the proofs of Lemmas 2.3 and 1.6.

3. (δ, r)-partitions, row similarity, and the proof of Lemma 2.3. Our goal
here is to show that by sampling (r/δ)O(1) entries in M , one can detect the signature
of a (δ′, r′)-partition, if a (δ, r)-partition exists. For this we need a representation of
a partition in a “local” way, which is asserted by Claims 3.2 and 3.3. To do this, we
relate the notion of a (δ, r)-partition to relative distances between rows and columns.
For the rest of this section we assume that δ is smaller than 1/81.

For two vectors u, v ∈ {0, 1}m let μ(u, v) = 1
m |{i| ui �= vi}|; namely, μ(u, v) is

the normalized Hamming distance between the two vectors. We will use the following
definitions.

Definition 3.1. Let M be an n × n matrix. We set ER(μ(ri, rj)) to be the
expected value of μ(ri, rj), where ri, rj are two rows of M chosen at random. Similarly
let EC(μ(ci, cj)) denote the respective quantity where ci, cj are two columns chosen at
random.

Given a set of vectors V (usually either the set of rows or the set of columns of
M) and a partition V0, . . . , Vs of V , we say that the partition is a (δ, r)-clustering of
V if s ≤ r, |V0| ≤ δ|V |, and for every 1 ≤ i ≤ r and u, v ∈ Vi we have μ(u, v) ≤ δ.

Finally, for a partition block B and a row u that intersects B, let u|B be the
restriction of u to the columns in B.

There is a close correlation between (δ, r)-partitions of M and (δ, r)-clusterings
of its rows and columns, as the following two claims show.

Claim 3.2. Let M be a 0/1, m × m matrix, and assume that M has a (δ, r)-
partition. Then there exist a (4δ1/3, r)-clustering of the rows of M as well as a
(4δ1/3, r)-clustering of the columns of M .

Claim 3.3. Let M be a 0/1, m ×m matrix, and assume that {R0, . . . , Rs} and
{C0, . . . , Ct} are (δ2, r)-clusterings, for r = max{s, t}, of the set of rows and the set
of columns, respectively. Then these clusterings also form a (4δ, r+1)-partition of M .

Moreover, for the above R0, . . . , Rs and C0, . . . , Ct, a 4δ-signature for the partition
is given by the sequences αi = w(Ri), i = 0, . . . , s, βi = w(Ci), i = 0, . . . , t, and the
s × t matrix P , where the (i, j) entry of P corresponds to the block Ri × Cj and its
label is the dominant label of this block.

Before we prove the two claims we need two simple observations that in some
sense correspond to the case “r = 1” of the claims.
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Observation 3.4. Let A be a 0/1 matrix. If A is δ-homogeneous, then
ER(μ(ri, rj)) ≤ 2δ and EC(μ(ri, rj)) ≤ 2δ.

Proof. As A is δ-homogeneous, we may assume without loss of generality that A
contains less than a δ fraction of 0’s. Hence, choosing two rows at random and picking
a random place i in both, the probability that they are not both “1” in this place is
at most 2δ. Thus the expectation of the fraction of the number of places where they
differ is bounded by 2δ, and this expectation is exactly ER(μ(ri, rj)). The proof for
EC(μ(ri, rj)) is analogous.

Observation 3.5. If A is a 0/1 matrix such that ER(μ(ri, rj)) < δ and EC(μ(ci,
cj)) < δ, then A is 4δ-homogeneous.

Proof. Assume on the contrary that A is not 4δ-homogeneous. This implies
that when choosing two points from A independently and uniformly at random, with
probability at least 4δ, they will not have the same label. This is also a lower bound
on the fraction of the 2 × 2 submatrices that contain both 0’s and 1’s, as any two
points with different labels can be extended to such a submatrix. On the other hand,
if ER(μ(ri, rj)) < δ, then with probability more than 1− 2δ both rows of a uniformly
random 2 × 2 submatrix are identical, as this matrix can be expressed as choosing
two random places from two random rows. By the same token, if ER(μ(ci, cj)) < δ,
then with probability more than 1−2δ the two columns of a random 2×2 matrix are
identical. Together these would have implied that less than a 4δ fraction of the 2× 2
submatrices have both 0’s and 1’s, which is a contradiction.

Proof of Claim 3.2. Assume that M has a (δ, r)-partition defined by the row
partition R1, . . . , Rs and the column partition C1, . . . , Ct, s, t ≤ r. Assume that
B is a δ-homogeneous block that contains the rows of Ri. Then by Observation 3.4,
ER(u|B , v|B) ≤ 2δ for two rows chosen at random from Ri. For a non– δ-homogeneous
block, this expression is at most 1. Let wi = w(Ri) = |Ri|/m, i = 1, . . . , s, and let
Ei(μ(u, v)) be the expectation of μ(u, v), where u, v are two rows chosen uniformly at
random from Ri. Then the above implies that Σr

i=1wiEi(μ(u, v)) ≤ (1− δ)2δ+ δ ·1 ≤
3δ, as this sum goes over all blocks and there is at least a (1−δ) fraction of 0/1-blocks
contributing at most 2δ each.

Now this implies that the total weight of the Ri’s for which Ei(μ(u, v)) ≥ δ2/3 is
at most 3δ1/3. Let R0 be the union of all these Ri’s. Let R1, . . . , Rr′ be all other Ri’s,
after renumbering. For every i = 1, . . . , r′, by our assumption, Ei(μ(u, v)) < δ2/3

for randomly chosen u, v, so there is an ri ∈ Ri for which for at least a (1 − δ1/3)
fraction of the v’s in Ri, μ(ri, v) < δ1/3. Hence if we define for 1 ≤ i ≤ r′ the set

R′
i = {v ∈ Ri|μ(v, ri) < δ1/3} and then define R′

0 =
⋃r′

i=1(Ri \ R′
i) ∪ R0, we obtain

that R′
0, . . . , R

′
r′ is indeed a (4δ1/3, r)-clustering for the rows of M . The proof for the

existence of a clustering of the columns is analogous.

Proof of Claim 3.3. By the assumptions of the claim, |R0| < δ2n. Also, for any
i ≥ 1 and any two rows u, v ∈ Ri, μ(u, v) ≤ δ2. Thus for i = 1, . . . , s, Ei(μ(u, v)) ≤
δ2, where Ei is the expectation when u, v are chosen at random from Ri. Hence

for the above partition into rows, Σs
i=0

|Ri|
m Ei(μ(u, v)) ≤ 2δ2 (as for each i > 1 the

corresponding term in this average is at most δ2, and for i = 0 the weight of the term
is at most δ2). Similarly we get the analogous inequality for columns. Let P be the
partition of M into blocks that is defined by the cross product of the two partitions
above.

Recall that |Ri|
m , |Ci|

m are the weights w(Ri), w(Ci) of the corresponding sets. Also,
for a block B, let ER(μ(u|B , v|B)), respectively, EC(μ(u|B , v|B)), be the expectation
of μ(·, ·) for two rows u, v, respectively, columns, chosen at random from B. By the
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law of complete probability, Σs
i=0w(Ri) ·Ei(μ(u, v)) = EB(ER(μ(u|B , v|B))), where in

the right-hand side the outer expectation is on blocks of P chosen according to their
weights, and the inner expectation is on rows chosen at random in the block. Hence,
the fact that Σs

i=0w(Ri)Ei(μ(u, v)) ≤ 2δ2 implies that the total weight of all blocks
B for which ER(μ(u|B , v|B)) > δ is bounded by 2δ. By the same argument, for at
most a 2δ fraction of the blocks EC(μ(u|B , v|B)) > δ. Hence, for at least a 1 − 4δ
fraction of the blocks (weighted by the block weights), both ER(μ(u|B , v|B)) ≤ δ
and EC(μ(u|B , v|B)) ≤ δ. However, by Observation 3.5 above, each such block is 4δ-
homogeneous, and hence at most a 4δ fraction of the blocks (measured by weights) are
not 4δ-homogeneous. This implies that P is a (4δ, r+1)-partition. Also, by definition,
a pattern for this partition is any one that has, for each block, the (1− 4δ)-dominant
label of this block if there is one, or an arbitrary value otherwise. Moreover, as αi, βi

are the exact weights of the parts in the partition, we get a 4δ-signature for it by
definition.

We are now ready to present the testing algorithm that yields Lemma 2.3. We
start with a trivial observation about approximating distances.

Claim 3.6. Let u, v ∈ {0, 1}n, γ < 1. Choose randomly and independently (with
repetitions) m elements of [n], naming the resulting (multi)set L = {l1, . . . , lm}. Let
μ̃(u, v) = 1

m

∑m
k=1 |u(lk)− v(lk)|, where u(i) and v(i) are the ith coordinates of u and

v, respectively. Then |μ(u, v)− μ̃(u, v)| ≤ γ with probability at least 1− 2exp(−γ2m).

Proof. The proof is immediate by a Chernoff-type inequality (see, e.g., [5, Corol-
lary A.1.7]).

We next construct a testing algorithm for an approximate notion of clustering.
Testing algorithms for clustering were already investigated in [2]; here we will use a
simple self-contained proof for an algorithm that gives an approximation in a very
weak sense.

Lemma 3.7. There exists an approximate oracle algorithm that makes (r/δ)O(1)

bit queries (queries of one coordinate of one vector) to a set V of vectors over {0, 1}n,
such that if V has a (δ, r)-clustering then the algorithm provides a (4δ, 10r2/δ)-
clustering of V as follows.

The algorithm makes (r/δ)O(1) queries in a preprocessing step, and with prob-
ability at least 0.9 provides a clustering oracle for V in the following sense: There
exists a (4δ, 10r2/δ)-clustering V ′

0 , . . . , V
′
t of V , such that for every specified v ∈ V

the algorithm can make (r/δ)O(1) additional queries to provide an index 0 ≤ iv ≤ t,
where it is guaranteed that for at least a (1 − 4δ) fraction of the vectors v ∈ V the
provided iv will satisfy v ∈ Viv .

Proof. Suppose that V0, . . . , Vs is a (δ, r)-clustering of V . The algorithm starts
by selecting uniformly at random r′ = 10r2/δ vectors v1, . . . , vr′ from V . With prob-
ability at least 0.95 (assuming that r is large enough) the situation is that for every
1 ≤ i ≤ r for which |Vi| ≥ δ|V |/r, we have picked at least one vector from Vi.

We now pick uniformly at random (with repetitions) l = (10r′ log r′)/δ coordi-
nates from 1, . . . , n, and let μ̃(·, ·) denote the corresponding approximated distance.
Claim 3.6 implies that for every v, v′ ∈ V , the probability for |μ(v, v′)− μ̃(v, v′)| > 1

2
δ

is bounded by δ/20r′, and so with probability at least 0.95 the situation is that for
at least a (1 − δ) fraction of the vectors v ∈ V , |μ(v, vi) − μ̃(v, vi)| ≤ 1

2
δ for every

1 ≤ i ≤ r′.
Assuming that both of the above events occurred (which is the case with proba-

bility at least 0.9), we define V ′
0 , . . . , V

′
r′ as follows. Every vector v that belongs to V0,

or that belongs to a Vi of size |Vi| < δ/r, or such that there exists some vi for which
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|μ(v, vi)− μ̃(v, vi)| > 1
2
δ, is placed in V ′

0 . For every other vector we let i be the index
for which μ̃(v, vi) is minimal (or the smallest such index if there exist several values
that minimize μ̃(v, vi)), and define v to be in V ′

i .

We claim that V ′
0 , . . . , V

′
r′ is indeed a (4δ, r′)-clustering. First, it is easy to see that

|V ′
0 | ≤ 3δ|V | < 4δ|V | from the assumption on the size of V0, and the guarantee that

we have on the number of vectors for which the distance was not well approximated.
Now, if u, v ∈ V ′

i for some 1 ≤ i ≤ r′, then we first note that μ(u, vi) ≤ 2δ. This
is because if we denote by 1 ≤ j ≤ r the index for which u ∈ Vj , then we have
μ(u, vi) ≤ μ̃(u, vi) + 1

2
δ ≤ μ̃(u, vj) + 1

2
δ ≤ μ(u, vj) + δ ≤ 2δ. The same goes for

proving that μ(v, vi) ≤ 2δ, and so by the triangle inequality μ(u, v) ≤ 4δ. This
concludes the claim about V ′

0 , . . . , V
′
r′ .

We now describe the remainder of the algorithm: After choosing v1, . . . , vr′ and
the l coordinates as above, the algorithm now queries each of these coordinates from
each vi, and by this concludes the preprocessing stage. For the oracle stage, given
a vector v ∈ V the algorithm queries all the l chosen coordinates of v, and then
calculates μ̃(v, vi) for every i. The algorithm then outputs the index i that minimizes
this, or the smallest such index in case there is more than one. It is clear that the
algorithm gives the correct index for every vector that is not in V ′

0 , whose size is
bounded by 4δ, concluding the proof.

We note here that we could also use the above to find an approximate oracle for a
(4δ, r)-clustering (instead of a (4δ, 10r2/δ)-clustering), by trying to get from the set of
queried vectors a subset V ′ for which all but at most a 3δ fraction of the members of
V are δ-close to a member of V ′ (and verifying the validity of V ′ using a polynomial
number of additional queries). This would also improve the dependencies in Lemma
2.3, but we omit it as our proofs already ensure the polynomial dependence on ε
without this improvement.

We are now ready to describe the algorithm that proves Lemma 2.3, by finding
with probability 3

4
a signature of a (16δ1/6, 10r2/(4δ1/3)+1)-partition of M , if M has

a (δ, r)-partition.

Algorithm Sig.

• By Claim 3.2, there exists a (4δ1/3, r)-clustering of the rows. We perform
the preprocessing stage of the algorithm provided by Lemma 3.7 to obtain an
approximate oracle for a (16δ1/3, 10r2/(4δ1/3))-clustering of the set of rows
of M ; we denote it by R′

0, . . . , R
′
r′ for r′ = 10r2/(4δ1/3). Similarly, we obtain

an approximate oracle for a (16δ1/3, r′)-clustering C ′
0, . . . , C

′
r′ of the columns.

• We now choose uniformly and independently at random (with repetitions) a
(multi)set R of l = (100r′ log r′)/δ rows of M , and for each of these we use the
clustering oracle for R′

0, . . . , R
′
r′ . For 1 ≤ i ≤ r′, we set αi to be the number

of rows from R for which the oracle answered “i,” divided by l. We do the
analogous operation for a set C of l columns M that were uniformly and
independently chosen (this time with respect to the oracle for C ′

0, . . . , C
′
r′),

and use it to set βi for 1 ≤ i ≤ r′. Both α0 and β0 are set to 0, as the above
oracles never correctly detect that a row is in R′

0 or a column is in C ′
0.

• Finally, for every 1 ≤ i ≤ r′ and 1 ≤ j ≤ r′ we look at the intersections of all
the rows in R which the oracle located in R′

i, and all the columns in C which
the oracle located in C ′

j . We query the entries of M at the intersections of
the set of sampled rows R and the set of sampled columns C, and we set Pi,j

to be the value (0 or 1) that has the majority of appearances in these queries.

We now claim that this algorithm satisfies the assertion of Lemma 2.3. First, we
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note that with probability at least 0.8, the oracles for both the clustering of the rows
and the clustering of the columns are valid, as guaranteed by Lemma 3.7. In turn this
guarantees that R′

0, . . . , R
′
r′ and C ′

0, . . . , C
′
r′ form a (16δ1/6, r′ +1)-partition of M , by

Claim 3.3. Also, each of the following occurs with probability at least 0.99:
• The difference between every αi and the total fraction of the rows of M

for which the oracle would output “i” is at most δ/r′. This implies that∑r′

i=0 | |R
′
i|

n − αi| ≤ 2 · 16δ1/3 + r′ · δ/r′ < 33δ1/3.

• Similarly to the above,
∑r′

i=0 | |C
′
i|

n − βi| < 33δ1/3. With the previous item

this means that for all but at most a 10δ1/6 fraction of the pairs (i, j), both

| |R′
i|

n − αi| ≤ 7δ1/6 and | |C
′
j |
n − βj | ≤ 7δ1/6.

• The fraction of appearances of “1” in the values taken under consideration
when calculating Pi,j differs from the fraction of appearances in the inter-
sections of all rows assigned to “i” and all columns assigned to “j” (by the
oracles) by no more than δ. In addition, by the previous item for all but at
most a 10δ1/6 fraction of the pairs (i, j), the above fraction differs by no more
than 14δ1/6 from the fraction of appearances of “1” in R′

i×C ′
j , and so (if δ is

small enough) for the 16δ1/6-homogeneous blocks among these, Pi,j will get
the correct value. Hence, the (weighted) fraction of wrong Pi,j labels is no
more than 16δ1/6 + 10δ1/6 = 26δ1/6.

Therefore, with probability at least 3
4

all the above occurs (including the two

oracles being valid), and a 26δ1/6-signature of a 16δ1/6-partition is obtained.
As a final remark, the proof of Lemma 1.6, given in the next section, also uses an

interim lemma about clusterings, Lemma 4.1 below. One could save further on the
number of queries in the main theorem if the notion of (δ, r)-clustering would be used
throughout instead of the notion of (δ, r)-partitions, but it would still be polynomial
(not linear) in ε. However, the notion of (δ, r)-partitions is more intuitive and could
have applications outside the scope of this work, so we use it instead.

4. Proof of Lemma 1.6. We use the same definition of a (δ, r)-clustering (for
sets of rows or columns) as we used in the previous section. Claim 3.3, which was
proved above, implies that if A has a (δ2/16, t)-clustering for both its rows and its
columns, then A admits a (δ, t+1)-partition. Therefore, the following lemma immedi-
ately implies Lemma 1.6. Moreover, it follows that Lemma 1.6 is true even if we insist
on the forbidden submatrices also obeying the order of the rows and the columns of
the input matrix (which is ignored for our use of a matrix as representing a bipartite
graph).

Lemma 4.1. Let k be a fixed integer and let δ > 0 be a small real. For every
n × n, 0/1-matrix A, with n > (k/δ)O(k), either A admits (δ, r)-clusterings for both
the rows and columns with r ≤ (k/δ)O(k), or for every k × k, 0/1 matrix F , at least

a (δ/k)O(k2) fraction of the k × k (ordered) submatrices of A are copies of F .
We should also note that the above estimate is essentially tight, as shown by

a random n × n matrix A, where each entry is independently chosen to be 1 with
probability 2δ, and 0 with probability 1 − 2δ. The expected number of copies of the
k × k all 1 matrix in such a matrix is only a (2δ)k

2

fraction of the total number of
k × k submatrices, and it is not difficult to check that with high probability A does
not have a (δ, o(n))-clustering for either its rows or its columns.

We will prove the lemma only for the clustering of the columns, because the proof
for rows is virtually identical. We make no attempt to optimize the absolute constants
and omit all floor and ceiling signs to simplify the presentation. In order to prove the
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above lemma, we first need the following simple corollary of Sauer’s lemma [18, 20].

Lemma 4.2. For every t > 10k, every t × t2k−1 binary matrix M with no two
identical columns contains every possible k × k binary matrix as a submatrix.

Proof. By Sauer’s lemma [18, 20], every set of s = 1 +
∑k−1

i=0

(
t
i

)
consecutive

columns of M contains a k × 2k submatrix that has no two identical columns (and
so contains all 2k possible binary vectors as columns). Note that s < tk−1 and
s(1 + (k + 1)

(
t
k

)
) ≤ t2k−1. Thus M can be partitioned into at least 1 + (k + 1)

(
t
k

)

blocks of size t × s, each consisting of s consecutive columns. Considering these
1 + (k + 1) · (tk

)
pairwise disjoint consecutive blocks, we now find in each of them a

k × 2k submatrix with no identical columns. Considering now the set of k rows in
each such submatrix, we obtain by the pigeonhole principle k such submatrices of size
k × 2k, all having the same set of rows, such that their column sets are contained in
disjoint intervals (according to the column order of M), one following the other. This
implies the desired result, as we can choose from each of the submatrices a desired
column and thus construct any given k × k matrix.

We now turn to the proof of Lemma 4.1. Fix δ and k, and suppose that n is large
enough (as a function of δ and k, to be chosen later). Let t be the smallest integer
for which (1 − 1

2
δ)tt4k−2 < 0.1. A simple computation shows that t = O(kδ log(kδ )).

Define T = t2k−1 and suppose that A is an n× n matrix with 0/1 entries which does
not have a δ-clustering of the columns of size T . We have to show that in this case A
must contain many copies of every k × k matrix F .

Indeed, let S be a random set of columns of A obtained by choosing, randomly,
uniformly, and independently (with repetitions) τ = 5T/δ columns of A. We assume
that n > 10( 5T

δ )2. Note that, in particular, for such an n, with probability at least
9/10 no column is chosen more than once.

Claim 4.3. With probability at least 0.9, S contains a subset S′ of T columns so
that the Hamming distance between any pair of them is at least 1

2
δn.

Proof. Let us choose the members of S one by one and construct, greedily, a
subset S′ of S consisting of columns so that the Hamming distance between any pair
of them is at least 1

2
δn as follows. The first member of S belongs to S′, and for

all i > 1, the ith chosen column of S is added to S′ if its Hamming distance from
every previous member of S′ is at least 1

2
δn. Since, by assumption, there is no (δ, T )-

clustering of the columns of A, as long as the cardinality of S′ is smaller than T , the
probability that the next chosen member of S will be added to S′ is at least δ (given
any history of the previous choices); otherwise it would mean that the balls of radius
1
2
δn around the members of S′ form a δ-clustering. It thus follows that the probability

that by the end of the procedure the cardinality of S′ will still be smaller than T is
at most the probability that a binomial random variable with parameters 5T/δ and
δ will have value at most T . Hence this probability is smaller than 0.1, which implies
the assertion of the claim.

The usefulness of S′ as above is shown by the following claim.

Claim 4.4. Let S′ be a fixed set of T columns of A for which the pairwise
Hamming distance is at least 1

2
δn. Then, if we choose a random set R of t rows of

A by choosing them independently and uniformly at random, with probability at least
0.9 all the projections of the members of S′ on the rows in R are distinct.

Proof. Let S′ be a fixed set of T columns of A so that the Hamming distance
between every pair is at least 1

2
δn. For any two fixed columns c1, c2 ∈ S′ and a

random row r we have that the probability that c1[r] = c2[r] is at most 1− 1
2
δ, where

c[j] denotes the jth coordinate of c. Hence, the expected number of pairs of members
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of S′ whose projections on R are identical is at most
(
T
2

)
(1 − 1

2
δ)t < 0.1, where the

last inequality follows from the choice of t. The desired result follows.
We can now conclude the proof of Lemma 4.1 as follows. Fix F to be any k × k,

0/1 matrix. Choosing a random t× τ submatrix C of A is just like choosing a set R
of t random rows and a set S of τ random columns. By Claim 4.3, with probability
at least 0.9, the set S of τ columns contains a subset of the columns S′ of size T
that has pairwise distances at least 1

2
δn. Given that this happens, by Claim 4.4 with

probability 0.9 all the t projections of S′ on the t rows of C are distinct. Hence
with probability at least 0.8 (the probability that both events above hold) Lemma 4.2
ensures that C contains F as a submatrix.

Now choosing a random k × k submatrix of A can be viewed as first choosing a
random t×τ matrix C as above and then choosing a random subset of k columns and
k rows in C. Hence the probability that such a random k× k matrix will be identical
to F is at least 0.8/(

(
t
k

)(
τ
k

)
) = ( δ

k )O(k2).

5. Unfoldable graphs and 1-sided testing. To construct a 1-sided test that
is polynomial in ε, one would like to use the following scheme. First, the case where
there is no (δ, r)-partition (for the appropriate parameters) is covered also for 1-sided
algorithms by Lemma 1.6. Now, assuming that M is ε-far from SF and has a (δ, r)-
partition, using Lemma 2.3, we can find a submatrix Q that has a (δ′, r)-partition
with a signature similar to a (δ′, r)-partition of M . We would like to show that in
this case Q contains a member of F which will provide a witness for rejecting M .

However, having a Q with the same signature as a matrix M that is ε-far from
SF still does not imply that Q contains a member of F , because some of the partition
blocks of Q may not be homogeneous and so their behavior may depend on n (this
was circumvented in the 2-sided algorithm by checking all n × n matrices that are
compatible with the signature). One way to solve this would be to use a Ramsey-like
lemma like the one used in [11] to get rid of nonhomogeneous blocks, but this would
create an exponential blow-up in the number of queries.

Here we take a different approach. First, in this section we prove the existence
of the test only for the case where it is enough for Q to have only one row and one
column from every cluster of the partition of M , and so the issue of homogeneity
becomes moot. Later, we will use this special case as a lemma to prove the general
case.

Definition 5.1. A matrix M is called unfoldable if it contains no two identical
rows and no two identical columns. Equivalently, an unfoldable bipartite graph is one
that has no two vertices (on the same side) with exactly the same set of neighbors.

A family F of matrices is called unfoldable if all its members are unfoldable.
The main lemma that we will prove in this section essentially states that properties

definable by unfoldable matrices are testable.
Lemma 5.2. For every ε, k, and a family F of unfoldable k×k or smaller matri-

ces, there exists δ = (ε/k)O(k2) such that if an n× n matrix M , where n > (k/ε)O(k),
is ε-far from the property SF , then M contains at least δn2k distinct submatrices
containing members of F (up to permutations).

What we will need to use for the general case is the following corollary. In the
next section we will use it on the signature of M to avoid dealing at all with blocks
of M that are not homogeneous.

Corollary 5.3. For every ε, k, and a family F of unfoldable k × k or smaller
matrices, there exists δ = (ε/k)O(k2) such that if an n × n matrix M , where n >
(k/ε)O(k), is ε-far from the property SF , then for every set X of δn2 entries, M
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contains a member of F (up to permutations) that does not include any entry from
X.

Proof. Every set X can clearly intersect at most |X| · (n−1

k−1

)2
< |X|n2k−2 subma-

trices of M . Hence, if |X| < δn2, then Lemma 5.2 implies that, in particular, there
exists a copy of a forbidden submatrix which does not intersect X.

To prove Lemma 5.2, and also for the next section, it is more convenient to work
with partitions into equally sized blocks.

Definition 5.4. An r-partition of an n×n matrix M is called an r-equipartition
if the size of all the sets Ri and Cj lie between 	n/r
 and �n/r�. In an analogous
manner we define a (δ, r)-equipartition.

Note that for (δ, r)-equipartitions, a δ-signature essentially holds no more informa-
tion than the δ-pattern it includes. The conditional existence of (δ′, r′)-equipartitions
follows from that of (δ, r)-partitions by the following simple lemma.

Lemma 5.5. For δ < 1
4
, if a matrix M admits a (δ, r)-partition, then it admits

also a (
√
δ + 3δ, r/δ)-equipartition.

Proof. For simplicity we assume that l = δn/r is an integer. We repartition the
original (δ, r)-partition of M in the following manner. From every Ri whose size is
at least l we randomly and uniformly pick s = 	|Ri|/l
 disjoint subsets Ri,1, . . . , Ri,s

of size l. We call the matrix rows not picked for any Ri,x by this procedure leftover
rows. We now arbitrarily partition the set of leftover rows into disjoint sets of size l.
We then perform the analogous procedure for the columns of the matrix M .

Now for every i and j such that Ri×Cj was δ-homogeneous, every block Ri,p×Cj,t

will be
√
δ-homogeneous with probability at least 1−√

δ. To see this assume without
loss of generality that Ri×Cj has at most a δ-fraction of 1’s. Then, for any fixed p, t,
a random submatrix Ri,p ×Cj,t of Ri ×Cj has the same expected average value of its
entries as the average value for Ri × Cj , which is at most δ. Hence, by the Markov

inequality, the probability that Ri,p ×Cj,t will have more than a
√
δ fraction of 1’s is

at most
√
δ. This probability is, however, the failure probability of Ri,p × Cj,t being√

δ-homogeneous.

Thus, there is a choice of the repartitions above for which the number of blocks
Ri,p × Cj,t that come from δ-homogeneous blocks Ri × Cj but are not themselves√
δ-homogeneous is not more than

√
δ(n/l)2.

Also, since the original partition was δ-homogeneous, there are no more than
δ(n/l)2 blocks Ri,p ×Cj,t that come from blocks of the original partition that are not
δ-homogeneous. Finally, there are the blocks that are related to leftover rows and
columns. From the procedure it follows that there are no more than lr ≤ δn leftover
rows and no more than lr leftover columns. Thus the total number of such blocks is
no more than 2δ(n/l)2.

Counting all the above we obtain a total of not more than (
√
δ+3δ)(n/l)2 blocks

that are not
√
δ-homogeneous, and so the same bound holds also for non-(

√
δ + 3δ)-

homogeneous blocks.

Lemma 5.6. Let k be fixed. For every 0 < δ < 1
4

and any n× n, 0/1-matrix M ,

with n > (k/δ)O(k), either M has a (δ, t)-equipartition for t = t(δ, k) ≤ (k/δ)O(k), or

for every 0/1-labeled k × k matrix B, an h(δ, k) ≥ (δ/k)O(k2) fraction of the k × k
submatrices of M are B.

Proof. We set h(δ, k) = g(δ2/16, k) and t(δ, k) = 16r(δ, k)/δ2, where g and r are
the functions of Lemma 1.6. If M does not contain an h fraction of k×k submatrices
that are identical to B, then it admits a (δ2/16, r)-partition as per Lemma 1.6. But
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then this implies that M admits a (δ, t)-equipartition by Lemma 5.5.

The following lemma is the main technical tool, showing that the existence of a
(δ, r)-partition (for the appropriate parameters) implies a dichotomy between being
close to SF and containing many forbidden matrices from F .

Lemma 5.7. Let F be an unfoldable family of k × k or smaller matrices. Fur-
thermore, let M be a matrix, and let P be an ε/8-pattern of an (ε/8, t)-equipartition
of M for t > 4k2. If P is ε/2-close to SF , then M itself is ε-close to SF , while if P is
ε/2-far from SF , then M contains at least Ω(n/t)2k distinct k×k matrices containing
members of F (up to permutations).

Proof. Let R1, . . . , Rt and C1, . . . , Ct be the (ε/8, t)-equipartition of M , and let
P be the corresponding (ε/8)-pattern. If P is indeed ε/2-close to SF , then let P ′ be
the ε/2-close matrix containing no members of F . Now modify M by setting every
entry of M to be identical to the entry of P ′ corresponding to its block in the (ε/8, t)-
equipartition. Denote the modified matrix by M ′. M ′ is ε-close to M , because the
modified entries can only correspond to either entries where P and P ′ differed (a
total of at most ε/2n2 entries), or entries that correspond to blocks that are not good
with respect to P (at most ε/8n2), or entries that correspond to good blocks (at most
ε/8n2, as in every good block the corresponding entry of P is ε/8-dominant). Now
since F is unfoldable, M ′ cannot contain members of F unless all their rows are in
distinct Ri and all their columns are in distinct Cj . But then because P ′ contains no
member of F , neither does M ′.

We now assume that P is ε/2-far from containing no member of F , and calculate
the probability that a uniformly random k × k submatrix A of M is not a member
of F . For simplicity we assume that t divides n. Recalling that t > 4k2 we first note
that with probability at least 1

2
this matrix has no two rows in the same Ri and no

two columns in the same Cj . Now, we condition the distribution of A on this event
and note that it is identical to the one resulting from the following procedure: First
choose uniformly, randomly, and independently a row ri ∈ Ri for every 1 ≤ i ≤ t and
a column cj ∈ Cj for every 1 ≤ j ≤ t. Denoting this matrix by Q, now let A be a
uniformly random k × k submatrix of Q.

Because P is an (ε/8)-pattern of the equipartition, no more than an ε/8 fraction
of the entries of M that make up Q come from blocks which are not ε/8-good with
respect to P . For an entry Qi,j of Q that does come from an ε/8-good block Ri ×Cj ,
with probability at least 1−ε/8 the value of Qi,j is identical to Pi,j . This implies that
for the random set of entries of M that makes up Q, the expectation of the fraction of
entries Qi,j that are consistent with the corresponding Pi,j is at least 1− ε/4. Hence,
with probability at least 1

2
the matrix Q is ε/2-close to P , and so contains a member

of F . Now conditioned on this event, the probability that A contains the forbidden
submatrix is at least t−2k. Putting all the above together using Bayes’s law, the
unconditional probability that a uniformly random A contains a forbidden submatrix
is at least t−2k/4, completing the proof.

We can now put together the proof of Lemma 5.2 that concludes this section.

Proof of Lemma 5.2. If M is ε-far from SF (where F is unfoldable), then there
are two possible cases for M . Either it contains an (ε/8, t)-equipartition for t(ε/8, k)
as in Lemma 5.6, or M does not contain such an equipartition.

In the second case, Lemma 5.6 ensures that an (ε/k)O(k2) fraction of the k × k
matrices are identical to an arbitrary member of F , so we are done.

In the first case, let P be an ε/8-pattern of the equipartition of M . By Lemma
5.7 P itself cannot be ε/2-close to SF (as this would contradict the assumption that
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M is ε-far from SF ), and so P is ε/2-far from SF . But then Lemma 5.7 implies that

there is at least an Ω(t−2k) = (ε/k)O(k2) fraction of the k× k submatrices of M , such
that each of these k × k submatrices contains members from F , as required.

6. 1-sided testing for general bipartite graphs. Given a family F of for-
bidden submatrices that may contain foldable ones, we will first construct a family F̃
that is related to F and is unfoldable.

Definition 6.1. For a matrix A, we define the folding of A as the matrix Ã
resulting from A after removing all duplicate rows and columns, keeping only one of
each.1

For a family of matrices F , we define the folding of F as the family F̃ consisting
of all the foldings of the members of A.

The main technical tool here is proven similarly to Lemma 5.7, but here we
actually use Corollary 5.3 for the signature first, to address the possibility of having
some nonhomogeneous blocks in our equipartition.

Lemma 6.2. Let F be a family of k × k or smaller matrices, and let F̃ be the
folding of F . Furthermore, let M be a matrix, and let P be a δ-pattern of a (δ, t)-

equipartition of M , for t ≥ (k/ε)O(k) and δ = (ε/k)O(k2). If P is ε/2-close to SF̃ ,
then M itself is ε-close to SF , while if P is ε/2-far from SF̃ , then M contains at least
Ω(n/kt)2k distinct k × k matrices containing members of F (up to permutations).

Proof. Let R1, . . . , Rt and C1, . . . , Ct be the (δ, t)-equipartition of M . If P is
indeed ε/2-close to SF̃ , then let P ′ be the ε/2-close matrix containing no members

of F̃ . Now modify M by setting every entry of M to be identical to the entry of P ′

corresponding to its block in the (δ, t)-equipartition. Denote the modified matrix by
M ′. As in the proof of Lemma 5.7, it is not hard to see that M ′ is ε-close to M . Now
M ′ cannot contain a member of F (up to permutations) unless P ′ contains a folding
of this member, which is a contradiction as F̃ is the folding of F .

We now assume that P is ε/2-far from containing no member of F̃ and calculate
the probability that a uniformly random k × k submatrix A of M is not a member
of F . For simplicity we assume that t divides n. We note that the distribution of
picking a uniformly random k × k submatrix A is identical to the distribution of the
following procedure: First choose uniformly, randomly, and independently k distinct
rows ri,1, . . . , ri,k ∈ Ri for every 1 ≤ i ≤ t, and k distinct columns cj,1, . . . , cj,k ∈ Cj

for every 1 ≤ j ≤ t. Denoting this matrix by Q, we now let A be a uniformly random
k × k submatrix of Q.

Since P is a δ-pattern of the equipartition, the probability that a random entry
x in M is equal to Pi,j given that x ∈ Ri × Cj and that Ri × Cj is δ-good is at least
1 − δ. Thus, for a δ-good block, with probability at most δ its intersection with Q
is not a k × k matrix whose entries are all identical to the corresponding label of P .
Because P is a δ-pattern of the equipartition, the expectation of the number of blocks
Ri × Cj for which their intersection with Q is not a k × k matrix whose entries are
all identical to the corresponding label of P is no more than 2k2δt2. We let X denote
the set of entries of P corresponding to all such bad blocks. Let E be the event that
|X| ≤ 8k2δt2. Clearly E occurs with probability at least 3/4.

By Corollary 5.3, for X as above and the matrix P , there is a member of F̃
in P whose entries are disjoint from X (for an appropriate choice of the coefficient

1Note that if we remove one of two or more identical rows, the identity relations between columns
remain exactly the same, and conversely the identity relations between rows remain exactly the same
if we remove duplicate columns. Hence, the order in which we remove duplicates does not affect Ã
apart from a possible permutation in its rows and columns.
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in the O notation in the expression of δ, and in the lower bound condition on t).
However, if P contains a copy of a member B̃ of F̃ whose entries are disjoint from
X, then Q contains the member B of F whose folding is B̃. Now conditioned on the
event E, the probability that A contains the forbidden submatrix is at least (kt)−2k.
Putting all of the above together using Bayes’s law, the unconditional probability
that a uniformly random A contains a forbidden submatrix is at least (kt)−2k/4,
completing the proof.

This allows us to conclude with the lemma yielding the 1-sided test.
Lemma 6.3. For every ε and k there exists η = (ε/k)O(k4) such that if an n× n

matrix M where n > (k/ε)O(k3) is ε-far from the property SF , where F is a family
of k × k or smaller matrices, then M contains at least ηn2k distinct submatrices
containing members of F (up to permutations).

Proof. We set δ = (ε/k)O(k2) as required from Lemma 6.2 and set t = t(δ, k) =

(k/ε)O(k3) as per Lemma 5.6. Now if M is ε-far from SF , then either M contains a
(δ, t)-equipartition or it does not.

In the second case, Lemma 5.6 ensures that there is a (δ/k)O(k2) = (ε/k)O(k4)

fraction of the k × k matrices, such that each of these matrices is identical to an
arbitrary member of F , so we are done.

In the first case, let P be a δ-pattern of the equipartition of M . By Lemma 6.2
P itself cannot be ε/2-close to SF̃ (as this would contradict the assumption that M
is ε-far from SF ), and so P is ε/2-far from SF̃ . But then Lemma 6.2 implies that M

contains at least an Ω((tk)−2k) ≥ (ε/k)O(k4) fraction of the k × k submatrices of M
that contain members from F , as required.

Corollary 6.4. The property SF is ε-testable with (ε/k)O(k4) many queries.
Proof. Using the η of Lemma 6.3, select independently 3/η uniformly random

k × k submatrices of M , and for each of them, check whether it contains a member
of F .

7. Open problems.

More general combinatorial structures. A long standing question in graph
property testing is that of whether there exists a test for the property of a (general)
graph being triangle-free, whose number of queries is less than a tower function in ε.
Noting the “conditional regularity” nature of Lemma 1.6 here, one would hope for an
analogue that will work for triangles. However, formulating such an analogue is not
as simple as it seems: Gowers [12] constructed a bipartite (hence triangle-free) graph
in which there is a tower lower bound on the size of the smallest regular partition.
Hence, the only hope would be of finding a partition in which most of the nonregular
pairs are somehow labeled as “irrelevant” for the existence of a triangle in the graph.
This still remains open; we already know, however, by [1] that, unlike the case of
bipartite graphs, a polynomial dependency (in 1/ε) is not possible for this case.

Another interesting open question would be to formulate a lemma in the spirit
of Lemma 1.6 for higher dimensional matrices that would in turn correspond to r-
partite r-uniform hypergraphs. Here too there is probably no avoiding the existence
of “irrelevant” portions for which there is no regularity. Take, for example, any 3-
dimensional matrix which is constant along the last dimension; it does not contain,
for example, the 2 × 2 × 2 matrix that is all zero apart from exactly one entry, while
it may still not admit any relatively small regular partition.

Matrices with row and column order. This direction seems at the moment
more accessible than those outlined above. It would be interesting to test a matrix
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for the property of not containing a member of a forbidden family of submatrices,
with the same row and column orders (i.e., containing a nontrivial row or column
permutation of a forbidden matrix is now allowed). Lemma 1.6 also holds for this
framework, so the missing part would be “untangling” the sets of rows and columns
in the resulting partition, in order to prove from this partition that one need only
consider a set of possible input matrices that can be calculated from a small sample
(as in the proof of Theorem 1.3).

Nonbinary matrices. It would also be interesting to prove the result for matri-
ces that are not binary. It is enough to look at matrices with a fixed finite alphabet,
because one does not need to distinguish between the different labels that do not
appear in the finite set of forbidden matrices F .

Again “full conditional regularity” cannot be guaranteed, but this problem might
be a little more accessible (though perhaps with a no longer polynomial dependence
of the number of queries on ε). A possible course of attack could be to start by
partitioning into blocks, each containing less than the full set of labels, and continue
by recursively classifying each block as either “repartitionable” or “homogeneous” in
a way somewhat reminiscent of what was done (more easily) in [11, 10] for poset
properties.
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OBSERVING BRANCHING STRUCTURE THROUGH
PROBABILISTIC CONTEXTS∗
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Abstract. Probabilistic automata (PAs) constitute a general framework for modeling and an-
alyzing discrete event systems that exhibit both nondeterministic and probabilistic behavior, such
as distributed algorithms and network protocols. The behavior of PAs is commonly defined using
schedulers (also called adversaries or strategies), which resolve all nondeterministic choices based on
past history. From the resulting purely probabilistic structures, trace distributions can be extracted,
whose intent is to capture the observable behavior of a PA. However, when PAs are composed via an
(asynchronous) parallel composition operator, a global scheduler may establish strong correlations
between the behavior of system components and, for example, resolve nondeterministic choices in
one PA based on the outcome of probabilistic choices in the other. It is well known that, as a result
of this, the (linear-time) trace distribution precongruence is not compositional for PAs. In his 1995
Ph.D. thesis, Segala has shown that the (branching-time) probabilistic simulation preorder is com-
positional for PAs. In this paper, we establish that the simulation preorder is, in fact, the coarsest
refinement of the trace distribution preorder that is compositional. We prove our characterization
result by providing (1) a context of a given PA A, called the tester, which may announce the state
of A to the outside world, and (2) a specific global scheduler, called the observer, which ensures that
the state information that is announced is actually correct. Now when another PA B is composed
with the tester, it may generate the same external behavior as the observer only when it is able to
simulate A in the sense that whenever A goes to some state s, B can go to a corresponding state u,
from which it may generate the same external behavior. Our result shows that probabilistic contexts
together with global schedulers are able to exhibit the branching structure of PAs.
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1. Introduction. Labeled transition systems (automata) are studied extensively
within concurrency theory as underlying operational models of concurrent systems
[27]: a system is described as a state machine whose transitions are labeled by actions,
where each action describes potential communication with the external environment.
An important aspect of concurrency theory is the study of relationships between sys-
tems, namely equivalence and preorder relations, with the objective of understanding
whether a system can be used in place of another one or as an implementation of some
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more abstract description. Several relations are studied in the literature, but the most
important classes of relations are represented by simulations and bisimulations [27]
and by language (trace) inclusion and equivalence [17]. An extensive classification of
existing relations appears in [12], where, in particular, relations are classified as either
branching, which observe the places where nondeterminism is resolved, or linear, which
are insensitive to the actual places where nondeterminism is resolved. For instance,
language inclusion and language equivalence are linear relations, while simulations
and bisimulations are branching relations.

During the last fifteen years there has been a growing interest in the extension
of concurrent models with probabilities, mainly motivated by the fact that several
applications included randomized behaviors. Some of the most relevant proposals of
operational models with probability and nondeterminism are reactive, generative, and
stratified systems [13], concurrent labeled Markov chains [15], alternating automata
[40, 29], probabilistic automata (PAs) [32], and probabilistic reactive modules [10].
Extensive comparative studies that include these models appear in [36, 4, 35].

Simulation, bisimulation, and language inclusion relations have been extended
to the probabilistic case as well. In particular, [22] defines strong bisimulation on
reactive systems, [34] defines strong and weak simulation and bisimulation relations
on PAs, including a notion of branching bisimulation, [15] defines strong bisimulation
on labeled concurrent Markov chains, [29] defines strong and weak bisimulation on
alternating automata, and [2] defines branching bisimulation on alternating automata.
Although the above definitions are quite different, it turns out that they can all be seen
in a uniform way by viewing reactive systems, labeled concurrent Markov chains, and
alternating automata as special cases of PAs [35]. For extensive comparative studies
we refer the reader again to [36, 4, 35].

In this paper we are interested in extensions of language inclusion to the prob-
abilistic case. On ordinary nondeterministic automata the resolution of nondeter-
minism produces sequences of alternating states and actions called executions; then,
by restricting those sequences to visible actions, we obtain the so-called traces. Im-
plementation and equivalence of nondeterministic automata can be defined in terms
of inclusion and equality of sets of traces. This approach was first proposed in the
context of process algebras [17] and is used extensively in the area of I/O automata
[25].

An attempt to extend language inclusion to PAs appears in [31], where it is
proposed that the probabilistic extension of a trace should be a probability measure
over traces. Indeed, the resolution of nondeterminism on PAs produces a stochastic
process that induces a probability measure over executions (a probabilistic execution),
and the restriction of a probabilistic execution to the externally visible actions leads
to a probability measure over traces (a trace distribution). Then, the proposal of
[31] is to compare PAs based on inclusion and equality of sets of trace distributions.
This is consistent with ordinary nondeterministic automata since an execution can be
seen as a probabilistic execution that assigns probability 1 to a single element, and
similarly a trace can be seen as a trace distribution that assigns probability 1 to a
single element.

There are several arguments in favor of the point of view that probabilistic exe-
cutions in PAs should play the role that executions play in ordinary nondeterministic
automata, and thus in favor of the notion of trace distribution as well. One element is
that this point of view leads to the definition of weak transitions, used to extend weak
simulations and bisimulation to the probabilistic case. Another element of evidence
comes from the area of distributed algorithms, where the probability of termination
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of an algorithm is studied under any scheduling policy: in this context a scheduler is
the entity that resolves nondeterminism, for example, by choosing the order in which
processes take steps, and a probabilistic execution is the natural object where the
probability of termination can be computed, as demonstrated by several case studies
[23, 30, 1, 39, 20, 28, 6] and by the ongoing research on automatic verification tools
for probabilistic systems [16]. Finally, again in the area of distributed algorithms, the
approach of [31] to language inclusion turns out to be useful for the modular analysis
of complex algorithms [30].

An important requirement for an implementation relation on systems is com-
positionality, that is, the relation is preserved by parallel composition. For labeled
transition systems, the trace, simulation, and bisimulation preorders are all compo-
sitional [17, 27]. For PAs, various simulation and bisimulation preorders are known
to be compositional [34]. A problem with the trace-based relations proposed in [31]
is that they are not compositional; that is, they are not preserved by parallel com-
position. A typical solution to the problem, followed by [31], is to define a notion of
trace distribution precongruence as the coarsest precongruence included in the trace
distribution inclusion. Unfortunately, such implicit definition does not provide much
insight about the structure of the relation. For this reason, there have been several
attempts to characterize it in more concrete terms. In [32] trace distribution pre-
congruence is characterized in terms of the set of trace distributions observable in a
certain principal context—a rudimentary PA that makes very limited nondetermin-
istic and probabilistic choices; in [33] a testing scenario is proposed. However, these
indirect characterizations still do not provide much insight into the structure of trace
distribution precongruence; for example, they do not explain its branching structure.
Indeed, trace distribution precongruence is not a linear relation since it distinguishes
ordinary nondeterministic automata that are trace equivalent.

In this paper, we provide an explicit characterization of the trace distribution
precongruence, ≤DC , for PAs, which completely explains its branching structure.
Namely, we show that P1 ≤DC P2 iff there exists a weak probabilistic (forward) sim-
ulation relation from P1 to P2. Moreover, we provide a similar characterization of
≤DC for nondeterministic automata in terms of the existence of a weak (nonprob-
abilistic) simulation relation. It was previously known that simulation relations are
sound for ≤DC [32], for both nondeterministic and probabilistic automata; we show
the surprising fact that they are also complete. That is, we show that, for both non-
deterministic and probabilistic automata, probabilistic contexts can observe all the
distinctions that can be expressed using simulation relations.

Our proofs of completeness rely on special contexts for PAs, called testers. The
tester of a PA P, under the action of an appropriate scheduler, can reveal the branch-
ing structure of P via a trace distribution. Such a scheduler is called an observer
scheduler. Informally, the tester C of a PA P announces the outcome of each proba-
bilistic choice of P by performing an action with the name of the state reached, and
flips coins to propose and announce how P should resolve its nondeterministic choices.
The ability of another PA P ′ to comply with the requirements of C, that is, that the
trace distribution induced by the observer scheduler is also a trace distribution of
P ′‖C (the parallel composition of P ′ and C), reveals whether P ′ has at least the same
possibilities for solving nondeterministic choices as P. If P ≤DC P ′, then we extract
a probabilistic forward simulation from P to P ′ by observing how P ′‖C produces the
trace distribution induced by the observer scheduler.

An interesting observation about tester automata is that probabilistic choices
of a PA are observed via nondeterministic choices of the tester automaton, while
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nondeterministic choices of a PA are observed via probabilistic choices of the tester
automaton. Thus, the branching structure of a PA is observed via a probabilistic
context.

The rest of the paper is structured as follows. Sections 2 and 3 contain basic
definitions and results for nondeterministic and probabilistic automata, respectively,
and for the preorders we consider. These sections contain no new material, but re-
call definitions and theorems from the literature. For a more leisurely introductions
see [25, 26, 38, 36]. Section 4 introduces the concept of tester automaton and the
scheduler for a PA P and its tester that reveals the structure of P. Sections 5 and 6
contain, respectively, our characterization results for nondeterministic and probabilis-
tic automata. Since the proof of the characterization result for the general case of
PAs with internal actions is highly complex, we first present a proof for the special
case of nondeterministic automata without internal actions (section 5.1). Then we
successively show how we can also handle internal actions (section 5.2) and proba-
bilistic choice (section 6.1) before dealing with the general case of PAs with internal
actions (section 6.2). Section 7 contains our conclusions.

2. Definitions and basic results for nondeterministic automata. In this
section we recall definitions and basic results for nondeterministic automata. We
impose a few restrictions to avoid confusion and unnecessary complications in the
rest of the paper. For more information the reader is referred to [25, 26].

2.1. Nondeterministic automata, executions, and traces. A nondetermin-
istic automaton is a tuple A = (Q, q̄, E,H,D), where

• Q is a countable set of states,
• q̄ ∈ Q is a start state,
• E is a countable set of external actions,
• H is a countable set of internal (hidden) actions with E ∩H = ∅, and
• D ⊆ Q× (E ∪H) ×Q is a transition relation.

We denote E∪H by A, and we refer to it as the set of actions. We denote a transition
(q, a, q′) of D by q

a→ q′. We write q → q′ if q
a→ q′ for some a, and we write q → if

q → q′ for some q′.
We assume finite branching: for each state q the number of pairs (a, q′) such

that q
a→ q′ is finite. We denote the elements of a nondeterministic automaton A by

QA, q̄A, EA, HA, DA, AA,
a→A. Often we use the name A for a generic nondetermin-

istic automaton; in this case, we usually omit the subscripts, writing simply Q, q̄, E,
H, D, A, and

a→. We extend this convention to allow indices and primes as well; thus,
the set of states of a nondeterministic automaton A′

i is denoted by Q′
i.

Remark 2.1. In the definition of nondeterministic automaton above, we have
imposed some restrictions that are not strictly necessary for this paper but rather
avoid unnecessary complications. The restriction on the cardinality of the sets of
states and actions is imposed to ensure that a nondeterministic automaton has at most
countably many finite execution fragments (see definition later), which simplifies the
use of measure theory later. The finite branching restriction is imposed to simplify the
construction of the tester automaton in section 4; however, the results of this paper
generalize to countable branching at the cost of adding complexity to the proofs
(cf. Remark 4.5). We have also chosen to define nondeterministic automata with a
single initial state rather than a set of initial states. Sets of initial states do not add
any technical insight, but they complicate notation slightly.
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An execution fragment of a nondeterministic automaton A is a finite or infinite
sequence α = q0a1q1a2q2 · · · of alternating states and actions, starting with a state
and, if the sequence is finite, ending in a state, where each (qi, ai+1, qi+1) ∈ D. State
q0, the first state of α, is denoted by fstate(α). If α is a finite sequence, then the last
state of α is denoted by lstate(α). An execution of A is an execution fragment whose
first state is the start state q̄. We let frags(A) denote the set of execution fragments
of A and frags∗(A) the set of finite execution fragments. Similarly, we let execs(A)
denote the set of executions of A and execs∗(A) the set of finite executions.

Execution fragment α is a prefix of execution fragment α′, denoted by α ≤ α′, if
sequence α is a prefix of sequence α′. Finite execution fragment α1 = q0a1q1 · · · akqk
and execution fragment α2 can be concatenated if fstate(α2) = qk. In this case the
concatenation of α1 and α2, α1

�α2, is the execution fragment q0a1q1 · · · akα2. Given
an execution fragment α and a finite prefix α′, α �α′ (read as “α after α′”) is defined
to be the unique execution fragment α′′ such that α = α′ � α′′.

The trace of an execution fragment α of a nondeterministic automaton A, written
traceA(α), or just trace(α) when A is clear from context, is the sequence obtained
by restricting α to the set of external actions of A. For a set S of executions of a
nondeterministic automaton A, tracesA(S), or just traces(S) when A is clear from
context, is the set of traces of the executions in S. We say that β is a trace of a
nondeterministic automaton A if there is an execution α of A with trace(α) = β.
Let traces(A) denote the set of traces of A. We define the trace preorder relation
on nondeterministic automata as follows: A1 ≤T A2 iff E1 = E2 and traces(A1) ⊆
traces(A2). We use ≡T to denote the kernel of ≤T . That is, A1 ≡T A2 iff A1 ≤T A2

and A2 ≤T A1. A similar convention will be adopted to denote the kernels of other
preorder relations used in the paper.

If β ∈ A∗, then q
β
=⇒ q′ iff there exists an execution fragment α such that

fstate(α) = q, lstate(α) = q′, and trace(α) = trace(β). (Here and elsewhere, we abuse
notation slightly by extending the trace function to arbitrary sequences.) We call
q

β
=⇒ q′ a weak transition. If β is the empty sequence, then we write alternatively

q =⇒ q′. Observe that the definition of q
β
=⇒ q′ depends only on the external actions

that occur in β. We have chosen to define weak transitions for any sequence β,
including internal actions as well, for notational convenience in later definitions.

We let tr range over either transitions or weak transitions. For a transition
tr = (q, a, q′), we denote q by source(tr) and q′ by target(tr).

2.2. Composition. We define composition of nondeterministic automata by
synchronizing them on common external actions. There are several ways to do this,
but the simplest approach that is followed in several papers is to synchronize nonde-
terministic automata on common actions and impose the restriction that no internal
action of a component is an action of the other component as well. This restriction
can easily be eliminated, for example, by renaming internal actions if necessary.

Nondeterministic automata A1 and A2 are compatible if H1 ∩ A2 = A1 ∩ H2 =
∅. The (parallel) composition of compatible nondeterministic automata A1 and A2,

denoted by A1‖A2, is the nondeterministic automaton A Δ
= (Q1 × Q2, (q̄1, q̄2), E1 ∪

E2, H1 ∪H2, D), where D is the set of triples (q, a, q′) such that, for i ∈ {1, 2},
a ∈ Ai ⇒ (πi(q), a, πi(q

′)) ∈ Di and a /∈ Ai ⇒ πi(q) = πi(q
′),

where πi is the projection function on states of A defined by πi(q1, q2) = qi.
Let α be an execution fragment of A1‖A2, i ∈ {1, 2}. Then πi(α), the ith

projection of α, is the sequence obtained from α by projecting each state onto its
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ith component, and removing each action not in Ai together with its following state.
Sometimes we denote this projection by α�Ai.

Proposition 2.2. Let A1 and A2 be nondeterministic automata, with A1 ≤T

A2. Then, for each nondeterministic automaton C compatible with both A1 and A2,
A1‖C ≤T A2‖C.

2.3. Simulation relations. We define two kinds of simulation relations: for-
ward simulations, which provide a step-by-step correspondence, and weak forward
simulations, which are insensitive to the occurrence of internal steps. Namely, rela-
tion R ⊆ Q1 ×Q2 is a forward simulation (resp., weak forward simulation) from A1

to A2 iff E1 = E2 and both of the following hold:
1. q̄1 R q̄2.
2. If q1 R q2 and q1

a→ q′1, then there exists q′2 such that q2
a→ q′2 (resp.,

q2
a=⇒ q′2) and q′1 R q′2.

We write A1 ≤F A2 (resp., A1 ≤wF A2) when there is a forward simulation (resp., a
weak forward simulation) from A1 to A2. It is easy to prove that both ≤F and ≤wF

are preorders, that is, reflexive and transitive. Since all simulation relations in this
paper are forward simulations, we often omit the word “forward.”

Proposition 2.3. Let A1 and A2 be nondeterministic automata. Then
1. if A1 ≤F A2, then A1 ≤wF A2;
2. if H1 = H2 = ∅, then A1 ≤F A2 iff A1 ≤wF A2;
3. if A1 ≤wF A2, then A1 ≤T A2.

Proof. The proof is standard; for instance, see [26].

2.4. Tree-structured automata. We say that a nondeterministic automaton
is tree-structured if each state is reached via (i.e., occurs as a final state of) a unique
execution.

The unfolding of nondeterministic automaton A, denoted by Unfold(A), is the
tree-structured nondeterministic automaton B obtained from A by unfolding its tran-
sition graph into a tree. Formally,

• QB = execs∗(A),
• q̄B = q̄A,
• EB = EA,
• HB = HA, and
• DB = {(α, a, αaq) | (lstate(α), a, q) ∈ DA}.

Proposition 2.4. A ≡F Unfold(A).
Proof. See [26]. It is easy to check that the relation R, where α R q iff lstate(α) =

q, is a forward simulation from Unfold(A) to A and that the inverse relation of R is
a forward simulation from A to Unfold(A).

Proposition 2.5. A ≡T Unfold(A).
Proof. The proof follows by Proposition 2.4 and Proposition 2.3, parts 1 and

3.

3. Definitions and basic results for probabilistic automata.

3.1. Preliminaries and notation on measure theory. We recall a few basic
definitions and notation for measure theory that can be retrieved from any standard
book on the subject (e.g., [11]).

A σ-field over a set X is a set F ⊆ 2X that contains the empty set and is
closed under complement and countable union. A pair (X,F), where F is a σ-field
over X, is called a measurable space. A measure on a measurable space (X,F) is a
function μ : F → [0,∞] such that μ(∅) = 0 and μ is countably additive: for each
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countable family {Ci}i of pairwise disjoint elements of F , μ(∪iCi) =
∑

i μ(Ci). A
probability measure on (X,F) is a measure μ on (X,F) such that μ(X) = 1. A
subprobability measure on (X,F) is a measure μ on (X,F) such that μ(X) ≤ 1. A
discrete probability measure on a set X is a probability measure μ on (X, 2X). A
discrete subprobability measure on X is a subprobability measure μ on (X, 2X). We
denote the set of discrete probability measures and discrete subprobability measures
on X by Disc(X) and SubDisc(X), respectively. We denote the support of a discrete
measure μ, that is, the set of elements of X that have nonzero measure, by supp(μ).
We let δ(q) denote the Dirac measure for q, the discrete probability measure that
assigns probability 1 to {q}. Finally, if X is nonempty and finite, then U(X) denotes
the uniform distribution over X, the discrete measure that assigns probability 1/|X|
to each element of X. Given two discrete probability measures μ1, μ2 on (X, 2X) and
(Y, 2Y ), respectively, we denote by μ1 × μ2 the product measure, that is, the measure
on (X × Y, 2(X×Y )) such that μ1 × μ2((x, y)) = μ1(x)μ2(y) for each x ∈ X, y ∈ Y .

Sometimes it is useful to know the probability μ of some event C, knowing that
some other event C ′ takes place. We call this the measure of C conditional on C ′

and denote it by μ(C | C ′). Such probability is defined to be 0 if μ(C ′) = 0, and
μ(C ∩ C ′)/μ(C ′) otherwise.

A function f : X → Y is said to be measurable from (X,FX) to (Y,FY ) if the
inverse image of each element of FY is an element of FX , that is, for each C ∈ FY ,
f−1(C) ∈ FX . In such a case, given a measure μ on (X,FX), the function f(μ)
defined on FY by f(μ)(C) = μ(f−1(C)) for each C ∈ FY is a measure on (Y,FY ) and
is called the image measure of μ under f .

Given a countable collection of measures {μi}i on (X,FX) and a countable
collection {pi}i of real numbers in [0,∞), denote by

∑
i piμi a new function μ such

that, for each element C ∈ FX , μ(C) =
∑

i piμi(C). We state a few elementary
properties.

Proposition 3.1. The following hold:

1.
∑

i piμi is a measure on (X,FX).
2. If each μi is a (sub)probability measure and

∑
i pi = 1, then

∑
i piμi is a

(sub)probability measure.
3. If f is a measurable function from (X,FX) to (Y,FY ), then f(

∑
i piμi) =∑

i pif(μi).

3.2. PAs, executions, and traces. A probabilistic automaton (PA) is a tu-
ple P = (Q, q̄, E,H,D), where all components are exactly as for nondeterministic
automata, except that the following holds:

• D, the transition relation, is a subset of Q× (E ∪H) × Disc(Q).

We define A as before. Also, we use the name P for a generic PA, and we refer to its
components by writing simply Q, q̄, E, H, D, A, and

a→. We extend this convention
to allow indices and primes as well; thus, the set of states of a PA P ′

i is denoted by Q′
i.

We denote a transition (q, a, μ) by q
a→ μ. We assume finite branching: for each state

q the number of pairs (a, μ) such that q
a→ μ is finite. Given a transition tr = (q, a, μ),

we denote q by source(tr) and μ either by target(tr) or by μtr .

Thus, a PA differs from a nondeterministic automaton in that a transition leads
to a probability measure over states rather than to a single state. A nondeterministic
automaton can be viewed as a special case of a PA, where the last component of
each transition is a Dirac measure. Conversely, we can associate a nondeterministic
automaton with each PA by replacing transition relation D by the relation D′ given
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by

(q, a, q′) ∈ D′ ⇔ (∃μ)[(q, a, μ) ∈ D ∧ μ(q′) > 0].

Using this correspondence, notions such as execution fragments and traces carry over
from nondeterministic automata to PAs.1 For instance, an execution fragment of a
PA is simply an execution fragment of its associated nondeterministic automaton.
Along the same lines we write q

a→ q′ whenever there exists a measure μ such that
q

a→ μ and q′ ∈ supp(μ).
An execution fragment of a PA is the result of resolving nondeterministic as well as

probabilistic choices; however we are interested also in the outcome of the resolution of
nondeterministic choices only. We can think of resolving nondeterminism by unfolding
the transition relation of a PA and then choosing only one transition at each point.
From the formal point of view it is more convenient to define a function, called a
scheduler, that chooses transitions based on the past history (i.e., the current position
in the unfolding of the transition relation).

A scheduler for a PA P is a function σ : frags∗(P) → SubDisc(D) such that tr ∈
supp(σ(α)) implies source(tr) = lstate(α). A scheduler σ is said to be deterministic
if for each finite execution fragment α either σ(α)(D) = 0 or else σ(α) = δ(tr) (the
Dirac measure for tr) for some tr ∈ D. A scheduler σ is memoryless if it depends
only on the last state of its argument, that is, for each pair α1, α2 of finite execution
fragments, if lstate(α1) = lstate(α2), then σ(α1) = σ(α2).

Informally, σ(α) describes the rule for choosing a transition after α has occurred.
The rule itself may be randomized. Since σ(α) is a subprobability measure, it is pos-
sible that with some nonzero probability no transition is chosen, which corresponds
to terminating the computation (with what in nondeterministic automata is called
a finite execution fragment). Deterministic schedulers are not allowed to use ran-
domization in their choices, while memoryless schedulers are not allowed to look at
the past history in their choices. Deterministic and memoryless schedulers are easier
to analyze compared to general schedulers, and several properties (e.g., reachability)
can be studied by referring to deterministic memoryless schedulers only. Note that
a deterministic memoryless scheduler can be represented alternatively as a partial
function from Q to D.

A scheduler σ and a discrete probability measure over states μ induce a measure
ε on the σ-field generated by cones of execution fragments as follows. If α is a finite
execution fragment, then the cone of α is defined by Cα = {α′ ∈ frags(P) | α ≤ α′}.
The measure ε of a cone Cα is defined to be μ(q) if α = q for some state q ∈ Q, and
if α is of the form α′a′q′, it is defined by the recursive equation

ε(Cα) = ε(Cα′)
∑

tr∈D(a′)

σ(α′)(tr)μtr (q
′),(1)

where D(a′) denotes the set of transitions of D that are labeled by a′. Roughly
speaking, the measure of a cone Cα equals the probability of doing α when using σ
to resolve nondeterminism. Standard measure theoretical arguments ensure that ε is
well defined. We call the measure ε a probabilistic execution fragment of P, and we
say that ε is generated by σ and μ. We also denote by εσ,μ the probabilistic execution
fragment generated by σ and μ.

1The correspondence between nondeterministic automata and PAs is worked out in great detail
in [4].
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Proposition 3.2. Let σ be a scheduler and μ be a discrete probability measure
over states. Then fstate(εσ,μ) = μ.

Proof. The proof follows immediately by definition of εσ,μ after observing that
the inverse image under fstate of a state q is the set Cq.

We call the measure fstate(ε) the first state of ε. If fstate(ε) is the Dirac measure
over the start state q̄, then ε is called a probabilistic execution. We often write εσ,q
for εσ,δ(q), and we say that εσ,q is generated by σ and q.

Example 3.1 (the cone construction is rich). The cone construction produces a
very rich set of measurable events. The event “action a occurs at least once,” that is,
the set of execution fragments where an action a occurs at least once, is measurable
since it can be expressed as a union of cones and there are at most countably many
cones in a PA. Similarly the event “action a occurs at least n times” is measurable
for any natural number n. The event “action a occurs exactly n times” is measurable
since it is the intersection of “action a occurs at least n times” with the complement
of “action a occurs at least n + 1 times.” Also the event “action a occurs finitely
(infinitely) many times” is measurable since it is the countable union (intersection) of
“action a occurs exactly (at least) n times.” Similar arguments hold for occurrences
of states rather than actions.

Any singleton set is measurable since for an infinite execution fragment α the set
{α} is the intersection of the cones of all its finite prefixes, while for a finite execution
fragment α the set {α} is the intersection of Cα with the complement of the union of
the cones of the extensions of α. Thus, also the set of finite execution fragments is
measurable, and the set of infinite execution fragments is measurable as well.

Observe that the probability of a finite execution fragment α is the probability
that α occurs and then the computation terminates. Thus, the probability of the set of
finite execution fragments represents the probability of termination in a probabilistic
execution fragment. This leads to the idea that a probabilistic execution fragment
should be called finite if the probability of the set of finite execution fragments is 1.

We now show how to obtain a probability measure over traces from a probabilistic
execution fragment. The measurable space is the pair (E∗∪Eω,F), where F is the σ-
field generated by cones of traces. More precisely, the cone of a finite trace β is defined
by Cβ = {β′ ∈ E∗ ∪Eω | β ≤ β′}, where ≤ denotes the prefix ordering on sequences.
It is easy to check that the trace function is measurable since the inverse image of a
cone Cβ is a union of cones, specifically those cones Cα such that β ≤ trace(α), and
since there are countably many finite execution fragments in a PA.

Given a probabilistic execution fragment ε, we define the trace distribution of
ε, tdist(ε), to be the image measure of ε under trace. We denote the set of trace
distributions of probabilistic executions of a PA P by tdists(P). We define the trace
distribution preorder relation on PAs by P1 ≤D P2 iff E1 = E2 and tdists(P1) ⊆
tdists(P2).

An example of a measurable set of traces that is used extensively throughout the
paper is the set E∗a(E∗∪Eω) of traces in which a specific action a occurs. We denote
this set by �a. The inverse image under trace of �a can be expressed as a disjoint
union of cones of executions, namely the cones of the minimal executions with trace
in �a. Thus, we have the following proposition, whose elementary proof is omitted.

Proposition 3.3. Let η be the trace distribution of a probabilistic execution ε
of a PA P, and let Θa be the set of finite executions of P with a single occurrence of
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action a whose last transition is labeled by a. Then

(2) η(�a) =
∑

α∈Θa

ε(Cα).

3.3. Combined, weak, and hyper transitions. We define three new kinds of
transitions that play crucial roles in the paper. Informally, a combined transition is a
convex combination of transitions that are labeled by the same action, a weak com-
bined transition abstracts from internal computation and is obtained by performing
several, possibly zero, combined transitions, while a hyper-transition is a generaliza-
tion of combined transitions and weak combined transitions where the starting point
is a measure over states rather than a single state.

3.3.1. Combined transitions. Let {q a→ μi}i∈I be a collection of transitions
of a PA P, and let {pi}i∈I be a collection of probabilities such that

∑
i∈I pi = 1. Then

the triple (q, a,
∑

i∈I piμi) is called a combined transition of P.

3.3.2. Weak transitions. Consider a probabilistic execution fragment ε of a
PA P, with first state δ(q), that assigns probability 1 to the set of all finite execution
fragments with trace trace(β) for some β ∈ A∗. Let μ be the discrete measure on Q
defined by μ(q′) = ε({α | lstate(α) = q′}). Then q

β
=⇒ μ is a weak combined transition

of P. We refer to ε as a representation of q
β
=⇒ μ. Observe that the measure μ can be

seen alternatively as the image measure of ε under lstate. This is an abuse of notation
because lstate is not defined for infinite execution fragments; however, since ε assigns
measure 1 to the set of finite execution fragments, we can extend the definition of
lstate to infinite execution fragments for this purpose: for instance, we define the last
state of any infinite execution fragment to be q̄.

The notion of weak combined transition that we have just defined for PAs is
a conservative extension of the corresponding notion defined for nondeterministic
automata. Indeed, it is routine to check that whenever q

β
=⇒ q′ is a weak transition

of a nondeterministic automaton A, then q
β
=⇒ δ(q′) is a weak combined transition

of A viewed as a PA.
Proposition 3.4. Let {tr i = (q, a, μi)}i∈I be a collection of weak combined

transitions of a PA P, and let {pi}i∈I be probabilities such that
∑

i∈I pi = 1. Then
(q, a,

∑
i∈I piμi), written

∑
i∈I pitr i, is a weak combined transition of P.

Proof. For each i ∈ I, let εi be a representation of tr i, and σi be a scheduler that,
together with state q, induces εi. We omit the index set I in the rest of the proof. For

each finite execution fragment α, let N(α)
Δ
=

∑
i piεi(Cα). Define a new scheduler σ

as follows:

σ(α) =

⎧
⎨
⎩

∑

i

piεi(Cα)

N(α)
σi(α) if N(α) > 0,

arbitrary otherwise.

Informally, the weight that σ(α) gives to the choice σi(α) is the normalized probability
with which σi contributes to the generation of α. Let ε be the probabilistic execution
fragment induced by σ and q. Let α be a finite execution fragment of P. We first prove
by induction on the length of α that ε(Cα) = N(α). The base case is trivial since
ε(Cq) = 1 and for each i, εi(Cq) = 1, which implies N(q) =

∑
i piεi(Cq) = 1; similarly,

for each state q′ �= q, ε(Cq′) = 0 and for each i, εi(Cq′) = 0. For the inductive step,
let α = α′a′q′. If ε(Cα′) = 0, then, by induction, N(α′) =

∑
i piεi(Cα′) = 0, which

implies that for each i, piεi(Cα′) = 0. By the definition of the measure of a cone,
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in (1), ε(Cα) = 0. Furthermore, for each i, if pi = 0, then piεi(Cα) = 0 trivially, and
if pi > 0, then εi(Cα′) = 0, and by definition of measure of a cone, in (1), εi(Cα) = 0,
which implies piεi(Cα) = 0. Thus, N(α) = 0 as needed. If ε(Cα′) > 0, then, by the
definition of the measure of a cone, in (1),

ε(Cα) = ε(Cα′)
∑

tr∈D(a′)

σ(α′)(tr)μtr (q
′).

By the induction hypothesis, N(α′) > 0. Thus, by expanding σ(α′)(tr) with the
definition of σ, we obtain

ε(Cα) = ε(Cα′)
∑

tr∈D(a′)

(
∑

i

piεi(Cα′)

N(α′)
σi(α

′)(tr)

)
μtr (q

′).

By standard algebraic manipulations (exchanges of sums and rearrangements of con-
stants) we obtain

ε(Cα) =
ε(Cα′)

N(α′)

∑

i

∑

tr∈D(a′)

piεi(Cα′)σi(α
′)(tr)μtr (q

′).

By induction, ε(Cα′) = N(α′). Thus, by simplifying (removing) the leftmost term
and rearranging constants, we obtain

ε(Cα) =
∑

i

pi

⎛
⎝εi(Cα′)

∑

tr∈D(a′)

σi(α
′)(tr)μtr (q

′)

⎞
⎠ .

Finally, by the definition of the measure of a cone, in (1), we get the desired equation

ε(Cα) = N(α) =
∑

i

piεi(Cα).

Thus, ε =
∑

i piεi. Since each εi assigns probability 1 to the set of finite execution
fragments of P with trace trace(a), then so does ε. Furthermore, by Proposition 3.1.3,
lstate(ε) =

∑
i pi lstate(εi). That is, ε is a representation of a weak combined transition

(q, a,
∑

i pi lstate(εi)), which, since lstate(εi) = μi, is the triplet (q, a,
∑

i pi μi). Hence,∑
i pitr i is a weak combined transition of P.

3.3.3. Hyper-transitions. Let P be a PA with a ∈ A, and let μ ∈ Disc(Q).

For each q ∈ supp(μ), suppose that q
a→ μq is a combined transition of P. Let μ′ be∑

q∈supp(μ) μ(q)μq. Then μ
a→ μ′ is called a hyper-transition of P. Also, let β ∈ A∗,

and for each q ∈ supp(μ), suppose that q
β
=⇒ μq is a weak combined transition of P.

Let μ′ be
∑

q∈supp(μ) μ(q)μq. Then μ
β
=⇒ μ′ is called a weak hyper-transition of P.

We now prove two technical properties of weak hyper-transitions. The first prop-
erty gives an alternative definition of weak hyper-transition and is used to prove the
second property; the second property states that weak hyper-transitions can be con-
catenated. It will be used in section 6.2.

Proposition 3.5. There is a weak hyper-transition μ
β
=⇒ μ′ iff there is a

scheduler σ such that εσ,μ assigns probability 1 to the set of finite execution fragments
with trace β, and lstate(εσ,μ) = μ′. We say that εσ,μ represents μ

β
=⇒ μ′.

Proof. Let {qi}I be an enumeration of the states in supp(μ). We prove the two
implications separately.
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⇒ For each i let σi be a scheduler such that εσi,qi represents qi
β
=⇒ μi and

μ′ =
∑

I μ(qi)μi. Let σ be a new scheduler defined as follows:

σ(α) =

{
σi(α) if fstate(α) = qi for some i ∈ I,

0 otherwise.

We first prove that εσ,μ =
∑

i μ(qi)εσi,qi by demonstrating that εσ,μ(Cα) =∑
i μ(qi)εσi,qi(Cα) for each finite execution fragment α. The proof is by in-

duction on the length of α. For the base case, let α = q for some state q.
By the definition of the measure of a cone, εσ,μ(Cα) = μ(q), and, for each i,
εσi,qi(Cα) is 1 if q = qi and 0 otherwise. Thus, εσ,μ(Cq) =

∑
i μ(qi)εσi,qi(Cq)

trivially. For the inductive step, let α be α′aq. If fstate(α′) �∈ supp(μ),
then trivially εσ,μ(Cα) = 0 and, for each i, εσi,qi(Cα) = 0. Thus, εσ,μ(Cα) =∑

i μ(qi)εσi,qi(Cα). If fstate(α′) ∈ supp(μ), then let j be the index of
fstate(α′). By the definition of the measure of a cone, εσ,μ(Cα) = εσ,μ(Cα′)∑

tr∈D(a) σ(α′)(tr)μtr (q). By induction and the definition of σ,

εσ,μ(Cα) =
∑

i

μ(i)εσi,qi(Cα′)
∑

tr∈D(a)

σj(α
′)(tr)μtr (q).

Since only εσj ,qj (Cα′) may be different from 0, we get

εσ,μ(Cα) = μ(qj)εσj ,qj (Cα′)
∑

tr∈D(a)

σj(α
′)(tr)μtr (q) = μ(qj)εσj ,qj (Cα).

For the same reason,
∑

i μ(qi)εσi,qi(Cα) = μ(qj)εσj ,qj (Cα). Thus, εσ,μ(Cα) =∑
i μ(i)εσi,qi(Cα), as needed.

Since each εσi,qi assigns probability 1 to the set of finite execution fragments
with trace β, then also εσ,μ assigns probability 1 to the set of finite execution
fragments with trace β. Furthermore, by Proposition 3.1.3, lstate(εσ,μ) =∑

i μ(qi)lstate(εσi,qi) = μ′. Thus, lstate(εσ,μ) represents μ
β
=⇒ μ′.

⇐ Let σ be a scheduler that represents μ
β
=⇒ μ′. For each i, let σi = σ. Observe

that for each finite execution fragment α,

εσ,μ(Cα) = μ(fstate(α))εσ,fstate(α)(Cα).

Thus, as in the previous case, εσ,μ =
∑

i μ(i)εσi,qi . Let qi
β
=⇒ μi be the

weak transition represented by εσi,qi . Since μ′ = lstate(εσ,μ) and for each i,
μi = lstate(εσi,qi), by Proposition 3.1.3, μ′ =

∑
i μ(qi)μi. This suffices.

Proposition 3.6. Suppose that μ1
β1
=⇒ μ2 and μ2

β2
=⇒ μ3 are weak hyper-

transitions of a PA P. Then μ1
β1β2
=⇒ μ3 is a weak hyper-transition of P.

Proof. Let ε1 and ε2 be the probabilistic execution fragments that represent
μ1

β1
=⇒ μ2 and μ2

β2
=⇒ μ3, respectively, and let σ1 and σ2 be the schedulers that

generate ε1 and ε2, respectively. Let N(α)
Δ
= ε1(Cα)+

∑
α′<α ε1(α

′)ε2(Cα�α′ | Cα′�α′),
where we recall that ε2(Cα�α′ | Cα′�α′) denotes the probability of Cα�α′ conditional
on Cα′�α′ . Define a new scheduler σ as follows:

(3) σ(α) =

{
ε1(Cα)σ1(α)+

∑
α′≤α ε1(α

′)ε2(Cα�α′ |Cα′�α′ )σ2(α�α
′)

N(α)
if N(α) > 0,

0 otherwise.
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Informally, σ is a scheduler that represents a concatenation of ε1 and ε2. A finite
execution fragment α can be reached in the concatenation of ε1 and ε2 either because
ε1 reaches it or because ε1 terminates at a prefix of α from which ε2 continues. The
scheduler σ from α should behave according to σ1 whenever α is reached in ε1, and
according to σ2, with the appropriate argument, whenever α is reached in ε2. The
schedules from α must be weighted by the probabilities with which ε1 and ε2 lead
to α. The term N(α) is a normalization factor whose computation is just technical.
In the formal proof we have to show that σ is indeed a scheduler (in other words,
the value of N is correct), and that σ generates the representation of μ1

β1β2
=⇒ μ3.

These proofs are mainly detailed algebraic manipulations. An interesting point of
the proof is (4), which expresses the probability of a finite execution fragment in the
concatenation of ε1 and ε2 in terms of the probabilities of finite execution fragments
of ε1 and ε2.

We show that σ is a scheduler. That is, for each finite execution fragment α,
σ(α)(D) ≤ 1, or equivalently, ε1(Cα)σ1(α)(D)+

∑
α′≤α ε1(α

′)ε2(Cα�α′ | Cα′�α′)σ2(α�
α′)(D) ≤ N(α), where the left-hand term is the numerator of the definition of σ
applied to D. Since σ2 is a scheduler, we know that σ2(α � α′)(D) ≤ 1. Also, observe
that ε1(Cα)σ1(α)(D) = ε1(Cα − {α}). Thus, it suffices to show that ε1(Cα − {α}) +∑

α′≤α ε1(α
′)ε2(Cα�α′ | Cα′�α′) ≤ N(α). We separate from the sum the term with

α′ = α and observe that ε2(Cα�α | Cα�α) ≤ 1. The new inequality, which suffices for
our purposes, is ε1(Cα − {α}) + ε1({α}) +

∑
α′<α ε1(α

′)ε2(Cα�α′ | Cα′�α′) ≤ N(α).
However, since ε1(Cα−{α})+ε1({α}) = ε1(Cα), the inequality above is N(α) ≤ N(α),
which is trivially true.

Let ε be the probabilistic execution fragment generated by σ and μ1. We show
that ε represents μ1

β1β2
=⇒ μ3 in three steps. First we show by induction on the length

of a finite execution fragment α that ε(Cα) = N(α). The base case is trivial since
N(q) = ε1(Cq) by definition of N , and ε1(Cq) = ε(Cq) = μ1(q) by definition of ε1 and
ε since both measures are generated by μ1. For the inductive step, let α = α′a′q′. If
ε(Cα′) = 0, then by the definition of the measure of a cone, in (1), ε(Cα) = 0. We
show that N(α) = 0 as well. By induction, since ε(Cα′) = 0, N(α′) = 0. By definition
of N , ε1(Cα′) = 0, and ε1(α

′′)ε2(Cα′�α′′ | Cα′′�α′′) = 0 for each α′′ < α′. Then, by
the definition of a conditional measure and of a measure of a cone, ε1(Cα) = 0 and
ε1(α

′′)ε2(Cα�α′′ | Cα′′�α′′) = 0 for each α′′ < α′. By ε1(Cα′) = 0, also ε1(α
′) = 0, and

hence ε1(α
′)ε2(Cα�α′ | Cα′�α′) = 0. We have shown that all the terms of the definition

of N(α) are 0, and thus N(α) = 0 as needed. If ε(Cα′) > 0, then by expanding σ with
its definition in (1), the definition of the measure of a cone, we get that ε(Cα)/ε(Cα′)
equals

∑

tr∈D(a)

ε1(Cα′)σ1(α
′)(tr) +

∑
α′′≤α′ ε1(α

′′)ε2(Cα′�α′′ | Cα′′�α′′)σ2(α
′ � α′′)(tr)

N(α′)
μtr (q

′).

By induction, ε(Cα′) = N(α′), and thus the two terms can be simplified in the equa-
tion above. Then, by rearranging terms algebraically, we get

ε(Cα) =
∑

tr∈D(a)

ε1(Cα′)σ1(α
′)(tr)μtr (q

′)

+
∑

α′′≤α′

ε1(α
′′)

∑

tr∈D(a)

ε2(Cα′�α′′ | Cα′′�α′′)σ2(α
′ � α′′)(tr)μtr (q

′).
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By the definition of the measure of a cone, the first term above is ε1(Cα). With a simi-
lar argument, after applying the definition of a conditional measure and distinguishing
the cases where ε2(Cα′′�α′′) = 0, the second term above is

∑
α′′≤α′ ε1(α

′′)ε2(Cα�α′′ |
Cα′′�α′′). Thus, we get

ε(Cα) = ε1(Cα) +
∑

α′′≤α′

ε1(α
′′)ε2(Cα�α′′ | Cα′′�α′′).

Then it is enough to observe that the right-hand side of the equation above is N(α)
since α′′ ≤ α′ iff α′′ < α.

Second we show that for each finite execution fragment α,

(4) ε(α) =
∑

α′≤α

ε1(α
′)ε2(α � α′ | Cα′�α′).

Observe that, by the definition of the cone σ-field, ε(α) = ε(Cα)−∑
a∈A,q∈Q ε(Cαaq).

By replacing the ε measures of cones with the definition of N in the equation above,
we get

ε(α) = ε1(Cα) +
∑

α′<α

ε1(α
′)ε2(Cα�α′ | Cα′�α′)

−
∑

a∈A,q∈Q

⎛
⎝ε1(Cαaq) +

∑

α′<αaq

ε1(α
′)ε2(Cαaq�α′ | Cα′�α′)

⎞
⎠ .

We now use the terms ε1(Cα) and −∑
a∈A,q∈Q ε1(Cαaq) in the equation above to

derive ε1(α), and similarly we use part of the other two terms to derive the following:

ε(α) = ε1(α) +
∑

α′<α

ε1(α
′)ε2(α � α′ | Cα′�α′) −

∑

a∈A,q∈Q

ε1(α)ε2(Cαaq�α | Cα�α).

Observe that the third term in the equation above is ε1(α)ε2((Cα�α−{α�α}) | Cα�α).
Thus, by adding and subtracting the term ε1(α)ε2(α � α | Cα�α) and rearranging
algebraically, we get

ε(α) =
∑

α′≤α

ε1(α
′)ε2(α � α′ | Cα′�α′) + ε1(α) (1 − ε2(Cα�α | Cα�α)) .

If ε1(α) = 0, then (4) follows trivially. If ε1(α) > 0, then, since ε1 represents μ1
β1
=⇒

μ2, μ2(q) > 0, where q is lstate(α). Since ε2 is generated by σ2 and μ2, ε2(Cq) =
μ2(q) > 0. By definition of �, α � α = q, and thus ε2(Cα�α) > 0. By the definition of
the conditional measure, ε2(Cα�α | Cα�α) = 1, which leads again to (4).

Third we show that ε represents μ1
β1β2
=⇒ μ3. Let α be such that ε(α) > 0.

By (4) there exists a prefix α′ of α such that ε1(α
′) > 0 and ε2(α

′ � α) > 0. Then
trace(α′) = β1 and trace(α � α′) = β2. Thus, trace(α) = β1β2. Let μ be lstate(ε).
We are left to show that μ = μ3. Consider a state q of Q. By the definition of an
image measure and (4), μ(q) =

∑
α|lstate(α)=q

∑
α′≤α ε1(α

′)ε2(α � α′ | Cα′�α′). The
sum above can be restructured as follows:

μ(q) =
∑

α′

∑

α|fstate(α)=lstate(α′),lstate(α)=q

ε1(α
′)ε2(α | Cα′�α′).
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Fig. 3.1. Trace distribution inclusion is not preserved by composition (without communication).

We further partition the sums over lstate(α′), thus getting

μ(q) =
∑

q′∈Q

∑

α′|lstate(α′)=q′

∑

α|fstate(α)=q′,lstate(α)=q

ε1(α
′)ε2(α | Cq′).

Observe that, since μ2 = lstate(ε1), if μ2(q
′) = 0, then there is no α′ with last state q′

such that ε1(α
′) > 0. Thus we can restrict the first sum to those q′ such that μ2(q

′) >
0. Also, if μ2(q

′) > 0, we have already concluded before that ε2(Cα′�α′) = μ2(q
′).

Thus, we get

μ(q) =
∑

q′∈Q|μ2(q′)>0

∑

α′|lstate(α′)=q′

∑

α|fstate(α)=q′,lstate(α)=q

ε1(α
′)ε2(α)/μ2(q

′).

Observe that the two inner sums can be exchanged. By definition of μ2 it follows that∑
α′|lstate(α′)=q′ ε1(α

′) = μ2(q
′). Thus, we get

μ(q) =
∑

q′∈Q|μ2(q′)>0

∑

α|fstate(α)=q′,lstate(α)=q

ε2(α).

Following the same argument that we used to restrict the sum over q′, we can remove
such restriction, and thus we can remove the most external sum, leading to μ(q) =∑

α|lstate(α)=q ε2(α), which is the definition of μ3(q).

3.4. Composition. Two PAs, P1 and P2, are compatible if H1∩A2 = A1∩H2 =
∅. The (parallel) composition of two compatible PAs P1 and P2, denoted by P1‖P2,
is the PA P = (Q1 ×Q2, (q̄1, q̄2), E1 ∪ E2, H1 ∪H2, D), where D is the set of triples
(q, a, μ1 × μ2) such that, for i ∈ {1, 2},

a ∈ Ai ⇒ (πi(q), a, μi) ∈ Di and a /∈ Ai ⇒ μi = δ(πi(q)).

Let ε be a probabilistic execution (fragment) of P1‖P2 and let i ∈ {1, 2}. Define πi(ε),
the ith projection of ε, to be the image measure under πi of ε. It is easy to verify that
the projection function is measurable. When convenient, we denote a projection by
ε�Pi, where Pi is the PA that appears in the ith position.

Proposition 3.7. Let P1 and P2 be compatible PAs, and let ε be a probabilistic
execution (fragment) of P1‖P2. Then for each i ∈ {1, 2}, πi(ε) is a probabilistic
execution (fragment) of Pi.

Proof. The proof follows by Propositions 4.3.4 and 4.3.5 of [32].
The trace distribution preorder is not preserved by composition [34, 37], as is

shown by the following example.
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Fig. 3.2. Trace distribution inclusion is not preserved by composition (with communication).

Example 3.2 (failure of compositionality). Consider the two (nondeterministic)
automata P1 and P2 of Figure 3.1. The two automata are trace equivalent, and it is
easy to see that they are also trace distribution equivalent. Now consider the com-
positions P1‖C and P2‖C, where C is the PA of Figure 3.1 and we assume that the
actions of C are not shared with P1 and P2. It is possible to build a probabilistic
execution of P1‖C as follows: first a is scheduled followed by d; then e or f is sched-
uled, depending on the outcome state of the transition labeled by d; finally, b or c
is scheduled, depending on whether e or f was scheduled. Formally, we consider the
probabilistic execution induced by the deterministic memoryless scheduler specified
by the following partial function, where a transition is denoted by the unique action
labeling it:

Q1 QC DP1‖C
s1 t1 a
s2 t1 d
s2 t2 e
s2 t3 f
s2 t4 b
s2 t5 c

Thus, in the resulting trace distribution there is a total correlation between e, b
and f, c, respectively. The same trace distribution cannot be obtained from P2‖C
because after scheduling the transition labeled by a we are already bound to b or c,
and thus the occurrence of b or c cannot be correlated to e or f in this case.

Example 3.2 may appear pathological since, in the probabilistic execution of P1‖C
that correlates the choices between e and f and between b and c, a nondeterministic
choice of P1 is resolved based on information that is not available to P1. This may lead
us to propose a naive solution to the nonpreservation of trace distribution inclusion
by parallel composition, where we require that each PA in a parallel composition be
able to resolve its nondeterministic choices based on local knowledge only. However,
a more elaborate example shows that this naive idea also does not work.

Example 3.3 (failure of compositionality). Consider the two automata P1 and
P2 of Figure 3.2, which are essentially the automata of Example 3.2 where self-loop
transitions labeled by e and f are added to each state. In this case the context C
synchronizes with P1 and P2 on actions e and f , and P1 is able to learn which of e
or f occurs, thus determining the correlation with b and c based on local knowledge
only.
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The solution of resolving nondeterminism based on local knowledge is adopted in
[10] for a probabilistic extension of reactive modules; however, the idea of [10] cannot
be extended easily to PAs because of key structural differences in the models: in PAs
there is a total interleaving of the transitions taken by different PAs in a parallel
composition, while in probabilistic reactive modules there are several independent
atoms that are not forced to interleave. A direct adaptation of the idea of [10] to
PAs would require drastic modifications of the model that go beyond the scope of this
paper: transitions would have to be labeled by sets of actions and be structured in
such a way that each action affects different parts of the state.

An alternative approach, followed in [32] and adopted in this paper, consists
of defining a new trace distribution precongruence relation, denoted by ≤DC , as the
coarsest precongruence (for parallel composition) that is included in the trace distribu-
tion preorder ≤D, and finding alternative characterizations of ≤DC . It is known from
[32] that there exists a simple context, called the principal context, that is sufficiently
powerful to distinguish all PAs that are not in the trace distribution precongruence
relation; alternatively, a testing scenario is proposed in [33].

In this paper we characterize ≤DC in terms of probabilistic simulation relations.
Another simple alternative characterization of ≤DC that is useful for our study is
given by the following proposition.

Proposition 3.8. Let P1 and P2 be PAs. Then P1 ≤DC P2 iff for every PA C
that is compatible with both P1 and P2, P1‖C ≤D P2‖C.

Proof. Define relation � such that P1 � P2 iff for every PA C that is compatible
with both P1 and P2, P1‖C ≤D P2‖C.

Let P1 ≤DC P2 and let C be a PA compatible with both P1 and P2. Since ≤DC

is a precongruence by definition, then P1‖C ≤DC P2‖C. Since, again by definition,
≤DC is included in ≤D, then P1‖C ≤D P2‖C. Thus, P1 � P2, which implies that
≤DC is included in �.

Conversely, observe that � is reflexive and transitive, and thus a preorder relation.
Observe also that, by using a trivial context C with no external actions and no tran-
sitions, � is included in ≤D. Finally, using the associativity of parallel composition,
observe that � is preserved by parallel composition, and thus is a precongruence.
This means that � is a precongruence included in ≤D. Since ≤DC is the coarsest
precongruence included in ≤D, we get that � is included in ≤DC .

3.5. Simulation relations. The definitions of forward simulation and weak
forward simulation in section 2 can be extended naturally to PAs [34]. However,
Segala has shown [31] that the resulting simulations are not complete for ≤DC , and has
defined new candidate simulations. These new simulations relate states to probability
measures on states.

In order to define the new simulations formally, we need two new concepts. First
we show how to lift a relation between sets to a relation between measures over
sets [18]. Let R ⊆ X × Y . The lifting of R is a relation R′ ⊆ Disc(X) × Disc(Y )
such that μX R′ μY iff there is a function w : X × Y → [0, 1] that satisfies the
following:

1. If w(x, y) > 0, then x R y.
2. For each x ∈ X,

∑
y∈Y w(x, y) = μX(x).

3. For each y ∈ Y ,
∑

x∈X w(x, y) = μY (y).
We abuse notation slightly and denote the lifting of a relation R by R as well. Second,
we define a flattening operation that converts a measure μ in Disc(Disc(X)) into a
measure flatten(μ) in Disc(X). Namely, we define flatten(μ) =

∑
ρ∈supp(μ) μ(ρ)ρ.
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Fig. 3.3. A forward probabilistic simulation between two PAs.

We now define simulations for PAs. A relation R ⊆ Q1×Disc(Q2) is a probabilistic
forward simulation (resp., weak probabilistic forward simulation) from PA P1 to PA
P2 iff E1 = E2 and both of the following hold:

1. q̄1 R δ(q̄2).

2. For each pair q1, μ2 such that q1 R μ2 and each transition q1
a→ μ′

1, there

exists a measure ξ′2 ∈ Disc(Disc(Q2)) such that μ′
1 R ξ′2 and such that μ2

a→
flatten(ξ′2) (resp., μ2

a=⇒ flatten(ξ′2)) is a hyper-transition (resp., a weak
hyper-transition) of P2.

We write P1 ≤PF P2 (resp., P1 ≤wPF P2) whenever there is a probabilistic forward
simulation (resp., a weak probabilistic forward simulation) from P1 to P2.

Example 3.4 (forward probabilistic simulation). Figure 3.3 gives an example of
two PAs that are in the kernel of probabilistic forward simulation. However, there
would be no simulation from P1 to P2 if we did not allow states to be related to
measures over states. The probabilistic forward simulation R from P1 to P2 relates
each state of P1 with the Dirac measure over its primed version of P2, relates s1

with the uniform measure over s′3 and s′4, and relates s2 with the uniform measure
over s′5 and s′6. The transition from s0 can be simulated from s′0 by scheduling the
only transition enabled. Indeed, the target measure U(s′3, s

′
4, s

′
5, s

′
6) is the flattening of

U(U(s′3, s
′
4),U(s′5, s

′
6)), and it is easy to check that U(s1, s2) R U(U(s′3, s

′
4),U(s′5, s

′
6)).

Note that a forward simulation between nondeterministic automata is a proba-
bilistic forward simulation between the two automata viewed as PAs, as described
next.

Proposition 3.9. Let A1 and A2 be nondeterministic automata. Then
1. A1 ≤F A2 iff A1 ≤PF A2, and
2. A1 ≤wF A2 iff A1 ≤wPF A2.

Proof. The left-to-right inclusions are easy since, given a (weak) forward simula-

tion R from A1 to A2, it is routine to check that the relation R′ Δ
= {(q1, δ(q2)) | q1 R q2}

is a (weak) probabilistic forward simulation from A1 to A2.
For the converse implication, let R be a (weak) probabilistic forward simulation

from A1 to A2. Define a relation R′ Δ
= {(q1, q2) | ∃μq1 R μ, q2 ∈ supp(μ)}. We show

that R′ is a (weak) forward simulation from A1 to A2.
The start condition is trivial since q̄1 R δ(q̄2), and thus q̄1 R′ q̄2. For the step

condition, let q1 R′ q2, and let q1
a→ q′1. By the definition of R′, there exists a measure
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μ such that q1 R μ and q2 ∈ supp(μ). Since R is a (weak) forward simulation,

there exists a hyper-transition μ
a→ μ′ (a weak hyper-transition μ a=⇒ μ′), where

μ′ is the flattening of some measure μ′′ such that δ(q′1) R μ′′. By the definition of

hyper-transition, there is a combined transition q2
a→ μ2 (a weak combined transition

q2
a=⇒ μ2) such that supp(μ2) ⊆ supp(μ′). For the strong case, let q2

a→ q′2 be one

of the transitions of D2 that are combined in q2
a→ μ2. Then, q′2 ∈ supp(μ2). For

the weak case, consider a scheduler σ that generates q2
a=⇒ μ2, and build a new

scheduler σ′ that on input α stops (does not return any transition) if σ(α) stops with
some nonzero probability and chooses any transition in supp(σ(α)) that reduces the
distance from a stopping point otherwise. This leads to a weak transition q2

a=⇒ q′2,
where q′2 ∈ supp(μ2). We now show that q′1 R′ q′2, which suffices. Since q′2 ∈ supp(μ2),
and since supp(μ2) ⊆ supp(μ′), then q′2 ∈ supp(μ′). Since μ′ = flatten(μ′′), then q′2
is also in the support of some measure ρ ∈ supp(μ′′). Thus, q′1 R ρ, and, by the
definition of R′, q′1 R′ q′2, as needed.

Proposition 3.10. Let P1 and P2 be PAs. Then the following hold:
1. If P1 ≤PF P2, then P1 ≤wPF P2.
2. If H1 = H2 = ∅, then P1 ≤PF P2 iff P1 ≤wPF P2.
3. If P1 ≤wPF P2, then P1 ≤DC P2.

Proof. The first item follows from the fact that a combined transition is a special
case of a weak combined transition; the second item follows from the fact that in the
absence of internal actions a weak combined transition is a combined transition. The
proof of the third item is quite involved, and we refer the reader to Proposition 8.7.1
of [32]. The main idea is to use the weak probabilistic forward simulation from P1

to P2 to build, for each probabilistic execution of P1, a corresponding probabilistic
execution of P2 with the same trace distribution.

3.6. Tree-structured PAs. A path of a PA P is a finite sequence γ = q0a1

μ1q1a2μ2q2 . . . qn of alternating states, actions, and distribution over states, starting

with the start state of P such that for each nonfinal i, qi
ai+1→ μi+1 and qi+1 ∈

supp(μi+1). We write lstate(γ) to denote qn and paths(P) for the set of all paths
of P. We say that P is tree-structured if each state is reached via a unique path.
Tree-structured PAs are characterized uniquely by the property that all states are
reachable, the start state does not occur in the target of any transition, and each
of the other states occurs in the target of exactly one transition. Tree-structured
nondeterministic automata are also characterized uniquely by this property, albeit for
a different notion of transition.

If a PA is tree-structured, then its underlying nondeterministic automaton is also
tree-structured. The following example shows that the converse does not hold.

Example 3.5 (non–tree-structured PAs). Figure 3.4 shows a PA that is not
tree-structured, as state q′ can be reached via two different paths. The underlying
nondeterministic automaton is tree-structured, however, since the only way to reach
state q′ is via the execution qaq′.

The unfolding of a PA P, denoted by Unfold(P), is the tree-structured PA Q
obtained from P by unfolding its transition graph into a tree. Formally,

• QQ = paths(P),
• q̄Q = q̄P ,
• EQ = EP ,
• HQ = HP , and
• DQ = {(γ, a, μ) | (∃μ′)[(lstate(γ), a, μ′) ∈ DP ∧ (∀q ∈ supp(μ′))[μ′(q) =

μ(γaμ′q)]]}.
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Fig. 3.4. The PA on the left is not tree-structured even though its underlying nondeterministic
automaton on the right is.

Proposition 3.11. P ≡PF Unfold(P).
Proof. It is easy to check that the relation R, where α R δ(q) iff lstate(α) = q is

a probabilistic forward simulation from Unfold(P) to P and that the “inverse” of R,
that is, the relation R′ such that q R′ δ(α) iff lstate(α) = q, is a probabilistic forward
simulation from P to Unfold(P).

Proposition 3.12. P ≡DC Unfold(P).
Proof. The proof follows by Proposition 3.11 and Proposition 3.10, parts 1 and

3.

3.7. Truncations and continuations. We now define two simple constructions
on probabilistic execution fragments that will be useful for our proofs. Specifically,
we define the truncation of a probabilistic execution fragment, which is the result
of stopping the computation at some designated points, and the continuation of a
probabilistic execution fragment, which represents the rest of a probabilistic execution
fragment after some finite execution fragment has occurred.

Let ε be a probabilistic execution fragment of a PA P, generated by some scheduler
σ, and let Θ be a set of finite execution fragments of P. Define the truncation of ε at
Θ to be the same as ε except that no transition is scheduled from all the Θ places, that
is, the probabilistic execution fragment ε′, with the same start state as ε, generated
by a new scheduler σ′ such that σ′(α) = σ(α) if α �∈ Θ and σ′(α)(D) = 0 if α ∈ Θ.

Proposition 3.13. The definition of truncation of a probabilistic execution frag-
ment ε is independent of the choice of the inducing scheduler.

Proof. Let μ be the first state of ε, and let σ1, σ2 be two schedulers that, together
with μ, induce ε. Let Θ be a set of finite execution fragments of P, and let σ′

1, σ
′
2 be the

schedulers built from σ1, σ2, respectively, according to the definition of truncation. Let
ε1, ε2 be the induced probabilistic execution fragments, and suppose by contradiction
that ε1 �= ε2. Then there exists a finite execution α such that ε1(Cα) �= ε2(Cα).
Consider such a finite execution α of minimum length. Observe that |α| > 0 since
ε(Cq) = ε1(Cq) = ε2(Cq) = μ(q) for each state q ∈ Q. Thus, α = α′a′q′ for some
α′, a′, q′, where ε1(Cα′) = ε2(Cα′). We distinguish two cases.

Case 1. If α′ ∈ Θ, then, by the definitions of σ′
1 and σ′

2, σ
′
1(α

′)(D) = σ′
2(α

′)(D) =
0. Thus, ε1(Cα) = ε2(Cα) = 0, a contradiction.

Case 2. If α′ �∈ Θ, then, by the definitions of σ′
1 and σ′

2, σ
′
1(α

′) = σ1(α
′) and
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σ′
2(α

′) = σ2(α
′). Then,

ε1(Cα) = ε1(Cα′)
∑

tr∈D(a′) σ
′
1(α

′)(tr)μtr (q
′) (by (1))

= ε2(Cα′)
∑

tr∈D(a′) σ1(α
′)(tr)μtr (q

′)

(by σ′
1(α

′) = σ1(α
′), ε1(Cα′) = ε2(Cα′))

= ε2(Cα′)
∑

tr∈D(a′) σ2(α
′)(tr)μtr (q

′) (by σ1 and σ2 induce ε)

= ε2(Cα′)
∑

tr∈D(a′) σ
′
2(α

′)(tr)μtr (q
′) (by σ′

2(α
′) = σ2(α

′))

= ε2(Cα) (by (1)),

again a contradiction.
Let ε be a probabilistic execution fragment of a PA P, generated by a scheduler

σ, and let α be a finite execution fragment with fstate(α) ∈ supp(fstate(ε)). Define
ε � α, the continuation of ε after prefix α, to be the probabilistic execution fragment
generated by the following scheduler σ′ from lstate(α):

σ′(α′) =

{
σ(α � α′) if fstate(α′) = lstate(α),
0 otherwise,

where by 0 we denote the identically 0 function.
Proposition 3.14. The definition of ε � α is independent of the choice of the

inducing scheduler.
Proof. The proof proceeds in a manner similar to that of Proposition 3.13. Let μ

be the first state of ε, and let σ1, σ2 be two schedulers that, together with μ, induce
ε. Let q′ be lstate(α). Let σ′

1, σ
′
2 be the schedulers built from σ1, σ2, respectively,

according to the definition of ε � α. Let ε1, ε2 be the induced probabilistic execution
fragments from q′, and suppose by contradiction that ε1 �= ε2. Then there exists a
finite execution α′ such that ε1(Cα′) �= ε2(Cα′). Consider such a finite execution α′

of minimum length. Observe that |α′| > 0 since ε(Cq′) = ε1(Cq′) = ε2(Cq′) = 1 and,
for each state q′′ �= q′, ε(Cq′′) = ε1(Cq′′) = ε2(Cq′′) = 0. Thus, α′ = α′′a′′q′′ for some
α′′, a′′, q′′, where ε1(Cα′′) = ε2(Cα′′). We distinguish two cases.

Case 1. If fstate(α′′) �= q′, then, by the definitions of ε1 and ε2, ε1(Cα′) =
ε2(Cα′) = 0, a contradiction.

Case 2. If fstate(α′′) = q′, then, by the definitions of σ′
1 and σ′

2, σ′
1(α

′′) =
σ1(α

� α′′) and σ′
2(α

′′) = σ2(α
� α′′). Then,

ε1(Cα′) = ε1(Cα′′)
∑

tr∈D(a′′) σ
′
1(α

′′)(tr)μtr (q
′′) (by (1))

= ε2(Cα′′)
∑

tr∈D(a′′) σ1(α
� α′′)(tr)μtr (q

′′)

(by σ′
1(α

′′) = σ1(α
� α′′) and ε1(Cα′′) = ε2(Cα′′))

= ε2(Cα′′)
∑

tr∈D(a′′) σ2(α
� α′′)(tr)μtr (q

′′) (by σ1 and σ2 induce ε)

= ε2(Cα′′)
∑

tr∈D(a′′) σ
′
2(α

′′)(tr)μtr (q
′′) (by σ′

2(α
′′) = σ2(α

� α′′))

= ε2(Cα′) (by (1)),

again a contradiction.
The following proposition relates the continuation of ε after some prefix α with ε

itself. In practice it states that ε � α is closely related to ε | Cα.
Proposition 3.15. Let ε be a probabilistic execution fragment of a PA P, and

let α be a finite execution fragment of P. Then, for each finite execution α′ with
lstate(α) = fstate(α′), ε(Cα�α′) = ε(Cα) · (ε � α)(Cα′).
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Proof. The proof follows easily by induction on the length of α′ from the definition
of the probability of a cone.

4. Tester automata and observer schedulers. The proofs of our complete-
ness results rely on a special context for a PA, which we call its tester PA. The tester
automaton, tester(P), of a PA P can observe the states that P goes through and
the transitions that are scheduled during a probabilistic execution. This information
is revealed by means of externally visible transitions of tester(P) with the help of a
specific scheduler, called the observer, which synchronizes P with its tester. In this
section we present the constructions of the tester and observer and prove some results
about the resulting trace distributions.

Informally, the tester of a PA P is a PA C whose states include a distinguished
start state, all the states of P, and all the transitions of P. Automaton C has a special
transition from its own start state, q̄C , to the start state of P, q̄P , labeled by q̄P . Also,
from every state q of P, C has a uniform transition labeled by ch (“choose”) to the
set of transitions of P that begin in state q. Finally, for every transition tr of P and
every state q in the support of μtr , C has a transition labeled by q from tr to q.

Definition 4.1. The tester PA of a PA P, denoted by tester(P), is a PA
C = (QC , q̄C , EC , HC , DC), where

• QC = {q̄C} ∪QP ∪DP ,
• EC = QP ∪ {ch},
• HC = ∅, and
• DC = {(q̄C , q̄P , δ(q̄P))}∪

{(q, ch,U({tr ∈ DP | source(tr) = q})) | q ∈ QP ∧ q →}∪
{(tr , q, δ(q)) | tr ∈ DP , q ∈ supp(μtr )}.

Observe that the tester of an ordinary nondeterministic automaton enables at
most one transition from each state, and dually, the tester of an automaton that en-
ables at most one transition from each state is a nondeterministic automaton. This
observation, together with the results that we prove later in the paper, imply that a
fully probabilistic context is enough to observe the branching structure of a nonde-
terministic automaton.

Proposition 4.2. The following hold:
1. The tester of a nondeterministic automaton is fully probabilistic; that is, it

enables at most one transition from each state.
2. The tester of a fully probabilistic automaton is a nondeterministic automaton;

that is, it contains only transitions whose target measures are Dirac.
Proof. For the first item, observe that the only states of tester(P) that may

enable more than one transition are of the form tr ∈ DP , which enable one transition
for each state in supp(μtr ); however, the size of supp(μtr ) is 1 in a nondeterministic
automaton.

For the second item, observe that the only states of tester(P) that may enable
non-Dirac transitions are of the form q ∈ QP , which may enable a transition labeled
by ch to a uniform measure over the set of transitions enabled from q in P; however,
there is at most one transition enabled from q in a fully probabilistic automaton.

We assume without loss of generality that a PA P and its tester do not have any
actions in common (otherwise we can simply rename states of P to achieve our goal),
and thus P and its tester are compatible.

Since tester(P) and P share no actions, merely composing tester(P) with P does
not ensure that tester(P) faithfully emulates the behavior of P. However, an appro-
priate scheduler can synchronize the two automata and ensure such an emulation,
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which will be sufficient for our purposes. Given a PA P, we define a specific scheduler
σ for P‖tester(P), called the observer of P, that synchronizes the two automata so
that the internal structure of P is visible in the trace. Specifically, the scheduler σ
starts by scheduling the transition of tester(P) from the start state of tester(P) to
the start state of P, leading to state (q̄, q̄), which is of the form (q, q). Then σ repeats
the following as long as q →:

1. Schedule the ch transition of tester(P), thus choosing a transition tr of P.
2. Schedule transition tr of P, leading P to a new state q′.
3. Schedule the transition of tester(P) labeled by the state q′, resulting in the

state (q′, q′), which is again of the form (q, q).
Definition 4.3. The observer of a PA P, which we denote by observer(P), is a

deterministic (almost memoryless) scheduler for P‖tester(P) that bases its decisions
on the last state and sometimes the last action of its argument according to the follow-
ing table. Here, C denotes tester(P), q is any state such that q →, tr is any transition
in DP , and q′ is any state in μtr .

QP Qtester(P) Last action DP‖tester(P)

q̄P q̄tester(P) q̄P -labeled transition of tester(P)
q q ch-labeled transition of tester(P)
q tr ch transition tr of P
q′ tr not ch q′-labeled transition of tester(P)

Scheduler observer(P) and start state (q̄P , q̄tester(P)) induce a trace distribution
for P‖tester(P) where all states and external actions of P appear explicitly.

Definition 4.4. The observation of a PA P, denoted by observation(P), is the
trace distribution induced by observer(P) and (q̄P , q̄tester(P)).

Remark 4.5. The ch-labeled transitions of a tester are defined to lead to uni-
form measures over states of tester(P) that represent transitions of P. This is well
defined since we have assumed that nondeterministic and probabilistic automata are
finite branching. From the technical point of view, however, the proofs of this paper
rely on the fact that the transitions labeled by ch assign nonzero probability (not
necessarily the same probability) to each one of the options that are available in a
nondeterministic choice. Thus, it would be possible to remove the finite branching
restriction from the definition of automata and modify the definition of a tester au-
tomaton so that, whenever there are countably many transitions from a state q, the
corresponding ch-labeled transition of the tester assigns a nonuniform measure to
the transitions enabled from q, for example, a Poisson distribution after enumerating
all possible transitions enabled from q. We have chosen not to deal with countable
branching automata in this paper because it would complicate proofs without adding
much insight.

We state and prove some properties of observation(P). The first property, given in
(5), says that the cone of traces beginning with the starting state of P has probability
1. The second property, (6), says that for any state q of P from which some transition
is enabled and for each finite trace β of P‖tester(P), the probability of the cone
of traces beginning with βq is the same as the probability of the cone beginning
with βq ch; that is, once βq occurs, the probability that ch follows is 1. The third
property, (7), says that for any state q of P and for each finite trace β of P‖tester(P),
the probability of the cone of traces beginning with βq ch is the same as the sum of the
probabilities of the cones beginning with βq ch β′, where β′ represents one single step
of P from q; that is, once ch occurs, one of the transitions of P that are enabled from
q is exposed. The right-hand side of (7) consists of two parts dealing with external
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and internal transitions, respectively.

Proposition 4.6. The trace distribution η = observation(P) induced by the
observer of a PA P satisfies the following three properties, for all finite traces β of
P‖tester(P) and for all states q of P:

η(Cq̄) = 1,(5)

q → =⇒ η(Cβq) = η(Cβq ch),(6)

η(Cβq ch) =
∑

(a,q′)|a∈E,q
a→q′

η(Cβq ch aq′) +
∑

q′|(∃a)a∈H,q
a→q′

η(Cβq ch q′).(7)

Proof. Equation (5) follows from the fact that observer(P) schedules action q̄
immediately. Equation (6) follows from the fact that, after scheduling action q, thus
leading to a state of the form (q, q), observer(P) immediately schedules action ch
if q enables at least one transition. Equation (7) follows from the fact that, after
scheduling ch, observer(P) schedules one of the transitions of P that are enabled from

q, say q
a→ μ, followed by a transition of tester(P) labeled by a state in supp(μ).

The following technical properties will be needed in the proofs of section 6. The
first property, in (8), says that the probability of observing a state q′ reachable in
a tree-structured PA P with a single transition, say tr , from another state q is the
probability of observing q, divided by the number of transitions enabled from q, and
multiplied by the probability of reaching q′ in tr , the only transition that may lead
to q′ since P is tree-structured. Indeed, q′ can be observed only if q is observed
(probability of observing q), the transition tr is chosen (factor 1/k since transitions
are chosen uniformly), and the chosen transition leads to q′. The second property,
(9), is similar to the first one, where the probability of observing q and scheduling the
transition tr is replaced by the probability of observing any state in the target of tr .

Proposition 4.7. Let P be a tree-structured PA, and let η be observation(P).
Let tr = (q, a, μ) be a transition of P. Let k be the number of transitions that are
enabled from q in P, and let q′ be a state in supp(μ). Then the following properties
hold:

η(�q′) =
η(�q)
k

μ(q′),(8)

η(�q′) =

⎛
⎝

∑

q′′∈supp(μ)

η(�q′′)
⎞
⎠μ(q′).(9)

Proof. Let σ be the observer of P, and let εσ be the probabilistic execution
induced by σ. Since P is tree-structured, the set Θq contains a single execution α.
Indeed, by the definition of tree-structured, there is only one execution in P ending
with state q, and σ simply interleaves this execution with transitions labeled by ch,
by the names of the transitions of P that are needed to reach q, and by the names of
the states that are reached. Similarly, Θq′ contains a single execution α′.

Once state q is reached, σ schedules action ch, reaching state tr of tester(P)
with probability 1/k. Then, σ schedules transition tr , reaching state q′ in P with
probability μ(q′), and finally σ schedules the transition of tester(P) labeled by q′.
Thus, εσ(Cα′) = εσ(Cα)(1/k)μ(q′). Then (8) follows by (2).
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By summing over supp(μ) in (8), we get

(10)
∑

q′′∈supp(μ)

η(�q′′) =
η(�q)
k

∑

q′′∈supp(μ)

μ(q′′).

Observe that
∑

q′′∈supp(μ) μ(q′′) = 1. Hence, (10) simplifies to

(11)
∑

q′′∈supp(μ)

η(�q′′) =
η(�q)
k

.

Substitution of (11) into (8) gives us (9), as needed.

5. Characterizations of ≤DC for nondeterministic automata. In this sec-
tion, we present our characterization theorems for ≤DC for nondeterministic au-
tomata: Theorem 5.2 characterizes ≤DC in terms of ≤F , for nondeterministic au-
tomata without internal actions, and Theorem 5.4 characterizes ≤DC in terms of
≤wF , for arbitrary nondeterministic automata. In each case, we prove the result first
for tree-structured nondeterministic automata and then extend it to the non–tree-
structured case via unfolding. The interesting direction for each of these results is the
completeness direction, showing that A1 ≤DC A2 implies the existence of a simulation
relation from A1 to A2.

The strategy that we use to prove our completeness results is also applied in
many other full abstraction results; see, for example, [5, 14]. By Proposition 3.8,
A1 ≤DC A2 implies that A1 ≤D A2 for all contexts C. Thus it suffices to construct a
specific context C with the property that the trace distributions of A1‖C contain all
information about A1 that is preserved by the simulation preorder. More specifically,
we compose A1 with the context C = tester(A1) and consider just a single trace
distribution of the composed system, namely observation(A1), the one generated by
observer(A1). We show, for any other nondeterministic automaton A2, that if the
composition A2‖tester(A1) generates the trace distribution observation(A1), then
A2 actually simulates A1 in a strong sense. Namely, whenever A1 reaches some state
q1, A2 can reach a corresponding state q2 from which it generates the same trace
distribution. The formalities of the proof are intricate, in part because states of A1 also
show up as states of tester(A1) and within the trace distribution of observation(A1).
In the proof we try to be very explicit about the roles of states of A1, but we also
warn the reader to be alert to this potential source of confusion.

5.1. Nondeterministic automata without internal actions. We begin by
considering nondeterministic automata without internal actions. We first consider
tree-structured nondeterministic automata.

Proposition 5.1. Let A1, A2 be nondeterministic automata without internal
actions such that A1 is tree-structured. Then A1 ≤DC A2 implies A1 ≤F A2.

Proof. Assume that A1 ≤DC A2. Let C be tester(A1) and η be observation(A1),
that is, the trace distribution of A1‖C induced by the scheduler observer(A1). Since
A1 ≤DC A2 implies A1‖C ≤D A2‖C, Proposition 3.8 implies that η is also a trace
distribution of A2‖C. That is, there exists a probabilistic execution ε of A2‖C, induced
by some scheduler σ2, such that tdist(ε) = η.

For each state q1 in Q1, let Θq1 be the set of finite executions of A2‖C whose last
transition is labeled by q1. For each state q2 of A2, let Θq1,q2 be the set of executions
in Θq1 whose last state is the pair (q2, q1).
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Define a relation R on Q1×Q2 as follows: q1 R q2 iff there exists a finite execution
α in Θq1,q2 such that ε(Cα) > 0. We claim that R is a forward simulation from A1 to
A2.

For the start condition, we must show that q̄1 R q̄2. Consider the start state
(q̄2, q̄C) of A2‖C. Since there are no internal actions in A2 or C, and since, by (5) from
Proposition 4.6, η(Cq̄1) = 1, the only action that is scheduled initially by σ2 is q̄1,
leading to state (q̄2, q̄1). Thus, the finite execution α = (q̄2, q̄C)q̄1(q̄2, q̄1) is an element
of Θq̄1,q̄2 such that ε(Cα) > 0, as needed.

For the step condition, assume q1 R q2 and let q1
a→1 q′1 be a transition of A1,

which we denote by tr for convenience. We exhibit a matching transition q2
a→2 q′2.

By the definition of R, there exists a finite execution α in Θq1,q2 such that ε(Cα) >
0. Since Θq1,q2 is a subset of Θq1 , by definition of Θq1 , trace(α) = βq1 for some finite
trace β. Therefore, η(Cβq1) > 0. Since q1 enables at least one transition in A1,
specifically transition tr , (6) from Proposition 4.6 implies that η(Cβq1 ch) = η(Cβq1).
Then, since A2 and C have no internal actions, σ2 schedules action ch from α with
probability 1.

By the definition of tester(A1), the transition labeled by ch leaving from state q1
of C leads to state tr with probability > 0. Hence, ε(Cα ch (q2,tr)) > 0. By (7) from
Proposition 4.6, where only the first term of the right-hand side is nonzero due to
the absence of internal actions, η(Cβq1 ch) =

∑
(a,q′)|a∈E,q1

a→q′ η(Cβq1 ch aq′). Hence,

σ2 must extend α ch (q2, tr) with two steps labeled by an action and a state of A1,
respectively, where the action and the state are compatible with one of the transitions
of A1 that are enabled from q1. Since state tr of C enables only action q′1, and since,
by the tree-structure of A1, a is uniquely determined by q′1, the action and state
scheduled by σ2 are a and q′1. Therefore, there exists a state q′2 of A2 such that
the execution α′ = α ch (q2, tr)a(q′2, tr)q′1(q

′
2, q

′
1) is an execution in Θq′1,q

′
2

such that

ε(Cα′) > 0. Then q′1 R q′2 and q2
a→ q′2, as needed.

Now we present our result for general (non–tree-structured) nondeterministic au-
tomata without internal actions.

Theorem 5.2. Let A1, A2 be nondeterministic automata without internal ac-
tions. Then A1 ≤DC A2 iff A1 ≤F A2.

Proof. First we prove soundness of forward simulations:

A1 ≤F A2 ⇒ A1 ≤PF A2 (Proposition 3.9.1)
⇒ A1 ≤wPF A2 (Proposition 3.10.1)
⇒ A1 ≤DC A2 (Proposition 3.10.3).

Next we establish completeness:

A1 ≤DC A2 ⇒ Unfold(A1) ≤F A1 ≤DC A2 (Proposition 2.4)
⇒ Unfold(A1) ≤DC A1 ≤DC A2 (as in soundness proof)
⇒ Unfold(A1) ≤DC A2 (≤DC is transitive)
⇒ Unfold(A1) ≤F A2 (Proposition 5.1)
⇒ A1 ≤F Unfold(A1) ≤F A2 (Proposition 2.4)
⇒ A1 ≤F A2 (≤F is transitive).

5.2. Nondeterministic automata with internal actions. Next we extend
the results of section 5.1 to nondeterministic automata that may include internal
actions. The proofs are analogous to those in section 5.1. The difference is that,
in several places in the proof of Proposition 5.3, we need to reason about multistep
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extensions of executions instead of single-step extensions. Again, we begin with tree-
structured nondeterministic automata.

Proposition 5.3. Let A1, A2 be nondeterministic automata such that A1 is
tree-structured. Then A1 ≤DC A2 implies A1 ≤wF A2.

Proof. Assume that A1 ≤DC A2. Let C be tester(A1) and η be observation(A1),
that is, the trace distribution of A1‖C induced by the scheduler observer(A1). Define
the scheduler σ2, the probabilistic execution ε, and the Θ sets as in the proof of
Proposition 5.1.

The definition of R is slightly different: q1 R q2 iff there exists a state q′2 such
that q2 =⇒ q′2 and there exists α ∈ Θq1,q′2

such that ε(Cα) > 0. We claim that R is a
weak forward simulation from A1 to A2.

For the start condition, we must show that q̄1 R q̄2. By Item 1 of Proposition 4.6,
η(Cq̄1) = 1. This means that there exists a finite execution fragment α of A2‖C with
trace q̄1 that ends with action q̄1 such that ε(Cα) > 0. By definition of C, the last
state of α is (q2, q̄1) for some state q2 satisfying q̄2 =⇒ q2. By definition of R, q̄1 R q̄2,
as needed.

For the step condition, assume q1 R q2 and let q1
a→1 q′1 be a transition of A1,

which we denote by tr . We exhibit a matching weak transition q2
a=⇒ 2 q′2.

By definition of R, there exists a state q′′2 of A2 such that q2 =⇒ q′′2 , and there
exists a finite execution α in Θq1,q′′2

such that ε(Cα) > 0. Since Θq1,q′′2
is a subset

of Θq1 , by definition of Θq1 , trace(α) = βq1 for some finite trace β. Therefore,
η(Cβq1) > 0. Since q1 enables at least one transition in A1, specifically transition
tr , (6) from Proposition 4.6 implies that η(Cβq1 ch) = η(Cβq1). Thus, there exists an
execution fragment α′ of A2‖C with trace ch such that ε(Cα�α′) > 0. Furthermore,
since, by definition of C = tester(A1), the transition of C labeled by ch that leaves
from state q1 leads to state tr with nonzero probability, we can assume that the last
state of α′ is of the form (q′, tr) for some state q′ of A2.

Recall from above that η(Cβq1 ch) > 0. By (7) from Proposition 4.6, η(Cβq1 ch) =∑
(a,q′)|a∈E,q

a→q′ η(Cβq1 ch aq′)+
∑

q′|(∃a)a∈H,q1
a→q′ η(Cβq1 ch q′). Hence, σ2 must extend

α � α′ in such a way that the first or the first two external actions are compatible
with one of the transitions of A1 that are enabled from q1. (The number of external
actions depends on whether the compatible transition of A1 is labeled by an internal
or external action.) Since state tr of C enables only action q′1, and since, by the tree-
structure of A1, a is uniquely determined by q′1, the first or first two external actions
of A2‖C scheduled by σ2 are either q′1 or aq′1, depending on whether a is internal or
external. Thus, there exists an execution fragment α′′ of A2‖C, with trace trace(aq′1),
such that ε(Cα�α′�α′′) > 0. Furthermore, we can assume that the last transition of
α′′ is labeled by q′1 (simply truncate α′′ otherwise).

Let (q′2, q
′
1) be the last state of α′′. Then, α � α′ � α′′ ∈ Θq′1,q

′
2
, thus showing

that q′1 R q′2. It remains to show that q2
a=⇒ q′2. For this, it suffices to recall that

q2 =⇒ q′′2 and observe that q′′2
a=⇒ q′2 since the execution fragment (α′ � α′′)�A2 has

trace trace(a), first state q′′2 , and last state q′2.
Using the same approach as before, we may eliminate the assumption in Propo-

sition 5.3 that A1 is tree-structured.

Theorem 5.4. Let A1, A2 be nondeterministic automata. Then A1 ≤DC A2 iff
A1 ≤wF A2.

Proof. This proof is analogous to that of Theorem 5.2. First we prove soundness
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of weak forward simulations:

A1 ≤wF A2 ⇒ A1 ≤wPF A2 (Proposition 3.9.2)
⇒ A1 ≤DC A2 (Proposition 3.10.3).

Now we prove completeness:

A1 ≤DC A2 ⇒ Unfold(A1) ≤F A1 ≤DC A2 (Proposition 2.4)
⇒ Unfold(A1) ≤DC A1 ≤DC A2

(as in proof Theorem 5.2, soundness part)
⇒ Unfold(A1) ≤DC A2 (≤DC is transitive)
⇒ Unfold(A1) ≤wF A2 (Proposition 5.3)
⇒ A1 ≤F Unfold(A1) ≤wF A2 (Proposition 2.4)
⇒ A1 ≤wF Unfold(A1) ≤wF A2 (Proposition 2.3.1)
⇒ A1 ≤wF A2 (≤wF is transitive).

6. Characterizations of ≤DC for PAs. Now we present our characterization
theorems for ≤DC for PAs: Theorem 6.3 characterizes ≤DC in terms of ≤PF , for PAs
without internal actions, and Theorem 6.5 characterizes ≤DC in terms of ≤wPF , for
arbitrary PAs. Again, we give the results first for tree-structured PAs and extend
them by unfolding. As before, the interesting direction is the completeness direction,
showing that P1 ≤DC P2 implies the existence of a simulation relation from P1 to
P2. Our proofs of completeness for PAs are analogous to those for nondeterministic
automata.

6.1. PAs without internal actions. We first consider tree-structured PAs.
Proposition 6.1. Let P1, P2 be PAs without internal actions such that P1 is

tree-structured. Then P1 ≤DC P2 implies P1 ≤PF P2.
Proof. Assume that P1 ≤DC P2. Let C be tester(P1) and η be observation(P1),

that is, the trace distribution of P1‖C induced by the scheduler observer(P1). Define
the scheduler σ2, the probabilistic execution ε, and the Θ sets as in the proof of
Proposition 5.1.

Define a relation R as follows: q1 R μ2 iff
∑

α∈Θq1
ε(Cα) > 0 and for each state

q2 ∈ Q2,

(12) μ2(q2) =

∑
α∈Θq1,q2

ε(Cα)
∑

α∈Θq1
ε(Cα)

.

That is, the measure μ2 describes probabilities of the various Θq1,q2 ’s relative to Θq1 .
Note that the equation above is well defined since, by the tree-structure of P1, all the
cones represented by Θq1 are disjoint, and thus

∑
α∈Θq1

ε(Cα) ≤ 1. We claim that R

is a probabilistic forward simulation from P1 to P2.
Before proving that R is a probabilistic forward simulation we make several ob-

servations:
1. Relation R is a function from Q1 to Disc(Q2). Indeed, if

∑
α∈Θq1

ε(Cα) > 0,

then there exists exactly one measure that satisfies (12). Furthermore, given
the construction of η and the fact that P1 is tree-structured (i.e., all states
are reachable), every state q1 of Q1 occurs with some positive probability in
η. Thus, since η is induced by ε,

∑
α∈Θq1

ε(Cα) > 0 for all states q1 of Q1.

2. If q1 R μ2, then, for each state q2 ∈ Q2 and each execution α ∈ Θq1,q2 ,

(13) ε(Cα) > 0 ⇒ q2 ∈ supp(μ2).



OBSERVING BRANCHING THROUGH PROBABILISTIC CONTEXTS 1005

That is, the execution α occurs with nonzero probability in ε only if μ2 assigns
nonzero probability to q2. This property is a direct consequence of (12).

3. For each transition q1
a→ μ′

1 of P1, the following equation holds:

(14) μ′
1(q

′
1) =

∑
α∈Θq′1

ε(Cα)
∑

q∈supp(μ′
1) , α∈Θq

ε(Cα)
.

That is, the relative probabilities of the states of supp(μ′
1) in ε are given by

μ′
1. This result follows by instantiating (9) from Proposition 4.7 with q1

a→ μ′
1

to derive the probability of a state q′1 in the support of μ′
1, and by replacing

the diamond expressions according to (2) from Proposition 3.3.

4. For each transition tr = q1
a→ μ′

1 of P1, the following equation holds:

(15)
∑

α∈Θq1

ε(Cα) = k
∑

q∈supp(μ′
1) , α∈Θq

ε(Cα),

where k is the number of transitions of P1 enabled from q1. That is, the
probability of reaching q1 in ε is k times the probability of reaching q1 and
scheduling tr . Informally, transition tr is scheduled only if state q1 is reached
and the outcome of the following transition labeled by ch is tr , which hap-
pens with probability 1/k. The reason why

∑
q∈supp(μ′

1) , α∈Θq
ε(Cα) is the

probability of reaching q1 and scheduling tr is that states from supp(μ′
1)

can occur only after q1 has occurred and tr is reached (see the definition of
tester automaton and of observer of a tester automaton), and furthermore
states from supp(μ′

1) occur with probability 1 once tr is reached (see (7) from
Proposition 4.6).
This follows by instantiating (8) from Proposition 4.7 with tr , replacing the
diamond expressions according to (2) from Proposition 3.3, summing over
supp(μ′

1), observing that
∑

q′1∈supp(μ′
1)
μ′

1(q
′
1) = 1, and deriving

∑
α∈Θq1

ε(Cα)

from the resulting equation.
We are now ready to show that R is a probabilistic forward simulation. For the

start condition, we must show that q̄1 R δ(q̄2).
Consider the start state (q̄2, q̄C) of P2‖C. Since there are no internal actions in

P2 or C, and since, by (5) from Proposition 4.6, η(Cq̄1) = 1, the only action that is
scheduled initially by σ2 is q̄1, leading to state (q̄2, q̄1) with probability 1. Thus, the
finite execution α = (q̄2, q̄C)q̄1(q̄2, q̄1) is an element of Θq̄1,q̄2 such that ε(Cα) = 1, and,
by definition of R, q̄1 R δ(q̄2), as needed.

For the step condition, assume that q1 R μ2 and let q1
a→1 μ′

1 be a transi-
tion of P1, which we denote by tr . We must exhibit a probability measure ξ′2 ∈
Disc(Disc(Q2)) and a hyper-transition μ2

a→2 μ′′
2 , matching the given transition,

where μ′′
2 = flatten(ξ′2) and μ′

1 R ξ′2. We do this by deriving a transition trα of P2

for each execution α of Θq1 and by combining the trα’s appropriately into transitions
trq, for each state q ∈ supp(μ2), that are the basis for the required hyper-transition.
The trα transitions are derived from η; the construction considers only those α’s for
which ε(Cα) > 0. The other α’s can be treated arbitrarily.

Consider an execution α of Θq1 such that ε(Cα) > 0. By property (13), α ∈ Θq1,q2

for some state q2 in supp(μ2). Since Θq1,q2 is a subset of Θq1 , by definition of Θq1 ,
trace(α) = βq1 for some finite trace β. Therefore, η(Cβq1) > 0. Since q1 enables at
least one transition in P1, specifically transition tr , (6) from Proposition 4.6 implies
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that η(Cβq1 ch) = η(Cβq1). Then, since P2 and C have no internal actions, σ2 schedules
action ch from α with probability 1.

By definition of C= tester(P1), the transition labeled by ch leaving from state q1
of C leads to state tr with probability > 0. Hence, ε(Cα ch (q2,tr)) > 0. By (7) from
Proposition 4.6, where only the first term of the right-hand side is nonzero due to
the absence of internal actions, η(Cβq1 ch) =

∑
(a,q′)|a∈E,q1

a→q′ η(Cβq1 ch aq′). Hence,

σ2 must extend α ch (q2, tr) with two steps labeled by an action and a state of P1,
respectively, where the action and the state are compatible with one of the transitions
of P1 that are enabled from q1. Since state tr of C enables only actions in supp(μ′

1),
and since, by the tree-structure of P1, a is uniquely determined by μ′

1, the action
that is scheduled is a, and the state that is scheduled is a state in supp(μ′

1). Thus,
σ2(α ch (q2, tr)) returns a probability measure over transitions labeled by a. This
measure identifies a combined transition of P2 labeled by a that leaves from q2, which
we denote by trα.

Now, using the trα transitions, we define a combined transition from each state
in the support of μ2. Namely, for each state q ∈ supp(μ2), let trq be the combined
transition of P2 defined by

(16) trq
Δ
=

∑

α∈Θq1,q

ε(Cα)∑
α′∈Θq1,q

ε(Cα′)
trα.

Informally, each element of Θq1,q is an execution that contributes to the emulation

of transition q1
a→1 μ′

1 from q. Equation (16) computes trq, the overall contribution
to the emulation from q, by averaging over all elements of Θq1,q. We could prove that
Θq1,q contains only one element α′ such that ε(Cα′) > 0 and simplify (16) accordingly.
However, this simplification is not necessary for the proof. Now we define the measure
μ′′

2 ∈ Disc(Q2):

(17) μ′′
2

Δ
=

∑

q∈supp(μ2)

μ2(q)μtrq .

Then, by construction, μ2
a→ μ′′

2 is a hyper-transition of P2.
It remains to define a probability measure ξ′2 ∈ Disc(Disc(Q2)) such that μ′′

2 =
flatten(ξ′2) and μ′

1 R ξ′2.
For each q ∈ supp(μ′

1), let μq be the unique measure such that q R μq. We can
identify μq because R is a function. Define ξ′2 ∈ Disc(Disc(Q2)) such that, for each
q ∈ supp(μ′

1), ξ
′
2(μq) =

∑
q′∈supp(μ′

1)|μq′=μq
μ′

1(q
′). Then μ′

1 R ξ′2 by the definition of

ξ′2.
It remains to show that μ′′

2 = flatten(ξ′2), that is, that μ′′
2 =

∑
ρ∈supp(ξ′2)

ξ′2(ρ)ρ.
From the definition of ξ′2 and of the flatten operator, it suffices to show that for every
q2 ∈ Q2,

(18) μ′′
2(q2) =

∑

q∈supp(μ′
1)

μ′
1(q)μq(q2).

To prove (18) we first claim that the following equation is valid for each pair of states
q1, q2 of P1 and P2, respectively, if k denotes the number of transitions of P1 that are
enabled from q1:

(19)
∑

α∈Θq1

ε(Cα)μtrα
(q2) = k

∑

q∈supp(μ′
1) , α∈Θq,q2

ε(Cα).
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Informally, the left-hand side of (19) represents the probability of scheduling q1 and
then reaching q2 according to the transition trα, without considering the outcome of
the transition labeled by ch. The right-hand side, on the other hand, computes the
probability of scheduling q1, scheduling ch and reaching μ′

1, and then scheduling trα

and reaching q2. State μ′
1 is reached by ch with probability 1/k, which justifies the k

factor in the right-hand side.
To prove (19), consider an execution α ∈ Θq,q2 , where q ∈ supp(μ′

1). Since
q always occurs after q1, execution α can be split into α′ � α′′, where α′ ∈ Θq1 .
Furthermore, trace(α′′) = ch aq, and since there are no internal actions in P2 and C,
α is the unique extension of α′ that is in Θq,q2 . In particular,

α′′ = (q′, q1) ch (q′, tr)a(q2, tr)q(q2, q)

for some state q′ of P2, and ε(Cα) = ε(Cα′)(1/k)μtrα′ (q2). Thus, each summand
on the right-hand side of (19) has a corresponding summand on the left-hand side
that differs by a factor of k, and the correspondence relation is an injection. If the
correspondence is not a bijection, then the α terms that are left out on the left-hand
side are such that μtrα(q2) = 0 (otherwise an extension in Θq,q2 for some q exists).
This suffices.

We now consider the left-hand side of (18). Consider the definition of μ′′
2 given

by (17). By expanding μ2(q) according to the definition of μ2 given by (12), and
expanding μtr (q2) according to the definition of μtr given by (16), we obtain

μ′′
2(q2) =

∑

q∈supp(μ2)

∑
α∈Θq1,q

ε(Cα)
∑

α∈Θq1
ε(Cα)

∑
α∈Θq1,q

ε(Cα)μtrα(q2)
∑

α∈Θq1,q
ε(Cα)

.

By cross-simplifying the top-leftmost and bottom-rightmost factors, and by factoring
the left denominator out of the sum, we obtain

μ′′
2(q2) =

∑
q∈supp(μ2)

∑
α∈Θq1,q

ε(Cα)μtrα(q2)
∑

α∈Θq1
ε(Cα)

.

By property (13), we can rewrite the numerator as follows:

μ′′
2(q2) =

∑
α∈Θq1

ε(Cα)μtrα(q2)
∑

α∈Θq1
ε(Cα)

.

By multiplying numerator and denominator by k, applying (19) to the numerator,
and applying (15) to the denominator, we obtain

(20) μ′′
2(q2) =

∑
q∈supp(μ′

1) , α∈Θq,q2
ε(Cα)

∑
q∈supp(μ′

1) , α∈Θq
ε(Cα)

.

We now consider the right-hand side of (18). By applying (14) and (12) to the two
factors of the right-hand side of (18), and by simplifying common factors algebraically,
we obtain

(21)
∑

q∈supp(μ′
1)

μ′
1(q)μq(q2) =

∑
q∈supp(μ′

1) , α∈Θq,q2
ε(Cα)

∑
q∈supp(μ′

1) , α∈Θq
ε(Cα)

.



1008 NANCY LYNCH, ROBERTO SEGALA, AND FRITS VAANDRAGER

Now (18) follows by direct combination of (20) and (21).
Interestingly, the probabilistic forward simulation that we constructed in the

above proof is functional. Functional simulations are usually called refinement map-
pings [21, 26]. Write P1 ≤PR P2 if there exists a functional probabilistic forward
simulation from P1 to P2. Then we can state the following new proposition, which is
a probabilistic version of Proposition 3.12 in [26].

Proposition 6.2. Let P1, P2 be PAs without internal actions such that P1 is
tree-structured. Then P1 ≤PF P2 iff P1 ≤PR P2.

Proof. It is enough to observe that each state q1 of P1 occurs with some positive
probability in the trace distribution η of the proof of Proposition 6.1.

As usual, we may eliminate the assumption that P is tree-structured.
Theorem 6.3. Let P1, P2 be PAs without internal actions. Then P1 ≤DC P2 iff

P1 ≤PF P2.
Proof. First we prove the soundness of probabilistic forward simulations:

P1 ≤PF P2 ⇒ P1 ≤wPF P2 (Proposition 3.10.1)
⇒ P1 ≤DC P2 (Proposition 3.10.3).

Now we prove completeness:

P1 ≤DC P2 ⇒ Unfold(P1) ≤DC P1 ≤DC P2 (Proposition 3.12)
⇒ Unfold(P1) ≤DC P2 (≤DC is transitive)
⇒ Unfold(P1) ≤PF P2 (Proposition 6.1)
⇒ P1 ≤PF Unfold(P1) ≤PF P2 (Proposition 3.11)
⇒ P1 ≤PF P2 (≤PF is transitive).

6.2. PAs with internal actions. Again, we start with tree-structured PAs.
Proposition 6.4. Let P1, P2 be PAs with P1 tree-structured. Then P1 ≤DC P2

implies P1 ≤wPF P2.
Proof. Assume that P1 ≤DC P2. Define the tester PA C of P1, the observer

σ1, the trace distribution η, the scheduler σ2, the probabilistic execution ε, and the
Θ sets as in the proof of Proposition 5.1. Define relation R according to (12) as in
the proof of Proposition 6.1. Observe that formulas (13), (14), and (15) hold for the
same reasons as before. Define a new relation R′ as follows: q1 R′ μ2 iff there exists a
measure μ′

2 such that μ1 =⇒ μ′
2 and q1 R μ′

2. Observe that trivially R⊆R′. We show
that R′ is a weak probabilistic forward simulation from P1 to P2.

For the start condition, we must show that q̄1 R′ δ(q̄2). By Item 1 of Propo-
sition 4.6, η(Cq̄1) = 1. This means that

∑
α∈Θq̄1 |trace(α)=q̄1

ε(Cα) = 1. Let Θ′
q̄1 be

the set of elements of Θq̄1 with trace q̄1, and let ε′ be the truncation of ε to Θ′
q̄1 .

Then ε′ assigns probability 1 to the set of finite execution fragments with trace q̄1.
Furthermore, observing that all elements of Θ′

q̄1 are not prefixes of each other, we
derive ε′(Cα) = ε′({α}) for each α ∈ Θ′

q̄1 . Finally, observing that each element of
Θq̄1 − Θ′

q̄1 is not a prefix of any element of Θ′
q̄1 , we derive ε′(Cα) = ε′({α}) = 0

for each α ∈ Θq̄1 − Θ′
q̄1 . Let μ′

2 be lstate(ε′). By the definition of a weak hyper-

transition, δ(q̄2) =⇒ μ′
2. We show that q̄1 R μ′

2, which suffices. Consider a state
q2 of P2. By definition of μ′

2, definition of Θq̄1,q2 , and the fact that supp(ε′) ⊆ Θq̄1 ,
μ′

2(q2) =
∑

α∈Θq̄1,q2
ε′({α}). Then the result follows immediately by observing that

this equation corresponds to (12) since ε′({α}) = ε′(Cα) when α ∈ Θq̄1 and since∑
α∈Θq̄1

ε(Cα) = 1.

For the step condition, assume that q1 R′ μ2, and let q1
a→1 μ′

1 be a transition
of P1, which we denote by tr . By definition of R′, there exists a measure μ′

2 such



OBSERVING BRANCHING THROUGH PROBABILISTIC CONTEXTS 1009

that μ2 =⇒ μ′
2 and q1 R μ′

2. We now show that there exists a measure ξ′2 and a
measure μ′′

2 = flatten(ξ′2) such that μ1 R ξ′2 and μ′
2

a=⇒ μ′′
2 . Then μ1 R′ ξ′2, and by

Proposition 3.6, μ2
a=⇒ μ′′

2 .

The proof of existence of ξ′2 and μ′′
2 proceeds exactly as in the case of Proposi-

tion 6.1 except for the definition of the trα transitions. Thus, in the rest of the proof
we construct the trα’s and prove that (19) still holds.

We introduce a special conditional construction that is needed for the definition

of the trα’s. Let Ctr be the same as C except that the transition q1
ch→ μ, where

μ is uniquely determined by q1, is replaced by q1
ch→ δ(tr). Given a scheduler σ for

P2‖C, define the scheduler σ | tr for P2‖Ctr that is the same as σ except that transition

q1
ch→ δ(tr) of Ctr is chosen whenever σ chooses q1

ch→ μ. Given a probabilistic execution
fragment ε′ of P2‖C, generated by some scheduler σ, define ε′ | tr to be the result of
σ | tr applied to P‖Ctr from the start state of ε′. The intuition behind ε′ | tr is that

we study ε′ under the condition that tr is the outcoming state of C whenever q1
ch→ μ

is scheduled. Then, the following two properties are valid:

1. (ε′ | tr)�P2 is a probabilistic execution fragment of P2.
2. For each finite execution fragment α of P2‖C where state tr occurs and such

that fstate(α) is not of the form (·, tr), (ε′ | tr)(Cα) = kε(Cα), where k is the
size of supp(μ).

The first item follows immediately from Proposition 3.7, given that ε′ | tr is a prob-
abilistic execution fragment of P2‖Ctr . The second item follows directly from the
definition of probability of a cone, since in ε′ the probability associated with the edge
q ch (·, tr) is 1/k while in ε′ | tr the probability of the same edge is 1.

We now define the trα’s. Consider an execution α of Θq1 such that ε(Cα) > 0.
Let ε1 be the truncation of ε at all the points in ∪q∈supp(μ′

1)
Θq, which is a probabilistic

execution of P2‖C by definition. Let ε1α be ε1 � α, which is a probabilistic execution
fragment of P2‖C by definition. Finally, let ε2α be (ε1α | tr)�P2, which is a probabilistic
execution fragment of P2 by Property 1.

By definition of Θq1 , trace(α) = βq1 for some finite trace β. Therefore, η(Cβq1) >
0. Since q1 enables at least one transition in P1, specifically transition tr , (6) from
Proposition 4.6 implies that η(Cβq1 ch) = η(Cβq1). Thus, action ch occurs as the first
external action with probability 1 in μ1

α.

By (7) from Proposition 4.6, if the occurrence of action ch leads C to state tr , then
an action in supp(μ′

1) occurs eventually in ε with probability 1, leading C to a state
in supp(μ′

1), which is a truncation point according to the definition of ε1. Thus, the
probability of termination in ε1α | tr is 1, as well as the probability of termination in
ε2α; that is, ε2α assigns probability 1 to the set of finite executions. Furthermore, given
that action a is uniquely determined by μ′

1 (P1 is tree-structured), again by (7) from
Proposition 4.6 all finite executions α′ with ε2α(α′) > 0 have trace trace(a). Thus,
ε2α is a representation of a weak combined transition labeled by a from lstate(α)�P2.
Denote such transition by trα.

We are left to show that (19) still holds. That is,

∑

α∈Θq1

ε(Cα)μtrα(q2) = k
∑

q∈supp(μ′
1) , α∈Θq,q2

ε(Cα).

We consider first the term μtrα(q2). From the definition of trα and of weak
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combined transition we get

μtrα(q2) =
∑

α′|lstate(α′)=q2

ε2α(α′).

By applying the definition of projection, and using the fact that ε1α | tr assigns prob-
ability 1 to the set of finite executions, we get

μtrα(q2) =
∑

α′|lstate(α′	P2)=q2

(ε1α | tr)(α′).

Given that the truncation points of ε1 are all at the ∪q∈supp(μ′
1)

Θq points, the only
finite executions α′ that have nonzero probability are such that α � α′ is in some
set Θq. Furthermore, given that no execution in ∪q∈supp(μ′

1)
Θq is a prefix of another

(our PAs are tree-structured and all actions in supp(μ′
1) occur in different branches),

the probabilities of the finite executions can be replaced by the probabilities of their
cones, thus getting

μtrα
(q2) =

∑

q∈supp(μ′
1)

∑

α′|α�α′∈Θq,q2

(ε1α | tr)(Cα′).

By property 2 we can get rid of the conditional on tr by introducing a k factor, thus
getting

(22) μtrα(q2) =
∑

q∈supp(μ′
1)

∑

α′|α�α′∈Θq,q2

kε1α(Cα′).

By replacing μtrα
(q2) according to (22) in the left-hand side of (19) and by rearranging

terms algebraically, we obtain

∑

α∈Θq1

ε(Cα)μtrα
(q2) = k

∑

q∈supp(μ′
1)

∑

α∈Θq1

∑

α′|α�α′∈Θq,q2

ε(Cα)ε1α(Cα′).

By using that ε1α = ε1 �α (by definition) and Proposition 3.15, the two probabilities in
the equation above can be grouped into ε(Cα�α′). By observing that all elements in
Θq,q2 , with q ∈ supp(μ′

1), have a prefix in Θq1 , the intermediate sum can be removed,
thus getting

∑

α∈Θq1

ε(Cα)μtrα
(q2) = k

∑

q∈supp(μ′
1)

∑

α∈Θq,q2

ε(Cα),

which is (19), as needed.
Theorem 6.5. Let P1, P2 be PAs. Then P1 ≤DC P2 iff P1 ≤wPF P2.
Proof. Soundness of weak probabilistic forward simulations follows immediately

from Proposition 3.10. Completeness is established as follows:

P1 ≤DC P2 ⇒ Unfold(P1) ≤DC P1 ≤DC P2 (Proposition 3.12)
⇒ Unfold(P1) ≤DC P2 (≤DC is transitive)
⇒ Unfold(P1) ≤wPF P2 (Proposition 6.4)
⇒ P1 ≤PF Unfold(P1) ≤wPF P2 (Proposition 3.11)
⇒ P1 ≤wPF Unfold(P1) ≤wPF P2 (Proposition 3.10)
⇒ P1 ≤wPF P2 (≤wPF is transitive).
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7. Concluding remarks. We have characterized the trace distribution precon-
gruence for nondeterministic and probabilistic automata, with and without internal
actions, in terms of four kinds of simulation relations, ≤F , ≤wF , ≤PF , and ≤wPF .
In particular, this shows that probabilistic contexts are capable of observing all the
distinctions that can be expressed using these simulation relations. Our main tech-
nical contribution is the definition of special contexts, called testers, that, under the
action of an appropriate scheduler, can reveal the branching structure of a PA via a
trace distribution. Some technical improvements are possible. For example, our finite
branching restriction can be relaxed to countable branching, simply by replacing uni-
form distributions in the tester automata by other distributions such as exponential
distributions. In that case, however, calculations become more complicated. We have
also considered nondeterministic and probabilistic automata with countably many
states and actions. Again, this restriction can be relaxed at the cost of complicating
the definition of the σ-field of execution fragments: the generators would be arbi-
trary unions of cones, and the measure of a union of cones would be just the sum of
the measures of each single cone. Indeed, discrete transitions and discrete schedulers
ensure that there are at most countably many cones with nonzero measure.

Although in this paper we reach a point where we have a full understanding of
trace distribution precongruence as a branching relation, a natural question is whether
it is possible to define linear probabilistic extensions of language inclusion. A poten-
tial approach is to consider ordinary traces paired with their maximal or minimal
probabilities under all schedulers, but the induced preorder relations do not appear
to be interesting. Another approach, followed in [19], is to extend classical testing
preorders by considering the maximal and minimal probabilities of success of a test;
however, even in such case the resulting precongruence is characterized in terms of
simulation relations that, although weaker than the relations studied in this paper,
are still branching relations. Other approaches ensure compositionality of trace dis-
tribution inclusion by restricting parallel composition so that the nondeterminism of
each component is resolved based only on externally visible behavior of the other
components. This approach is investigated in [10] in a synchronous model. In [8, 7],
an asynchronous switched probabilistic input/output automaton model (PIOA) is
presented, which uses a token structure to eliminate global nondeterministic choices.
This token structure ensures that, at any point in time, there is at most one active
component in a system and this unique component determines the next active com-
ponent. Thus, global scheduling is performed jointly by all local schedulers, which
have access to local information only. A notion of switched probabilistic systems is
defined, which are switched PIOAs paired with sets of acceptable I/O schedulers. A
trace-style semantics for switched probabilistic systems is given, using the notion of
likelihood assignments. This semantics is shown to be compositional with respect to a
parallel operator that combines local I/O schedulers into a joint I/O scheduler. Thus,
the approach of [8, 7] can be characterized as schedule-and-compose, where local non-
deterministic choices are resolved before the components are placed in parallel. In
[7] also a similar strategy is pursued, but without the token structure. Instead, sev-
eral axioms are imposed on the reactive and generative transition structures, so that
branching occurs only when it is meant to be globally visible (i.e., the branches carry
different visible action labels). These axioms capture a local-oblivious assumption
on adversaries, which is well known in the area of randomized consensus [9, 3]. The
model is proven to be compositional with respect to a schedule-and-compose operator
similar to that in [8].
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GEOMETRIC SEPARATORS AND THEIR APPLICATIONS TO
PROTEIN FOLDING IN THE HP-MODEL∗

BIN FU† AND WEI WANG‡

Abstract. We develop a new method for deriving a geometric separator for a set of grid points.
Our separator has a linear structure, which can effectively partition a grid graph. For example, we
prove that for a grid graph G with a set of n points P in a two-dimensional grid, there is a separator
with at most 1.129

√
n points in P that partitions G into two disconnected grid graphs each with at

most 2n
3

points. Our separator theorem for grid graphs has a significantly smaller upper bound than
that was obtained for the general planar graphs in [H. N. Djidjev and S. M. Venkatesan, Acta Inform.,
34 (1997), pp. 231–234]. The protein folding problem in the HP-model is to put a sequence, consisting
of two characters H and P, in a d-dimensional grid to have maximal number of HH-contacts, where
an HH-contact is a pair of non-consecutive H letters that are put at two grid points of distance 1.
Our separator is then applied to develop an exact algorithm for the protein-folding problem in the
HP-model, which is NP-hard both in both two and three dimensions [B. Berger and T. Leighton, J.
Comput. Biol., 5 (1998), pp. 27–40; P. Crescenzi et al., J. Comput. Biol., 5 (1998), pp. 423–465].

We design a 2O(n
1− 1

d log n) time algorithm for the d-dimensional protein folding problem in the HP-

model. In particular, our algorithm has O(26.145
√
n log n) and O(26.913n

2
3 log n) computational time

in two and three dimensions, respectively.

Key words. separator, protein folding, time complexity, algorithm
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1. Introduction. Geometric separators are fundamental tools in algorithm de-
sign for solving many geometric problems. Lipton and Tarjan [24] showed a well-
known geometric separator for planar graphs. Their result has been elaborated on by
many authors [9, 15, 2, 10]. The following best known separator theorem for planar
graphs was proved by Djidjev and Venkatesan [10].

Theorem 1 (see [10]). Any planar graph of n vertices has a vertex subset of
cardinality ≤ 1.97

√
n whose removal separates the graph into two components each

having at most 2n
3

vertices.
Spielman and Teng [38] showed a 3

4
-separator with size 1.82

√
n for planar graphs.

Separators for more general graphs were presented in, e.g., [16, 3, 32]. Planar graph
separators were applied to derive some 2O(

√
n)-time algorithms for certain NP-hard

problems about planar graphs by Lipton and Tarjan [25] and Ravi and Hunt [35].
Those problems include computing a maximum independent set, a minimum ver-
tex cover, and three-colorings of a planar graph, and the number of satisfying truth
assignments to a planar 3CNF formula [23].
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Fig. 1. The sequence PHPPHHPH is put on the 2D grid. There are two H-H contacts marked
by the dotted lines.

Some other forms of the geometric separators were studied by Miller, Teng, and
Vavasis [26], Miller and Thurston [27] and Smith and Wormald [37]. For a set of
regular geometric objects such as circles, rectangles, etc., if every point on the plane
is covered by at most k objects, the set of the objects is called a k-thick system. Some
O(

√
k · n) size separators for k-thick systems and the algorithms for finding them were

derived in [27, 26, 37]. Smith and Wormald [37] applied their separators to develop
algorithms for some geometric problems such as the planar travelling salesman and
the Steiner tree problems (e.g., see [37]). Those problems usually have input points
with fixed geometric positions in space.

Finding a minimal size separator, which maintains a similar balance partition
condition like one of those mentioned above (e.g., each side of the separator has
at most 2n

3
points), for a grid graph is also an interesting combinatorial problem.

Using special geometric properties of grid points, we develop a method for obtaining
a separator with a smaller size for grid points via controlling the distances from the
grid points to the separator line.

A set of grid points on the plane forms a grid graph by adding edges to every
two grid points with distance 1. A grid graph is also a planar graph. In the protein
folding of the HP-model, the 20 letter alphabet of amino acids is reduced to a two
letter alphabet, namely H and P. H represents hydrophobic amino acids, whereas P
represents polar or hydrophilic amino acids. Two monomers form a contact in some
specific conformation if they are not consecutive, but occupy neighboring positions
in the conformation (i.e., the distance vector between their positions in the confor-
mation is a unit vector). A conformation with minimal energy is just a conformation
with the maximal number of contacts between nonconsecutive H-monomers (see Fig-
ure 1). The protein folding problem in the HP-model is to find the conformation for
any HP-sequence with minimal energy. The protein folding problem in the HP-model
is an interesting and challenging problem that deals with a puzzle in the grids. The
problem is to put a sequence, consisting of two characters H and P, in a d-dimensional
grid to have the the maximal number of HH-contacts. As the input of the protein
folding problem is only a sequence of letters, the locations of those letters in space are
unknown and will be determined by the algorithm. For this reason, we do not know
whether the separator theorems, such as Theorem 1, can be applied to the protein
folding problem. We derive a separator theorem for the grid graph with a significantly
smaller upper bound on the number of points on the separator than that obtained for
planar graphs. Our result is stated as the following theorem.

Theorem 2. For a set P of n grid points on the two-dimensional (2D) plane,
there is a line on the plane and a subset Q ⊆ P of cardinality ≤ 1.129

√
n such that

each half-plane determined by the line contains at most 2
3
n points of P , and every two
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points p1, p2 ∈ P on the different sides of the line have distance > 1, unless at least
one of p1, p2 is in Q.

Furthermore, we also provide O(n2) possible locations to find such a line based
on the folding region within a fixed n × n square. This makes it possible to use the
separator theorem in the algorithm for the protein folding problem, even though the
locations of the letters are not known. The approximation method in searching for the
separator region highly depends on the linear structure of the separator. We derive a
similar separator for three-dimensional (3D) grid points, which is also applied to the
3D protein folding problem.

The lower bounds of 1.555
√
n and 1.581

√
n for the 2

3
-separator like that in The-

orem 2 for the planar graph were proved by Djidev and Venkatesan [10] and Smith
and Wormald [37], respectively. However, we develop a new approach and obtain an
upper bound on the separator for a grid graph with a size smaller than their lower
bounds. This shows that our smaller-sized separator for grid graphs cannot be directly
obtained from that for planar graphs.

Our development of the separator technology is motivated by finding fast exact
algorithms for the protein folding problem. A protein can be folded into a specific
3D structure, which is uniquely determined by the sequence of amino acids. Its 3D
structure determines its function. Protein structure prediction with computational
technology is one of the most significant problems in bioinformatics.

A simplified representation of proteins is a lattice conformation, which is a self-
avoiding sequence in Z3. An important representative of lattice models is the HP-
model, which was introduced in [20, 21]. This problem was proven to be NP-hard
both on two and three dimensions [6, 8].

Some algorithms for this problem have been developed based on heuristic, ge-
netic, Monte Carlo, branch, and bound methods (e.g., [39, 40, 41, 36, 30, 33, 18,
19, 31, 22, 34, 5, 4]). Although many experimental results were reported for testing
sequences of small lengths, we have not seen any theoretical analysis about upper
bounds on the computational time of the algorithms. Another approach is to de-
velop polynomial time approximation algorithms for protein folding in the HP-model,
[17, 1, 28]. Hart and Istrail [17] showed a polynomial time 3

8
-approximation algorithm

for the 3D protein folding in the HP-model and Newman [28] derived a polynomial
time 1

3
-approximation algorithm for the 2D problem, improving the 1

4
-approximation

algorithm in [17].
If the first letter of an HP-sequence is fixed at a position of a 2D plane (or 3D

space), we have at least 2n−1 (3n−1) ways and at most 3n−1(5n−1) ways to put the
rest of the letters on the plane (in the space, resp.). The computational time of

our algorithm is bounded by 2O(n
1
2 logn) (2O(n

2
3 logn) ) in two dimensions (in three

dimensions, resp.). As the average number of amino acids of proteins is between 400
and 600, if an algorithm could solve the protein structure prediction problem with
≤ 1000 amino acids, it would be able to satisfy most of the application demands. Our
effort is a theoretical step toward this target. Our algorithm is a divide-and-conquer
approach, which is based on our geometric separator for separating the points in a
d-dimensional grid.

The paper is organized as follows. In sections 2 and 3, we develop the separator
theory. In sections 4 and 5, we apply the separators to the protein folding prob-
lem in the HP-model. In section 2, we show a class of easy separators on a set of
d-dimensional grid points. This kind of separator is used in section 4 to obtain a

2O(n1−1/d logn)-time algorithm for the d-dimensional protein folding problem in the
HP-model. In section 3, we develop sharp separators in both two and three dimen-
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sions. Those separators are used to obtain faster algorithms for the protein folding
problem in section 5. Precisely, those separators help us reduce the constant factor
in the exponents of the computational complexity of the protein folding problem.

In this paper, we only apply the separators for grid points to the protein folding
problem in the HP-model. When developing algorithms for some geometric problems
with the input of a set of points in the Euclidean space, we can select a set of grid points
to characterize the distribution of the input points. This brings more applications of
separators for grid points. A series of advances [11, 7, 13, 12] has been made along
this line of the separator technology, which starts from the earlier version [14] of this
paper. The method of this paper was extended and applied to a class of other NP-
hard geometric problems by Fu [11], improving their exact algorithms to 2O(

√
n)-time

from nO(
√
n)-time. Those problems include the problems of disk covering, maximum

independent set, minimum vertex cover, and minimum dominating set on disk graphs.
An efficient sublinear time randomized algorithm was developed in [12] for finding
separators. The method was also applied to derive an approximation algorithm for a
geometric problem [7] that has application in digital image half-toning.

2. An easy separator for grid points. Given a set of n grid points P , we
will show that there is a hyperplane (denoted by Pr,a for some r with 1 ≤ r ≤ d

and an integer a in the definition below), which contains O(n1− 1
d ) grid points from

P , to partition P into two parts of at most c(d)n grid points on each side, where
0 < c(d) < 1 and c(d) is a constant for fixed d. The separator in this section has a

self-contained proof and is used in deriving an nO(n
1− 1

d )-time algorithm for the protein
folding problem in the HP-model in section 4. Let the dimensional number d be fixed.
We need the following terms.

Definition 3.

• For a set A, |A| denotes the number of elements in A.
• The integer set is represented by Z = {· · · ,−2,−1, 0, 1, 2, · · ·}. For integers
i and j, integer interval [i, j] = {i, i + 1, · · · , j}. For integers x1, · · · , xd,
(x1, · · · , xd) is a d-dimensional grid point.

• For two points p1, p2 with the same dimension, dist(p1, p2) is the Euclidean
distance between them.

• An r-plane is the set Pr,a = {(x1, · · · , xr−1, a, xr+1, · · · , xd)|x1, · · · , xr−1, xr+1,
· · · , xd ∈ Z}, which has all of the elements in Zd with the rth component being
a fixed value a.

• Pr,<a = {(x1, · · · , xr−1, xr, xr+1, · · · , xd)|x1, · · · , xr−1, xr, xr+1, · · · , xd ∈ Z
and xr < a}.

• Pr,>a = {(x1, · · · , xr−1, xr, xr+1, · · · , xd)|x1, · · · , xr−1, xr, xr+1, · · · , xd ∈ Z
and xr > a}.

• Pr,≤a = Prr,<a ∪ Pr,a, and Pr,≥a = Pr,>a ∪ Pr,a.
• For a set of points S in the d-dimensional space and 1 ≤ r ≤ d and a ∈ Z,

define S(r,< a) = {(x1, · · · , xd) ∈ S|xr < a}, S(r,= a) = {(x1, · · · , xd) ∈
S|xr = a}, and S(r,> a) = {(x1, · · · , xd) ∈ S|xr > a}.

• For 0 < c < 1 and a set S in the d-dimensional space, a Pr,a is a c-balanced-
separator if |S(r,< a)| ≤ c · |S| and |S(r,> a)| ≤ c · |S|.

Theorem 4. For a set S of n grid points in the d-dimensional space, there is a
c(d)-balanced-separator P ∗ that contains at most ≤ c′(d)n1− 1

d points from S, where
0 < c(d) < 1, 0 < c′(d) and both c(d) and c′(d) are constants for a fixed dimensional
number d.
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Proof. We will construct a series of sets S = S0 ⊇ S1 ⊇ S2 ⊇ · · · ⊇ St such that
t ≤ d − 1 and |Si| ≥ 1

2
|Si−1| for i = 1, 2, . . . , t. The construction of P ∗ starts from

Stage 0 and can go up to Stage d.
Stage 0: Let S0 = S and r = 1. Enter Stage 1. End of Stage 0.
Stage r (1 ≤ r ≤ d − 1): Let Qr contain all of Pr,a such that Pr,a is a 3

4
-

balanced-separator for Sr−1. At most 1
4

of the elements in Sr−1 with smallest a values
(for the rth component) stay to the left of all the 3

4
-balanced separators and at most

1
4

of the elements in Sr−1 with largest a values (for the rth component) stay to the
right of all the 3

4
-separators. The set ∪Pr,a∈QrPr,a has at least 1

2
of the elements from

Sr−1. Thus, Qr is not empty. If a Pr,a in Qr contains no more than n1− 1
d elements

from S, let P ∗ = Pr,a and terminate the construction. We have |Sr−1| ≥ 1
2r−1 |S| and

|S(r,< a)| ≤ |Sr−1(r,< a)| + |S − Sr−1| ≤ 3

4
|Sr−1| + |S| − |Sr−1|(1)

= |S| − 1

4
|Sr−1| ≤

(
1 − 1

2r+1

)
|S| ≤

(
1 − 1

2d

)
|S|.(2)

Similarly, |S(r,> a)| ≤ (1 − 1
2d )|S|.

If every Pr,a ∈ Qr has > n1− 1
d elements from S, |Qr| ≤ n

1
d because | ∪Pr,a∈Qr

(Pr,a ∩ S)| ≤ |S| = n and all planes in Qr are disjoint from each other. It is easy
to see that there is an integer interval [c1, c2] such that Qr = {Pr,a|a ∈ [c1, c2]}. Let
Sr = ∪Pr,a∈Qr (Pr,a ∩ Sr−1). We have Sr ⊆ Sr−1 and |Sr| ≥ |Sr−1|/2 (because [c1, c2]
is the set of all the integers a such that Pr,a is a 3

4
-balanced-separator). Let r = r+ 1

and go to the next stage. End of stage r.
Stage d: Assume that for each r with 1 ≤ r ≤ d− 1, Qr has no plane Pr,a with

elements ≤ n1− 1
d from S. Hence, |Qr| ≤ n

1
d for 1 ≤ r ≤ d − 1. If a is fixed, every

p ∈ Pr,a has the rth component equal to a. Therefore, {xr|xr is the rth component of

some p ∈ Pr,a for some Pr,a ∈ Qr} has ≤ n
1
d elements since |Qr| ≤ n

1
d (1 ≤ r ≤ d−1).

This implies that for every Pd,a,

|{p|p ∈ Pr,ar for some Pr,ar ∈ Qr (r = 1, . . . , d−1) and p ∈ Pd,a}| ≤ (n
1
d )d−1 = n

d−1
d .

As |Sd−1| ≥ |S|
2d−1 = 1

2d−1n, there are at least
1
2 |Sd−1|
n

1− 1
d

≥ 1
2d · n 1

d many Pd,a’s to be

3
4
-balanced-separators for Sd−1. One of them has at most |S|

1

2d
n

1
d

= 2dn1− 1
d elements

from S. Let P ∗ be such a Pd,a. As |Sd−1| ≥ 1
2d−1 |S|, we have

|S(d,< a)| ≤ |Sd−1(d,< a)| + |S − Sd−1| ≤ 3

4
|Sd−1| + |S| − |Sd−1|(3)

= |S| − 1

4
|Sd−1| ≤

(
1 − 1

2d+1

)
|S|.(4)

Similarly, we also have |S(d,> a)| ≤ (1 − 1
2d+1 )|S|. End of stage d.

For a d-dimensional cube that contains n grid points, its edge length is n
1
d . Every

hyperplane Pr,a which intersects the cube shares n
d−1
d grid points with the cube. This

shows that it is impossible to improve the upper bound on the number of points on

the separator to o(n
d−1
d ). In the next section, we shows that we can improve the

separator by a constant factor. Theorem 4 indicates that the balanced separator can
be found among O(dn) axis-parallel hyperplanes.
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3. Sharp separators for grid points. We will improve the quality of the
separator obtained in the previous section. The following lemma is a well-known fact
(see [29]) that will be used for deriving our new separator. Our reduced upper bound
on the number of points on the separator is from the following fact: For a set P of 2D
grid points with the centerpoint o (see Lemma 5), a random line through o has the
largest expected number of points of P with distance ≤ a to the line when the points
in P are tightly arranged in the grid points inside a circle with the least radius. This
is also true in the higher dimensional space.

Lemma 5. For an n-element set P in the d-dimensional space, there is a point
q with the property that any half-space that does not contain q covers at most d

d+1
n

elements of P . (Such a point q is called a centerpoint of P .)
Definition 6. For a grid point (i, j) on the 2D plane, its grid square is a 1 × 1

square with four corner points (i− 1
2
, j− 1

2
), (i− 1

2
, j+ 1

2
), (i+ 1

2
, j− 1

2
), and (i+ 1

2
, j+ 1

2
).

For a 3D grid point (i, j, k), its grid cube is a 1 × 1 × 1 cube with eight corner points
in {(i + α, j + β, k + γ)|α, β, γ ∈ {−1

2
, 1

2
}}.

3.1. 2D separators.

Lemma 7. (1) A circle of radius r contains at most π(r +
√

2
2

)2 grid points.

(2) A circle of radius r on the 2D plane has at least πr2 − 4
√

2πr grid points
inside it.

(3) A circle of radius 1√
π

√
n + 4

√
2 has at least n grid points in it.

(4) For every line segment L of length m, the number of grid points with distance
≤ a to at least one point of L is ≤ (2a +

√
2)(m + 2a +

√
2).

(5) For every line L and fixed a > 0, there are at most (2a+
√

2)(
√

2n+2a+
√

2)
grid points inside an n× n square with ≤ a distance to L.

Proof. (1) If a grid point p is inside a circle C of radius r at center o, the 1 × 1

grid square with center at p is inside a circle C ′ of radius r+
√

2
2

at the same center o.
The number of those 1 × 1 grid squares for the grid points inside C is no more than
the area size of the circle C ′.

(2) Let C1, C, and C2 be three circles on the plane with the same center. Their
radii are r−√

2, r, and r +
√

2, respectively. Every 1× 1 grid square intersecting C’s
boundary is outside C1 and inside C2. The number of grid squares intersecting C’s
boundary is no more than π(r +

√
2)2 − π(r −√

2)2 = 4
√

2πr.
(3) Let r = 1√

π

√
n + 4

√
2. It is straightforward to verify that πr2 − 4

√
2πr > n.

Apply (2).
(4) If a point p has ≤ a distance to L, every point in the 1 × 1 grid square with

center at p has distance ≤ a +
√

2
2

to L. The number of those 1 × 1 squares with

centers at points of distance ≤ a to L is no more than 2(a +
√

2
2

)(m + 2a +
√

2).

(5) The length of a line L inside an n× n square is ≤ √
2n. Apply (4).

Definition 8. Assume that a > 0 and that p0, p are two points on the plane.
Define Pr2(a, p0, p) to be the probability that a point p has ≤ a perpendicular distance
to a random line L through the point p0.

Lemma 9. Let a > 0 be a constant and δ > 0 be a small constant. Let P be a set
of points in a 2D grid. Assume that all the points of P are inside a circle of radius r
with center at point o. For a random line passing through o, the expected number of
points in P with distance ≤ a to L is bounded by 4ar + δr for all large r.

Proof. Assume that p = (x, y) is a point of P and that L is a random line passing
through the center o = (x0, y0). Let C be the circle of radius r at center o such that

C covers all the points in P . Let C ′ be the circle of radius r′ = r +
√

2
2

at the same
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center o. It is easy to see that every unit square with center at a point in P is inside

C ′. The probability that a point p has distance ≤ a to L is
2 arcsin a

dist(o,p)

π .
Let ε > 0 be a small constant which will be determined later. Select r0 to be large

enough such that for every point p with dist(o, p) ≥ r0, arcsin a
dist(o,p) < (1+ε) a

dist(o,p)

and 1
dist(o,p′) < 1+ε

dist(o,p) for every point p′ with dist(p′, p) ≤
√

2
2

. Let P1 be the set

of all the points p in P such that dist(o, p) < r0. By Lemma 7, the number of grid

points in P1 is no more than π(r0 +
√

2
2

)2. For each point p ∈ P1, Pr2(a, o, p) ≤ 1.

For every point p ∈ P − P1, Pr2(a, o, p) =
2 arcsin a

dist(o,p)

π ≤ (1+ε)2a
πdist(o,p) .

The expected number of points in P with distance ≤ a to a random line through
the point o is

∑

p∈P

Pr2(a, o, p) =
∑

p∈P1

Pr2(a, o, p) +
∑

p∈P−P1

Pr2(a, o, p)(5)

≤
∑

p∈P1

1 +
∑

p∈P−P1

2 arcsin a
dist(o,p)

π
(6)

< π

(
r0 +

√
2

2

)2

+
∑

p∈P−P1

(1 + ε)2a

πdist(o, p)
(7)

≤ π

(
r0 +

√
2

2

)2

+
2a(1 + ε)2

π

∫ ∫

C′

1

dist(o, p)
dxdy(8)

=
2a(1 + ε)2

π

∫ 2π

0

∫ r′

0

ρ

ρ
dρdθ + π

(
r0 +

√
2

2

)2

(9)

= 4a(1 + ε)2r′ + π

(
r0 +

√
2

2

)2

(10)

< 4ar + δr for all large r by selecting ε small enough.(11)

We use the transformation x = ρ cos θ+x0, y = ρ sin θ+y0 to convert the integral
at (8) to that at (9) above.

Theorem 10. Let a > 0 be a constant and ε > 0 be a small constant. For a set P
of n grid points in a 2D grid, there is a line L such that P has at most ( 4a√

π
)·√n+ε

√
n

points with distance ≤ a to L, and each half-plane divided by L has at most 2
3
n points

from P .
Proof. Assume that the centerpoint of P is at the point o (see Lemma 5). We are

going to estimate the upper bound for the expected number of points in P that have
≤ a distances to a random line L through o.

Let r = 1√
π

√
n + 4

√
2. By Lemma 7, the circle C at center o with radius r

contains at least n grid points. Let f be a one-to-one mapping from P to the set of
grid points inside C such that f(p) = p for every p ∈ P with dist(o, p) ≤ r. Therefore,
f moves those points of P outside the circle C to the inside. It is easy to see that if
dist(o, p1) ≤ dist(o, p2), then, Pr2(a, o, p1) ≥ Pr2(a, o, p2). The expected number of
points in P with ≤ a distance to L is

∑
p∈P Pr2(a, o, p).

By Lemma 9,
∑

p∈P Pr2(a, o, p) ≤
∑

p∈P Pr2(a, o, f(p)) ≤ 4ar+δr = 4a
π

√
n+ε

√
n

by selecting a small δ.
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3.2. 3D separators. The technology used in the previous section can be easily
extended to the 3D grid. We give a brief proof for the case in the 3D space.

Lemma 11. Let a =
√

3. (1) A sphere of radius r has at least 4
3
πr3 − 4

3
π(6ar2 +

2a3) grid points. (2) A sphere of radius ( 3
4π )

1
3n

1
3 +7a contains at least n grid points.

Proof. (1) Let r1 = r + a, and let r2 = r − a. The volume difference between
the sphere of radius r1 and the sphere of radius r2 is 4

3
π(6ar2 + 2a3), which is larger

or equal to the number of unit grid cubes intersecting the boundary of the sphere of
radius r. (2) For r = ( 3

4π )
1
3n

1
3 + 7a, we have 4

3
πr3 − 4

3
π(6ar2 + 2a3) ≥ n.

Definition 12. Assume that a > 0 and that p0, p are two points in the 3D
Euclidean space. Define Pr3(a, p0, p) to be the probability that the point p has ≤ a
perpendicular distance to a random plane L through the point p0 in the 3D space.

Assume that both a and p0 are fixed. We want to compute Pr3(a, p0, p), which
depends on the parameter a and the distance between p0 and p. Without loss of
generality, we assume that p0 is the origin point (0, 0, 0) and p = (x, 0, 0), where
x = dist(p0, p). A random plane through the origin point is uniquely determined by
its normal vector (u, v, w) with u ≥ 0. The distance between p to the plane with
normal vector (u, v, w) is equal to xu. If the distance is at most a, then u ≤ a

x . The
set Gp,a = {(u, v, w)|u2 + v2 +w2 = 1 and 0 ≤ u ≤ a

x} contains all the normal vectors
of those planes (through the origin) such that p has distance at most a to each of
them. The set Gp,a is a subarea of the half-sphere H1 = {(u, v, w)|u2 + v2 + w2 = 1
and 0 ≤ u} with center at the origin point and radius 1. If a is fixed and x is large,
the area size of Gp,a can be computed by the formula

∫ a
x

0

2π
√

1 − y2dy =
2πa

x
+ O

(
a2

x2

)
.

Since the area size of a half-sphere of radius 1 is 2π, the probability that p has distance
at most a to a random plane through the origin is

Pr3(a, p0, p) =
the area size of Gp,a

the area size of H1

=
2πa
x + O(a

2

x2 )

2π
=

a

x
+ O

(
a2

x2

)
.

The above formula for computing Pr3(a, p0, p) corrects a mistake that we made in
the extended abstract of this paper [14]. It also gives a slightly different upper bound
for the exact algorithm for the folding problem in the 3D space reported in [14].

Lemma 13. Let a > 0 be a constant and let δ > 0 be a small constant. Let P be
a set of points in a 3D grid. Assume that all the points of P are inside a sphere of
radius r with center at point o. For a random plane passing through o, the expected
number of points in P with distance at most a to L is bounded by 2πar2 + δr2 for all
large r.

Proof. The proof is very similar to that of Lemma 9. Let S be the sphere with
radius r at center o = (x0, y0, z0) such that it contains all the points in P . Let S′ be

the sphere of radius r′ = r +
√

3
2

at the same center of S. All unit cubes with center
at points in P are inside S′.

The expected number of points in P with distance ≤ a to a random plane through
o is

∑
p=(x,y,z)∈P Pr3(a, o, p), which has the main part

∫ ∫ ∫
S′

a
dist(a,o,p)dxdydz. By

the transformation x = ρ sin θ cosα + x0, y = ρ sin θ cosα + y0, z = ρ sin θ + z0, we

have
∫ ∫ ∫

S′
a

dist(a,o,p)dxdydz =
∫ r′

0

∫ π

0

∫ 2π

0

aρ2 sin θ
ρ dαdθdρ = 2πar′2.

Theorem 14. Let a > 0 be a constant and let ε > 0 be a small constant.
For a set P of n points in a 3D grid, there is a plane L such that P has at most
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(2πa( 3
4π )2/3) · n2/3 + εn2/3 points with distance at most a to L, and each half-space

divided by L has at most 3
4
n points from P .

Proof. By Lemma 11, the sphere of radius ( 3
4π )

1
3n

1
3 + 7

√
3 contains at least n

grid points. Moving points of P into the sphere, which has center at the centerpoint
of P (see Lemma 5), from the outside increases the probability to have distance ≤ a
to a random plane through the sphere center. By Lemma 13, the expected number of
points in P with distance ≤ a to a random plane is (2πa( 3

4π )2/3) · n2/3 + εn2/3 for all
large n via selecting small δ.

4. An application of the easy separators to the protein folding problem.
We apply the easy separators to the protein folding problem in the HP-model, and
obtain the first subexponential time algorithm for it. We have already shown that
there is a small set of letters with size O(n1− 1

d ) on a hyperplane to partition the folding
problem of n letters into 2 smaller problems of ≤ c(d)n letters, where 0 < c(d) < 1,
c(d) is a constant for fixed d, and n is the size of the input (the number of H and
P characters). The 2 smaller problems are recursively solved, and their solutions are
merged to derive the solution to the original problem. As the separator has only

O(n1− 1
d ) letters, there are at most nO(n

1− 1
d ) cases to partition the problem.

Definition 15.

• For a d-dimensional point (x1, · · · , xd), define ||(x1, · · · , xd)|| =
∑d

i=1 |xi|.
• For a set Σ of letters, a Σ-sequence is a sequence of letters from Σ. For

example, PHPPHHPH is an {H,P}-sequence. For a sequence S of length
n and 1 ≤ i ≤ n, S[i] is the ith letter of S and S[i, j] denotes the sub-
sequence S[i]S[i + 1] · · ·S[j]. If [i1, j1], [i2, j2], · · · , [it, jt] are pairwise dis-
joint intervals inside [1, n], we call S[i1, j1], S[i2, j2], · · · , S[it, jt] disjoint sub-
sequences of S. For a set of integers A = {i1 < i2 < · · · < ik}, define
S[A] = S[i1]S[i2] · · ·S[ik].

• A self-avoiding arrangement f for a sequence S of length n in the
d-dimensional grid is a one-to-one mapping from {1, 2, · · · , n} to Zd such
that ||f(i) − f(i + 1)|| = 1 for i = 1, 2, . . . , n − 1. For the disjoint subse-
quences S[i1, j1], · · · , S[ik, jk] of S, a partial self-avoiding arrangement of S
on S[i1, j1], · · · , S[ik, jk] is a partial function f from {1, 2, · · · , n} to Zd such
that f is defined on ∪k

t=1[it, jt], and f can be extended to a (full) self-avoiding
arrangement of S on Zd.

• For a grid self-avoiding arrangement, its contact map is the graph Gf =
(1, 2, · · · , n, E), where the edge set E = {(i, j) : |i−j| > 1 and ||f(i)−f(j)|| =
1}.

• A rectangular region R in a d-dimensional space is the intersection of a finite
number of sets P1, P2, · · · , Pk, where Pi = Pr,<a or Pi = Pr,>a with 1 ≤ r ≤ d
and a ∈ Z for i = 1, . . . , k.

• A rectangular region R in a d-dimensional space is of size m1×m2×· · ·×md

if mi = max{xi − x′
i|(x1, · · · , xd), (x

′
1, · · · , x′

d) ∈ R} + 1 for i = 1, . . . , d.
As we are going to describe our algorithm recursively, we use the following term

to characterize the problem. A d-dimensional multisequence folding problem F is
formulated as follows.

The inputs are
1. a list of disjoint subsequences S1, S2, · · · , Sk of sequence S0 (St = S0[it, jt] for

t = 1, . . . , k),
2. a rectangular region R, where all of the k {H,P}-sequences are going to be

arranged,
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Pr,aPr,<a Pr,>a

S1

S2

S3

S4

S5

S6S7

Fig. 2. The hyperplane Pr,a partitions a sequence into 3 groups of disjoint subsequences
{S1, S7}, {S2, S4, S6}, and {S3, S5} in Pr,<a, Pr,a, and Pr,>a, respectively. (Notice that S6 is a
point that is the intersection between the two lines.)

3. a series of k pairs of points in R: (p1, q1), (p2, q2), · · · , (pk, qk), in which points
pt ∈ R and qt ∈ R are the positions for putting the first and the last letters
of St, respectively,

4. a set of available points to put the letters from the k sequences, and
5. a set of {H,P} points, which already have letters H and P from S0[([1, n] −

∪k
t=1[it, jt])].

The output is a partial self-avoiding arrangement f of S0 on S1, · · · , Sk in the
rectangular region R that satisfies f(it) = pt, f(jt) = qt (t = 1, 2, . . . , k) and has
the maximal number of H-H contacts, where f(i) is an available point for each i ∈
∪k
t=1[it, jt]. H-H contacts may happen between two available neighbor positions or

between an available position and a nonavailable position after the arrangement.
A hyperplane Pr,a partitions a multisequence folding problem F into two multi-

sequence folding problems F1 and F2 in regions R∩Pr,≤a and R∩Pr,≥a, respectively,
by fixing some letters on Pr,a (see Figure 2). Furthermore, the available points of F1

(F2, resp.) are the intersection of F ’s available points with Pr,<a (Pr,>a, resp.).
Algorithm
(a) Input a d-dimensional multisequence folding problem F (as defined above);

(b) For each subset S of ≤ c′(d) · n d−1
d letters from S1, · · · , Sk

For every plane Pr,a (with nonempty intersection with R) and
For every arrangement of S at available points on Pr,a ∩R

(c) Begin
(d) For each partition (by Pr,a) making F into problems F1 and F2 of

size ≤ c(d)n
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(e) Begin
(f) Solve F1 and F2 recursively using this algorithm (use the brute

force method when the problem size is small);
(g) Merge the solutions to F1 and F2 to get a potential solution

for F ;
(h) End
(i) End
(j) Output the solution for F with the maximal number of H-H contacts among

all of the potential solutions for F ;
End of the Algorithm

Lemma 16. There is an (nm)O(n
1− 1

d )-time algorithm for the d-dimensional multi-
sequence folding problem with an m1 ×m2 × · · · ×md rectangular region in the HP-
model, where m = max{max{mi|i = 1, . . . , d}, 2} and the dimension d is assumed to
be a constant.

Proof. By Theorem 4, the folding problem is partitioned into two problems with
a separator of size ≤ c′(d) · n1− 1

d elements. For each 1 ≤ r ≤ d, we have at most m
planes Pr,a that have a nonempty intersection with the m1 ×m2 · · · ×md rectangular
region. There are at most d ·m ways to select the separator plane. If the plane has at
most t letters, there are at most d ·m · ntm(d−1)t = dntm(d−1)t+1 ways to select the
plane and the position for the letters and put those letters at the selected position on
the plane. Thus, the loop (c)–(i) is repeated ≤ dntm(d−1)t+1 times.

For disjoint subsequences S1, · · · , Sk of S0 inside a rectangular region R, we fix
t ≤ c′(d)·n1− 1

d letters from S1, · · · , Sk on the hyper plane Pr,a and partition them into
three groups of subsequences of S0 which are in R ∩ Pr,<a, R ∩ Pr,=a, and R ∩ Pr,>a,
respectively (see Figure 2). For each subsequence from R ∩ Pr,<a or R ∩ Pr,>a, we
fix the positions for its two endpoints under all possible cases. The subsequences in
R ∩ Pr,<a will not affect those in R ∩ Pr,>a. We have at most 2t+1 ways to fix the
endpoints of those sequences in R ∩ Pr,<a and R ∩ Pr,>a. Therefore, the loop (e)–(h)
is repeated ≤ 2t+1 times.

Let T (m,n) be the computational time of our algorithm, where n is the length
of S0 and m is defined as in the lemma. We have the following recursive relationship
for the total time of the algorithm:

T (m,n) ≤ 2 · d ·m(d−1)c′(d)n1− 1
d +1 · nc′(d)n1− 1

d · 2c′(d)n1− 1
d +1 · T (m, c(d)n),

where 0 < c(d) < 1 and 0 < c′(d) are constants for fixed d. Expanding the inequality

recursively, we have T (m,n) = (nm)O(n
1− 1

d ).

Theorem 17. There is a 2O(n
1− 1

d logn)-time algorithm for the d-dimensional
protein folding problem in the HP-model for fixed d.

Proof. The folding problem can be put into an n× n× · · · × n rectangular region
in the d-dimensional space by fixing the two middle letters in two central neigh-

bor points in the region. By Lemma 16, we have an nO(n
1− 1

d ) = 2O(n
1− 1

d logn)-time
algorithm.

5. Application of the sharp separators to the protein folding problem.
In the previous section, we show that the d-dimensional folding problem is computable

in O(2e(d)n
1− 1

d ) time, where e(d) is constant for fixed d. We will reduce the constant
e(d) in this section using the sharp separators.
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5.1. 2D folding algorithm. It is easy to see that Theorem 10 implies Theo-
rem 2 by setting a = 1

2
. Assume that our input HP-sequence has n0 letters and the

optimal folding is inside an m×m square. Select a parameter ε > 0. Add some points
evenly on the four edges of the m×m square, so that every two neighbor points have
distance ≤ ε. Those points are called ε-regular points. Every line segment connecting
two ε-regular points is called an ε-regular line segment. An ε-regular line is a line
containing two ε-regular points.

Lemma 18. Let ε > 0 be a constant. Every line segment L1 inside the m × m
square has an ε-regular segment L2 such that for every point p1 ∈ L1, there is a point
p2 ∈ L2 with dist(p1, p2) ≤ ε, and for every point q2 ∈ L2, there is a point q1 ∈ L1

with dist(q1, q2) ≤ ε.
Proof. Assume E1, E2, E3, and E4 are the four edges of the m × m square.

Assume L1 intersects two of them inside the square at two points pi and pj of edges
Ei and Ej(i 
= j), respectively. Select the ε-regular point qi closest to pi from the
edge Ei, and qj closest to pj from Ej . The ε-regular line segment L2 results from
connecting qi and qj . Every point p in L1 has another point p′ ∈ L2 with distance
≤ max(dist(pi, qi),dist(pj , qj)) ≤ ε, and every point q in L2 has another point in
q′ ∈ L1 with distance ≤ max(dist(pi, qi),dist(pj , qj)) ≤ ε.

Lemma 19. Let a and ε be positive constants. Let P be a set of n points in a 2D
grid. There is an ε-regular line L such that there are ≤ ( 2

3
+ ε)n points of P on each

of the two half-planes, and ≤ 4(a + ε)
√
n√
π

points of P with distance ≤ a to L.

Proof. Let δ > 0 be a small constant. By Theorem 10, there is a line L such that

the number of points of P with distance a + δ to it is bounded by 4(a + δ)
√
n√
π
, and

each side of L has at most 2
3
n points in P . By Lemma 18, there is a line L′ close to L

such that every point in L has another point in L′ with distance ≤ δ and every point
in L′ has another point in L with distance ≤ δ. Every point with distance ≤ a to the
line L′ has distance ≤ a+ δ to L. Therefore, the number of points in P with distance

≤ a to L′ is bounded by 4(a + ε)
√
n√
π
, and each half-plane divided by L has at most

( 2
3

+ ε)n points in P if δ is small enough.

Lemma 20. For some constants c0, ε > 0, there is an O(mc0 lognn
(6.145−ε)

√
n

0 )-
time algorithm for the 2D multisequence folding problem F in an m×m square, where
n is the sum of the lengths of the input disjoint subsequences of S0 and n0 is the length
of S0.

Proof. Let a = 1/2, c = 2/3 + δ, and d = 4(a+δ)√
π

, where δ > 0 is a small constant

which will be fixed later. We assume m > 1 and n is large. Let P be an optimal
arrangement for the problem F . By Lemma 19, there is a line L such that P has
at most d

√
n points with distance ≤ 1/2 to L, and each half-plane has at most cn

points from P . The letters that stay at those positions with ≤ 1
2

distance to L form
a separator for P . For every two letters at different sides of L that have a contact
(their distance is 1), at least one of them has distance ≤ 1

2
to L. The algorithm is

based on such a separator and is similar to that used in the previous section to find
such an optimal solution P .

The number of δ-regular points at every edge of the m×m square is bounded by m
δ .

The total number of δ-regular lines is bounded by u1 =
(
4

2

)
(mδ )2. By Stirling’s formula,

we have (d
√
n)! > (d

√
n)d

√
n

2d
√

n . There are u2 =
(
n
0

)
+

(
n
1

)
+ · · · ( n

d
√
n

)
< d

√
n nd

√
n

(d
√
n)!

<

( 2
d )d

√
n · d√n · n 1

2d
√
n ways to select ≤ d

√
n letters from those n letters among the

input disjoint subsequences of S0.
Assume k (≤ d

√
n) letters S0[i1], S0[i2], · · · , S0[ik] (1 ≤ i1 < i2 < · · · < ik ≤ n)

are fixed from the disjoint subsequences of S0. By Lemma 7, there are at most
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β = (2a+
√

2)(
√

2m+ 2a+
√

2) positions (inside the m×m square) to put the letter
S0[i1] such that it has distance ≤ a to L.

By Lemma 7, after the letter S0[ij ] is put at a grid point, there are at most
(2a +

√
2)((ij+1 − ij + 2a) + 2a +

√
2) ≤ (2a +

√
2)(1 + 4a +

√
2)(ij+1 − ij) ways

to arrange S0[ij+1] so that its position has at most distance a to a point in L. Let
α = (2a+

√
2)(1+4a+

√
2). After the position of the letter S0[i1] is fixed, there are at

most
∏j=k−1

j=1 (α(ij+1 − ij)) ways to put S0[i2], S0[i3], · · · , S0[ik] along the separation

line with distance ≤ a. Since k ≤ d
√
n and 1 ≤ i1 < i2 < · · · < ik ≤ n0,

j=k−1∏

j=1

(α (ij+1 − ij)) ≤
(
α

(
n0

k − 1

))k−1

(12)

≤
(
α
(n0

k

))k

(13)

≤
(
α

(
n0

d
√
n

))d
√
n

(14)

≤
(α
d

)d
√
n

n
d
√
n

0 n− 1
2d

√
n.(15)

The inequality (12) follows from the well-known fact that for positive variables

y1, · · · , yk−1 and fixed h with y1 + · · · + yk−1 ≤ h, the product
∏k−1

t=1 yk is maxi-
mal when y1 = y2 = · · · = yk−1 = h

k−1
. The number of ways to arrange the k letters

along the separation line (with distance ≤ a to L) is bounded by

u3 = β
(α
d

)d
√
n

n
d
√
n

0 n− 1
2d

√
n.

We have T (n) ≤ u1 · u2 · u3 · T (cn). It implies that

T (n) ≤
(mn

δ

)c0 logn

2c0
√
nn

d( 1
1−

√
c
)
√
n

0 = O(mc0 lognn
(6.145−ε)

√
n

0 )

by selecting constants ε, δ small enough and c0 large enough.
Theorem 21. There is an O(n6.145

√
n)-time algorithm for the 2D protein folding

problem in the HP-model.
Proof. Fix the two middle letters at the two central neighbor positions of an n×n

square. Let the folding be inside the n× n square, and apply Lemma 20.

5.2. 3D folding algorithm. The technology used in the previous section can
be easily extended to a 3D grid. We give a brief proof for the case in the 3D space.

Put some regular points on each side of the six faces of an m × m × m cube
(the folding region) so that every point on each face has ≤ ε distance to one regular
point. Recall that these points are called ε-regular points. Every three ε-regular
points determine a plane, called an ε-regular plane.

Lemma 22. Let a and ε be positive constants. Let P be a set of n points in a 3D
grid. There is an ε-regular plane such that there are ≤ ( 3

4
+ ε)n points on each side

of the plane and 2π(a + ε)( 3
4π )2/3n2/3 points with distance at most a to it.

Proof. Let L be the plane of Theorem 14. Let H be the area of the intersection
between plane L and the six faces of the m×m×m cube that contains all the points
in P . Let p1 and p2 be the two points in H with the maximal distance. Let p3 be
the point in H with the largest perpendicular distance to the line p1p2. Let p′1, p

′
2
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and p′3 be the δ-regular noncollinear points such that p′i has distance ≤ δ to pi for
i = 1, 2, 3. Use the δ-regular plane determined by p′1, p

′
2, and p′3 (by selecting δ small

enough).
Lemma 23. For some positive constant c0 and ε > 0, there exists an

O(mc0 lognn−6.9128n2/3

n
(13.8258−ε)n2/3

0 )-time algorithm for the 3D multisequence fold-
ing problem in an m × m × m cube, where n is the sum of the lengths of the input
disjoint subsequences of S0 and n0 is the length of S0.

Proof. Let a = 1/2, c = 3/4 + δ, and d = 2π(a + δ)( 3
4π )2/3. As in the

proof of Lemma 20, let u1 =
(
8

3

)
(mδ )6, let u2 = ( 2

d )dn
2/3 · dn2/3 · n 1

3dn
2/3

, and let

u3 = β′(α
′

d )2dn
2
3 n− 4

3dn
2
3 n2dn

2
3

0 , where α′ and β′ are similar to the α and β in the
proof of Lemma 20. We have T (n) ≤ u1 · u2 · u3 · T (cn). This implies that T (n) =

(mn)c0 logn2c0n
2
3 n

− d

(1−c2/3)
n2/3

n
2d

(1−c2/3)
n2/3

0 for some constant c0 > 0.

Theorem 24. There is an O(n6.913n2/3

)-time algorithm for the 3D protein folding
problem in the HP-model.

Proof. Fix the two middle letters at the two central neighbor positions of an
n × n × n cube. Let the folding be inside the n × n × n cube, and apply
Lemma 23.

6. Conclusions. We develop an efficient method to obtain an effective separator
for a set of grid points. For a set of 2D (3D) grid points, the separator is controlled
by a line (plane, resp.) L and a distance a to L. The region of the separator consists
of those points with distance at most a to L. The distance parameter a provides us
with a flexible way to control the width of the separator region. The separators are
used in obtaining a subexponential time algorithm for the protein folding problem in
the HP-model. Using the linear structure of the separator, we can find the approxi-
mate separator region by checking O(n2) (O(n6)) possible locations in developing the
algorithm for the 2D (3D, resp.) protein folding problem in the HP-model. These
algorithms for the protein folding problem have a nontrivial upper bound, but they
are not practical enough for implementation. The separators developed in this paper
have been found to have more applications in a series of recent papers [11, 7, 13, 12].
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Abstract. We consider the problem of matching a set of applicants to a set of posts, where each
applicant has a preference list, ranking a nonempty subset of posts in order of preference, possibly
involving ties. We say that a matching M is popular if there is no matching M ′ such that the
number of applicants preferring M ′ to M exceeds the number of applicants preferring M to M ′. In
this paper, we give the first polynomial-time algorithms to determine if an instance admits a popular
matching and to find a largest such matching, if one exists. For the special case in which every
preference list is strictly ordered (i.e., contains no ties), we give an O(n + m) time algorithm, where
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For the general case in which preference lists may contain ties, we give an O(
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nm) time algorithm.

Key words. matchings, bipartite graphs, one-sided preference lists

AMS subject classification. 68W40

DOI. 10.1137/06067328X

1. Introduction. An instance of the popular matching problem is a bipartite
graph G = (A ∪ P, E) and a partition E = E1∪̇E2 . . . ∪̇Er of the edge set. We call
the nodes in A applicants, the nodes in P posts, and the edges in Ei the edges of
rank i. If (a, p) ∈ Ei and (a, p′) ∈ Ej , with i < j, we say that a prefers p to p′. If
i = j, we say that a is indifferent between p and p′. This ordering of posts adjacent
to a is called a’s preference list. We say that preference lists are strictly ordered if
no applicant is indifferent between any two posts on his/her preference list. More
generally, if applicants can be indifferent between posts, we say that preference lists
contain ties.

A matching M of G is a set of edges, no two of which share an end point. A node
u ∈ A ∪ P is either unmatched in M or matched to some node, denoted by M(u)
(i.e., (u,M(u)) ∈ M). We say that an applicant a prefers matching M ′ to M if (i)
a is matched in M ′ and unmatched in M or (ii) a is matched in both M ′ and M ,
and a prefers M ′(a) to M(a). M ′ is more popular than M , denoted by M ′ � M , if
the number of applicants that prefer M ′ to M exceeds the number of applicants that
prefer M to M ′.

Definition 1.1. A matching M is popular if and only if there is no matching
M ′ that is more popular than M .

Example 1.1. Figure 1.1 shows the preference lists for an example instance in
which A = {a1, a2, a3}, P = {p1, p2, p3}, and each applicant prefers p1 to p2 and p2
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a1 : p1 p2 p3

a2 : p1 p2 p3

a3 : p1 p2 p3

Fig. 1.1. An instance for which there is no popular matching.

to p3. Consider the three symmetrical matchings M1 = {(a1, p1), (a2, p2), (a3, p3)},
M2 = {(a1, p3), (a2, p1), (a3, p2)}, and M3 = {(a1, p2), (a2, p3), (a3, p1)}. It is easy
to verify that none of these matchings is popular, since M1 ≺ M2, M2 ≺ M3, and
M3 ≺ M1. In fact, this instance admits no popular matching, the problem being, of
course, that the more popular than relation is not acyclic.

The popular matching problem is to determine if a given instance admits a pop-
ular matching and to find such a matching, if one exists. We remark that popular
matchings may have different sizes, and a largest such matching may be smaller than
a maximum-cardinality matching. The maximum-cardinality popular matching prob-
lem then is to determine if a given instance admits a popular matching and to find a
largest such matching, if one exists.

In this paper, we use a novel characterization of popular matchings to give an
O(

√
nm) time algorithm for the maximum-cardinality popular matching problem,

where n is the number of nodes, and m is the number of edges. For instances with
strictly ordered preference lists, we give an O(n+m) time algorithm. No polynomial
time algorithms were known previously.

Related previous work. The bipartite matching problem with a graded edge
set is well-studied in the economics literature; see, for example, [1, 19, 21]. It models
some important real-world markets, including the allocation of graduates to training
positions [10] and families to government-owned housing [20]. Instances of these
markets are restrictions of stable marriage instances [5, 7], in which members of one
side of the market (posts) are indifferent between members of the other side of the
market (applicants).

The notion of popular matching was originally introduced by Gardenfors [6] in
the context of the full stable marriage problem. It is well known that every stable
marriage instance admits a weakly stable matching (one for which there is no pair
who strictly prefer each other to their partners in the matching). In fact, there can be
an exponential number of weakly stable matchings, and so Gardenfors considered the
problem of finding one with additional desirable properties, such as popularity. Gar-
denfors showed that, when preference lists are strictly ordered, every stable matching
is popular. He also showed that, when preference lists contain ties, there may be no
popular matching.

For the problem setup considered in this paper, various other definitions of op-
timality have been studied. For example, a matching M is Pareto optimal [2, 1, 19]
if there is no matching M ′ such that (i) some applicant prefers M ′ to M and (ii) no
applicant prefers M to M ′. In particular, such a matching has the property that no
coalition of applicants can collectively improve their allocation (say, by exchanging
posts with one another) without requiring some other applicant to be worse off. This is
the weakest reasonable definition of optimality—see [2] for an algorithmically oriented
exposition. Stronger definitions exist: A matching is rank-maximal [11] if it allocates
the maximum number of applicants to their first choice and then, subject to this, the
maximum number to their second choice, and so on. Rank-maximal matchings always
exist and may be found in time O(min (n,C

√
n)m) [11], where C is the maximum edge

rank used in the matching. Finally, we mention maximum-utility matchings, which
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maximize
∑

(a,p)∈M ua,p, where ua,p is the utility of allocating post p to applicant
a. Maximum-utility matchings can be found through an obvious transformation to
the maximum-weight matching problem. Neither rank-maximal nor maximum-utility
matchings are necessarily popular.

Preliminaries. For exposition purposes, we create a unique last resort post l(a)
for each applicant a and assign the edge (a, l(a)) higher rank than any edge incident on
a. In this way, we can assume that every applicant is matched, since any unmatched
applicant can be allocated to his/her last resort. From now on then, matchings are
applicant-complete, and the size of a matching is just the number of applicants not
matched to their last resort. We may also assume that instances have no gaps—so if
an applicant a is incident to a rank i edge, then a is also incident to edges of all ranks
smaller than i.

Organization of the paper. In section 2 we develop an alternative character-
ization of popular matchings, under the assumption that preference lists are strictly
ordered. We then use this characterization as the basis of a linear-time algorithm to
solve the maximum-cardinality popular matching problem. In section 3 we consider
preference lists with ties and give an O(

√
nm) time algorithm for the maximum-

cardinality popular matching prblem. In section 4 we give some empirical results on
the probability that a popular matching exists. Finally, the preliminary version of this
paper motivated the study of several other questions related to popular matchings.
We end by summarizing this recent work.

2. Strictly ordered preference lists. In this section, we restrict our attention
to strictly ordered preference lists, both to provide some intuition for the more general
case and because we can solve the popular matching problem in only linear time.
This last claim is not immediately clear, since Definition 1.1 potentially requires an
exponential number of comparisons to even check that a given matching is popular.
We begin this section then by developing an equivalent (though efficiently checkable)
characterization of popular matchings.

2.1. Characterizing popular matchings. For each applicant a, let f(a) de-
note the first-ranked post on a’s preference list (i.e., (a, f(a)) ∈ E1). We call any such
post p an f-post and denote by f(p) the set of applicants a for which f(a) = p.

Example 2.1. Figure 2.1 gives the preference lists for an instance with six ap-
plicants and six posts that we shall use to illustrate the results in this section. The
f -posts for this instance are p1, p2, and p3, and f(p1) = {a1, a2}, f(p2) = {a3, a4, a5},
and f(p3) = {a6}. Note that we use li as an abbreviation for l(ai).

The following lemma gives the first of three conditions necessarily satisfied by a
popular matching.

Lemma 2.1. Let M be any popular matching. Then for every f-post p, (i) p is
matched in M , and (ii) M(p) ∈ f(p).

a1 : p1 p2 p3 l1
a2 : p1 p5 p4 l2
a3 : p2 p1 p3 l3
a4 : p2 p3 p6 l4
a5 : p2 p6 p4 l5
a6 : p3 p2 p5 l6

Fig. 2.1. An illustrative example.
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a1 : p1 p2 p3 l1
a2 : p1 p5 p4 l2
a3 : p2 p1 p3 l3
a4 : p2 p3 p6 l4
a5 : p2 p6 p4 l5
a6 : p3 p2 p5 l6

Fig. 2.2. The f-posts and s-posts for the example instance.

Proof. Every f -post p must be matched in M , for otherwise we can promote any
a ∈ f(p) to p, thereby constructing a matching more popular than M . Suppose for
a contradiction then that p is matched to some M(p) /∈ f(p). Select any a1 ∈ f(p),
let a2 = M(p), and since all f -posts are matched in M , let a3 = M(f(a2)). We can
again construct a matching more popular than M , this time by (i) demoting a3 to
l(a3), (ii) promoting a2 to f(a2), and then (iii) promoting a1 to p.

Example 2.2. According to Lemma 2.1, we can be sure that, if a popular matching
exists for our example instance, then posts p1, p2, and p3 are matched, and M(p1) ∈
{a1, a2}, M(p2) ∈ {a3, a4, a5}, and M(p3) = a6.

For each applicant a, let s(a) denote the first non-f -post on a’s preference list
(note that s(a) must exist, due to the introduction of l(a)). We call any such post p
an s-post and remark that f -posts are disjoint from s-posts.

Example 2.3. Figure 2.2 shows the preference lists for our example instance with
the f -posts and s-posts highlighted. The bold entry in each preference list is the
f -post and the underlined entry is the s-post.

In the next two lemmas, we show that a popular matching can only allocate an
applicant a to either f(a) or s(a).

Lemma 2.2. Let M be any popular matching. Then for every applicant a, M(a)
can never be strictly between f(a) and s(a) on a’s preference list.

Proof. Suppose for a contradiction that M(a) is strictly between f(a) and s(a).
Since a prefers M(a) to s(a), we have that M(a) is an f -post. Furthermore, M is a
popular matching, so a belongs to f(M(a)) (by Lemma 2.1), thereby contradicting
the assumption that a prefers f(a) to M(a).

Lemma 2.3. Let M be a popular matching. Then for every applicant a, M(a) is
never worse than s(a) on a’s preference list.

Proof. Suppose for a contradiction that a1 prefers s(a1) to M(a1). If s(a1) is
unmatched in M , we can promote a1 to s(a1), thereby constructing a matching more
popular than M . Otherwise, let a2 = M(s(a1)), and let a3 = M(f(a2)) (note that
a2 �= a3, since f -posts and s-posts are disjoint). We can again construct a matching
more popular than M , this time by (i) demoting a3 to l(a3), (ii) promoting a2 to
f(a2), and then (iii) promoting a1 to s(a1).

The three necessary conditions we have just derived form the basis of the following
preliminary characterization.

Lemma 2.4. A matching M is popular if and only if
(i) every f-post is matched in M , and
(ii) for each applicant a, M(a) ∈ {f(a), s(a)}.
Proof. Any popular matching necessarily satisfies conditions (i) and (ii) (by Lem-

mas 2.1–2.3). It remains to show that, together, these conditions are sufficient.
Let M be any matching satisfying (i) and (ii), and suppose for a contradiction

that there is some matching M ′ that is more popular than M . Let a be any applicant
that prefers M ′ to M , and let p′ = M ′(a) (note that p′ is distinct for each such a).
Now, since a prefers p′ to M(a), it follows from condition (ii) that M(a) = s(a). So,
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Fig. 2.3. The reduced graph G′ for the example instance.

p′ is an f -post, which by condition (i) must be matched in M , say, to a′. But then
p′ = f(a′) (by condition (ii) and since f -posts and s-posts are disjoint), and so a′

prefers M to M ′.
Therefore, for every applicant a that prefers M ′ to M , there is a distinct corre-

sponding applicant a′ that prefers M to M ′. Hence, M ′ is not more popular than M ,
giving the required contradiction.

Given an instance graph G = (A ∪ P, E), we define the reduced graph G′ =
(A ∪ P, E′) as the subgraph of G containing two edges for each applicant a: one to
f(a) and the other to s(a). We remark that G′ need not admit an applicant-complete
matching, since l(a) is now isolated whenever s(a) �= l(a).

Example 2.4. Figure 2.3 shows the reduced graph for our example instance.
Lemma 2.4 gives us that M is a popular matching of G if and only if every f -post

is matched in M , and M belongs to the graph G′. Recall that all popular matchings
are applicant-complete through the introduction of last resorts. Hence, the following
characterization is immediate.

Theorem 2.5. M is a popular matching of G if and only if
(i) every f-post is matched in M , and
(ii) M is an applicant-complete matching of the reduced graph G′.
Example 2.5. By applying Theorem 2.5 to the reduced graph of Figure 2.3, it

may be verified that our example instance admits four popular matchings, two of size
5 and two of size 4, as listed below. (Clearly, in the matchings of size 5, a3 is matched
with his last resort in the reduced graph, and in those of size 4, a1 is also matched
with his last resort.)

M1 = {(a1, p1), (a2, p5), (a4, p2), (a5, p6), (a6, p3)},
M2 = {(a1, p1), (a2, p5), (a4, p6), (a5, p2), (a6, p3)},
M3 = {(a2, p1), (a4, p2), (a5, p6), (a6, p3)},
M4 = {(a2, p1), (a4, p6), (a5, p2), (a6, p3)}.

2.2. Algorithmic results. Figure 2.4 contains an algorithm for solving the
popular matching problem. The correctness of this algorithm follows immediately
from the characterization in Theorem 2.5. We remark only that at the termination
of the loop, every f -post must be matched, since f(a) is unique for each applicant a,
and f -posts are disjoint from s-posts. We now show a linear-time implementation of
this algorithm.

It is clear that the reduced graph G′ of G can be constructed in O(n + m) time.
G′ has O(n) edges, since each applicant has degree 2, and so it is also clear that the
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Popular matching (G = (A ∪ P, E))
G′ := reduced graph of G;
if G′ admits an applicant-complete matching M , then

for each f -post p unmatched in M
let a be any applicant in f(p);
promote a to p in M ;

return M ;
else

return “no popular matching”.

Fig. 2.4. Linear-time popular matching algorithm for instances with strictly ordered preference
lists.

Applicant-complete matching (G′ = (A ∪ P, E′))
M := ∅;
while some post p has degree 1

a := unique applicant adjacent to p;
M := M ∪ {(a, p)};
G′ := G′ − {a, p}; // remove a and p from G′

while some post p has degree 0
G′ := G′ − {p};

// Every post now has degree at least 2
// Every applicant still has degree 2
if |P| < |A| then

return “no applicant-complete matching”;
else

// G′ decomposes into a family of disjoint cycles
M ′ := any maximum-cardinality matching of G′;
return M ∪M ′.

Fig. 2.5. Linear-time algorithm for finding an applicant-complete matching in G′.

loop phase requires only O(n) time. It remains to show how we can efficiently find an
applicant-complete matching of G′ or determine that no such matching exists.

One approach involves computing a maximum-cardinality matching M of G′ and
then testing if M is applicant-complete. However, using the Hopcroft–Karp algorithm
for maximum-cardinality matching [9], this would take O(n3/2) time, which is super-
linear, whenever m is o(n3/2). Consider then the algorithm in Figure 2.5.

This algorithm begins by repeatedly matching a degree 1 post p with the unique
applicant a adjacent to p. No subsequent augmenting path can include p (since it is
matched and has degree 1), so we can remove both a and p from consideration. It
is not hard to see that this loop can be implemented to run in O(n) time, using, for
example, degree counters and lazy deletion. After this, we remove any degree 0 posts,
so that all remaining posts have degree at least 2, while all remaining applicants still
have degree exactly 2. Now, if |P| < |A|, G′ cannot admit an applicant-complete
matching by Hall’s marriage theorem [8]. Otherwise, we have that |P| ≥ |A|, and
2|P| ≤ ∑

p∈P deg(p) = 2|A|. Hence, it must be the case that |A| = |P|, and every
post has degree exactly 2. G′ therefore decomposes into a family of disjoint cycles,
and we need only to walk over these cycles, choosing every second edge.

We summarize the preceding discussion in the following lemma.
Lemma 2.6. We can find a popular matching, or determine that no such matching

exists, in O(n + m) time.
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We now consider the maximum-cardinality popular matching problem. Let A1 be
the set of all applicants a with s(a) = l(a), and let A2 = A−A1. Our target matching
must satisfy conditions (i) and (ii) of Theorem 2.5 and, among all such matchings,
allocate the fewest A1-applicants to their last resort.

We begin by constructing G′ and testing for the existence of an applicant-complete
matching M of A2-applicants to posts (using the applicant-complete matching algo-
rithm in Figure 2.5). If no such M exists, then G admits no popular matching by
Theorem 2.5. Otherwise, we remove all edges from G′ that are incident on a last resort
post and exhaustively augment M , each time matching an additional A1-applicant
with his/her first-ranked post. If any A1-applicants are unmatched at this point,
we simply allocate them to their last resort. Finally, we ensure that every f -post is
matched, as in the popular matching algorithm in Figure 2.4. It is clear that the
resulting matching is a maximum-cardinality popular matching, and so we comment
only on the time complexity of augmenting M .

Note that an alternating path Q from an unmatched applicant a is completely
determined (since applicants have degree 2). If we are able to augment along this
path, then no subsequent augmenting path can contain a node in Q, since such a
path would necessarily terminate at a, which is already matched. Otherwise, if there
is no augmenting path from a, then it is not hard to see that again no subsequent
augmenting path can contain a node in Q. This means we only need to visit and mark
each node at most once, leading to the following result.

Theorem 2.7. For instances with strictly ordered preference lists, we can find a
maximum-cardinality popular matching, or determine that no such matching exists,
in O(n + m) time.

3. Preference lists with ties. In this section, we relax our assumption that
preference lists are strictly ordered and consider problem instances with ties. We begin
by developing a generalization of the popular matching characterization, similar to
Theorem 2.5. Using this characterization, we then go on to give an O(

√
nm) time

algorithm for solving the maximum-cardinality popular matching problem. Note that
we cannot hope for a linear-time algorithm here, since, for the special case where
all edges have rank one, the problem of finding a popular matching is equivalent to
the problem of finding a maximum-cardinality bipartite matching. Thus the popular
matching problem is at least as hard as the maximum-cardinality bipartite matching
problem when preference lists contain ties.

3.1. Characterizing popular matchings. For each applicant a, let f(a) de-
note the set of first-ranked posts on a’s preference list. Again, we refer to all such
posts p as f-posts and denote by f(p) the set of applicants a for which p ∈ f(a).

It may no longer be possible to match every f -post p with an applicant in f(p) (as
in Lemma 2.1), since, for example, there may now be more f -posts than applicants.
Below then, we work towards generalizing this key lemma.

Let M be a popular matching of some instance graph G = (A∪P, E). We define
the first-choice graph of G as G1 = (A ∪ P, E1), where E1 is the set of all rank-one
edges.

Example 3.1. Figure 3.1 gives an example instance that we use as an illustration
in this section. Ties in the preference lists are indicated by parentheses.

The graph G1 for this instance is shown in Figure 3.2.
For instances with strictly ordered preference lists, Lemma 2.1 is equivalent to

requiring that every f -post is matched in M ∩ E1 (note that f -posts are the only
posts with nonzero degree in G1). But since applicants have a unique first choice in
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a1 : (p1 p2) p4 l1
a2 : p1 (p2 p5) l2
a3 : p2 (p4 p6) l3
a4 : p2 p1 p3 l4
a5 : p4 p3 p2 l5
a6 : (p5 p6) p1 l6

Fig. 3.1. An example with ties in the preference lists.
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Fig. 3.2. The graph G1 for the example instance with ties.

this context, Lemma 2.1 is also equivalent to the weaker condition that M ∩ E1 is a
maximum matching of G1. The next lemma shows that this weaker condition must
also be satisfied when ties are permitted.

Lemma 3.1. Let M be a popular matching. Then M∩E1 is a maximum matching
of G1.

Proof. Suppose for a contradiction that M1 = M∩E1 is not a maximum matching
of G1. Then M1 admits an augmenting path Q = 〈a1, p1, . . . , pk〉 with respect to G1.
It follows that M(a1) /∈ f(a1), and either pk is unmatched in M , or M(pk) /∈ f(pk).
We now show how to use Q to construct a matching M ′ that is more popular than
M . Begin with M ′ = M \ {(a1,M(a1))}. There are two cases:

(i) pk is unmatched in M ′. Since both a1 and pk are unmatched in M ′, we
augment M ′ with Q. In this new matching, a1 is matched with p1 (where
p1 ∈ f(a1)), while all other applicants in Q remain matched to one of their
first-ranked posts. Hence M ′ is more popular than M .

(ii) pk is matched in M ′. Let ak+1 = M ′(pk), and note that pk /∈ f(ak+1).
Remove (ak+1, pk) from M ′, and then augment M ′ with Q. Select any pk+1 ∈
f(ak+1). If pk+1 is unmatched in M ′, we promote ak+1 to pk+1. Otherwise,
we demote a = M ′(pk+1) to either l(a) (if a �= a1) or back to M(a1) (if
a = a1), after which we can promote ak+1 to pk+1. It is clear from this that
at least one of a1 and ak+1 prefers M ′ to M . Also, at most one applicant
(that is, a) prefers M to M ′, though in this case both a1 and ak+1 prefer M ′.
Hence, M ′ is more popular than M .

Example 3.2. In our example, we see from Figure 3.2 and Lemma 3.1 that posts
p1, p2, and p4 and applicants a5 and a6 must be matched in any popular matching M .
Furthermore, we deduce that M(p1) ∈ {a1, a2}, M(p2) ∈ {a1, a3, a4}, M(p4) = a5,
and M(a6) ∈ {p5, p6}.

We now begin working towards a generalized definition of s(a). For instances with
strictly ordered preference lists, s(a) is equivalent to the first post in a’s preference
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a1 : (p1 p2) p4 l1
a2 : p1 (p2 p5) l2
a3 : p2 (p4 p6) l3
a4 : p2 p1 p3 l4
a5 : p4 p3 p2 l5
a6 : (p5 p6) p1 l6

Fig. 3.3. An example with ties in the preference lists.

list that has degree 0 in G1. However, since Lemma 2.1 no longer holds, s(a) may
now contain any number of surplus f -posts. It will help us to know which f -posts
cannot be included in s(a), and for this we use the following well known ideas from
bipartite matching theory.

Let M1 be a maximum matching of some bipartite graph G1 = (A∪P, E1). (Note
that we are using notation that matches our use of this theory—so M1 = M ∩ E1,
and G1 is the graph G restricted to rank-one edges.) Using M1, we can partition
A∪P into three disjoint sets: A node v is even (respectively, odd) if there is an even
(respectively, odd) length alternating path (with respect to M1) from an unmatched
node to v. Similarly, a node v is unreachable if there is no alternating path from an
unmatched node to v. Denote by E , O, and U the sets of even, odd, and unreachable
nodes, respectively. The Gallai–Edmonds decomposition lemma, covered in detail in
[13], gives some fundamental relationships between maximum matchings and this type
of node partition.

Lemma 3.2 (Gallai–Edmonds decomposition). Let E, O, and U be the node sets
defined by G1 and M1 above. Then

(a) E, O, and U are pairwise disjoint. Every maximum matching in G1 partitions
the node set into the same partition of even, odd, and unreachable nodes.

(b) In any maximum-cardinality matching of G1, every node in O is matched
with some node in E, and every node in U is matched with another node in
U . The size of a maximum-cardinality matching is |O| + |U|/2.

(c) No maximum-cardinality matching of G1 contains an edge between two nodes
in O or a node in O and a node in U . Also, there is no edge in G1 connecting
a node in E with a node in U .

Example 3.3. In our example, it may be verified from a maximum matching, say,
{(a1, p2), (a2, p1), (a5, p4), (a6, p5)}, in Figure 3.2, that E = {a1, a2, a3, a4, p3, p5, p6, l1,
l2, l3, l4, l5, l6}, O = {a6, p1, p2}, and U = {a5, p4}.

Now, since M1 is a maximum-cardinality matching of G1, Lemma 3.2(b) gives us
that every odd or unreachable post p in G1 must be matched in M to some applicant
in f(p). Such posts cannot be members of s(a), and so we define s(a) to be the set of
top-ranked posts in a’s preference list that are even in G1 (note that s(a) �= ∅, since
l(a) is always even in G1). This definition coincides with the one in section 2, since
degree 0 posts are even, and whenever every applicant has a unique first choice, posts
with nonzero degree (i.e., f -posts) are odd or unreachable.

Example 3.4. Figure 3.3 displays the preference lists for our example instance,
annotated as before, with the f -posts in bold and the s-posts underlined. Note that,
when ties are present, f -posts and s-posts may coincide, as occurs here for appli-
cant a6.

Recall that our original definition of s(a) led to Lemmas 2.2 and 2.3, which restrict
the set of posts to which an applicant can be matched in a popular matching. We
now show that the generalized definition leads to analogous results here.
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Lemma 3.3. Let M be a popular matching. Then for every applicant a, M(a)
can never be strictly between f(a) and s(a) on a’s preference list.

Proof. Suppose for a contradiction that M(a) is strictly between f(a) and s(a).
Then since a prefers M(a) to any post in s(a) and because posts in s(a) are the top-
ranked even nodes in G1, it follows that M(a) must be an odd or unreachable node
of G1. By Lemma 3.2(b), odd and unreachable nodes are matched in every maximum
matching of G1. But since M(a) /∈ f(a), M(a) is unmatched in M ∩ E1. Hence M
is not a maximum matching on rank-one edges, and so by Lemma 3.1, M is not a
popular matching.

Lemma 3.4. Let M be a popular matching. Then for every applicant a, M(a) is
never worse than s(a) on a’s preference list.

Proof. Suppose for a contradiction that M(a1) is strictly worse than s(a1). Let
p1 be any post in s(a1). If p1 is unmatched in M , we can promote a1 to p1, thereby
constructing a matching more popular than M . Otherwise, let a2 = M(p1). There
are two cases:

(a) p1 /∈ f(a2). Select any post p2 ∈ f(a2), and let a3 = M(p2) (note that p2

must be matched in M , for otherwise Lemma 3.1 is contradicted). We can
again construct a matching more popular than M , this time by (i) demoting
a3 to l(a3), (ii) promoting a2 to p2, and then (iii) promoting a1 to p1.

(b) p1 ∈ f(a2). Now, since p1 ∈ s(a1) as well, it must be the case that p1 is an
even post in G1. It follows then that G1 contains (with respect to M ∩ E1)
an even length alternating path Q′ = 〈p1, a2, . . . , pk〉, where pk is unmatched
in M ∩ E1 (note that pk may be matched in M though). Now, let Q =
〈a1, p1, a2, . . . , pk〉 (i.e., a1 followed by Q′), and let M ′ = M \ {(a1,M(a1)}.
The remaining argument follows the proof of Lemma 3.1. If pk is unmatched
in M ′, M ′⊕Q is more popular than M . Otherwise, pk is matched in M ′. Let
ak+1 = M ′(pk), and note that pk /∈ f(ak+1). Remove (ak+1, pk) from M ′, and
then augment M ′ with Q. Select any pk+1 ∈ f(ak+1). If pk+1 is unmatched
in M ′, we promote ak+1 to pk+1. Otherwise, we demote a = M ′(pk+1) to
either l(a) (if a �= a1) or back to M(a1) (if a = a1), after which we can
promote ak+1 to pk+1. It is clear from this that at least one of a1 and ak+1

prefers M ′ to M . Also, at most one applicant (that is, a) prefers M to M ′,
though in this case both a1 and ak+1 prefer M ′. Hence, M ′ is more popular
than M .

The three necessary conditions we have just derived form the basis of the following
preliminary characterization.

Lemma 3.5. A matching M is popular in G if and only if
(i) M ∩ E1 is a maximum matching of G1, and
(ii) for each applicant a, M(a) ∈ f(a) ∪ s(a).
Proof. Any popular matching necessarily satisfies conditions (i) and (ii) (by Lem-

mas 3.1, 3.3, and 3.4). It remains to show that, together, these conditions are suffi-
cient.

Let M be any matching satisfying conditions (i) and (ii), and suppose for a
contradiction that there is some matching M ′ that is more popular than M . Let a
be any applicant that prefers M ′ to M . We want to show that there is a distinct
corresponding applicant a′ that prefers M to M ′.

The graph H = (M ⊕M ′) ∩ E1 consists of disjoint cycles and paths, each alter-
nating between edges in M ∩E1 and edges in M ′ ∩E1. We claim that M ′(a) must be
contained in a nonempty path Q of H. First, note that M ′(a) is an odd or unreachable
node in G1, since a prefers M ′(a) to M(a), and M(a) ∈ s(a) is a top-ranked even
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Fig. 3.4. The reduced graph G′ for the example instance with ties.

node of G1 in a’s preference list. So by condition (i) and Lemma 3.2(b), M ′(a) is
matched in M ∩ E1. However, M ′(a) �= M(a), so M ′(a) is not isolated in H. Also,
M ′(a) cannot be in a cycle, since a is unmatched in M∩E1. Therefore, M ′(a) belongs
to some nonempty path Q of H.

Now, one end point of Q must be a (if M ′(a) ∈ f(a)) or M ′(a) (otherwise). So
for each such applicant a, there is a distinct nonempty path Q. Since M ′(a) is odd or
unreachable, every post p in Q is also odd or unreachable. It follows from Lemma 3.1
that all such posts must be matched in M ∩E1, and so the other end point of Q is an
applicant, say, a′. It is easy to see then that a′ prefers M to M ′, since M(a′) ∈ f(a′),
while M ′(a) /∈ f(a′).

Therefore, for every applicant a that prefers M ′ to M , there is a distinct corre-
sponding applicant a′ that prefers M to M ′. Hence, M ′ is not more popular than M ,
giving the required contradiction.

Given an instance graph G = (A ∪ P, E), we define the reduced graph G′ =
(A ∪ P, E′) as the subgraph of G containing edges from each applicant a to posts
in f(a) ∪ s(a). We remark that G′ need not admit an applicant-complete matching,
since l(a) is now isolated whenever s(a) �= {l(a)}.

Example 3.5. Figure 3.4 shows the reduced graph for our example instance.
Lemma 3.5 gives us that M is a popular matching of G if and only if M is a

maximum matching on rank-one edges, and M belongs to the graph G′. Recall that
all popular matchings are applicant-complete through the introduction of last resorts.
Hence, the following characterization is immediate.

Theorem 3.6. M is a popular matching of G if and only if
(i) M ∩ E1 is a maximum matching of G1, and
(ii) M is an applicant-complete matching of the reduced graph G′.
Example 3.6. By applying Theorem 3.6 to the reduced graph of Figure 3.4, it

may be verified that our example instance admits five popular matchings, two of size
6 and three of size 5, as listed below. (Clearly, in the three matchings of size 5, a1 is
matched with his last resort l1 in the reduced graph.)

M1 = {(a1, p1), (a2, p5), (a3, p2), (a4, p3), (a5, p4), (a6, p6)},
M2 = {(a1, p2), (a2, p1), (a3, p6), (a4, p3), (a5, p4), (a6, p5)},
M3 = {(a2, p1), (a3, p2), (a4, p3), (a5, p4), (a6, p5)},
M4 = {(a2, p1), (a3, p2), (a4, p3), (a5, p4), (a6, p6)},
M5 = {(a2, p1), (a3, p6), (a4, p2), (a5, p4), (a6, p5)}.
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Popular matching (G = (A ∪ P, E))

1. Construct the graph G′ = (A∪P, E′), where E′ = {(a, p) | p ∈ f(a)∪s(a), a ∈ A}.
2. Compute a maximum matching M1 on rank-one edges; i.e., M1 is a maximum

matching in G1 = (A ∪ P, E1).

(M1 is also a matching in G′ because E′ ⊇ E1)

3. Delete all edges in G′ connecting two nodes in the set O or a node in O with a node
in U , where O and U are the sets of odd and unreachable nodes of G1 = (A∪P, E1).

Determine a maximum matching M in the modified graph G′ by augmenting M1.

4. If M is not applicant-complete, then declare that there is no popular matching in
G.
Else return M .

Fig. 3.5. An O(
√
nm) popular matching algorithm for preference lists with ties.

3.2. Algorithmic results. In this section, we present the algorithm popular
matching (see Figure 3.5) for solving the popular matching problem. This algorithm
is based on the characterization given in Theorem 3.6 and is similar to the algorithm
for computing a rank-maximal matching [11].

The following lemma is necessary for the correctness of our algorithm.
Lemma 3.7. Algorithm popular matching returns a maximum matching M on

rank-one edges.
Proof. Since M is obtained from M1 by successive augmentations, every node

matched by M1 is also matched by M . Nodes in O and U are matched by M1 (by
Lemma 3.2(b)). Hence, nodes in O and U are matched in M .

First, we claim that G′ has no edges of rank greater than one incident on nodes
in O and nodes in U ∩ P. Let us consider any odd or unreachable node in P. This is
never a candidate for s(a), and hence no edge of the type (a, p), p ∈ s(a), is incident on
such a node. For odd nodes that belong to A, it is the case that they have first-ranked
posts that are even, and so s(a) ⊆ f(a). This proves our claim.

So the edges that we removed in step 3 are rank-one edges, and these edges cannot
be used by any maximum matching of G1, by Lemma 3.2(c). (So no popular matching
of G can use these edges.) Now the only neighbors of nodes in O are the even nodes
of G1 (call this set E), and similarly, the only neighbors of nodes in U ∩ P are nodes
in U ∩ A (by our edge deletions in step 3 and Lemma 3.2(c)). This means that M
must match all of the nodes in O with nodes in E and all of the nodes in U ∩ P with
nodes in U ∩ A.

So M has at least |O| + |U ∩ P| = |O| + |U|/2 edges of rank one. So M is a
maximum matching on rank-one edges (by Lemma 3.2(b)).

Thus the matching returned by the algorithm popular matching is both an
applicant-complete matching in G′ and a maximum matching on rank-one edges.
The correctness of the algorithm now follows from Theorem 3.6.

It is easy to see that the running time of our algorithm is O(
√
nm): We use

the algorithm of Hopcroft and Karp [9] to compute a maximum matching in G1 and
identify the set of edges E′ and construct G′ in O(

√
nm) time. We then repeatedly

augment M1 (by the Hopcroft–Karp algorithm) to obtain M . This gives us the
following result.

Lemma 3.8. We can find a popular matching, or determine that no such matching
exists, in O(

√
nm) time.
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It is now a simple matter to solve the maximum-cardinality popular matching
problem. Let us assume that the instance G = (A ∪ P, E) admits a popular match-
ing. (Otherwise, we are done.) We now want an applicant-complete matching in G′

that is a maximum matching on rank-one edges and which maximizes the number of
applicants not matched to their last resort.

Let M ′ be an arbitrary popular matching in G. We know that M ′ belongs to the
graph G′. Remove all edges of the form (a, l(a)) from G′ (and M ′). Let H denote
the resulting subgraph of G′. Note that M ′ is still a maximum matching on rank-one
edges, since no rank-one edge has been deleted from M ′ or G′, but M ′ need not be
a maximum matching in the graph H. Determine a maximum matching N in H by
augmenting M ′. N is a matching in G′ that

(i) is a maximum matching on rank-one edges and
(ii) matches the maximum number of non-last-resort posts.
N need not be a popular matching. Determine a maximum matching M in G′

by augmenting N . The matching M will be applicant-complete. Since M is obtained
from N by successive augmentations, all posts that are matched by N are still matched
by M . Hence, it follows that M is a popular matching that maximizes the number of
applicants not matched to their last resort.

The following theorem is therefore immediate.
Theorem 3.9. We can find a maximum-cardinality popular matching, or deter-

mine that no such matching exists, in O(
√
nm) time.

4. Concluding remarks. In order to obtain an idea of the probability that a
popular matching exists, we performed some simulations. The factors that affect this
probability are the number of applicants, the number of posts, the lengths of the
preference lists, and the number, size, and position of ties in these lists.

To keep this empirical investigation manageable, we restricted our attention to
cases where the numbers of applicants and posts are equal, represented by n, and all
preference lists have the same length k. We characterized the ties by a single parameter
t, the probability that an entry in a preference list is tied with its predecessor.

Tables 4.1 and 4.2 contain the results of simulations carried out on randomly gen-
erated instances with n = 10 and n = 100, respectively. We set t to a sequence of val-
ues in the range 0.0–0.8. For n = 10 we allowed k to take all possible values (1, . . . , 10),
and for n = 100 we investigated the cases k = 1, . . . , 10 and k = 20, 30, . . . , 100. We
generated 1000 random instances in each case. In both cases, the table shows the
number of instances admitting a popular matching.

Table 4.1

Proportion of instances with a popular matching for n = 10.

t
0.0 0.2 0.4 0.6 0.8

1 1000 1000 1000 1000 1000
2 986 988 996 997 1000
3 898 941 962 983 996
4 759 846 929 979 999
5 681 811 915 979 998

k 6 636 786 888 976 1000
7 578 737 893 978 1000
8 565 738 909 985 1000
9 553 759 906 980 1000
10 556 725 890 979 1000
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Table 4.2

Proportion of instances with a popular matching for n = 100.

t
0.0 0.2 0.4 0.6 0.8

1 1000 1000 1000 1000 1000
2 997 1000 999 1000 1000
3 884 956 985 990 1000
4 519 807 925 946 974
5 204 534 806 863 879
6 64 346 685 782 798
7 20 192 534 705 721
8 8 90 436 628 672
9 3 39 309 578 670

k 10 2 28 243 531 675
20 0 0 53 346 787
30 0 0 37 302 776
40 0 1 37 314 781
50 0 0 44 291 791
60 0 1 49 318 775
70 0 2 36 304 780
80 0 1 63 280 801
90 0 0 38 306 776
100 0 1 51 302 759

These results, and others not reported in detail here, give rise to the following
observations:

• When t = 0.0, i.e., there are no ties, the likelihood of a popular matching
declines rapidly as k increases and, for large n, is negligible except for very
small values of k.

• Not surprisingly, increasing the value of t, and therefore the likely number
and length of ties, increases the probability of a popular matching.

• For fixed n and t, increasing k initially reduces the likelihood of a popular
matching, but beyond a certain range this effect all but disappears.

Thus popular matchings do exist with good probability when the chance of ties
in the preference lists is high, which is likely to happen in real-world problems.

In fact, since the preliminary version of this paper [3] appeared, Mahdian [14] has
shown that a popular matching exists with high probability, when (i) preference lists
are randomly constructed and (ii) the number of posts is a small multiplicative factor
larger than the number of applicants.

Of course, for a given instance, it still may be the case that a popular match-
ing does not exist. Recently, McCutchen [16] considered the problem of finding a
least-unpopular matching, where the unpopularity of a matching M is defined as the
maximum ratio over all matchings M ′ of the number of applicants preferring M ′ to
M to the number of applicants preferring M to M ′. This definition of unpopular-
ity makes the problem NP-hard; however, it is not clear if this is the case for other
reasonable definitions.

The preliminary version also motivated the study of several other questions re-
lated to popular matchings. Manlove and Sng [15] have generalized the algorithms
of sections 2.2 and 3.2 to the case where each post has an associated capacity, indi-
cating the number of applicants that it can accommodate. (They described this in
the equivalent context of the house allocation problem.) They gave an O(

√
Cn1 +m)

time algorithm for the no-ties case and a O((
√
C + n1)m) time algorithm when ties
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are allowed, where n1 is the number of applicants, m, as usual, is the total length of
all preference lists, and C is the total capacity of all of the posts.

In [17] Mestre designed an efficient algorithm for the weighted popular matching
problem, where each applicant is assigned a priority or weight, and the definition
of popularity takes into account the priorities of the applicants. In this case the
algorithm for the no-ties version has O(n + m) complexity, and for the version that
allows ties, the complexity is O(min(k

√
n, n)m), where k is the number of distinct

weights assigned to applicants.
In [12], Kavitha and Shah give faster randomized algorithms for the popular

matching problem (for problem instances where preference lists contain ties) and a
weighted version of the rank-maximal matching problem. Their popular matching
algorithm runs in expected time O(nω), where ω < 2.376 is the best exponent for
matrix multiplication—this algorithm reduces the popular matching problem to the
bipartite perfect matching problem and uses the O(nω) algorithm for the latter prob-
lem [18]. The reduction works as follows: In the graph G′ (the reduced graph, refer to
section 3.2), let us first delete posts which are isolated; now each post in G′ is either
an odd or unreachable post in G1 or it is a most preferred even post in G1. Note that
these two sets are disjoint. Let there be k1 posts of the first type and k2 posts of the
second type. Add k1 + k2 − |A| new nodes to A, and make each of these new nodes
adjacent to each of the k2-posts of the second type (that is, most preferred even posts
in G1). It is easy to see that there is a perfect matching in this resulting graph if and
only if there is an applicant-complete matching in G′ that is a maximum matching on
rank-one edges. Thus it follows that the popular matching problem and the bipartite
perfect matching problem have equivalent time complexities.

Finally, in the preliminary version of this paper, we described the following open
problem. Suppose we have an instance that admits a popular matching, but we already
have a nonpopular matching M0 in place. Since the more popular than relation is not
transitive, it may be that no popular matching is more popular than M0. We define a
voting path then as a sequence of matchings 〈M0,M1, . . . ,Mk〉 such that Mi is more
popular than Mi−1 for all 1 ≤ i ≤ k, where Mk is popular.

Even though the more popular than relation is not acyclic, we were able to show
that, for every matching M0, (i) there is a voting path beginning at M0 and (ii)
the shortest such path has length at most 3. The open problem was to give an
efficient algorithm for computing a shortest-length voting path from a given matching.
Recently, Abraham and Kavitha [4] have shown that there is always such a voting
path of length at most 2 and have given a linear-time algorithm to find one.

Acknowledgments. We thank David Manlove for directing us to previous work
in the area and commenting on an early draft. We also thank Julian Mestre for
correcting our description of Gardenfors’ original results on popular matching.
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Abstract. A t-private private information retrieval (PIR) scheme allows a user to retrieve the
ith bit of an n-bit string x replicated among k servers, while any coalition of up to t servers learns no
information about i. We present a new geometric approach to PIR and obtain the following: (1) A

t-private k-server protocol with communication O( k2

t
log k n1/�(2k−1)/t�), removing the kt term of

previous schemes. This answers an open question of [Y. Ishai and E. Kushilevitz, in Proceedings of
the 31st ACM Symposium on Theory of Computing, 1999, pp. 79–88]. (2) A 2-server protocol with
O(n1/3) communication, polynomial preprocessing, and online work O(n/ logr n) for any constant r.
This improves the O(n/ log2 n) work of [A. Beimel, Y. Ishai, and T. Malkin, J. Cryptology, 17 (2004),
pp. 125–151]. (3) Smaller communication for instance hiding [D. Beaver, J. Feigenbaum, J. Kilian,
and P. Rogaway, J. Cryptology, 10 (1997), pp. 17–36; Y. Ishai and E. Kushilevitz, in Proceedings of
the 31st ACM Symposium on Theory of Computing, 1999, pp. 79–88], PIR with a polylogarithmic
number of servers, and robust PIR [A. Beimel and Y. Stahl, in Proceedings of the 3rd Conference on
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Berlin, 2003, pp. 326–341].
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1. Introduction. Private information retrieval (PIR) was introduced in a sem-
inal paper by Chor et al. [11]. In such a scheme a server holds an n-bit string
x ∈ {0, 1}n, representing a database, and a user holds an index i ∈ [n] = {1, . . . , n}.
At the end of the protocol the user should learn xi, and the server should learn noth-
ing about i. A trivial solution is for the server to send the user x. While private, the
communication complexity is linear in n. In contrast, in a nonprivate setting, there is
a protocol with only logn+ 1 bits of communication. This raises the question of how
much communication is really necessary to achieve privacy.

Unfortunately, if information-theoretic privacy is required, then there is no bet-
ter solution than the trivial one [11]. To get around this, Chor et al. [11] suggested
replicating the database among k > 1 noncommunicating servers. In this setting, one
can do substantially better. Indeed, Chor et al. [11] gave a protocol with complexity
O(n1/3) for as few as two servers and an O(k2 log k n1/k) solution for the general case.

Ambainis [1] then extended the O(n1/3) protocol to achieve O(2k
2

n1/(2k−1)) complex-

ity for every k. Later, Beimel et al. [7] reduced the communication to 2Õ(k)n
2 log log k
k log k .

Finally, in a recent paper Yekhanin [27] presented a 3-server protocol with O(nε)
communication for some tiny ε < 10−7. Combining the results of [27] and [7], one gets

k server protocols with 2Õ(k)n
δ log log k
k log k communication for a small δ > 0 and every k.
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Yekhanin [27] has also shown that under a certain plausible number-theoretic conjec-
ture one can achieve no(1) communication complexity with as few as three servers.
The best lower bound is c log n for a constant c > 1 [18, 24, 25]. Stronger lower
bounds are known in certain restricted models [5, 16, 14, 24, 20]. For a survey, see
[13, 23].

A drawback of all of these solutions is that if any two servers communicate, they
can completely recover i. This motivates the notion of a privacy threshold t, 1 ≤ t ≤ k,
which limits the number of servers that might collude in order to get any information
about i. That is, the joint view of any t servers should be independent of i. The
case t > 1 was addressed in [11, 15, 6]. It is not known whether the techniques of [7]
and [27] (that yield the best upper bounds in the 1-private case ) can be extended
to obtain t-private protocols for arbitrary values of k and 1 ≤ t ≤ k. The best t-
private protocols prior to our work were due to Beimel and Ishai [6]. They achieve

communication complexity of: O
((

k
t

)
k2

t n
1/�(2k−1)/t�). Since this bound grows rapidly

with t, in [15] the following is asked:

Can one avoid the
(
k
t

)
overhead induced by our use of replication-based secret

sharing?

We give a scheme with communication O
(
k2

t log k n1/�(2k−1)/t�) for any t and thus
answer this question in the affirmative.

Our upper bound is of considerable interest in the oracle instance-hiding scenario
[3, 4]. In this setting there is a function Fm : {0, 1}m → {0, 1} held by k oracles. The
user has P ∈ {0, 1}m and wants to privately retrieve Fm(P ), even if up to t of the
oracles collude. The user’s computation, let alone the total communication, should be
polynomial in m. For k = m

c logm and constant t, running our PIR scheme on the truth

table of Fm gives a scheme with total communication Õ(mct/2+2). This improves the
previous bound of Õ(mct/2+2+t) (see [15]) by a factor of mt. When m = log n, this is
exactly the problem of PIR with k = Ω(log n/ log log n), for which we obtain the best
known bound.

Another application of our techniques is k-out-of-l robust PIR [9]. In this scenario
a user should be able to recover xi even if after sending his queries, up to l − k
servers do not respond. Previous bounds for this problem include O(kn1/kl log l) and

2Õ(k)n
δ log log k
k log k l log l [9] for a small constant δ > 0. The first bound has a better

dependence on k, while the second has a better dependence on n. We improve upon
the former with a k-out-of-l robust protocol with communication O(kn1/(2k−1)l log l).

Another concern with the abovementioned solutions is the time complexity of the
servers per query. Beimel, Ishai, and Malkin [8] show, among other things, that if
two servers are given polynomial-time preprocessing, then during the online stage
they can respond to queries with O(n/ log2 n) work, while preserving O(n1/3) total
communication. By combining a balancing technique similar to that in [10] with
a specially designed 2-server protocol in our language, we can reduce the work to
O(n/ logr n) for any constant r > 0.

Finally, we believe that an important advantage of our PIR protocols is the simple
geometric intuition behind them. The novel technique that we introduce has already
found additional applications in the area of secure multiparty computation [2], and
we expect further applications to follow.

1.1. Omitted from this version. The original version of this paper [26] con-
tained a section with alternative geometric proofs of some of the upper bounds of
Beimel et al. [7] for 1-private k-server PIR protocols. The initial argument of [7]
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involves a highly nontrivial recursion and is fairly hard to follow. Our proofs shed
new light on the nature of these protocols. However, after the original paper [26] was
published, these results were superseded by [27] and are therefore omitted from this
version.

1.2. Our techniques. The general idea behind our protocols is the idea of
polynomial interpolation. As in several previous works, we model the database as a
degree-d polynomial F ∈ Fq[z1, . . . , zm] with m = O(dn1/d). The polynomial F is
chosen in such a way that for some encoding E : [n] → F

m
q (which is independent of

F ) we have F (E(i)) = xi for every i ∈ [n]. The user wants to retrieve the value F (P )
for P = E(i) while keeping the identity of P private. To this end the user randomly
selects a low-dimensional affine curve (in many cases this is simply an affine line)
χ ⊆ F

m
q containing the point P and discloses certain points on χ to the servers. Each

server computes and returns the value of F and the values of partial derivatives of
F at the point that it is given. Finally, the user reconstructs the restriction of F to
χ. In particular, the user obtains the desired value of F (P ). The idea of polynomial
interpolation has been used previously in the PIR literature [3, 11, 4]; however, we
significantly extend and improve upon earlier techniques through the use of partial
derivatives and curves.

A possible high level interpretation of our results is to say that we modify the
protocols of [15], replacing the replication-based secret-sharing scheme by a more
efficient Shamir’s scheme [21]. A discussion of certain merits of replication-based
secret sharing (that come at a price of increased communication) can be found in [12].
For another use of derivatives in polynomial-based secret-sharing schemes, see [22].

1.3. Outline. In section 2 we introduce our notation and provide some necessary
definitions. In section 3 we describe a 1-private PIR protocol on a line. We also discuss
the robustness of our protocol. Section 4 deals with t-private PIR protocols on a curve
for arbitrary t and discusses applications to instance hiding. In section 5 we present
our construction of PIR protocols with preprocessing.

2. Preliminaries. By default, variables λh take values in a finite field Fq, and
variables P, V, V j , Q, and Qj take values in F

m
q . Let W be an element of F

m
q . We use

the subscript Wl to denote the lth component of W.
A k-server PIR protocol involves k servers S1, . . . ,Sk, each holding the same n-bit

string x (the database), and a user U who knows n and wants to retrieve some bit
xi, i ∈ [n], without revealing i. We restrict our attention to one-round, information-
theoretic PIR protocols.

Definition. [7] A t-private PIR protocol is a triplet of algorithms P = (Q,A, C).
At the beginning of the protocol, the user U invokes Q(k, n, i) to pick a random-
ized k-tuple of queries (q1, . . . , qk), along with an auxiliary information string aux.
It sends each server Sj the query qj and keeps aux for later use. Each server Sj re-
sponds with an answer aj = A(k, j, x, qj). (We can assume without loss of generality
that the servers are deterministic; hence, each answer is a function of a query and a
database.) Finally, U computes its output by applying the reconstruction algorithm
C(k, n, a1, . . . , ak, aux). A protocol as above should satisfy the following requirements:

• Correctness. For any k, n, x ∈ {0, 1}n and i ∈ [n], the user outputs the correct
value of xi with probability 1 (where the probability is over the randomness
of Q).

• t-Privacy. Each collusion of up to t servers learns no information about i.
Formally, for any k, n, i1, i2 ∈ [n], and every T ⊆ [k] of size |T | ≤ t the
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distributions QT (k, n, i1) and QT (k, n, i2) are identical, where QT denotes
concatenation of jth outputs of Q for j ∈ T.

The communication complexity of a PIR protocol P, denoted CP(n, k), is a func-
tion of k and n measuring the total number of bits communicated between the user
and k servers, maximized over all choices of x ∈ {0, 1}n, i ∈ [n], and random inputs.

In all our protocols we represent the database x by a multivariate polynomial
F (z1, . . . , zm) over a finite field. The important parameters of the polynomial F are
its degree-d and the number of variables m. A very similar representation has been
used previously in [7]. The polynomial F represents x in the following sense: with
every i ∈ [n] we associate a point E(i) ∈ F

m
q ; the polynomial F satisfies

∀i ∈ [n], F (E(i)) = xi.

We use the assignment function E : [n] → F
m
q from [7]. Let E(1), . . . , E(n) denote n

distinct points of Hamming weight1 d with coordinate values from the set {0, 1} ⊂ Fq.
Such points exist if

(
m
d

) ≥ n. Therefore m = O(dn1/d) variables are sufficient. Define

F (z1, . . . , zm) =

n∑

i=1

xi

∏

E(i)l=1

zl

(E(i)l is the lth coordinate of E(i).) Since each E(i) is of weight d, the degree of F
is d. Each assignment E(i) to the variables zi satisfies exactly one monomial in F
(whose coefficient is xi); thus, F (E(i)) = xi.

Our constructions rely heavily on the notion of a derivative of a polynomial over a
finite field. Recall that for f(λ) = a0 +

∑d
i=1 aiλ

i ∈ Fq[λ] the derivative is defined by

f ′(λ) =
∑d

i=1 iaiλ
i−1. Higher order derivatives are defined recursively by f (s)(λ) =(

f (s−1)(λ)
)′
.

We conclude the section with two technical lemmas.
Lemma 1. Let f ∈ Fq[λ] and let s be an integer smaller than the characteristic

of Fq. Suppose f(λ0) = f ′(λ0) = · · · = f (s)(λ0) = 0; then
(
λ− λ0)

s+1
∣∣ f.

Proof. See Lemma 6.51 in [17].
Lemma 2. Suppose {λh}, {v0

h}, {v1
h} are elements of Fq, where h ∈ [s] and {λh}

are distinct; then there exists at most one polynomial f(λ) ∈ Fq[λ] of degree ≤ 2s− 1
such that f(λh) = v0

h and f ′(λh) = v1
h.

Proof. Assume there exist two such polynomials f1(λ) and f2(λ). Consider their
difference f = f1 − f2. Clearly, f(λh) = f ′(λh) = 0 for all h ∈ [s]. Therefore, by
Lemma 1,

s∏

h=1

(λ− λh)2

∣∣∣∣∣ f(λ).

This divisibility condition yields f(λ) = 0 since the degree of f is at most 2s−1.

3. PIR on the line. We start this section with a PIR protocol of [11]. This
protocol has a simple geometric interpretation and has served as the starting point
for our work.

Theorem 3 (see [11]). There exists a 1-private k-server PIR protocol with
communication complexity O(k2 log k n1/(k−1)).

1The Hamming weight of a vector is defined to be the number of nonzero coordinates.
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Protocol description. Consider a finite field Fq, where k < q ≤ 2k. Let λ1, . . . , λk ∈
Fq be distinct and nonzero. Set d = k − 1. Let P = E(i). The user wants to retrieve
F (P ).

U : Picks V ∈ F
m
q uniformly at random.

U → Sh : P + λhV.
U ← Sh : F (P + λhV ).

Privacy. It is immediate to verify that the input (P + λhV ) of each server Si is
distributed uniformly over F

m
q . Thus the protocol is private.

Correctness. We need to show that values F (P + λhV ) for h ∈ [k] suffice to
reconstruct F (P ). Consider the line L = {P + λV | λ ∈ Fq} in the space F

m
q . Let

f(λ) = F (P + λV ) be the restriction of F to L. Clearly, f ∈ Fq[λ] is a univariate
polynomial of degree at most d = k − 1. Note that f(λh) = F (P + λhV ). Thus U
knows the values of f(λ) at k points and therefore can reconstruct f(λ). It remains
to note that F (P ) = f(0).

Complexity. The user sends each of k servers a length-m vector of values in Fq.
Recall that m = O(dn1/d) and k < q ≤ 2k. Thus the total communication from the
user to all the servers is O(k2 log k n1/(k−1)). Each Sh responds with a single value
from Fq, which does not affect the asymptotic communication of the protocol.

In the protocol above there is an obvious imbalance between the communication
from the user to the servers and vice versa. The next theorem extends the technique
of Theorem 3 to fix this imbalance and obtain a better communication complexity.

Theorem 4. There exists a 1-private k-server PIR protocol with communication
complexity O(k2 log k n1/(2k−1)).

Protocol description. We use the standard mathematical notation ∂F
∂zl

∣∣
Q

to denote

the value of the partial derivative of F with respect to zl at point Q. Let λ1, . . . , λk ∈
Fq be distinct and nonzero. Set d = 2k− 1. Let P = E(i). The user wants to retrieve
F (P ).

U : Picks V ∈ F
m
q uniformly at random.

U → Sh : P + λhV.

U ← Sh : F (P + λhV ), ∂F
∂z1

∣∣∣
P+λhV

, . . . , ∂F
∂zm

∣∣∣
P+λhV

.

Privacy. The proof of privacy is identical to the proof from Theorem 3.
Correctness. Again, consider the line L = {P + λV | λ ∈ Fq}. Let f(λ) =

F (P +λV ) be the restriction of F to L. Clearly, f(λh) = F (P +λhV ). Thus the user
knows the values {f(λh)} for all h ∈ [k]. However, this time the values {f(λh)} do
not suffice to reconstruct the polynomial f, since the degree of f may be up to 2k−1.
The main observation underlying our protocol is that knowing the values of partial
derivatives ∂F

∂z1

∣∣
P+λhV

, . . . , ∂F
∂zm

∣∣
P+λhV

, the user can reconstruct the value of f ′(λh).

The proof is a straightforward application of the chain rule:

∂f

∂λ

∣∣∣∣
λh

=
∂F (P + λV )

∂λ

∣∣∣∣
λh

=

m∑

l=1

∂F

∂zl

∣∣∣∣
P+λhV

Vl.

Thus the user can reconstruct {f(λh)} and {f ′(λh)} for all h ∈ [k]. Combining this
observation with Lemma 2, we conclude that the user can reconstruct f and obtain
F (P ) = f(0).
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Complexity. The user sends each of k servers a length-m vector of values in Fq.
Servers respond with length-(m+1) vectors of values in Fq. Recall that m = O(dn1/d)
and q ≤ 2k. Thus the total communication is O(k2 log k n1/(2k−1)).

3.1. Application to robust PIR. We review the definition of robust PIR [9].

Definition 5. A k-out-of-l PIR protocol is a 1-private PIR protocol with the
additional property that the user always computes the correct value of xi from any k
out of l of the answers.

As noted in [9], robust PIR has applications to servers which may hold different
versions of a database, as long as some k have the latest version and there is a way
to distinguish these k. Another application is to servers with varying response times.

Previous bounds for this problem include O(kn1/kl log l) and 2Õ(k)n
δ log log k
k log k l log l [9]

for a small constant δ > 0. The first bound has a better dependence on k, while the
second has a better dependence on n. We improve upon the former with a k-out-of-l
robust protocol with communication O(kn1/(2k−1)l log l).

Indeed, in the protocol above, if for l servers we set the field size q > l and the
degree degF = 2k − 1, then from any k servers’ answers, we can reconstruct f as
before. We conclude that the following theorem holds.

Theorem 6. For all k ≤ l there exists a k-out-of-l robust PIR with communica-
tion complexity O(kn1/(2k−1)l log l).

4. PIR on the curve. Now we proceed to t-private PIRs for general t.

Theorem 7. For all t ≤ k there exists a t-private k-server PIR protocol with

communication complexity O
(
k2

t log k n1/� 2k−1
t �).

Protocol description. Again, consider Fq, where k < q ≤ 2k, and let λ1, . . . , λk ∈
Fq be distinct and nonzero. Set d = 
 2k−1

t �. Let P = E(i). The user wants to retrieve
F (P ).

U : Randomly picks V 1, . . . , V t ∈ F
m
q .

U → Sh : Qh = P + λhV
1 + λ2

hV
2 + . . . + λt

hV
t.

U ← Sh : F (Qh), ∂F
∂z1

∣∣∣
Qh

, . . . , ∂F
∂zm

∣∣∣
Qh

.

Privacy. We need to show that for every T ⊆ [k], where |T | ≤ t, the collusion
of servers {Sh}h∈T learns no information about the point P = E(i). The joint input
of servers {Sh}h∈T is {P + λhV

1 + · · · + λt
hV

t}h∈T . Since the coordinates are shared

independently, it suffices to show that for each l ∈ [m] and V j
l ∈ Fq chosen indepen-

dently and uniformly at random, the values {Pl + λhV
1
l + · · · + λt

hV
t
l }h∈T disclose

no information about Pl. The last statement follows immediately from the fact that
for any distinct λ0, . . . , λt ∈ Fq and arbitrary u0, . . . , ut ∈ Fq there exists a unique
polynomial f(λ) ∈ Fq[λ] of degree up to t such that f(λi) = ui for all i. One other
way to argue privacy is to observe that our queries can be obtained by independently
secret sharing each of the m coordinates of P according to Shamir’s scheme [21].

Correctness. Consider the curve χ = {P + λV 1 + · · · + λtV t | λ ∈ Fq}. Let
f(λ) = F (P + λV 1 + · · · + λtV t) be the restriction of F to χ. Obviously, f is a
univariate polynomial of degree at most 2k−1. By definition, we have f(λh) = F (Qh);
thus U knows the values {f(λh)} for all h ∈ [k]. Now we shall see how knowing the
values of partial derivatives ∂F

∂z1

∣∣
Qh , . . . ,

∂F
∂zm

∣∣
Qh U reconstructs the value of f ′(λh).
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Again, the reconstruction is a straightforward application of the chain rule:

∂f

∂λ

∣∣∣∣
λh

=
∂F (P + λV 1 + · · · + λtV t)

∂λ

∣∣∣∣
λh

=

m∑

l=1

∂F

∂zl

∣∣∣∣
Qh

∂

∂λ
(Pl + λV 1

l + · · · + λtV t
l )

∣∣∣∣
λh

.

Thus U can reconstruct {f(λh)} and {f ′(λh)} for all h ∈ [k]. Combining this ob-
servation with Lemma 2, we conclude that the user can reconstruct f and obtain
F (P ) = f(0).

Complexity. As in the protocol of Theorem 4, U sends each of k servers a
length-m vector of values in Fq, and servers respond with length-(m + 1) vectors
of values in Fq. Here m = O(dn1/d) and q ≤ 2k. Thus the total communication is

O
(
k2

t log k n1/� 2k−1
t �).

4.1. Application to instance hiding. As noted in the introduction, in the
instance-hiding scenario [3, 4] there is a function Fm : {0, 1}m → {0, 1} held by k
oracles. The user has a point P ∈ {0, 1}m and should learn Fm(P ). Further, the
view of up to t oracles should be independent of P . When k = m

c logm , we have the

following improvement upon the best known Õ(mct/2+2+t) communication bound of
[15].

Theorem 8. Let c, t > 0, and suppose that t is an integer. Then for any m > 0
there is an oracle instance-hiding scheme with k = m

c logm oracles and communication

and computation Õ(mct/2+2), where Õ(f) = O(f logO(1) f).
Proof. Using the above protocol on the truth table of Fm, the communication is

O

(
k2

t
log kn1/�(2k−1)/t�

)
= Õ

(
m2 · (2m)(�(2k−1)/t�)−1

)
= Õ(mct/2+2).

It is also easy to see that U runs in time which is quasi-linear in the communication.

5. PIR with preprocessing. To measure the efficiency of an algorithm with
preprocessing, we use the definition of work in [8] which counts the number of pre-
computed bits and database bits that need to be read in order to respond to a query.
We note that, as mentioned in [8], this definition of work may be more appropriate for
proving lower bounds than for upper bounds. However, as in that paper, the actual
amount of work in the unit-cost RAM model2 of our scheme is linear in the number
of bits read.

The goal of this section is to prove the following theorem.
Theorem 9. There exists a 2-server PIR protocol with O(n1/3) communication,

poly(n) preprocessing, and O(n/(log n)r) server work for any constant r.
The reader may wonder what happens if we consider larger values of r in this

theorem. To simplify the presentation of this section, we defer the discussion of this
to Remark 11.

We need a lemma about preprocessing polynomials F ∈ Fp[z1, . . . , zm]. We as-
sume the number of variables m is tending to infinity, while the degree of F is constant.
This lemma is similar to Theorem 3.1 of [8]. The main idea is to write the input poly-
nomial F as a sum of poly(m) polynomials G each over disjoint monomials. We do
this in such a way that each G involves only a logarithmic number of variables. Thus
we can precompute G on all possible assignments. As the different G are over disjoint

2Recall that in the unit-cost RAM model each field operation can be performed in constant time.
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monomials, to evaluate F (V ) we simply read one precomputed answer for each G and
sum them up.

Lemma 10. Let F be a homogeneous degree-d polynomial in Fp[z1, . . . , zm].
Using poly(m) preprocessing time, for all V ∈ F

m
p , F (V ) can be computed with

O(md/ logd m) work.
Proof. Partition [m] into α = m/ logm disjoint sets D1, . . . , Dα of size logm. For

every sequence 1 ≤ t1, . . . , td ≤ α, let FDt1
,...,Dtd

denote the sum of all monomials of
F of the form czi1 · · · zid for some c ∈ Fp and i1 ∈ Dt1 , . . . , id ∈ Dtd . The following is
the preprocessing algorithm.

Preprocess(F):
1. For each polynomial FDt1 ,...,Dtd

,

Evaluate FDt1
,...,Dtd

on all W ∈ F
m
p

for which Supp(W ) ⊆ ∪iDti .

Time Complexity. There are αd = (m/ logm)d polynomials FDt1
,...,Dtd

. For each

polynomial, there are at most pd logm = poly(m) different W whose support is in
∪iDti . Thus the total time of the algorithm is poly(m).

For a set S ⊆ [m], let V |S denote the point V ′ ∈ F
m
p with V ′

j = Vj for j ∈ S and
V ′
j = 0 otherwise. The following describes how to compute F (V ).

Evaluate(F, V ):
1. σ ← 0.
2. For each polynomial FDt1

,...,Dtd
,

σ ← σ + FDt1 ,...,Dtd
(V |∪iDti

).

3. Output σ.

Correctness. This is immediate from

F (V ) =
∑

t1,...,td

FDt1
,...,Dtd

(V |∪iDti
).

Work. The sum is over αd = (m/ logm)d polynomials FDt1 ,...,Dtd
, each with a

precomputed answer, and thus the total work is O(md/ logd m).

5.1. Two server protocol. We start with the intuition underlying our 2-server
preprocessing protocol. Suppose the servers were to represent the database as a
degree-d polynomial F in m = Θ(n1/d) variables, where d = 2r + 1 is an arbitrary
odd constant. Proceeding as in the protocol of section 3, the user sends each server a
point on a random line L through his point of interest. To reconstruct F |L, the user
needs the evaluation of F on his query points, together with all partial derivatives
of F up to order r. The observation is that each partial derivative computed by the
servers is either a zero polynomial or a polynomial of degree at least d − r = r + 1
in at most m variables, and therefore we can apply Lemma 10 to achieve low server
work.

However, while the user is sending only O(m) bits to the servers, the servers’
answers are of size O(mr). To fix this, we use a balancing technique similar to that
in [10]. Each server partitions the database into t databases Fj , each of size n/t,
for some parameter t. Each database will be represented as a degree-d polynomial
in m = O((n/t)1/d) variables. The user sends t points to each server, one for each
database. Suppose the user wants Fu(P ). For the t−1 databases Fj , j = u, that do not
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interest the user, the user sends random V j and −V j to servers 1 and 2, respectively.
On the other hand, for the database Fu that contains the value of interest, the user
proceeds as in the protocol of section 3. The servers compute the lists of partial
derivatives for each database, as before, but instead of sending them back, they send
the sum of each partial derivative over all t databases. We show this information is
sufficient for the user to reconstruct Fu(P ). The total work will be O(n/ logr+1 n),
and by carefully choosing t, we can keep the communication at O(n1/3).

Consider a prime field3
Fp for some max(2, r) < p < 2 max(2, r). Such a prime p

exists by Bertrand’s postulate [19]. S1 and S2 preprocess as follows.

Preprocessing phase(x):
1. s ← r−1

3r , t ← ns.
2. Partition x into t databases DB1, . . . , DBt, each

containing n1−s elements.
3. Represent DBj as a homogeneous polynomial Fj

of degree d = 2r + 1 with m = O
(
n(1−s)/d

)
vars.

4. For a = 0, . . . , r, for j ∈ [t], and for l1, . . . , la ∈ [m],

compute Preprocess
( ∂aFj

∂zl1 ···∂zla
)
.

Let DBu be the database containing xi. Assume the user wants Fu(P ). Let δα,β
be 1 if α = β and 0 otherwise.

U : Randomly picks V 1, . . . , V t ∈ F
m
p .

U → Sh : For j ∈ [t], Qh,j = (−1)h+1V j + δj,uP.
U ← Sh : ∀a ∈ {0, . . . , r} and l1, . . . , la ∈ [m],∑t

j=1

∂aFj

∂zl1 ···∂zla
∣∣
Qh,j =

∑t
j=1 Evaluate

( ∂aFj

∂zl1 ···∂zla , Q
h,j

)

Correctness. Since d is odd, for all V

∂aFj

∂zl1 · · · ∂zla

∣∣∣∣
−V

= (−1)a+1 ∂aFj

∂zl1 · · · ∂zla

∣∣∣∣
V

.

It follows that for all a and all j = u,

∑

l1,...,la

∂aFj

∂zl1 · · · ∂zla

∣∣∣∣
V j

+
∑

l1,...,la

(−1)a∂aFj

∂zl1 · · · ∂zla

∣∣∣∣
−V j

= 0.

Put f(λ) = (Fu)|P+λV u , and define g(λ) = f(λ) + f(−λ). We then have

∑

j

∑

l1,...,la

∂aFj

∂zl1 · · · ∂zla

∣∣∣∣
Q1,j

V u
l1 · · ·V u

la +
(−1)a∂aFj

∂zl1 · · · ∂zla

∣∣∣∣
Q2,j

V u
l1 · · ·V u

la

=
∑

l1,...,la

∂aFu

∂zl1 · · · ∂zla

∣∣∣∣
P+V u

V u
l1 · · ·V u

la +
(−1)a∂aFu

∂zl1 · · · ∂zla

∣∣∣∣
P−V u

V u
l1 · · ·V u

la

= f (a)(1) + (−1)af (a)(−1) = g(a)(1).

3In section 5 we base our protocols on prime fields Fp and do not consider general finite fields Fq .
We do this to avoid issues related to subtle properties of derivatives of orders greater than one in finite
fields of small characteristic. Another possible solution to this problem is to use Hasse derivatives
(referred to as hyperderivatives in [17]) instead of usual derivatives. This allows for protocols over
arbitrary finite fields.
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Thus U can compute g(1), g(1)(1), . . . , g(r)(1) from the answers. Since every monomial
of g has even degree, for γ = λ2 we can define h(γ) = g(λ) for a degree-r polynomial
h. Using that

dg

dλ
=

dh

dγ
· dγ
dλ

= 2λ
dh

dγ
,

a simple induction shows that from g(0)(1), . . . , g(r)(1), U can get h(0)(1), . . . , h(r)(1).
The claim is that these values determine h. Indeed, if h1 = h2 agree on these values,
then by Lemma 1,

(γ − 1)r+1
∣∣ (h1 − h2),

which contradicts that h1 − h2 has degree at most r. Hence the user obtains h(0) =
g(0) = 2f(0) = 2F (P ), and thus F (P ) since the characteristic p > 2.

Privacy. Since the V j are independent and uniformly random, so are the Q1,j

and the Q2,j . Thus the view of each of S1, S2 is independent of P .
Communication. U sends O(tm) = O(ns+(1−s)/(2r+1)) = O(n(r−1)/(3r)+1/(3r)) =

O(n1/3) bits. S1,S2 respond with O(m+m2+· · ·+mr) = O(mr) = O(n(1−s)r/(2r+1)) =
O(n1/3) bits.

Server work. Notice that the work is dominated by the calls to Evaluate. For

any a ∈ {0, . . . , r}, any l1, . . . , la ∈ [m], and any j ∈ [t], the polynomial
∂aFj

∂zl1 ···∂zla
is either 0 or has degree 2r + 1 − a and at most m variables. Thus for any V ,

Evaluate(
∂aFj

∂zl1 ···∂zla , V ) can be computed in O(m2r+1−a/ log2r+1−a m) time. As the

number of such
∂aFj

∂zl1 ···∂zla is O(ma), it follows that the time for all calls to Evaluate

per DB is

∑

a

O

(
mam2r+1−a

log2r+1−a m

)
=

O(md)

logr+1 m
=

O(n1−s)

logr+1 n
.

Thus the total work over all ns DBs is O(n/ logr+1 n).
Remark 11. Now we consider what happens if r is allowed to grow with n. In step

3 of the preprocessing phase we now need the number of variables m to be Θ(dn1−s),
where the degree d = 2r + 1. Step 4 takes (r + 1)tmO(d)poly(log p) time, which is
poly(n, dd). This step is still efficient provided that d = O

(
log n

log log n

)
.

However, in the protocol the communication is now Θ((tm+mr) log p) = dΘ(d)n1/3.
This is larger than the desired O(n1/3) communication for any superconstant value
of d, and thus any superconstant value of r. Similarly, the server work increases by
a dΘ(d) factor. It is an interesting open question to reduce the server work while
preserving O(n1/3) total communication.
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Abstract. Multivalued consensus functions defined from a vector of inputs over the set V of
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1. Introduction. The interest in sensor networks and the way they may control
the behavior of a system, such as a vehicle, airplane, satellite, or other device, is
rapidly growing. The agreement functions used to ensure smooth and stable control
while reflecting the changes in the environment are of great interest. An abstraction
of many agreement functions is the consensus problem, where a set of n processors get
input values from some set V and must agree on a value. There is always a nontrivial
validity requirement that specifies restrictions on the decided value as a function of
the input values and the failure pattern of the execution. Consensus is a fundamental
problem in distributed computing that has been widely studied for more than two
decades due to its theoretical and practical interest (e.g., [2, 7, 14]).

Research on consensus has concentrated on the one-shot setting, where processors
start with their input values and have to solve consensus once. Often, distributed sys-
tems need to solve consensus repeatedly, on inputs received one after the other. Thus,
researchers have also investigated continuous versions of consensus1 where processors
have to adapt their consensus decisions continuously (e.g., [3, 8, 13]).

Although consensus algorithms are generally associated with distributed systems,
this need not necessarily be the case. In fact, it is sufficient that the system has mul-
tiple sensors. For instance, typical situations where continuous consensus problems
arise are in cases of systems that read values from replicated sensors [12]. A fault-
tolerant consensus algorithm is needed to decide on a single reading because sensors
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usually do not give the exact same reading of a physical parameter, or because some
sensors can fail. Although in the simplest version of consensus, which is the one most
often considered in theory, the validity requirement is that a decided value must have
been read by at least one sensor, in many real settings it is desired that the decided
value be a value that has been produced by a majority of the sensors. These and other
nontrivial validity requirements are possible, but they all imply that as the readings
of the sensors change because the physical parameters that are sampled change, the
consensus value will have to change. In the extreme case, all sensors can change their
readings from one single value to another, forcing the consensus decision to change
accordingly.

Although the consensus value may change several times during the repeated exe-
cutions of a consensus algorithm, we prefer continuous consensus algorithms that are
stable, i.e., in which the number of times the decision value is changed is as small as
possible. Usually averaging functions are used in an independent way from sample to
sample, sometimes combined with agreement protocols (e.g., [15]), and hence there
is no attempt to maximize stability. There are several reasons for preferring a stable
consensus system (more are described in [8]). Some sensors are discrete and are used
to control actuators, which may also be discrete. There is the possible operational
amplification of decision changes, say turning an engine on and off. The energy or
other resources consumed are sometimes proportional to the number of transitions;
e.g., turning an engine on and off takes energy and time, and reduces its lifetime; some
related work in VLSI (very large scale integration) is [5, 16]. Our results have an in-
dependent purely mathematical interest for analyzing discrete functions over vectors
of inputs; they may also be useful for studying problems (e.g., [11]) about the number
of influencing variables in Boolean functions.

In [8] we initiated a study of the stability of continuous consensus systems for the
case of a binary set V of inputs (i.e., |V | = 2). We defined an abstract formaliza-
tion of a continuous consensus system and the stability measures. This formalization,
presented in section 2, is not tied to any specific model of computation, in order to
understand the basic stability issues. Moreover, it is also valid for nondistributed
consensus systems. We considered memoryless systems, where consecutive one-shot
consensus executions are independent, versus the stability of systems that can keep
memory of previous executions. We also studied the stability of symmetric systems,
where decisions are taken solely on the basis of the distribution of the different in-
put values, but not on what a specific sensor produced as a particular input value.
We characterized the stability of systems according to their memory and symmetry
properties, proving tight upper and lower bounds for the various cases.

Results. In this paper we extend the results of [8] to the case of a multivalued
set V of inputs (i.e., |V | ≥ 2). It turns out that this generalization makes all the
above variants of the problem much harder. Some of them are much more interesting
than those of the binary case; in particular, one of the results here uses topological
techniques for high-dimensional complexes.

Let n be the number of sensors, and let t be the number of sensors that may
give a wrong value. The validity requirement of [8] is that if fewer than t + 1 inputs
are equal to a value b, then the consensus value is not b; hence, the decision value is
a value of a correct sensor. Another natural validity requirement for a multivalued
consensus system is that the decision should be between two correct sensor values.
Thus we study the following two classes of systems:

Exact value system (ev): the decision is the value of a correct sensor.
Range value system (rv): the decision is in the range of the correct sensor values.
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First we identify the combinations of values of n, v = |V |, t for which systems of
these classes exist. We prove that an ev system can be defined if and only if n ≥ vt+1,
and that an rv system can be defined if and only if n ≥ 2t + 1.

We define the instability of a consensus system as the maximal number of changes
to the consensus value along any geodesic path—a sequence of changes to the input
values, where any input value changes at most once. Our choice to examine a geodesic
path is motivated by the intuition of condition changes that are monitored by the
different sensors. Note that for every (memoryless) consensus algorithm there is an
input change that yields an output change, and therefore if the above input is allowed
to be changed k > 1 times, then obviously the number of changes to the output is
at least k. We would like to nullify this phenomenon when we evaluate consensus
algorithms, and therefore we choose the geodesic path (see [8] for a further discussion
on the motivation of the settings). The instability of a consensus system with memory
is analyzed proving that it is n in the cases where n is the smallest possible value,
namely n = vt + 1, and that the instability may go down until it becomes 1 when
n ≥ v2t+1. The investigation of the rest of the cases for ev systems results in bounds
for a range of stability values as a function of n, v, and t.

Lower bounds on the instability of memoryless systems are obtained for symmetric
functions. The lower bounds are achieved using a technique to subdivide a simplex
from [9] and Sperner’s lemma. This can be seen as a generalization of Lemma 2
in [10]: In the one-dimensional case, the input values may be ordered in a line from
one extreme to the other, where two consecutive input vectors differ in exactly one
input. In the case of several dimensions, the border between the different extreme
values is a simplex. We also present an upper bound for a memoryless symmetric
system [6], which is about a factor of 2 away from our lower bound. An interesting
open question is how to close this gap.

Organization. The rest of the paper is organized as follows. In the next section,
we define the system settings and the problem definitions. The case of systems with
memory is addressed in section 3. Memoryless systems are considered in section 4.

2. The model. We start with a definition of a multivalued continuous consensus
system which extends the definitions for the binary case of [8]. See [8] for a detailed
discussion of the motivation of this system, and for applications to specific distributed
computing models. Briefly, the system captures a situation where a system (which
may be distributed, but not necessarily) gets inputs from sensors, runs some consensus
algorithm to agree on one of the sensors’ values, gets another vector of sensor values,
runs a consensus algorithm on them, and so on. We consider only the state of the
system at the beginning of each such round, i.e., when it gets inputs from the sensors.
Also, we consider the value decided by the consensus algorithm at the end of each one
of these phases. We are not interested in the details of how the consensus algorithm
works. Our goal is to find the minimum number of decision value changes that the
algorithm will make over the repeated invocations of the consensus algorithm. Thus,
we assume that the consensus algorithm decides the same value in every execution
starting in the same state and with the same vector of sensor values.

We will use the following notation. Consider a set V = {0, 1, . . . , v−1} of possible
sensor values, and an integer n > 0 representing the number of sensors. Then �x is a
vector of n values from V , i.e., in V n. Also, �x [i] is the ith element of �x. We denote
the ith vector in a sequence of vectors by �xi. Thus, �xi [j] stands for the jth element
of the ith vector in a series of vectors. For a vector �x, #b(�x) is the number of entries
of �x that are equal to b.
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2.1. Continuous consensus systems and instability. A multivalued con-
tinuous consensus system d, called for short a system, is defined by a 6-tuple, d =
〈n, v, t, S, τ, f〉, where

• n > 1 is an integer representing the number of sensors;
• v > 1 is an integer specifying the size of the set V of valid sensors’ inputs,

V = {0, 1, . . . , v − 1};
• t ≥ 0 is a fault tolerance integer parameter;
• S is a set of states, which includes a special initial state, s0;
• τ is a transition function, τ : V n × S → S;
• f is a decision function f : V n × S → V such that f(�x, s) is equal to one of

the entries of �x, for every s ∈ S.
An input vector is any vector �x ∈ V n. Any sequence of input vectors, �x0, �x1, �x2, . . . ,
induces a unique execution of the system, (�x0, s0) → (�x1, s1) → (�x2, s2) → · · · , where
for every i, si+1 = τ(�xi, si). The ith output for the execution is f(�xi, si). Note
that the sequence of input vectors uniquely determines a sequence of output values,
f(�x0, s0), f(�x1, s1), . . . .

We use the term path for a sequence of input vectors �x0, �x1, . . . . A component k
changes in the path if the path contains two vectors �xi, �xj which differ in their kth
components, i.e., such that �xi [k] �= �xj [k]. A geodesic path is a path in which each
component k changes at most once. For simplicity, we shall assume, w.l.o.g., that in
every step of a geodesic path exactly one input value will be changed. Notice that a
geodesic path can be of length at most n, since the vectors of the geodesic paths we
consider in this paper are of dimension n.

Definition 2.1. The instability of the system d is the largest number of decision
changes for any geodesic input path.

The fault-tolerant parameter t represents the largest number of input values in a
vector �x that may be wrong. It is desirable that the decision function f choose an
input value that is not wrong. If we require that the value b decided by f in �x appear
at least t+1 in �x, then b is certainly not wrong. A system satisfying this requirement
is denoted ev, formally, as follows.

Definition 2.2 (exact value system). A system d is exact value if for any input
vector �x and any system state s, if f(�x, s) = b, then #b(�x) ≥ t + 1.

This is the natural generalization to the requirement of the binary case [8]. In the
case of a multivalued consensus system, we may consider also a different requirement:
that if the value b is decided by f , then there are at least t + 1 values greater than
or equal to b in �x and at least t + 1 values less than or equal to b in �x. Hence, the
decided value is between two correct values; i.e., there are at least two sensors, pi and
pj , such that their inputs, �x [i] and �x [j], satisfy �x [i] ≤ b ≤ �x [j]. Such a system is
denoted rv, as follows.

Definition 2.3 (range value system). A system d is range value if for any
input vector �x and any system state s, if f(�x, s) = b, then

∑
b′≥b #b′(�x) ≥ t + 1 and∑

b′≤b #b′(�x) ≥ t + 1.
These constraints ensure that if b is the consensus value, then there are at least

two nonfaulty sensors, pi and pj , such that their inputs, �x [i] and �x [j], satisfy �x [i] ≤
b ≤ �x [j]. We use rv to denote a range value consensus system.

Note that any ev system is also an rv system. For binary input systems (where
|V | = 2), an rv system is also an ev system.

2.2. The scope for exact and range value systems. Before we continue
describing our results, we need to describe the combination of the parameters n, v,
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and t for which an exact or a range value system exists. First we show that for any
n, v, t for which n ≥ vt + 1, an exact value system can be defined, and for every such
defined ev it holds that n ≥ vt + 1. This result generalizes the binary case of [8], in
which the analogous condition is n ≥ 2t + 1.

Lemma 2.4. An exact value system ev can be defined if and only if n ≥ vt+ 1.
Proof. Consider an exact value system ev = 〈n, v, t, S, τ, f〉, and assume for

contradiction that n ≤ vt. Then there exists a vector �x = 0α01α1 · · · (v− 1)αv−1 , with
αi ≤ t for every i, since n ≤ vt; that is, #b(�x) < t + 1 for every b ∈ V . Taking �x as
the first input vector of a path to ev, Definition 2.2 of an exact value system requires
that f(�x, s0) be equal to some value b with #b(�x) ≥ t + 1, a contradiction.

Now, assume that n ≥ vt + 1. Then, every input vector �x must have at least
one value b with #b(�x) ≥ t + 1 (otherwise n ≤ vt). Define an exact value system
ev = 〈n, v, t, S, τ, f〉 with S = {0}, τ(·, 0) = 0, and f choosing such a value b, e.g.,
f(�x, 0) = b such that b is the smallest value with #b(�x) ≥ t + 1.

For range value systems, rv must satisfy n ≥ 2t + 1, and if n ≥ 2t + 1, then an
rv system can be defined, as follows.

Lemma 2.5. A range value system rv can be defined if and only if n ≥ 2t + 1,
with v > 1.

Proof. Consider a range value system rv = 〈n, v, t, S, τ, f〉, and assume for
contradiction that n ≤ 2t. Consider the input vector �x = 0t1n−t. For any b ∈
{0, 1, . . . , v−1}, either

∑
b′≥b #b′(�x) < t+1 or

∑
b′≤b #b′(�x) < t+1. Taking �x as the

first input vector of a path to rv, Definition 2.3 of a range value system requires that
f(�x, s0) be equal to some value b with

∑
b′≥b #b′(�x) ≥ t+1 and

∑
b′≤b #b′(�x) ≥ t+1,

a contradiction.
Now, assume that n ≥ 2t+ 1. Then, every input vector �x has a value b such that∑

b′≥b #b′(�x) ≥ t + 1 and
∑

b′≤b #b′(�x) ≥ t + 1. To see this consider the distribution
of values of �x, #i(�x) = αi, for 0 ≤ i ≤ v−1, and let �y be the lexicographically ordered
input values of �x:

�y = 0α01α1 · · · (v − 1)αv−1 .

Then, if b is the value in the middle of this sequence, meaning b = �y[	n
2

], we get the

desired property
∑

b′≥b #b′(�x) ≥ t+1 and
∑

b′≤b #b′(�x) ≥ t+1, since n ≥ 2t+1. And
we can define an exact value system ev = 〈n, v, t, S, τ, f〉 with S = {0}, τ(·, 0) = 0,
and f , choosing a value b, so that f(�x, 0) = b.

3. Stability of systems with memory. In section 3.1 we study the instability
of an ev or rv system with the minimal number of sensors according to Lemmas
2.4 and 2.5. We also show that when the number of sensors is big enough, an ev

system can be defined whose instability is 1. The case of a general n is considered
in section 3.2. Then, in section 4, we study a system that cannot keep any memory
from previous input vectors, and from its previous decisions.

It is convenient to visualize the input vector �x as a bar chart, where every bar
relates to a possible input value b, and the height of that bar is #b (�x). By definition,
an input value may be the consensus value of an ev system only if the height of the
bar is at least t + 1. This is exemplified in Figure 3.1.

3.1. The extreme cases of n. We will first consider the extreme case in which
n is the minimal possible number of sensors: vt + 1 for ev systems, as shown in
Lemma 2.4, and 2t + 1 for rv systems, as shown in Lemma 2.5. We prove that the
instability of the system in this case is n; that is, it is possible to force any system to
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Fig. 3.1. A visualization of the input vector as a bar chart—every bar represents an input
value, and its height is the number of repetitions of that value within the input vector. The dashed
line represents height of t. Notice that only two input values are a valid consensus value.

change its decision with each input change. The second extremum is where n is very
large. In Lemma 3.4 we will show that when n is large enough, we can build an ev

system that changes its decision only once.
Lemma 3.1. For every ev system d with n = vt + 1, instability(d) = vt + 1.
Proof. Obviously instability(d) ≤ n = vt+ 1, since any geodesic path is of length

at most n, and hence at most n decision value changes can occur.
To prove that instability(d) = n = vt+ 1, we construct a geodesic path of length

vt + 1 that produces vt + 1 changes in system d. We will start with the input vector
�x0 = (01 . . . (v − 1))t0, and to get �xi+1, switch the input value of the (i+ 1)th sensor
from i mod v to i + 1 mod v. The geodesic path can be illustrated as follows:

(012 . . . (v − 2)(v − 1))1(012 . . . (v − 1))t−10 →
(112 . . . (v − 2)(v − 1))1(012 . . . (v − 1))t−10 →
(122 . . . (v − 2)(v − 1))1(012 . . . (v − 1))t−10 →
(123 . . . (v − 2)(v − 1))1(012 . . . (v − 1))t−10 →
· · · →
(123 . . . (v − 1)(v − 1))1(012 . . . (v − 1))t−10 →
(123 . . . (v − 1)0)1(01 . . . (v − 1))t−10 →
· · · →
(123 . . . (v − 1)0)2(01 . . . (v − 1))t−20 →
· · · →
(123 . . . (v − 1)0)t0 →
(123 . . . (v − 1)0)t1.

Notice that #b(�x0) = t for b �= 0 and #0( �x0) = t+ 1. Since the only input value that
appears more than t times is 0, the consensus value must be 0. In general, a simple
induction shows that #b(�xi) = t for b �= i mod v and #b(�xi) = t+ 1 for b = i mod v.
Therefore, the consensus value in �xi is i mod v, and there is a consensus value change
with each new input vector; i.e., instability(d) = n.

The previous result generalizes the result in [8], where it was proved that when
n = 2t + 1 and v = 2 the instability of the system is n.

Lemma 3.2. For every rv system d with n = 2t+1 and any v ≥ 2, instability(d) =
2t + 1.

Proof. Consider the system d over the restricted set of input values {0, 1} ⊆ V .
When restricted to binary input values, any rv system is also an ev system. Since
here n = 2t + 1, then by Lemma 3.1 instability(d) = 2t + 1.

It is easy to see that, for any ev system d with v > 1, there is a geodesic path that
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forces it to make at least one decision change. This, actually, holds for any continuous
consensus system d, as follows.

Lemma 3.3. For every system d with v > 1, it holds that instability(d) ≥ 1.
Proof. Consider a geodesic path starting in �x0 = 0n and ending in �xn = 1n

obtained by switching one value at a time from 0 to 1. By the definition of a continuous
consensus system, f(�x0, s0) ∈ {�x[i] | 1 ≤ i ≤ n} = {0}, and therefore f(�x0, s0) = 0.
For symmetric reasons f(�xn, sn) = 1. Thus, there is at least one change to the
consensus value.

In Lemma 3.1 we considered the instability of an ev system for the smallest
possible value of n, namely n = vt + 1 (Lemma 2.4 proved that this is the smallest
value), and showed that the instability is the largest possible, namely n. There is no
upper bound for the number of sensors, since for every n ≥ vt + 1 there exists an
exact value system. However, we prove next that for n ≥ v2t+1 there exists a system
with the smallest possible instability, namely 1, matching the trivial lower bound of
Lemma 3.3. To prove it, we describe a simple system, ms. Also, we show that for
n < v2t + 1 no system can achieve an instability of 1.

For its initial state, the system ms decides on the most frequent value in �x0. The
system ms remembers in its state its last consensus value, c, and a vector �h that
records in �h[b], for each b ∈ V , how many times an input value has switched to b.
Then, ms will keep its previous decision, c, unless forced to change; that is, it will
change decision only if #c(�x) = t in the current input vector �x. In this case, if there

is a value b such that �h[b] ≥ t + 1, it will decide b, since then no more changes will
occur. Otherwise, it will decide on the most frequent value in �x (if there is more than
one most frequent value, it will decide on the smallest one).

To compute �h the system must remember also the previous input vector; actually
it must remember only the multiplicity of each input value in the previous input vector,
and not the position in the vector of each value. Thus, for a vector �x, let bar(�x) be the
vector of dimension v such that bar(�x)[b] is equal to the number of times �x[i] = b, over
1 ≤ i ≤ n. This is illustrated in Figure 3.1. Therefore, the current state is of the form
s̃ = {bar(�xprev), c,�h}. For example, if the current state is s̃ = {(4, 5, 1), 1, (2, 0, 1)},
then the input vector contains four inputs with value 0, five inputs with value 1, and
one input with value 2; the consensus value is 1; and two input values were changed
to 0 and one input to 2 in the input path �x0 → �x1 → �x2 → �x3 (since there have been
three changes to the input values, the path is of length 3). Formally, the system is

defined as follows, where s̃ = {bar(�xprev), c,�h}:

f (�x, s̃) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

maxargb∈V {#b (�x)} if s̃ = s0,{
maxargb∈V

{
�h[b]

}
if ∃b, �h[b] ≥ t + 1,

maxargb∈V {#b (�x)} otherwise,
if #c (�x) ≤ t,

c if #c (�x) ≥ t + 1,

τ (�x, s̃) =

⎧
⎪⎨
⎪⎩

{bar(�x), f (�x, s̃) , (0, . . . , 0)} if s̃ = s0,{
bar(�x), f (�x, s̃) ,�h +

∑v−1

b=0
�δb max {0, bar(�x)[b] − bar(�xprev)[b]}

}

otherwise,

where

�δm [k] =

{
1, m = k,
0, m �= k,
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maxarg
b∈V

{g(b)} = min {b | b ∈ V, g(b) = max {g(b) | b ∈ V }} .

This system is a generalization of the system bp, described in [8]. We will prove
that for a large enough number of sensors, the instability of this system is 1.

Lemma 3.4. When n ≥ v2t + 1, instability(ms) = 1.
Proof. Lemma 3.3 implies that instability(ms) ≥ 1. Therefore, we will prove that

instability(ms) ≤ 1 when n ≥ v2t+1. We will do so by proving that ms changes value
at most once in any geodesic path.

Consider any geodesic path �x0 → �x1 → · · · . We already know that for some
value b0, #b0(�x0) ≥ vt + 1; otherwise for every b ∈ V , #b(�x0) ≤ vt and n ≤ v2t,
a contradiction. Now, assume that b0 is the one which appears the largest number
of times in �x0. In particular, #b0(�x0) ≥ vt + 1. Then, f(�x0, s0) = b0. Notice that
f will not change its decision before it gets an input vector with t entries equal to
b0. Consider the first time this happens (otherwise no consensus value changes occur,
and we are done), say in �xi. It follows that at least (v − 1)t + 1 entries equal to
b0 have changed to other values, in �x0 → �x1 → · · · → �xi, since #b0(�xi) = t and
#b0(�x0) ≥ vt + 1. Each time a value changes from b0 to some other value, b, one

unit is added to �h[b]. Therefore, after (v − 1)t + 1 entries equal to b0 have changed

to other values, at least one entry of �h, say c, gets incremented at least t + 1 times
(there are v − 1 values different from b0); that is, �h[c] ≥ t + 1 at the end of the path

�x0 → �x1 → · · · → �xi. Then f will decide on such a value c with �h[c] ≥ t+1. No more
decision changes will occur, because there are t+1 entries in the input vector that are
equal to c and have already changed value in the past, and the path is geodesic.

3.2. The general case. We will call a vector such as �h in the system ms an
accumulator vector. Notice that for any geodesic input path P we can define an
accumulator vector associated with each of the vectors of P . The accumulator records
the number of times each value has been changed. That is, initially �h = 0v, and if
one input bit changes from some value b to b′, then �h[b′] is incremented by 1. Thus,
an accumulator vector is independent of the ev system used and is defined even if
the system does not actually use it; it is just a device that we use to reason about
the system. The following lemma captures the importance of �h, and it will be useful
for proving lower bounds. Here by optimal we mean that the system delays a change
to the consensus value while possible. More formally, if the consensus value is b,
then an optimal system will not change the consensus value until #b(�x) ≤ t. Notice
that for any nonoptimal system d there exists an optimal system d

′ which holds
instability(d′) ≤ instability(d), i.e., a system which behaves exactly like d except for
delaying a change to the consensus value.

Lemma 3.5. Let d be an optimal ev system. Consider an input vector �x at
the end of a geodesic input path P , and the corresponding vector �h. Assume that the
consensus value in �x is b. There is a geodesic path extending P that causes at least
one consensus change to d if and only if �h[b] ≤ t.

Proof. If �h[b] ≤ t, then at most t entries of �x that are equal to b have already
changed in P . The total number of entries equal to b is #b(�x) ≥ t + 1, since b is the
decision in �x. So we can extend P by switching one by one entries that are equal to
b to some other value until we get an input vector �x1 with #b(�x1) = t, and at some
point during this path the decision will have to change.

If there is a geodesic path extending P that causes at least one consensus change
to d, then clearly �h[b] ≤ t, because otherwise at least t+ 1 entries of �x that are equal
to b have already changed in P , and hence a vector �x1 in any geodesic extension to
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P will have #b(�x1) ≥ t + 1, and d does not need to change its decision ever (since it
is optimal).

Lemma 3.6. For any ev system d, if n ≤ v2t, then instability(d) ≥ 2.
Proof. We prove that for any exact value system d there is a geodesic path that

causes two decision changes. Let �x0 = 0α01α1 · · · bαi
i · · · (v − 1)αv−1 , with αi ≤ vt for

all 0 ≤ i ≤ v − 1. Assume f(�x0, s0) = bj for some j. Then we produce a geodesic
path starting in �x0, by switching one by one αj − t ≤ (v−1)t inputs that are equal to
bj to other values, in a round-robin manner (first to 0, then to 1, . . . , then to v − 1,
then to 0, and so on). Eventually, a decision change must occur, at the latest when
there are only t entries equal to bj . Let us call �xl1 the input vector when a decision

change occurs for the first time, and �hl1 the corresponding accumulator. Then,

bar(�xl1) = (α0 + β0, α1 + β1, . . . , t + Δ, . . . , αv−1 + βv−1),

�hl1 = (β0, β1, . . . , 0, . . . , βv−1),

where
∑v−1

i=0, i �=j βi ≤ αj − t and Δ ≥ 0. It follows from Lemma 3.5 that whatever
the consensus decision is in �xl1 , say bk (�= bj), we can continue changing input values,
from bk to other values until we get an input vector with t entries equal to bk, and
force one more decision change. This is since �hl1 [k] = βk ≤ 	αj−t

v−1

 ≤ t.

A concept similar to the accumulator vector is the consensus accumulator vector.
Such a vector holds for each input value b the number of input values changed from a
consensus value to b. Notice that if �h is an accumulator vector and �� is a consensus
accumulator vector of the same path, then for any b it holds that ��[b] ≤ �h[b].

We now prove our main upper bound result for ev systems with memory. For
any vector �y, define |�y| to be the

∑
i �y[i], and max �y to be maxi �y[i]. We will use the

fact that |�h| ≥ vt + 1 implies max�h ≥ t + 1, and then apply Lemma 3.5.
Lemma 3.7. Let x = 	n−vt

v−1

 and y = 	n−vt

v 
. Then instability(ms) ≤  vt−y
x �+2.

Proof. Consider a geodesic path P = �x0 → �x1 → · · · . We will first claim that
max bar(�x0) ≥ y + t. Otherwise,

n = |bar(�x0)| =
∑

b∈V

bar(�x0)[b] ≤ v(y+t−1) = v

(⌈
n− vt

v

⌉
−1

)
+vt < (n−vt)+vt = n.

Therefore, ms will decide in �x0 on a value b such that bar(�x0)[b] ≥ y + t. Let �xi1

be the first vector in P where ms changes its decision, and ��i1 the corresponding
consensus accumulator. Since ms changes its decision when only t entries are equal
to b, it follows that at least y inputs must have changed to get to �xi1 . That is,

|��i1 | ≥ y.

We will now claim that max bar(�xi1) ≥ x + t. Otherwise, since #b(�xi1) = t, then

n = |bar(�xi1)| =
∑

b′∈V

bar(�xi1)[b
′] ≤ t + (v − 1)(x + t− 1)

= t + (v − 1)

(⌈
n− vt

v − 1

⌉
+ t− 1

)

< t + (n− vt) + (v − 1)t = n.

In general, consider the sequence of input vectors at which the subsequent consensus
value changes occur, �xi2 , �xi3 , . . . , with the corresponding consensus accumulators,
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��i2 ,
��i3 , . . . . Notice that in each such vector �xij there is at least one value b such that

#b(�xij ) = t, namely, b is the consensus value in �xij−1 . Thus, max bar(�xij ) ≥ x + t,
and hence ms will decide on a value d in �xij such that bar(�xij )[d] ≥ x + t. Thus, at
least x entries equal to d must change to get to �xij+1 :

|��ij+1 | ≥ |��ij | + x ≥ y + jx,

max bar(�xij ) ≥ x + t.

For any j, let bj denote the consensus value at �xij . Let �hic+1
be the consensus

accumulator vector after the last change to the consensus value, and let �hic be the
consensus accumulator after the previous consensus change. If there is a value b ∈ V
for which �hic [b] > t, then by the definition of ms the consensus value would change to
such a value, and by Lemma 3.5 there would not be a change of the consensus value
from bc to bc+1. Therefore, for all b ∈ V , �hic [b] > t, and so |�hic | ≤ vt.

Since

y + (c− 1)x ≤ |��ic | ≤ |�hic | ≤ vt

we have that

c ≤
⌊
vt− y

x

⌋
+ 1.

Thus the total number of consensus changes is at most c + 1 (one change from �x0

to �xi1 , and c changes after that), and we get the desired result instability(ms) ≤
 vt−y

x � + 2.
Consider the extreme cases for the previous lemma. First, let n = v2t, so we

have x = vt and y = t(v − 1). We get instability(ms) ≤  vt−t(v−1)

vt � + 2, and hence
instability(ms) ≤  1

v �+2 = 2, which matches the lower bound of Lemma 3.6. Second,
let n = vt+ 1, so we have x = 1, y = 1. We get instability(ms) ≤  vt−1

1
�+ 2 = vt+ 1,

which matches the lower bound of Lemma 3.1.
Summarizing the stability results for ev. The next theorem summarizes the re-

sults obtained for ev systems with memory. Let instability(ev) denote the smallest
instability over all ev systems.

Theorem 3.8.

1. When vt + 1 < n < v2t, instability(ev) ≤  vt−y
x � + 2, where x = 	n−vt

v−1

 and

y = 	n−vt
v 
.

2. Otherwise,

instability (ev) =

⎧
⎨
⎩

vt + 1 if n = vt + 1,
2 if n = v2t,
1 if n ≥ v2t + 1.

4. Stability of symmetric memoryless systems. In this section we turn
to investigating the case in which no memory is kept by the system from previous
input vectors and from previous decisions; that is, we assume a memoryless system
d = 〈n, v, t, S, τ, f〉, where S = {s0}. Hence instead of f(�x, s0) we simply write
f(�x) for any input vector �x. Furthermore, we assume that the system is symmetric,
meaning that the decision function is oblivious to the order of the input values; i.e.,
for any two input vectors �x, �y, bar(�x) = bar(�y) implies f(�x) = f(�y). Thus, f is a
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function of just #i(�x) for every i ∈ V . We study in this section the corresponding
function f̃ defined on the set A,

A = {(α0, α1, . . . , αv−1) | αi ∈ N ∪ {0}, α0 + α1 + · · · + αv−1 = n} .

We also define f̃ : A → V in terms of f as follows:

f̃(α0, α1, . . . , αv−1) = f(0α01α1 · · · (v − 1)αv−1).

4.1. Overview of the lower bound. The lower bound proof is a generalization
of the one in [10], from dimension 1 to higher dimensions. The proof uses Sperner’s
lemma, a well-known result that generalizes the graph connectivity notion to higher
dimensions. See, e.g., [4] for a proof, and see, e.g., [1] for a recent application to
distributed computing.

In dimension 1, Sperner’s lemma says that if the vertices of a path are colored
with 0, 1, with 0 coloring one end-vertex and 1 coloring the other, then at least one
edge will have its two vertices colored with different colors. More generally, if the
vertices of a connected graph are colored with 0, 1 such that at least one vertex is
colored with 0 and at least one vertex is colored with 1, then at least one edge of the
graph will have its two vertices colored with different colors.

In general, a k-simplex is a set of k+1 vertices; the dimension k of the simplex is
equal to its number of vertices minus one. For j ≤ k, a j-face of a k-simplex is a subset
of j+1 of its vertices. A 0-face is just a vertex. A complex is a set of simplexes closed
under containment. It is often convenient to assume that these vertices are points
in space and that the simplex is the convex hull of these points. A subdivision of a
simplex is a partition of the simplex into simplices, such that the union of the dividing
simplices equals the original simplex, and any two dividing simplices intersect at most
in a common face. A Sperner coloring of a subdivided k-simplex S is an assignment
of colors {0, . . . , k} to its vertices such that the k + 1 corners are assigned the k + 1
distinct colors, and the vertices in the subdivision of a face of S are assigned colors
from the corners of that face.

In our proof we put the input vectors of A in a space of dimension v. The input
vectors in which one component is n and all the rest are zero form a simplex, in fact
a (v − 1)-simplex. The points corresponding to all other input vectors are convex
combinations of the above vertices and therefore reside within the simplex. We use
Sperner’s lemma to conclude that there is a dividing simplex such that its v vertices
have v distinct decision values.

There are several ways to define such a subdivision, and fortunately we found in [9]
a subdivision that serves us well, in that for every dividing subsimplex of dimension
v − 1 there is a geodesic path of length vt whose input vectors correspond to the
vertices of the subsimplex. In particular, we have such a path in the dividing simplex
that has different function values for each of its vertices.

We illustrate the instability lower bound for the case of v = 3. This should give
the reader a more intuitive view of the general proof.

When v = 3, the set A can be used as vertices of a subdivision of a 2-simplex—or,
in other words, a solid flat triangle. This triangle can be divided into subsimplices
(subtriangles) such that the vertices of a subtriangle represent input vectors that are
adjacent, in the sense that they can result from each other by a change of a single
input value. The vertices will be colored by the consensus value of a given input
vector, and using Sperner’s lemma, we will find a subtriangle for which the colors of
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(1,1,0) (1,0,0)

(1,0,1)

(0,0,1)(0,1,1)

(0,1,0)

Fig. 4.1. A 2-simplex defined over (1, 0, 0), (0, 1, 0), and (0, 0, 1).

(3,0,0) (2,1,0) (1,2,0) (0,3,0)

(2,0,1) (1,1,1) (0,2,1)

(1,0,2) (0,1,2)

(0,0,3)

Fig. 4.2. Subdivision of a 2-simplex—the emphasized subsimplices represent the two types of
subsimplices.

its vertices are pairwise different. This subtriangle will imply a geodesic path with
3t + 1 changes to the consensus value.

Lemma 4.1. Let d be a symmetric memoryless ev system with v = 3. Then
instability(d) ≥ 3t + 1.

Proof. Every point of A is in the 2-simplex S, defined by the vectors (n, 0, 0),
(0, n, 0), and (0, 0, n). A k-simplex is defined by k + 1 linearly independent vectors,

�v0, . . . , �vk, and is defined as
{
�x =

∑k
i=0 λi�vi

∣∣ λi ≥ 0,
∑k

i=0 λi = 1
}
. Figure 4.1

describes a 2-simplex.
We will use the points of A to subdivide S. Every subsimplex in the subdivision

will be defined by �a0,�a1,�a2 ∈ A, where either �a0−(1, 0, 0) = �a1−(0, 1, 0) = �a2−(0, 0, 1)
or �a0 + (1, 0, 0) = �a1 + (0, 1, 0) = �a2 + (0, 0, 1). For example, the subsimplex defined
by (2, 0, 1), (1, 1, 1), and (1, 0, 2) is of the first type, whereas the simplex defined by
(1, 1, 1), (2, 0, 1), and (2, 1, 0) is of the second type (see Figure 4.2). The subdivision
that corresponds to the case where n = 3 is demonstrated in Figure 4.2. We will color
every vertex �a with the color f̃(�a). Since #i(�a) = 0 implies that f(�a) �= i, the coloring
is a Sperner coloring, and hence there must exist a subsimplex in the subdivision so
that every vertex of the subsimplex is colored by a different color.

Let �a0, �a1, and �a2 be the vertices of that subsimplex. Let ji be defined by
f(�ai) = ji, i = 0, 1, 2. Then #ji(�ai) > t. Since the subsimplex is of one of the two
types above, for any pair �ak,�al we have #b(�al) − 1 ≤ #b(�ak) ≤ #b(�al) + 1 for all b.
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Hence for every k, b ∈ {0, 1, 2}, #b(�ak) ≥ t.
We will examine the case where the given subsimplex is of the first type. We say

that an input vector �x corresponds to vector �a ∈ A if and only if bar(�x) = �a, namely
#i(�x) = �a[i] for any 0 ≤ i ≤ v − 1. Assume, w.l.o.g., �a0 − (1, 0, 0) = �a1 − (0, 1, 0) =
�a2 − (0, 0, 1). Thus, �a0 + (−1, 1, 0) = �a1, which means that a vector of n input values
of the sensors that corresponds to �a1 can be reached from a vector of n input values of
the sensors that corresponds to �a0 by switching the input value of one sensor from 0
to 1. Generally, if the input vector �x corresponds to �ai, then changing the input value
of one sensor from i to (i + 1) mod 3 will change the value of the decision function
and result in a new input vector that corresponds to �a(i+1) mod 3.

Since for any k, b ∈ {0, 1, 2} it holds that #b(�ak) ≥ t, then a vector corresponding
to �a0 will be some permutation of (012)t�z. We can examine a geodesic path which
starts with (012)t�z, which corresponds to �a0. The path continues for the next 3t steps,
at every step changing the value of the ith sensor from i mod 3 into (i + 1) mod 3,
thus achieving 3t value changes. The path ends with the input vector (120)t�z. We
can continue the geodesic path to (120)tkn−3t, where f((120)t�z) �= k, thus yielding
3t + 1 value changes.

The case where the simplex is of the second kind is analogous.

4.2. Lower bound for memoryless systems. We will now prove that for any
ev system d with a symmetric function f , instability(d) ≥ vt + 1. To do so, we will
use the edgewise subdivision of a simplex, defined in [9] (see the appendix for details).

Let S be a d-simplex, spanned by �V0, �V1, . . . , �Vd. An edgewise subdivision is a
function that, given an integer k, transforms every point �X ∈ S into a color scheme
M , which is defined by a matrix as follows:

M =

⎛
⎜⎜⎜⎝

χ1,0 χ1,1 · · · χ1,j

χ2,0 χ2,1 · · · χ2,j

...
...

. . .
...

χk,0 χk,1 · · · χk,j

⎞
⎟⎟⎟⎠ ,

where j ≤ d. Each entry of the matrix is a nonnegative integer from 0 through d, the
columns are pairwise different, and the entries appear in nondecreasing order when
read like English text:

χ1,0 ≤ χ1,1 ≤ · · · ≤ χ1,j ≤ χ2,0 ≤ · · · ≤ χk,j .

The color scheme defines j + 1 independent vectors �V ∗
0 ,

�V ∗
1 , . . . ,

�V ∗
j , where �V ∗

l =
1
k

∑k
i=1

�Vχi,l
, which span a j-simplex. By applying the function to every point �X ∈

S, we obtain a subdivision of S into subsimplices, some of which are d-simplices.
[9] proves that the above simplices indeed form a subdivision of S, and that every

point �X resides within the simplex it defines.
Recall that

�δm [k] =

{
1, m = k,
0, m �= k.

Lemma 4.2. Let S be the (v − 1)-simplex, spanned by �V0, �V1, . . . , �Vv−1, where
�Vi = n · �δi. Let �a be a vertex of any (v − 1)-simplex in the edgewise subdivision
of S using k = n. Then for every 0 ≤ i ≤ v − 1, �a [i] is an integer. Moreover,∑

i∈V �a[i] = n.
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Proof. Let �a correspond to a column j in some color scheme M . Then,

�a [i] =
1

n

n∑

l=1

�Vχl,j
[i] =

1

n

n∑

l=1

n · �δχl,j
[i] =

n∑

l=1

�δχl,j
[i] .

Since �δl [m] is always an integer, then �a [i] is also an integer. Finally,

∑

i∈V

�a [i] =
∑

i∈V

n∑

l=1

�δχl,j
[i] = n.

Lemma 4.2 implies that for every vertex �a of a (v − 1)-simplex of the edgewise
n-subdivision of S, �a ∈ A. We will color every vertex �a of the subdivision with f̃(�a).
Since it holds that for every �a ∈ A such that f̃(�a) = b, #b(�a) ≥ t + 1 > 0, then the
coloring is a Sperner coloring, and according to Sperner’s lemma there must exist in
the subdivision a subsimplex S∗ such that all its vertices’ colors are different.

We will now introduce the concept of a geodesic path over a subsimplex. A path
over a subsimplex is a sequence of vertices of the subsimplex. The elements of a vertex
are its coordinates at a point in A. A geodesic path over a subsimplex is a path in
which any element is increased at most once. We refer only to increments, since we
would like to allow a geodesic loop—a path which begins and ends at the same vertex.
A geodesic path with minimal changes is a geodesic path for which two consecutive
vertices differ only in two entries: one increased by 1, the other decreased by 1.

Notice that the above definition does not ensure that a geodesic path with mini-
mal changes over a subsimplex will necessarily correspond to a geodesic path of input
values: For example, the geodesic path (5, 0, 0) → (4, 1, 0) → (4, 0, 1) does not corre-
spond to any geodesic path of input values. However, when all the entries are positive
there is always a corresponding geodesic path of input values.

Lemma 4.3. Let S be a d-simplex spanned by �V0, �V1, . . . , �Vd such that for every
0 ≤ i ≤ d, �Vi = n ·�δi. Let S∗ be a d-simplex of the edgewise subdivision of S using the
integer n, where S∗ is spanned by �V ∗

0 ,
�V ∗
1 , . . . ,

�V ∗
d . Then �V ∗

0 → �V ∗
1 → · · · → �V ∗

d → �V ∗
0

is a geodesic path with minimal changes.
Proof. Let M be the color scheme corresponding to S∗ such that for every 0 ≤

j ≤ d, �V ∗
j = 1

n

∑n
i=1

�Vχi,j . Consider a scan S of M in the following way: Each
row is scanned from left to right, and then the next row is scanned in the same
order, until reaching the rightmost element in the last row. Namely, the scan order
is S = χ1,0 → χ1,1 → · · · → χ1,d → χ2,0 → · · · → χn,d. By the definition of M ,
there are exactly d color changes along S. Namely, every color 0 ≤ b ≤ d− 1 changes
to b + 1 exactly once. Since, by the definition of M , no two successive columns are
identical, then for every column 0 ≤ j ≤ d − 1 there is exactly one row i such that
χi,j �= χi,j+1. Moreover, χi,j+1 = χi,j + 1. Therefore, exactly one color cj = χi,j

is changed when moving from column j to column j + 1. Note further that we have
already accounted for d color changes along S, and since all those color changes were
of the form χi,j �= χi,j+1, we can conclude that for every 1 ≤ i ≤ n− 1, χi,d = χi+1,0.

For every 0 ≤ j ≤ d− 1,

�V ∗
j+1 − �V ∗

j =
1

n

n∑

i=1

�Vχi,j+1
− 1

n

n∑

i=1

�Vχi,j

=
1

n

n∑

i=1

(�Vχi,j+1 − �Vχi,j ) =
1

n
(�Vcj+1 − �Vcj )
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=
1

n
(n · �δcj+1 − n · �δcj ) = �δcj+1 − �δcj .

Now examine the end of the path:

�V ∗
0 − �V ∗

d =
1

n

n∑

i=1

�Vχi,0
− 1

n

n∑

i=1

�Vχi,d

=
1

n
�Vχ1,0 +

1

n

n−1∑

i=1

(�Vχi+1,0 − �Vχi,d
) − 1

n
�Vχn,d

=
1

n
(�Vχ1,0

− �Vχk,d
) =

1

n
(�V0 − �Vd)

=
1

n
(n · �δ0 − n · �δd) = �δ0 − �δd.

Thus �V ∗
0 → �V ∗

1 → · · · → �V ∗
d → �V ∗

0 is a path with minimal changes.

When passing the path from �V ∗
j to �V ∗

j+1, there are only two changes in the

elements of �V ∗
j : �V ∗

j [cj ] is decreased by 1, and �V ∗
j [cj + 1] is increased by 1. Since the

colors c0, c1, . . . , cd−1 are a permutation of the colors 0, 1, . . . , d − 1, it follows that

along the path �V ∗
0 → �V ∗

1 → · · · → �V ∗
d the 0th element is decreased once, the dth

element is increased once, and for each 1 ≤ i ≤ d−1 the ith element is increased once
and decreased once. When passing from �V ∗

d to �V ∗
0 the dth element is decreased once

and the 0th element is increased once. Therefore, �V ∗
0 → �V ∗

1 → · · · → �V ∗
d → �V ∗

0 is a
geodesic path.

Now we can prove the main theorem, given next.
Theorem 4.4. For every ev system d with a symmetric function f , instability(d)

≥ vt + 1.
Proof. f̃ is defined over A, which subdivides S using the edgewise subdivision

(Lemma 4.2). We will use f̃ to color the vertices in A. According to Sperner’s lemma,
there is a (v − 1)-simplex in the subdivision so that the colors of its vertices are
pairwise different. Let �a0,�a1, . . . ,�av−1 ∈ A be the vertices spanning S.

According to Lemma 4.3, �a0 → �a1 → · · · → �av−1 → �a0 is a geodesic path with
minimal changes. This means that for any b, the bth element is increased only once.
Given that this path is a loop, every element is decreased only once (since every
element should be increased and decreased an equal number of times), which means
that for any i, j it holds that �aj [b] − 1 ≤ �ai[b] ≤ �aj [b] + 1. Since for every b there is
a vertex �aib such that f(�aib) = b, then �aib [b] ≥ t + 1, and hence for any k, b it holds
that �ak[b] ≥ t.

Let cj be the color that changes between �aj and �a(j+1) mod v for every 0 ≤ j ≤
v − 1. Now, for every step i we start with an input vector corresponding to �ai mod v

and will switch an input value ci mod v to (ci mod v + 1) mod v, thus arriving at an
input vector corresponding to �a(i+1) mod v. We can repeat these steps vt times, in
total changing t input values from cj to c(j+1) mod v for any 0 ≤ j ≤ v − 1. Hence,
after vt steps only t input values were changed to f(�a0), so changing all the input
values yet unchanged to some b �= f(�a0) will result in another change to the consensus
value, thus resulting in a total of vt + 1 changes to the consensus value.

4.3. Instability upper bound, MLS system. We now describe a memoryless
symmetric ev system mls, and prove that its instability is a factor of two away from
the lower bound presented in the previous section. An interesting open question is
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how to close this gap. Since mls is memoryless and symmetric, it is defined solely by
its decision function fMLS . We will define fMLS as follows:

fMLS(�x) = min {b | #b(�x) ≥ t + 1} .

Namely, fMLS decides upon the smallest value possible.
Lemma 4.5. Instability(mls) ≥ min{n, 2(v − 1)(t + 1)}.
Proof. We will prove the lemma by providing a geodesic path which yields

min{n, 2(v − 1)(t + 1)} changes to the consensus value.
We will first assume that n ≥ 2(v − 1)(t + 1), and start with an input vector

�x0 = 0t+11t+1 . . . (v − 2)t+1(v − 1)n−(v−1)(t+1). Notice that # (v − 1) (�x0) = n −
(v− 1)(t+ 1) ≥ (v− 1)(t+ 1). Since #0(�x0) = t+ 1, fMLS(�x0) = 0. Next, we switch
one input value from 0 to v − 1. Now #0(�x0) = t, and therefore the consensus value
will change to 1. When we switch an input value from v− 1 to 0, the consensus value
will change back to 0. We will repeat these two steps t times, and on the (t + 1)th
time we will not change an input value from v − 1 to 0. Notice that up until here we
have changed the input value of t+ 1 sensors from 0, and of t sensors from v− 1, and
ended up with an input vector �x2t+1, where #0(�x2t+1) = t. Next, we switch input
values from 1 to v− 1 and back again in the same fashion, and so forth. The geodesic
path achieved this way is as follows:

0t+11t+12t+1 . . . (v − 2)t+1(v − 1)n−(v−1)(t+1) → · · · →
(v − 1)t+11t+12t+1 . . . (v − 2)t+10t(v − 1)n−(v−1)(t+1)−t → · · · →
(v − 1)2t+22t+1 . . . (v − 2)t+10t1t(v − 1)n−(v−1)(t+1)−2t → · · · →
...
(v − 1)(v−1)(t+1)0t1t . . . (v − 2)t(v − 1)n−(v−1)(2t+1).

Every step yields 2t+1 changes to the consensus value, resulting in a total sum of
(v−1)(2t+1) changes. Notice that at the end of the current path #i(�x(v−1)(2t+1)) = t
for every 0 ≤ i ≤ v − 2, thus fMLS(�x(v−1)(2t+1)) = v − 1. Next, we will switch one
input value from v − 1 to v − 2. As a result, #(v − 2)(�x(v−1)(2t+1)+1) = t + 1, and
the consensus value changes to v − 2. We can repeat this step by changing an input
value from v − 1 to v − 3, then from v − 1 to v − 4, and so forth, resulting in v − 1
more changes to the consensus value, and a total sum of 2(v− 1)(t+ 1) changes. The
end of the geodesic path is as follows:

Z(v − 1)n−(v−1)(2t+1) −→
Z(v − 2)(v − 1)n−(v−1)(2t+1)−1 −→
Z(v − 2)(v − 3)(v − 1)n−(v−1)(2t+1)−2 −→
Z(v − 2)(v − 3) . . . 0(v − 1)n−2(v−1)(t+1),

where

Z = (v − 1)(v−1)(t+1)0t1t . . . (v − 2)t.

Now, let us consider the case where n < 2(v − 1)(t + 1).
If (v − 1)(2t + 1) ≤ n < 2(v − 1)(t + 1), then #(v − 1)(�x0) ≥ (v − 1)t. In

this case, we can take the first (v − 1)(2t + 1) steps described above, ending with
�x(v−1)(2t+1) = Z(v − 1)n−(v−1)(2t+1). There are exactly n − (v − 1)(2t + 1) < v − 1
input values which equal v − 1 and have not been changed yet. Therefore, we can
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follow the above n− (v − 1)(2t + 1) steps (of the second group of steps), and yield a
total of n changes to the consensus value.

If n < (v−1)(2t+1), then let α =  n
2t+1

�, β = n−α(2t+1) < 2t+1. We will start

the geodesic path with the input vector �x0 = 0t+11t+1 . . . (α−1)t+1α	 β
2 
(v−1)αt+� β

2 �.
Notice that α < v − 1, and since n ≥ vt + 1 and v ≥ 2, then α ≥ 1. Now, we change
an input value from 0 to α, thus changing the consensus value from 0 to 1, and then
change an input value from v− 1 to 0, thus changing the consensus value from 1 to 0.
We repeat these two steps t − 	β

2

 + 1 times. Next, we change an input value from

0 to v − 1, thus changing the consensus from 0 to 1, and then change an input value
from v− 1 to 0, changing the consensus value from 1 to 0. We repeat these two steps
	β

2

 − 1 times, and then change an input value once from 0 to v − 1. Now, given

#0(�x2t+1) = t, for every 1 ≤ b ≤ α it holds that #b(�x2t+1) = t + 1, and there are
(α − 1)t + β

2
� input values which can be changed from v − 1 to another value. For

the next (α− 1)(2t+ 1) steps we change first an input value from 1 to v− 1 and back
from v− 1 to 1 (t times) plus one change of an input value from 1 to v− 1, we change
an input value from 2 to v − 1 and back from v − 1 to 2 (t times) plus one change of
an input value from 2 to v − 1, etc. Every change leads to a change in the consensus
value. After the (α − 1)(2t + 1)th step, there are β input values left which can be
changed: β

2
� input values which can be changed from v − 1 to another value, and

	β
2

 input values which can be changed from α to another value. Finally, we change

an input value from α to v − 1, and then from v − 1 to α, repeating these two steps
β

2
� times. If necessary (if β is odd), we change an input value from α to v − 1. The

total geodesic path is as follows:

0t+11t+12t+1 . . . (α− 1)t+1α	 β
2 
(v − 1)αt+� β

2 � −→ · · · −→
αt−	 β

2 
+10	
β
2 
1t+12t+1 . . . (α− 1)t+1α	 β

2 
0t−	 β
2 
+1(v − 1)(α−1)t+β−1 −→ · · · −→

αt−	 β
2 
+1(v − 1)	

β
2 
1t+12t+1 . . . (α− 1)t+1α	 β

2 
0t(v − 1)(α−1)t+� β
2 � −→ · · · −→

αt−	 β
2 
+1(v − 1)	

β
2 
+t+12t+1 . . . (α− 1)t+1α	 β

2 
0t1t(v − 1)(α−2)t+� β
2 � −→ · · · −→

...

αt−	 β
2 
+1(v − 1)	

β
2 
+(α−1)(t+1)α	 β

2 
0t1t2t . . . (α− 1)t(v − 1)�
β
2 � −→ · · · −→

αt−	 β
2 
+1(v − 1)2	

β
2 
+(α−1)(t+1)0t1t2t . . . (α− 1)tα� β

2 �.

Since every input value changed along the geodesic path, and since every change to
an input value resulted in a change to the consensus value, the instability is n.

Lemma 4.6. Instability(mls) ≤ 2(v − 1)(t + 1).
Proof. Let P = �x0 → �x1 → · · · → �xn be a geodesic path. The number of decision

value changes in P is equal to the sum of the times the decision changes to a higher
value plus the times it changes to a lower value, i.e., # ↑ + # ↓. We next show that
each one of these quantities is at most (v − 1)(t + 1), which proves the lemma.

To compute # ↑, notice that if the decision d changes to a higher value, then it
must be the case that an input bit equal to d changes: In the current input �xi we
must have #d(�xi) = t + 1 while #d(�xi+1) = t. Now

# ↑ =

v−2∑

d=0

# ↑d,

where # ↑d denotes the number of changes of a decision from d to a higher value.
Consider the first time, �xj , where the decision is d and the change in �xj+1 is to a
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higher value. We have #d(�xj) = t + 1, and therefore the total number of changes
from d to a higher value is at most t + 1 (since once this happens, t + 1 inputs equal
to d have changed and thus are fixed in a geodesic path).

To compute # ↓, observe that if the decision d changes in �xi to a smaller value d′,
then it must be the case that a value changes to d′: #d′(�xi) = t and #d′(�xi+1) = t+1.
This can happen at most t + 1 times for each such d′ in a geodesic path (once this
happens there are t + 1 entries with value d′ fixed). There are (v − 1) such values d′,
so the total number of such changes is at most (v − 1)(t + 1).

Corollary 4.7. Instability(mls) = min{n, 2(v − 1)(t + 1)}.
Appendix. Edgewise subdivision. In [9] an edgewise subdivision of a d-

simplex is suggested, which uses an abacus model of the simplex. In this appendix,
we summarize the method described in [9], and its main results.

Let �V0, �V1, . . . , �Vd be independent vectors which define a d-simplex S in R
d. Every

point �X ∈ S can be described by λ0, λ1, . . . , λd nonnegative real numbers which sum
to 1, so that

�X =

d∑

i=0

λi · �Vi.

These are called the barycentric coordinates of �X. We may portray them graphically
by drawing the unit interval as a rectangle with regions colored from 0 through d,
making sure to arrange the colors from left to right, so that λi is the fraction of points
with color i. Figure A.1 illustrates this for d = 7 and the point with barycentric
coordinates (0.26, 0.11, 0.07, 0.11, 0.19, 0.08, 0.04, 0.14). The coordinates of the divid-
ing lines are displayed above the rectangle. They are provided by the partial sums
0 = B0, B1, . . . , Bd, Bd+1 = 1 with Bi = λ0 + λ1 + · · · + λi−1. B1 through Bd can be
any nondecreasing sequence in the unit interval.

0 1 2 3 4 5 6 7
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6

0
.3
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0
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0
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.7
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0
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0
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5

1
.0

0

Fig. A.1. The rectangle represents the unit interval with points colored from 0 to 7.
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Fig. A.2. The rectangle in Figure A.1 is chopped into three pieces, which are stacked and
expanded.

Suppose we chop the rectangle in Figure A.1 into k pieces of equal width, stack
them on top of each other, and expand the scale by factor of k in the horizontal
direction (see Figure A.2). The coordinates of the dividing lines are obtained by
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Fig. A.3. Each row is cut vertically by the coordinates, and each region keeps the original color
of its points.

multiplying the coordinates of the earlier dividing lines by k and discarding the integer
part, keeping only the fractional part. We discard any duplications, letting j+2 be the
number of distinct values remaining. Call these numbers 0 = C0, C1, . . . , Cj , Cj+1 = 1,
making sure to sort them in increasing order. We extend the dividing lines vertically
until they span the entire stack, and label each region by its color (see Figure A.3).

The number of regions of each stack is j + 1. Forgetting the positions of the
vertical dividing lines, we get a matrix,

M =

⎛
⎜⎜⎜⎝

χ1,0 χ1,1 · · · χ1,j

χ2,0 χ2,1 · · · χ2,j

...
...

. . .
...

χk,0 χk,1 · · · χk,j

⎞
⎟⎟⎟⎠ ,

of k(j + 1) color entries. We call M = M( �X, k) a color scheme because it determines
the combinatorics but not the geometry of the coloring. The matrices that may occur
are those whose entries are drawn from the set {0, 1, . . . , d}, whose entries are in
nondecreasing order when read like English text,

χ1,0 ≤ χ1,1 ≤ · · · ≤ χ1,j ≤ χ2,0 ≤ · · · ≤ χk,j ,

and whose columns are pairwise different.
For every k, not necessarily distinct, colors χ1 through χk we introduce the no-

tation

�Vχ1,χ2,...,χk
=

1

k
(�Vχ1 + �Vχ2 + · · · + �Vχk

).

Now we can define for every 0 ≤ l ≤ j, �V ∗
l = �Vχ1,l,χ2,l,...,χk,l

, where each vector

corresponds to a column in the color scheme M = M( �X, k). In [9] it is proved that
these vectors are independent, thus spanning a j-simplex. Let SM denote the simplex
spanned by the vectors corresponding to M . Then the k-edgewise subdivision of S
consists of all the simplices defined this way by points of S:

Esdk(S) =
{
SM | M = M( �X, k), �X ∈ S

}
.

[9] proves that not only is Esdk(S) a subdivision of S, but also for every �X ∈ S
it holds that �X ∈ SM( �X,k)

.
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PARAMETRIC DUALITY AND KERNELIZATION: LOWER
BOUNDS AND UPPER BOUNDS ON KERNEL SIZE∗
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Abstract. Determining whether a parameterized problem is kernelizable and has a small kernel
size has recently become one of the most interesting topics of research in the area of parameterized
complexity and algorithms. Theoretically, it has been proved that a parameterized problem is kernel-
izable if and only if it is fixed-parameter tractable. Practically, applying a data reduction algorithm
to reduce an instance of a parameterized problem to an equivalent smaller instance (i.e., a kernel) has
led to very efficient algorithms and now goes hand-in-hand with the design of practical algorithms
for solving NP-hard problems. Well-known examples of such parameterized problems include the
vertex cover problem, which is kernelizable to a kernel of size bounded by 2k, and the planar

dominating set problem, which is kernelizable to a kernel of size bounded by 335k. In this paper we
develop new techniques to derive upper and lower bounds on the kernel size for certain parameterized
problems. In terms of our lower bound results, we show, for example, that unless P = NP, planar

vertex cover does not have a problem kernel of size smaller than 4k/3, and planar independent

set and planar dominating set do not have kernels of size smaller than 2k. In terms of our upper
bound results, we further reduce the upper bound on the kernel size for the planar dominating set

problem to 67k, improving significantly the 335k previous upper bound given by Alber, Fellows, and
Niedermeier [J. ACM, 51 (2004), pp. 363–384]. This latter result is obtained by introducing a new
set of reduction and coloring rules, which allows the derivation of nice combinatorial properties in
the kernelized graph leading to a tighter bound on the size of the kernel. The paper also shows how
this improved upper bound yields a simple and competitive algorithm for the planar dominating

set problem.

Key words. parameterized algorithm, planar graph, dominating set, vertex cover, independent
set, kernel
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1. Introduction. Many practical algorithms for NP-hard problems start by
applying data reduction subroutines to the input instances of the problem. The hope
is that after the data reduction phase the instance of the problem has shrunk to a
moderate size. This makes the applicability of a second phase, such as a branch-
and-bound phase, to the resulting instance more feasible. Weihe showed in [41] how
a practical preprocessing algorithm for a variation of the dominating set prob-
lem, called the red/blue dominating set problem, resulted in breaking up input
instances of the problem into much smaller instances. Abu-Khzam, Langston, and
Shanbhag [2], in their implementation of algorithms for the vertex cover problem,
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observed the following: “In many cases, reduction was so effective that it eliminated
the core completely, and with it the need for decomposition and search.” Similar
success was reported with dominating set as well [3].

On the other hand, many applications seek solutions of very small sizes to fairly
large input instances of NP-hard problems. This has been the main concern for the
area of parameterized computation. A parameterized problem is a set of instances of
the form (x, k), where x is the input instance and k is a nonnegative integer called
the parameter. A parameterized problem is said to be fixed-parameter tractable [17]
if there is an algorithm that solves the problem in time f(k)|x|c, where c is a fixed
constant and f(k) is a recursive function. The development of efficient parameterized
algorithms has provided a new approach for practically solving problems that are
theoretically intractable. For example, parameterized algorithms for the NP-hard
problem vertex cover [9, 13] have found applications in biochemistry [10], and
variants thereof are applicable to problems arising in chip manufacturing [11, 21, 24],
while parameterized algorithms in computational logic [35] have provided an effective
method for solving practical instances of the ml type-checking problem, which is
complete for the class exptime [30].

The notion of a parameterized problem being parameterized tractable, and of the
problem having a good data reduction algorithm, turns out to be very closely related.
Informally speaking, a kernelization—precisely defined below—is a data reduction
procedure that reduces an instance of the problem to another (smaller) instance called
the kernel.

It has been proved that a parameterized problem is fixed-parameter tractable if
and only if the problem is kernelizable [18].

Designing efficient parameterized algorithms and constructing kernels of reason-
able sizes have recently been two of the main topics of research in the area of param-
eterized computation. More specifically, constructing a problem kernel has become
one of the main components in the design of an efficient parameterized algorithm
for a problem [9, 11, 12, 13], and designing efficient parameterized algorithms for a
parameterized problem now goes hand-in-hand with the construction of a problem
kernel of a moderate size for the problem. Two of the most celebrated problems that
have been receiving a lot of attention recently from both perspectives are the vertex

cover and planar dominating set problems. After a long sequence of algorithms,
the vertex cover problem can be solved in time O(1.274k + kn) [14]. Moreover,
the vertex cover problem enjoys a kernel of size bounded by 2k, and reducing this
bound further seems to be a very challenging task, since it would probably lead to an
approximation algorithm for the problem of ratio smaller than 2—a result believed
by many people to be unlikely. The planar dominating set problem as well has
undergone some extensive study which culminated in a recent algorithm solving the

problem in time O(215.13
√
k + n3) [25]. Recently, and after many strenuous efforts, it

was shown that the planar dominating set problem has a problem kernel of size
335k that is computable in O(n3) time [5]. The question of whether such a bound on
the problem kernel could be significantly improved remains open.

In this paper we develop new techniques to derive upper and lower bounds on
the kernel size for certain parameterized problems. We define the notion of duality
of a parameterized problem. Many parameterized tractable problems are the dual of
parameterized intractable problems (see [19, 34, 38]). As an example, consider the
vertex cover and independent set problems. If n denotes the number of vertices
in the whole graph G, then it is well known that (G, k) is a YES-instance of vertex
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cover if and only if (G, kd), where kd = n−k, is a YES-instance of independent set.
In this sense, independent set is the parametric dual problem of vertex cover.
While vertex cover is fixed-parameter tractable on general graphs, independent

set is not [17]. Similarly, while dominating set is fixed-parameter intractable on
general graphs, its parametric dual, called nonblocker, is fixed-parameter tractable;
see [15]. The landscape changes when we turn our attention towards special graph
classes, e.g., problems on planar graphs [6]. Here, for example, both independent

set and dominating set are fixed-parameter tractable. In fact, and in contrast to
what was stated above, there are very many problems for which both the problem
itself and its dual are fixed-parameter tractable. This is also true for problems on
graphs of bounded genus, as well as on graphs of bounded degree.

The beauty of problems which, together with their dual problems, are fixed-
parameter tractable is that this constellation allows for, from an algorithmic stand-
point, a two-sided attack on the original problem. This two-sided attack enabled us to
derive lower bounds on the kernel size for such problems (under classical complexity
assumptions). For example, we show that unless P = NP, planar vertex cover

does not have a kernel of size smaller than 4k/3, and planar independent set

and planar dominating set do not have kernels of size smaller than 2k. To the
authors’ knowledge, this is the first group of results establishing lower bounds on the
kernel size of parameterized problems. We also show that some lower bound results
obtained using the techniques devised in this paper are sharp by exhibiting a family of
graph classes on which the lower bound on the kernel size of the restricted NP-hard
vertex cover problem approaches the upper bound 2k with an arbitrary precision.

Whereas the lower bounds on the kernel size for planar vertex cover and
planar independent set come close to the known upper bounds of 2k and 4k
on the kernel size for the two problems, respectively, the lower bound derived for
planar dominating set is still very far from the 335k upper bound on the problem
kernel, which was given by Alber, Fellows, and Niedermeier [5]. To bridge this gap, we
investigate the problem of finding a kernel of smaller size for the planar dominating

set problem and derive better upper bounds on the problem kernel for the problem.
We improve the reduction rules proposed in [5] and introduce new rules that color
the vertices of the graph, enabling us to observe many new combinatorial properties
of its vertices. These properties allow us to prove a much stronger bound on the
number of vertices in the reduced graph. We show that the planar dominating

set problem has a kernel of size 67k that is computable in O(n3) time. This is a
significant improvement over the results in [5]. Finally, we show how the resulting
bound on the kernel size yields a very simple algorithm for the planar dominating

set problem that beats some previous algorithms for the problem, and whose running
time even comes close to some of the recently proposed algorithms.

2. Preliminaries. A graph G is said to be planar if G can be embedded on the
plane such that no two edges in G cross. It is well known that deciding whether a
graph is planar and constructing a planar embedding of the graph in such case can
be done in linear time [31]. The number of edges in a planar graph with n vertices
for n ≥ 3 is bounded by 3n− 6 [16].

A dominating set in a graph G is a set of vertices D such that every vertex in G
is either in D or adjacent to at least one vertex in D. The size of a dominating set D
is the number of vertices in D. A minimum dominating set of G is a dominating set
with the minimum size. We will denote by γ(G) the size of a minimum dominating set
in G. The planar dominating set problem, abbreviated planar-DS henceforth,
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is the following: given a planar graph G and a positive integer k, either construct a
dominating set for G of size at most k or report that no such dominating set exists.
It is well known that the planar-DS problem is NP-complete [27].

A parameterized problem P is a subset of Σ∗×N , where Σ is a fixed alphabet and
N is the set of all nonnegative integers. Therefore, each instance of the parameterized
problem P is a pair (I, k), where the second component k is called the parameter.
The language L(P ) is the set of all YES-instances of P . We say that the parameter-
ized problem P is fixed-parameter tractable [17] if there is an algorithm that decides
whether an input (I, k) is a member of L(P ) in time f(k)|I|c, where c is a fixed con-
stant and f(k) is a recursive function independent of the input length |I|. The class
of all fixed-parameter tractable problems is denoted by FPT.

A mapping s : Σ∗ × N → N is called a size function for a parameterized prob-
lem P if

• 0 ≤ k ≤ s(I, k),
• s(I, k) ≤ |I|, and
• s(I, k) = s(I, k′) for all appropriate k, k′ (independence). Hence, we can also

write s(I) for s(I, k).
A problem P together with its size function s is denoted (P, s). The dual problem

Pd of P is the problem whose corresponding language (i.e., the set of YES-instances)
L(Pd) = {(I, s(I) − k) | (I, k) ∈ L(P )}. The dual of the dual of a problem (with a
given size function) is again the original problem. We give some examples below.
d-hitting set

Given: A hypergraph G = (V,E) with edge degree bounded by d, i.e., for all e ∈ E,
|e| ≤ d.
Parameter: k.
Question: Is there a hitting set of size at most k, i.e.,

∃C ⊆ V, |C| ≤ k, ∀e ∈ E,C ∩ e 
= ∅?
The special case in which d = 2 corresponds to the vertex cover problem in

undirected graphs. Let L(d-HS) denote the language of d-hitting set. Taking as
size function s(G) = |V |, it is clear that the dual problem obeys (G, kd) ∈ L(d-HSd)
if and only if G has an independent set of cardinality kd.
dominating set

Given: A (simple) graph G = (V,E).
Parameter: k.
Question: Is there a dominating set of size at most k, i.e.,

∃D ⊆ V, |D| ≤ k, ∀v ∈ V \D ∃w ∈ D, (w, v) ∈ E?

Taking as size function s(G) = |V |, it is clear that the dual problem obeys
(G, kd) ∈ L(DSd) if and only if G has a nonblocker set (i.e., the complement of a
dominating set) of cardinality kd.

Generally speaking, it is easy to “correctly” define the dual of a problem for the
so-called selection problems as formalized in [7]. The concept of duality is less clear,
say, for weighted graph problems (with the slight exception of ROMAN domination;
see [22]). Also, different graph parameterizations like treewidth seem to possess no
natural dualization.

A kernelization (reduction) for a parameterized problem P with size function s is
a polynomial-time computable reduction which maps an instance (I, k) onto (I ′, k′)
such that (1) s(I ′) ≤ g(k) (g is a recursive function), (2) k′ ≤ k, and (3) (I, k) ∈ L(P )



PARAMETRIC DUALITY AND KERNELIZATION 1081

if and only if (I ′, k′) ∈ L(P ). I ′ is called the problem kernel of I. It is known (see
[18]) that a parameterized problem is fixed-parameter tractable if and only if it has a
kernelization. Of special interest to us in this paper are problems with linear kernels
in which g(k) = αk for some constant α > 0. Such small kernels are known for many
important graph problems restricted to planar graphs.

3. Lower bounds on kernel size. Practice in the study of parameterized algo-
rithms has suggested that improved kernelization can lead to improved parameterized
algorithms. Many efforts have been made towards obtaining smaller kernels for well-
known NP-hard parameterized problems (see, for example, [5, 13, 18]). A natural
question to ask along this line of research is about the limit of polynomial-time ker-
nelization. In this section we develop techniques for deriving lower bounds on the
kernel size for certain well-known NP-hard parameterized problems.

3.1. General lower bound results.
Theorem 3.1. Let (P, s) be an NP-hard parameterized problem (with size func-

tion s). Suppose that P admits an αk kernelization and its dual Pd admits an αdkd
kernelization, where α, αd ≥ 1. If (α− 1)(αd − 1) < 1, then P = NP.

Proof. Suppose that the assumption of the theorem is true, and let r(·) denote
the assumed linear kernelization reduction for P . Similarly, let rd(·) be the linear
kernelization reduction for Pd. Consider the following reduction R, which on input
(I, k) of P performs the following:

if k ≤ αd

α+αd
s(I) then compute r(I, k);

else compute rd(I, s(I) − k).
Let (I ′, k′) be the instance computed by the reduction R. If k ≤ αd

α+αd
s(I), then

s(I ′) ≤ αk ≤ ααd

α+αd
s(I). Otherwise,

s(I ′) ≤ αdkd

= αd(s(I) − k)

< αd

(
s(I) − αd

α + αd
s(I)

)

=
ααd

α + αd
s(I).

Since (α − 1)(αd − 1) < 1, or equivalently ααd

α+αd
< 1, by repeatedly applying R

(at most polynomially many times), the problem P can be solved in polynomial time.
This completes the proof.

The condition “α, αd ≥ 1” in the previous theorem is not crucial in the light of
the following lemma.

Lemma 3.2. Let (P, s) be a parameterized problem such that P admits a kernel-
ization r(·) with s(r(I, k)) ≤ αk for some α < 1. Then P is in P.

Proof. According to our definition of the size function, we have s(I ′) ≥ k′ for each
instance (I ′, k′). This is particularly true for the parameter k′ of the problem kernel
instance I ′ = r(I, k). Therefore, k′ ≤ αk for some α < 1. By repeated kernelization,
we arrive at a problem with an arbitrarily small parameter and, hence, of arbitrarily
small size. In fact, we need O(log k) many such kernelizations, each of them requiring
polynomial time. It follows that the given problem can be decided in polynomial
time.

Remark. The assumption that s(I) ≥ k is crucial here. As a concrete “counter-
example,” consider the decision tree problem, specified by n objects X = {x1, . . . , xn},
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t boolean tests T = {T1, . . . , Tt}, and a parameter k. In this setting, a decision tree
is a binary tree B whose leaves are (uniquely) labeled with objects and whose inner
nodes are labeled with tests such that on the path from the root to the leaf labeled xi,
tests are performed that uniquely distinguish xi from all other objects. The overall
length of all paths from the root to each leaf is usually considered as the cost function.
The question is whether there exists a decision tree with cost bounded by k. This
problem is known to be NP-complete (see [32]).

If n = 2�, the decision tree with optimal cost is surely the complete binary tree
(possibly not attainable with the given set of tests), since it is optimally balanced.
Hence, we have k > n log2 n (otherwise, an algorithm can simply answer NO); this
can be seen as a trivial kernelization algorithm. Therefore, n ∈ o(k). This can
be interpreted as giving the (to our knowledge) first natural parameterized problem
having a sublinear kernel. On the other hand, this relation also implies that s(I, k) < k
is true here, so that the previous lemma does not lead to a contradiction with the
known NP-hardness result.

The problem here is the seemingly innocuous choice of the size function as being
n = |X|. Observe that any “reasonable” encoding of an instance would rather use
n log n bits, since each element of X would need to get a name. This way, the problem
would disappear.

3.2. Concrete lower bound results. From Theorem 3.1 and assuming P 
=
NP, we immediately obtain Corollaries 3.3–3.8.

Corollary 3.3. For any ε > 0, there is no (4/3−ε)k kernel for planar vertex

cover.
Proof. The four-color theorem implies a 4k-kernelization for planar indepen-

dent set, which is the dual problem of planar vertex cover.
Corollary 3.4. For any ε > 0, there is no (2−ε)k kernel for planar indepen-

dent set. This result remains true if we restrict the problem to graphs of maximum
degree bounded by three, or even to planar graphs of maximum degree bounded by three
(both problems are NP-hard).

Proof. The general vertex cover problem, which is the dual of the indepen-

dent set problem, has a 2k-kernelization [13] (based on a result of Nemhauser and
Trotter). This kernelization is both planarity and bounded-degree preserving.

Corollary 3.5. For any ε > 0, there is no (3/2− ε)k-kernelization for vertex

cover restricted to triangle-free planar graphs (this problem is still NP-hard [40,
Chapter 7]).

Proof. Based on a theorem by Grötzsch (which can be turned into a polynomial-
time coloring algorithm; see [29]), it is known that planar triangle-free graphs are
3-colorable. This implies a 3k kernel for independent set restricted to this graph
class, which gives the result. Observe that the mentioned 2k-kernelization for vertex

cover on general graphs preserves planarity and triangle-freeness, which implies that
this restriction of the problem has a 2k-kernelization.

Corollary 3.6. For any ε > 0, there is no (335/334 − ε)kd kernel for planar

nonblocker.
Proof. A 335k kernel for planar-DS was derived in [5].
Corollary 3.7. For any ε > 0, there is no (2−ε)k kernel for planar-DS. This

remains true when further restricting the graph class to planar graphs of maximum
degree three (the problem is still NP-hard).

Proof. In [20], a 2kd-kernelization for nonblocker on general graphs which
preserves planarity and degree bounds was derived (see also [37, Thm. 13.1.3]).
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Corollary 3.8 (see [15]). For any ε > 0, there is no (2 − ε)k kernel for
dominating set on cubic graphs. This is interesting, since that case is the best
match between upper and lower bounds for domination problems.

The above results open a new line of research and prompt us to ask whether we
can find examples of problems such that the derived kernel sizes are optimal (unless
P = NP), and whether we can close the gaps between the upper bounds and lower
bounds on the kernel size. According to our previous discussion, planar vertex

cover on triangle-free graphs is our “best match”: we know how to derive a kernel
of size 2k and (assuming P 
= NP) we know that no kernel smaller than 3k/2 exists.
On the other hand, the 335k upper bound on the kernel size for planar-DS [5] is
very far from the 2k lower bound proved above. In the next sections, we improve this
upper bound to 67k in an effort to bridge the huge gap between the upper bound and
lower bound on the kernel size for this problem. This allows us to state the following
corollary.

Corollary 3.9. Assuming P 
= NP, there is no (67/66−ε)kd kernel for planar

nonblocker for any choice of ε > 0.
Remark. Since “Euler-type” theorems exist for graphs of bounded genus g, it can

be shown that there is a constant cg such that each graph of genus g is cg-colorable.
Therefore, lower bounds on the kernel sizes of vertex cover on graphs of genus g
can be derived. For triangle-free graphs of genus g, Thomassen has shown that the
corresponding constant c′g is in O(g1/3(log g)−2/3) (see [28, 39]).

Remark. Recently, Fomin and Thilikos [26] were able to extend the linear kernel
result for dominating set to graphs on surfaces of bounded genus. Therefore, our
lower bound results extend to these more general graph classes as well.

3.3. Can we improve on the lower bounds?. In the following, we reproduce
a construction that is essentially due to Paul Seymour.1 This construction shows that
the lower bound results obtained using the techniques devised in this section can be
sharp for certain problems.

Consider the following family Gn of graph classes. A graph G is in Gn if and only
if it satisfies the following two conditions.

1. G = (V,E) can be partitioned into 2n+1 mutually disjoint independent sets,
i.e., V = I1 ∪ · · · ∪ I2n+1, Ii ∩ Ij = ∅ for all 1 ≤ i < j ≤ 2n + 1, and the
induced graphs G[Ii] contain no edges.

2. The edge set E can be partitioned into 2n+1 groups E1, . . . , E2n+1 such that

Ei = E(G[Ii ∪ Ii mod (2n+1)+1]).
2

Figure 1 provides an example of a graph in Gn.
Since each of these classes is closed under taking induced subgraphs, we can

deduce by the Nemhauser–Trotter kernelization [13] the following lemma.
Lemma 3.10. vertex cover restricted to Gn admits a kernel of size 2k

(within Gn).
Since the graphs in Gn are “nearly bipartite,” we have the following result.
Lemma 3.11. independent set restricted to Gn admits a kernel of size (2 +

1/n)kd (within Gn).
Proof. Let G = (V,E) ∈ Gn with an independent set decomposition V = I1 ∪

· · · ∪ I2n+1 that certifies this membership. To simplify the notation, we assume that

1Personal communication (2005).
2We assume that the graph G is given with a certificate of membership in Gn, which is a parti-

tioning of its vertex set into the 2n + 1 subsets.
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Fig. 1. An example of a graph in Gn.

additions and subtractions of indices are all performed modulo 2n + 1. Consider the
sets

Ji = Ii ∪ Ii+2 ∪ · · · ∪ Ii−3, 1 ≤ i ≤ 2n + 1.

Ji greedily collects “every second” set starting at Ii so that each set Ji forms an
independent set of G. It can be easily verified that

2n+1∑

i=1

|Ji| = n|V |.

This shows that there exists an index i for which the set Ji contains at least a
fraction n/(2n+1) of all the vertices. Moreover, such a Ji can be found in polynomial
time. Therefore, we can answer YES straightaway whenever we are given a graph G =
(V,E) ∈ Gn with a parameter kd ≤ (n/(2n + 1))|V |, as an instance of independent

set. This means that we have |V | < (2+1/n)kd for all the remaining instances.
Theorem 3.12. For each n, vertex cover restricted to Gn is NP-complete.
Proof. Membership in NP is inherited from the general vertex cover problem.

We will show that 3-SAT is polynomial-time reducible to vertex cover restricted
to Gn. We highlight the main elements in the reduction here and leave the verification
of some of the details to the interested reader.

Let C = {C1, . . . , Cm} be a collection of clauses. Without loss of generality, we
can assume that |Ci| = 3 for all 1 ≤ i ≤ m. Let �ji refer to the jth literal in clause

Ci, i.e., �ji = yji or �ji = ȳji for some variable yji ∈ X = {x1, . . . , xr}.
We construct a graph G = (V,E) ∈ Gn as follows. For each variable xi, we

introduce a cycle (v1
i , . . . , v

4n+2
i ) of even length. Clearly, 2n + 1 of these vertices will

be in any feasible vertex cover. For each clause Ci, we introduce a cycle (u1
i , . . . , u

2n+1
i )

of odd length. Clearly, n + 1 of these vertices will be in any feasible vertex cover.
Summarizing, the graph described so far will have at least r(2n + 1) + m(n + 1)
vertices in any feasible cover. Since we will now add more edges to this graph, the
lower bound on the size of the vertex cover will still be valid. At the same time, we
will maintain the property that Ij = {vji , vj+2n+1

i | 1 ≤ i ≤ r} ∪ {uj
i | 1 ≤ i ≤ m},

where 1 ≤ j ≤ 2n + 1, are all independent sets.
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If �1i = y1
i = xq, then we will make u1

i adjacent to v2
q . If �2i = y2

i = xq, then we
will make u2

i adjacent to v2n+2
q . If �3i = y3

i = xq, then we will make u3
i adjacent to v2

q .
If �1i = ȳ1

i = x̄q, then we will make u1
i adjacent to v2n+3

q . If �2i = ȳ2
i = x̄q, then we

will make u2
i adjacent to v1

q . If �3i = ȳ3
i = x̄q, then we will make u3

i adjacent to v2n+3
q .

Now, if xi is set to true in a satisfying assignment of the given 3-SAT instance,
then we put vji into the vertex cover if and only if j is even. If xi is set to false in

a satisfying assignment of the given 3-SAT instance, then we put vji into the vertex
cover if and only if j is odd. It is not difficult to verify that a satisfying assignment
of C can be translated into a feasible vertex cover of size r(2n + 1) + m(n + 1).

The same identification of vertices from vji with variable settings allows us to
translate a feasible vertex cover of size r(2n+1)+m(n+1) into a satisfying assignment
for the given 3-SAT instance.

Corollary 3.13. Unless P = NP, the vertex cover problem restricted to Gn

does not have a kernel of size (2 − ε)k for any ε > 0.
Proof. This follows from Lemma 3.11 and Theorem 3.1.
Remark. The above corollary shows that the lower bound results on the kernel

size for vertex cover restricted to Gn obtained using the techniques in this paper
are tight. It also shows that it is unlikely that the vertex cover problem on general
graphs admits a kernelization of size (2 − ε)k with the property that the produced
kernel is a subgraph of the original graph, the reason being that such a kernelization
would also be a kernelization for the vertex cover problem restricted to the class Gn

with the same kernel bound.

3.4. A possible two-sided attack for exact algorithms. With problems
having both FPT algorithms for their primal and for their dual parameterizations, we
have the possibility of converting both algorithms into a nonparameterized algorithm.
This is like attacking the problem from two sides. This means that we can use either of
the two FPT algorithms, depending on “to which side” our concrete problem instance
is closer.

Theorem 3.14. Let (P, s) be a parameterized problem and Pd its dual. Assume
that both P and Pd are in FPT. Let f be a monotone function. Assume that there is
an algorithm A that solves an instance (I, k) of P in time O(f(βk)p(s(I))) for some
polynomial p, and that Ad is an algorithm that solves an instance (I, kd) of Pd in time
O(f(βdkd)pd(s(I))) for a polynomial pd.

Then, there is an algorithm A′ for solving the nonparameterized problem instance
I running in time

O
(
f

(
ββd

β + βd
s(I)

)
p′(s(I))

)
,

for some polynomial p′.
Proof. The idea is to use algorithm A as long as it is better than using Ad. This

means that we have to compare

f(βk) to f(βd(s(I) − kd)).

Since f is monotone, this means we can simply compare

βk to βd(s(I) − kd).

Some simple algebra shows that we can have the following algorithm A′ for the
nonparameterized problem P , given an instance I:



1086 J. CHEN, H. FERNAU, I. A. KANJ, AND G. XIA

for all parameter values k do:
if k ≤ βd

β+βd
s(I) then compute A(I, k);

else compute Ad(I, s(I) − k);
output the ‘best’ of all computed solutions.

Considering the boundary case k = βd

β+βd
s(I) gives the claimed worst-case running

time. Here, p′(j) = j(p(j) + pd(j)).
Unfortunately, we currently lack good examples that prove this approach superior

to published (problem-tailored) exact algorithms.

4. Reduction and coloring rules. In this section we show how to improve the
upper bound on the kernel size for the planar-DS problem to 67k. In the remainder
of the paper we will always assume that the graph we are dealing with is planar.

In this section we present an O(n3) time preprocessing scheme that reduces the
graph G to a graph G′ such that γ(G) = γ(G′) and such that given a minimum
dominating set for G′, a minimum dominating set for G can be constructed in linear
time. We will color the vertices of the graph G with two colors: black and white.
Initially, all vertices are colored black. Informally speaking, white vertices will be
those vertices for which we know for sure when we color them that there exists a
minimum dominating set for the graph excluding all of them. The black vertices are
all other vertices. Note that it is possible for white vertices to be in some minimum
dominating set, but the point is that there exists at least one minimum dominating
set that excludes all white vertices. Hence, the black-and-white coloring is only an
auxiliary structure and not part of the problem definition. We start with the following
definitions that are adopted from [5] with minor additions and modifications.

For a vertex v in G denote by N(v) the set of neighbors of v, and by N [v] the set
N(v) ∪ {v}. By removing a vertex v from G, we mean removing v and all the edges
incident on v from G. For a vertex v in G, we partition its set of neighbors N(v) into
three sets: N1(v) = {u ∈ N(v) | N(u) − N [v] 
= ∅}; N2(v) = {u ∈ N(v) − N1(v) |
N(u)∩N1(v) 
= ∅}; and N3(v) = N(v)−(N1(v)∪N2(v)). For two vertices v and w we
define N(v, w) = N(v)∪N(w) and N [v, w] = N [v]∪N [w]. We partition N(v, w) into
three sets: N1(v, w) = {u ∈ N(v, w) | N(u)−N [v, w] 
= ∅}; N2(v, w) = {u ∈ N(v, w)−
N1(v, w) | N(u) ∩N1(v, w) 
= ∅}; and N3(v, w) = N(v, w) − (N1(v, w) ∪N2(v, w)).

Definition 4.1. Let G = (V,E) be a plane graph. A region R(v, w) between two
vertices v and w is a closed subset of the plane with the following properties:

1. The boundary of R(v, w) is formed by two simple paths P1 and P2 in G which
connect v and w, and the length of each path is at most three.

2. All vertices that are strictly inside (i.e., not on the boundary) the region
R(v, w) are from N(v, w).

For a region R = R(v, w), let V [R] denote the vertices in R; i.e.,

V [R] := {u ∈ V | u sits inside or on the boundary of R}.

Let V (R) = V [R] − {v, w}.
Definition 4.2. A region R = R(v, w) between two vertices v and w is called

simple if all vertices in V (R) are common neighbors of both v and w; that is, V (R) ⊆
N(v) ∩N(w).

We introduce the following definition.
Definition 4.3. A region R = R(v, w) between two vertices v and w is called

quasi-simple if V [R] = V [R′] ∪R+, where R′ = R′(v, w) is a simple region between v
and w, and R+ is a set of white vertices satisfying the following conditions.
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1. Every vertex of R+ sits strictly inside R′.
2. Every vertex of R+ is connected to v and not connected to w, and is also

connected to at least one vertex on the boundary of R′ other than v.

A vertex in V (R) is called a simple vertex if it is connected to both v and w; oth-
erwise it is called nonsimple. The set of vertices R+, which consists of the nonsimple
vertices in V (R), will be referred to as R+(v, w).

For a vertex u ∈ V , denote by B(u) the set of black vertices in N(u) and by
W (u) the set of white vertices in N(u). We describe next the reduction and coloring
rules to be applied to the graph G. The reduction and coloring rules are applied to
the graph until the application of any of them does not change the structure of the
graph or the color of any vertex in the graph. The first two reduction rules, Rules 1
and 2, are slight modifications of Rules 1 and 2 introduced in [5]. The only difference
is that in the current paper they are applied only to black vertices, and not to all the
vertices as in [5].

Rule 1 (see [5]). If N3(v) 
= ∅ for some black vertex v, then remove the vertices
in N2(v) ∪N3(v) from G and add a new white vertex v′ and an edge (v, v′) to G.

Rule 2 (see [5]). If N3(v, w) 
= ∅ for two black vertices v, w and if N3(v, w)
cannot be dominated by a single vertex in N2(v, w) ∪ N3(v, w), then we distinguish
the following two cases.

Case 1. If N3(v, w) can be dominated by a single vertex in {v, w}, then (1) if
N3(v, w) ⊆ N(v) and N3(v, w) ⊆ N(w), remove N3(v, w) and N2(v, w)∩N(v)∩N(w)
from G and add two new white vertices z, z′ and the edges (v, z), (w, z), (v, z′), (w, z′)
to G; (2) if N3(v, w) ⊆ N(v) and N3(v, w) 
⊆ N(w), remove N3(v, w) and N2(v, w) ∩
N(v) from G and add a new white vertex v′ and the edge (v, v′) to G; and (3) if
N3(v, w) ⊆ N(w) and N3(v, w) 
⊆ N(v), remove N3(v, w) and N2(v, w) ∩N(w) from
G and add a new white vertex w′ and the edge (w,w′) to G.

Case 2. If N3(v, w) cannot be dominated by a single vertex in {v, w}, then remove
N2(v, w)∪N3(v, w) from G and add two new white vertices v′, w′ and the edges (v, v′),
(w,w′) to G.

Rule 3. For each black vertex v in G, if there exists a black vertex x ∈ N2(v) ∪
N3(v), color x white and remove the edges between x and all other white vertices
in G.

Rule 4. For every two black vertices v and w, if N3(v, w) 
= ∅, then for every black
vertex x ∈ N2(v, w) ∪N3(v, w) that does not dominate all vertices in N3(v, w), color
x white and remove all the edges between x and the other white vertices in G.

Rule 5. For every quasi-simple region R = R(v, w) between two vertices v and w,
if v is black, then for every black vertex x ∈ N2(v, w)∪N3(v, w) strictly inside R that
does not dominate all vertices in N2(v, w) ∪N3(v, w) strictly inside R, color x white
and remove all the edges between x and the other white vertices in G.

Rule 6. For every two white vertices u and v, if N(u) ⊆ N(v) and u ∈ N2(w) ∪
N3(w) for some black vertex w, then remove v.

Rule 7. For every black vertex v, if every vertex u ∈ W (v) is connected to all the
vertices in B(v), then remove all the vertices in W (v) from G.

Rule 8. For every two black vertices v and w, let W (v, w) = W (v) ∩ W (w). If
|W (v, w)| ≥ 2 and there is a degree-2 vertex u ∈ W (v, w), then remove all vertices
in W (v, w) except u, add a new degree-2 white vertex u′, and connect u′ to both v
and w.

Figure 2 illustrates Rules 4, 6, and 8.

A graph G is said to be reduced if every vertex in G is colored white or black and
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Fig. 2. Illustrations of Rule 4 (top figure), Rule 6 (middle figure), and Rule 8 (bottom figure).

the application of Rules 1–8 leaves the graph G unchanged. That is, the application
of any of the above rules does not change the color of any vertex in G, nor does it
change the structure of G. We have the following theorem.

Theorem 4.4. Let G be a planar graph with n vertices. Then in time O(n3)
we can construct a planar graph G′ from G such that (1) G′ is reduced, (2) γ(G′) =
γ(G), (3) there exists a minimum dominating set for G′ that excludes all white vertices
of G′, and (4) from a minimum dominating set for G′ a minimum dominating set for
G can be constructed in linear time.

Proof. Given a graph G, we first color all its vertices black. We then apply
Rules 1–8 given above until the application of any of these rules leaves G unchanged.
Let G′ be the resulting graph. Then G′ is reduced by the definition of a reduced
graph. Alber, Fellows, and Niedermeier [5] noted that each successful application of
Rules 1 and 2 (i.e., an application that changes the structure of the graph G) reduces
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the number of vertices in the graph by at least one. Hence, the total number of
applications of these two rules is bounded by n. By looking at Rules 3–7, it is easy
to see that each of these rules either reduces the number of vertices in G by at least
one or changes the color of at least one black vertex to white without adding any new
vertices to the graph. Moreover, none of Rules 1–7 increases the number of edges in
the graph. If we look at Rule 8, it is not difficult to see that each successful application
of this rule reduces the number of edges in the graph by at least 1. This is true since in
a successful application of the rule either |W (v, w)| > 2 (and in this case the numbers
of vertices and edges decrease after the application of the rule) or |W (v, w)| = 2 and
there is a vertex in W (v, w) of degree larger than 2 (otherwise the application of the
rule does not change the structure of the graph), and hence the removal of W (v, w)
decreases the number of edges in the graph. Noting that the number of edges in a
planar graph is linear in the number of vertices and that the application of the rules
becomes unnecessary if the graph does not contain any black vertices, we conclude
that the total number of successful applications of the operations in Rules 1–8 is O(n).
Alber, Fellows, and Niedermeier [5] also showed that Rules 1 and 2 can be executed
in time O(n2) when the graph is planar. Similarly, one can show that Rules 3–8 can
also be executed in O(n2) time (we leave the verification of this simple fact to the
interested reader). This, together with the fact that the total number of successful
applications of all the rules is O(n), implies that the time needed to construct G′

is O(n3).
To show parts (2) and (3) of the theorem, we prove that after the execution of any

of the rules, the resulting graph satisfies conditions (2) and (3) in the theorem. The
proof will then follow by an inductive argument on the number of applications of the
rules. Denote by H the graph before a rule is executed, and by H ′ the resulting graph
after the rule is executed. Denote by D a minimum dominating set for H excluding
all white vertices in H. Initially, H = G, and all vertices in H are black. Thus, H
trivially satisfies conditions (2) and (3) in the theorem. Suppose now that one of the
rules is executed on a graph H satisfying conditions (2) and (3) in the theorem to
yield the graph H ′. We need to show that H ′ satisfies conditions (2) and (3) as well.

Suppose that Rule 1 is executed. The same argument used in [5] shows that
γ(H) = γ(H ′).3 What is left is showing that H ′ has a minimum dominating set
consisting only of black vertices. Let D be a minimum dominating set for H consisting
of black vertices. Since N3(v) 
= ∅, D must contain a vertex in N2(v) ∪N3(v) ∪ {v}.
If D contains a vertex in N2(v)∪N3(v), then clearly this vertex can be replaced by v
which is black. Thus we can assume that D contains v and no vertex in N3(v)∪N2(v).
Then D is also a dominating set for H ′ consisting only of black vertices, and since
γ(G) = γ(H) = γ(H ′), D is a minimum dominating set for H ′. It follows that H ′

satisfies conditions (2) and (3). The proof of Rule 2 is of the same flavor.
If Rule 3 is executed, then the black vertices in the set N2(v)∪N3(v), where v is

black, will be colored white, and the edges between the white vertices are removed.
It suffices to show that after the coloring of one vertex x in N2(v) ∪N3(v) white and
removing the edges between x and the other white vertices, conditions (2) and (3) still
hold (the same argument can then be applied repetitively to every such vertex). By
our inductive hypothesis, before the application of Rule 3 to H, H had a minimum
dominating set D of size equal to γ(G) that excludes all white vertices in H. If D
contains x, we can replace x by v and have a minimum dominating set of H consisting
only of black vertices in H. Thus, we can assume, without loss of generality, that D

3The fact that this statement holds true can be easily verified by the reader.
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does not include x. Since x is the only vertex whose color has changed to white, D
consists only of black vertices in H ′. Moreover, it is not difficult to see that D is also
a dominating set in H ′ since the edges removed from H are not used to dominate
any vertices in H (these edges were incident on vertices that are not in D). Since
by removing edges from the graph the size of the minimum dominating set can only
increase, we conclude that D is a minimum dominating set for H ′ excluding all white
vertices, and γ(H ′) = γ(H) = γ(G).

Suppose Rule 4 is executed. Similarly, we need only show that conditions (2)
and (3) still hold after a vertex x has been colored white. If D contains x, then
by the assumption in Rule 4, x does not dominate all the vertices in N3(v, w), and
D must also contain at least another vertex x′ in N2(v, w) ∪ N3(v, w) ∪ {v, w} to
dominate N3(v, w). This is true since only vertices in N2(v, w) ∪ N3(v, w) ∪ {v, w}
can dominate vertices of N3(v, w). In such a case we can replace x and x′ by v and w
and have a minimum dominating set that consists only of black vertices in H. Since
x is the only vertex whose color has changed to white, D excludes all white vertices
in H ′. It is easy to see that the edges that connect white vertices in H are not
used by D to dominate any vertex. By an argument similar to the above, it follows
that D is a minimum dominating set for H ′ excluding all white vertices in H ′, and
γ(H ′) = |D| = γ(H) = γ(G).

Suppose Rule 5 is executed and a vertex x is colored white. Let R = R(v, w)
be the quasi-simple region that was being processed in the rule, and note that all
the vertices in R+(v, w) are connected to v. Let the boundary of R be (v, y, w, z, v).
Let D be a dominating set for H consisting only of black vertices. If D contains x,
then by the assumption in Rule 5, x does not dominate all the vertices in N2(v, w) ∪
N3(v, w) strictly inside R, and D must contain another black vertex x′ ∈ R(v, w) in
N2(v, w)∪N3(v, w)∪{v, w, y, z} to dominate the vertices in N2(v, w)∪N3(v, w) that
are strictly inside R. Observe that, by the definition of a quasi-simple region, the only
vertex that can be dominated by x and not by v is w. We distinguish the following
cases.

Case 1. x′ = v. Since at least one vertex r ∈ {y, w, z} must be black (w is
connected to both y and z, and no edges exist between white vertices; thus it is
not possible for all the vertices in {y, w, z} to be white) and since all the vertices in
{y, w, z} dominate w, we can replace x by r (note that x is dominated by v) to obtain
a dominating set consisting of black vertices that excludes x.

Case 2. x′ 
= v. If x′ does not dominate w, then x′ must be one of those vertices
in R+ that connect only to v and to the vertices on the boundary of R other than
w. Since all such boundary vertices are dominated by v, and x′ is dominated by v
as well, we can replace x′ by v in D, and the case reduces to Case 1 above. If x′

dominates w, then we can replace x by v to get a dominating set consisting of black
vertices that excludes x.

Thus, we can assume, without loss of generality, that D does not include x. Since x
is the only vertex whose color has changed to white, D consists only of black vertices in
H ′. By an argument similar to that above, it follows that D is a minimum dominating
set for H ′ excluding all white vertices in H ′, and γ(H ′) = |D| = γ(H) = γ(G).

Suppose Rule 6 is executed and a vertex v is removed as described in the rule.
Let D be a minimum dominating set for H excluding all white vertices in H. Thus D
does not contain v. Since v is the only vertex removed, and no vertices are colored,
it follows that D is a dominating set for H ′ excluding all white vertices in H ′. What
is left is proving that D is a minimum dominating set for H ′. Suppose that H ′ has a
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minimum dominating set D′ of size strictly smaller than D. Then D′ has to cover u,
and hence D′ contains either u or a neighbor of u in H ′. If D′ contains u, since every
neighbor of u is also a neighbor of w, and u is a neighbor of w, (D′ ∪ {w}) − {u} is
a minimum dominating set for H of size smaller than D, a contradiction (note that
since w is a neighbor of u, w is a neighbor of v as well and hence dominates v). On
the other hand, if D′ contains a neighbor of u, since N(u) ⊆ N(v), D′ also contains
a neighbor of v in H and hence dominates v. Thus, D′ is a dominating set for H of
size smaller than D, a contradiction. It follows that |D| = γ(H ′) = γ(H) = γ(G).

Suppose that Rule 7 is executed on a black vertex v and all vertices in W (v)
were removed as described in the rule. Let D be a minimum dominating set for H
excluding all white vertices in H. Thus, D does not contain any vertex in W (v).
Since the vertices in W (v) are the only vertices that were removed, and no vertices
in the graph were colored, it follows that D is a dominating set for H ′ excluding all
white vertices in H ′. What is left is proving that D is a minimum dominating set
for H ′. Suppose that H ′ has a minimum dominating set D′ of size strictly smaller
than D. Then D′ has to cover v. Hence D′ contains either v or a neighbor of v in
B(v) because all the vertices in W (v) were removed. In either case, D′ dominates
all the removed vertices in W (v) in H, since every vertex in W (v) is adjacent to all
vertices in B(v). Therefore D′ is also a dominating set for H of size smaller than D,
a contradiction. It follows that |D| = γ(H ′) = γ(H) = γ(G).

To prove the statement for Rule 8, let D be a minimum dominating set for H
excluding all white vertices in H. Again, D is a dominating set for H ′ excluding all
white vertices in H ′. Let D′ be a minimum dominating set for H ′ and suppose, to get
a contradiction, that |D′| < |D|. Without loss of generality, we can assume that D′

contains either v or w (or both); otherwise, to dominate u and u′, D′ has to contain
both u and u′, which can be replaced by v and w. Now D′ is also a dominating set for
H of smaller size than D, a contradiction. It follows that D is a minimum dominating
set for H ′ excluding all white vertices in H ′, and γ(H ′) = γ(H) = γ(G).

To prove part (4) of the theorem, note the following: (1) from a minimum dom-
inating set for G′ one can construct in O(n) time a minimum dominating set for G′

containing only black vertices (this can be achieved by associating, during the reduc-
tion phase, with the vertices colored white the black vertices that can replace them)
and (2) a minimum dominating set for G′ consisting only of black vertices is also a
minimum dominating set for G. This completes the proof.

5. A problem kernel. Let G be a reduced graph, and let D be a minimum
dominating set for G consisting of black vertices such that |D| = k. In this section,
we will show that the number of vertices n in G is bounded by 67k. The following
definitions are adopted from [5].

Given any dominating set D in a graph G, a D-region decomposition of G is a
set  of regions between pairs of vertices in D such that the following hold.

1. For any region R = R(v, w) in , no vertex in D is in V (R). That is, a vertex
in D can only be an endpoint of a region in .

2. No two distinct regions R1, R2 ∈  intersect. However, they may touch each
other by having common boundaries.

Note that all the endpoints of the regions in a D-region decomposition are vertices
in D. For a D-region decomposition , define V [] =

⋃
R∈� V [R]. A D-region

decomposition is maximal if there is no region R such that ′
=  ∪R is a D-region

decomposition with V [] � V [′
].

For a D-region decomposition , associate a planar graph G�(V�, E�) with pos-
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sible multiple edges, where V� = D, and such that there is an edge between two
vertices v and w in G� if and only if R(v, w) is a region in . A planar graph with
multiple edges is called thin if there is a planar embedding of the graph such that for
any two edges e1 and e2 between two distinct vertices v and w in the graph, there
must exist two more vertices which sit inside the disjoint areas of the plane enclosed
by e1 and e2.

Alber, Fellows, and Niedermeier [5] showed that the number of edges in a thin
graph of n vertices is bounded by 3n− 6. They also showed that for any plane graph
G and a dominating set D of G, there exists a maximal D-region decomposition for
G such that G� is thin. Since the maximal D-region decomposition in [5] starts with
any dominating set D and is not affected by the color a vertex can have, the same
results in [5] hold true for our reduced graph G whose vertices are colored black/white,
and with a minimum dominating set D consisting of only black vertices. The above
discussion is summarized in the following proposition.

Proposition 5.1. Let G be a reduced graph and D a dominating set of G con-
sisting of black vertices. Then there exists a maximal D-region decomposition  of G
such that G� is thin.

Corollary 5.2. Let G be a reduced graph with a minimum dominating set D
consisting of k black vertices, and let  be a maximal D-region decomposition of G
such that G� is thin. Then the number of regions in  is bounded by 3k − 6.

Proof. The number of regions in  is the number of edges in G�. Since G� has
|D| = k vertices, by [5], the number of edges in G� is bounded by 3k − 6.

In the remainder of this section,  will denote a maximal D-region decomposition
of G such that G� is thin. Let u and v be two vertices in G. We say that u and v
are boundary-adjacent if (u, v) is an edge on the boundary of some region R ∈ . For
a vertex v ∈ G, denote by N∗(v) the set of vertices that are boundary-adjacent to v.
Note that for a vertex v ∈ D, since v is black, by Rule 3, all vertices in N2(v)∪N3(v)
must be white. Note also that, by the definition of a D-region decomposition, all the
endpoints of the regions in  are vertices in D, and hence are colored black.

Proposition 5.3. Let v ∈ D. The following are true.

(a) (Lemma 6, [5].) Every vertex u ∈ N1(v) is in V [].
(b) The vertex v is an endpoint of a region R ∈ . That is, there exists a region

R = R(x, y) ∈  such that v = x or v = y.
(c) Every vertex u ∈ N2(v) which is not in V [] is connected only to v and to

vertices in N∗(v).
Proof. The proof of part (a) appears in [5].

To prove (b), suppose, to get a contradiction, that v is not the endpoint of any
region in . Since v ∈ D, and by the definition of a region, v must be outside every
region in . Now v must have a vertex in N1(v); otherwise, all vertices in N(v) would
be white and hence removed by Rule 7 (we assume, without loss of generality, that
G does not contain any isolated vertices). Let u ∈ N1(v). By part (a) above, u must
belong to some region R = R(x, y). Observe that u must be on the boundary of R;
otherwise v would be a vertex in V [R]. Again, by the definition of a region, u is
either boundary-adjacent to x or to y. Suppose, without loss of generality, that u is
boundary-adjacent to x. But then the degenerated region formed by (x, u, v) does not
cross  (it only touches R), contradicting the maximality of .

To prove part (c), let u be a vertex in N2(v) and note that u is white, and suppose
that u is connected to a vertex w 
= v such that w /∈ N∗(v). Note that w must be in
N1(v) (otherwise w would be white and u and w cannot be adjacent) and hence, by
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part (a) above, must belong to some region R = R(x, y). Since u /∈ V [], w cannot be
inside R and hence is on the boundary of R. Moreover, by the definition of a region,
w must be boundary-adjacent to either x or y. Without loss of generality, assume w
is boundary-adjacent to x. Now w /∈ N∗(v), so w cannot be boundary-adjacent to
v, and x 
= v. Consider the degenerated region formed by (v, u, w, x). This region
cannot cross any region in ; otherwise it crosses it via (u,w), and u would be in
V []. But this contradicts the maximality of  since u /∈ V [].

Let x be a vertex in G such that x /∈ V []. Then by part (b) in Proposition 5.3,
x /∈ D. Thus, x ∈ N(v) for some black vertex v ∈ D ⊆ V []. By part (a) in
Proposition 5.3, x /∈ N1(v), and hence, x ∈ N2(v) ∪N3(v). By Rule 3, the color of x
must be white. Let R = R(v, w) be a region in V [] of which v is an endpoint (such
a region must exist by part (b) of Proposition 5.3). We distinguish two cases.

Case A. x ∈ N3(v). Since v is black, by Rule 1, this is only possible if deg(x) = 1
and N2(v) = ∅ (in this case x will be the white vertex added by the rule). In such a
case it can be easily seen that we can flip x and place it inside R without affecting
the planarity of the graph.

Case B. x ∈ N2(v). Note that in this case N3(v) = ∅ by Rule 1 (otherwise
N2(v) ∪ N3(v) would be removed), and x is only connected to v and N∗(v) by part
(c) of Proposition 5.3. If deg(x) = 2, by a similar argument to Case A above, x can
be flipped and placed inside R.

According to the above discussion, it follows that the vertices in G can be classified
into two categories: (1) those vertices that are in V [] and (2) those that are not in
V [], which are those vertices of degree larger than 2 that belong to N2(v) for some
vertex v ∈ D and in this case must be connected only to vertices in N∗(v). To bound
the number of vertices in G we need to bound the number of vertices in the two
categories. We start with the vertices in category (2).

Let O denote the set of vertices in category (2). Note that all vertices in O are
white, and no two vertices u and v in O are such that N(u) ⊆ N(v). To see why
the latter statement is true, note that every vertex in O must be in N2(w) for some
black vertex w ∈ D. So if N(u) ⊆ N(v), then by Rule 6, v would have been removed
from the graph. To bound the number of vertices in O, we will bound the number of
vertices in O that are in N2(v) where v ∈ D. Let us denote this set by N†(v). Let
N∗

† (v) be the set of vertices in N∗(v) that are neighbors of vertices in N†(v). Note

that every vertex in N†(v) has degree ≥ 3 and is connected only to v and to N∗
† (v),

and that no two vertices x and y in N†(v) are such that N(x) ⊆ N(y).

Assumption 5.4. For the sake of counting the number of vertices in N†(v), it is
safe to assume that (1) every vertex in N†(v) has degree exactly 3; (2) no two vertices
x and y in N†(v) are such that N(x) ⊆ N(y); and (3) vertices in N†(v) are only
connected to v and to vertices in N∗

† (v).

Proof. Since properties (2) and (3) are already satisfied by the vertices in N†(v),
we need only show how we can make the vertices in N†(v) satisfy property (1) with-
out reducing their number and without affecting properties (2) and (3). To satisfy
property (1), we will remove some edges between vertices in N†(v) and N∗

† (v) with-
out affecting the other properties. This can be done as follows. List the vertices
in N†(v) in an arbitrary order 〈u1, . . . , ur〉. Start by picking u1; then choose any
two neighbors of u1 in N∗

† (v) and remove all edges that join u1 to all its neighbors
other than v and these two chosen neighbors. Inductively, suppose we have processed
vertex ui−1; we process vertex ui as follows. Pick two neighbors wi

1 and wi
2 of ui

in N∗
† (v) such that no vertex in {u1, . . . , ui−1} has both wi

1 and wi
2 as its picked
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neighbors. Delete all the edges that join ui to all vertices other than v, wi
1, and wi

2.
We need to show that it is always possible to carry out this step. Suppose not, and
let i be the smallest index such that this is not possible. It is easy to verify using
the facts that every vertex in N†(v) has degree larger than 2, no two vertices x and
y are such that N(x) ⊆ N(y), and that i > 3. Note that it must be the case that
deg(ui) > 3; otherwise, since this step cannot be carried out, the only two neighbors
of ui other than v must be neighbors of some other vertex uj ∈ {u1, . . . , ui−1}, and
hence we would have N(ui) ⊆ N(uj) for some uj ∈ {u1, . . . , ui−1}, contradicting the
properties satisfied by category-(2) vertices as discussed above. Let a, b, c be three
neighbors of ui other than v. Since this step cannot be carried out successfully, there
must exist three distinct vertices up, uq, us ∈ {u1, . . . , ui−1} such that {a, b} ⊂ N(up),
{a, c} ⊂ N(uq), and {b, c} ⊂ N(us). Consider the subgraph H of G induced by the
set of vertices {v, up, uq, us, ui, a, b, c}. Then the following is true about the vertices
in H: (1) ui, up, uq, us, a, b, c are neighbors of v in H; (2) v, a, b, c are neighbors of
ui in H; (3) v, a, b are neighbors of up in H; (4) v, a, c are neighbors of uq in H; (5)
v, b, c are neighbors of us in H; (6) v, ui, up, uq are neighbors of a in H; (7) v, ui, up, us

are neighbors of b in H; and (8) v, ui, uq, us are neighbors of c in H. Using all this
information, it is not difficult to verify that H is nonplanar (identify vertex a with
vertex b along the path (a, up, b) to obtain a copy of K3,3), contradicting the planarity
of G. This completes the proof.

Proposition 5.5. |N†(v)| ≤ 3/2|N∗
† (v)|.

Proof. To simplify the counting, by Assumption 5.4, we can assume that every
vertex in N†(v) has degree exactly 3; no two vertices x and y in N†(v) are such
that N(x) ⊆ N(y); and vertices in N†(v) are connected only to v and N∗

† (v). Let

x be the number of vertices in N∗
† (v), and let f(x) = |N†(v)|. We will show that

f(x) ≤ 3/2(x−1). We proceed by induction on x. If x = 1, it is clear that f(x) = 0 ≤
3/2(x−1) since by Assumption 5.4, each vertex in N†(v) has degree exactly 3. If x = 2,
then clearly f(x) ≤ 1 ≤ 3/2(x − 1) since at most one vertex can be connected to v
and the two vertices in N∗

† (v) without violating properties (1)–(3) in Assumption 5.4.
If x = 3, then f(x) ≤ 3 since at most three vertices can be connected to N∗

† (v)
without violating properties (1)–(3) in Assumption 5.4, each connected to v and to
two other vertices in N∗

† (v). Inductively, suppose that if N∗
† (v) contains y vertices

with 3 ≤ y < x, then the number of vertices f(y) in N†(v) satisfies f(y) ≤ 3/2(y−1).
Suppose now that |N∗

† (v)| = x. Let u be a vertex in N†(v), and let a, b be its
neighbors in N∗

† (v). The vertex u is called hollow if the interior of the region enclosed

by (u, a, v, b, u) contains no vertices of N∗
† (v). If every vertex in N†(v) is hollow, then

it is clear that f(x) ≤ x ≤ 3/2(x− 1) for x > 3, and the bound f(x) = x is attained
when there are x vertices in N†(v), and every vertex u in N†(v) is adjacent to v and
the two neighbors a and b in N∗

† (v) immediately to the left and right in the clockwise
(or counterclockwise) ordering, respectively, of u in the embedding. Suppose now that
there is a vertex u ∈ N†(v) such that u is not hollow. The edges (u, a), (u, v), (u, b),
(v, a), (v, b) separate the plane into three faces: F1 enclosed by the cycle (u, a, v, u),
F2 enclosed by the cycle (u, v, b, u), and F3, the outer face determined by the cycle
(u, a, v, b, u). Let x1 be the number of vertices in N∗

† (v) that are in F1 including the
boundary, x2 the number in F2, and x3 the number in F3. Note that 1 ≤ x1 < x
since a ∈ F1 and b /∈ F1, 1 ≤ x2 < x since b ∈ F2 and a /∈ F2, and 2 ≤ x3 < x
since a and b are in F3 and at least one vertex in N∗

† (v) is not in F3 since u is hollow,
and hence the interior of the face (u, a, v, b, u) contains at least one vertex in N∗

† (v).
Moreover, x1 + x2 + x3 = x + 2, since a and b are the only vertices counted twice
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when we add the vertices in N∗
† (v) that are in F1, F2, and F3. Now every vertex in

N†(v) is either (1) connected to two vertices in N∗
† (v) in F1, (2) connected to two

vertices in N∗
† (v) in F2, or (3) connected to two vertices in N∗

† (v) in F3. Note that
vertex u satisfies property (3). Since x1, x2, x3 < x, by the inductive hypothesis, the
number of vertices satisfying (1) is bounded by f(x1) ≤ 3/2(x1 − 1), the number of
vertices satisfying (2) is bounded by f(x2) ≤ 3/2(x2 − 1), and the number of vertices
satisfying (3) is bounded by f(x3) ≤ 3/2(x3−1). Now f(x) ≤ f(x1)+f(x2)+f(x3) ≤
3/2(x1 + x2 + x3)− 9/2 = 3x/2− 3/2 = 3/2(x− 1). This completes the proof.

Lemma 5.6. The number of vertices in category (2) (i.e., the number of vertices
not in V []) is bounded by 18k.

Proof. Let v and w be any two distinct vertices in D and observe the following.
First, N†(v) ∩ N†(w) = ∅, because if u ∈ N†(v) ∩ N†(w), then (v, u, w) would be a
degenerated region with u /∈ V [] contradicting the maximality of . Second, from
the first observation it follows that w /∈ N∗

† (v) and v /∈ N∗
† (w), and in general no

vertex a ∈ D belongs to N∗
† (b) for any vertex b ∈ D; otherwise, there exists a vertex

u ∈ N†(v) that is connected to w, and hence u ∈ N†(v) ∩ N†(w), contradicting the
first observation. Third, N∗

† (v) ∩ N∗
† (w) = ∅; otherwise, there exists a vertex u ∈

N∗
† (v) ∩N∗

† (w) that is connected to a category-(2) vertex a ∈ N†(v) (or b ∈ N†(w)),
and the degenerated region (v, a, u, w) (or (w, b, u, v)) would contain the vertex a /∈ 
(or b /∈ ), contradicting the maximality of .

Let B be the number of vertices not in D that are boundary-adjacent to vertices
in D (i.e., in N∗(v) − D for some v ∈ D). Combining the above observations with
Proposition 5.5, it follows that the number of category-(2) vertices is

∑

v∈D

|N†(v)| ≤ 3

2

∑

v∈D

|N∗
† (v)| ≤ 3B/2.

According to the definition of a region, each region in  has at most six vertices
on its boundary, two of which are vertices in D. Thus, each region in  can contribute
with at most four vertices to B. Note that from the above discussion no vertex a ∈ D
belongs to N∗

† (b) for any vertex b ∈ D, and hence the endpoints of the regions do
not contribute to B. By Corollary 5.2, the number of regions in  is bounded by
3k − 6. It follows that B ≤ 12k − 24, and hence the number of category-(2) vertices
is bounded by 18k − 36 < 18k. This completes the proof.

To bound the number of vertices in category (1), fix a region R(v, w) between
v, w ∈ D. We have the following lemma whose proof is technical and based on case-
by-case structural analysis. The proof of the lemma appears in the appendix.

Lemma 5.7 (see Lemma A.5 in the appendix). Let R = R(v, w) be a region in
V []. The number of vertices in V (R) is bounded by 16.

Theorem 5.8. The number of vertices in G is bounded by 67k.

Proof. By Lemma 5.6, the number of category-(2) vertices in G is bounded by
18k. Using this bound, we can assume that each region in  is nice. By Corollary 5.2,
the number of regions in  is bounded by 3k−6. According to Lemma 5.7, the number
of vertices in V (R), where R ∈  is a nice region, is bounded by 16. It follows that
the number of vertices in V () is bounded by 48k− 96. Thus, the number of vertices
in V [], and hence in category (1), is bounded by 48k−96 plus the number of vertices
in D which are the endpoints of the regions in . Therefore the number of vertices
in V [] is bounded by 49k− 96, and the total number of vertices in G is bounded by
67k − 96 < 67k. This completes the proof.
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Theorem 5.9. Let G be a planar graph with n vertices. Then in time O(n3),
computing a dominating set for G of size bounded by k can be reduced to computing
a dominating set of size bounded by k for a planar graph G′ of n′ < n vertices, where
n′ ≤ 67k.

Proof. According to Theorem 4.4, in time O(n3) we can construct a reduced
graph G′ from G, where γ(G′) = γ(G), and such that a dominating set for G can be
constructed from a dominating set for G′ in linear time. Moreover, the graph G′ has
no more than n vertices. If G has a dominating set of size bounded by k, then G′ has
a dominating set of size bounded by k (since γ(G) = γ(G′)), and by Theorem 5.9, we
must have n′ ≤ 67k. If this is the case, then we can work on computing a dominating
set for G′ of size bounded by k, from which a dominating set for G can be easily
computed. If this is not the case, then G does not have a dominating set of size
bounded by k, and the answer to the input instance is negative. This completes the
proof.

6. A simple algorithm. In this section we present a simple algorithm for de-
termining whether a graph G has a dominating set of size bounded by k.

Let G = (V,E) be a planar graph given with an embedding in the plane. The layer
decomposition of G with respect to the embedding is a partitioning of V into disjoint
layers (L1, . . . , Lr) defined inductively as follows. Layer L1 is the set of vertices that
lie on the outer face of G, and layer Li is the set of vertices that lie on the outer face
of G−⋃i−1

j=1 Lj for 1 < i ≤ r. It is well known that a layer decomposition of a planar
graph G can be computed in linear time in the number of vertices in the graph [4].

A separator in a graph G is a set of vertices S whose removal disconnects G.
If (L1, . . . , Lr) is a layer decomposition of G, then clearly the vertices in any layer
Li form a separator in G, separating the vertices in layers L1, . . . , Li−1 from those
in layers Li+1, . . . , Lr. Let (G, k) be an instance of the planar-DS problem. By
Theorem 5.9, we can assume that G is reduced and that the number of vertices n of
G satisfies n ≤ 67k. Let (L1, . . . , Lr) be a layer decomposition of G. Let c > 0 be a
constant which will be determined later, and set l = �c√k�. Consider the families of
layers Fi, i = 1, . . . , l, where Fi consists of layers Li, Li+l, Li+2l, . . . . Assume for now
that the number of layers r ≥ l. We will show later how to handle the situation when
this is not the case. The families Fi, i = 1, . . . , l, are disjoint, and each family forms a
separator separating the graph into connected components that will be called chunks,
where each chunk consists of at most l consecutive layers. Since these l families are
disjoint and partition the layers into l groups, and since the graph has at most 67k
vertices, there exists an index 1 ≤ μ ≤ l, such that the number of vertices in Fμ

is bounded by 67k/l. Again, observe that the removal of Fμ from G separates G
into chunks, each consisting of at most l consecutive layers. Let these chunks be
G1, . . . , Gs.

The basic idea behind the algorithm is to apply a simple divide-and-conquer strat-
egy by removing the vertices in the family Fμ to split the graph into chunks, then
to compute a minimum dominating set for the resulting chunks using the algorithm
introduced in [33], which is a variation of Baker’s algorithm [8]. To do this, for each
vertex v in the Fμ, we “guess” whether v is in the minimum dominating set for G or
not (basically, what we mean by guessing is enumerating all sequences correspond-
ing to the different possibilities). For each guess of all the vertices in Fμ, we will
solve the corresponding instance with respect to that guess. It was shown in [33]
how this guessing process can be achieved using at most three statuses per vertex.
Hence, guessing the vertices in Fμ can be done by enumerating at most 3|Fμ| ≤ 367k/l
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ternary sequences. After guessing each vertex in the separator and updating the
graph accordingly, the instance becomes an instance of a variation of the minimum
dominating set problem due to the constraints placed on some of the vertices in the
graph. Kanj and Perković introduced an algorithm in [33], which is a variation of
Baker’s algorithm [8], to solve this problem. The algorithm introduced in [33] solves
this problem on the chunks in time O(27d+1n), where d is the maximum number of
layers in a chunk (i.e., the maximum depth of a chunk). Noting that d ≤ l and that
n ≤ 67k, we conclude that after guessing all the vertices in Fμ, the problem can be
solved in time O(27lk). If the number of layers r in G is less than l, we can simply
call the algorithm in [33] directly on G to solve the problem in time O(27lk). The
algorithm is given in Figure 3 below.

It is not difficult to verify that the running time of the algorithm is O(367k/l ·27l ·
k+n3), where the O(n3) time is the time taken to reduce G to its kernel. Niedermeier
and Rossmanith showed how to get rid of the k factor corresponding to the kernel
size in the running time of such algorithms [36]. Using their techniques, the running
time of the algorithm becomes O(n3 + 367k/l · 27l). We choose c, and hence l, so that
the above expression is minimized. It can be shown that the expression is minimized

when c =
√

67/3, and the running time of the algorithm becomes O(n3 + 245
√
k).

Algorithm. DS-solver

Input: a planar graph G of n vertices, and a parameter k
Output: a dominating set D of size ≤ k in case it exists;

1. use the results in Theorem 5.9 to kernelize G;
2. if the number of vertices n of G is > 67k then

Stop(“G does not have a dominating set of size ≤ k”);

3. let c =
√

67/3; l = �c√k�;
4. if the number of layers in G is < l then

use the algorithm in [33] to solve the problem in time O(245
√
kk); Stop;

5. let Fμ be a separator of size ≤ 67k/l separating the graph into chunks
G1, . . . , Gs each consisting of at most l consecutive layers;

6. for each assignment to the vertices in Fμ do
update D;
split the graph into its components;
compute a minimum dominating set D′ for the resulting graph using the
algorithm in [33];
D = D ∪D′;

7. output the smallest dominating set constructed in step 6 in case its size is
bounded by k; otherwise return (“G does not have a dominating set of size
≤ k”).

Fig. 3. A simple algorithm solving planar-DS.

Theorem 6.1. In time O(n3 + 245
√
k), it can be determined whether or not a

planar graph on n vertices has a dominating set of size bounded by k.
Theorem 6.1 shows that our algorithm for solving the planar-DS problem is com-

petitive with the previous algorithms using the similar technique of layer decomposition

of a planar graph [4, 33]. The above algorithm improves the original O(270
√
kn) time

algorithm given in [4] for the problem. At the same time, our algorithm is much
simpler than the algorithms in [4, 23, 25, 33], illustrating the power of kernelization
in the process of designing efficient algorithms for parameterized NP-hard problems.
Finally, after a kind of race resulting in better and better algorithms [4, 23, 25, 33],

Fomin and Thilikos recently presented an O(n3+215.13
√
k) time algorithm to solve the

planar-DS problem based on the concept of branchwidth [25], the best treewidth
based algorithm being only slightly worse [23].
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7. Summary and extensions. In this paper we exhibited the first lower bound
results on kernel sizes and, motivated by these findings, we strived to improve on the
(still huge) constants involved in the known linear kernel for planar-DS.

Are there other, possibly more sophisticated arguments for showing lower bounds
on kernel sizes? In particular, it would be interesting to have arguments ruling out,
for example, the existence of a kernel of size o(k3) in a situation when a kernel of size
O(k3) has been obtained. The algebra we used in the proof of Theorem 3.1 does not
extend to such cases.

We mention that the concept of a black-and-white graph we used for deriving the
kernel upper bound results for planar-DS also allows us to exhibit a small kernel for
a variation of the dominating set problem, called the red/blue dominating set

problem, as studied by Weihe [41]: Given a graph G = (V,E), with V partitioned
into Vred ∪Vblue, and a positive integer k, is there a red/blue dominating set D ⊆ Vred

with |D| ≤ k, i.e., Vblue ⊆ N(D)? Namely, if we consider the red vertices as “black”
in our notation and the blue vertices as “white,” and if we reanalyze our reduction
rules, we can state the following corollary.

Corollary 7.1. Planar red/blue dominating set admits a problem kernel
of size 67k.

As exhibited in [4, 23], the possibly better known face cover problem can be
solved with the help of planar red/blue dominating set, by introducing “face
vertices.” However, we are still investigating if we could claim a small kernel for face

cover, since we are not keeping the (face) structure of the original problem. Notice
that a cubic kernel was derived in [1, Thm. 1]. Based on this sort of problem kernel,

we could then arrive at an O∗(c
√
k) algorithm for face cover that is significantly

better than what was obtained in [4], close to being competitive with [23], along the
lines of the preceding section.

Appendix. In this section we prove Lemma 5.7. We first start with some
observations and preliminary results.

Fix a region R(v, w) between v, w ∈ D. Without loss of generality, assume the
boundary of R is determined by the two paths (v, v1, w1, w) and (v, v2, w2, w). Note
that all vertices in V (R) belong to N(v, w), and that v1, v2 ∈ N∗(v) and w1, w2 ∈
N∗(w). If there is a degree-1 vertex x connected to v (resp., w), then this vertex is in
N3(v) (resp., N3(w)) and must be colored white by Rule 3. Similarly, if there exists
a degree-2 vertex y that is connected to v and either v1 or v2 (resp., w and either
w1 or w2), then y is in N2(v) (resp., N2(w)) and must be colored white by Rule 3.
Now if a degree-1 white vertex is connected to v, then since the vertices in N†(v) are
white and are neighbors of v, by Rule 6 we must have N†(v) = ∅. During the process
of counting the number of vertices in N†(v), we bounded the number of vertices in
N†(v) by 3|N∗(v)|/2. This can be looked at as each vertex in N∗(v) contributing 3/2
vertices to |N†(v)|. So if a degree-1 white vertex is connected to v (note that at most
one degree-1 vertex can be connected to v), this means that N∗(v) which contains at
least two vertices will not contribute to the number of vertices in N†(v), and hence,
the bound on |N†(v)| will be decreased by at least three. Similarly, if a degree-2 white
vertex is connected to v and v1 (or v2) (again, note that there can be at most one
degree-2 vertex connected to v and to v1 (or v2)), then no vertex in N†(v) can be
connected to v1 (or v2). This can be regarded as a reduction to the bound on |N†(v)|
by 3/2. Thus, if we use the upper bound on the number of vertices in category (2)
computed above, we may assume without loss of generality that no degree-1 vertex is
connected to v or w and that no degree-2 vertex is connected to v and v1, v and v2,
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w and w1, or w and w2. We will also assume that the boundary of a region R(v, w)
consists of exactly six distinct vertices; that is, the region is not a degenerated region.
The case of a degenerated region obviously yields a better bound on the number of
vertices in the region. Let us call a region with all the above properties nice. We start
with the following propositions.

Proposition A.1. If there is no simple black vertex strictly inside a quasi-simple
region R = R(v, w), then V (R) contains at most two simple white vertices.

Proof. Suppose, to get a contradiction, that V (R) contains more than two simple
white vertices, and let a, b, and c be three such vertices. Since all three vertices are
simple, one vertex must be engulfed within the area determined by v, w, and the
other two vertices. Suppose that b is situated within the area (v, a, w, c, v). Since, by
the assumption of the proposition, all the simple vertices strictly inside V (R) must be
white, and since all the nonsimple vertices inside V (R) (i.e., vertices in R+) are white
by definition, and since no edges exist between white vertices, it follows that the white
simple vertex b, engulfed by the area (v, a, w, c, v), is connected only to v and w and
hence has degree 2. Note that the color of both v and w must be black since there
are simple white vertices that are connected to both v and w. Now |W (v, w)| > 2
because {a, b, c} ⊆ W (v, w). But this makes Rule 8 applicable, contradicting the fact
that G is reduced. This completes the proof.

Proposition A.2. Let R = R(v, w) be a quasi-simple region where the color of
v is black; then V (R) has at most four simple vertices.

Proof. Suppose first that R has six or more simple vertices. Let S be the set of
those simple vertices that are strictly inside R. Then |S| ≥ 4. Since the vertices in
S are simple and hence connect to both v and w, it is obvious that no vertex lying
strictly inside R can dominate all vertices in S. Since S is a subset of those vertices in
N2(v, w)∪N3(v, w) that are strictly inside R, it follows that no vertex that is strictly
inside R can dominate all vertices in N2(v, w) ∪ N3(v, w). Now all vertices that lie
strictly inside R belong to N2(v, w) ∪ N3(v, w); thus, by Rule 5, all vertices strictly
inside R must be white. Noting that |S| ≥ 4, and that all the vertices in S are simple
white vertices, this contradicts Proposition A.1.

Suppose now that R has five simple vertices. Let a, b, and c be the three simple
vertices that lie strictly inside R. By an argument similar to the above, we can
assume that vertex b is engulfed within the area determined by v, a, w, and c. Again
all the vertices strictly inside R must belong to N2(v, w) ∪ N3(v, w). Since a does
not dominate c, and vice versa, it follows that a and c are colored white by Rule 5.
Now a, b, and c are the only simple vertices strictly inside R, but by Proposition A.1,
no three simple white vertices can be contained in R. This forces b to be black and
to be connected to both a and c (otherwise b would be colored white by Rule 5).
Now all other nonsimple vertices in R must be connected to the boundary and hence
cannot be connected to b (all the vertices other than a and c which can be connected
to b have to belong to the area engulfed by (v, a, w, c) and cannot be connected to
the boundary). Thus, W (b) = {a, c}, and every vertex in W (b) is connected to all
vertices in B(b) = {v, w} (note that since a and c are white and are connected to
w, w must be black). By Rule 7, W (b) = {a, c} should have been removed at this
point, a contradiction. Therefore, R has at most four simple vertices and the proof is
complete.

Proposition A.3. Let (v, y, w, z, v) be the boundary of a quasi-simple region
R = R(v, w), and suppose that v and y are black. Then there can be at most one
white vertex in R+ = R+(v, w) that is connected to both v and y.
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Proof. Suppose, to get a contradiction, that there are at least two white vertices
in R+ that are connected to both v and y. Since all the vertices in R+ are white
and hence cannot be connected together, there must exist two white vertices a and
b in R+ satisfying that the area engulfed by (v, a, y, v) is empty, and that the area
engulfed by (v, b, y, v) contains only the vertex a. Clearly, the degree of a is exactly 2,
and a belongs to N2(v) ∪ N3(v). Now since both a and b are connected to both v
and y, we have N(a) ⊆ N(b). Given the fact that v is black, this is a contradiction
to Rule 6.

Proposition A.4. Let R = R(v, w) be a quasi-simple region, and suppose that
v is black. Let (v, y, w, z, v) be the boundary of R. If

(a) there are no simple vertices strictly inside R or
(b) there are simple vertices strictly inside R and all vertices in R+ = R+(v, w)

are connected to y,

then V (R) ∪ {w} contains at most three white vertices. Moreover, if there are three
white vertices in V (R) ∪ {w}, then either R+ 
= ∅ or there is a simple black vertex
interior to R.

Proof. To prove that part (a) implies the statement of the proposition, suppose
that there are no simple vertices lying strictly inside R. Then clearly all the white
vertices in V (R) come from R+ ∪ {y, z}. If y is white, then no vertex in R+ can be
connected to y because the vertices in R+ are all white. On the other hand, since
R+ ⊆ N2(v) ∪ N3(v), if y is black, by Proposition A.3, at most one white vertex in
R+ can be connected to y, and similarly if z is black. Since every vertex in R+ has
to be connected to either y or z by the definition of a quasi-simple region, it follows
from the above that V (R) contains at most two white vertices, and hence V (R)∪{w}
contains at most three white vertices. Now when V (R) ∪ {w} contains three white
vertices, w must be white, and hence, y and z are black. Thus, the two white vertices
other than w in V (R) ∪ {w} come from R+, and R+ 
= ∅.

To prove part (b), note first that, by Proposition A.2, the number of simple
vertices in R including y and z is bounded by four. We will assume that the number
of simple vertices in R is exactly four. The cases when there are less than four simple
vertices in R are simpler and yield the desired bound. Let a and b be the other two
simple vertices, and assume that the four simple vertices y, a, b, z appear in the
preceding sequence in a clockwise order around v. Observe that the white vertices
in V (R) come from R+ ∪ {y, a, b, z}. Also observe that since all the vertices in R+

are connected to y by the hypothesis of part (b), either y is white and R+ is empty
or y is black and by Proposition A.3, R+ contains at most one vertex. It follows
that the number of white vertices in R+ ∪ {y} is bounded by one. Now suppose
to get a contradiction that V (R) ∪ {w} contains four white vertices. Since no two
white vertices are connected and since all vertices in {a, b, z} are connected to w, w
must be black, and all three vertices a, b, and z must be white. But then the degree
of b is exactly 2, and |W (v, w)| > 2, contradicting Rule 8. To complete the proof,
supposing that V (R) ∪ {w} contains exactly three white vertices, we need to show
that either R+ 
= ∅ or there exists a simple black vertex inside R. Suppose, to get a
contradiction, that R+ = ∅ and the interior vertices to R, a, b, are all white. Then
w must be black in this case, and either y or z is white. Without loss of generality,
assume y is white. Since there are no edges between white vertices, the degree of a
must be 2, and {y, a, b} ⊆ W (v, w), again a contradiction to Rule 8.

Lemma A.5 (see Lemma 5.7). Let R = R(v, w) be a nice region in V []. The
number of vertices in V (R) is bounded by 16.
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Proof. Every vertex in V (R) is in N(v, w), and hence is connected to either v
or w. We distinguish two cases.

Case 1. N3(v, w) = ∅. In this case every vertex in V (R) − {v1, v2, w1, w2} has to
be connected to at least one vertex in {v1, v2, w1, w2} because v1, v2, w1, w2 are the
only vertices in V (R) that possibly belong to N1(v, w). Since R is nice, the vertices in
V (R) − {v1, v2, w1, w2} can be classified into the following categories, where a vertex
is assigned to the first category that it satisfies:

(i) vertices connected to v and v1, but not connected to w1;
(ii) vertices connected to v and w1;
(iii) vertices connected to v and w2;
(iv) vertices connected to v and v2;
(v) vertices connected to w and w2, but not connected to v2;
(vi) vertices connected to w and v2;
(vii) vertices connected to w and v1; and
(viii) vertices connected to w and w1.

Note that one of categories (ii) and (vii) must be empty; otherwise, according to our
placement of the vertices in the categories, we have two distinct vertices in V (R)
other than v1 and w1: one of them is connected to v and w1 and the other to w
and v1, contradicting the planarity of the graph. Similarly, one of categories (iii) and
(vi) must be empty. Without loss of generality, assume that categories (iii) and (vii)
are empty. If, in addition, either category (ii) or category (vi) is empty, then the
situation becomes simpler, leading to a better bound on the number of vertices in
V (R). Thus, we will assume that both categories (ii) and (vi) are nonempty. Note
also that since R is nice, no vertex interior to R has degree 2, and every vertex in
category (i) must be connected to some vertex interior to R. Since category (ii) is
nonempty, and by the planarity of G, a vertex in category (i) can be connected only
to vertices in category (ii). Moreover, since the vertices in category (i) are connected
only to v and to neighbors of v including v1 (since these vertices can be connected
only to v and to vertices in category (ii)), all these vertices belong to N2(v) ∪N3(v).
Since v is black, by Rule 3, all vertices in category (i) must be white. Now the vertices
in categories (i) and (ii), plus v, v1, and w1, form a quasi-simple region between v and
w1, Q1 = R(v, w1). Moreover, all the vertices in V (Q1), except those in category (i),
are simple vertices because all vertices in V (Q1), except those in category (i), have to
be connected to both v and w1. Since v is black (all the endpoints of regions in  are
black), by Proposition A.2, the number of vertices in V (Q1) except those vertices in
category (i) is bounded by 4. Now we bound the number of vertices in category (i).
Every vertex in category (i) is white and is connected to v and v1. If category (i) is
nonempty, then v1 must be black, and the vertices in category (i) are white vertices
in Q+

1 (v, w1) that are connected to v and v1. It follows from Proposition A.3 that the
number of vertices in category (i) is bounded by 1. This shows that the number of
vertices in V (Q1) is bounded by 5. By symmetry, the number of vertices in V (Q2),
where Q2 is the quasi-simple region between w and v2 consisting of the vertices in
categories (v) and (vi), plus the vertices w, w2, v2, is bounded by 5. Now we bound
the number of vertices in categories (iv) and (viii). We have the following claim.

Claim. The number of vertices in category (iv) (resp., category (viii)) is bounded
by 2. Moreover, at most one vertex in category (iv) (resp., category (viii)) is white.

Consider the vertices in category (iv). Suppose that there are three or more
vertices in category (iv), and let a1, a2, a3 be three vertices in category (iv) such
that no vertex is engulfed in the area of the embedding determined by (v, a1, v2), a1
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Fig. 4. Illustration of a possible worst-case scenario for Case 1. Empty circles represent white
vertices, and filled circles black vertices.

is the only vertex engulfed in the area determined by (v, a2, v2), and a1 and a2 are
the only two vertices engulfed in the area determined by (v, a3, v2). Now a1 and a2

must belong to N2(v) ∪ N3(v). Since v is black, it follows from Rule 3 that a1 and
a2 must be white and that no edge exists between a1 and a2. But this means that
N(a1) ⊆ N(a2), and since a1 ∈ N2(v) and v is black, according to Rule 6, this leads
to a contradiction. It follows that at most two vertices can be in category (iv). By
symmetry, at most two vertices can be in category (viii). Note also that it follows
from the above proof that if there are exactly two vertices a1 and a2 in category (iv)
(resp., category (viii)), then at most one vertex in {a1, a2} can be white. This proves
the claim.

Now the vertices in V (R) consist of vertices of V (Q1), vertices of V (Q2), category
(iv) and category (viii) vertices, and the two vertices v2 and w1 (in case these two
vertices were not included in any of the other categories). It follows that the number
of vertices in R is bounded by 16. See Figure 4 for an illustration of such a possible
scenario.

Case 2. N3(v, w) 
= ∅. Let X be the set of white vertices in N2(v, w) that are in
V (R), Y the set of black vertices in N2(v, w) ∪N3(v, w) that are in V (R), and Z the
set of white vertices in N3(v, w) that are in V (R). We first make a few observations.

Observation 1. |X| ≤ 7. We first show that |X| ≤ 8. Remove the vertices in
N3(v, w) interior to R; then define categories (i)–(viii) as above. Similar to Case 1,
we can assume that the vertices in categories (i) and (ii), plus the vertices v, v1, and
w1, form a quasi-simple region Q1 = R(v, w1), and that those in categories (v) and
(vi), plus the vertices w, w2, and v2, form a quasi-simple region Q2 = R(w, v2). Since
X ⊆ N2(v, w), every vertex in X must belong to one of categories (i)–(viii) or possibly
to the set {v1, v2, w1, w2}. From the definition of categories (i) and (ii), vertices in
category (i) form the set Q+

1 = Q+
1 (v, w1) in the quasi-simple region Q1, and all the

vertices in Q+
1 are connected to v1. Now add the vertices in N3(v, w) back, and note
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that no black vertex in N3(v, w) that is not connected to w1 resides in Q1. The reason
is that such a vertex would be in N2(v) ∪ N3(v) (otherwise, this vertex will have to
be connected to w1—the only vertex in Q1 possibly not in N(v)) and hence colored
white by Rule 3. Now Q1 plus the set of black vertices in N3(v, w) that reside in Q1,
minus the set of white vertices in N3(v, w) that reside in Q1, satisfies condition (b)
in Proposition A.4, and the number of white vertices in Q1 is bounded by 3. Since
no two white vertices are connected together and hence the presence of the white
vertices from N3(v, w) in Q1 cannot increase the number of possible white vertices in
Q1, we conclude that the number of white vertices in Q1 that are not in N3(v, w), and
hence, the number of vertices in X that belong to Q1, is bounded by 3. Similarly, the
number of vertices in X that belong to Q2 is bounded by 3. Moreover, the statement
of the claim in Case 1 carries in a straightforward manner to Case 2, and categories
(iv) and (viii) contain at most one white vertex each. It follows that the number of
white vertices in the set X is bounded by 8. Now if |X| = 8, then both Q1 and Q2

(plus the black vertices in N3(v, w) that reside in Q1 and Q2) contain three white
vertices. Since Q1 contains exactly three white vertices, by Proposition A.4, either
Q+

1 
= ∅, or Q1 must contain an interior black vertex. If Q+
1 
= ∅, since R is nice,

the vertex in Q+
1 must be connected to some vertex interior to Q1 which must be

black because the vertices in Q+
1 are white. Therefore, if Q1 contains exactly three

white vertices, then there must exist an interior black vertex p in Q1. Similarly, there
must exist an interior black vertex q in Q2. Since both p and q are black and are in
N2(v, w) ∪ N3(v, w), by Rule 4, p and q must dominate all vertices in N3(v, w) 
= ∅.
In particular, p which is interior to Q1 must dominate q which is interior to Q2. This
is a contradiction to the planarity of the graph. It follows that |X| ≤ 7.

Observation 2. Every vertex in Y must dominate all vertices in N3(v, w).

This observation follows from Rule 4 since the vertices in Y are black and are a
subset of N2(v, w) ∪N3(v, w).

Let H be the graph obtained from G by identifying the vertex v with w along
the path (v, v1, w1, w). Clearly, H is planar. Let u be the resulting vertex by this
identification. Let Y ′ be the set of vertices in Y that are in H, and let y = |Y ′|.
Similarly, let Z ′ be the set of vertices in Z that are in H, and let z = |Z ′|. Observe
that the vertex u is connected to all the vertices in Y ′ and Z ′ in H, and that the
only vertices that have been removed by this identification are boundary vertices to
R that belong to {v1, v2, w1, w2}.

Observation 3. If y > 1 and z > 1, then the number of vertices in V (R) is bounded
by 16.

Suppose that y > 1 and z > 1. If y > 2, since every vertex in Y ′ must dominate
the vertices in Z ′, it follows that the subgraph of H induced by the set of vertices
Y ′ ∪ Z ′ ∪ {u} contains a copy of K3,3, contradicting the planarity of H (the vertices
in Y ′ form the first bipartition, and the other vertices form the second bipartition).
Suppose now that y = 2. If z > 2, then similarly, the subgraph induced by Z ′∪{u}∪Y ′

contains a copy of K3,3 (the vertices in Y ′ ∪ {u} form the first bipartition, and those
in Z ′ form the second bipartition). Suppose now that y = z = 2. Then the number of
vertices in X∪Y ′∪Z ′ is bounded by 11. Since |V (R)| ≤ |X∪Y ′∪Z ′∪{v1, v2, w1, w2}|,
it follows that the number of vertices in V (R) is bounded by 16.

Now we distinguish the following two subcases.

Subcase 2.1. z ≤ 1. Let Y1 = Y ′ ∩N2(v, w) be the set of black vertices in Y ′ that
are in N2(v, w), y1 = |Y1|, Y2 = Y ′ − Y1 be the set of black vertices in Y ′ that are in
N3(v, w), and y2 = |Y2|. Note that every vertex in Y ′ must be connected to all vertices
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in Y2 ∪ Z by Rule 4. If y = y1 + y2 < 5, then since z ≤ 1 and the number of vertices
in X is bounded by 7 by Observation 1, the number of vertices in V (R) is bounded
by 16. So we can assume that y ≥ 5. If y2 + z ≥ 4, then the subgraph induced by
the vertices {u} ∪ Y2 ∪ Z is a copy of K5. Thus, y2 + z < 4. If y2 + z = 3, then
the subgraph induced by the bipartition (Y2 ∪ Z, Y1 ∪ {u}) contains a copy of K3,3,
whereas if y2 + z = 2, then the subgraph induced by the bipartition ({u}∪Y2 ∪Z, Y1)
contains a copy of K3,3. Suppose now that y2 + z = 1. If y1 ≤ 4, then y + z ≤ 5,
and hence, the number of vertices in R is bounded by 16. Assume now that y1 ≥ 5.
Let p be the vertex in Y2 ∪ Z; then p is connected to all vertices in Y1 in H and
hence in G. Moreover, every vertex in Y1 is connected to either v or w (or both) in
G. Since y1 ≥ 5, there must exist at least three vertices in Y1 that are connected to
either v or to w in G. Let these vertices be p1, p2, and p3, and assume, without loss
of generality, that these vertices are connected to v. Since p1, p2, and p3, are also
connected to p, there must exist a vertex in {p1, p2, p3}, say p2, that is interior to the
region determined by v, p, and the other two vertices. But p2 ∈ Y1 ⊆ N2(v, w), and
hence p2 must be connected to the boundary of R (because p2 must be connected to
some vertex in N1(v, w)), a contradiction. Thus, the number of vertices in V (R) is
bounded by 16.

Subcase 2.2. y ≤ 1. If z ≤ 4, then y + z ≤ 5, and given that |X| ≤ 7 by
Observation 1, the total number of vertices in V (R) is bounded by 16. Suppose now
that z ≥ 5. Observe first that Y 
= ∅; otherwise, N2(v, w) ∪ N3(v, w) consists of
only white vertices, and N3(v, w), which contains at least five white vertices (Z ⊆
N3(v, w)), could not be dominated by a single vertex in N2(v, w) ∪ N3(v, w). This
would make Rule 2 applicable, a contradiction. Let p1, p2, p3, p4, and p5 be vertices
in Z. Since each of these vertices must be connected to either w or v, at least three
vertices in {p1, p2, p3, p4, p5} are connected to either v or w. Suppose, without loss
of generality, that {p1, p2, p3} are connected to v, and note that by Observation 2,
every vertex in Y must be connected to all vertices in Z. If |Y | ≥ 2, then ({v} ∪
Y, {p1, p2, p3}) would be a copy of K3,3. Suppose now that |Y | = 1, and let q be
the single vertex in Y . Since p1, p2, p3 are white and belong to N3(v, w), these
vertices can connect only to vertices in {v, q, w}. Again, by planarity, at least one
vertex in {p1, p2, p3} is not connected to w and hence must be of degree 2. But then
|W (v, q)| ≥ 3, and W (v, q) contains a degree-2 vertex. This contradicts Rule 8.

It follows that in all cases the number of vertices in V (R) is bounded by 16. This
completes the proof.
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DISTRIBUTION-FREE PROPERTY-TESTING∗

SHIRLEY HALEVY† AND EYAL KUSHILEVITZ†

Abstract. We consider the problem of distribution-free property-testing of functions. In this
setting of property-testing, the distance between functions is measured with respect to a fixed but
unknown distribution D on the domain. The testing algorithms are given oracle access to random
sampling from the domain according to this distribution D. This notion of distribution-free testing
was previously defined, but no distribution-free property-testing algorithm was known for any (non-
trivial) property. We present the first such distribution-free property-testing algorithms for two of
the central problems in this field. The testers are obtained by extending some known results (from
“standard,” uniform distribution, property-testing): (1) A distribution-free testing algorithm for low-
degree multivariate polynomials with query complexity O(d2 + d · ε−1), where d is the total degree
of the polynomial. The same approach that is taken for the distribution-free testing of low-degree
polynomials is shown to apply also to several other problems; (2) a distribution-free monotonicity
testing algorithm for functions f : [n]d → A for low dimensions (e.g., when d is a constant) with
query complexity similar to the one achieved in the uniform setting. On the negative side, we
prove an exponential gap between the query complexity required for uniform and distribution-free
monotonicity testing in the high-dimensional case.

Key words. property-testing, distribution-free property-testing, low-degree testing, monotonic-
ity testing, distribution-free testing lower bounds
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1. Introduction. The classical notion of decision problems requires an algo-
rithm to distinguish objects having some property P from those objects which do
not have the property. Property-testing is a relaxation of decision problems, where
algorithms are only required to distinguish objects having the property P from those
which are at least “ε-far” from every such object. The notion of property-testing was
introduced by Rubinfeld and Sudan [46] for the general case and was first studied
in the context of combinatorial properties by Goldreich, Goldwasser, and Ron [25].
Since then it has attracted a considerable amount of attention. Property-testing al-
gorithms were introduced for problems in graph theory (see, e.g., [2, 25, 28, 41]),
monotonicity testing (see, e.g., [12, 16, 17, 21, 22, 24, 31]), and other properties (see,
e.g., [1, 4, 5, 6, 7, 8, 10, 13, 14, 15, 18, 20, 26, 32, 34, 35, 39, 40, 42, 43, 45]).1 The
main goal of property-testing algorithms is to avoid “reading” the whole object, which
requires complexity at least linear in the size of its representation, i.e., to make the
decision by reading a small, possibly selected at random, fraction of the input (e.g., a
fraction of size polynomial in 1/ε and polylogarithmic in the size of the representation)
and still having a good (say, at least 2/3) probability of success.

A crucial component in the definition of property-testing is that of the distance
between two objects. For the purpose of this definition, it is common to think of
objects as being functions over some domain X . For example, a graph G may be

∗Received by the editors November 22, 2005; accepted for publication (in revised form) March 9,
2007; published electronically November 21, 2007. This paper includes the results of the conference
papers [30] and [33].
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1The reader is referred to surveys by Ron [44], Goldreich [23], and Fischer [19] for a presentation

of some of this work, including some connections between property-testing and other topics.
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thought of as a function fG : V × V → {0, 1} indicating for each possible edge
e whether it exists in the graph. The distance between functions f and g is then
measured by considering the set Xf �=g of all points x where f(x) �= g(x) and comparing
the size of this set Xf �=g to that of X ;2 equivalently, one may introduce a uniform
distribution over X and measure the probability of picking x ∈ Xf �=g. Note that
property-testing algorithms access the input function (object) via membership queries
(i.e., the algorithm gives a value x from the domain and gets as an answer f(x)).3

It is natural to consider situations where not all the points of the domain are
equivalently important. For example, when dealing with graph properties it is possible
that removing or adding some edges may be more expensive than removing or adding
others, depending on various factors of the problem (and not only on the number of
edge removals and additions). We are interested in taking these differences between
the edges into consideration when measuring the distance between a given graph and
the property (which is not the case when dealing with standard uniform testing). In
other words, we wish to put different weights (probabilities) on different elements
of the domain. That is, our goal is to generalize the definition of distance between
two functions, to deal with arbitrary probability distributions D over X , by utilizing
the probability measure of Xf �=g according to D. Ideally, one would hope to get
distribution-free property-testing algorithms (in short, distribution-free testers). A
distribution-free tester for a given property P accesses the function using membership
queries, as above, and by randomly sampling the fixed but unknown distribution D
(this mimics similar definitions from learning theory and is implemented via an oracle
access to D; see, e.g., [37]).4 As before, the testing algorithm is required to accept
the given function f with probability at least 2

3
if f satisfies the property P, and to

reject it with probability at least 2
3

if f is at least ε-far from P with respect to the
distribution D.

Another natural question that arises when dealing with distribution-free testing,
beyond the mere existence of such testers, is whether the testing (if possible) can
always be accomplished using the same query complexity as in the uniform setting,
or is there an inherent gap between the query complexity required for the different
settings?

This definition of distance with respect to an arbitrary distribution D was already
considered in the context of property-testing [25]. However, it is important to notice
that the transformation of uniform testers into distribution-free ones is not straight-
forward. Many of the previously known testers use the fact that an object that is far
from satisfying the property in question contains many small witnesses of this fact.
As a result, many of the uniform testers use random sampling of the input object in
order to find such a witness. On the other hand, when dealing with distribution-free
property-testing, it is possible that an object contains very few such witnesses (hence,
is very close to the property with respect to the uniform distribution), while at the
same time is very far from the property with respect to some arbitrary distribution D.

2We usually compare objects of the same size, and hence a common definition for the distance

between two objects is |Xf �=g | (instead of
|Xf �=g|

X ). However, defining the distance as described above
is more suitable when dealing with general distribution measures.

3For example, in the case of a graph G, represented as a function fG as described above, the
algorithm gives a pair (u1, u2) and receives an answer of whether the edge (u1, u2) exists in the graph
G or not.

4More precisely, distribution-free property-testing is the analogue of the PAC+MQ model of
learning (that was studied by the learning theory community mainly via the EQ+MQ model); stan-
dard property-testing is the analogue of the uniform+MQ learning model.
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Indeed, to the best of our knowledge, no distribution-free property-testing algo-
rithm was known for any (nontrivial) property (besides testing algorithms that follow
from the existence of proper learning algorithms in learning theory [25]). Moreover,
discouraging impossibility results, due to [25], show that for many graph-theoretic
properties (for which testers that work with respect to the uniform distribution are
known) no such distribution-free algorithm exists. As a result, most previous work
focused on testing algorithms for the uniform distribution; some of these algorithms
can be generalized to deal with certain (quite limited) classes of distributions (e.g.,
product distributions [25]), and very few can be modified to be testers with respect
to any known distribution (as was observed by [19] regarding the tester presented
in [39]), but none is shown to be a distribution-free tester.

We start by reviewing some of the central problems, studied in the context of
property-testing, which are relevant to our work.

Low-degree tests for polynomials. The first problem studied in the field of property
testing is that of low-degree testing for multivariate polynomials over a finite field,
where one wishes to test whether a given function can be represented by a multivariate
polynomial of total degree d, or it is ε-far from any such polynomial. Later, the
problem of low-degree testing played a central role in the development of probabilistic
checkable proofs (PCPs), where the goal is to probabilistically verify the validity
of a given proof. For the problem of low-degree testing, Rubinfeld and Sudan [46]
presented a tester with query complexity of O(d2 + d · ε−1). This test was further
analyzed in [11]. The reader is also referred to [13], where a linearity test (which tests
whether a given function acts as a homomorphism between groups) is presented, and
to [3, 9, 10, 26, 36] for other related work.

Monotonicity testing. Monotonicity has also been the subject of a significant
amount of work in the property-testing literature (see, e.g., [12, 16, 17, 18, 21, 22, 24]).
In monotonicity testing, the domain X is usually the d-dimensional cube [n]d. A
partial order is defined on this domain in the natural way (for �y, �z ∈ [n]d, we say that
�y ≤ �z if each coordinate of �y is bounded by the corresponding coordinate of �z).5 A
function f over the domain [n]d is monotone if whenever �z ≥ �y, then f(�z) ≥ f(�y).
Testing algorithms were developed to deal with both the low-dimensional and the
high-dimensional cases (with respect to the uniform distribution over the domain). In
what follows, we survey some of the known results on this problem which are most
relevant to our work:

• The low-dimensional case. In this case, d is considered to be small compared
to n (and, in fact, it is typically a constant); a successful algorithm for this case
is typically one that is polynomial in 1/ε and in logn. The first paper to deal
with this case is by Ergün et al. [17], who presented an O( logn

ε ) algorithm for
the line (i.e., the case d = 1) and showed that this query complexity cannot be
achieved without using membership queries (that is, such query complexity
cannot be achieved using only queries of the function at randomly drawn
points of the domain; we have to allow the tester to make queries at points of
its choice, computed based on the information it learned during the previous
steps of its execution). This algorithm was generalized for any fixed d in [12].
For the case d = 1, there is a lower bound showing that testing monotonicity
(for some constant ε) indeed requires Ω(logn) queries [18].

• The high-dimensional case. In this case, d is considered as the main parameter
(and n might be as low as 2); a successful algorithm is typically one that

5In the case d = 1 this yields a linear order.
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is polynomial in 1/ε and d. This case was first considered by Goldreich
et al. [24], who showed an algorithm for testing monotonicity of functions
from the Boolean (n = 2) d-dimensional hypercube to a Boolean range using
O(dε ) queries. This result was generalized in [16] to arbitrary values of n,

showing that O(d·log
2 n

ε ) queries suffice for testing monotonicity of general
functions over [n]d, which is the best known result so far.

• Other related work. Lower bounds for monotonicity testing of functions f :
{0, 1}d → {0, 1} (i.e., Boolean functions over [n]d for n = 2) were shown
by Fisher et al. in [21]: an Ω(

√
d) lower bound for nonadaptive, one-sided

error algorithms, and an Ω(log d) lower bound for nonadaptive two-sided error
algorithms (these bounds imply the corresponding adaptive lower bounds of
Ω(log d) and Ω(log log d), respectively). These authors also considered graphs
other than the hypercube, proving, for example, that testing monotonicity
with a constant (depending only on 1

ε ) number of queries is possible for certain
classes of graphs.

1.1. Our contributions. Our main positive contributions are distribution-free
testers for the two properties mentioned above: low-degree multivariate polynomials
and low-dimensional monotone functions. Both testers use query complexity similar
to that known for the uniform setting. We also show that the low-degree test is a
special case of a general scheme for a wider class of properties including properties
such as dictatorship and junta functions [20, 43]. These algorithms are the first known
distribution-free testers for nontrivial properties. By presenting these algorithms, we
answer a natural question that has been raised explicitly by Fischer [19, subsection 9.3]
and is implicit in [25]. We emphasize that our algorithms work for any distribution
D without having any information about D.

On the negative side, we show that, although in the uniform setting testing of
Boolean functions defined over the Boolean hypercube can be done using query com-
plexity that is polynomial in 1

ε and in the dimension d, in the distribution-free setting
such testing requires a number of queries that is exponential in d. We elaborate below.

Distribution-free low-degree testing for polynomials (and more). We consider a
generalization of the notion of self-correctors for single functions (see [13]) to classes
of functions (this was previously introduced in [46]). We observe that if the property
in question has such a self-corrector, then the existence of a uniform tester implies
the existence of a distribution-free one. This approach yields distribution-free testers
for a variety of properties, among which is the property of low-degree multivariate
polynomials (see section 3).

In addition, for the problem of testing low-degree multivariate polynomials, we
show how to generalize the tester presented in [46] to a distribution-free tester with
the same (up to a multiplicative factor of 2) query complexity (O(d2+d·ε−1)) without
using self-correctors. The algorithm and its analysis are presented in subsection 3.1.

Distribution-free monotonicity testing in the low-dimensional case. We present
a distribution-free monotonicity tester in the low-dimensional hypercube case with

query complexity of O( logd n·2d

ε ). This is done by first considering the one-dimensional
case (the “line”). In this case, we prove that an algorithm of [17] can be slightly mod-
ified to handle the distribution-free case with the same query complexity of O( logn

ε ).
Our proof is presented for the sake of completeness and it shares similar ideas with
the original proof [17] for the uniform case (although it is possible to modify the
original analysis for the distribution-free case). We then show how to appropriately
generalize this algorithm to deal with higher (yet low compared to n) dimensions (a
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similar generalization was used in [12] for the uniform distribution case). The tester
for the one-dimensional case and its generalization for higher dimensions appear in
section 4.

It is typical for known property-testing algorithms to be quite simple, and it is in
the analysis of why these algorithms work that the property P in question requires
understanding; indeed, Goldreich and Trevisan [29] proved that in certain settings
this is an inherent phenomenon: they essentially showed (with respect to the uniform
distribution) that any graph-theoretic property that can be tested can also be tested
(with a small penalty in the complexity) by a “generic” algorithm that samples a
random subgraph and decides whether it has some property. Our work is no different
in this aspect: our algorithms are similar to previously known algorithms, and our
main contribution is their analysis, in particular, the analysis for the distribution-
free case. Moreover, it is somewhat surprising that our distribution-free testers do
not require dramatically different techniques than those used in the construction and
analysis of previous algorithms (that work for the uniform distribution case). We
remark, however, that although all the distribution-free testers presented in this work
can be viewed as variations of testers for the uniform distribution, in each of the
problems the modification of the uniform distribution test is different.6

Lower bound for distribution-free monotonicity testing in the high-dimensional
case. In section 5, we show that while O(dε ) queries suffice for testing monotonicity
of Boolean functions in the uniform case [24], in the distribution-free case it requires
a number of queries that is exponential in the dimension d (that is, there exists a
constant c such that Ω(2cd) queries are required for the testing). Hence, such testing
is infeasible in the high-dimensional case. Our lower bound can be trivially extended
to deal with monotonicity testing of Boolean functions that are defined over the
domain [n]d for general values of n. By this, we show another gap between the query
complexity of uniform and distribution-free testers for a natural testing problem.

Organization. In section 2, we formally define the notions used in this work.
In section 3, we deal with properties that have both a uniform tester and a prop-
erty self-corrector; then, in subsection 3.1, we present an alternative distribution-free
tester for low-degree multivariate polynomials that does not use the notion of prop-
erty self-correctors. Section 4 describes the distribution-free monotonicity tester for
the low-dimensional case, and section 5 describes the lower bound on the query com-
plexity of distribution-free monotonicity testing in the high-dimensional case. Finally,
section 6 presents some open questions with respect to property-testing in general and
distribution-free testing in particular.

2. Definitions. We start by formally defining the notion of being ε-far from a
property P, with respect to a given distribution D defined over the domain X , and
of distribution-free testing. Assume that the range of the functions in question is A.

Definition 2.1. Denote by FX
A the set of all functions f : X → A. A property

P is a subset P ⊆ FX
A . We say that f satisfies P if f ∈ P.

Definition 2.2. Let X be a domain and D be a distribution measure defined

over X . The D-distance between functions f, g ∈ FX
A is defined by distD(f, g)

def
=

Prx∼D{f(x) �= g(x)}.
The D-distance of a function f from a property P is distD(f,P)

def
= infg∈P distD(f, g).

6Indeed, in light of [25], there can be no generic transformation of uniform distribution testers
into distribution-free ones.
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We say that f is (ε,D)-far from a property P if distD(f,P) ≥ ε. Similarly, we say
that f is (ε,D)-close to a property P if distD(f,P) ≤ ε.

When the distribution in question is the uniform distribution over X , we either
use U instead of D or (if clear from the context) we omit any reference to the distri-
bution; e.g., the phrase “f is ε-far from P” refers to distance according to the uniform
distribution.

Next, we define the notion of a distribution-free tester for a given property P.

Definition 2.3. A distribution-free two-sided error tester for a property P is a
probabilistic oracle machine M , which is given a distance parameter ε > 0, an oracle
access to an arbitrary function f : X → A, and an oracle access to sampling of a fixed
but unknown distribution D over X , and satisfies the following two conditions:

1. If f satisfies P, then Pr{Mf,D = Accept} ≥ 2
3
.

2. If f is (ε,D)-far from P, then Pr{Mf,D = Accept} ≤ 1
3
.

All our testers, like many previously known testers, have one-sided error; i.e., they
always accept any function satisfying the property P in question.

Definition 2.4. A distribution-free one-sided error tester for a property P is a
probabilistic oracle machine M , which is given a distance parameter ε > 0, an oracle
access to an arbitrary function f : X → A, and an oracle access to sampling of a fixed
but unknown distribution D over X , and satisfies the following two conditions:

1. If f satisfies P, then Pr{Mf,D = Accept} = 1.
2. If f is (ε,D)-far from P, then Pr{Mf,D = Accept} ≤ 1

3
.

The definition of a uniform distribution (two-sided or one-sided error) tester for a
property P can be derived from the previous definitions by omitting the sampling ora-
cle (since the tester can sample in the uniform distribution by itself) and by measuring
distance with respect to the uniform distribution.

Notice that, because the distribution D in question is arbitrary, there is a dif-
ference between satisfying P and having distance 0 from P. That is, it is possible
that there are two distinct functions f and g such that distD(f, g) = 0. Specifically,
it is possible that f ∈ P and g /∈ P. Since the notion of testing is meant to be a
relaxation of the notion of decision problems, it is required that the algorithm accept
(with probability at least 2

3
) functions that satisfy P, but it may reject functions that

have distance 0 from P (but do not satisfy P). In addition, note that membership
queries allow the algorithm to query the value of the input function also in points with
probability 0 (which is also the case with membership queries in learning theory).7

This definition of distribution-free testing was previously introduced in [25].

3. Distribution-free testing of properties with self-corrector. In this sec-
tion, we focus on a specific class of properties for which the existence of a uniform
tester implies the existence of a distribution-free one. These properties are character-
ized by the fact that we are able to efficiently “correct” every object that is close to
the property. That is, given a function f that is close to a property P, we are able to
efficiently compute (with high probability), in every point x of the domain, the correct
value of the function g ∈ P that is close to the input function f . We refer to this
ability as “property self-correction.” First, we formally define the notion of a prop-
erty self-correction (it has already been defined implicitly and used in [38, 46]), and
then introduce a general scheme for obtaining distribution-free testers for a variety of
properties that satisfy these conditions.

7It is not known whether membership queries are essential in general for testing even in the
uniform case (see [44]); this is known only for specific problems such as monotonicity testing (see [17]).
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The notion of a property self-corrector is a generalization of the notion of self-
correctors for functions that was introduced by Blum, Luby, and Rubinfeld in [13].
A self-corrector for a specific function f is a randomized algorithm that, given oracle
access to a function g which is ε-close to f , is able to compute the value f(x) in every
point x of the domain. This definition can be generalized to classes of functions,
specifically demanding that all the functions in the class are self-correctable using the
same algorithm.

Definition 3.1. An ε′ self-corrector for a property P is a probabilistic oracle
machine M , which is given an oracle access to an arbitrary function f : X → A and
satisfies the following conditions:

• If f ∈ P, then Pr{Mf (x) = f(x)} = 1 for every x ∈ X .
• If there exists a function g ∈ P such that distU (f, g) ≤ ε′ (i.e., f is ε′-close

to P), then Pr{Mf (x) = g(x)} ≥ 2
3

for every x ∈ X .

Note that the definition of a property self-corrector refers to distance measured
only with respect to the uniform distribution; however, we still use these correctors for
the construction of distribution-free testers. Observe that a necessary condition for
the existence of an ε-self-corrector for a property P is that for every function f such
that distU (f,P) ≤ ε (i.e., f is ε-close to P with respect to the uniform distribution),
there exists a unique function g ∈ P that is ε-close to P. Notice that the prop-
erty of monotonicity does not fulfill this requirement.8 Hence, the distribution-free
monotonicity tester that is presented in the next section requires a different approach.

Next, in Figure 3.1 we describe our general distribution-free testing scheme. Let
P be a property, let TP be a uniform distribution tester for P with query complexity
QT that has one-sided error, and let CP be an ε′ property self-corrector for P with
query complexity QC . Let ε ≤ ε′, and f : X → A.

TesterD(ε)

Run T f
P(ε). If T f

P(ε) = FAIL, then return FAIL.
Repeat 2

ε
times:

Choose x ∈D X .
Repeat twice: Run Cf

P(x); If f(x) �= Cf
P(x), then return FAIL.

return PASS

Fig. 3.1. Generalized distribution-free testing scheme.

Theorem 3.2. Algorithm TesterD(ε) is a one-sided error distribution-free tester
for P with query complexity QT (ε) + 4

ε ·QC .

Proof. It is obvious that the query complexity of the algorithm TesterD(ε) is
indeed as required. Hence, we have only to prove the correctness of the algorithm.
To do so, we prove the following two facts:

• If f ∈ P, then f is accepted by the algorithm with probability 1.
• If f is (ε,D)-far from P, then f is rejected by TesterD(ε) with probability at

least 2
3
.

If f is indeed in P, then it passes the uniform test with probability 1, and the value
returned by the self-corrector is always identical to the value of f . Hence, f is accepted
by the algorithm. Assume, from now on, that f is (ε,D)-far from P. We distinguish
between two possibilities as follows:

8Consider, for example, the following function f : [n] → {0, 1}: Set f(i) = 0 if i is even, and set
f(i) = 1 if i is odd. f is 1

2
-far from monotone, and it is 1

2
-close to O(n) monotone functions.
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• If f is (ε, U)-far from P, then the probability that it passes the uniform test
is at most 1

3
.

• If f is (ε, U)-close to P, then there exists a function g ∈ P such that
dist(f, g) ≤ ε. However, since distD(f,P) ≥ ε, we deduce that distD(f, g) ≥ ε
(in other words, Prx∼D{f(x) �= g(x)} ≥ ε). If f was accepted by the algo-
rithm, then one of the two following events happened: Either we failed to
sample a point in which f and g differ, or we succeeded in sampling such a
point x, but both executions of the self-corrector failed to compute the value

g(x). The probability of the first event is at most (1− ε)
2
ε ≤ 1

e

2 ≤ 1
6

and, by
the definition of a property self-corrector, the probability of the second event

is at most 1
3

2
= 1

9
. Therefore, the total probability that f is accepted by the

algorithm is at most 1
3
.

Hence, in both cases the probability that f is accepted by the algorithm is at most
1
3
.

Remark 3.3. We used the assumption that there exists a uniform distribution
tester for the property P that has one-sided error. However, the same transformation
can be applied also when the uniform distribution tester has two-sided error, except
that the resulting distribution-free tester also has two-sided error.

This scheme implies the existence of distribution-free property testers for a few
properties. Among these properties are low-degree multivariate polynomials (which
will be the focus of the next subsection) and junta and dictatorship functions. A func-
tion f : {0, 1} → {0, 1} is said to be a k-junta if there exists a subset of {x1, . . . , xn}
of size k that determines the value of f (i.e., f is independent of the other variables).
A special case of juntas are dictatorship functions, where a single variable determines
the value of the function. These properties (and other related properties) have uni-
form distribution testers, as was shown in [46, 20, 43]. In addition, they are subsets
of the class of low-degree polynomials (for example, k-juntas are a special case of de-
gree k multivariate polynomials) and thus are self-correctable [38, 46]. Therefore, the
scheme described in this section gives distribution-free testers for these properties.

Remark 3.4. Given two properties P and P ′ such that P ′ ⊆ P, the fact that P
is testable in the uniform distribution does not imply that P ′ is thus testable (to see
this observe that every property is a subset of the class of all functions that is clearly
testable). However, the fact that P is self-correctable implies that P ′ is self-correctable
(using the same correction algorithm).

3.1. An alternative distribution-free test for low-degree multivariate
polynomials. In this subsection, we present a distribution-free test for the property
of low-degree multivariate polynomials that does not use property self-correctors. This
test is obtained by modifying the known uniform tester presented by [46]. Hence, it
might be used, along with other distribution-free testing algorithms, to deduce a
general transformation of uniform testers into distribution-free ones (in case such a
distribution-free tester exists).

We first define the problem formally. Let F be a finite field. In the problem of
low-degree testing, with respect to the uniform distribution, the tester is given access
to a function f : Fm → F , a distance parameter ε, and a degree d, and has to decide
whether f is a multivariate polynomial of total degree d, or is at least ε-far (with
respect to the uniform distribution) from any degree d multivariate polynomial (i.e.,
one has to change the values of at least ε× |F |m points in order to transform f into
a degree d multivariate polynomial; this implies that for every degree d multivariate
polynomial g, the probability that a uniformly drawn point x has a value g(x) different
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than f(x) is at least ε). Rubinfeld and Sudan [46] presented a tester for this problem
with query complexity O(d2 + d · ε−1). We show how to modify this tester to a
distribution-free one with the same query complexity (up to a factor of 2).

Basic tool. Fix some value for d and assume from now on that |F | > 10d. To
describe the testers (both the one for the uniform distribution and our distribution-
free one), we use the following terminology from [46]:

• A line in Fm is a set of 10d + 1 points of the form {x, x + h, . . . , x + 10dh}
for some x, h ∈ Fm. The line defined by x and h is denoted �x,h.

• We say that a line �x,h is an f-polynomial if there exists a univariate polyno-
mial Px,h(i) of degree d such that f(x + ih) = Px,h(i) for every 0 ≤ i ≤ 10d.

Notice that if f is a multivariate polynomial of total degree at most d, then for every
x and h, the line �x,h is an f -polynomial.9 Given the values of f on a line �x,h, testing
whether this line is an f -polynomial can be done as follows:

• Find, using interpolation, a univariate polynomial P (i) of degree d, consistent
with the values of f at the d+1 points x, x+h, . . . , x+dh (i.e., P (i) = f(x+hi)
for every 0 ≤ i ≤ d).

• Check, for every (d + 1) ≤ i ≤ 10d, that f(x + ih) = P (i). If so, accept;
otherwise reject.

We show how this basic test is used to build a uniform and a distribution-free low-
degree test.

Low-degree test for the uniform distribution. The low-degree test for the uniform
distribution works by randomly sampling O(d+ε−1) lines (i.e., by uniformly choosing
x, h ∈ Fm) and checking that each of these lines is an f -polynomial. The correctness of
this algorithm follows immediately from the following theorem (see [46, Theorem 9]).

Theorem 3.5 (see [46, Theorem 9]). There exists a constant cU such that for
0 ≤ δ ≤ 1

cU ·d , if f is a function from Fm to F , such that all but at most a δ
fraction of the lines {�x,h|x, h ∈ Fm} are f-polynomials, then there exists a polynomial
g : Fm → F of total degree at most d such that distU (f, g) ≤ (1 + o(1))δ (provided
that |F | > 10d).

Distribution-free low-degree testing algorithm. Denote the class of multivariate
polynomials of total degree d by Pd

deg. We show that the tester described above can
be modified into a distribution-free tester for low-degree multivariate polynomials.
That is, we present an algorithm with query complexity O(d2 + d · ε−1) that, given
a distance parameter ε, a degree parameter d, and access to random sampling of Fm

according to D and to membership queries of a function f : Fm → F , distinguishes,
with probability at least 2

3
, between the case that f is in Pd

deg and the case that f is

(ε,D)-far from Pd
deg.

The natural generalization of the uniform distribution tester above for the dis-
tribution-free case would be to replace the sampling of the tested lines by sampling
according to the distribution D; i.e., sample the O(d + ε−1) lines by choosing x ∼ D
and h ∼ U and check that these lines are f -polynomials. However, we could not show
that this modification actually works. Instead, the algorithm we present consists of
two stages: In the first stage, we simply run the uniform distribution test as is and
check that the function f is ε-close to Pd

deg with respect to the uniform distribution;

9To see this, assume f(x) = ΣjajΠ
dj
l=1xk

j
l
, where aj is the coefficient of the jth term in f , dj

is the degree (dj ≤ d), and kjl is the index of the lth variable in that term. In this case, for every

fixed x = (x1, . . . , xm) and h = (h1, . . . , hm), the value f(x + ih) = ΣjajΠ
dj
l=1(x

k
j
l

+ ih
k
j
l
), which,

of course, is a degree d univariate polynomial in i.
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the second stage is the generalization suggested above. This combined strategy is
presented in Figure 3.2 and analyzed below.

Poly(ε, d)

Set k � max{ε−1, cU · d}.
Repeat 5k times:

• Choose x, h ∈U Fm. If the line �x,h is not an f -polynomial, return FAIL.

• Choose x ∈D Fm, h ∈U Fm. If the line �x,h is not an f -polynomial, return
FAIL.

return PASS

Fig. 3.2. Distribution-free low-degree tester.

Theorem 3.6. Algorithm Poly(ε, d) is a distribution-free one-sided error tester
for Pd

deg; its query complexity is O(d2 + d · ε−1).
The correctness of the algorithm relies on the following lemma.
Lemma 3.7. Let cU be the constant from Theorem 3.5. For every 0 ≤ δ ≤ 1

cU ·d ,
if f is a function from Fm to F such that

• Prx,h∼U{�x,h is not an f-polynomial} ≤ δ, and
• Prx∼D,h∼U{�x,h is not an f-polynomial} ≤ δ,

then there exists a polynomial g : Fm → F of total degree at most d such that
distD(f, g) ≤ δ

1−40δ = (1 + o(1))δ (provided that |F | > 10d).

Proof. We prove that if f satisfies the two conditions for 0 ≤ δ ≤ 1
cU ·d , then it

is indeed ( δ
1−40δ , D)-close to Pd

deg. For the purpose of the analysis, we construct a
function g based on f in the same way as in [46, proof of Theorem 9]:

• For every x, h ∈ Fm, denote by Px,h(i) the univariate polynomial that satisfies
Px,h(i) = f(x + ih) for at least 6d of the values i ∈ {0, . . . , 10d}. If no such
polynomial exists, define Px,h to be an “error.” Notice that there can be
at most one such polynomial, since every two polynomials that satisfy the
demand have to agree on at least 2d points, implying that they are identical.

• For every x ∈ Fm, define g(x) = pluralityh{Px,h(0)}, where the plurality is
taken over all values of h for which Px,h is not an error (g(x) is well defined for
every x since, by [46, Lemma 12], Prh1,h2∼U{Px,h1(0) = Px,h2(0)} ≥ 1− 20δ.

It was shown that the function g is indeed a degree d multivariate polynomial (see
[46, proof of Theorem 9] and notice that f satisfies the condition of that theorem).
Moreover, for every x ∈ Fm, i ∈ {0, . . . , 10d}, Prh∼U [g(x + ih) = Px,h(i)] ≥ 1 − 40δ
(see [46, Corollary 13]).

To complete the proof, it remains to show that distD(f, g) ≤ δ
1−40δ . Let B be the

set of x’s that satisfy f(x) �= Px,h(0) for at least a 1 − 40δ fraction of the h’s in Fm

(including the values of h for which Px,h was defined to be an error). Notice that if
x /∈ B, then f(x) = Px,h(0) for more than a 40δ fraction of the h’s in Fm (this is due
to the fact that f(x) �= Px,h(0) for less than a 1 − 40δ fraction of the h’s, and hence
it has to be equal to Px,h(0) for more than a 40δ fraction of the h’s). Therefore, for
every x /∈ B, we can claim the following:

1. g(x) = Px,h(0) for at least a 1 − 40δ fraction of the h’s (this holds for every
x, and thus for every x /∈ B). Denote this fraction by gx.

2. f(x) = Px,h(0) for more than a 40δ fraction of the h’s in Fm. Denote this
fraction by fx.
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Therefore, for at least one value of h both f(x) = Px,h(0) and g(x) = Px,h(0) (other-
wise, fx + gx > 1, since gx ≥ 1 − 40δ and fx > 40δ). Hence, for every x /∈ B, we get
f(x) = g(x). Let us bound the probability of picking a point in B according to the
distribution D as follows:

δ ≥ Pr
x∼D,h∼U

{�x,h is not an f -polynomial} ≥ (1 − 40δ) Pr
x∼D

{x ∈ B},

where the first inequality is due to the second condition of the lemma, and the second
inequality follows the previous discussion, implying that

Pr
x∼D

{x ∈ B} ≤ δ

1 − 40δ
.

Proof of Theorem 3.6. To prove that the algorithm is indeed a distribution-free
tester for Pd

deg, we prove the following two facts:

1. If f is in Pd
deg, then the algorithm accepts f with probability 1.

2. If f is (ε,D)-far from Pd
deg, then the algorithm Poly(ε, d) rejects f with

probability at least 2
3
.

As explained before, if f is indeed a multivariate polynomial of total degree d,
then every line is an f -polynomial. Hence, it follows that such an f is accepted by
the tester with probability 1. Assume from now on that f is (ε,D)-far from Pd

deg.

Notice that, by the definition of k = max{ε−1, cU · d}, for ε′ = 1
k , f is (ε′, D)-far

from Pd
deg. By Lemma 3.7, either Prx,h∼U{�x,h is not an f -polynomial} > ε′

2+40ε′ ,

or Prx∼D,h∼U{�x,h is not an f -polynomial} > ε′

2+40ε′ (otherwise, it follows that there

exists a degree d polynomial g such that distD(f, g) ≤ ε′

(2+40ε′)·(1−40 ε′
2+40ε′ )

= ε′

2
< ε′,

contradicting the fact that the D-distance of f from any such polynomial is at least
ε′). Assume that the first event occurs. Therefore, the probability that a randomly

chosen line �x,h is an f -polynomial is at most (1− ε′

2+40ε′ ). Hence, the probability that

the algorithm accepts f is at most (1− ε′

2+40ε′ )
5k = (1− 1

2k+40
)5k ≤ 1

e

2 ≤ 1
3

(the first
inequality follows from the fact that cU , the constant of Theorem 3.5, is at least 100,
implying that k ≥ 100). Similarly, if the second event occurs, the probability that a
randomly chosen line �x,h, where x ∼ D and h ∼ U , is an f -polynomial is at most

(1− ε′

2+40ε′ ). Hence, as before, the probability that the algorithm accepts f is at most

(1 − ε′

2+40ε′ )
5k ≤ 1

3
.

4. Distribution-free monotonicity testing on the d-dimensional cube.
In this section, we present monotonicity testers for the d-dimensional hypercube with
respect to an arbitrary distribution D. As before, we assume D to be fixed but un-
known and, other than the ability to sample according to D, we assume no knowledge
of D. For simplicity, we begin our discussion with the case d = 1, and show that,
given access to random sampling according to D and to membership queries, there is a
distribution-free tester for monotonicity over [n], whose query complexity is O( logn

ε )
(the algorithm for the case d = 1 is presented without proof). In subsection 4.2,
we generalize this algorithm to a distribution-free tester for monotonicity over the

d-dimensional hypercube, whose query complexity is O( logd n·2d

ε ) (this algorithm for
the case d = 1 is the basic algorithm shown in subsection 4.1).

We begin with a few notations and definitions. Denote by [n] the set {1, . . . , n}
and by [n]d the set of d-tuples over [n]. For every two points �i and �j in [n]d we say
that �i ≤ �j if for every 1 ≤ k ≤ d, ik ≤ jk. Let (A,<A) be some linear order.
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Definition 4.1. We say that a function f : [n]d → A is monotone if for every �i
and �j if �i ≤ �j, then f(�i) ≤A f(�j).

Definition 4.2. Let f : [n]d → A be a function. A pair (�i,�j) is said to be an
f -violation if �i < �j and f(�i) >A f(�j).

Let D be any distribution on [n]d, and let S be a subset of [n]d. Define PrD{�i} def
=

PrX∼D{X =�i} and PrD{S} def
=

∑
�i∈S PrD{�i}.

4.1. Testing monotonicity for the line (d = 1). We consider the case d = 1.
Our algorithm is a variant of the algorithm presented in [17] for testing monotonicity
(with respect to the uniform distribution). The analysis for the special case d = 1
shares some of the ideas presented in the proof of [17] and is omitted; it can be
obtained as a special case of the general proof that appears in the next subsection.
The algorithm works in phases; in each phase a center point is selected according to
the distribution D (in the original algorithm, the center point is selected uniformly),
and the algorithm looks for a violation of the monotonicity with this center point. The
search for a violation is done by randomly sampling in growing neighborhoods of the
center point. In other words, in the case d = 1, the only change made in the original
algorithm in order to adjust it to be distribution-free is that the choice of center points
is made according to D. However, the search for violations remains unchanged. It is
important to observe that, when dealing with an arbitrary distribution, there is no
connection between the distance of the function from monotone and the number of
pairs that form a violation of monotonicity (unlike the case of testing with respect
to the uniform distribution, when a small number of violations implies closeness to
monotonicity). Hence, the correctness of the algorithm for the uniform distribution
does not imply its correctness for the general case.

As stated above, we present a tester for monotonicity in the one-dimensional case
with query complexity O( logn

ε ). The algorithm appears in Figure 4.1 and is a special
case of the algorithm for general d that is proved in the next subsection. A separate
correctness proof for the case d = 1 can be found in [30].

Algorithm-monotone-1-dimD(f, ε):

repeat 2
ε

times
choose i ∈D [n]
for k ← 0 . . . �log i� do

repeat 8 times
choose a ∈U [2k]
if f(i− a) >A f(i) then return FAIL

for k ← 0 . . . �log(n− i)� do
repeat 8 times

choose a ∈U [2k]
if f(i) >A f(i + a) then return FAIL

return PASS

Fig. 4.1. Distribution-free monotonicity tester for d = 1.

Remark 4.3. In the journal version of [17], an additional testing algorithm for
monotonicity on the line, called Sort-Check-II, is presented. This algorithm can also
be transformed into a distribution-free monotonicity tester over the line. However,
we do not know if it can be generalized to higher dimensions.

4.2. Distribution-free monotonicity testing for general d. In the previous
section, we saw how to test monotonicity over the one-dimensional hypercube (the
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line) when the distance is measured with respect to an arbitrary distribution D.
Next, we show how to generalize this algorithm to the d-dimensional case and

prove its correctness. We begin by adjusting the definitions and notations of the pre-
vious section to the d-dimensional case. Notice that, unlike in the one-dimensional
case, in the d-dimensional case [n]d is a partial order (not every two points are com-
parable). Denote by �i the point i1, . . . , id ∈ [n]d. For every two points �i and �a,
we denote by �i + �a (respectively, �i − �a) the point i1 + a1, . . . , id + ad (respectively,
i1 − a1, . . . , id − ad), where every coordinate smaller than 1 is set to 1 and every
coordinate larger than n is set to n.

We will show that, given access to random sampling according to D and to mem-
bership queries, there is a distribution-free tester for monotonicity, whose query com-

plexity is O( logd n·2d

ε ). The algorithm is presented in Figure 4.2.

Algorithm monotone-d-dimD(d, f, ε):

repeat 2
ε

times

choose �i ∈D [n]d

for k1 ← 0 · · · �log i1� do
...

for kd ← 0 . . . �log id� do
repeat 4 · 2d times

choose �a ∈U [2k1 ] × · · · × [2kd ]

if f(�i− �a) >A f(�i) then return FAIL
for k1 ← 0 . . . �log(n− i1)� do

...
for kd ← 0 . . . �log(n− id)� do

repeat 4 · 2d times
choose �a ∈U [2k1 ] × · · · × [2kd ]
if f(�i) >A f(�i + �a) then return FAIL

return PASS

Fig. 4.2. Distribution-free monotonicity tester for general d.

Theorem 4.4. Algorithm monotone-d-dimD(d, f, ε) is a one-sided error distribution-

free monotonicity tester over [n]d with query complexity O( logd n·2d

ε ).
To prove the above theorem, we need the following lemmas.
Lemma 4.5. Let f : [n]d → A be a function, and let S ⊆ [n]d be a set. If for

every f-violation (�i,�j) either �i ∈ S or �j ∈ S, then there exists a monotone function
f ′ that differs from f only on points in S.

Proof. We will show that, by modifying the value of f only on points in S, we can
obtain a monotone function f ′. Define S̄ = [n]d \ S. The construction of f ′ is done
through the following iterative process. In each step, modify the value of one of the
points �i ∈ S that has not yet been modified and so that the values of all the points
below it (i.e., all �k <�i) have already been set. The process ends after redefining the
values of all the points in S.

The value of point �i ∈ S is set in the following manner. We distinguish between
two cases: �i = (1, . . . , 1) and �i ∈ [n]d \ (1, . . . , 1). If �i = (1, . . . , 1), then we set
f ′(�i) = f(�i) if S = [n]d, and f ′(�i) = min�j:�i<�j,�j∈S̄{f(�j)} otherwise. If�i ∈ S \ (1, . . . , 1),

we set f ′(i) = max�j:�j<�i{f(�j)} (note that the maximum is taken over all points smaller

than �i and not only those in S) . The values of points in S̄ are unchanged (i.e., for
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all these points f ′(�i) = f(�i)).
It is left to prove that f ′ is indeed monotone, or equivalently, that there are

no f ′-violations. Consider a pair of points �i,�j such that �i < �j; we will prove that
f ′(�i) ≤A f ′(�j). There are three possible cases.

Case 1. �i,�j ∈ S̄. Since f ′ equals f for all points not in S, and there were no
f -violations with both endpoints in S̄, then f ′(�i) = f(�i) ≤A f(�j) = f ′(�j).

Case 2. �j ∈ S and �i ∈ [n]d. By the construction of f ′, the value of f ′(�j)
was set after the value at point �i had already been set (since �i < �j), and therefore
f ′(�i) ≤A f ′(�j).

Case 3. �i ∈ S and �j ∈ S̄. Assume towards a contradiction that (�i,�j) is an
f ′-violation; moreover, let (�i,�j) be the minimal such pair (in lexicographic order).
Since we already know that there are no f ′-violations other than the ones referred
to in this case, this is the minimal f ′-violation. By the definition of f ′, clearly if
�i = (1, . . . , 1), then f ′(�i) = min�j:�i<�j,�j∈S̄{f(�j)} and therefore f ′(�i) ≤A f(�j) = f ′(�j).
Hence �i �= (1, . . . , 1). By the construction of f ′, the value of f ′(�i) is the maximal

value of f ′ at points �k such that �k <�i. Thus f ′(�i) = f ′(�k) for some �k <�i, implying

that (�k,�j) is also an f ′-violation, contradicting the minimality of (�i,�j).
A similar argument was used in [16]. An immediate conclusion of the above

lemma is the following.
Lemma 4.6. Let f : [n]d → A be a function (ε,D)-far from monotone. Given

S ⊆ [n]d, if for every f-violation (�i,�j) either �i ∈ S or �j ∈ S, then PrD{S} ≥ ε.
Definition 4.7. For an f-violation (�i,�j), we say that�i is active in this violation

if

|{�k : �i < �k < �j , f(�i) >A f(�k)}| ≥ |{�k :�i < �k < �j}|
2

.

That is, �i is active in an f-violation (�i,�j) if, for at least half of the points �i < �k < �j,

(�i,�k) is also an f-violation (i.e., f(�i) >A f(�k)). Similarly, �j is active in this violation
if

|{�k : �i < �k < �j , f(�k) >A f(�j)}| ≥ |{�k :�i < �k < �j}|
2

.

Lemma 4.8. For every f-violation (�i,�j), at least one of�i and �j is active in (�i,�j).
Proof. Let (�i,�j) be an f -violation. Namely, �i < �j and f(�i) >A f(�j). For every

�i < �k < �j, if f(�i) ≤A f(�k) (i.e., (�i,�k) is not an f -violation), then f(�k) >A f(�j) (since

(A,<A) is a linear order), and hence (�k,�j) is an f -violation. Similarly, if (�k,�j) is not

an f -violation, then (�i,�k) is. Therefore, each of the points between �i and �j forms an
f -violation with either �i or �j.

Define the active set of f (denoted Af ) as the set of all points that are active in
some f -violation. Applying Lemma 4.6 to the set Af , if f is (ε,D)-far from monotone,
then PrD{Af} ≥ ε. We now prove Theorem 4.4.

Proof of Theorem 4.4. Clearly, the query complexity of the algorithm is O( logd n·2d

ε ).
It is left to show that this algorithm is indeed a distribution-free one-sided error mono-
tonicity tester. To prove this, the following two facts have to be shown: (a) If f is
monotone, it is accepted by the algorithm with probability 1; and (b) if f is (ε,D)-far
from monotone, it is rejected by the algorithm with probability at least 2

3
.

As for (a), it follows immediately from the definition of the algorithm. Therefore,
assume from now on that f is (ε,D)-far from monotone; we prove that f is rejected
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with probability at least 2
3
. Our algorithm may fail to detect that f is not monotone

if either one of the following two events occurs:
1. None of the 2

ε points �i sampled by the algorithm according to D are in Af .

2. The algorithm picked at least one point �i ∈ Af , but failed to detect that �i
belongs to some f -violation.

The probability of the first event is at most (1 − ε)
2
ε ≤ 1

e2 ≤ 1
6
. To estimate the

probability of the second event, let �i be a point in Af and assume, without loss of

generality, that there exists �j such that (�i,�j) is an f -violation and �i is active in this
violation. Denote by kl, 1 ≤ l ≤ d, the minimal value such that il + 2kl ≥ jl. By the
minimality of kl, it follows that jl− il >

1
2
· 2kl and therefore (j1 − i1) · . . . · (jd− id) >

1
2d · 2k1 · . . . · 2kd . Since �i is active in the f -violation (�i,�j), at least half of the values

between �i and �j form an f -violation with �i. Therefore at least 1
2d+1 of the values �a in

[2k1 ]×· · ·× [2kd ] will reveal a violation of monotonicity. Since for every possible value
for k1, . . . , kd we sample 4 · 2d points in [2k1 ] × · · · × [2kd ], the probability that no f -

violation is detected is at most (1− 1
2d+1 )4·2

d

= (1− 1
2d+1 )2·2

d+1 ≤ 1
e2 ≤ 1

6
. Therefore,

the total probability of the algorithm failing to detect a violation, and hence to accept
f , is at most 1

3
.

Remark 4.9. A similar distribution-free monotonicity tester can be shown for
Boolean functions of the form f : B → {0, 1}, where (B,<B) is a partial order
that can be described as an “almost balanced” tree (i.e., a tree of depth O(log n)
when n = |B|); monotonicity testing of functions defined over trees was also studied
in [21], where a constant time algorithm was presented for testing Boolean functions
defined over trees. The testing is again performed in stages. In each stage, as before,
the tester selects a center point x according to the distribution D in question and
starts looking for a violation of monotonicity with that center point. However, in this
case, we distinguish between two possibilities: If f(x) = 0, then the tester uniformly
samples O(log n) points in the path from x to the root (the tester can actually read the
whole path using O(log n) queries). Otherwise, if f(x) = 1, then the tester uniformly
samples O(1) points in growing neighborhoods of x, where the neighborhoods are
defined to be trees rooted at x, and at each time we increase the depth of the tree
by 1 (thereby at most doubling the size of the tree).

The correctness proof of the tester uses the same ideas, with the following ad-
justment. For every violation of monotonicity (i, j), where i < j (necessarily f(i) = 1
and f(j) = 0), we say that i is heavy in this violation if at least a 1− 1

O(log n)
fraction

of the values in the path from i to j are 0, and we say that j is heavy if at least a
1

O(log n)
fraction of the vertices in the path from i to j are 1. Using arguments similar

to those used in the above proof, it is easy to show that this is indeed a one-sided
error monotonicity tester.

5. A lower bound for distribution-free monotonicity testing in the high-
dimensional case. In this section we show that distribution-free testing of Boolean
functions, defined over the Boolean hypercube {0, 1}d, requires a number of queries
that is exponential in the dimension. In subsection 5.1, we give an overview of the
lower bound proof and present the families of functions used in this proof. Then,
for simplicity, we first prove, in subsection 5.2, the lower bound for one-sided error
testing, and later in subsection 5.3 we extend our lower bound for the two-sided error
case.

Hereafter, we identify any point x ∈ {0, 1}d with the corresponding set x ⊆ [d].
This allows us to apply set theory operations, such as union and intersection, to points.
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In addition, for any two points p, p′ ∈ {0, 1} d
2 , denote by p||p′ the point x ∈ {0, 1}d,

that is, the concatenation of p and p′ (i.e., it is identical to p in its first d
2

coordinates

and to p′ in its last d
2

coordinates). Given a point x ∈ {0, 1}d, we say that p ∈ {0, 1} d
2

is the prefix of x if x = p||p′ for some p′. For every two points x, y ∈ {0, 1}d,
denote by H(x, y) the Hamming distance between x and y. For every point x, define

U(x)
def
= {y : y ≥ x, |y| ≤ d

2
}; similarly define L(x)

def
= {y : y ≤ x, |y| > d

2
}. Denote by

Bd
λd the set of points in {0, 1}d of weight λd, that is, Bd

λd = {x ∈ {0, 1}d : |x| = λd}.
We always assume that d is divisible enough and λ · d is an integer.

5.1. Overview of the construction. To prove the lower bound on the query
complexity, we show that any two-sided error distribution-free monotonicity tester
with subexponential query complexity is unable to distinguish between monotone
functions and functions that are 1

2
-far from monotone. To this aim, we consider

two families F1 and F2 of pairs (f,Df ), where f is a Boolean function and Df is a
probability distribution corresponding to f , both defined over {0, 1}d, such that the
following three requirements are satisfied:

1. Every function in F1 is monotone. Hence, every tester has to accept every
pair (f,Df ) ∈ F1 with probability at least 2

3
.

2. Every function f in F2 is 1
2
-far from monotone with respect to Df . Therefore,

every tester has to reject every pair (f,Df ) ∈ F2 with probability at least 2
3

(regardless of the choice of the distance parameter ε).
3. There exists a constant c such that no algorithm A that makes fewer than 2cd

membership queries and samples the distribution less than 2cd times satisfies
that

• A accepts every pair (f,Df ) in F1 with probability at least 2
3
.

• A rejects every pair (f,Df ) in F2 with probability at least 2
3
.

We conclude that there exists no two-sided error distribution-free tester for mono-
tonicity of Boolean functions defined over {0, 1}d with subexponential query com-
plexity. (A similar approach was previously used for lower bound proofs in property-
testing with respect to the uniform distribution [28]. However, since the previous
proofs considered the uniform distribution setting, the two families in those proofs
consist of functions and not pairs of functions and distributions.)

In the rest of this subsection, we describe the two families of functions (and
the corresponding distributions), F1 and F2, defined over {0, 1}d. Let α < 1

32
be

a parameter used for the construction of both families and define m
def
= 2αd. In the

construction, we use a set M ⊂ B
d/2
(1/4−α)·d of size 2m such that every two points

in M are “far apart.” This property of M will be used in the proof that the third
requirement is satisfied. We first define the exact requirements from such a set M
and claim its existence.

Lemma 5.1. There exists a set M ⊂ B
d/2
(1/4−α)·d that satisfies the following con-

ditions:
• |M| = 2m.
• H(p, p′) > 2αd for every two distinct points p, p′ ∈ M.

Proof. First, note that the second condition of the lemma is equivalent to asking
that |p ∩ p′| < ( 1

4
− 2α)d for every two distinct points p, p′ ∈ M. This holds since

H(p, p′) = 2((1
4
− α)d− |p ∩ p′|); hence, |p ∩ p′| < ( 1

4
− 2α)d iff H(p, p′) > 2αd.

We show that a randomly drawn set of 2m points in B
d/2
(1/4−α)·d satisfies the small

intersection condition with nonzero probability. Let P be the probability that two

randomly drawn points x, y ∈ B
d/2
(1/4−α)·d have intersection of size at least ( 1

4
− 2α)d.
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By the union bound, the probability that a set of 2m randomly drawn points does not
satisfy the small intersection condition is at most 4m2P . We prove the existence of
such a set M by showing that 4m2P < 1. It is also possible to see P as the probability

for a given point x ∈ B
d/2
(1/4−α)·d that a randomly drawn point y ∈ B

d/2
(1/4−α)·d has an

intersection of size at least ( 1
4
− 2α)d with x, and hence

P =

∑( 1
4−α)d

i=( 1
4−2α)d

(
( 1
4−α)d

i

)(
( 1
4+α)d

( 1
4−α)d−i

)

(
d
2

( 1
4−α)d

) < (αd + 1)

(
( 1
4−α)d

( 1
4−2α)d

)(
( 1
4+α)d

αd

)

(
d
2

( 1
4−α)d

)

=
(αd + 1)((1

4
− α)d)!2(( 1

4
+ α)d)!2

d
2
!(( 1

4
− 2α)d)!( 1

4
d)!(αd)!2

.

A simple calculation, based on Stirling formula, shows that P < 1
4m2 for sufficiently

large d, implying the claimed result. To see this, we write

P <
(αd + 1) · (( 1

4
− α)d)!2(( 1

4
+ α)d)!2

d
2
!(( 1

4
− 2α)d)!( 1

4
d)!(αd)!2

≈ (αd + 1)(2π) · (( 1
4
− α)d · (( 1

4
− α)d)2(

1
4−α)d · e−2( 1

4−α)d)

(2π)
5
2 ·

(√
d
2
· d

2

d
2 · e− d

2

)
·
(√

( 1
4
− 2α)d · (( 1

4
− 2α

)
d
)( 1

4−2α)d · e−( 1
4−2α)d

)

· ((
1
4

+ α)d · (( 1
4

+ α)d)2(
1
4+α)d · e−2( 1

4+α)d)(√
d
4
· (d

4
)

d
4 · e− d

4

)
· (αd · (αd)2αd · e−2αd)

=
(αd + 1)( 1

16
− α2) · (( 1

4
− α)d)2(

1
4−α)d · (( 1

4
+ α)d)2(

1
4+α)d · e−d

√
π
4
· (( 1

4
− 2α)d)d

2

d
2 · d

4

d
4 · α · (( 1

4
− 2α

)
d
)( 1

4−2α)d · e−d · (2αd)2αd

=
(αd + 1)( 1

16
− α2) · ( 1

4
− α)2(

1
4−α)d · ( 1

4
+ α)d2( 1

4+α)d

√
π
4
· ( 1

4
− 2α) · α · d

2

d
2 · d

4

d
4 ( 1

4
− 2α)(

1
4−2α)d · α2αd

.

For α < 1
32

, we have P < 1
4m2 .

Using a set M, as in Lemma 5.1, we define the two families. For each pair (f,Df ),
we first define the function f : {0, 1}d → {0, 1} and then, based on the definition of
f , we define the corresponding distribution Df over {0, 1}d.

5.1.1. The family F1. Each function f is defined by first choosing (in all
possible ways) two sets X1 and X2, each of size m, such that X1 ⊂ Bd

1/2−α and

X2 ⊂ Bd
1/2+α. The choice of the two sets is done as follows:

• Choose a set of m points M′ ⊂ M.

• For each point p in M′, randomly choose a point y ∈ B
d/2
d/4 and add the point

x = p||y to X1 (as needed, |x| = (1/2 − α)d).

• For each point p in M \ M′, randomly choose a point y ∈ B
d/2
(1/4+2α)·d and

add the point x = p||y to the set X2 (as needed, |x| = (1/2 + α)d).

The function f is now defined in the following manner:

• For every point x1 ∈ X1 and every point y such that y ≥ x1, set f(y) = 1.
• For every point x2 ∈ X2 and every point y such that y ≤ x2, set f(y) = 0.
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Fig. 5.1. An example of a function in F1 for m = 2.

• For every point y, such that f(y) was not defined above, if |y| ≤ d
2
, then

f(y) = 0; otherwise f(y) = 1.
See Figure 5.1 for an example of such a function for m = 2.
The distribution Df corresponding to the function f is the uniform distribution

over the 2m points in X1 ∪ X2. That is, Df (x) = 1
2m for every x ∈ X1 ∪ X2 and

Df (x) = 0 for any other point in {0, 1}d.
The fact that F1 is not empty follows from the existence of such a set M. To

see that the function f is well defined, and that every function in F1 is monotone
(and hence that the family F1 satisfies the first requirement of the construction), we
observe the following simple lemma.

Lemma 5.2. {y : y ≥ x1} ∩ {y : y ≤ x2} = φ, for every x1 ∈ X1 and x2 ∈ X2.
Proof. If there exists a point z ∈ {y : y ≥ x1} ∩ {y : y ≤ x2}, then x1 < x2. By

the construction of f , there exist two distinct points p1, p2 ∈ M such that x1 = p1||y1

and x2 = p2||y2 for some y1 and y2. Thus, p1 ≤ p2, contradicting the fact that p1 �= p2

and |p1| = |p2|.
5.1.2. The family F2. Each function f in F2 is also defined by first choosing

(in all possible ways) two sets X1 and X2, each of size m such that X1 ⊂ Bd
(1/2−α)·d

and X2 ⊂ Bd
(1/2+α)·d. The choice of the two sets is done as follows:

• Choose a set of m points M′ ⊂ M.
• For each point p in M′, randomly choose a pair of points (y1, y2) such that

– y1 ∈ B
d/2
d/4 .

– y2 ∈ B
d/2
(1/4+2α)·d.

– y1 < y2.
• Add the point x1 = p||y1 to X1 and the point x2 = p||y2 to X2. The two

points x1 and x2 will be referred to as a couple in f .
The function f is now defined as follows:

• For every point x1 ∈ X1 and every point y such that y ∈ U(x1), set f(y) = 1.
• For every point x2 ∈ X2 and every point y such that y ∈ L(x2), set f(y) = 0.
• For every point y such that f(y) was not defined above, if |y| ≤ d

2
then

f(y) = 0; otherwise f(y) = 1.
See Figure 5.2 for an example of such a function for m = 2.
The distribution Df is again the uniform distribution over X1 ∪ X2, as in the

definition of F1.
The fact that F2 is not empty follows immediately from the existence of the set M.

We now argue that the family F2 satisfies the second requirement of the construction;
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Fig. 5.2. An example of a function in F2 for m = 2.

that is, every function f in F2 is 1
2
-far from monotone with respect to Df .

Lemma 5.3. f is 1
2
-far from monotone, with respect to Df , for every (f,Df ) ∈ F2.

Proof. To transform f into a monotone function, we have to alter the value of
f , either in x1 or in x2, for every couple (x1, x2) in f . By doing this, we increase
the distance by 1

2m . Since there are m disjoint couples, the total distance is at least
1
2
. (In fact, since the distance of a Boolean function from monotone can be at most 1

2
,

the distance is exactly 1
2
.)

Remark 5.4. The fact that the points in M are far apart was not used so far,
but it will be used later in the proof that the third requirement is satisfied. The first
two requirements from F1 and F2 are satisfied for every choice of a set M satisfying
the other conditions of Lemma 5.1.

5.2. A lower bound for one-sided error testing. In this section, to give
some insight into the proof and a better understanding of the two families, we first
prove our lower bound for the simpler case of one-sided error testers. The arguments
used in this section will be later generalized to the case of two-sided error testers.

Specifically, we prove that there exists no one-sided error distribution-free mono-
tonicity tester with subexponential query complexity that accepts every pair (f,Df )
in F1, with probability 1, and rejects every pair (f,Df ) in F2, with high probability.
To this aim, we show that for every tester A, there exists a pair (f,Df ) ∈ F2, such
that with high probability, the execution of A on (f,Df ) is also consistent with some
monotone function from F1. Since A has to accept every monotone function, then A
has to accept f with high probability.

The above claim is simple if the tester is not allowed to use membership queries
but only to sample the distribution Df . In this case, to distinguish between the two
families, F1 and F2, the tester has to detect a couple in the function from F2. Given
i samples from the distribution, the probability that the (i + 1)st sample will be a
couple of one of the already known i points is at most i

2m . Therefore, the probability

of distinguishing between the two families using n samples is at most
∑n

i=1
i
m =

O(n
2

m ). Since m is exponential in d, distinguishing between the two families requires
an exponential number of queries. For proving the lower bound, we assume that all
testers in question have full knowledge of the two families F1 and F2 and specifically
the set of prefixes M. Hence, the difference between one tester and another is in
the tester’s choice of membership queries, and dealing with the tester’s membership
queries is where the difficulty of this proof lies.

To state our claim formally, we introduce some notation. Let A be a tester with



1126 SHIRLEY HALEVY AND EYAL KUSHILEVITZ

query and sample complexity n = n(d, 1
ε ). Assume that the tester A works in two

stages. In the first stage, the tester performs n samplings of the distribution Df ,
and in the second stage, A performs n membership queries.10 Such a tester can
also be viewed as a mapping from a sequence {(pj , vj)}ij=1 of labelled points either
to “sample the distribution” (if i ≤ n) or to “query qi+1” (if n < i < 2n) and to
“accept” or “reject” if i = 2n. We refer to the sequence of labelled points obtained
by A during any execution as a knowledge sequence. Given a pair (f,Df ), denote by
Si
f the knowledge sequence learnt by A during the first i steps of its run on (f,Df )

(for some possible execution of A on (f,Df )). That is, Si
f is a random variable that

depends both on the outcome of the samplings from Df and on A’s internal random
coins. Hereafter, we use the notation Sf to denote S2n

f ; that is, Sf is a knowledge
sequence learnt by A during a full execution of A on (f,Df ). We say that a function
f is consistent with a knowledge sequence Si

f (in short, Si
f consistent) if f(pj) = vj

for every 1 ≤ j ≤ i. We say that a weight ( 1
2
− α)d point x is consistent with Si

f (in

short, an Si
f consistent point) if there exists an Si

f consistent function f ′ such that
x is in the set X ′

1 used for the construction of f ′. Similarly, we say that a weight
( 1
2
+α)d point x is consistent with Si

f if there exists an Si
f consistent function f ′ such

that x is in the set X ′
2 used for the construction of f ′.

As stated above, we will show that for some constant c, for every tester A with
query and sample complexity n < 2cd, there exists a pair (f,Df ) ∈ F2 such that with
high probability, over the possible executions of A and the sampling of the domain
according to Df , the sequence Sf is consistent with some monotone function f ′ ∈ F1.
Hence, with high probability Sf causes A to accept, contradicting the requirement
that A must reject (f,Df ) with probability at least 2

3
.

For this, we show that for every tester A and for every possible choice of random
coins for A, the probability that, for a uniformly drawn pair (f,Df ) from F2, the
sequence Sf is consistent with some monotone function from F1 is very high (where
the probability is taken over the choice of (f,Df ) and the sampling of Df ). Hence, by
Yao’s principle, for every tester A, there exists a pair (f,Df ) ∈ F2 such that for most
choices of random coins for A, the probability that Sf is consistent with a monotone
function is very high.

Lemma 5.5. For every tester A with query and sample complexity n, there exists
a pair (f,Df ) ∈ F2 such that

Pr{Sf is consistent with a monotone function in F1} ≥ 1 − 3n2

m
,

where the probability is taken over the choice of random coins for A and the samplings
of the distribution Df .

Based on the above lemma, we can state our lower bound.

Theorem 5.6. Let c = α/3. For every one-sided error monotonicity tester A
that makes fewer than 2cd membership queries and samples the distribution less than
2cd times, there exists a pair (f,Df ) ∈ F2 such that Pr{A accepts (f,Df )} > 1

3
.

Proof. Set n = 2 · 2cd. By Lemma 5.5, there exists a pair (f,Df ) ∈ F2 such that

Pr{Sf is consistent with a monotone function} ≥ 1 − 3n2

m . By our choice of c and n,
for this pair (f,Df ) ∈ F2 we have Pr{Sf is consistent with a monotone function} ≥
1 − 3·4·22αd/3

2αd = 1 − 12
2αd/3 > 1

3
(for sufficiently large d).

10This is without loss of generality, although at a cost of doubling the tester query complexity.
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It remains to prove Lemma 5.5. To do so, we first state the condition that a
knowledge sequence has to satisfy in order to be consistent with some function in F1.
Note that in order for a knowledge sequence to be extendable to a monotone function
in F1, it is not enough that Sf is consistent with some monotone function. If for
some couple (x1, x2) with prefix p, the sequence Sf contains points y1 ∈ U(x1) and
y2 ∈ L(x2), both with the same prefix p, then we can deduce that f ∈ F2 regardless
of whether y1 and y2 are comparable or not. Therefore, we have to define a relaxed
notion of a witness for nonmonotone functions for our setting such that every sequence
that does not contain a witness is indeed extendable to a function in F1. (In general, it
is enough to show that there exists an arbitrary monotone function that is consistent
with the knowledge sequence and is not necessarily a function in F1. However, we
will use this fact later when extending the proof of the lower bound for the two-sided
error case.)

Definition 5.7. Let Si
f be a knowledge sequence learnt by A during the first i

steps of some execution on the pair (f,Df ) ∈ F2. We say that Si
f contains a witness

if there exist points y1, y2 in Si
f such that y1 ∈ U(x1) and y2 ∈ L(x2) for some couple

(x1, x2) in f .
Lemma 5.8. If the knowledge sequence Sf , learnt by A during some execution on

a pair (f,Df ) ∈ F2, does not contain a witness, then there exists a function f ′ ∈ F1

that is consistent with Sf .
Proof. To prove the existence of such a function f ′, we show how to construct

the sets X ′
1 and X ′

2 such that f ′, the function induced by X ′
1 and X ′

2, is in F1 and is
consistent with Sf . The construction of X ′

1 and X ′
2 is as follows:

1. For every couple (x1, x2) in f , if Sf contains points in U(x1), then add x1 to
X ′

1; otherwise, if Sf contains points in L(x2), then add x2 to X ′
2. Let MS

be the set of d
2

length prefixes of all the points that were added to X ′
1 and to

X ′
2. Note that since Sf does not contain a witness, MS = |X ′

1| + |X ′
2|.

2. Choose m−|X ′
1| points in M\MS ; denote the set of selected points by M1.

For each prefix p ∈ M1, choose a point y ∈ B
d/2
d/4 and add p||y to X ′

1.

3. Denote by M2 the set M\ (MS

⋃M1). For each prefix p ∈ M2, choose a

point y ∈ B
d/2
(1/4+2α)·d and add p||y to X ′

2.

Clearly, the function f ′ is Sf consistent. It remains to show that it is indeed a
function in F1. Since Sf does not contain a witness, none of the prefixes in M was
used more than once in the construction of X ′

1 and X ′
2. Hence, the sets X ′

1 and X ′
2

can also be chosen in the process described in the construction of F1. Therefore, the
function f ′ defined by the two sets X ′

1 and X ′
2 is indeed in F1.

We now prove that the probability is very small that the knowledge sequence
Sf , learnt by A during its run on a uniformly chosen pair (f,Df ) ∈ F2, contains a
witness. To do so, we prove that the probability is very small that for every step of A
the knowledge sequence contains a witness after that step. For this, we show that for
every query that A may ask, there can be only one prefix in M such that this query
belongs to U(x1) or L(x2) for some couple (x1, x2) with that prefix. We first prove
the following technical lemma.

Lemma 5.9. Let f be a function in F2. Then, U(x1) ∩ U(x′
1) = φ for every

x1, x
′
1 ∈ X1 such that x1 �= x′

1. Similarly, L(x2) ∩ L(x′
2) = φ for every x2, x

′
2 ∈ X2

such that x2 �= x′
2.

Proof. Consider x1, x
′
1 ∈ X1 such that x1 �= x′

1 and assume, towards a contra-
diction, that there exists a point y ∈ U(x1) ∩ U(x′

1). Let p and p′ be the prefixes of
x1 and x′

1, respectively, and denote by py the d
2

length prefix of y. Since y ∈ U(x1),
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then H(x1, y) ≤ αd, and hence H(p, py) ≤ αd. Similarly, H(p′, py) ≤ αd. There-
fore, H(p, p′) ≤ 2αd, contradicting the requirements from M. The proof for X2 is
similar.

We can now deduce from the above lemma the following.

Lemma 5.10. For every point z ∈ {y ∈ {0, 1}d : ( 1
2
−α)d ≤ |y| ≤ d

2
}, there exists

at most one prefix p ∈ M such that z ∈ U(x) for some point x ∈ Bd
1/2−α with prefix

p. Similarly, for every point z ∈ {y ∈ {0, 1}d : d
2
< |y| ≤ ( 1

2
+ α)d}, there exists at

most one prefix p ∈ M such that z ∈ L(x) for some point x ∈ Bd
1/2+α with prefix p.

Definition 5.11. We say that the ith labelled point in a length i sequence Si
f is

destructive if Si−1
f does not contain a witness and Si

f does.

Lemma 5.12. For every tester A and every possible sequence of random coins for
A, the following holds:

Pr{Si+1
f contains a witness | Si

f does not contain a witness} ≤ i + 2

m
,

where the probability is taken over the random choice of (f,Df ) from F2 that is
consistent with Si

f , and over the possible samplings of Df for the chosen pair (f,Df ).

(In other words, the probability that the (i + 1)st labelled point in Si+1
f is destructive

can be bounded by i+2
m .)

Proof. We distinguish between the two stages of the tester: the sampling stage
and the queries stage. In the first case, for every possible choice of (f,Df ) from
F2, we show that the probability that Si+1

f contains a witness is at most i
2m . Let

(f,Df ) be a pair in F2 that is Si
f consistent and let X1 and X2 be the sets used for

its construction. The sampled point can be destructive only if Si
f already contains a

related point. That is, for some couple (x1, x2) in f , either the sampled point is x1

and there are points in Si
f from L(x2), or the sampled point is x2 and Si

f contains

points from U(x1). By Lemma 5.10, every point in Si
f can be in U(x1) for at most

one point x1 ∈ X1, and similarly, every point can be in L(x2) for at most one point
x2 ∈ X2. Hence, for every point x in Si

f , only sampling of the couple of x can cause

the knowledge sequence to contain a witness (recall that all the points in Si
f are

either from X1 or from X2).
11 The probability for this event is 1

2m . Therefore, the
probability that the sampled point returned by the oracle is destructive is bounded
by i

2m .

In the second case, let qi+1 be the query asked by A in step i + 1. Note that the
query qi+1 can be computed by the algorithm using the information obtained during
the first i steps of its execution, that is, the locations of the sampled points and the
values of the queried points. If |qi+1| < ( 1

2
− α)d or |qi+1| > ( 1

2
+ α)d, then Si+1

f

cannot contain a witness. Assume, without loss of generality, that |qi+1| ≤ d
2

(the

proof is similar for the case that |qi+1| > d
2
).

By Lemma 5.10, there can be at most one relevant prefix p ∈ M such that a
couple (x1, x2) with prefix p can include qi+1 in U(x1). If Si

f contains no 0-labelled
points that can possibly be in L(x2) for a point x2 with prefix p, then by the definition
of a witness qi+1 cannot be destructive. Hence, assume there exists a 0-labelled point
z in Si

f that can possibly be in L(x2) for a point x2 with prefix p.

11Note that, in general, if the points in M are not “far apart,” it is possible for the couples to be
very close to one another, and hence almost every sampled point is destructive.
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The sequence Si+1
f will contain a witness only if qi+1 ∈ U(x1) for the point x1

corresponding to x2. Note that Si
f does not necessarily include x2 itself, but only

points in L(x2) (however, these points may affect the number of possible choices for
x1). We will bound the probability over the possible choices of a pair (f,Df ) such
that f is Si

f consistent, that indeed qi+1 ∈ U(x1) for the pair (x1, x2) for which Si
f

contains points in L(x2), and we will show that this probability is at most 2
m .

We prove this bound by showing that for every value for x2 with prefix p that is
Si
f consistent, the probability that qi+1 ∈ U(x1) for x1 (the couple of x2) that is Si

f

consistent can be upper bounded by 2
m . We claim that this is sufficient to prove the

bound for a uniformly chosen pair (f,DF ) ∈ F2, and we delay the proof of this claim
for now.

The bound will be shown through the following three steps. In step 1, we give
an upper bound on the number of possible choices for x1 such that qi+1 ∈ U(x1).
In step 2, we show a lower bound on the number of choices for x1, given the point
x2, that are Si

f consistent. Finally, in step 3 we combine these two bounds to get an
upper bound on the probability of the desired event.

1. Since x1 must have the prefix p, we bound the number of points x ∈ Bd
(1/2−α)·d

with prefix p such that x < qi+1. Clearly, this number is maximal when qi+1

also has the prefix p and |qi+1| = d
2
. Therefore, the number of possible choices

for x1 such that qi+1 ∈ U(x1) is at most k
def
= (

( 1
4+α)d

αd ).
2. Our choice of x1 is constrained by the point x2 and by 0-labelled points which

we know could have been in U(x1) for possible choices of x1. The number of

choices for x1 given x2 is bounded by K
def
= (

( 1
4+2α)d

2αd ) (the first d
2

coordinates
are always p). However, our choice is also constrained by the 0-labelled points
known in Si

f that could have been in U(x1). Using arguments similar to the
ones that were used in step 1, each of these points can eliminate at most k
choices for x1. Hence, there are at least K − ik possible choices for x1 that
are Si

f consistent.
3. We can deduce that the probability that, given x2, a uniformly drawn point

x1, which is Si
f consistent, satisfies qi+1 ∈ U(x1) can be upper bounded by

k
K−i·k . To bound this probability, we first bound the ratio k

K . We have

k

K
=

(( 1
4

+ α)d)!(2αd)!

(( 1
4

+ 2α)d)!(αd)!
=

(αd + 1) . . . 2αd

(( 1
4

+ α)d + 1) . . . ( 1
4

+ 2α)d

<

(
2αd

( 1
4

+ 2α)d

)αd

< (8α)αd.

Therefore, the probability that qi+1 ∈ U(x1) is bounded by (8α)αd

1−i(8α)αd . By the

choice of α < 1
16

, we have (8α)αd < 1
2

αd
= 1

m . Hence, (8α)αd

1−i(8α)αd <
1
m

1− i
m

=
1

m−i . Since i < m
2

, this probability is bounded by 2
m .

It remains to show why, in order to bound the probability that a uniformly drawn
pair in F2 that is Si

f consistent satisfies qi+1 ∈ U(x1), it is enough to bound the

probability that qi+1 ∈ U(x1) for a uniformly drawn Si
f consistent point x1, given x2

(the couple of x1) Si
f consistent.

We first observe that all the functions in F2 that are Si
f consistent contain a

couple with the prefix p (otherwise, qi+1 cannot be destructive). We now argue that
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the distribution induced by a random choice of an Sf
i consistent pair in F2 over the

prefix p couples (x1, x2) is uniform. To see this, note that every couple (x1, x2) with
prefix p that is Si

f consistent can be extended to a pair (f,Df ) that is Si
f consistent

(by choosing all the other points in X1 and X2) in the same number of ways. That is,

the number of possibilities for extending the sample Sf
i to a pair in F2 is independent

of the specific choice of the pair (x1, x2). Therefore, once the prefix of the couple is
determined, given the point x2, the distribution induced over the possible choices of
x1 that are Si

f consistent is uniform (since the distribution induced over all choices
is uniform). In addition, for every such function f , the question of whether indeed
qi+1 ∈ U(x1) is fully determined by the choice of the prefix p couple (x1, x2). Hence,
it is enough to bound the probability that, given any point x2 that is Si

f consistent,

indeed qi+1 ∈ U(x1) for a uniformly chosen x1 that is Si
f consistent.

Based on the above lemma, we can now prove the following proposition.
Proposition 5.13. For every tester A with query and sample complexity n and

every possible choice of random coins for A,

Pr{Sf contains a witness} ≤ 3n2

m
,

where the probability is taken over the random choice of the pair (f,Df ) from F2 and
over the possible sampling of Df for the chosen pair (f,Df ).

Proof. Given a tester A and a choice of random coins for A, the probability that
Sf contains a witness for a uniformly chosen pair (f,Df ) ∈ F2 is bounded by

2n∑

i=1

Pr{Si+1
f contains a witness | Si

f does not contain a witness}.

By Lemma 5.12, this probability can be bounded by
∑2n

i=1
i+2
m = n(2n+1)+4n

m <
3n2

m .
Lemma 5.5 follows immediately from the above proposition (notice that Proposi-

tion 5.13 implies Lemma 5.5 for every choice of random coins and not just with high
probability over the choice of random coins for A, as stated in Lemma 5.5).

5.3. Lower bound for two-sided error testing. In this section we extend
Theorem 5.6 to the two-sided error case; that is, we prove that there exists no two-
sided error distribution-free monotonicity tester with subexponential query complex-
ity that accepts every pair (f,Df ) ∈ F1, with high probability, and rejects every pair
(f,Df ) ∈ F2, with high probability. To do so, we show that there exists a constant c
such that for every tester A that makes fewer than 2cd membership queries and sam-
ples Df less than 2cd times, the distributions induced on the set of possible knowledge
sequences by running A on a random pair from F1 and from F2 are statistically close.
By Yao’s principle, the claim follows.

Let A be a tester with query and sample complexity n < 2cd. Denote by PA
1 the

distribution induced over length n knowledge sequences by running A on a uniformly
drawn pair (f,Df ) from F1 (note that PA

1 is induced by the random choice of the
pair (f,Df ) in F1, the choice of random coins for A, and the sampling of the domain
according to Df ); the distribution PA

2 is defined similarly. We show that for every
such tester A, the statistical difference between the two distributions PA

1 and PA
2 is

exponentially small.
In the previous section we saw that for every tester A, the probability, measured

with respect to PA
2 , that a knowledge sequence contains a witness is very small. At
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first glance, it may seem that this is enough to show that the two distributions PA
1

and PA
2 are statistically close. However, this is not true. In the case of functions in

F1, for every prefix p ∈ M there exists a point either in X1 or in X2 with the prefix
p (m of the prefixes in M are used as prefixes for points in X1, while the other m
are used as prefixes for points in X2). This is not the case for functions in F2, where
we choose only m out of the 2m prefixes and select a couple (x1, x2) with each prefix.
Hence, one can suggest the following testing approach:

1. Repeat the following two steps:
(a) Choose a prefix p ∈ M.
(b) Decide, using membership queries, whether there exists a point either in

X1 or in X2 with the prefix p.
2. If for at least 1

4
of the prefixes chosen in step 1, no point was found in X1 or

in X2 with that prefix, decide that the function is in F2; otherwise, decide
that the function is in F1.

(Such an approach is not relevant in the case of one-sided error testing, since the tester
has to accept every function in F1 with probability 1.) Clearly, if the tester is only
allowed to sample the distribution Df , this testing approach requires an exponential
number of queries. However, it may be hypothetically possible to use membership
queries to significantly reduce the query complexity. Hence, it is not enough to show
that with high probability the knowledge sequence Sf does not contain a witness, and
there are other undesirable events that we have to eliminate.

We formally define each of the undesirable events and prove that with high prob-
ability, both under PA

1 and under PA
2 , these events do not occur in the knowledge

sequence learnt by A. As before, given a pair (f,Df ), we denote by Si
f the knowledge

sequence learnt by A during the first i steps of its execution on (f,Df ) (for some
possible execution of A on (f,Df )). The first undesirable event is that the tester suc-
ceeds in learning useful information about the given pair (f,Df ) during the querying
stage (and not only in the sampling stage).

Definition 5.14. Let Si
f be a knowledge sequence learnt by A during the first

i steps of some execution on the pair (f,Df ). We say that Si
f contains nonsampled

points if either, for some x1 ∈ X1 that was not sampled in the first stage of the tester,
Si
f contains points in U(x1), or for some x2 ∈ X2 that was not sampled in the first

stage of the tester, Si
f contains points in L(x2).

We first prove that this event is unlikely under PA
1 . The proof is similar to the

proof of Lemma 5.12.
Lemma 5.15. For every tester A and every possible sequence of random coins for

A, the following holds:

Pr{nonsampled points in Si+1
f | no nonsampled points in Si

f} ≤ 2

m
,

where the probability is taken over the random choice of (f,Df ) from F1 that is
consistent with Si

f , and over the possible samplings of Df for the chosen pair (f,Df ).

Proof. By definition, in order for Si+1
f to contain nonsampled points, i+1 must be

in the queries stage. That is, in step i+1, the tester queries the function. Let qi+1 be
the query performed by the tester in step i+ 1 based on all the information obtained
by the tester during the first i steps of the execution and assume, without loss of
generality, that (1

2
−α)d ≤ |qi+1| ≤ d

2
. We show that the probability of qi+1 ∈ U(x1),

for some point x1 ∈ X1 not sampled by the tester in the sampling stage, is bounded
by 2

m . By Lemma 5.10, there exists at most one prefix p ∈ M such that qi+1 can be
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in U(x1) for a point x1 ∈ X1 with prefix p. Hence, Si
f includes no point x ∈ X1 ∪X2

with prefix p (otherwise, the probability that Si+1
f contains nonsampled points is 0).

As in the proof of Lemma 5.12, once the prefix of a point x1 ∈ X1 is determined, the
distribution induced by the random choice of the pair (f,Df ) ∈ F1 on the choice of
x1 is uniform. Thus, to bound the probability for a random pair (f,Df ) ∈ F1 that is
Si
f consistent that qi+1 ∈ U(x1) for x1 ∈ X1, it is enough to bound the probability

of qi+1 ∈ U(x1) for a uniformly chosen x1 with prefix p that is Si
f consistent. The

arguments used for this bound are simpler than those used in the proof of Lemma 5.12,
since this time the choice of x1 is constrained only by 0-labelled points that could have
possibly been in U(x1), and not by the choice of the couple x2 (since the functions in
question are all in F1).

Our bound will be obtained through the following three steps. In step 1, we
bound from above the number of possible choices for x1 such that qi+1 ∈ U(x1).
In step 2, we bound from below the number of possible choices for x1 that are Si

f

consistent. Finally, in step 3 we combine the two bounds to obtain an upper bound
on the probability of qi+1 ∈ U(x1) for a random x1 that is Si

f consistent.

1. Since x1 must have the prefix p, we bound the number of points x ∈ Bd
1/2−α

with prefix p such that x < qi+1. As before, this number is maximal when
qi+1 also has the prefix p and |qi+1| = d

2
. Therefore, the number of possible

choices for x1 such that qi+1 ∈ U(x1) is at most k
def
= (

( 1
4+α)d

αd ).

2. The number of possible choices for x1 given only the prefix p is K
def
= (

d/2
d/4) (the

first d/2 coordinates are always p). However, our choice of x1 is constrained
by the 0-labelled points in Si

f that could have possibly been in U(x1) for
possible choices of x1. Using arguments similar to step 1, each of these points
can eliminate at most k choices for x1. Hence, there are at least K − ik
possible choices for x1 that are Si

f consistent.

3. We conclude that the probability of a uniformly drawn point x1 that is Si
f

consistent satisfying qi+1 ∈ U(x1) can be upper bounded by k
K−i·k . We have

k

K
=

(( 1
4

+ α)d)!(d
4
)!2

(d
2
)!(d

4
)!(αd)!

=
1 . . . d

4

1 . . . αd · ( 1
4

+ α)d . . . d
2

<

(
1

2

)( 1
4−α)d

<

(
1

2

) d
8

.

Therefore, the probability of qi+1 ∈ U(x1) can be bounded by
( 1
2 )

d
8

1−i( 1
2 )

d
8
. By

the choice of α < 1
16

and the fact that i < m, we have i· 1
2

d
8 < 1

2
for sufficiently

large values of d. Hence,
( 1
2 )

d
8

1−i( 1
2 )

d
8
< 2( 1

2
)

d
8 < 2

m .

Based on the above lemma, we now prove the following proposition.
Proposition 5.16. For every tester A and every possible choice of random coins

for A,

Pr{Sf contains nonsampled points} ≤ 4n

m
,

where the probability is taken over the random choice of the pair (f,Df ) from F1 and
over the possible sampling of Df for the chosen pair (f,Df ).

Proof. Given a tester A and a choice of random coins for A, the probability
that Sf contains nonsampled points for a uniformly chosen pair (f,Df ) ∈ F1 can be
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bounded by

2n∑

i=1

Pr{Si+1
f contains nonsampled points | Si

f does not contain nonsampled points}.

By Lemma 5.15, this probability can be bounded by
∑2n

i=1
2
m = 4n

m .
We now show that this event is unlikely also under PA

2 .
Lemma 5.17. For every tester A and every possible sequence of random coins for

A, the following holds:

Pr{nonsampled points in Si+1
f | no nonsampled points in Si

f} ≤ i + 2

m
,

where the probability is taken over the random choice of (f,Df ) from F2 consistent
with Si

f , and over the possible samplings of Df for the chosen pair (f,Df ).
Proof. Clearly, the probability that, for a uniformly drawn pair (f,Df ) ∈ F2

consistent with Si
f , the point qi+1 is in U(x1) for a point x1 ∈ X1 not known in Si

f ,
can be bounded by the probability that, for such a pair (f,Df ), indeed qi+1 ∈ U(x1),
given that x2 (the couple of x1), appears in Si

f (the knowledge of x2 can only raise the
probability of the tester to choose a point qi+1 ∈ U(x1)). However, this probability
was already shown in Lemma 5.12 to be bounded by i+2

m .
The following proposition is proved in a similar way to Proposition 5.13, with

Lemma 5.17 playing the role of Lemma 5.12.
Proposition 5.18. For every tester A and every possible choice of random coins

for A,

Pr{Sf contains nonsampled points} ≤ 3n2

m
,

where the probability is taken over the random choice of the pair (f,Df ) from F2 and
over the possible sampling of Df for the chosen pair (f,Df ).

The next undesirable event is that, during the sampling stage, the tester receives
the same sample more than once. We show that this event is unlikely both under PA

1

and under PA
2 .

Definition 5.19. A knowledge sequence Sf is repetitive if there exists a point
in X1 ∪X2 that was sampled at least twice in Sf .

Proposition 5.20. For every tester A and every possible choice of random coins
for A,

Pr{Sf is repetitive} ≤ n2

m
,

where the probability is taken over the random choice of the pair (f,Df ) from F1 or
from F2 and over the possible sampling of Df for the chosen pair (f,Df ).

Proof. To prove the lemma, we show that given a set L of size m, the probability
that at least one of the points in L appears more than once in a random sample of size

n is bounded by n2

m . The probability that the ith sample from L is a point that was

sampled before can be bounded by i
m . Hence, using the union bound, the probability

that at least one of the n samples repeats a point that was sampled before is bounded

by
∑n

i=1
i
m = n·(n+1)

2m ≤ n2

m .
We conclude that with very high probability, under both distributions, none of

the undesirable events occur.



1134 SHIRLEY HALEVY AND EYAL KUSHILEVITZ

Definition 5.21. We say that a knowledge sequence Sf is good if Sf does not
contain a witness nor nonsampled points and is not repetitive; otherwise, we say that
Sf is bad.

Note that, if a knowledge sequence Sf is good, then the sequence is fully deter-
mined by the answers received from the sampling oracle in the first stage of the tester.
That is, unless a query q is in U(x) or L(x) for a point x that was sampled in the first
stage of the tester, the answer that the tester receives is 0 if |q| ≤ d

2
, and 1 otherwise.

By Propositions 5.13, 5.16, 5.18, and 5.20, for every tester A, with probability at

least 1− 8n2

m , both with respect to PA
1 and with respect to PA

2 , the knowledge sequence
learnt by A is good. We show that for every good knowledge sequence Sf , the two
probabilities PA

1 (Sf ) and PA
2 (Sf ) are very close. That is, we have the following.

Lemma 5.22. For every good knowledge sequence Sf it holds that

1 − O(n2)

m
≤ PA

1 (Sf )

PA
2 (Sf )

≤ 1 +
O(n2)

m
.

Proof. To prove the lemma, we show that, for every step that the tester performs
(sample or query), and for every answer it receives, the ratio between the probability
of this answer with respect to both a random function from F1 and a random function
from F2 is bounded by (1± n

2m−n ). Recall that we assume the tester has two stages.
The first stage is the sampling stage, while the second is dedicated to the membership
queries of the tester. Since the sequences in question are all good, the answers that the
tester receives in the second stage are fully determined by the answers it received in the
sampling stage. Hence, the probability of these answers under both distributions is 1
and thus is identical. Therefore, for every knowledge sequence, the ratio between the
probability of this sequence under the two distributions can be bounded from above

by (1 + n
2m−n )n · 1n = (1 + O(n2)

m ) and from below by (1− n
2m−n )n · 1n = (1 − O(n2)

m )

(where the equality follows the binomial expansion of (1 + n
2m−n )n).12

It remains to show that indeed the ratio between the two probabilities holds with
respect to the first stage of the tester, the sampling stage. Let x be the answer
returned to the tester in the (i + 1)st sample and assume, without loss of generality,
that |x| = (1/2−α)d. Let n1 be the number of weight (1/2−α)d points sampled before

x (that is, points from X1). Denote by K the number of points in B
d/2
1/2 . Hence, the

probability under PA
1 that the tester receives a sampling of x is the probability that,

in a function f ∈ F1 that is Si
f consistent, the point x belongs to X1 and that x was

sampled according to Df . It is easy to see that the distribution induced by PA
1 over

the choice of prefix for the sampled point is the uniform distribution defined over the
set of prefixes that have not yet appeared in the points sampled prior to x. In addition,
once the prefix of x is determined, the choice of x is uniformly distributed over all K
prefix p points. Hence, the probability under PA

1 that the tester receives a sampling
of x is m−n1

2m−i · 1
2m−i · 1

K , where the first term is the probability that the next point
drawn according to Df is in X1, the second term is the probability that the prefix
used for the next point is indeed the prefix px of x, and the third is the probability
of choosing x out of all prefix px points. We now bound the same probability with
respect to the distribution PA

2 . In the case of functions from F2, the distribution

12(1 + n
2m−n

)n ≤ Σn
k=1n

k( n
2m−n

)k = Σn
k=1( n2

2m−n
)k ≤ Σ∞

k=1( n2

2m−n
)k, where the last inequality

follows the fact that 2m−n > 0. Since m > n2 +n, we have Σ∞
k=1( n2

2m−n
)k = 1

1− n2

2m−n

= 2m−n
2m−n−n2

= (1 + n2

2m−n−n2 ) ≤ (1 + n2

m
). The expansion for (1 − n

2m−n
)n is similar.
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induced over the prefix of the drawn point is again uniform, as is the distribution
induced over the possible choices of the point once the prefix has been determined.
However, the probability that the drawn point belongs to X1 is 1

2
, implying that the

probability of choosing x in this case is 1
2
· 1
2m−i · 1

K . Hence, the ratio between the two

probabilities is 2m−2n1

2m−i and is bounded from above by (1 + n
2m−n ) and from below by

(1 − n
2m−n ) as required.13

Therefore, the statistical difference between the two distributions PA
1 and PA

2 is
bounded by

1

2

⎛
⎝

∑

Sf :Sf is bad

max{PA
1 (Sf ),PA

2 (Sf )} +
∑

Sf :Sf is good

PA
2 (Sf ) · O(n2)

m

⎞
⎠ .

Since under both distributions the probability that the knowledge sequence is bad is
exponentially small, the statistical difference between the two distributions is bounded

by O(n2)

m . This implies the following theorem.
Theorem 5.23. There exists a constant c such that testing monotonicity of

Boolean functions defined over the Boolean d-dimensional hypercube, in the distribution-
free setting, requires 2cd queries.

6. Discussion and open problems. In this work we introduce the first dis-
tribution-free testers for some of the central problems studied in the property-testing
literature: low-degree multivariate polynomials testing and monotonicity testing in
the low-dimensional case. We show that a low-degree test can be obtained as a spe-
cial case of a more general distribution-free scheme presented for a wider class of
properties, thereby giving sufficient conditions for the existence of a distribution-free
tester. By this, we answer a natural question that has already been raised explicitly
by Fischer [19, subsection 9.3] and is implicit in [25]. In addition, by showing a lower
bound on the query complexity required for distribution-free monotonicity testing in
the high-dimensional case, we show that distribution-free testing, even if possible with
nontrivial query complexity, cannot always be done using a query complexity similar
to that used in the uniform setting.

However, there are many open questions with respect to distribution-free testing
and we are still only beginning to explore them. The first problem that remains open is
trying to narrow the gap between the query complexity of the known distribution-free
monotonicity tester for the high-dimensional case (which is exponential in logn) and
our lower bound (which is only exponential in d). In addition, now that we already
know it is possible to construct distribution-free testers for nontrivial problems, we
wish to further study the existence of such testers for different problems that we know
how to test with respect to the uniform distribution. Eventually, our goal will be to
find characterizations (and not only sufficient conditions) for problems that can be
efficiently tested in a distribution-free manner, given that they can be efficiently tested
with respect to the uniform distribution.

Another interesting possible direction is to relax the requirements for distribution-
free testing. There are certain problems for which testers exist for the uniform dis-
tribution case, and it has been proven that they cannot be efficiently tested in the
distribution-free setting. Among these are the partition problems in the dense graph

13Note that 2m−2n1
2m−i

= 1 + i−2n1
2m−i

. Since 0 ≤ n1 ≤ i ≤ n, we have 2m − n ≤ 2m − i, and
−n ≤ i− 2n1 ≤ n.
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model that were studied in [25]. In these cases, it is interesting to try relaxing the
distribution-free testing requirement by allowing a stronger oracle to the input func-
tion f . One possibility is to enable the algorithm to ask queries in the following form:
Is there a value x in a subdomain X ′ ⊆ X of the function f , for which f(x) = y
(for a specific value of y)? This kind of oracle access seems relevant, for example, in
monotonicity testing when, given a point z ∈ X such that f(z) = 1, we wish to find
a point x ∈ {v ∈ X : z ≤ v} such that f(x) = 0, and it was already introduced in the
context of learning theory. Notice that the strength of the oracle is determined by
the kind of specification we allow the algorithm to give on the subdomains. Another
possibility is to allow the algorithm to ask for the actual probability of the points it
sampled according to D (in the distribution-free model the tester has no knowledge
of the probability of the sampled points) and to use it in its decision process. Finally,
there is always the possibility of distribution-known testing, in which the distribution
D is known to the tester in advance. This is very different from the distribution-free
case, where we are only allowed to sample according to the distribution D, but have
no actual knowledge of D.

Acknowledgments. The lower bound proof for monotonicity testing in the high-
dimensional case was initiated by a discussion with Nader Bshouty. We wish to thank
Nader for sharing his ideas with us; they played a significant role in the development
of the results presented in section 5.
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Abstract. A packet-switching algorithm specifies the actions of the nodes in order to deliver
packets in the network. A packet-switching algorithm is universal if it applies to any network topol-
ogy and for any batch communication problem on the network. A long-standing open problem
has concerned the existence of a universal packet-switching algorithm with near-optimal perfor-
mance guarantees for the class of bufferless networks where the buffer size for packets in transit
is zero. We give a positive answer to this question. In particular, we give a universal buffer-
less algorithm which is within a polylogarithmic factor from optimal for arbitrary batch problems:
T = O

(T ∗ · log3(n + N)
)
, where T is the packet delivery time of our algorithm, T ∗ is the optimal

delivery time, n is the size of the network, and N is the number of packets. At the heart of our result
is a new deterministic technique for constructing a universal bufferless algorithm by emulating a
store-and-forward algorithm on a transformation of the network. The main idea is to replace packet
buffering in the transformed network with packet circulation in regions of the original network. The
cost of the emulation on the packet delivery time is proportional to the buffer sizes used by the store-
and-forward algorithm. We obtain the advertised result by using a store-and-forward algorithm with
logarithmic sized buffers. The resulting bufferless algorithm is constructive and can be implemented
in a distributed way.

Key words. optimal scheduling, routing, graph decomposition, deterministic bufferless emula-
tion
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1. Introduction.

1.1. Motivation. In a communication network, two or more packets collide
when they wish to follow the same link at the same time. Typically, some of the
colliding packets are stored in a buffer at the node where the collision occurs, until
the collision is resolved (store-and-forward networks). Here, we examine the case
where such buffers are unavailable (bufferless networks). At the same time, we do not
allow packets to be dropped in collisions. Since buffers are unavailable and packets
cannot be dropped, colliding packets must be deflected to neighboring nodes. This
behavior of packets in a collision has led to communication algorithms on bufferless
networks becoming known as hot-potato or deflection algorithms; here, we will simply
call them bufferless. Bufferless algorithms are of practical interest since in optical
networks the packets are propagated as lightwaves which are hard to buffer [45].

A packet-switching algorithm specifies the actions that nodes in the network fol-

∗Received by the editors October 7, 2005; accepted for publication (in revised form) January
3, 2007; published electronically November 21, 2007. A preliminary version of this paper appears
as “Universal Bufferless Routing,” in Proceedings of the 2nd Workshop on Approximation and On-
line Algorithms (WAOA) (in conjunction with ALGO 2004), Lecture Notes in Comput. Sci. 3351,
Springer-Verlag, Berlin, 2004, pp. 239–252.

http://www.siam.org/journals/sicomp/37-4/64209.html
†Department of Computer Science, Louisiana State University, 280 Coates Hall, Baton Rouge,

LA 70803 (busch@csc.lsu.edu).
‡Department of Computer Science, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY

12180 (magdon@cs.rpi.edu).
§Department of Computer Science, University of Cyprus, P. O. Box 20537, Nicosia CY-1678,

Cyprus (mavronic@ucy.ac.cy). This author’s work was partially supported by the EU within the
6th Framework Programme under contract 001907 “Dynamically Evolving, Large Scale Information
Systems” (DELIS).

1139



1140 C. BUSCH, M. MAGDON-ISMAIL, AND M. MAVRONICOLAS

low to deliver the packets. A packet-switching algorithm is universal if it applies to
any network topology and can solve any batch problem on it, where an arbitrary set
of packets has to be delivered in the network. Universal store-and-forward algorithms
with optimal performance guarantees exist [24, 35, 33, 40, 43]. A long-standing and
important open problem is to determine whether there exists a universal bufferless
algorithm with performance close to that of store-and-forward algorithms. Here, we
solve this problem in the affirmative by giving the first known universal bufferless algo-
rithm with near-optimal performance. We analyze the performance of our algorithm
for batch problems on a synchronous network model, which we now describe.

1.2. Network model. The communication network is a connected, unweighted,
and undirected graph G = (V,E), where |V | = n. In a synchronous network, time
is divided into a sequence of discrete time steps. Edges are bidirectional and may be
traversed by at most two packets at a time step, one packet in each direction.

At every time step, a node processes the incoming packets and then sends them to
adjacent nodes. In store-and-forward networks, each node has three kinds of buffers:
(i) an injection buffer, which stores the packets to be injected into the node (when
the node is a packet source), (ii) incoming edge-buffers, of size one for every incident
edge, which will store any packet received along the respective edge, (iii) outgoing edge-
buffers, for every incident edge, which are the actual buffers for packets in transit. At
every time step the node takes the packets from the incoming and injection buffers
and either forwards them along incident links or places them in the outgoing buffers.
If the outgoing buffer is full, then packets are dropped.

In bufferless networks, there are no outgoing edge-buffers; in other words, all
outgoing edge-buffers have size zero. Further, packets may not be dropped. Thus,
after the packet is injected into the network, it must traverse some edge at every time
step (until it is absorbed). Preferably, the traversed edge brings the packet closer to
the destination. However, due to collisions, this is not always possible, and the packet
may be sent on an alternate edge taking it further from the destination; this event is
called deflection.

In our model, bufferless networks still have the injection and incoming buffers.
The incoming buffers help to process the incoming packets. The injection buffer
is needed when a node has to inject packets and there are no available edges. So,
the distinction between store-and-forward and bufferless networks is in the outgoing
buffers which hold packets in transit.

1.3. Batch problems. We measure the efficiency of our bufferless algorithm
on batch problems [32]. In a batch problem, we are given an arbitrary set of packets
with the objective to deliver them to their destinations. Let Q = (G,Π,S) denote a
batch problem on graph G for a set of N packets Π = {π1, π2, . . . , πN}. Each packet
πi has source si and destination ti. The set S contains all the pairs of sources and
destinations for the respective packets; thus S = {(s1, t1), (s2, t2), . . . , (sN , tN )}.

We say that a set of paths P = {p1, p2, . . . , pN} satisfies batch problem Q if
each path pi is a path in G from the source si to the destination ti of packet πi.
Typically, a packet-switching algorithm solves a batch problem Q by first selecting a
set of paths P that satisfy Q (routing), and then sending the packets along the paths
(scheduling). The delivery time of the packet switching algorithm is the number of
time steps that elapse between the first packet injection and the last packet absorbtion
at its destination.

It is useful to define some properties associated with a set of paths P. A path
p ∈ P could be specified either as a sequence of nodes or as a sequence of edges, and
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the length of the path, |p|, is the number of edges in the path. The edge congestion
C is the maximum number of paths in P that use an edge in G; similarly, the node
congestion C is the maximum number of paths that use a node in G; the dilation D
is the maximum path length, maxpi∈P |pi|. Since at most one packet may traverse
an edge in a particular direction during any time step, a lower bound on the delivery
time is given by Ω(C + D). Any packet-switching algorithm, either bufferless or
store-and-forward, obeys this lower bound.

Given a set of paths with edge congestion C and dilation D, there exist store-
and-forward scheduling algorithms that deliver the packets in time O(C + D) (plus
logarithmic terms), which are optimal within constant factors for the given paths
[24, 35, 33, 40, 43]. Let P∗ denote the optimal set of paths which minimize C +D for
a given batch problem Q. Using the optimal paths, the packets can be delivered in
optimal time (within constant factors) in store-and-forward networks. A long-standing
open question is whether one can achieve near-optimal delivery time in bufferless
networks as well. We answer this question in the affirmative.

1.4. Contribution. We show that for any batch problem Q on an arbitrary
bufferless network G, a delivery time within logarithmic factors from optimal can be
achieved. In particular, we give a randomized algorithm which does so, given the
optimal paths.

Theorem 1.1. With probability 1−O((n+N)−λ), for some constant λ > 0, any
batch problem Q with N packets on an arbitrary bufferless network G with n nodes
can be solved with delivery time O(T ∗ · log3(n+N)), where T ∗ is the optimal delivery
time for Q (with or without buffers).

In order to obtain this result, we actually prove that for any set of paths P with
congestion C and dilation D, the packets can be delivered within time O((C + D) ·
log3(n + N)). Thus, using the optimal set of paths P∗, we obtain Theorem 1.1.

Our algorithm is universal, since it applies to arbitrary network topologies. It also
applies to arbitrary batch problems. Given the set of paths P∗, the algorithm is also
constructive and can be implemented in a distributed manner. We do not address the
issue of constructing the good (optimal) set of paths P∗, which is an active area of
research [5, 6, 44, 49]. Our focus is on the fundamental difference between buffered
versus bufferless packet switching, which we show is small. We continue by describing
the technique used in our algorithm.

1.5. Approach. Consider a batch problem Q = (G,Π,S) in a bufferless network
G. Let P be a set of paths that satisfy Q with edge congestion C and dilation D. Our
goal is to deliver the packets in time T = O((C +D) · log3(n+N)). This is sufficient
for proving Theorem 1.1.

If the packets are to be sent without any collisions, then there are no deflections
and the only parameter that needs to be determined is the injection time of the
packets. In [22], it is shown that it is an NP-hard problem to approximate efficiently
the optimal injection times in a collision-free packet scheduling (by a reduction from
the vertex coloring problem). Thus, packets need to be deflected in order to obtain
a near-optimal solution in polynomial time. However, with deflections, it is hard to
preserve packets along specific paths, since a packet may need to deviate from its path
in order to give priority to packets that make progress.

Our approach to solving the problem is to control the packet deflections while the
packets follow the paths in P. We restrict the deflections in some particular areas
of the network which are close to the original paths. By controlling the deflections
in those areas, we effectively obtain a new set of paths P̂ in G along which we can



1142 C. BUSCH, M. MAGDON-ISMAIL, AND M. MAVRONICOLAS

send the packets in a collision-free manner and with delivery time T . We implicitly
obtain the new set of paths and the collision-free schedule using a new technique that
emulates a store-and-forward algorithm. There are three main steps in the emulation,
which we describe next.

1. Creation of store-and-forward network G′. We transform the bufferless network
G to a new store-and-forward network G′. Instead of separate outgoing edge-buffers,
each node in G′ has a unique outgoing node-buffer of size γ to store all the packets in
transit. We divide the graph G into regions which are pairwise edge-disjoint connected
components each consisting of about γ edges. Each node in G′ corresponds to a region
in G. (G′ is also called the region graph of G; see Figure 1.)

The set of paths P in G is translated to set of paths P ′ in G′. If path p ∈ P uses
an edge e in a region R of G, then in the respective path p′ ∈ P ′, edge e is mapped
to the node that represents R in G′. The final path p′ is obtained by removing any

cycles. We observe that the set of paths P ′ have node congestion C
′
= O(γC), since

at most γC paths of G are mapped to a single node in G′. Further, the dilation is
D′ = O(D), since a path in G shrinks in G′.

2. Store-and-forward scheduling in G′. We execute a store-and-forward scheduling
algorithm for the packets Π in G′ using the paths in P ′. The scheduling algorithm has
delivery time T ′ = O(C + D) and uses node-buffers of size γ = O(log(n + N)). The
algorithm is randomized and efficiently delivers the packets with high probability.

3. Creation of set of paths P̂ in G. The store-and-forward schedule in G′ is trans-
lated back to the original bufferless network G to give the set of paths P̂ and a
collision-free schedule for the packets. The translation is achieved implicitly with a
deterministic bufferless emulation of the store-and-forward algorithm in G′. Each time
step of the store-and-forward scheduling algorithm in G′ is translated to a sequence
of O(γ2 · log n) time steps in G. The main trick is to emulate the buffering. If in a
time step a packet is buffered in a node in G′, then the same packet in G circulates
on an Euler tour of the edges in the corresponding region. Since a buffer in G′ may
hold multiple packets (but no more than γ), all those packets will circulate one after
the other on the edges in the same region; recall that there are at least γ edges in
each region. If in a time step a packet moves from one node to another node in G′,
then the packet moves from the first respective region to the next region in G. If a
packet is injected (resp., absorbed) in G, the packet is injected (resp., absorbed) in
the source (resp., destination) of the respective region.

During the emulation, the packets may appear to be deflected, while they are in
fact circulating on the Euler tours in the region. By concatenating for each packet the
respective Euler tours, we implicitly obtain the set of paths P̂ on which the deflections
in effect determine a collision-free schedule.

The cost of the emulation on the delivery time is a factor O(γ2 · log n) with
respect to the store-and-forward schedule; that is, the resulting delivery time is T =
O(T ′ ·γ2 · log n). This gives the desired delivery time of T = O((C+D) · log3(n+N)),
which holds with high probability. We emphasize that the randomization is due to
the store-and-forward algorithm, while the emulation is deterministic. Further, if the
nodes know the graph G and the parameters C and N , then the resulting bufferless
algorithm can be implemented in a distributed way.

1.6. Related work. There are no previously known results for universal buffer-
less packet-switching algorithms with near-optimal delivery time guarantees. How-
ever, there are efficient algorithms for specific bufferless models and architectures,
which we summarize below.
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Fig. 1. An example of the decomposition to the region graph.

In hot-potato algorithms, packets are deflected to available links in a collision
[8]. Our model of bufferless algorithms is based on the hot-potato model, with the
significant exception that packets are deflected on particular available edges specified
by the emulation, not on any available edge as is typical in hot-potato algorithms.
This enables us to control the positions of the packets and implicitly obtain the
aforementioned paths P̂ and a collision-free schedule on them. Hot-potato algorithms
have been extensively studied for a variety of architectures such as the mesh and
torus [7, 9, 10, 14, 16, 18, 19, 20, 25, 26, 29, 30, 31, 39, 48], hypercubes [13, 15, 26, 28,
42], trees [23, 46], vertex-symmetric networks [36], and leveled networks [12, 17, 21].
Typically, by allowing packets to deviate slightly from their preselected paths, one
obtains delivery times that are within polylogarithmic factors of optimal.

In direct (collision-free) packet scheduling, packets follow their paths without
buffering and without any collisions, [4, 50, 22]. Busch et al. [22] give a comprehensive
study of direct scheduling where they give a universal O(C ·D) centralized algorithm,
and near-optimal algorithms for the tree, mesh, butterfly, and hypercube.

Wormhole algorithms are similar to direct algorithms, although here, packets
occupy more than one edge [24, 27]. Cypher et al. [24] give a randomized, universal
distributed wormhole algorithm with delivery time O(L ·C ·D), where L is the length
of the packet; this bound can be improved if the edges have higher bandwidths. A
dual to direct scheduling is time-constrained scheduling, where the task is to schedule
as many packets as possible within a given time frame [1, 2]. In the related class
of matching routing algorithms, packets are swapped at adjacent nodes. Under this
model, permutation problems on trees have been studied in [3, 41, 51].

There are two variants of store-and-forward algorithms: those that use outgoing
buffers on every edge (edge-buffers) and those that use a single outgoing buffer on
every node (node-buffers). For nonbounded degree networks, these variants may not
be equivalent, since one model does not necessarily translate to the other. The exis-
tence of universal store-and-forward scheduling algorithms with optimal delivery time
O(C + D) (plus additive logarithmic terms) and constant size edge-buffers was first
established in the seminal work of Leighton, Maggs, and Rao [35]. Scheideler [47]
showed that edge-buffers of size two are sufficient. These results are nonconstructive.
Thereafter, the main focus has been on constructive algorithms with optimal delivery
time O(C+D) [11, 33, 37, 40, 43]. These algorithms use large buffers (proportional to
the congestion C). Leighton, Maggs, and Rao [35] give a universal distributed algo-
rithm that uses edge-buffers of size O(logND) and has delivery time O(C+D logND).
Cypher et al. [24] give an algorithm with edge-buffers of size O(logCD) and slightly
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better delivery time. There are no better constructive results known for arbitrary
networks that achieve smaller buffer sizes.

Our bufferless algorithm is based on emulating the universal distributed store-and-
forward algorithm in Leighton, Maggs, and Rao [35]. Here, we analyze the delivery
time of this store-and-forward algorithm in terms of the node congestion C and bound
the node-buffer requirements, which is necessary for determining the performance of
the bufferless emulation.

1.7. Paper outline. In section 2, we give a graph decomposition into regions
which is fundamental to our bufferless algorithm. Next, in section 3, we discuss store-
and-forward algorithms and introduce a simple randomized algorithm using node-
buffers. In section 4, we show how to emulate store-and-forward algorithms in a
bufferless manner using the regions obtained by the graph decomposition in section
2. We apply the emulation on the randomized store-and-forward algorithm to obtain
near-optimal universal bufferless algorithm in section 5. We finish with a discussion
and future directions in section 6.

2. Regions. The bufferless emulation uses regions in the graph to simulate
buffering. To construct these regions, we will need to decompose the connected graph
G into connected components of approximately a specified size.

2.1. Graph decomposition. Let G = (V,E) be a connected, unweighted, and
undirected graph. Let F be a subset of the edges in E. The subgraph induced by F
is the graph H = (U,F ), where U is the union of all vertices in V that are incident
with edges in F . The edge set F is connected if the induced subgraph H is connected.

Definition 2.1. A connected decomposition of G is a partition of the edges in
E into a collection of disjoint sets {E1, E2, . . . , Ek} such that ∪k

i=1Ei = E and every
Ei is connected.

We refer to the Ei’s as the connected edge sets or regions in the decomposition,
and call the number of edges in Ei, |Ei|, the size of Ei. Notice that the subgraphs
H1 = (V1, E1), . . . , Hk = (Vk, Ek) induced by the edge sets may have overlapping
vertex sets. We say that Ei is connected to Ej if and only if Vi ∩ Vj �= ∅. Notice that
if Ei is connected to Ej , then Ei ∪ Ej is a connected edge set.

An [α, β]-partition of G (if it exists) is a connected decomposition {E1, . . . , Ek}
of G, such that α ≤ |Ei| ≤ β for i = 1, . . . , k. Notice that if α ≈ β, then an [α, β]-
partition decomposes G into connected edge sets of size approximately equal to α. Our
first task is to show that such approximate decompositions exist for any connected
graph. Our proof is constructive; hence, it can be converted to an algorithm.

The following lemma will be instrumental in the proof. Essentially, it states that
a connected graph can be decomposed into two large connected edge sets.

Lemma 2.2. Let k ≥ 2. Any connected graph G = (V,E) with |E| ≥ 3k − 2 can
be decomposed into two disjoint connected edge sets each of size at least k.

Proof. Using a depth first search, determine a connected edge set F with |F | =
2k− 2 ≥ k. Note that |E \F | ≥ k. E \F is composed of a number of connected edge
sets (called satellites) α1, α2, α,3 . . . , each of which is not connected to any other, but
all of which are connected to F . The situation is illustrated in Figure 2. Let α1 be
the largest such satellite edge set of F . If |α1| ≥ k, then α1 and F ∪α2 ∪α3 ∪ · · · are
both connected edge sets that have size ≥ k; thus we are done. We need only consider
the case where |α1| ≤ k − 1. We will show how to replace |F | with another edge set
F ′ of the same size, and whose largest satellite α′

1 will have size at least |α1|+ 1. We
can thus repeat this argument until the size of α1 is at least k, concluding the proof.
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Fig. 2. F and its satellites αi.

Fig. 3. e is a bridge in F .

We now show how to construct F ′.
Suppose that |α1| ≤ k − 1, in which case there is at least one other satellite α2.

Let u and v be common nodes of α1 and F and of α2 and F , respectively. (Note
that these nodes must exist, and they are different since F is connected to both these
satellites.) Let e be an edge in F incident with u, and let f be an edge in α2 incident
with v (as shown in Figure 2). Increase the size of α1 to |α1| + 1 by adding e to it
(and removing e from F ). Note that α1 remains connected. If F \ e is a connected
edge set, then add f to F \ e to get F ′. Note that |F ′| = |F |. The edge set α1 ∪ e is
now a connected edge set of size |α1| + 1 which is part of the largest satellite of F ′

(note that while adding e to α1, we may have connected α1 to some other satellite).
Thus the largest satellite α′

1 of F ′ has size at least |α1| + 1.
The only remaining case to consider is that including e into α1 disconnects F ; thus

e is a bridge in F connecting two connected edge sets F1, F2 ⊂ F . The situation is
illustrated in Figure 3, where we have merged F1 and F2 with their respective satellites
to get edge sets γ1 and γ2 as illustrated. Note that since |α1∪e| ≤ k, |γ1|+|γ2| ≥ 2k−2.
If neither |γ1| ≥ k nor |γ2| ≥ k, this implies that |γ1| = |γ2| = k − 1. In this case,
merge γ2 with e to form a connected edge set of size k. The remaining edges form
a connected edge set of size at least 2k − 2 ≥ k; hence we are done. Thus, suppose
that one of γ1 or γ2 has size ≥ k; without loss of generality, suppose that it is γ1.
Now consider α′

1 = γ2 ∪ α1 ∪ e. There are two cases: |α′
1| ≥ k, and we are done; or

|α1| < |α′
1| < k, in which case |γ1| ≥ 2k − 1, so that F1 together with its satellites
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contains more than 2k − 2 edges. We construct F ′ from F1 by adding edges from its
satellites (while keeping it connected) until |F ′| = 2k− 2. To conclude, note that the
largest satellite of F ′ must have size at least |α′

1| ≥ |α1| + 1.
Using an induction argument and Lemma 2.2, we will show that there always

exists an [α, β]-partition with β = Θ(α).
Theorem 2.3 (existence of a [k, 3k−3]-partition). Let G = (V,E) be a connected

graph. For any k, where 1 < k ≤ |E|, there exists a [k, 3k − 3]-partition of G.
Proof. If 2 ≤ k ≤ |E| ≤ 3k − 3, then E itself is a [k, 3k − 3]-partition and thus

there is nothing to prove. We will now prove the claim by strong induction on |E|.
The induction hypothesis is

P(N) : There exists a [k, 3k − 3]-partition for any G = (V,E) when-
ever |E| ∈ [k,N ].

We claim that P(N) is true for all N . We know that P(3k − 3) is true, so suppose
that P(N) is true for some N ≥ 3k − 3 and consider P(N + 1). Let G = (V,E) be
any graph with |E| = N + 1. Since |E| ≥ 3k − 2, Lemma 2.2 implies that E can be
decomposed into two disjoint connected edge sets E1, E2 with k ≤ |E1| ≤ |E2| ≤ N .
By the induction hypothesis, there exist [k, 3k−3]-partitions of E1 and E2. The union
of these two partitions is a [k, 3k − 3]-partition of E, concluding the proof.

The following example proves that the result of Theorem 2.3 is tight. For a given
k, let G be any connected graph with k− 2 edges, and connect three such graphs in a
wheel configuration as shown below. It is easy to see that the only decomposition in
which every edge set has at least k edges is the entire graph itself, which has 3k − 3
edges.

The proof in Theorem 2.3 is constructive, based upon the construction in Lemma
2.2. In order to analyze the run time more easily, we convert the construction into the
algorithmic format in Algorithm 1. We use the same notation that was used in the
proof of Theorem 2.3. The depth first search and the computation of the satellites
take time O(E). The while loop executes at most k times, since |α1| strictly increases
in each execution (else the function calls itself and returns). In each execution, at
most O(E) work is done, and get components can possibly be called on two smaller
instances, both corresponding to graphs of size ≥ k. Thus, letting T (|E|, k) denote
the worst-case run time to obtain a [k, 3k − 3]-partition for a graph with size |E|, we
have that for some constant c,

T (|E|, k) ≤ max
3k−3≤b≤|E|−3k+3

{T (b, k) + T (|E| − b, k)} + ck|E|,

with T (|E|, k) = 1 for |E| ≤ 3k − 3. One can show by induction that T (k, |E|) ≤
3
2
c|E|2 = O(|E|2), and hence the algorithm to compute the decomposition is polyno-

mial in |E|.
2.2. The region graph. Consider a connected graph G = (V,E), with n nodes.

Take an [α, β]-partition of G, which gives regions R1, R2, . . . , Rk. Let the subgraphs
induced by these regions have vertex sets U1, U2, . . . , Uk. The region graph G′ =
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Algorithm 1 get components(E, k)

1: // Returns a [k, 3k − 3]-partition for the edge set E; Assume |E| ≥ k;
2: if |E| ≤ 3k − 3 then
3: return E;
4: Using DFS, compute F ⊂ E and all its satellites; let α1 be its largest satellite;
5: while |α1| < k do
6: Choose an edge e ∈ F that is incident with a vertex in the subgraph induced

by α1;
7: Choose an edge f in a satellite α2 �= α1 which is incident to a node induced by

F ;
8: if F \ e is a connected edge set then
9: α1 ← α1 ∪ e; F ← (F \ e) ∪ f ;

10: else if F \ e is disconnected and |γ1| = |γ2| = k − 1 then
11: Label γ1, γ2 so that α1 is connected to γ1;
12: return {γ2 ∪ e} ∪ get components(α1 ∪ γ1, k);
13: else (F \ e is disconnected into γ1, γ2 which are labeled so that |γ1| ≥ k)
14: if |α1 ∪ γ2| ≥ k then
15: return get components(γ1, k) ∪ get components(α1 ∪ γ2, k);
16: else
17: α1 ← α1 ∪ γ2;
18: F ← connected subset of γ1 of size 2k − 2 that is adjacent to α1;

(V ′, E′) has a vertex set V ′ = {r1, r2, . . . , rk}, where each vertex ri corresponds to
the region Ri of G. Two vertices ri, rj are adjacent in G′ (that is, the edge (ri, rj) is
in E′) if and only if Ui ∩ Uj �= ∅ (that is, the corresponding regions are connected).
An example of a region graph is given in Figure 1. Since each region consists of at
least α and at most β edges, we immediately have that |E|/β ≤ |V ′| ≤ |E|/α. We
proceed to show that G′ is connected.

Lemma 2.4. Graph G′ is connected.
Proof. Let ri, rj be two nodes in V ′ corresponding to regions Ri, Rj in G. We

show that there is a path in G′ from ri to rj . If Ri and Rj share a node, then ri and
rj are adjacent. Otherwise, let ei = (ui, vi) ∈ Ri and ej = (uj , vj) ∈ Rj be two edges
in E. Since G is connected, there is a path in G from vi to uj . This path consists
of edges e1, e2, . . . , ek in regions R1, R2, . . . , Rk, respectively. (Note that consecutive
regions are not necessarily distinct.) Now consider the path ei, e1, e2, . . . , ek, ej and
the regions Ri, R1, R2, . . . , Rk, Rj ; since every two consecutive edges share a node,
every two consecutive regions in this list are connected, which implies the existence
of a walk from ri to rj in G′. Since ri and rj are arbitrary nodes, it follows that G′

is connected.

2.3. Paths on region graph. Let P denote a set of paths on G with edge
congestion C, node congestion C, and dilation D. Let {R1, . . . , Rk} be an [α, β]-
partition of G into regions. Every edge in G belongs to exactly one region. Let
G′ = (V ′, E′) be the corresponding region graph. We define a mapping f : E → V ′

from the edges of G to the nodes of G′ as follows:
For every e ∈ E, f(e) = ri if and only if e ∈ Ri.

Consider a path p ∈ P, with p = (e1, e2, . . . , el). We define a mapping g which maps
a path in G to a path in G′ as follows:

For any path p = (e1, e2, . . . , el) in G, consider the walk in G′ given
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by w′ = (f(e1), f(e2), . . . , f(el)). The path g(p) denotes the walk w′

that we obtain after removing all the cycles and repeated nodes in
w′, g(p) = (f(ei1), f(ei2), . . . , f(eik)) (see Figure 1).

We now transform the set of paths P of the original graph G into a set of paths P ′

on the region graph G′ as follows:
P ′ = {p′1, p′2, . . . , p′N}, where p′i = g(pi) for every path pi ∈ P.

Let C ′, C ′, and D′ denote the edge congestion, the node congestion, and the dilation
of the paths in P ′, respectively. For any set of paths, the edge congestion is trivially

bounded by the node congestion; hence C ′ ≤ C
′
. A path uses node ri only if it

contains edges in Ri. By construction, |Ri| ≤ β, so the number of edges in P that
use Ri is at most βC; thus, C ′ ≤ βC. Since |g(p)| ≤ |p| for any path p in G, we
immediately have the following lemma.

Lemma 2.5 (congestion and dilation in the region graph). C ′ ≤ C ′ ≤ βC;
D′ ≤ D.

2.4. Euler cycles in regions. Given an undirected graph G = (V,E), we de-
fine the directed representation of G to be the graph Gdir = (V,Edir), where each
(undirected) edge (u, v) ∈ E is replaced by two directed edges (u, v), (v, u) ∈ Edir.
Consider a graph decomposition of G into regions R1, R2, . . . , Rk. We associate with
each Ri a region Rdir

i in Gdir, where each edge in Ri is replaced by the two respective
directed edges in Rdir

i . Take any node v induced by region Ri. Since every edge in
Ri is replaced by two edges in opposite directions in Rdir

i , the in-degree of v is equal
to its out-degree in Rdir

i .
An Euler cycle in a region Rdir

i is an edge-simple cycle that contains all the edges
of Rdir

i . Since in Rdir
i the in-degree equals the out-degree of every node, Rdir

i has
an Euler cycle. Let ψi denote an Euler cycle in Rdir

i . Let ψi = (v1, v2, . . . , v1) be
the sequence of nodes that ψi visits in Rdir

i . Since G and Gdir have the same set of
nodes, ψi is mapped to a walk in Ri, when we follow the same sequence of nodes as
in Rdir

i . We will refer to ψi as the Euler cycle of Ri as well.1 In Ri, ψi will traverse
the same edge twice, since the edge is traversed in two opposite directions in Rdir

i .
Thus, in an [α, β]-partition of G, every Euler cycle ψi satisfies 2α ≤ |ψi| ≤ 2β (since
α ≤ |Ri| ≤ β).

3. Store-and-forward scheduling in G′. In graph G, the bufferless algorithm
will emulate a store-and-forward algorithm which is applied in region graph G′. Here,
we discuss the specifications for the store-and-forward algorithm. Let A denote such
a store-and-forward algorithm. We will define the specifications of A. We will then
give an instantiation of such an algorithm below (Algorithm A1).

3.1. Specification of Algorithm A. Consider the batch problem Q = (G,Π,S)
and a set of paths P that satisfy Q. Let P ′ be the respective set of paths in G′ (recall
section 2.3). The objective of the store-and-forward Algorithm A is to solve a packet
scheduling problem Q′ = (G′,Π,P ′) in graph G′, where the task is to send the packets
Π along their respective set of paths P ′ in G′. Let γ denote the size of the node-buffers
that Algorithm A uses. Specifically, each node has a node-buffer of size γ. A packet
scheduling is valid whenever packets are not dropped (there are no buffer overflows).
During any single time step in Algorithm A, a packet may perform one of four actions:

1This is clearly an abuse of notation, since ψi is an Euler cycle of Rdir
i , not of Ri.
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Algorithm 2 Store-and-Forward Algorithm A1

1: Divide time into phases of length γ = 6 log(n′ + 2N) time steps.
2: for each packet π do
3: π will be injected at a phase φπ, where φπ is chosen uniformly and at random

between 1 and 12C ′/γ;
4: Packet π is injected at the first time step of phase φπ;
5: Packet π follows its path traversing one edge per phase;

(i) be injected into the network at its source node; [Injection]
(ii) move from its current node to a neighboring node; [Transfer]
(iii) move to and be absorbed in its destination node; [Absorbtion]
(iv) remain in the buffer of its current node. [Buffering]

If a packet is received into a node’s buffer at time t or was already buffered there
during time step t, then at time t+1, it must either be transmitted along the next edge
in its path or remain stored in the buffer. It is possible to divide any valid scheduling
into a sequence of phases, so that each phase has the following three properties:

(i) Each phase is a time interval consisting of at least one time step.
(ii) During a phase, each packet traverses at most one edge in G′.
(iii) During a phase, a node receives at most γ packets (by transfer or injection).

Suppose that Algorithm A produces a valid schedule. A trivial division of the ex-
ecution of Algorithm A into phases that satisfies these three properties is to take
each phase to be a single time step, since at every time step, any valid execution
of Algorithm A must satisfy these three properties. (Property (iii) is satisfied for
any valid scheduling because the size of the buffer is γ.) As we will show later, any
candidate store-and-forward algorithm which produces valid schedules and satisfies
these three properties may be used in our bufferless emulation algorithm to create
a universal bufferless algorithm. In this case, we will say that the store-and-forward
algorithm is emulatable. We now give a simple, randomized emulatable store-and-
forward algorithm, which with high probability gives a valid schedule that satisfies
the aforementioned three properties.

3.2. Store-and-forward Algorithm A1. We now give an instantiation of a
universal, emulatable store-and-forward algorithm, which is actually the universal
distributed algorithm of Leighton, Maggs, and Rao [35]. Here, we analyze the node-
buffer requirements of the algorithm and bound its delivery time with respect to the
node congestion, while originally in [35] the algorithm is analyzed with respect to
edge-buffers and edge-congestion. The algorithm is randomized, uses node-buffers
whose size γ is logarithmic with respect to the parameters of the scheduling problem,
and has near-optimal delivery time. We refer to this algorithm as Algorithm A1.

Let Q′ = (G′,Π,P ′) be a scheduling problem with path set P ′ on an arbitrary
graph G′ = (V ′, E′). Let C ′ be the node congestion and D′ the dilation for the paths
in P ′. Let N be the number of packets and n′ = |V ′|.

Algorithm 2 contains the details of the store-and-forward Algorithm A1. The
intuition behind this algorithm is that at most γ packets will be stored during a
phase in any node. The packets will leave the node by the end of the phase. This
is feasible, since the phase consists of γ time steps. However, we need to be a little
careful to ensure that all γ packets that are leaving a node will find buffer space to
enter their destination node. The detailed analysis of the algorithm follows below.

We will show that with high probability, Algorithm A1 successfully delivers the
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packets and at the same time is emulatable. For Algorithm A1 and phase φ, we define
the following properties:

P1(φ): In phase φ every packet in the network successfully traverses one edge in
its path.

P2(φ): No more than γ packets are buffered at any node during phase φ.
P3(φ): No more than γ/2 packets arrive at any node during phase φ.
P4(φ): No more than γ/2 packets remain at any node at the end of phase φ.

Note that P3 is stronger than we need. We introduce property P4 for technical
convenience. Since the maximum injection phase is 12C ′/γ and the maximum path
length is D′, we have the following lemma.

Lemma 3.1. If P1–P4 hold for 12C ′/γ+D′ phases, then ΦA1(Q
′) ≤ 12C ′/γ+D′,

and Algorithm A1 is a valid algorithm for bufferless emulation (emulatable).
Let Pr[φ0] be the probability that properties P1–P4 hold for all phases φ ≤ φ0.

Pr[0] = 1 by default. We now give a lower bound for Pr[φ0 + 1] in terms of Pr[φ0].
Lemma 3.2. If P1–P4(φ0) are true and P3(φ0 + 1) is true, then P1–P4(φ0 + 1)

are true.
Proof. If no more than γ/2 packets arrive at a node during phase φ0 + 1, then

since P4(φ0) is true, there are at most γ packets in the node during any time step of
phase φ0 + 1; therefore P2(φ0 + 1) is true. In the worst case all of the at most γ/2
packets in the node at the end of phase φ0 may leave sequentially on a single edge,
requiring at most γ/2 time steps, which is less than the duration of the phase; thus
P1(φ0 + 1) is true. The packets remaining in the node at the end of phase φ0 + 1 are
only those that entered, which is at most γ/2 packets; thus P4(φ0 + 1) is true.

By induction, we obtain the following corollary.
Corollary 3.3. P1–P4(φ) are true for all φ ≤ φ0 if and only if P3(φ) is true

for all φ ≤ φ0.
Thus, Pr[φ0 + 1] = Pr[{P1–P4(φ) are true for φ ≤ φ0} ∧ {P3(φ0 + 1) is true}].

Noting that Pr[A ∧B] = 1 − Pr[∼ A∨ ∼ B] ≥ 1 − Pr[∼ A] − Pr[∼ B],

(3.1) Pr[φ0 + 1] ≥ Pr[φ0] − Pr[{P3(φ0 + 1) is false}].
Consider a node v and phase φ0 + 1. Let qπ be the probability that packet π arrives
at node v during phase φ0 + 1, which can happen only if it is injected at a particular
phase. Since the probability that it is injected at that particular phase is γ/12C ′, we
conclude that qπ ≤ γ/12C ′ if π uses node v (at most C ′ such packets), and 0 otherwise.
Let Xi(v) = 1 if packet πi appears at node v at phase φ0 + 1. Xi(v) are independent
random variables, whose sum is the number of packets that appear at node v at phase
φ0 + 1. Let X(v) =

∑
i Xi(v). E[X(v)] =

∑
i qπi ≤ C ′ · γ/12C ′ = γ/12. By applying

a version of the Chernoff bound [38, Exercise 4.1], we obtain

Pr[X(v) > γ/2] < 2−γ/2.

Applying the union bound now gives that Pr[max
v

X(v) > γ/2] < n′2−γ/2, giving the

following lemma.
Lemma 3.4. Pr[{P3(φ0 + 1) is false}] < n′2−γ/2.
Using (3.1), Lemma 3.4, and the fact that Pr[0] = 1, we get the following result

by induction.
Lemma 3.5. Pr[φ0] ≥ 1 − φ0n

′2−γ/2.
Since n′ < n′ + 2N , 12C ′/γ + D′ < n′ + 2N (because C ′ ≤ N and D′ ≤ n′), and

2−γ/2 = (n′ + 2N)−3, by setting φ0 = ΦA1(Q
′) in Lemma 3.5 and using Lemma 3.1,

we obtain the main result of this section.
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Theorem 3.6 (delivery time of Algorithm A1). With probability at least 1 −
1/(n′ + 2N), Algorithm A1 solves scheduling problem Q′ in at most 12C ′/γ + D′

phases, satisfying P1–P4 in each phase (Algorithm A1 is emulatable). The node-
buffer size required is γ = 6 log(n′ + 2N).

4. Bufferless emulation in G. Let G = (V,E) be a connected graph with
n nodes and let {R1, . . . , Rk} be an [α, β]-partition of G with corresponding region
graph G′ = (V ′, E′). Consider batch problem Q = (G,Π,S) in G. Let P be a set
of paths that satisfy Q. Let the corresponding path scheduling problem in G′ be
Q′ = (G′,Π,P ′).

Our goal is to design a bufferless algorithm to solve the batch problem Q, with
delivery time Õ(C +D). In other words, the goal is to construct a set of paths P̂ for

which a bufferless and collision-free schedule exists with delivery time Õ(C +D). We
implicitly obtain this set of paths through emulation of a store-and-forward algorithm.
The store-and-forward algorithm solves the scheduling problem Q′ in G′ with set of
paths P ′; the set of paths P ′ was derived from P. In solving Q in G, the bufferless
algorithm will emulate Algorithm A in G′ (in a step-by-step fashion). The set of

paths P̂ derived by the bufferless algorithm will depend on the set of paths in P ′, and
hence also on the set of paths in P. Thus, the preselected paths in P are crucial to
the functioning of the bufferless algorithm, even though the paths used may deviate
significantly from the preselected paths.

4.1. The emulation. Assume that we have already constructed an emulatable,
store-and-forward Algorithm A which solves the region graph scheduling problem
Q′ = (G′,Π,P ′) using a buffer of size γ. Assume that 2γ ≤ |E| (we will deal with this
assumption later in section 5). We now discuss how to obtain a bufferless Algorithm B
which will emulate the phases of Algorithm A, which may possibly be faster than em-
ulating the individual time steps of Algorithm A. During a single phase of Algorithm
A, a packet π performs one of four actions (in G′): injection, transfer, absorbtion, or
buffering. Algorithm B emulates Algorithm A phase for phase by emulating each of
these actions that a packet can make. We continue with an informal description of
Algorithm B.

Algorithm B emulates the buffering of packets and their transfer from node to
node using the [α, β]-partition of G, where we set α = 2γ (by assumption, α =
2γ ≤ |E|). By Theorem 2.3, we guarantee the existence of such an [α, β]-partition by
choosing β = 6γ−3. Recall that we refer to nodes in the region graph by ri and their
corresponding region in the original graph by Ri.

• When in Algorithm A a packet is buffered in a node ri of G′, Algorithm B
emulates this by letting the packet circulate in the edges of region Ri in G.

• When in Algorithm A a packet is transferred from node ri to node rj of G′,
in Algorithm B the packet is transferred from region Ri to region Rj in G.
If the packet is absorbed by rj , it will be absorbed by the appropriate node
in Rj .

• If a packet is injected into the buffer of a node ri by Algorithm A, then in
Algorithm B, it will be injected into its injection node in Ri. From then on,
it will continue to circulate in the region until it is transferred to the next
region.

We now describe the details of the emulation.

4.1.1. Phases and rounds. Let Φ denote the number of phases Algorithm A
uses to deliver the packets in the region graph. In Algorithm B, time is divided into
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Φ phases. Each phase of Algorithm B emulates a phase of Algorithm A. In order
to perform the emulation of a phase, Algorithm B further divides each phase into Ξ
rounds, where Ξ will be specified later. The duration of each round is Z = 4β2 + 4β
time steps. (Recall that β = 6γ − 3.) Thus, the bufferless algorithm runs for Φ ·Ξ ·Z
time steps in total.

For the duration of an entire round, a region is either in the sending or the
receiving mode—we say that the region is sending or receiving. In the emulation,
when a packet has to be transferred from region Ri to the region Rj , Ri must be
sending and Rj receiving. We will show how to guarantee that for any pair of adjacent
nodes ri, rj ∈ V ′, there is a round in every phase in which region Ri is sending and
Rj is receiving (and vice versa).

In order to determine if a region is sending or receiving, we first obtain a vertex
coloring of G′. Let χ : V ′ �→ [0, n′] be a valid vertex coloring of G′, where χ(r)
is the color assigned to node r ∈ V ′ and no two nodes have the same color. Let
χ = maxi χ(ri) denote the maximum color used in the vertex coloring. A valid
coloring can be obtained by a simple greedy algorithm where the maximum color is
bounded by the maximum node degree. Since the maximum node degree is bounded
by n′, where n′ = |V ′|, we have that χ ≤ n′.

We define the color of a region Ri as the color assigned to the corresponding node
ri. Let δi be the binary representation of χ(ri). Let σ denote the number of bits in
χ, σ = �logχ� ≤ � log n′ �. By prepadding with zeros, we assume that every color δi
has σ bits. We define the mode parameter xi for region Ri to be the 2σ long binary
vector δ̄iδi, where δ̄i is the binary complement of δi. For 1 ≤ k ≤ 2σ, we denote the
kth bit of xi by xi(k).

We set the number of rounds in a phase to be Ξ = 2σ ≤ 2� log n′ �; thus, each
phase in Algorithm B consists of the 2σ rounds, ω1, ω2, . . . , ω2σ. During round ωk,
if xi(k) = 0, then region Ri is sending; otherwise, if xi(k) = 1, then region Ri is
receiving. Our assignment of colors ensures that during every phase, any region Ri

may send a packet to any neighboring region Rj (i.e., Ri will be sending and Rj

receiving), and similarly it may receive a packet from any neighboring region Rj (i.e.,
Rj will be sending and Ri receiving).

Lemma 4.1. If Ri and Rj are adjacent, then during every phase, there is at least
one round ωs (ωr) in which Ri is sending (receiving) and Rj is receiving (sending).

Proof. Since χ is a valid coloring, and Ri and Rj are adjacent, δi and δj must
differ at some bit. Suppose they differ in the kth bit, 1 ≤ k ≤ σ. Thus, rounds k and
k + σ satisfy the requirements, since xi(k + σ) = xi(k) = xj(k) = xj(k + σ).

The fundamental operation that is needed for the emulation by Algorithm B is
packet circulation within a region.

4.1.2. Packet circulation. Packet circulation is a basic function for the emu-
lation. During packet circulation, a packet π repeatedly follows the Euler cycle ψi

of the region Ri that it is in: At each time step, packet π follows the next edge in
ψi; when π reaches the end of the Euler cycle it continues from the beginning of the
cycle, and so on. At the time step in which packet π traverses an edge e ∈ ψi, we say
that e is the current edge of π.

At each round of a phase, a region is either sending or receiving. The speed at
which a packet circulates in its region depends on whether the region is sending or
receiving:

• If the region is receiving, then the packet follows the Euler cycle in the normal
fashion (one link per time step).



UNIVERSAL BUFFERLESS PACKET SWITCHING 1153

• If the region is sending, then the packet moves at an effectively slower speed
as follows. At time step 0 (the beginning of the round), suppose that π is at
node u with current edge e = (u, v) ∈ ψi. At time step 0, packet π follows its
current edge (u, v) and at time step 1, π appears in node v. At time step 1,
suppose that its new current edge in ψi is (v, w); the packet does not follow its
new current edge in ψi, but instead it follows edge (v, u) from v back to u, and
thus at time step 2, it appears back in node u. Thus after two time steps, the
packet has effectively not moved. We call such an operation an oscillation,
and we say that packet π oscillates on its current edge in the Euler cycle. The
time period of the oscillation is two time steps, The packet continues in this
fashion for subsequent time steps, so at even time steps t = 2i, it appears in
node u, and at odd time steps t = 2i+ 1 it appears in node v, for i ≥ 0. The
packet performs β such oscillations on its current edge e; thus, after 2β time
steps, the packet appears at u and follows edge e for the last time. At time
step Ts = 2β + 1, the packet is now at v, and at this point it stops oscillating
on edge e and begins oscillating on its new current edge (v, w) ∈ ψi. Thus,
after Ts time steps, the packet advances by one edge in the Euler cycle of ψi.
Consequently, since |ψi| ≤ 2β, after 2βTs = 4β2 + 2β time steps, a packet
circulating in region Ri has oscillated at least once on every edge of ψi.

From the above description of the packet movement in a sending region, we obtain
the following lemma.

Lemma 4.2. After 4β2 + 2β < Z time steps, a packet circulating in a sending
region Ri has oscillated at least once on every edge in ψi.

Suppose that the directed edge e = (u, v) ∈ ψi is an edge in the Euler cycle of a
receiving region Ri. If at time step t, no packet has edge e as its current edge, then
we say that e is empty. At each time step, we say that an empty edge is associated
with an empty slot. Empty slots are similar to packets in that they too circulate—as
the packets in a receiving region circulate (forwards) in ψi, the empty slots circulate
(backwards) in ψi at the same rate. They continue to circulate until some packet
occupies the empty edge.

Once a packet enters the network, its default status is to be circulating in the
region it is in. Packets enter a region either through injection or packet transfer.
We discuss how these steps are emulated by bufferless Algorithm B. In particular,
whenever a packet enters a region, it must not interfere with packets that are already
circulating in the region.

4.1.3. Emulation of injection. Suppose that in phase φ, Algorithm A injects
packet π into node ri. Let p be the path of π in G, e the first edge in this path, and
u the injection node. Since Algorithm A injects the packet into node ri of G′, we
know that e and u are in Ri. Algorithm B will inject π into Ri in phase φ during the
last round of the phase in which Ri is receiving. Algorithm B will inject π into an
empty edge in the Euler cycle ψi, i.e., one which is not a current edge of any packet
circulating in Ri. In this way, we guarantee that the injection of π will not interfere
with any currently circulating packets. After injection, π will continue to circulate in
Ri until the end of phase φ. All that remains is to show that it is possible to inject π
so that it does not interfere with any circulating packets. We will say that a region
is ready for phase φ of bufferless Algorithm B if at the beginning of phase φ (end of
phase φ − 1) there are at most γ packets circulating in the region. By default, all
regions are ready for the first phase (since there are no packets in the network).

Remember that 2α ≤ |ψi| ≤ 2β, so 4γ ≤ |ψi|. Suppose that region Ri is ready for
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phase φ of Algorithm B. Then, by definition of a phase in Algorithm A, at most γ
packets will need to enter region Ri during phase φ; i.e., at most γ − 1 packets other
than π need to enter. This means that only at most 2γ − 1 of the edges in ψ are
current edges of packets; the remaining |ψi|− (2γ− 1) ≥ 2α− (2γ− 1) = 2γ +1 edges
are empty slots that continually circulate backwards one edge at a time during the
round. An empty time slot is available for π if it will not be occupied by any packet
other than π during its backward circulation. Thus, there are at least 2γ+1 available
empty slots for π in region Ri. For any given edge e, each of these available empty
slots will be at e once every |ψi| ≤ 2β < Z time steps.

Let e = (u, v) ∈ ψi be the first edge of packet π in Ri. Packet π is injected into
the network, and e becomes its current edge at the first time step when e becomes
empty. Since π is injected into an empty edge, it does not interfere with any packets
already circulating in Ri. There are at least 2γ + 1 available empty slots, so we know
that e becomes empty at least 2γ + 1 times during the round. Thus, even if all (at
most γ) packets entering Ri during this phase are through injection at node u with
the same first edge e = (u, v) in their path, all of these packets can be injected into
circulation in Ri in just this one round.

Lemma 4.3. Suppose that packet π with first edge e ∈ Ri is injected into node ri
during phase φ of Algorithm A. If Ri is ready for phase φ of Algorithm B, then packet
π can be injected into Ri without interfering with any already circulating packets.

4.1.4. Emulation of packet transfer. Suppose that in phase φ of Algorithm
A, packet π moves from node ri to node rj . Assume that at the beginning of phase φ
in Algorithm B, packet π is circulating in region Ri, and that region Rj is ready for
phase φ of Algorithm B. During phase φ in Algorithm B, π will move from Ri to Rj

as follows. Packet π will circulate in Ri until the first round ω of phase φ in which
Ri is sending and Rj is receiving. (The existence of such a round is guaranteed by
Lemma 4.1.)

Since ri and rj are adjacent in G′, there exists a node u which is common to Ri

and Rj . Since node u is in Ri, there exists an edge ei = (ui, u) ∈ ψi on the Euler
cycle of Ri. Similarly, there exists an edge ej = (u, uj) ∈ ψj on the Euler cycle of Rj .
During round ω, packet π circulates (in slow mode) in region Ri along the Euler cycle
ψi. At some particular slow time step τ of the round, the current edge of π will be ei.
During the next Ts = 2β +1 time steps, π oscillates on edge ei and will appear at the
common node u at the β+1 times τ +1, τ +3, . . . , τ +2β+1. If at any of these times,
the edge ej ∈ ψj is an empty slot, i.e., not the current edge of any packet circulating
(in normal mode) in Rj , then π switches from oscillation on edge ei, making ej its
new current edge. Packet π now continues to circulate in Rj at normal speed. Since π
enters Rj on an empty edge, it will not interfere with any packets already circulating
in Rj . Note that π will have completed a full circuit on its Euler path ψi in at most
4β2 +2β time steps; thus, it will have completed its oscillations on edge ei within the
first 4β2 +2β time steps of the round. Thus, π will enter Rj within the first 4β2 +2β
time steps of round ω, provided that it found an empty edge on which to enter.

We now show that during round ω, π will indeed find an empty edge on which
to move into Rj . Specifically, for at least one of the time steps τ + 1, τ + 3, . . . , τ +
2β + 1, the edge ej ∈ ψj will be an empty slot. Remember that empty slots circulate
backwards in Rj at the rate of one edge per time step. Thus, every available empty
slot will pass ej at least once during any consecutive 2β time steps. By the arguments
in section 4.1.3, we know that there are at least 2γ + 1 such available empty slots.
Therefore, edge ej will become an empty slot at least once in the 2β + 1 consecutive
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time steps τ +1, τ +2, τ +3, . . . , τ +2β +1. However, due to the nature of packet π’s
oscillation on edge ei, packet π will only be able to use an empty slot if the slot passes
ej at time step τ + k for some odd k ∈ [1, 2β + 1]. To show that such a situation is
guaranteed to occur, we need to show that there is at least one pair of consecutive
available empty slots.

Lemma 4.4. Suppose Rj is ready for phase φ of Algorithm B. There is at least
one pair of consecutive empty slots that is available for π.

Proof. Say that a slot is booked if it is not available for π. Let Γ ≤ 2γ − 1 be
the number of booked slots. The number of available empty slots is |ψj | − Γ. Since
|ψj | ≥ 4γ, we have that Γ < |ψj |/2. Suppose there is no pair of consecutive available
slots for π. For every available slot, the next slot must therefore be booked; hence
the number of available slots is at most |ψj |/2. Thus, |ψj |, the total number of slots
(booked plus available), is at most Γ + |ψj |/2 < |ψj |, a contradiction.

Let the two consecutive available slots implied by Lemma 4.4 be c1 and c2. Sup-
pose that c1 passes ej first at time step τ + k1 for some k1 ∈ [0, 2β − 1]. If k1 is odd,
then this empty slot can be used by π. If not, then c2 passes ej at time step τ +k1 +1,
where k1 + 1 ∈ [1, 2β] is odd, and thus can be used by π. We have therefore shown
that the following lemma holds.

Lemma 4.5. Suppose that packet π is transferred from ri to rj in phase φ of
Algorithm A. In Algorithm B, suppose that Rj is ready for phase φ, and that at the
beginning of phase φ, π is circulating in region Ri. Then, π can be transferred from
region Ri to Rj during the first 4β2+2β time steps of a round in phase φ of Algorithm
B.

Note that since the packet transfers over into an empty edge, it does not interfere
with any packets that were already circulating.

4.1.5. Emulation of absorbtion. Suppose that packet π moves from node ri to
its destination node rj in phase φ in store-and-forward Algorithm A (and is absorbed).
Assume that Rj is ready for phase φ of Algorithm B and that π is circulating in Ri

at the beginning of phase φ. We use the packet transfer emulation (section 4.1.4) to
first move the packet from region Ri to Rj in phase φ. By Lemma 4.5, this can be
done in the first 4β2 +2β time steps of a round of phase φ in which Ri is sending and
Rj receiving. The packet then circulates in Rj at normal speed until it reaches its
destination node, at which point it is absorbed. Since the packet completes the Euler
cycle for Rj in at most 2β time steps, the number of time steps to be transferred,
circulate, and be absorbed is at most 4β2 + 4β ≤ Z, and this implies the following
lemma.

Lemma 4.6. Suppose that packet π is transferred from ri to rj where it is absorbed
in phase φ of Algorithm A. In Algorithm B, suppose that Rj is ready for phase φ,
and that at the beginning of phase φ, π is circulating in region Ri. Then, π can be
transferred from region Ri to Rj and absorbed during a single round of phase φ in
Algorithm B.

4.1.6. Emulation of buffering. Suppose that packet π is buffered at node ri
during phase φ of Algorithm A. Assume that in Algorithm B, packet π is already
circulating in region Ri. Packet π will then continue to circulate in Ri uninterrupted
through the entire phase φ. This is certainly possible unless some new packets entered
the region (by transfer or injection) into the current edge of π. As we have already
shown, injected or transferred packets do not interfere with already circulating pack-
ets, since they always enter on empty edges. We have the following lemma.
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Lemma 4.7. If packet π is circulating in Ri at the end of phase φ−1 of Algorithm
B, and in phase φ of Algorithm A, π is buffered at ri, then in phase φ of Algorithm
B, it can be buffered in Ri using circulation.

4.2. Analysis of emulation. First, we prove that Algorithm B correctly emu-
lates Algorithm A. We then analyze the delivery time of Algorithm B in G in terms
of the delivery time of Algorithm A in G′.

4.2.1. Correctness. Assume that α = 2γ ≤ |E| in order to guarantee the
existence of the [α, β]-partition. Algorithm B correctly emulates Algorithm A phase
by phase if, at the end of every phase φ, the following two statements hold:

(i) in Algorithm A, packet π is in node ri if and only if in Algorithm B it is
circulating in region Ri;

(ii) in Algorithm A, packet π is injected (absorbed) at node ri if and only if in
Algorithm B, packet π is injected (absorbed) into region Ri.

We now prove by induction on the phase number φ that Algorithm B correctly em-
ulates Algorithm A. Observe that when φ = 1, Algorithm A can only inject packets
into nodes. The conditions of Lemma 4.3 are satisfied, and since at most γ packets
are injected into a node in G′, Algorithm B can successfully inject these packets into
the corresponding regions. Suppose that Algorithm B correctly emulates Algorithm
A up to phase φ0 ≥ 1. At the end of phase φ0, there are at most γ packets circulating
in any region Ri since every packet π in node ri in the execution of Algorithm A is in
region Ri in the execution of Algorithm B, and during the last time step of phase φ,
Algorithm A can only be buffering at most γ packets (all other packets have gone to
adjacent nodes). Thus, the conditions of Lemmas 4.3, 4.5, 4.6, and 4.7 are satisfied
for every packet π. Every action that π could take in phase φ0 + 1 of Algorithm A
can now be emulated in phase φ0 +1 of Algorithm B. By induction, we now have the
following theorem.

Theorem 4.8 (correctness of emulation). Algorithm B correctly emulates in G
every phase in the execution of Algorithm A in G′. Hence, Algorithm B solves the
batch problem Q without outgoing edge-buffers and implicitly constructs the paths P̂
and a collision-free schedule in them.

4.2.2. Bufferless delivery time. Let TB(Q) be the delivery time for bufferless
Algorithm B to solve the batch problem Q (using initial paths P), and let ΦA(Q′)
be the number of phases required by Algorithm A to solve scheduling problem Q′

(corresponding to the batch problem Q) on the region graph G′. Since Algorithm B
emulates Algorithm A phase for phase, Algorithm B uses the same number of phases
as Algorithm B; i.e., ΦB(Q) = ΦA(Q′). The delivery time is given by

TB(Q) ≤ Ξ · Z · ΦB(Q)

≤ 576γ2� logχ � · ΦA(Q′),

where we have used Z = 4β2 + 4β ≤ 8β2, β = 6γ − 3 ≤ 6γ, and Ξ = 2σ = 2� logχ �
(χ is the chromatic number of the region graph G′).

Theorem 4.9 (bufferless delivery time). TB(Q) ≤ c ·ΦA(Q′) · γ2 · logχ for some
constant c.

Since χ ≤ n′ ≤ |E|/α = O(n2), we have that TB(Q) = O(ΦA(Q′) · γ2 · log n).
Recap. The bufferless algorithm solves the batch problem by deterministically

emulating a store-and-forward algorithm on a corresponding scheduling problem in
the region graph. Buffering is replaced by packet circulation, and the cost of the
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emulation is O(γ2 · log n), where γ is the node-buffer size required by the store-and-
forward algorithm. Any store-and-forward algorithm that satisfies the two required
properties for emulation (section 3) will give a valid bufferless algorithm. The more
efficient the store-and-forward algorithm is (in terms of phases) and the smaller the
buffer size used, the more efficient the bufferless algorithm will be.

5. A universal bufferless algorithm. By combining the results in sections
3 and 4 (specifically Theorems 3.6 and 4.9), we will obtain a specific randomized
universal bufferless algorithm which we denote Algorithm B1. Algorithm B1 emulates
the store-and-forward Algorithm A1. The buffer size required by Algorithm A1 is
γ ≥ 6 log(n′ + 2N). Since n′ ≤ |E|/α ≤ |E|, we can set γ = 6 log(|E| + 2N). In
order to apply the bufferless emulation algorithm, we need an [α, β]-partition, where
α = 2γ and β = 6γ − 3. Since α ≤ |E|, we must have that 2γ ≤ |E|. Substituting
the expression for γ, we find that 2N ≤ 2|E|/12 − |E|. Thus, for the case where
2N > 2|E|/12 − |E|, we need to apply a different approach. We examine these two
cases separately.

5.1. The case 2N ≤ 2|E|/12 − |E|. In this case, we can apply the bufferless
emulation with γ = 6 log(|E| + 2N). Note that γ is independent of the size of G′.
Combining Theorems 3.6 and 4.9, we obtain

TB1(Q) ≤ c · ΦA1(Q
′) · γ2 logχ

≤ c ·
(

12
C ′

γ
+ D′

)
· log2(|E| + 2N) · logχ

≤ c · (C + D) · log2(|E| + 2N) · log |E|,

where c represents a generic constant, not necessarily the same from line to line.
The last inequality follows by using Lemma 2.5 and the facts that β ≤ 6γ and χ ≤
n′ ≤ |E|/α ≤ |E|. Since the randomized store-and-forward Algorithm A1 succeeds
with probability at least 1 − 1/(n′ + 2N), the bufferless Algorithm B1 has the same
probability of success (i.e., it correctly sends the packets with the advertised delivery
time with the same probability). Since n′ ≥ |E|/β, β = 6γ − 3, γ = 6 log(|E| + 2N),
and |E| ≤ n2, we have that the probability of success is at least

1 − 1

n′ + 2N
≥ 1 − 1

|E|
36·log(|E|+2N)−3

+ 2N
= 1 −O((n + N)−λ)

for some constant λ > 0.
We now consider how the bufferless emulation of the store-and-forward algorithm

can be performed in a distributed manner by the nodes of network G; that is, packet
forwarding decisions can be made locally at each node. In order to do so, we need
to assume that every node in G knows the following before the algorithm starts: the
network topology G, the value of congestion C, and the number of packets N (such
assumptions are commonly made in distributed bufferless routing algorithms [17, 34]).
Based on these parameters, each node in G can compute the parameters which are
necessary for the emulation, such as the structure of G′, the buffer size γ, and the
duration of phases. In this way, the nodes in G know what kinds of actions to perform
at each time step in order to emulate the actions of the store-and-forward Algorithm
A1. Note that a node does need to have a priori information about the packets with
origin at other nodes.



1158 C. BUSCH, M. MAGDON-ISMAIL, AND M. MAVRONICOLAS

Alternatively, instead of knowing G, each node could have been supplied a priori
information about G′. In particular, each node needs to have information about the
regions of G′ in which it participates. However, G′ depends on N , since each region
has O(log(|E| + N)) edges. Different batch problems may have different values of N
and use different graphs G′. If we write 2y ≤ N < 2y+1, where 0 ≤ y ≤ |E|/12,
we observe that there are in total Θ(|E|) different graphs G′ that we could use for
the emulation, one graph for each range [2y, 2y+1) of the value N . Each node in G
could have been informed about all these possible graphs of G′, and could choose an
appropriate one for the current value of N .

5.2. The case 2N > 2|E|/12 − |E|. In this case, we send the N packets of
batch problem Q to their destinations one after the other along their prespecified
paths in G. Each packet takes time at most D to be delivered to its destination; thus,
the total delivery time to send all the packets is at most DN . By the pigeonhole
principle, C ≥ N/|E|, and thus C > (2|E|/12 − |E|)/2|E|. Since |E| = O(logN) and
D ≤ |E|, the delivery time is ND ≤ CD|E| = O(C log2 N).

This simple algorithm can be converted to a distributed algorithm, where nodes
make local decisions about packets, using packet priorities. There are two packet
priorities, 0 and 1; in collisions, packets with priority 1 win, while packets with priority
0 are deflected. The details are given below. The algorithm proceeds in phases of
duration |E| = O(logN).

i. At the beginning of the first phase, for each outgoing edge e, a node injects
at most one packet (if it has one) with e being the first edge in the path of
the packet. All packets start with priority 1.

ii. For the duration of the phase, priority 1 packets always try to move to their
destinations along their path, unless there is a collision. In a collision, priority
1 packets have precedence over priority 0 packets. If multiple priority 1
packets collide, then one of them (arbitrarily) wins the collision, and all the
other priority 1 packets involved in the collision drop to priority 0.

iii. Once a packet becomes priority 0, it randomly follows any available edge
from its current node toward its destination in hot-potato style. If a packet
of priority 0 happens to arrive at its destination during a phase, then it is
absorbed.

iv. At the end of the phase, each remaining packet resets its path to be the
shortest path from its current node to its destination.

v. For each subsequent phase, all nodes inject at most one packet per outgoing
edge as at the beginning of the first phase, with one exception: They do not
inject a packet with initial edge e if some other packet is already at the node
from the previous phase and has e as the next edge in its new (shortest) path
to its destination. All packets (newly injected and from previous phase) begin
the phase with priority 1.

vi. The entire process repeats for N phases.
If at the beginning of the phase there are packets in the network (newly injected or
from previous phase), then all of them have priority 1. During the phase, at least
one packet will retain priority 1, since in collisions involving packets with priority
1, at least one priority 1 packet survives. Further, in every time step, a priority 1
packet (unless it drops to priority 0) moves one edge closer to its destination. Since
any path is no longer than the number of edges in the network, after D ≤ |E| time
steps, all the priority 1 packets that did not drop to priority 0 (at least 1 of them
exists) have been absorbed at their respective destinations. Thus, at least one packet
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is absorbed in each phase that starts with at least one packet. Note that if nodes
have packets to inject, then at the beginning of the phase there is at least one packet
in the network (newly injected or from the previous phase). Therefore, at most N
phases are needed. Since each phase has |E| time steps, the total delivery time is at
most N |E| ≤ C|E|2 = O(C log2 N).

5.3. Main result. To wrap up, when 2N ≤ 2|E|/12 − |E|, we use bufferless em-
ulation which with high probability obtains a delivery time of O((C + D) log2(|E| +
2N) log |E|). Otherwise, we use the simple brute-force algorithm of sending the pack-
ets one by one, which has delivery time O(C log2 N). Combining these two results
and using the fact that |E| = O(n2), we have a universal bufferless Algorithm B1

which with high probability has near-optimal delivery time.
Theorem 5.1 (delivery time of Algorithm B1). Given paths P that satisfy batch

problem Q, bufferless Algorithm B1 delivers the packets in time TB1
(Q) = O((C +

D) · log3(n + N)), with probability 1 −O((n + N)−λ), for some constant λ > 0.
When choosing optimal initial paths, Theorem 5.1 establishes our main result,

Theorem 1.1. Furthermore, using the distributed version for each case 2N ≤ 2|E|/12−
|E| and 2N > 2|E|/12 − |E|, we obtain the distributed version of B1.

6. Discussion. Our main goal has been to establish the existence of universal,
near optimal (to within polylog factors) bufferless communication algorithms. Our
proof of this fact has been constructive, using a bufferless emulation technique to
emulate a store-and-forward algorithm on a batch scheduling problem related to the
original batch packet problem. The heart of the emulation is to replace buffering with
packet circulation. The algorithm we have given is distributed modulo the need for
nodes to know C and N . Note that in Theorem 5.1, it is crucial to allow the paths to
deviate from the preselected paths; otherwise, it is possible to construct problems for
which the optimal bufferless routing time is at least a

√
N factor from optimal [22].

We briefly discuss some interesting directions for future work. The most natural
question is whether some of the polylog factors can be removed. Two of the poly-
log factors arise purely from the bufferless emulation, and our guess is that these
polylog factors may not be necessary. Specifically, for a given batch problem Q with
N packets on a network G, we can define the Q-bufferless efficiency ρB(Q;N,G) as
the ratio between the smallest possible delivery time of a bufferless algorithm for Q
and the smallest possible delivery time of a store-and-forward algorithm for Q. The
bufferless efficiency ρB(N,G) is the maximum possible value of the Q-bufferless effi-
ciency over all batch problems, ρB(N,G) = supQ ρB(Q;N,G). Our result shows that

the bufferless efficiency is polylogarithmicaly bounded, ρB(N,G) = O(log3(n + N)),
where n is the size of G. An interesting problem is to determine tighter asymptotic
upper bounds as well as lower bounds for the bufferless efficiency for specific as well
as arbitrary networks (for example, it is shown in [21] that the bufferless efficiency for
leveled networks is only O(log(n + N))).

A related question is whether special purpose store-and-forward scheduling algo-
rithms can be used with our emulation technique to obtain optimal bufferless delivery
time on specific classes of networks. If the region graph can be efficiently colored (for
example, fixed degree region graphs) and if the node-buffering requirement on such
region graphs is some constant, then the resulting bufferless emulation only adds an
additional constant factor to the delivery time. A good candidate for such a result
is the mesh network, since a natural decomposition into regions would yield another
mesh-like network, with good properties.
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A slightly different line of enquiry is to determine whether the algorithm we have
given can be made dynamic (i.e., not requiring a priori knowledge of C and N), in
addition to being distributed. Such a result would show the existence of near-optimal
bufferless algorithms for dynamic packet problems.

Acknowledgment. We are indebted to the referees of this journal for their
valuable and insightful comments.
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Abstract. Suppose that a set of m tasks are to be shared as equally as possible among a set of n
resources. A game-theoretic mechanism to find a suitable allocation is to associate each task with a
“selfish agent” and require each agent to select a resource, with the cost of a resource being the number
of agents that select it. Agents would then be expected to migrate from overloaded to underloaded
resources, until the allocation becomes balanced. Recent work has studied the question of how this
can take place within a distributed setting in which agents migrate selfishly without any centralized
control. In this paper we discuss a natural protocol for the agents which combines the following
desirable features: It can be implemented in a strongly distributed setting, uses no central control,
and has good convergence properties. For m � n, the system becomes approximately balanced (an
ε-Nash equilibrium) in expected time O(log logm). We show using a martingale technique that the
process converges to a perfectly balanced allocation in expected time O(log logm+n4). We also give
a lower bound of Ω(max{log logm,n}) for the convergence time.

Key words. load balancing, reallocation, equilibrium, convergence

AMS subject classifications. 68Q25, 68W20, 68W15, 91A80

DOI. 10.1137/060660345

1. Introduction. Suppose a consumer learns the price she would be charged by
some domestic power supplier other than the one she is currently using. It is plausible
that if the alternative price is lower than the price she is currently paying, then there
is some possibility that she will switch to the new power supplier. Furthermore, she
is more likely to switch if the ratio of the current price to the new price is large. If
there is only a small savings, then it becomes unattractive to make the switch, since
an influx of new business (hers and that of other consumers) may drive up the price
of the new power supplier and make it no longer competitive.

We study a simple mathematical model of the above natural rule, in the context of
a load balancing (or task allocation) scenario that has received a lot of recent attention.
We assume the presence of many individual users who may assign their tasks to chosen
resources. The users are selfish in the sense that they attempt to optimize their own
situation, i.e., try to assign their tasks to minimally loaded resources, without trying
to optimize the global situation. In general, a Nash equilibrium (NE) among a set
of selfish users is a state in which no user has the incentive to change her current
decision. In our setting, this corresponds to no user having an incentive to reallocate
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her task to some other resource. An ε-Nash equilibrium (ε-NE) is a standard notion
of an approximate NE, and is a state in which no user can reduce her cost by a
multiplicative factor of less than 1 − ε by changing action. Here we do not focus
on the quality of equilibria but rather on the (perhaps more algorithmic) question of
convergence time to such a state.

We assume a strongly distributed and concurrent setting; i.e., there is no central-
ized control mechanism whatsoever, and all users may choose to reallocate their tasks
at the same time. Thus, we do not (and cannot) use the elementary step system [25]
(discussed in more detail in the next section), where the assumption is that at most
one user may reallocate her task at any given stage.

Throughout we let m denote the number of tasks (in the above discussion, cus-
tomers) and n denote the number of resources (power suppliers). As hinted at in the
above discussion, we assume that typically m � n. In a single time step (or round)
each task does the following: Let i be the resource currently being used by the task.
Select j uniformly at random from {1, . . . , n} and find the load of resource j. Let
Xi and Xj be the loads of resources i and j, respectively. If Xj < Xi, migrate from
i to j with a probability of 1 − Xj/Xi; the transition from round t to round t + 1
is given in Figure 1.1. Notice that if we had unconditional migrations, i.e., without
an additional coin flip (move only with probability 1−Xj(t)/Xi(t)), then this might
lead to an unstable system; consider, for example, the case m = 2 with initially most
tasks assigned to one of the resources. The overload would oscillate between the two
resources, with a load ratio tending towards 2:1. (This observation about the risk of
oscillation has also been made in similar contexts in [12, 11], and we will not elaborate
on it further.)

For each task b do in parallel
Let ib be the current resource of task b
Choose resource jb uniformly at random
Let Xib(t) be the current load of resource i
Let Xjb(t) be the current load of resource j
If Xib(t) > Xjb(t) then

Move task b from resource ib to jb with probability 1 −Xjb(t)/Xib(t)

Fig. 1.1. The protocol with “neutral moves” allowed.

It can easily be seen that if all tasks use the above policy, then the expected load
of every resource at the next step is m/n.

Observation 1.1. Regardless of the load distribution at time step t, the expected
load of every resource at the next step is m/n.

Proof. To see this, assume that the loads Xi(t) are arranged in descending order
so that Xj(t) ≥ Xj+1(t) and note that

E[Xi(t + 1)] = Xi(t) +

i−1∑

�=1

1

n
X�(t)

(
1 − Xi(t)

X�(t)

)
−

n∑

�=i+1

1

n
Xi(t)

(
1 − X�(t)

Xi(t)

)

= Xi(t) +
1

n

i−1∑

�=1

(X�(t) −Xi(t)) − 1

n

n∑

�=i+1

(Xi(t) −X�(t))

= Xi(t) +
1

n

n∑

�=1

(X�(t) −Xi(t)) =
1

n

n∑

�=1

X�(t) =
m

n
.
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This provides a compelling motivation for the policy, which is that as a result,
no task has an incentive to deviate unilaterally from this policy. This implies that
in the terminology of [8] it is a Nash rerouting policy. It is also a simple regret-
minimizing policy in the sense of [2] since the average cost of resources used by an
agent is no higher than the best choice of a single resource to be used repeatedly.
Although the above rule is very natural and has the nice properties described above,
we show that it may take a long time to converge to a perfectly balanced allocation
of tasks to resources. We address this problem as follows. Define a neutral move to
be a task migration from a resource with load � at time t to a resource with load
� − 1 at time t (so, if no other task migrates, then the cost to the migrating task
is unchanged). We consider a modification in which neutral moves are specifically
disallowed (see Figure 2.1). That seemingly minor change ensures fast convergence
from an almost balanced state to a perfectly balanced state. To summarize, here are
the most important features of the modified protocol:

• We do not need any global information whatsoever (apart from the number
of available resources); in particular, a task does not need to know the total
number of tasks in the system. Also, it is strongly distributed and concurrent.
If additional tasks were to enter the system, it would rapidly converge once
again, with no outside intervention.

• A migrating task needs to query the load of only one other resource (thus,
doing a constant amount of work in each round).

• When a task finds a resource with a significantly smaller load (that is, a load
that is smaller by at least two), the migration policy is exactly the same as
that used by the Nash rerouting policy of Figure 1.1, so the incentive is to
use that probability.

• When a task finds a resource with a load that is smaller by exactly one unit,
the migration policy is sufficiently close to the Nash rerouting policy that
the difference in expected load is at most one, and there is little incentive to
deviate.

• The protocol is simple (as well as provably efficient) enough to convince users
to actually stick to it.

1.1. Related work. We are studying a simple kind of congestion game. In their
general form, congestion games specify a set of agents, a set of resources, and, for each
agent, a set of allowed strategies, where a strategy is the selection of a subset of the
resources (in this paper, any singleton subset is allowed). The cost of a resource is
a nondecreasing function of the number of agents using it, and the cost for an agent
is the sum of the costs of resources it uses. A classical result due to Rosenthal [26]
is that pure Nash equilibria (NEs) always exist for congestion games, and this is
shown by exhibiting a potential function; they are a type of potential game [24].
The potential function also establishes that pure NEs can be found via sequences of
“better-response” moves, in which agents repeatedly switch to lower-cost strategies.
The potential function we use later in this paper is that of [26], modulo a linear
rescaling.

These results do not show how to find NEs efficiently, the problem being that in
the worst case, sequences of these self-improving moves may be exponentially long.
The following questions arise: When can NEs be found by any efficient algorithm,
and if so, can they be found via an algorithm that purports to be a realistic model
of agents’ behavior? Regarding the first of these questions, the answer is no in the
general setting (the problem is PLS-complete for general congestion games [9]; see
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also [1, 3]). PLS-completeness (introduced in [17]) is a generally accepted criterion
for intractability of computational problems in which we seek a local optimum of a
given objective function.

However, due to the basic fact of [26, 24] that pure NEs are sure to result from a
sufficiently long better-response sequence, many algorithms for finding them are based
on such sequences. An important subclass is the elementary step system (ESS), pro-
posed in Orda, Rom, and Shimkin [25], which consists of best-response moves (where a
migrating agent switches not to any improved choice but to one that is optimal at the
time of migration). For matroid games (a class of congestion games that includes the
ones we consider here), Ackermann, Röglin, and Vöcking [1] show that best-response
sequences must have length polynomial in the number of players, resources, and max-
imal rank of the matroids. In this paper we consider the special case of singleton
congestion games (where players’ strategies are always single resources, and thus the
ranks of the matroids is 1). For these games, Ieong et al. [16] give polynomial bounds
for best-response and better-response sequences. Chien and Sinclair [3] study a ver-
sion of the ESS in the context of approximate NEs, and show that in some cases
the ε-Nash dynamics may find an ε-NE where finding an exact NE is PLS-complete.
Mirrokni and Vetta [22] study the convergence rate of the ESS to solutions, and the
quality of the approximation after limited iterations.

While best- and better-response dynamics are a plausible model of selfish behav-
ior, the associated algorithms typically require that migrations be done one-by-one,
and another common assumption is that best- (not better-) responses are always se-
lected. This means that to some extent, agents are being assumed to be governed
by a centralized algorithm that finds an NE, raising the question of what sort of dis-
tributed algorithms can do so, especially if agents have limited information about the
state of the system (and so may not be able to find best responses). That issue is of
central importance to us in this paper. Goldberg [14] studied situations where simple
better-response approaches can be realized as weakly distributed algorithms (where
each agent looks for moves independently of the others, but it is assumed that moves
take place consecutively, not simultaneously). In a strongly distributed setting (as we
study here), where moves may occur simultaneously, we need to address the possibility
that a change of strategy may increase an agent’s cost. It may happen that after a best
response has been identified, it is not optimal at the time it is executed. Even-Dar
and Mansour [8] consider concurrent, independent rerouting decisions where tasks
are allowed to migrate from overloaded to underloaded resources. Their rerouting
process terminates in expected O(log logm + log n) rounds when the system reaches
an NE. Note that their convergence rate as a function of the number n of resources
is faster than the one we obtain in this paper. The reason is that it requires agents
to have a certain amount of global knowledge. A task is required to know whether
its resource is overloaded (having above-average load), and tasks on underloaded re-
sources do not migrate at all. Our rerouting policy does not require that agents know
anything other than their current resource load and the load of a randomly chosen
alternative. Even-Dar and Mansour also present a general framework that can be
used to show a logarithmic convergence rate for a wide class of rerouting strategies.
Our protocol does not fall into that class, since we do not require migrations to occur
only from overloaded resources. Note that our lower bound is linear in n (thus, more
than logarithmic).

Distributed algorithms have been studied in the Wardrop setting (the limit of
infinitely many agents), for which recent work has also extensively studied the coor-
dination ratio [28, 27]. Fischer, Räcke, and Vöcking [11] investigate convergence to
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Wardrop equilibria for games where agents select paths through a shared network to
route their traffic. (Singleton games correspond to a network of parallel links.) Their
rerouting strategies are slightly different to ours—they assume that in each round,
an agent queries a path with probability proportional to the traffic on that path.
Here we assume that paths (individual elements of a set of parallel links) are queried
uniformly at random, so that agents can be assumed to have minimal knowledge. As
in this paper, the probability of switching to a better path depends on the latency
difference, and care has to be taken to avoid oscillation. Also in the Wardrop setting,
Blum, Even-Dar, and Ligett [2] show that approximate NE is the outcome of regret-
minimizing rerouting strategies, in which an agent’s cost, averaged over time, should
approximate the cost of the best individual link available to that agent.

Certain generalizations of singleton games have also been considered. These gen-
eralizations are not strictly congestion games according to the standard definition we
gave above, but many ideas carry over. One version introduced by Koutsoupias and
Papadimitriou [18] has been studied extensively in different contexts (for example,
[20, 6, 13, 4, 28]). In this generalization, each task may have a numerical weight
(sometimes called traffic, or demand), and each resource has a speed (or capacity).
The cost of using a resource is the total weight of tasks using it, divided by its speed.
Even-Dar, Kesselman, and Mansour [7] give a generalized version of the potential
function of [26] that applies to these games and which was subsequently used in [14].
For these games, however, it seems harder to find polynomial-length best-response
sequences. Feldman et al. [10] show how a sequence of steps may lead to NEs, under
the weaker condition that the maximal cost experienced by agents must not increase,
but individual steps need not necessarily be “selfish.” They also note that poorly
chosen better-response moves may lead to an exponential convergence rate. Another
generalization of singleton games is player-specific cost functions [21], which allow
different agents to have different cost functions for the same resource. In this setting
there is no potential function, and better-response dynamics may cycle, although it
remains the case that pure NEs always exist.

Our rerouting strategy is also related to reallocation processes for balls-into-bins
games. The goal of a balls-into-bins game is to allocate m balls as evenly as possible
into n bins. It is well known that a fairly even distribution can be achieved if every ball
is allowed to randomly choose d bins and then the ball is allocated to the least loaded
among the chosen bins (see [23] for an overview). Czumaj, Riley, and Scheideler [5]
consider such an allocation where each ball initially chooses two bins. They show
that, in a polynomial number of steps, the reallocation process ends up in a state
with maximum load at most �m/n� + 1. Sanders, Egner, and Korst [29] show that
a maximum load of �m/n� + 1 is optimal if every ball is restricted to two random
choices.

In conclusion, this paper sits at one end of a spectrum in which we study a very
simple load-balancing game, but we seek solutions in a very adverse setting in which
agents have, at any point in time, a minimal amount of information about the state
of their environment and carry out actions simultaneously in a strongly distributed
sense.

1.2. Overview of our results. Section 3 deals with upper bounds on conver-
gence time. The main result, Theorem 3.1, is that the protocol of Figure 2.1 converges
to an NE within expected time O(log logm + n4).

The proof of Theorem 3.1 shows that the system becomes approximately balanced
very rapidly. Specifically, Corollary 3.11 shows that if n ≤ m1/3, then for all ε, either
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version of the distributed protocol (with or without neutral moves allowed) attains an
ε-NE (where all load ratios are within [1− ε, 1+ ε]; we use ε to denote a multiplicative
factor as in [3]) in expected O(log logm) rounds. The rest of section 3 analyzes the
protocol of Figure 2.1. It is shown that within an additional O(n4) rounds the system
becomes optimally balanced.

In section 4, we provide two lower bound results. The first one, Theorem 4.1,
shows that the first protocol (of Figure 1.1, including moves that do not necessarily
yield a strict improvement for an individual task but allow for simply “neutral” moves
as well) results in exponential (in n) expected convergence time. Finally, in Theo-
rem 4.2 we provide a general lower bound (regardless of which of the two protocols
is being used) on the expected convergence time of Ω(log logm). This lower bound
matches the upper bound as a function of m.

2. Notation. There are m tasks and n resources. An assignment of tasks to
resources is represented as a vector (x1, . . . , xn) in which xi denotes the number of
tasks that are assigned to resource i. In the remainder of this paper, [n] denotes
{1, . . . , n}. The assignment is an NE if for all i ∈ [n] and j ∈ [n], |xi − xj | ≤ 1.
We study a distributed process for constructing an NE. The states of the process,
X(0), X(1), . . . , are assignments. The transition from state X(t) = (X1(t), . . . , Xn(t))
to state X(t + 1) is given by the greedy distributed protocol in Figure 2.1.

For each task b do in parallel
Let ib be the current resource of task b
Choose resource jb uniformly at random
Let Xib(t) be the current load of resource i
Let Xjb(t) be the current load of resource j
If Xib(t) > Xjb(t) + 1 then

Move task b from resource ib to jb with probability 1 −Xjb(t)/Xib(t)

Fig. 2.1. The modified protocol, with “neutral moves” disallowed.

Note that if X(t) is an NE, then X(t+1) = X(t) so the assignment stops changing.
Here is a formal description of the transition from a state X(t) = x. Independently, for
every i ∈ [n], let (Yi,1(x), . . . , Yi,n(x)) be a random variable drawn from a multinomial
distribution with the constraint

∑n
j=1 Yi,j(x) = xi. (Yij represents the number of mi-

grations from i to j in a round.) The corresponding probabilities (pi,1(x), . . . , pi,n(x))
are given by

pi,j(x) =

⎧
⎪⎨
⎪⎩

1
n

(
1 − xj

xi

)
if xi > xj + 1,

0 if i �= j but xi ≤ xj + 1,
1 −∑

j �=i pi,j(x) if i = j.

Then Xi(t + 1) =
∑n

�=1 Y�,i(x).
For any assignment x = (x1, . . . , xn), let x = 1

n

∑n
i=1 xi. We define the potential

function Φ(x) =
∑n

i=1 (xi − x)
2
. Note that Φ(x) =

∑n
i=1 x

2
i − nx2 and that a single

selfish move reduces the potential.

3. Upper bound on convergence time. Our main result is the following.
Theorem 3.1. Let T be the number of rounds taken by the protocol of Figure 2.1

to reach an NE for the first time. Then E[T ] = O(log logm + n4).
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The proof of this theorem proceeds as follows. First (Lemma 3.6) we give an upper
bound on E[Φ(X(t))] which implies (Corollary 3.10) that there is a τ = O(log logm)
such that, with high probability, Φ(X(τ)) = O(n). We also show (Observation 3.5
and Corollary 3.14) that Φ(X(t)) is a supermartingale and (Lemma 3.15) that it has
enough variance. Using these facts, we obtain the upper bound on the convergence
time.

Definition. Let Si(x) = {j | xj < xi − 1}. Si(x) is the set of resources that are
significantly smaller than resource i in state x (in the sense that their loads are at least
two tasks smaller than the load of resource i). Similarly, let Li(x) = {j | xj > xi +1}
and let di(x) = 1

n

∑
j:|xi−xj |≤1(xi − xj).

Observation 3.2. E[Xi(t + 1) | X(t) = x] = x + di(x).
Proof.

E[Xi(t + 1) | X(t) = x] =

n∑

�=1

E[Y�,i(x)] =

n∑

�=1

x�p�,i(x)

=
∑

�∈Li(x)

x�
1

n

(
1 − xi

x�

)
+ xi

⎛
⎝1 −

∑

j∈Si(x)

1

n

(
1 − xj

xi

)⎞
⎠

= xi +
1

n

⎛
⎝

∑

�∈Li(x)

(x� − xi) −
∑

j∈Si(x)

(xi − xj)

⎞
⎠

= xi +
1

n

∑

�∈Li(x)∪Si(x)

(x� − xi)

= xi +
1

n

n∑

�=1

(x� − xi) − 1

n

∑

� �∈Li(x)∪Si(x)

(x� − xi)

= x− 1

n

∑

� �∈Li(x)∪Si(x)

(x� − xi)

= x +
1

n

∑

� �∈Li(x)∪Si(x)

(xi − x�).

Observation 3.3.

∑n
i=1(E[Xi(t + 1) | X(t) = x])2 = nx2 +

∑n
i=1 di(x)2.

Proof. Using Observation 3.2,

n∑

i=1

(E[Xi(t + 1) | X(t) = x])2 =

n∑

i=1

(x + di(x))2 = nx2 + 2x

n∑

i=1

di(x) +

n∑

i=1

di(x)2,

and the second term is zero since di(x) = E[Xi(t + 1) | X(t) = x] − x.
Observation 3.4. var[Xi(t+1) | X(t) = x] ≤ 1

n

∑
�∈Li(x) (x�−xi)+

1
n

∑
j∈Si(x) (xi−

xj).
Proof.

var(Xi(t + 1) | X(t) = x) =

n∑

�=1

var(Y�,i(x)) =

n∑

�=1

x�p�,i(x)(1 − p�,i(x))

=
∑

�∈Li(x)

x�
1

n

(
1 − xi

x�

)
(1 − p�,i(x))
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+ xipi,i(x)

⎛
⎝

∑

j∈Si(x)

1

n

(
1 − xj

xi

)⎞
⎠

=
1

n

∑

�∈Li(x)

(x� − xi)(1 − p�,i(x)) + pi,i(x)
1

n

∑

j∈Si(x)

(xi − xj)

≤ 1

n

∑

�∈Li(x)

(x� − xi) +
1

n

∑

j∈Si(x)

(xi − xj).

Definition. For any assignment x, let si(x) = |{j | xj = xi − 1}| and li(x) =
|{j | xj = xi + 1}|. Let u1(x) =

∑n
i=1

∑
j∈[n]:|xi−xj |>1 |xi − xj | and u2(x) =∑n

i=1(si(x) − li(x))2. Let u(x) = u1(x)/n + u2(x)/n2. We will show that u(x) is
an upper bound on the expected potential after one step, starting from state x. The
quantity u1(x) corresponds to the contribution arising from the sum of the variances
of the individual loads, and u2(x) corresponds to the rest.

Observation 3.5. E[Φ(X(t + 1)) | X(t) = x] ≤ u(x).
Proof.

E[Φ(X(t + 1)) | X(t) = x] + nx2 =

n∑

i=1

E[Xi(t + 1)2 | X(t) = x]

=

n∑

i=1

(E[Xi(t + 1) | X(t) = x])
2

+

n∑

i=1

var(Xi(t + 1) | X(t) = x).

Using Observations 3.3 and 3.4, this is at most nx2 +
∑n

i=1 di(x)2 + u1(x)/n. But

di(x) =
1

n

∑

j:|xi−xj |≤1

(xi − xj) =
1

n
(si(x) − �i(x)),

so the result follows.
Lemma 3.6. E[Φ(X(t + 1)) | X(t) = x] ≤ n + 2n1/2Φ(x)1/2.
Proof. In the proof of Observation 3.5, we established that E[Φ(X(t+1)) | X(t) =

x] ≤ ∑n
i=1 di(x)2 + u1(x)/n. Upper-bounding u1(x) and using di(x) ≤ 1, we have

E[Φ(X(t + 1)) | X(t) = x] ≤ n +
1

n

n∑

i=1

n∑

j=1

|xi − xj |,

and since |xi − xj | ≤ |xi − x| + |xj − x|, this is at most n + 2
∑n

i=1 |xi − x|. By
Cauchy–Schwarz, (

∑
i |xi − x| · 1)2 ≤ ∑

i |xi − x|2 ∑i 1; thus

E[Φ(X(t + 1)) | X(t) = x] ≤ n + 2

(
n

n∑

i=1

|xi − x|2
)1/2

.

Corollary 3.7. E[Φ(X(t + 1))] ≤ n + 2n1/2(E[Φ(X(t))])1/2.
Proof. Using Lemma 3.6, E[Φ(X(t + 1))] ≤ n + 2n1/2

E[f1/2], where f denotes
the random variable Φ(X(t)). By Jensen’s inequality E[f1/2] ≤ (E[f ])1/2 since the
square-root function is concave, so we get E[Φ(X(t+ 1))] ≤ n+ 2n1/2(E[f ])1/2.
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Lemma 3.8. Either there is a t′ < t such that E[Φ(X(t′))] ≤ 18n or E[Φ(X(t))] ≤
91−2−t

n1−2−t

Φ(X(0))2
−t

.
Proof. The proof is by induction on t. The base case is t = 0. For the inductive

step, note that 1 − 2−t =
∑t

k=1 2−k. Suppose that for all t′ < t, E[Φ(X(t′))] > 18n
(otherwise we are finished). Then by Corollary 3.7,

E[Φ(X(t))] = n + 2n1/2(E[Φ(X(t− 1))])
1/2 ≤ 3n1/2(E[Φ(X(t− 1))])

1/2
.

Applying the inductive hypothesis,

E[Φ(X(t))] ≤ 3n1/2(32(1−2−(t−1))n1−2−(t−1)

Φ(X(0))
2−(t−1)

)
1/2

.

Corollary 3.9. There is a τ ≤ �lg lg Φ(X(0))� such that E[Φ(X(τ))] ≤ 18n.
Proof. Take t = �lg lg Φ(X(0))�. Either there is a τ < t with E[Φ(X(τ))] ≤ 18n

or, by the lemma,

E[Φ(X(t))] ≤ 9nΦ(X(0))
2−t ≤ 18n.

Corollary 3.10. There is a τ ≤ �lg lg Φ(X(0))� such that Pr(Φ(X(τ)) >
720n) ≤ 1/40.

Proof. Consider the (nonnegative) random variable Y = Φ(X(τ)), where τ is the
quantity from Corollary 3.9. Markov’s inequality says that for any a > 0, Pr(Y ≥
a) ≤ E[Y ]/a. Now use Corollary 3.9 with a = 720n.

Corollary 3.11. For all ε > 0, provided that n < m1/3, the expected time to
reach an ε-NE is O(log logm).

Proof. Since the bound is asymptotic as a function of m for fixed ε, we can
assume without loss of generality that m > (60/ε)2 and that εm/(2n) is an integer.
We show that for any starting assignment X(0), there exists τ ≤ log log(m2) such that
Pr(X(τ) is ε-Nash) > 39

40
. This implies the statement of the result since the number

of blocks of τ steps needed to reach an ε-NE is at most

1 +

(
1

40

)
+

(
1

40

)2

+ · · · =
40

39
< 2.

Suppose assignment x is not ε-Nash. If X(t) = x, there exist resources i, j with
Xi(t) − Xj(t) > εm/n. We use the following notation. Let Δ = εm/(2n). Let
β = Xi(t)−Xj(t)−2Δ. Note β > 0. If X(t+1) is obtained from X(t) by transferring
Δ tasks from i to j, then

Φ(X(t)) − Φ(X(t + 1))

= Xi(t)
2 + Xj(t)

2 −Xi(t + 1)2 −Xj(t + 1)2

= (2Δ + β + Xj(t))
2 + Xj(t)

2 − (Δ + β + Xj(t))
2 − (Δ + Xj(t))

2

= 2Δ(Δ + β + Xj(t)) + Δ2 − (
2ΔXj(t) + Δ2

)

= 2Δ(Δ + β) ≥ Δ2 = (εm/2n)2.

It follows that Φ(X(t)) ≥ (εm/2n)2. From Corollary 3.10, Pr(Φ(X(τ)) < 720n) > 39
40

,
for τ = log log(Φ(0)) = O(log logm).

An assignment X(τ) with Φ(X(τ)) ≤ 720n must be ε-Nash if (εm/2n)2 > 720n.
Note that m > n3 and m > (60/ε)2. Hence, from ε2(60/ε)2n3 > 4.720.n3, we can
deduce ε2m2 > 4.720.n3; hence (εm/2n)2 > 720n.
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Corollary 3.10 tells us that Φ(X(τ)) is likely to be O(n). We want to show that
Φ(X(t)) quickly gets even smaller (all the way to an NE) and to this end, we show that
Φ(X(t)) is a supermartingale. By Observation 3.5, it suffices to show u(x) ≤ Φ(x),
and we proceed with this. In the following, we shall consider the cases |xi − x| < 2.5
for all i ∈ [n] (Lemma 3.12) and ∃i ∈ [n] : |xi − x| ≥ 2.5 (Lemma 3.13) separately.

Lemma 3.12. Suppose that assignment x = (x1, . . . , xn) satisfies |xi − x| < 2.5
for all i ∈ [n]. Then u(x) ≤ Φ(x).

Proof. For all i ∈ [n] and j ∈ [n] we have |xi − xj | ≤ |xi − x| + |xj − x| < 5. Let
z = mini xi so that every xi ∈ {z, . . . , z + 4}. Let ni = |{j | xj = z + i}|. Then

n2Φ(x) = n2

n∑

i=1

x2
i − n

(
n∑

i=1

xi

)2

= n2

⎛
⎝

4∑

j=0

nj(z + j)
2

⎞
⎠−

⎛
⎝

4∑

j=0

nj(z + j)

⎞
⎠

2

.

Also, n2u(x) = nu1(x) + u2(x), where

u1(x) = n0(2n2 + 3n3 + 4n4) + n1(2n3 + 3n4)

+ n2(2n0 + 2n4) + n3(3n0 + 2n1) + n4(4n0 + 3n1 + 2n2)

and

u2(x) = n0n
2
1 + n1(n0 − n2)

2 + n2(n1 − n3)
2 + n3(n2 − n4)

2 + n4n
2
3.

Plugging in these expressions and simplifying, we get

n2Φ(x) − n2u(x)

= 4n0n1n2 + 3n2
0n3 + 4n0n1n3 + 4n0n2n3 + 4n1n2n3 + 3n0n

2
3

+ 8n2
0n4 + 12n0n1n4 + 3n2

1n4 + 8n0n2n4 + 4n1n2n4 + 12n0n3n4

+ 4n1n3n4 + 4n2n3n4 + 8n0n
2
4 + 3n1n

2
4,

which is clearly nonnegative since all coefficients are positive.
Lemma 3.13. Suppose that assignment x = (x1, . . . , xn) satisfies |xn − x| ≥ 2.5

and, for all i ∈ [n], |xi − x| ≤ |xn − x|. Let w = (w1, . . . , wn−1) be the assignment
with wi = xi for i ∈ [n − 1]. Then Φ(x) − u(x) ≥ Φ(w) − u(w); that is, the lower
bound on the potential drop for x is at least as big as that for w.

Proof. Let k = |xn − x|. We will show that
(1) Φ(x) − Φ(w) ≥ k2 and
(2) u(x) − u(w) ≤ 2k + 1.

Then

Φ(x) − u(x) − (Φ(w) − u(w)) ≥ k2 − (2k + 1),

which is nonnegative since k ≥ 2.5 ≥ 1 +
√

2.
First, we prove (1). Let f(z) =

∑n−1

i=1 (xi − z)2. Note that the derivative of f(z)
is

f ′(z) = 2(n− 1)z − 2

n−1∑

i=1

xi = 2(n− 1)z − 2(n− 1)w.

Furthermore, the second derivative is f ′′(z) = 2(n− 1) ≥ 0. Thus, f(z) is minimized
at z = w. Now note that

Φ(x) − Φ(w) = k2 +

n−1∑

i=1

(xi − x)
2 −

n−1∑

i=1

(xi − w)
2 ≥ k2.
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Now we finish the proof by proving (2). Assume first that xn = x + k. Then

u1(x) − u1(w) = 2
∑

i∈[n]:|xi−xn|>1

|xi − xn| ≤ 2

n∑

i=1

|xi − xn| = 2

n∑

i=1

(xn − xi) = 2nk.

Let zj = |{� | x� = j}|. Clearly zj = 0 for j > xn. Let ξ = �xn − 2k�. For � ∈ [n] we
have x� ≥ x− k = xn − 2k, so zj = 0 for j < ξ. Now u2(x) =

∑xn

j=ξ zj(zj−1 − zj+1)
2.

The representation of w in terms of zjs is the same as the representation of x except
that zxn is reduced by one. Therefore,

u2(x) − u2(w) = zxn−1

(
(zxn−2 − zxn)

2 − (zxn−2 − zxn + 1)
2
)

+ (zxn−1 − zxn+1)
2

= zxn−1(−2zxn−2 + 2zxn + zxn−1 − 1) ≤ zxn−1(2zxn + zxn−1).

But since zxn ≤ n− zxn−1, the upper bound on the right-hand side is at most

zxn−1(2n− 2zxn−1 + zxn−1) = 2zxn−1(n− zxn−1/2),

which is at most n2 since the right-hand side is maximized at zxn−1 = n. To finish
the proof of (2), use the definition of u to deduce that

u(x) − u(w) ≤ u1(x) − u1(w)

n
+

u2(x) − u2(w)

n2
.

The proof of (2) when xn = x− k is similar.
Corollary 3.14. For any assignment x = (x1, . . . , xn), Φ(x) − u(x) ≥ 0.
Proof. The proof is by induction on n. The base case, n = 1, follows from

Lemma 3.12. Suppose n > 1. Neither Φ(x) nor u(x) depends upon the order of the
components in x, so assume without loss of generality that |xi − x| ≤ |xn − x| for
all i. If |xn − x| < 2.5, then apply Lemma 3.12. Otherwise, use Lemma 3.13 to find
an assignment w = (w1, . . . , wn−1) such that Φ(x) − u(x) ≥ Φ(w) − u(w). By the
inductive hypothesis, Φ(w) − u(w) ≥ 0.

Together, Observation 3.5 and Corollary 3.14 tell us that E[Φ(X(t+ 1)) | X(t) =
x] ≤ Φ(x). The next lemma will be used to give a lower bound on the variance of the
process. Let V = 0.4n−2.

Lemma 3.15. Suppose that X(t) = x and that x is not an NE. Then

Pr(Φ(X(t + 1)) �= Φ(x) | X(t) = x) ≥ V.

Proof. Choose s and � such that for all i ∈ [n], xs ≤ xi ≤ x�. Since x is not an
NE, x� > xs + 1. Assuming X(t) = x, consider the following experiment for choosing
X(t + 1).

The intuition behind the experiment is as follows. We wish to show that the
transition from X(t) to X(t + 1) has some variance in the sense that Φ(X(t + 1)) is
sufficiently likely to differ from Φ(X(t)). To do this, we single out a “least loaded”
resource s and a “most loaded” resource � as above. In the transition from X(t) to
X(t + 1) we make transitions from resources other than resource � in the usual way.
We pay special attention to transitions from resource � (and particular attention to
transitions from resource � which could either go to resource s or stay at resource �).
It helps to be very precise about how the random decisions involving tasks that start
at resource � are made. In particular, for each task b that starts at resource �, we
first make a decision about whether b would accept the transition from resource � to
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resource s if b happened to choose resource s. Then we make the decision about which
resource task b should choose. Of course, we cannot cheat and we have to sample
from the original required distribution. Here are the details.

Independently, for every i �= �, choose (Yi,1(x), . . . , Yi,n(x)) from the multinomial
distribution described in section 2. (In the informal description above, this corre-
sponds to making transitions from resources other than resource � in the usual way.)
Now, for every task b ∈ x�, let zb = 1 with probability 1 − xs/x� and zb = 0 oth-
erwise. (In the informal description above, this corresponds to deciding whether b
would accept the transition to s if resource s were (later) chosen.) Let x+

� be the
number of tasks b with zb = 1 and let x−

� be the number of tasks b with zb = 0.
Choose (Y +

�,1(x), . . . , Y +
�,n(x)) from a multinomial distribution with the constraint∑n

j=1 Y
+
�,j(x) = x+

� and probabilities given by

p+
�,j(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1
n if j = s,
1
n

(
1 − xj

x�

)
if j �= s and x� > xj + 1,

0 if � �= j but x� ≤ xj + 1,
1 −∑

j �=� p�,j(x) if � = j.

Similarly, choose (Y −
�,1(x), . . . , Y −

�,n(x)) from a multinomial distribution with the con-

straint
∑n

j=1 Y
−
�,j(x) = x−

� and probabilities given by

p−�,j(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if j = s,
1
n

(
1 − xj

x�

)
if j �= s and x� > xj + 1,

0 if � �= j but x� ≤ xj + 1,
1 −∑

j �=� p�,j(x) if � = j.

For all j, let Y�,j(x) = Y +
�,j(x) + Y −

�,j(x). Informally, the p+
�,j transition probabilities

are set up so that packets which decided that they would accept a transition to s
behave appropriately, and the p−�,j transition probabilities are set up so that packets
which decided that they would not accept a transition to s behave appropriately. By
combining the probabilities, we see that X(t+1) is chosen from the correct distribution
in this way.

Now, consider the transition from x to X(t + 1). Condition on the choice for
(Yi,1(x), . . . , Yi,n(x)) for all i �= �. Suppose x+

� > 2. Condition on the choice for
(Y −

�,1(x), . . . , Y −
�,n(x)). Flip a coin for each of the first x+

b − 2 tasks with zb = 1 to

determine which of Y +
�,1(x), . . . , Y +

�,n(x) the task contributes to. Condition on these
choices. Consider the following options:

(1) Let x1 be the resulting value of X(t + 1) when we add both of the last two
tasks to Y +

�,�(x).
(2) Let x2 be the resulting value of X(t + 1) when we add one of the last two

tasks to Y +
�,�(x) and the other to Y +

�,s(x).
(3) Let x3 be the resulting value of X(t + 1) when we add both of the last two

tasks to Y +
s,s(x).

Note that, given the conditioning, each of these choices occurs with probability at
least n−2. Also, Φ(x1), Φ(x2), and Φ(x3) are not all the same. Thus, Pr(Φ(X(t+1) �=
Φ(x) | X(t) = x, x+

� > 2) ≥ n−2. Also,

Pr(x+
� > 2) = 1 −

(
xs

x�

)x�

− x�

(
1 − xs

x�

)(
xs

x�

)x�−1

.
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Since the derivative with respect to xs is negative, this is minimized by taking xs as
large as possible, namely x� − 2; thus Pr(x+

� > 2) ≥ 1 − 7e−2 ≥ 0.4, and the result
follows.

In order to finish our proof of convergence, we need the following observation
about Φ(x).

Observation 3.16. For any assignment x, Φ(x) ≤ m2. Let r = m mod n. Then
Φ(x) ≥ r(1 − r/n), with equality if and only if x is an NE.

Proof. Suppose that in assignment x there are resources i and j such that xi−xj ≥
2. Let x′ be the assignment constructed from x by transferring a task from resource
i to resource j. Then

Φ(x) − Φ(x′) = x2
i − x′

i
2

+ x2
j − x′

j
2

= x2
i − (x2

i − 2xi + 1) + x2
j − (x2

j + 2xj + 1)

= 2xi − 2xj − 2 = 2(xi − xj) − 2 > 0.

Now suppose that, in some assignment x′, resources i and j satisfy x′
i ≥ x′

j > 0. Let
x be the assignment constructed from x′ by transferring a task from resource j to
resource i. Since (x′

i + 1)− (x′
j − 1) ≥ 2, the above argument gives Φ(x) > Φ(x′). We

conclude that an assignment x with maximum Φ(x) must have all of the tasks in the
same resource, with Φ(x) = m2.

Furthermore, an assignment x with minimum Φ(x) must have |xi − xj | ≤ 1 for
all i, j. In this case there must be r resources with loads of q + 1 and n− r resources
with loads of q, where m = qn + r. So

Φ(x) = r(q + 1 − x̄)2 + (n− r)(q − x̄)2 = r
(
1 − r

n

)2

+ (n− r)
( r

n

)2

= r
(
1 − r

n

)
.

Note that x is a Nash assignment if and only if |xi − xj | ≤ 1 for all i and j.
Combining Observation 3.16 and Corollary 3.10, we find that there is a τ ≤

�lg lgm2� such that Pr(Φ(X(τ)) > 720n) ≤ 1/40. Let B = 7200n +
⌈
m2

n

⌉
− m2

n . Let

t′ = τ + �10B2/V �.
Lemma 3.17. Given any starting state X(0) = x, the probability that X(t′) is an

NE is at least 3/4.
Proof. The proof is based on a standard martingale argument; see [19]. Suppose

that Φ(X(τ)) ≤ 720n. Let Wt = Φ(X(t + τ)) − r(1 − r/n) and let Dt = min(Wt, B).
Note that D0 ≤ 720n. Together, Observation 3.5 and Corollary 3.14 tell us that Wt

is a supermartingale. This implies that Dt is also a supermartingale since

E[Dt+1 | Dt = x < B] ≤ E[Wt+1 | Wt = x < B] ≤ Wt = Dt,

and

E[Dt+1 | Dt = B] ≤ B = Dt.

Together, Lemma 3.15 and Observation 3.16 tell us that if x > 0, Pr(Wt+1 �= Wt |
Wt = x) ≥ V . Thus, if 0 < x < B,

Pr(Dt+1 �= Dt | Dt = x) = Pr(min(Wt+1, B) �= Wt | Wt = x)

≥ Pr(Wt+1 �= Wt ∧B �= Wt | Wt = x)

= Pr(Wt+1 �= Wt | Wt = x) ≥ V.

Since Dt+1 − Dt is an integer, E[(Dt+1 − Dt)
2 | 0 < Dt < B] ≥ V . Let T be the

first time at which either (a) Dt = 0 (i.e., X(t + τ) is an NE), or (b) Dt = B.
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Note that T is a stopping time. Define Zt = (B − Dt)
2 − V t, and observe that

Zt∧T is a submartingale, where t ∧ T denotes the minimum of t and T . Let p be
the probability that (a) occurs. By the optional stopping theorem E[DT ] ≤ D0; thus
(1 − p)B = E[DT ] ≤ D0 and p ≥ 1 − D0/B ≥ 9

10
. Also, by the optional stopping

theorem

pB2 − V E[T ] = E[(B −DT )
2
] − V E[T ] = E[ZT ] ≥ Z0 = (B −D0)

2
> 0,

and thus E[T ] ≤ pB2/V . Conditioning on the occurrence of (a), it follows that
E[T | DT = 0] ≤ B2/V . Hence Pr(T > 10B2/V | DT = 0) ≤ 1

10
. So, if we now

run for 10B2/V steps, then the probability that we do not reach an NE is at most
1
40

+ 2 · 1
10

< 1/4.
Now we can give the proof of Theorem 3.1.
Proof. Subdivide time into intervals of t′ steps. The probability that the process

has not reached an NE before the (j + 1)st interval is at most (1/4)−j .

4. Lower bounds. In this section we prove the lower bound results stated in
the introduction. We will use the following Chernoff bound which can be found, for
example, in [15]. Let N ≥ 1 and let pi ∈ [0, 1] for i = 1, . . . , N . Let X1, X2, . . . , XN

be independent Bernoulli random variables with Pr(Xi = 1) = pi for i = 1, . . . , N

and let X = X1 + · · · + XN . Then we have E[X] =
∑N

i=1 pi and for 0 ≤ ε ≤ 1,

(4.1) Pr(X ≤ (1 − ε) · E[X]) ≤ exp

(
−ε2 · E[X]

3

)
.

The following theorem gives an exponential lower bound for the expected conver-
gence time of the process in Figure 1.1.

Theorem 4.1. Let X(t) be the process in Figure 1.1 with m = n. Let X(0) be
the assignment given by X(0) = (n, 0, . . . , 0). Let T be the first time at which X(t) is
an NE. Then E[T ] = exp(Θ(

√
n)).

Proof. For an assignment x, let n0(x) denote the number of resources i with
xi = 0. Thus, n0(X(0)) = n − 1. The (unique) NE x assigns one task to each
resource; thus n0(x) = 0. Let k = �√n. We will show that for any assignment x
with n0(x) ≥ k,

Pr(n0(X(t)) < k | X(t− 1) = x) ≤ exp(−Θ(
√
n)).

This implies the result.
Suppose X(t− 1) = x with n0(x) ≥ k. For convenience, let n0 denote n0(x). Let

x′ denote X(t), and let n′
0 denote n0(x

′). We will show that, with probability at least
1 − exp(−Θ(

√
n)), n′

0 ≥ k. During the course of the proof, we will assume, where
necessary, that n is sufficiently large. This is without loss of generality given the Θ
notation in the statement of the result.

Case 1. n0 > 8k.
Consider the protocol in Figure 1.1. Let U = {b | xjb = 0}. E[|U |] = n0, so by

the Chernoff bound (4.1), Pr(|U | ≤ �n0

2
�+ � 3n0

8
�) ≤ Pr(|U | ≤ 8

9
n0) = exp (−Θ(

√
n)).

Thus, |U | ≥ �n0/2� + �3n0/8� with probability at least 1 − exp(−Θ(
√
n)). Suppose

this is the case. Partition U into U1 and U2 with |U1| = �n0/2�. Let W = ∪b∈U1{jb}.
First, suppose |W | ≤ 3

8
n0. In that case

|{j | x′
j > 0}| ≤ n− |U1| + 3

8
n0 = n− �n0/2� +

3

8
n0 ≤ n− k,
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so n′
0 ≥ k. Otherwise, let U ′ = {b ∈ U2 | jb ∈ W}. Since

E[|U ′|] = |U2| |W |
n0

≥ 9

64
n0 >

9

8
k,

by the Chernoff bound (4.1), Pr(|U ′| ≤ k) = Pr(|U ′| ≤ (1− 1
9
)E[|U ′|]) = exp (−Θ(

√
n)),

recalling that k = �√n. Thus |U ′| ≥ k with probability at least 1 − exp(−Θ(
√
n)),

which implies n′
0 ≥ k.

Case 2. k ≤ n0 ≤ 8k.
Consider the protocol in Figure 1.1. Let L be the set of “loners” defined by

L = {i | xi = 1} and let � = |L|. The number of resources i with xi > 1 is n− n0 − �,
and this is at most half as many as the number of tasks assigned to such resources
(which is n − �), so � ≥ n − 2n0. Let U = {b | ib ∈ L and xjb = 0}. E[|U |] =

�n0

n ≥ (n−2n0)n0

n = Θ(
√
n), so by the Chernoff bound (4.1), Pr(|U | ≤ 2� 1

4
�n0

n �) ≤
Pr(|U | ≤ 2

3
E[|U |]) ≤ exp (−Θ(

√
n)). Thus, |U | ≥ 2� 1

4
�n0

n � with probability at least
1 − exp(−Θ(

√
n)). Suppose this is the case. Let U1 and U2 be disjoint subsets of

U of size � 1
4
�n0

n �. Order tasks in U arbitrarily and let S = {b ∈ U | for some
b′ ∈ U with b′ < b, jb′ = jb.}. (Note that |S| does not depend on the ordering.) Let
W = ∪b∈U1{jb}.

Note that if |W | ≤ 1
5
�n0

n , then |S| ≥ 1
20
�n0

n > n0

40

(
�
n

)2
. Otherwise, let U ′ = {b ∈

U2 | jb ∈ W}. Since

E[|U ′|] = |U2| |W |
n0

≥ n0

20

(
�

n

)2

,

by the Chernoff bound (4.1), Pr(|U ′| ≤ 1
2
n0

20

(
�
n

)2
) ≤ exp (−Θ(

√
n)) (recall that

n0

(
�
n

)2 ≥ n0

(
n−2n0

n

)2 ≥ k
(
n−16k

n

)2
= Θ(

√
n)), and thus |U ′| ≥ n0

40

(
�
n

)2
with prob-

ability at least 1 − exp(−Θ(
√
n)); hence |S| ≥ n0

40

(
�
n

)2
.

Suppose then that |S| ≥ n0

40

(
�
n

)2
. Assuming that n is sufficiently large, |S| ≥

k/41. Let B0 = ∪b∈U{jb} and B1 = ∪b∈L−U{ib}. Note that every resource in B0∪B1

is used in x′ for some task b ∈ L. Thus, |B0 ∪ B1| ≤ � − |S|. Let R = {i | xi =
0} ∪ L−B0 −B1. Then |R| ≥ n0 + �− (�− |S|) ≥ n0 + |S| ≥ (1 + 1

41
)k.

Let T = {b | ib �∈ L, jb ∈ R}. E[T ] = (n− �) |R|
n , and

Pr

(
T ≥ |R|

100

)
≤

(
n− �
|R|
100

)( |R|
n

)|R|/100
≤

(
2n0e100

n

)|R|/100
;

thus with probability at least 1 − exp(−Θ(
√
n)), T < |R|/100. In that case, n′

0 ≥
|R|(1 − 1

100
) ≥ k.

The following theorem provides a lower bound on the expected convergence time
regardless of which of the two protocols is being used.

Theorem 4.2. Suppose that m is even. Let X(t) be the process in Figure 2.1
with n = 2. Let X(0) be the assignment given by X(0) = (m, 0). Let T be the first
time at which X(t) is an NE. Then E[T ] = Ω(log logm). The same result holds for
the process in Figure 1.1.

Proof. Note that both protocols have the same behavior since m is even, and,
therefore, the situation x1 = x2 + 1 cannot arise. For concreteness, focus on the
protocol in Figure 2.1.
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Let y(x) = maxi xi −m/2 and let yt = y(X(t)); thus y0 = m/2 and, for an NE x,
y(x) = 0. We will show that for any assignment x, Pr(yt+1 > y(x)1/10 | X(t) = x) ≥
1 − y

−1/4
t . (There is nothing very special about the exact value “1/10”—this value

is being used as part of an explicit “lack of concentration” inequality in the proof,
noting that for a lower bound we essentially want to lower-bound the variances of the
load distributions. This seems to require a somewhat ad hoc approach, in contrast
with the usage of concentration inequalities.)

Suppose X(t) = x is an assignment with x1 ≥ x2. As we have seen in section 2,
Y1,2(x) (the number of migrations from resource 1 to resource 2 in the round) is a
binomial random variable

B

(
x1,

1

2

(
1 − x2

x1

))
= B

(
m

2
+ yt,

2yt
m + 2yt

)
.

In general, let Tt be the number of migrations from the most-loaded resource in X(t)
to the least-loaded resource and note that the distribution of Tt is B

(
m
2

+ yt,
2yt

m+2yt

)

with mean yt. If Tt = yt + � or Tt = yt − �, then yt+1 = �. Thus Pr(yt+1 > y
1/10
t ) =

Pr(|Tt − E[Tt]| > y
1/10
t ). We continue by showing that this binomial distribution is

sufficiently “spread out” in the region of its mode that we can find an upper bound

on Pr(yt+1 ≤ y
1/10
t ). This will lead to our lower bound on the expected time for (yt)t

to decrease below some constant (we use the constant 16):

Pr(Tt = yt) =

(
1
2
m + yt
yt

)(
2yt

m + 2yt

)yt
(

m

m + 2yt

) 1
2m

,

Pr(Tt = yt + j) =

(
1
2
m + yt
yt + j

)( 2yt
m + 2yt

)yt+j( m

m + 2yt

) 1
2m−j

.

Suppose j > 0. Then

Pr(Tt = yt + j)

Pr(Tt = yt)
=

( 2yt
m + 2yt

)j( m

m + 2yt

)−j
(

yt!(
1
2
m)!

(yt + j)!( 1
2
m + yt − (yt + j))!

)

=
(2yt
m

)j
(

j∏

�=1

1
2
m + 1 − �

yt + �

)
=

(2yt
m

)j
(

j∏

�=1

m + 2 − 2�

2yt + 2�

)

>
(2yt
m

)j
(

j∏

�=1

m− 2j

2yt + 2j

)
=

[(2yt
m

)( m− 2j

2yt + 2j

)]j
.

Similarly, for j < 0,

Pr(Tt = yt + j)

Pr(Tt = yt)
=

(2yt
m

)j

⎛
⎝

|j|∏

�=1

yt + 1 − �
1
2
m + �

⎞
⎠ =

( m

2yt

)|j|
⎛
⎝

|j|∏

�=1

2yt + 2 − 2�

m + 2�

⎞
⎠

>
( m

2yt

)|j|(2yt − 2|j|
m + 2|j|

)|j|
=

[( m

2yt

)(2yt − 2|j|
m + 2|j|

)]|j|

=
[(2yt

m

)( m− 2j

2yt + 2j

)]j
.

Thus for all j,

Pr(Tt = yt + j)

Pr(Tt = yt)
>

[(2yt
m

)( m− 2j

2yt + 2j

)]j
=

[( yt
yt + j

)(m− 2j

m

)]j
.
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Thus for all j with |j| ≤ y
1/4
t , where y

1/4
t is the positive fourth root of yt, this is

at least

(
yt

yt + y
1/4
t

)y
1/4
t (m− 2y

1/4
t

m

)y
1/4
t

≥
(

yt

yt + y
1/4
t

)y
1/4
t (2yt − 2y

1/4
t

2yt

)y
1/4
t

=

(
yt − y

1/4
t

yt + y
1/4
t

)y
1/4
t

=

(
yt + y

1/4
t − 2y

1/4
t

yt + y
1/4
t

)y
1/4
t

=

(
1 − 2y

1/4
t

yt + y
1/4
t

)y
1/4
t

≥
(

1 − 2y
1/4
t

yt

)y
1/4
t

=
(
1 − 2y

−3/4
t

)y
1/4
t

≥ 1 − 2y
−3/4
t y

1/4
t = 1 − 2y

−1/2
t ≥ 1

2
,

where the last inequality just requires yt ≥ 16.
Note that the mode of a binomial distribution is one or both of the integers

closest to the expectation, and the distribution is monotonically decreasing as one

moves away from the mode. But, for |j| ≤ y
1/4
t , Pr(Tt = yt + j) ≥ 1

2
Pr(Tt = yt);

hence Pr(Tt = yt) ≤ 2/(1 + 2y
1/4
t ). Since Pr(Tt = yt + j) ≤ Pr(Tt = yt), it follows

that

Pr(Tt ∈ [yt − y
1/10
t , yt + y

1/10
t ]) ≤ (2y

1/10
t + 1) Pr(Tt = yt) < 3y

−3/20
t .

We say that the transition from yt to yt+1 is a “fast round” if yt+1 ≤ y
1/10
t

(equivalently, it is a fast round if Tt ∈ [yt − y
1/10
t , yt + y

1/10
t ]). Otherwise it is a slow

round. Recall that y0 = m/2. Let

r =

⌊
log10

(
log(y0)

log(1220/3)

)⌋
.

If the first j rounds are slow, then yj ≥ y10−j

0 . If j ≤ r, then y10−j

0 ≥ 1220/3; thus
the probability that the transition from yj to yj+1 is the first fast round is at most

3
(
y10−j

0

)−3/20 ≤ 1/4.
Also, if j < r, then these probabilities increase geometrically so that the ratio of

the probability that the transition to yj+1 is the first fast round and the probability
that the transition to yj is the first fast round is

3
(
y10−(j+1)

0

)−3/20

3
(
y10−j

0

)−3/20
=

(
y10−j−10−(j+1)

0

)3/20

≥
(
y10−(j+1)

0

)3/20

≥ 12 ≥ 2;

thus
∑r−1

j=0 Pr(transition from yj to yj+1 is the first fast round) ≤ 2 · 1/4 = 1
2
. There-

fore, with probability at least 1/2, all of the first r rounds are slow. In this case,
arg mint(yt ≤ 16) = Ω(log log(m)), which proves the theorem.

We also have the following observation.
Observation 4.3. Let X(t) be the process in Figure 2.1 with m = n. Let X(0)

be the assignment given by X(0) = (2, 0, 1, . . . , 1). Let T be the first time at which
X(t) is an NE. Then E[T ] = Ω(n).

The observation follows from the fact that the state does not change until one of
the two tasks assigned to the first resource chooses the second resource.
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5. Summary. We have analyzed a very simple, strongly distributed rerouting
protocol for m tasks on n resources. We have proved an upper bound of (log logm+n4)
on the expected convergence time (convergence to an NE), and for m > n3 an upper
bound of O(log logm) on the time to reach an approximate NE. Our lower bound of
Ω(log logm+n) matches the upper bound as a function of m. We have also shown an
exponential lower bound on the convergence time for a related protocol that allows
“neutral moves.”
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ZONE DIAGRAMS: EXISTENCE, UNIQUENESS, AND
ALGORITHMIC CHALLENGE∗

TETSUO ASANO† , JIŘÍ MATOUŠEK‡ , AND TAKESHI TOKUYAMA§

Abstract. A zone diagram is a new variation of the classical notion of the Voronoi diagram.
Given points (sites) p1, . . . ,pn in the plane, each pi is assigned a region Ri, but in contrast to the
ordinary Voronoi diagrams, the union of the Ri has a nonempty complement, the neutral zone. The
defining property is that each Ri consists of all x ∈ R

2 that lie closer (nonstrictly) to pi than to
the union of all the other Rj , j �= i. Thus, the zone diagram is defined implicitly, by a “fixed-point
property,” and neither its existence nor its uniqueness seem obvious. We establish existence using a
general fixed-point result (a consequence of Schauder’s theorem or Kakutani’s theorem); this proof
should generalize easily to related settings, say higher dimensions. Then we prove uniqueness of the
zone diagram, as well as convergence of a natural iterative algorithm for computing it, by a geometric
argument, which also relies on a result for the case of two sites in an earlier paper. Many challenging
questions remain open.

Key words. computational geometry, Voronoi diagram, zone diagram, distance trisector curve
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1. Introduction. Let us consider n points (sites) p1, . . . ,pn in the plane. The
left picture in Figure 1 shows the (usual) Voronoi diagram, while the right picture is
the zone diagram, a new notion investigated in the present paper.1

For a point a and a set X ⊆ R
2 we define the dominance region of a with respect

to X as

dom(a, X) = {z ∈ R
2 : d(z,a) ≤ d(z, X)},

where d(·, ·) denotes the Euclidean distance and d(z, X) = infx∈X d(z,x). We note
that dom(a, X) is always convex and contains a.

In the classical Voronoi diagram, the region of the site pi is dom(pi, {pj : j �= i}),
and the regions tile the whole plane. In a zone diagram, each pi also has a region Ri,
but the union of all the regions has a nonempty complement, called the neutral zone.
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1In earlier papers [2, 1] we have used the longer name Voronoi diagram with neutral zone, but
here we propose the shorter term.
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x

Fig. 1. Five sites are marked by crosses. The left picture is the classical Voronoi diagram. The
right picture shows the zone diagram: Each site pi has a dominance region Ri, and the distance of
each point x on the boundary of Ri to pi equals the distance of x to the union of the other regions.

We require that

Ri = dom
(
pi,

⋃

j �=i

Rj

)
for all i = 1, 2, . . . , n;(1.1)

in words, the region of each site should consist of all points that are closer (non-
strictly) to the site than to all of the other regions. In particular, each Ri is convex
and contains pi.

The notion of the zone diagram can be illustrated by a story about equilibrium
in an “age of wars.” There are n mutually hostile kingdoms. The ith kingdom has a
castle at the site pi and a territory Ri around it. The n territories are separated by a
no-man’s land, the neutral zone. If the territory Ri is attacked from another kingdom,
an army departs from the castle pi to intercept the attack. The interception succeeds
if and only if the defending army arrives at the attacking point on the boundary of Ri

sooner than the enemy. However, the attacker can secretly move his troops inside his
territory, and the defense army can start from its castle only when the attacker leaves
his territory. The zone diagram is an equilibrium configuration of the territories, such
that every kingdom can guard its territory and no kingdom can grow without risk of
invasion by other kingdoms.

The notion of the zone diagram is, in our opinion, very interesting and poses
many mathematical and algorithmic challenges. Moreover, zone diagrams or varia-
tions could be useful for modeling natural phenomena. The classical Voronoi diagram,
one of the basic geometric structures, appears in many fields and, among other uses,
it is frequently employed as a mathematical model of a simultaneous growth from
several sites (cells in a tissue, a crystal lattice, geological patterns, regional equilibria
in social sciences, etc.). Voronoi diagrams and their numerous generalizations (see,
e.g., [3, 5]) subdivide all of the space into dominance regions of the sites. However,
geometric structures are sometimes observed in nature where the dominance regions
do not cover everything, which might be a result of a growth process where the growth
terminates before the cell boundaries meet, due to some noncontact action.

The above definition of the zone diagram is implicit, since each region is defined
in terms of the remaining ones. So it is not obvious whether any system of regions
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with the required property exists at all, or whether it is determined uniquely. Here
we answer both of these questions affirmatively.

Theorem 1.1. For every choice of n distinct sites p1, . . . ,pn ∈ R
2 there exists

exactly one system (R1, . . . , Rn) of subsets of the plane satisfying (1.1).

Perhaps surprisingly, the case of two sites (n = 2) is already nontrivial. We showed
existence and uniqueness for n = 2 in [1]. Here the two regions are mirror images of one
another, and they are bounded by an interesting curve called the distance trisector
curve. We conjecture that this curve is not algebraic and not even expressible by
elementary functions (but we have no proof so far). On the other hand, its intersection
with a given line parallel to the segment p1p2 can be computed to any desired precision
in time polynomial in the number of required digits.

The existence part of Theorem 1.1 is proved in section 4. We apply a well-known
fixed-point theorem for infinite-dimensional Banach spaces to a suitable space of n-
tuples of regions. This proof is conceptually simple and appears quite robust, in the
sense that it should be possible to adapt it to various natural generalizations of zone
diagrams, such as zone diagrams in R

d, zone diagrams of nonpoint sites, or α-zone
diagrams (where each point of Ri should be α times closer to pi than to

⋃
j �=i Rj ,

for some real parameter α > 0). We should remark, though, that such modifications
are not necessarily trivial, since some elementary geometric estimates are needed that
might prove technically challenging in some settings.

In section 5 we prove the uniqueness in Theorem 1.1 and, at the same time, we
also reprove existence by a different method, similar to the one we used in [1]. This
method currently seems very much restricted to the planar case of zone diagrams, and
several obstacles would have to be overcome before it could be generalized to R

3, say.

In the uniqueness proof, we consider a natural iterative procedure for approxi-
mating the zone diagram. Let the sites p1, . . . ,pn be fixed and let R = (R1, . . . , Rn)
be an ordered n-tuple of regions (nonempty subsets of R

2), where we assume p1 ∈
R1, . . . ,pn ∈ Rn. We define Dom(R) as the ordered n-tuple S = (S1, S2, . . . , Sn) of
new regions, where Si = dom(pi,

⋃
j �=i Rj). Thus, rephrasing our definition of a zone

diagram, an n-tuple R = (R1, . . . , Rn) of regions is a zone diagram of p1, . . . ,pn if it
is a fixed point of the operator Dom; that is, if R = Dom(R).

For two n-tuples R = (R1, . . . , Rn) and S = (S1, . . . , Sn), let us write R �
S if Ri ⊆ Si for all i = 1, 2, . . . , n. It is immediate from the definition that if
R � S, then Dom(R) � Dom(S) (that is, the dominance operator is antimonotone
with respect to �). Let I(0) = ({p1}, . . . , {pn}) be the (smallest possible) system

of one-point regions, let O(0) = (O
(0)

1 , . . . , O
(0)
n ) = Dom(I(0)) be the regions of the

classical Voronoi diagram of p1, . . . ,pn, and for k = 1, 2, . . . , inductively define I(k) =
Dom(O(k−1)), O(k) = Dom(I(k)).

Antimonotonicity of Dom and induction yield I(0) � I(1) � I(2) � · · · and O(0) �
O(1) � O(2) � · · ·. Moreover, if R is a zone diagram, i.e., it satisfies R = Dom(R),
then we have I(0) � R by definition, and induction and antimonotonicity give I(k) �
R � O(k) for all k. The I(k) form an increasing sequence of inner approximations of
the zone diagram, while the O(k) form a decreasing sequence of outer approximations;
see Figure 2.

In section 5 we show that the inner and outer approximations converge to the
same limit, which has to be the unique zone diagram. This also gives a quite practical
algorithm for approximate construction of the zone diagram. The regions of the
I(k) and O(k) can be approximated by convex polygons with many sides—this is
how the pictures of zone diagrams in this paper were obtained. With some care in
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I
(1)

1

O
(0)

1

p1

O
(1)

1

I
(2)

1

Fig. 2. The inner and outer approximations I(k) and O(k). In particular, O(0) forms the
classical Voronoi diagram.

implementation one can actually get pairs of polygons that are provably inner and
outer approximations, respectively, of the regions of the zone diagram. Experiments
indicate that the convergence of this algorithm is quite fast, at least for small sets
of sites (each iteration is computationally demanding, though). Unfortunately, we
have no theoretical estimate of the convergence rate of this algorithm. An example
illustrating some of the difficulties in proving estimates is given in section 6. We also
mention some additional results and questions there.

2. A guided tour of zone diagrams. Before we start with proofs, we explain,
mainly by pictures, some interesting phenomena arising in zone diagrams, illustrating
that they behave very differently from the classical Voronoi diagrams.

The left picture in Figure 3 shows the zone diagram of two sites (the distance
trisector curve), and the right picture shows the zone diagram after adding a third
site marked by a small disk. The boundary curves of the regions from the previous
two-site diagram are also shown, and one can see that the region of the top site has
gained new area after the new site was added (this cannot happen in classical Voronoi
diagrams). This is very intuitive in the war interpretation: The animosity of the two
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Fig. 3. The zone diagram of two sites (left) and the zone diagram after adding a third site
marked by • (right). The top site gains area, and the regions are not bounded only by arcs of distance
trisector curves.

nearby sites weakens them, and the top site gets relatively stronger.
In a classical Voronoi diagram for sites p1, . . . ,pn, the region of pi is the intersec-

tion of the regions of pi in the two-site Voronoi diagrams for all pairs {pi,pj}, j �= i.
Consequently, each region is bounded by segments that arise as bisectors of pairs of
sites. Figure 3 illustrates that no analogy holds for zone diagrams. Indeed, segments
of the distance trisector curve do appear as portions of the boundary of the regions
for three sites, but we can also have other kinds of curves.

In Figure 3 we can see a simple instance of this (straight segments appear near
the bottom tip of the top region); other examples exhibit more complicated curves as
well. The proof in section 5 tells something about the nature of all curves that can
ever appear, but some interesting questions remain open.

The left picture in Figure 4 shows an aesthetically pleasing zone diagram. In this
case all of the regions are bounded, which again does not happen in classical Voronoi
diagrams. Such “flowers” scaled down to a tiny size can be used in constructing
examples; the right picture shows a small flower and an isolated site q. As the flower
gets smaller, the region of q approaches a half-plane, that is, the region of q in a
two-site classical Voronoi diagram with a single site at the center of the flower.

3. Preliminaries. Here we introduce some notation and some simple and/or
known facts.

We note that for any X ⊆ R
2 the dominance region dom(a, X) is a closed convex

set, since it can be represented as the intersection
⋂

x∈X dom(a, {x}) of half-planes.
The boundary of a set X ⊆ R

2 is denoted by ∂X.
In analogy to the dominance region notation dom(a, X) we will also use the

bisector notation defined by bisect(a, X) = {z ∈ R
2 : d(z,a) = d(z, X)}.

For a nonempty closed convex set C ⊆ R
2 and a point x ∈ R

2, we let proxC(x)
denote the point of C nearest to x. It is well known that this point is unique.
Moreover, for C fixed, the mapping proxC (the metric projection) is continuous, and
actually 1-Lipschitz.

We will need the following lemma, expressing a kind of continuity of the domi-
nance operator.
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Fig. 4. A flower (left); a small flower induces almost the classical Voronoi region of an isolated
site (right).

Lemma 3.1. Let a ∈ R
2 be a point and let X1 ⊇ X2 ⊇ X3 ⊇ · · · be a decreasing

sequence of closed subsets of R
2 with a �∈ X1. Let us set X =

⋂∞
k=1 Xk. Then

dom(a, X) = cl
( ∞⋃

k=1

dom(a, Xk)
)
,

where cl(.) denotes the topological closure.
Proof. The inclusion “⊇” is clear from X ⊆ Xk for all k and antimonotonic-

ity of dom(.). To prove the opposite inclusion, we fix x ∈ dom(a, X) arbitrar-
ily, we choose ε > 0 arbitrarily small, and we show that there exists k = k(x, ε)
with d(x,dom(a, Xk)) < ε. We may assume x �= a, for otherwise, we even have
x ∈ dom(a, X1).

Since a �∈ X1 and X1 is closed, we have δ = d(a, X1) > 0. The set X lies outside
the region shown in Figure 5. Elementary geometric considerations show that all
interior points y of the segment ax satisfy d(y,a) < d(y, X). Let us choose such a
point y with d(y,x) < ε.

A simple compactness argument, which we omit, shows that for any point q we
have d(q, X) = limk→∞ d(q, Xk). Hence there exists k with d(y,a) < d(y, Xk), and
thus y ∈ dom(a, Xk). Hence d(x,dom(a, Xk)) < ε as claimed.

4. Existence of the zone diagram. In this section we prove the existence of
(at least one) zone diagram for every set {p1, . . . ,pn} of distinct sites in the plane.
Let R denote the set of all n-tuples R = (R1, . . . , Rn) of sets with pi ∈ Ri ⊆ R

2.

Plan of the proof. We want to show the existence of a fixed point of the
dominance operator Dom:R → R (defined in section 1). We are going to apply the
following theorem (which can be seen as a special case of two famous theorems in fixed-
point theory, Schauder’s and Kakutani’s; see, for example, Zeidler [6, Corollary 2.13]).

Theorem 4.1. Let Z be a Banach space, let K ⊂ Z be a nonempty, compact,
and convex set, and let F :K → K be a continuous map. Then F has at least one
fixed point.

In our application of this fixed-point theorem, we will define a suitable set S ⊆ R
of n-tuples of regions and define an embedding ϕ:S → Z for a suitable Banach space
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Fig. 5. Illustration of the proof of Lemma 3.1.

Z. The image ϕ(S) will play the role of K in the fixed-point theorem, and F is the
mapping K → Z corresponding to Dom under ϕ (formally, F = ϕ ◦ Dom ◦ ϕ−1).
We thus need to verify that K is convex and compact, that F (K) ⊆ K, and that F
is continuous.

Here we will present our original “manual” approach to this task. We will define
S in a slightly tricky manner, which makes the verification of the above conditions
quite easy, except for checking the continuity of F , which is not really hard, but we
need about two pages of elementary geometric arguments and estimates.

An alternative strategy. An alternative, somewhat simpler, and, in a sense,
more natural approach (leading to a formally slightly weaker result) was suggested to
us by Eva Kopecká. We sketch it here and then return to our original proof. First
of all, we restrict everything to a bounded region Q, say a large square containing
all the sites, and prove the existence of the zone diagram only in this region (that
is why the result is formally weaker). Then we let Qi be the intersection of Q with
the cell of pi in the classical Voronoi diagram of p1, . . . ,pn, and we define S as the
set of all n-tuples (S1, . . . , Sn) of nonempty closed sets with pi ∈ Si ⊆ Qi. We
equip this S with the Hausdorff distance metric; formally, the distance of (S1, . . . , Sn)
and (S′

1, . . . , S
′
n) equals maxi=1,2,...,n h(Si, S

′
i), where h is the Hausdorff distance. It

follows from the work of Curtis, Schori, and West from the 1970s (culminating in
[4], where other references can also be found) that this S as a topological space is
homeomorphic to the Hilbert cube, which is a compact convex subset of �2. Hence
for application of Theorem 4.1 it is enough to verify that Dom maps S into S (clear)
and that it is continuous with respect to the Hausdorff metric. This is similar in spirit
to our continuity argument below but simpler.

Radial functions. We return to our original approach. Let S1 denote the unit
circle; we will interpret its points as angles in the interval [0, 2π). We will call a
continuous function ρ:S1 → [0, π

2
] a radial function. For such a ρ and a point p ∈ R

2,
we define a star-shaped region R = regp(ρ) such that the ray emanating from p at
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angle α intersects R in a segment of length tan(ρ(α)). Formally,

regp(ρ) =
⋃

α∈[0,2π)

pxα, where xα = p + tan(ρ(α))(cosα, sinα)

(if ρ(α) = π
2
, then pxα is defined as the full semi-infinite ray). We note that the length

of the segment in direction α is not ρ(α) but rather tan(ρ(α)). This ensures that we
deal with bounded radial functions, although the considered planar regions are often
unbounded. The choice of the tangent function to map a bounded interval to [0,∞)
is somewhat arbitrary, but certainly not every function would do. For example, we
have to be careful about how we measure the distance of regions, in order to obtain
continuity of the operator Dom.

For simplicity, let us assume that every two sites pi �= pj have distance at least
4 (this will save us one parameter, standing for the minimum distance of sites, in the
forthcoming calculations).

Now we can define our Banach space and the set K.
Definition 4.2. Let Z denote the Banach space of all n-tuples ρ = (ρ1, . . . , ρn)

of continuous functions ρi:S
1 → R, endowed with the supremum norm: ‖ρ‖∞ =

maxi=1,2,...,n maxα∈S1 |ρi(α)|.
Let K ⊂ Z consist of all ρ ∈ Z satisfying the following conditions:
(i) The image of each ρi is contained in [0, π

2
] (that is, ρi is a radial function).

(ii) We have I(1) � reg(ρ) � O(1), where reg(ρ) = (regp1
(ρ1), . . . , regpn

(ρn)) ∈
R is the system of regions defined by ρ (the componentwise inclusion operator
� and the I(k) and O(k) were introduced in section 1). (We note that this
simply means pointwise lower and upper bounds on each ρi.)

(iii) Each ρi is 2-Lipschitz.
Further, we set S = reg(K) (so reg plays the role of ϕ−1 in the abstract outline of
the argument given above).

The set K is clearly nonempty and convex (since convex combinations preserve
the conditions in the definition of K), and it is easily seen to be compact by the
Arzèla–Ascoli theorem, which implies, in particular, that any closed set of uniformly
bounded 2-Lipschitz functions on a compact set is compact.

Lemma 4.3. For every n-tuple R ∈ S of regions we have Dom(R) ∈ S. Conse-
quently, the mapping F :K → K given by F = reg−1 ◦ Dom ◦ reg is well defined.

Proof. Let S = Dom(R) = (S1, . . . , Sn). Each Si is convex and hence given by a
radial function; thus σ = reg−1(S) is well defined.

Since R ∈ S, we have I(1) � R � O(1), and by antimonotonicity we get I(2) =
Dom(O(1)) � Dom(R) = S. Similarly S � O(2), so I(1) � I(2) � S � O(2) � O(1),
and S satisfies (ii) from Definition 4.2.

For proving (iii), we first note that, assuming d(pi,pj) ≥ 4 for all i �= j, each

I
(1)

i contains the unit disk centered at pi. Indeed, the regions of O(0) are the classical

Voronoi regions, and so I
(1)

i consists of the points closer to pi than to the Voronoi
regions of the other points. It remains to note that the Voronoi region of pi contains
the disk of radius 2 around pi.

It remains to prove the following claim: If ρ is a radial function, p ∈ R
2, and

the set R = regp(ρ) is convex and contains the unit disk centered at p, then ρ is a
2-Lipschitz function. (Actually, an easy refinement of the proof yields 1-Lipschitz.)

First we note that R may be assumed to be bounded, since intersecting R with a
very large disk changes the radial function by an arbitrarily small amount.
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Fig. 6. The radial function of a convex set containing the unit disk is Lipschitz.

Let x be the boundary point of R in direction α and let y be the boundary point
in direction α + η, where (as we may assume) 0 < η ≤ π

6
, say (see Figure 6). Then

it is easy to see that the line xy has distance δ ≥ 1
2

to p: We have |px| = δ/ cosβ
and |py| = δ/ cos(β + η), and thus |ρ(α + η) − ρ(α)| = | arctan(δ/ cos(β + η)) −
arctan(δ/ cosβ)| ≤ η/δ, where the last inequality follows from the mean value theo-
rem applied to the function β �→ arctan(δ/ cosβ). Its first derivative is 1

δ sinβ/(1 +
(cosβ)2/δ2), and this is obviously bounded by 1

δ .
In order to apply Theorem 4.1, it thus remains to prove the following.
Lemma 4.4. The mapping F = reg−1 ◦ Dom ◦ reg:K → K is continuous.
We give the proof of the above lemma in the appendix. The existence of a zone

diagram then follows from Theorem 4.1.

5. Uniqueness of the zone diagram. In this section we prove both existence
and uniqueness of the zone diagram for any n distinct sites p1, . . . ,pn, as well as
convergence of the iterative procedure described in the introduction. The proof is
divided into two steps. The first step is the following quite intuitive statement.

Lemma 5.1. Let I(k) = (I
(k)

1 , . . . , I
(k)
n ) be the inner approximations of the zone di-

agram and let O(k) = (O
(k)

1 , . . . , O
(k)
n ) be the outer approximations. For i = 1, 2, . . . , n

let us set

Ii = cl

( ∞⋃

k=0

I
(k)

i

)
, Oi =

∞⋂

k=0

O
(k)

i .

Then I = (I1, . . . , In) and O = (O1, . . . , On) satisfy I = Dom(O) and O = Dom(I).
Proof. This statement is not as obvious as it might perhaps seem. First we check

O = Dom(I); this is entirely straightforward. Fixing i, we want to verify

Oi = dom
(
pi,

⋃

j �=i

Ij

)
.(5.1)

Since for every k, Ij ⊇ I
(k)

j , we have dom(pi,
⋃

j �=i Ij) ⊆ dom(pi,
⋃

j �=i I
(k)

j ) = O
(k)

i ,

and thus dom(pi,
⋃

j �=i Ij) ⊆ ⋂∞
k=0 O

(k)

i = Oi; this is “⊇” in (5.1). For the converse
inclusion, we assume x �∈ dom(pi,

⋃
j �=i Ij). Then there exist j0 and y ∈ Ij0 with

d(x,pi) > d(x,y). Setting ε = d(x,pi)− d(x,y), we can choose k sufficiently large so
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that I
(k)

j0
contains a point y′ with d(y,y′) < ε, and then d(x,y′) ≤ d(x,y)+d(y,y′) <

d(x,y) + ε = d(x,pi). Hence x �∈ dom(pi,
⋃

j �=i I
(k)

j ) = O
(k)

i , and x �∈ Oi either. This
proves (5.1).

We now turn to showing I = Dom(O); that is,

Ii = dom
(
pi,

⋃

j �=i

Oj

)
.

Here “⊆” is again straightforward, but “⊇” needs more properties of dom(.). We

apply Lemma 3.1 with a = pi and Xk =
⋃

j �=i O
(k)

j . Since the O
(1)

i are disjoint, we

have X =
⋂∞

k=1 Xk =
⋃

j �=i

⋂∞
k=1 O

(k)

j =
⋃

j �=i Oj , and so the lemma tells us that

dom(pi,
⋃

j �=i Oj) = cl
(⋃∞

k=1 dom(pi,
⋃

j �=i O
(k)

j )
)

= cl
(⋃∞

k=1 I
(k+1)

i

)
= Ii as required.

Lemma 5.1 is proved.
In the second step, which is the essence of the proof, we establish the following

proposition.
Proposition 5.2. Let the sites p1, . . . ,pn be fixed and let S = (S1, . . . , Sn) and

T = (T1, . . . , Tn) be n-tuples of regions satisfying S = Dom(T) and T = Dom(S).
Then S = T, and, consequently, S is a zone diagram of p1, . . . ,pn.

Proof of Theorem 1.1. Let I and O be as in Lemma 5.1. Then Proposition 5.2
with S = I and T = O shows that I = O is a zone diagram. Moreover, if R is any
zone diagram of p1, . . . ,pn, we have I(k) � R � O(k) for all k as was explained in
section 1. Hence I � R � O and R = I = O. Thus the zone diagram is unique.

Preparations for the proof of Proposition 5.2. We assume that S and T
with S = Dom(T) and T = Dom(S) have been fixed. Since each Si and each Ti is
a dominance region, it is a closed convex set. Since I(1) � S,T, each Si and each Ti

contains a small open disk around pi. Moreover, each Si is disjoint from all Tj , j �= i,
and vice versa.

We introduce the following terminology: Let a ∈ S1 be a point. The nearest
points of a are the points of

⋃n
i=2 Ti with the minimum distance to a. Since each Ti

is convex, it contains at most one of the nearest points of a. The point a is called a
singular point if it has more than one nearest point; otherwise, it is called a regular
point. All of this refers to the situation a ∈ S1; if we speak about nearest points of
some a ∈ T2, say, we mean the points of

⋃
i �=2 Si with the smallest distance to a.

Let ǎ ∈ ⋃n
i=2 Ti be a nearest point of a ∈ ∂S1. We call it visible if the segment

aǎ intersects S1 only at a, and we call it obscured otherwise.
Lemma 5.3.

(i) Let a ∈ ∂S1 and let ǎ ∈ ⋃n
i=2 Ti be a nearest point of a, say with ǎ ∈ T2.

Then d(p1,a) = d(a, ǎ) ≥ d(ǎ,p2).
(ii) In the setting of (i), ǎ is visible.
(iii) Let a and b be distinct boundary points of S1, and let ǎ be a nearest point of

a and b̌ a nearest point of b. Then the segments aǎ and bb̌ do not intersect,
except possibly if ǎ = b̌.

Proof. In part (i) we have d(p1,a) ≤ d(a, ǎ) because a ∈ S1 = dom(p1,
⋃n

i=2 Ti) ⊆
dom(p1, {ǎ}). If we had d(p1,a) < d(a, ǎ), then a small neighborhood of a would
be contained in S1 as well, but a is a boundary point. Next, we have ǎ ∈ T2 =
dom(p2,

⋃n
i=2 Si) ⊆ dom(p2, {a}), and d(a, ǎ) ≥ d(p2, ǎ) follows, which finishes the

proof of (i).
For (ii), let us suppose that a ∈ ∂S1 has a nearest point ǎ ∈ Ti and that b �= a is

a point of S1 on the segment aǎ. Then d(ǎ,b) = d(ǎ,a)−d(a,b) = d(p1,a)−d(a,b).
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Fig. 7. The left nearest point of a.

On the other hand, the point b does not lie on the segment p1a (otherwise, p1

would be closer to a than to ǎ), and hence we have the strict triangle inequality
d(b,p1) > d(a,p1) − d(a,b). Thus d(ǎ,b) < d(b,p1), contradicting b ∈ S1.

In (iii), we suppose for contradiction that ǎ �= b̌ and the segments aǎ and bb̌
cross at a point x. Then d(a, b̌) ≤ d(a,x)+ d(x, b̌) and d(b, ǎ) ≤ d(b,x)+ d(x, ǎ) by
the triangle inequality, with at least one of the inequalities strict. The two right-hand
sides together equal d(a, ǎ) + d(b, b̌). Then ǎ cannot be a nearest point of a or b̌
cannot be a nearest point of b. The lemma is proved.

Let a be a boundary point of S1. For each of the nearest points ǎ of a, we
consider the angle α = ∠ǎap1 (measured counterclockwise; 0 < α < 2π). The left
nearest point of a is the one with α minimum. We denote it by ǎ�; see Figure 7.

We make the following convention: Let a and b be two points on the boundary
of some Si or Ti. We say that b lies to the left of a if the angle ∠apib, measured
counterclockwise, is between 0 and π (this will always concern very close points a and
b, and then we see b on the left of a when looking from pi).

Lemma 5.4. Let a ∈ ∂S1, let ǎ� be the left nearest point of a, and assume
ǎ� ∈ T2. Then there exists a neighborhood U of a such that all points of ∂S1 lying to
the left of a and in U have exactly one nearest point, and moreover, this nearest point
lies on ∂T2, to the right of ǎ� and near to it (as near as desired if U is chosen small
enough).

Proof. First we note that if there are points x ∈ ∂S1 arbitrarily near to a that
have a nearest point in some Tj , then by the continuity of the metric projection, a has
a nearest point in Tj as well. Thus, supposing for contradiction that if an arbitrarily
small left-hand neighborhood of a in ∂S1 contained a point x with a nearest point x̌
in Tj , j �= 2, then x̌ would get arbitrarily close to the nearest point of a in Tj . But
then, if the neighborhood is taken sufficiently small, the segment xx̌ has to cross the
segment aǎ� (it cannot cross p1a since x̌ is visible, and it has to get very near to a
point of the dotted circular arc p1ǎ� in Figure 7 but not too close to p1 or ǎ�). This
contradicts Lemma 5.3(iii).

Corollary 5.5. As in Lemma 5.4, let a ∈ ∂S1 and let ǎ� ∈ ∂T2 be the left
nearest point of a. Then for every neighborhood V of ǎ� there is a neighborhood U of
a such that if Č denotes the portion of ∂T2 lying in V and to the right of ǎ�, and if
we let C = bisect(p1, Č), then a ∈ C and the portion of ∂S1 lying to the left of a and
in U coincides with the portion of C lying to the left of a and in U .

Proof. By Lemma 5.4 we know that the considered piece of ∂S1 is contained in
the bisector. The bisector bisect(p1, Č) is the boundary of the convex set dom(p1, Č)
([1, Lemma 3(iii)]), and so it has to coincide with the considered piece of ∂S1 (i.e.,
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Fig. 8. The case α� < π.

there cannot be any points of C in U and not in ∂S1, since C is a convex curve).
Proof of Proposition 5.2. For contradiction let us assume S �= T. We call x a

point of nonuniqueness if x ∈ Si�Ti, where � denotes symmetric difference.
Let

r0 = inf{d(pi,x) : x ∈ Si�Ti, i = 1, 2, . . . , n}
be the infimum of distances of points of nonuniqueness to their respective sites. We
have r0 > 0, since each Si and each Ti contains a disk of nonzero radius around pi.

We note that there is no nonuniqueness at r0 itself; that is, Si ∩ B(pi, r0) =
Ti ∩B(pi, r0) for all i, where B(p, r) denotes the disk of radius r centered at p. This
is because any closed convex set in R

d with nonempty interior equals the closure of
its interior (and we apply this to Si ∩B(pi, r0) and Ti ∩B(pi, r0)).

Clearly, there is (at least one) index i that “causes” r0, that is, with r0 =
d(pi, Si�Ti). For notational convenience we assume that i = 1 is such. By a simple
compactness argument, we can choose a sequence (xj)

∞
j=1 of points in S1�T1 with

limj→∞ d(x,p1) = r0 and such that the xj ’s converges to a point a. For convenience
we assume that all the xj lie to the left of a when viewed from p1.

By possibly exchanging the roles of S and T, we may assume xj ∈ T1 \ S1 for
all j. Then a is a boundary point of S1 since, on the one hand, it is in T1 and T1

coincides with S1 up until radius r0, and, on the other hand, it is in the closure of the
complement of S1.

Let ǎ ∈ ⋃n
i=2 Ti be a nearest point of a and let ǎ ∈ Ti0 . By Lemma 5.3(i) we

have r0 = d(p1,a) = d(a, ǎ) ≥ d(ǎ,pi0). Thus ǎ ∈ Si0 as well, and it follows that a
is a boundary point of T1, too (since T1 ⊆ dom(p1, {ǎ})).

It follows that the set of nearest points of a in
⋃n

i=2 Ti coincides with the set of
nearest points of a in

⋃n
i=2 Si. Let ǎ� be the left nearest point of a. We fix notation

so that ǎ� ∈ ∂T2 (then ǎ� ∈ ∂S2 as well).
By Corollary 5.4, a small portion of ∂S1 to the left of a is uniquely determined

by a small portion of ∂T2 to the right of ǎ�, and similarly for T1 and S2. Hence by the
nonuniqueness assumption, ∂S2 and ∂T2 cannot coincide on any small neighborhood
to the right of ǎ�.

We will distinguish several cases. First, if d(ǎ�,p2) < d(p1,a) = r0, then also a
small neighborhood of ǎ� has distance to p2 smaller than r0, and hence T2 and S2

coincide near ǎ�, which is a contradiction. From now on we thus assume d(p2, ǎ�) =
r0 = d(a, ǎ�).

Next, we consider the angle α� = ∠ǎ�ap1; see Figure 8. We claim that α� ≥ π.
Indeed, we have S1, T1 ⊆ dom(p1, {ǎ�}), and if α < π, then this condition forces ∂S1

and ∂T1 in a small left-hand neighborhood of a to be at distance smaller than r0 to
p1, which contradicts the assumed nonuniqueness.
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Fig. 9. The angle α̌.
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Fig. 10. The region Q.

We also need to consider the angle α̌ = ∠p2ǎ�a; see Figure 9. If α̌ < π, then by
the same argument as above, small portions of ∂T2 and ∂S2 to the right of ǎ� coincide
(since T2, S2 ⊆ dom(p2, {a}), etc.), which is a contradiction. Hence α̌ ≥ π.

We now deal with the case α̌ > π. Here T2 and S2 are contained in the region
Q that is the intersection of the half-plane dom(p2, {a}) with the half-plane h with
boundary passing through ǎ� and perpendicular to aǎ�; see Figure 10. Clearly, for
any point x in the dark gray wedge in Figure 10, the nearest point in Q is ǎ�. There-
fore, small portions of ∂S1 and ∂T1 to the left of a are contained in the bisector
bisect(p1, {ǎ�}) (a straight line), and in particular, they coincide—a contradiction
finishing the case α̌ > π.

Now we thus assume α̌ = π. In order to proceed, we repeat for T2, S2, and ǎ�

some of the considerations made above for S1, T1, and a, with left changed to right.
First we can see that a is the right nearest point of ǎ�, for otherwise, small pieces of
∂T2 and ∂S2 to the right of ǎ� would have distance at most r0 to p2 and would thus
coincide there, a contradiction.

Second, we can get a contradiction as above if α� > π: For a small piece of ∂T2

and ∂S2 to the right of ǎ�, the nearest point is a; hence these pieces would be the
same straight segment.

Finally, we are left with the situation where α� = α̌ = π (in other words, p1, a,
ǎ�, and p2 are collinear), ǎ� is the left nearest point of a, and a is the right nearest
point of ǎ�. Let Σ be a sufficiently narrow strip with one side given by the line p1p2

and the other side on the left of a, let C1 be the component of Σ∩ ∂S1 adjacent to a,
and similarly, let C2 be the component of Σ ∩ ∂T2 adjacent to ǎ�. Then C1 and C2
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Fig. 11. The “daggers” example, documenting the long-range influence in zone diagrams and
the great sensitivity to small changes in site positions. Crosses represent sites, and small circles
represent tiny flowers.

satisfy

C1 = bisect(p1, C2) ∩ Σ, C2 = bisect(p2, C1) ∩ Σ.

By the results of [1] (a small modification of Proposition 6, with the symmetric interval
(−a, a) replaced by [0, a), and with almost no change in the proof), C1 and C2 are
determined uniquely by these conditions; they are the “distance trisector curves”
investigated in [1]. Since we have the same property for the appropriate pieces of ∂T1

and ∂S2, we again get a contradiction to the assumption that S1 and T1 should differ
in every neighborhood of a. Proposition 5.2 is proved.

6. Concluding remarks. Nonlocal influence and sensitivity in zone di-
agrams. We sketch an interesting example. The left picture in Figure 11 shows a
zone diagram, a “dagger,” with one isolated site q and three “flowers” marked by
empty circles, where each flower has six sites arranged at the vertices of a tiny regular
hexagon. As was observed in section 2, if the flowers are very small, the region of
the isolated site is close to the classical Voronoi region of q. In the present case it
is (almost) a skinny triangle. In the right-hand picture, we have a small horizontal
dagger on the top. Then there are two tiny flowers and an isolated site on the right,
and these flowers plus the tip of the small horizontal dagger induce a region of the
isolated site, which is also (almost) a skinny triangle. This makes a larger vertical
dagger on the right. This can be iterated in a spiral-like fashion with any number of
progressively larger daggers. (Of course, a formal proof that the regions truly look as
claimed would be longer.)

This daggers example witnesses two things. First, the location of the tip of the
last (largest) dagger depends on the location of all of the flowers and isolated sites.
Therefore, zone diagrams possess no locality in a sense similar to classical Voronoi
diagrams. Second, changing the location of one of the flowers in the first (smallest)
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dagger has a large influence on the position of the tip of that dagger, which in turn
exerts an even much larger influence on the tip of the second dagger, and so on. We
have a complicated “leverage effect,” again quite unlike in classical Voronoi diagrams.
We can also see that the convergence of the iterative algorithm from section 1 is likely
to be relatively slow on this example: The tip of the first dagger has to stabilize
very precisely before the second dagger has a chance to approach its final state, etc.
Therefore, a bound on the convergence rate must take the number of sites into account,
as well as some other parameter, such as the ratio of the maximum and minimum site
distances.

Combinatorial complexity of zone diagrams. For a zone diagram R, singu-
lar points on the boundary of a region Ri are those with at least two distinct nearest
points in

⋃
j �=i Rj (this notion has been considered in section 5). We could regard the

singular points as an analogue of Voronoi vertices in a classical Voronoi diagram, and
the segments of ∂Ri between consecutive singular points as an analogue of Voronoi
edges.

It is not hard to show that each of these Voronoi edges e is contained in the
bisector of pi and some Rj , j �= i, which easily implies that e is of class C1 (with a
continuous first derivative). We can prove that the number of singular points, as well
as the number of “Voronoi edges,” is O(n), where n is the number of sites (we intend
to publish a proof elsewhere). However, it should be noted that a single “Voronoi
edge” e ⊆ ∂Ri can still be complicated: We have e ⊆ bisect(pi, e

′), where e′ is a piece
of ∂Rj (for some j) which may contain many singular points.

Crystal growth: Intuition and alternative algorithm. Here is our original
intuition for the uniqueness proof. We imagine that a crystal starts growing from each
site pi at time t = 0, and we let Ri(t) denote its shape at time t ≥ 0. Initially each
of the crystals grows everywhere along its boundary at unit speed, but as soon as the
distance of a boundary point x ∈ ∂Ri(t) to some Rj(t) becomes d(x,pi), the growth
at x stops. It seems intuitively clear that the result of this growth process should be
a zone diagram, and actually the only possible zone diagram. But proving it seems
to require some kind of “induction on the radius,” and here the usual troubles with
the continuous nature of the reals start (resembling the troubles with the intuitively
obvious arguments of the old masters of calculus, arguments which were later replaced
by the much more complicated-looking proofs in contemporary textbooks of analysis).

Our uniqueness proof shows that given R(t) = (R1(t), R2(t), . . . , Rn(t)) at some
time t, we can uniquely extend it to R(t + ε) for some ε = ε(t) > 0, and this is even
“efficient” in the sense that the new pieces of the boundary are given as bisectors of
sites and old pieces, or as pieces of the distance trisector curve. We could thus start
with R(t0) for a suitable t0 where all Ri(t) are disks of radius t0, extend to t1, then to
t2, etc., but if we take the proof as is, the steps tk+1 − tk might possibly get smaller
and smaller, and we might get an infinite but bounded sequence t0 < t1 < t2 < · · · .

It turns out that we can get away with finitely (and even polynomially) many time
steps if we are willing to make the computation of a bisector of an already computed
curve and a site in a single step (as well as the computation of the distance trisector
curve). But such operations may be too complex to be considered as reasonable
computational primitives, and further work is still needed.

7. Appendix.

7.1. Proof of Lemma 4.4. We will actually prove that F is C-Lipschitz for a
(large) constant C depending on the point set P . Let ρ,ρ′ ∈ K. Let us put σ = F (ρ),
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Fig. 12. Illustration of the proof of continuity of F .

σ′ = F (ρ′), δ = ‖ρ − ρ′‖∞, ε = ‖σ − σ′‖∞. To prove continuity, we want to show a
strictly positive lower bound on δ for every ε > 0. (It seems that a priori we cannot
assume ε small.)

Let ε be attained for i and β; that is, σ′
i(β) − σi(β) = ε (should the sign be

opposite, we interchange ρ and ρ′). Let y be the boundary point of Si = regpi
(σi) in

direction β, and let s = |piy| = tan(σi(β)). See Figure 12.
Let us set s′ = tan(σi(β) + ε/4), and let y′ be the point of S′

i = regpi
(σ′

i) at
distance s′ from pi in direction β. This choice, instead of y′ lying on the boundary
of S′

i (which looks more natural), guarantees two things: First, y′ is at finite distance
from pi, and second, we have κ = s′ − s ≤ s. To verify the latter claim, we note that
we may assume that ε = π

2
− arctan s, and we use the mean value theorem to bound

s′− s = tan(arctan s+ ε/4)− tan(arctan s) = ε
4
· 1

cos2(arctan s+ε/4) = ε
4
· 1

sin2(3ε/4)
. Now

ε ≤ π/2 − arctan 1 = π/4, and since for 0 ≤ x ≤ 3
16
π we have sinx ≥ 0.9x, we obtain

s′ − s ≤ ε
4
· 1

(0.9·0.75ε)2 ≤ 0.6
ε . On the other hand, s = tan(π

2
− ε) = 1

tan ε ≥ π
4ε > 0.6

ε ,

and s′ − s ≤ s is proved.
Since y is a boundary point of Si, it is easy to see that there has to be a boundary

point x of some Rj , j �= i (where (R1, . . . , Rn) = reg(ρ)), such that |xy| = |ypi| = s
(briefly, points arbitrarily close to y but outside S have points of some Rj at distance
arbitrarily close to s, and a limit argument using compactness provides the desired
y). On the other hand, the open disk of radius s′ = s + κ centered at y′ is disjoint
from all R′

k, k �= i, for otherwise, y′ would not lie in S′
i.

If we prove some lower bound η on the difference s′ − |y′x|, then the open disk of
radius η centered at x is disjoint from all R′

j , and in particular, the point x′ on the
segment pjx lying at distance η from x cannot be inside R′

j . It follows that

δ = ‖ρ − ρ′‖∞ ≥ arctan(r) − arctan(r − η) ≥ η

1 + r2
≥ η

2r2

by the mean value theorem (we have r−η ≥ 1 since R′
j contains the unit disk centered

at pj).
To estimate η, we consider the triangle �y′yx, and by the cosine theorem we

obtain

|y′x| =
√

s2 + κ2 − 2sκ cos(π − ϕ)
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=
√

s2 + κ2 + 2sκ cosϕ

= s′
√

1 − 2sκ

s′2
(1 − cosϕ)

≤ s′
(
1 − sκ

s′2
(1 − cosϕ)

)

= s′ − sκ

s′
(1 − cosϕ),

where we have used
√

1 − z ≤ 1 − z/2 for 0 < z < 1. The cosine theorem for the
triangle �piyx then yields

a2 = |pix|2 = 2s2(1 − cosϕ),

and altogether we have

η = s′ − |y′x| ≥ a2κ

2ss′
≥ a2

4s2
κ

(using the inequality s′ ≤ 2s mentioned above).
For a we use the obvious estimate a ≥ 1 (from the fact that Si contains the unit

disk centered at pi), as well as a = |piy| ≥ |ypj | − |pipj | ≥ r − Δ, where Δ denotes
the diameter of P . Together we have a ≥ max(1, r − Δ) ≥ r/2Δ (distinguishing the
cases r ≤ 2Δ and r ≥ 2Δ). Finally, for κ = s′−s we have arctan(s′)−arctan(s) = ε/4,
and the mean value theorem (as usual) gives κ = s′ − s ≥ 1

4
ε · (1 + s2) ≥ 1

4
εs2.

Putting the chain of inequalities together, we have

‖ρ − ρ′‖∞ = δ ≥ η

2r2
≥ a2

4s2 · 2r2
· ε
4
s2 ≥ r2

4Δ2 · 8r2
· ε
4

=
ε

128Δ2
.

This shows that the operator Dom is continuous and even C-Lipschitz for a suitable
constant C.
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Abstract. This paper presents an algorithm for sampling and triangulating a generic C2-smooth
surface Σ ⊂ R

3 that is input with an implicit equation. The output triangulation is guaranteed to be
homeomorphic to Σ. We also prove that the triangulation has well-shaped triangles, large dihedral
angles, and a small size. The only assumption we make is that the input surface representation is
amenable to certain types of computations, namely, computations of the intersection points of a line
and Σ, computations of the critical points in a given direction, and computations of certain silhouette
points.

Key words. smooth surface, geometry, topology, Voronoi diagram, Delaunay triangulation,
Delaunay refinement
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1. Introduction. The need for triangulating a surface is ubiquitous in science
and engineering. A set of points needs to be sampled from the input surface and
then connected to generate such a triangulation. The underlying space of the result-
ing triangulation should have the same topology as that of the input surface. Nice
geometric properties such as bounded aspect ratio and large dihedral angles are also
desirable. The input surface can be specified in various ways and each leads to a
different problem of surface triangulation.

When the surface is given by a set of point samples, the problem is known as
surface reconstruction for which algorithms with topological and geometrical guaran-
tees have been proposed [1, 2, 5, 19]. When the surface is polyhedral, i.e., made out
of planar patches, the Delaunay refinement techniques solve the problem elegantly
[12, 13, 14, 16, 32].

The case in which the input surface is smooth and specified by an implicit equation
occurs in a variety of applications in geometric modeling, computer graphics, and
finite element methods [34, 36, 33]. Obtaining a surface triangulation that has the
correct topology and nice geometric properties (e.g., bounded aspect ratio and large
dihedral angles) is an important issue in these applications. In this paper we present
an algorithm to triangulate a generic C2-smooth implicit surface without boundary.
All vertices are sampled from the input surface, and the following guarantees are
offered for any fixed λ ≤ 0.06:
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(i) The underlying space of the output triangulation is homeomorphic to the
input surface.

(ii) All angles of the triangles are at least arcsin ( 1
2+2λ ).

(iii) The dihedral angle between adjacent triangles is at least π −O(λ).

(iv) The number of vertices is no more than O( ε2

λ2 ) times the size of an ε-sample1

for any ε < 1
5
.

Although the output triangulation does not have bounded Hausdorff distance from the
input surface as enjoyed by an ε-sample [1, 2], property (iv) shows that our algorithm
does not sample an excessive number of vertices.

Because of the importance of the problem, a number of algorithms have been
proposed for meshing implicit surfaces across various application areas. These algo-
rithms may give satisfactory experimental results, but they do not have guarantees
on the validity of the topology and/or the quality of the output triangulation. We
briefly survey a selected subset. The problem of triangulating implicit surfaces has
been investigated by Bajaj [3], Bloomenthal [4], Tristano, Owen, and Canann [35],
Lau and Lo [28], and Cuillière [17]. The marching cube algorithm of Lorensen and
Cline [29] can be used to triangulate an implicit surface. The algorithm determines
the edges of a cubic grid intersecting the surface and then generates a tessellation by
connecting these intersection points. Although the algorithm is very simple, there is
no guarantee that the output has the same topology as that of the surface. Stander
and Hart [34] proposed varying the value of the implicit function from −∞ to ∞ and
dynamically maintaining a triangulation of the changing isosurface. It is necessary
to track all critical points of the implicit function. Maintaining triangulations of iso-
surfaces is a huge overhead given that only one isosurface, namely, the input, needs
to be triangulated. Witkin and Heckbert [36] proposed spreading particles governed
by differential equations on the implicit surface. At equilibrium, the particles can be
connected to form the surface triangulation, but it is unclear how to ensure that the
surface topology is captured. The above algorithms do not offer any guarantee on the
triangle shape though some of them include heuristics and illustrate their effectiveness
experimentally.

In computational geometry, Chew [15] described an algorithm that is based on the
“furthest-point” strategy: among the intersections between a Voronoi edge and the
input surface, select and insert the furthest one from the sites defining the Voronoi
edge. In effect, this algorithm attempts to compute the restricted Delaunay trian-
gulation of the surface. Edelsbrunner and Shah [24] showed that a topological ball
property is sufficient for the restricted Delaunay triangulation to be homeomorphic to
the input surface. The algorithm of Chew does not guarantee this property or any
other that ensures topological correctness.

Following the furthest-point strategy, Cheng, Dey, Edelsbrunner, and Sullivan [11]
proposed an algorithm for triangulating the skin surface [22] that provides both topo-
logical and geometric guarantees. This algorithm exploits the fact that the local
feature size is easily computable for skin surfaces. The local feature size of a point x
on the surface is the distance from x to the medial axis.

Boissonnat and Oudot [8] carried forward the furthest-point strategy for general
curved surfaces. They showed how to grow from an initial seed triangle on each
surface component to a full triangulation with topological and geometric guarantees.
The algorithm assumes that one can compute the local feature size of any point on the
surface. Computing the medial axis is hard, and hence computing the local feature

1This is defined in section 2.1.
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size exactly is difficult, if not impossible, for surfaces in general. Of course, one
can approximate the medial axis with existing algorithms [1, 5, 18]. However, these
algorithms require a dense sampling with respect to the local feature size in the first
place. An alternative suggested by Boissonnat and Oudot is to compute the minimum
local feature size and then to run their algorithm to obtain a dense sample from which
the medial axis can be approximated. In a second pass a new mesh can be computed
with appropriate density using the approximated local feature size.

A related work by Boissonnat, Cohen-Steiner, and Vegter [7] considered triangu-
lating the isosurfaces of a function E : R

3 → R. Their method evaluates E at grid
points and triangulates a box in R

3 recursively to provide a piecewise linear inter-
polant Ê of E. The isosurface E = 0 is approximated with the isosurface Ê = 0.
The authors provide conditions on sampling to guarantee that the computed surface
Ê = 0 is isotopic to the surface E = 0. Their method samples the function E rather
than the surface E = 0. Moreover, it computes the critical points of E as well as their
indices. There are two other algorithms for producing isotopic triangulations, one by
Mourrain and Técourt [30] and another by Plantinga and Vegter [31]. More details
about these isotopic triangulation algorithms can be found in the survey [6].

In this paper, we eliminate the need for local feature size computation. We show
that it suffices to identify the critical points and a silhouette of the surface or a cross-
section of the surface in a given direction. These computations are less demanding.
(The critical points of the surface in a given direction should not be confused with
the critical points of the implicit function as computed by the algorithms of Stander
and Hart [34] and Boissonnat, Cohen-Steiner, and Vegter [7].) To this end, we depart
from the strategy of Boissonnat and Oudot [8, 9] in a fundamental way. Topological
ball property violations drive the refinement in our algorithm, whereas they are used
only for analysis in [8, 9].

Our algorithm incrementally grows a set of point samples and maintains the
restricted Delaunay triangulation of the samples. In the topology recovery phase,
we use a simple “topological-disk” test and certain critical and silhouette point com-
putations to guide the sampling of points from the surface. Our approach extends
the “furthest-point” strategy that selects samples only from the intersections between
Voronoi edges and the surface. This extension allows us to sample points adaptively
and prove that the output triangulation has the same topology as that of the surface.
In the geometry recovery phase, we enforce the bounded aspect ratio and smoothness
of the surface triangulation.

2. Preliminaries.

2.1. Input surface and assumptions. The input is a compact surface Σ ⊂ R
3

without boundary. We assume that Σ is specified as the zero-level set of a function
E : R

3 → R such that the second partial derivatives of E are continuous (i.e., Σ is
C2-smooth), and E(x) and gradE(x) do not vanish simultaneously at any x ∈ R

3.

A maximal ball whose interior is disjoint from Σ is called a medial ball. The medial
axis of Σ is the set of the centers of medial balls. We borrow some definitions from
Amenta and Bern [1] who proposed them in the context of surface reconstruction.
The local feature size f(x) at a point x ∈ Σ is the distance from x to the medial
axis. Since Σ is assumed to be C2-smooth and compact, minx∈Σ f(x) is nonzero. The
function f is 1-Lipschitz; that is, f(x) ≤ f(y) + ‖x − y‖ for any two points x and y
on Σ. A point set S ⊂ Σ is an ε-sample if for any x ∈ Σ, there is a point p ∈ S such
that ‖p− x‖ ≤ εf(x).
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Throughout this paper, we use x1, x2, and x3 to denote the three orthogonal
directions forming the coordinate frame. Given any point y ∈ R

3, we use (y1, y2, y3)
to denote the coordinates of y. For any vector d in R

3, we use (d1, d2, d3) to denote its
components in the x1-, x2-, and x3-directions. Given two vectors d and d′, let 〈d, d′〉
and d×d′ denote their inner and cross products, respectively. The gradient gradE(x)

is the vector (∂E(x)

∂x1
, ∂E(x)

∂x2
, ∂E(x)

∂x3
). If the point x lies on Σ, gradE(x) is parallel to

the unit outward surface normal at x. The critical points of Σ in a direction d are
the points x ∈ Σ such that gradE(x) is parallel to d.

We assume that Σ has finitely many critical points in any direction. We also
assume that the Hessian at any point x ∈ Σ is nonsingular; i.e., for any two orthogonal

tangent directions u1 and u2 at x ∈ Σ, the matrix ( ∂2E(x)

∂ui ∂uj
) is nonsingular at x.

A unit vector d induces a height function hd on Σ: hd(x) = 〈gradE(x), d〉 for any
x ∈ Σ. The set h−1

d (0) consists of the points x ∈ Σ such that gradE(x) is orthogonal
to d; i.e., d is a tangent direction at x. Let v be a tangent direction at x orthogonal
to d. Orient space so that d aligns with the x1-axis and v aligns with the x2-axis.

We have hd(x) = ∂E(x)

∂d and thus (∂hd(x)

∂d , ∂hd(x)

∂v ) = (∂
2E(x)

∂d2 , ∂2E(x)

∂d ∂v ) 
= 0 because
the Hessian is assumed to be nonsingular at x ∈ Σ. In other words, the points in
h−1
d (0) are not critical for hd, and thus it follows from the inverse function theorem

in differential topology [26] that h−1
d (0) is a collection of smooth closed curves. We

call these curves the silhouette of Σ with respect to d and denote it by Jd.

Take any direction d′ orthogonal to d. A point x ∈ Jd is critical in direction d′

if the tangent to Jd at x is orthogonal to d′. We assume that Jd has finitely many
critical points in direction d′. Given a plane Π, the critical points of the intersection
curve(s) in Σ ∩ Π in any direction parallel to Π can be similarly defined. We also
assume that the intersection curve(s) between Σ and any plane Π have finitely many
critical points in any direction parallel to Π.

2.2. Generic intersection and topological ball property. Let S be a finite
point set in R

3. The Voronoi cell of a point p ∈ S is defined as Vp = {x ∈ R
3 : ∀q ∈

P, ‖p − x‖ ≤ ‖q − x‖ }. A Voronoi cell is a convex polyhedron. For 2 ≤ j ≤ 4, the
closed faces shared by j Voronoi cells are called (4 − j)-dimensional Voronoi faces.
The 0-, 1-, and 2-dimensional Voronoi faces are called Voronoi vertices, edges, and
facets, respectively. The Voronoi diagram VorS is the collection of all Voronoi faces.

Assuming general position, the convex hull of j ≤ 4 points in S defines a (j − 1)-
dimensional Delaunay simplex σ if the vertices of σ define a (4 − j)-dimensional
Voronoi face in VorS. We use Vσ to denote this Voronoi face. We call σ and Vσ

the dual of each other. The 1-, 2-, and 3-dimensional Delaunay simplices are called
Delaunay edges, triangles, and tetrahedra, respectively. The Delaunay simplices define
a decomposition of the convex hull of S called the Delaunay triangulation of S. We
denote it by DelS.

The set of Delaunay simplices whose dual Voronoi faces intersect Σ form the
restricted Delaunay triangulation DelS|Σ of S with respect to Σ. Formally, DelS|Σ =
{σ ∈ DelS : Vσ ∩ Σ 
= ∅ }. For any simplex σ ∈ DelS|Σ, the intersection Vσ ∩ Σ
is called a restricted Voronoi face. The restricted Voronoi diagram VorS|Σ is the
collection of all restricted Voronoi faces.

We say that a Voronoi face Vσ satisfies the generic intersection property (GIP) if
either Vσ ∩ Σ = ∅ or Vσ intersects Σ transversally, that is, the affine space of Vσ is
not tangent to Σ at the points in Vσ ∩ Σ. In particular, this implies that a Voronoi
vertex should not lie on Σ. The Voronoi diagram VorS satisfies GIP for Σ if all of its
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faces satisfy GIP.
We say that a Voronoi face Vσ satisfies the topological ball property (TBP) if

either Vσ ∩ Σ = ∅ or the restricted Voronoi face Vσ ∩ Σ is a closed topological ball of
dimension dim(Vσ)− 1, where dim(Vσ) is the dimension of Vσ. The Voronoi diagram
VorS satisfies TBP for Σ if all its Voronoi faces satisfy TBP. Our meshing algorithm
is based on the following result of Edelsbrunner and Shah that relates the topology
of DelS|Σ to Σ.

Theorem 2.1 (see [24]). The underlying space of DelS|Σ is homeomorphic to Σ
if VorS satisfies TBP and GIP for Σ.

Notice that the above theorem is originally proved for a nondegenerate point set;
that is, no five points are cospherical. However, one may drop this requirement by
appealing to the simulation of simplicity (SOS) technique [23] that simulates generic
conditions by perturbing the points symbolically.

2.3. Background results. We state a few geometric results in the literature
that we use frequently. Let � and �′ be two line segments, vectors, or lines. We use
∠�, �′ to denote the acute angle between the support lines of � and �′. For any point
x ∈ Σ, we use nx to denote the unit outward surface normal at x. For any triangle
pqr, we use npqr to denote a unit normal to pqr. Define two functions α(λ) and β(λ)
where

α(λ) =
λ

1 − 3λ
and β(λ) = α(2λ) + arcsinλ + arcsin

(
2 sin(2 arcsinλ)√

3

)
.

The key property of α(λ) and β(λ) is that both are O(λ) and approach zero as λ does.
Lemma 2.2 (see [1]). Let x and y be two points on Σ. If ‖x − y‖ ≤ λf(x) for

some λ < 1/3, ∠nx, ny ≤ α(c).2

Lemma 2.3 (see [2]). Let pqr be a triangle with vertices on Σ. If the circumradius
of pqr is less than λf(p) for λ ≤ 1√

2
, then ∠npqr, np ≤ β(λ).

Lemma 2.4 (see [11]). Let x and y be two points in the intersection of a line �
and Σ. Then ‖x− y‖ ≥ 2f(x) cos(∠�, nx).

3. Overview. Our algorithm’s goal is to obtain a sufficiently dense sample S
on Σ for which GIP and TBP hold. The approach used to obtain S is incremental.
First, we initialize S to contain the critical points of Σ in the x3-direction. Then,
while either GIP or TBP does not hold, we add one more point to S: a witness to the
violation. The correctness of the algorithm is then trivial as long as it halts, which
follows from a lower bound on how close a new inserted point can be to the existing
points.

As it turns out, it is not so easy to identify a TBP violation for a facet or cell.
Therefore we take a conservative approach: a witness is always returned if there is a
violation, but a witness may also be returned even in some cases where there is no
violation. However, we guarantee that no harm is done in inserting the false witnesses
since these false witnesses are also far away from existing points in S.

A GIP is violated when the affine space of a Voronoi edge or facet is tangent to Σ
or when a Voronoi vertex lies on Σ. Notice that any tangential contact between Σ and
a Voronoi edge or facet is isolated by our assumption that Σ is generic. The case of
the affine space of a Voronoi edge or facet being tangent to Σ can be handled simply
by returning the tangency point as witness, which can be determined by solving an

2The slightly stronger condition of ‖x − y‖ ≤ λmin{f(x), f(y)} is stated in [1], but the proof
uses ‖x− y‖ ≤ λf(x) only.



1204 S.-W. CHENG, T. K. DEY, E. A. RAMOS, AND T. RAY

appropriate system of equations. We will show that this witness is sufficiently far
from the existing sample points. In contrast, a Voronoi vertex lying on Σ can happen
at any sampling density. It is a degenerate intersection between Voronoi facets and
cells with Σ. The algorithm pretends that Σ is perturbed locally to get around the
degeneracy. Nevertheless, we have to deal with the Voronoi vertices on Σ directly in
the proofs. The reason is that a local perturbation may change the local feature size
a lot. Since we need to obtain lower bounds on distances in terms of the local feature
size with respect to Σ, we cannot assume the local perturbation in the analysis.

It is natural to test for TBP violations in increasing order of Voronoi face dimen-
sions. Testing a TBP violation at an edge is comparatively easier than at a facet or
a cell. We assume GIP for all edges and facets:

Edge e. Testing for a TBP violation at an edge e is simply a matter of counting
the number of intersections between e and Σ, which is easily determined by computing
all intersections between e and Σ. If there is a violation, the witness returned is the
intersection point furthest from any sample point in S that generates e.

Facet F . It is assumed that TBP holds for edges. F ∩Σ is a collection of closed or
open curves (with endpoints in the boundary of F ). TBP is violated if F ∩Σ includes
either more than one open curve or a closed curve. In the first case, there are more
than two intersections between Σ and the boundary of F , and the witness returned is
the furthest intersection point from any sample point in S that generates F . In the
second case, checking whether F ∩ Σ contains a closed curve is not easy, so we settle
for a necessary witness instead. We find the critical points of F ∩Σ in some direction
parallel to F . Then we compute the lines in the plane of F that are normal to F ∩Σ
at these critical points. If any such line intersects F ∩ Σ in two or more points, the
furthest one is returned as the witness. Clearly, such a witness exists if F ∩Σ contains
a closed curve. While this witness may exist even if there is no closed curve, it will
be shown that in either case the witness is sufficiently far from the existing sample
points.

Cell Vp. It is assumed that TBP holds for edges and facets. Vp ∩Σ is a collection
of surface patches with or without boundaries. There is a violation to TBP if Vp ∩ Σ
is not a topological disk. In particular, a violation occurs if the boundary of Vp ∩ Σ
consists of more than one closed curve. This is easily determined by checking whether
the dual triangles incident to p form one or more topological disks. Vp ∩ Σ cannot
contain a surface component without any boundary; otherwise, we would have placed
the critical points of this component in the x3-direction as seeds inside Vp. The
hardest case is that the boundary of Vp ∩ Σ is a single closed curve, but Vp ∩ Σ has
positive genus. We handle this case using the silhouette Jnp , i.e., the set of points
x ∈ Σ such that nx is orthogonal to np. It is known that Jnp is a smooth closed
curve and the points in Jnp are far from p. So the test can be done as follows: either
Jnp intersects some facet of Vp at a point w, or Jnp contains an extreme point w in a
direction orthogonal to np. The point w is returned as the witness in either case.

Topology recovery as described above generates a sample of the surface. This
sample is further refined to ensure some geometric properties of the output triangula-
tion such as aspect ratios of triangles and large dihedral angles at the edges. The rest
of the paper is organized as follows. In section 4, we present the analytic tools to cope
with the violations of GIP and TBP. In section 5, the details of the topology recovery
part of our algorithm are given. Figure 1 illustrates the dependencies between the
lemmas in sections 2.3 and 4, the subroutines in section 5, and TBP. In section 6,
we show how to enforce bounded aspect ratio and large dihedral angles by inserting
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FacetCycleFacetContact

Lemma 2.3

TBP for CellTBP for FacetTBP for Edge

Fig. 1. Dependencies between the subroutines, lemmas, and TBP.

new points that are far from existing sample points. After inserting some point(s)
to repair the geometry, we have to rerun the topology recovery part because GIP or
TBP may no longer hold. Thus, the entire algorithm alternates between repairing
topology and geometry. The full analysis of the algorithm is presented in section 6.

4. Violation. Theorem 2.1 is our main tool for recovering topology. The fol-
lowing subsections treat separately the violations of TBP for the cases of Vσ being a
Voronoi edge, facet, and cell. In each case, we show how to identify a point x ∈ Vσ∩Σ
such that ‖p− x‖ ≥ λf(p) for any vertex p of σ where

λ

1 − λ
< cos(α(λ) + 3β(λ)),

α(λ) + β(λ) < π/3,

arccosλ > α(λ) + β(λ).

The above inequalities hold for any λ ≤ λ0 = 0.06, which we assume throughout the
rest of the paper.

The GIP may be violated if some Voronoi vertex lies on Σ. We defer this discussion
to section 5.1. The results in this section hold regardless of whether some Voronoi
vertex lies on Σ.

4.1. Technical results. We first prove a few technical results that we use later.
Lemma 4.1. Let p and x be two points on Σ. If ‖p − x‖ ≤ λf(p), then f(x) ≥

(1 − λ)f(p).
Proof. Because f is 1-Lipschitz, f(x) ≥ f(p) − ‖p− x‖ ≥ (1 − λ)f(p).
Lemma 4.2. Let p, x, and y be three points on Σ. If both ‖p − x‖ and ‖p − y‖

are at most λf(p), then ‖x− y‖ ≤ 2λf(p) ≤ 2λf(x)/(1 − λ).
Proof. By the triangle inequality, ‖x − y‖ ≤ ‖p − x‖ + ‖p − y‖ ≤ 2λf(p), which

is at most 2λf(x)/(1 − λ) by Lemma 4.1.
Lemma 4.3. Let e be an edge of a Voronoi cell Vp. For any point x ∈ e ∩ Σ, if

‖p− x‖ ≤ λf(p), then ∠e, nx ≤ α(λ) + β(λ) < π/3.
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Proof. By Lemma 2.2, ∠np, nx ≤ α(λ). The circumradius of the Delaunay triangle
dual to e is at most ‖p− x‖ ≤ λf(p). By Lemma 2.3, ∠e, np ≤ β(λ). Thus, ∠e, nx ≤
∠e, np + ∠np, nx ≤ α(λ) + β(λ), which is less than π/3 as λ ≤ λ0.

Lemma 4.4. Let F be a facet of a Voronoi cell Vp. Let Π be the plane of F .
Suppose that Π ∩ Σ contains a point x such that ‖p− x‖ ≤ λf(p).

(i) The acute angle between Π and np is at most arcsinλ < β(λ).
(ii) The acute angle between Π and nx is at most α(λ)+arcsinλ < α(λ)+β(λ) <

π/3.

Proof. Let pq be the Delaunay edge dual to F . We have ‖p − q‖ ≤ ‖p − x‖ +
‖q − x‖ = 2 ‖p − x‖ ≤ 2λf(p). It then follows from Lemma 2.4 that ∠pq, np ≥
arccosλ, which implies (i). By Lemma 2.2, ∠np, nx ≤ α(λ). By the triangle inequality,
∠pq, nx ≥ ∠pq, np −∠np, nx ≥ arccosλ−α(λ). So the acute angle between Π and nx

is at most α(λ) + arcsin(λ) < α(λ) + β(λ), which is less than π/3 as λ ≤ λ0.

Lemma 4.5. Let F be a facet of a Voronoi cell Vp such that F ∩ Σ contains no
tangential contact point. Let x be a point in F ∩Σ. Let L be a line in the plane of F
through x and normal to F ∩Σ at x. If ‖p−x‖ ≤ λf(p), then ∠L, nx < α(λ)+β(λ).

Proof. Since L is normal to F ∩Σ at x, nx lies in the plane containing L perpen-
dicular to F . This implies that ∠L, nx is the acute angle between F and nx, which is
less than α(λ) + β(λ) by Lemma 4.4(ii).

Lemma 4.6. Let p be a sample point. Let x and y be two points on Σ. If
∠xy, nx ≤ α(λ) + β(λ), then ‖p− x‖ or ‖p− y‖ is greater than λf(p).

Proof. Assume to the contrary that both ‖p− x‖ and ‖p− y‖ are at most λf(p).
By Lemma 4.2, ‖x − y‖ ≤ 2λf(x)/(1 − λ). On the other hand, by Lemma 2.4,
‖x− y‖ ≥ 2f(x) cos(∠xy, nx) ≥ 2f(x) cos(α(λ) +β(λ)). The lower and upper bounds
on ‖x− y‖ together yield λ/(1 − λ) ≥ cos(α(λ) + β(λ)), contradicting λ ≤ λ0.

4.2. Violation at Voronoi edges. If a Voronoi edge violates GIP or TBP, it
intersects Σ in some point far away from existing sample points. The next lemma
establishes this fact.

Lemma 4.7. Let e be an edge of a Voronoi cell Vp.

(i) If e ∩Σ contains two points, the distance between p and the further one is at
least λf(p).

(ii) If the support line of e meets Σ tangentially at a point x ∈ e ∩ Σ, then
‖p− x‖ ≥ λf(p).

Proof. Consider the case in which e∩Σ contains two points x and y (Figures 2(a)
and 2(b)). If ‖x − y‖ ≥ λf(p), we are done. If ‖x − y‖ < λf(p), then ∠xy, nx =
∠e, nx ≤ α(λ)+β(λ) by Lemma 4.3. Then, Lemma 4.6 implies that ‖p− y‖ > λf(p).

Consider the case in which the support line of e intersects Σ tangentially at a
point x ∈ e ∩ Σ (Figure 2(c)). If ‖p− x‖ < λf(p), then ∠e, nx < π/3 by Lemma 4.3.
This is impossible because the support line of e meets Σ tangentially at x.

4.3. Violation at Voronoi facets. We first characterize the intersection between
Σ and a Voronoi facet F . Let Int X denote the interior of a topological space X. There
are three possible configurations for any connected component I in Σ ∩ F . First, I
may contain a tangential contact point between Σ and the plane of F . Second, I may
be a smooth closed curve. Third, I may be a smooth open curve (possibly degener-
ate). In the third possibility, if I is not a single point, Int I ⊆ IntF and the endpoints
of I lie on the boundary of F . In this case, we call I a topological interval. If I is a
single point, Σ barely cuts F at a single vertex v (e.g., Σ cuts across F at its topmost
vertex). Then I is just v, and we call I a degenerate topological interval.
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Fig. 2. The curves are subsets of Σ. A Voronoi edge (shown in bold) intersects Σ at two points

or tangentially.

The GIP and TBP require that F intersects Σ transversally, if at all, and in at
most one topological interval. Recall that transversal intersection permits F (but
not its affine plane) to meet Σ tangentially at a Voronoi vertex. Also we let GIP
and TBP be violated for Voronoi vertices, allowing them to be on Σ. This means
we would allow a facet F meeting Σ only at a single topological interval degenerate
or not. In all other cases we show that a new point can be sampled far away from
existing sample points. First, we show that any tangential contact point between Σ
and a Voronoi facet is far away from existing sample points.

Lemma 4.8. Let F be a facet of a Voronoi cell Vp. If the plane of F meets Σ
tangentially at a point x ∈ F ∩ Σ, then ‖p− x‖ ≥ λf(p).

Proof. Since x is a tangential contact point, the angle between F and nx is equal
to π/2. Then the contrapositive of Lemma 4.4(ii) implies that ‖p−x‖ ≥ λf(p).

Because of Lemma 4.8, in the rest of this section, we focus on the case where
a Voronoi facet F meets Σ transversally, i.e., F ∩ Σ is a collection of closed curves
and/or (possibly degenerate) open curves.

Let L be a line in the plane of F which is normal to a curve in F ∩ Σ. In the
next lemma we establish that if L intersects F ∩ Σ at two or more points, we can
find a point in F ∩ Σ that is far away from existing sample points. Notice that this
result holds irrespective of whether F ∩Σ is a closed curve or not. Although our main
motivation is to get rid of closed curves in F ∩Σ, it is algorithmically easier to check
whether L intersects F ∩ Σ in at least two points than it is to check whether F ∩ Σ
contains a closed curve.

Lemma 4.9. Let F be a facet of a Voronoi cell Vp where F intersects Σ transver-
sally. Let x be a point on a curve C (possibly closed) in F ∩ Σ. Let L be the line in
the plane of F that is normal to C at x. If L intersects F ∩ Σ at a point other than
x, the distance from p to the furthest point in L ∩ F ∩ Σ is at least λf(p).

Proof. Refer to Figure 3. By assumption, there is a point y other than x in
L∩F ∩Σ. If ‖p− x‖ ≥ λf(p), then we are done. If ‖p− x‖ < λf(p), then ∠xy, nx =
∠L, nx < α(λ) + β(λ) by Lemma 4.5. Then, Lemma 4.6 implies that ‖p − y‖ >
λf(p).

The next lemma considers the scenario of F intersecting Σ in two topological
intervals, assuming that each edge of F intersects Σ in at most one point. We show
that at least one endpoint of the two topological intervals is far away from existing
sample points.

Lemma 4.10. Let F be a facet of a Voronoi cell Vp where F intersects Σ transver-
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Fig. 3. The line L is normal to the curve at x, and L intersects F ∩ Σ at another point y.
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Fig. 4. A Voronoi facet (bounded by solid line segments) intersects Σ in two topological intervals
(shown as curves). The convex quadrilateral Q is shown in dashed line segments. In (b) and (c),
the direction d is the projection of np onto the plane of F .

sally. Assume that each edge of F intersects Σ in at most one point. If F ∩Σ contains
two topological intervals I and I ′, the distance between p and the furthest endpoint of
I and I ′ is at least λf(p).

Proof. Let u and v be the endpoints of I. Let x and y be the endpoints of I ′.
Since no edge of F intersects Σ in two or more points, the four edges of F containing
u, v, x, and y are distinct. Let Q be the convex quadrilateral on the plane of F
bounded by the support lines of these four edges. We denote the edges of Q by eu,
ev, ex, and ey according to the interval endpoints that the edges contain. (In the
degenerate case in which I = u = v, the two edges of F incident to u give rise to two
edges of Q. We arbitrarily call one of them eu and the other ev. The degenerate case
in which I ′ = x = y is handled similarly.) Refer to Figure 4(a).

Assume to the contrary that the distances ‖p−u‖, ‖p−v‖, ‖p−x‖, and ‖p−y‖ are
less than λf(p). Consider the Delaunay triangles dual to the edges of F containing u,
v, x, and y. Their circumradii are less than λf(p). By Lemma 2.3, the angles ∠eu, np,
∠ev, np, ∠ex, np, and ∠ey, np are at most β(λ).

By Lemma 4.4(i), the acute angle between the plane of F and np is less than
β(λ).

Let d be the projection of np onto the plane of F . So ∠np, d < β(λ). It follows
that ∠eu, d ≤ ∠eu, np + ∠np, d < 2β(λ). Similarly, the angles ∠ev, d, ∠ex, d, and
∠ey, d are less than 2β(λ). Then the convexity of Q implies that one of its interior
angles must be greater than π − 4β(λ), say the interior angle between ev and ex.
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In this case, a line parallel to d may either cut through or be tangent to the corner
of Q between ev and ex. Figures 4(b) and 4(c) show the two possibilities. In both
configurations, ∠vx, ev < 2β(λ) or ∠vx, ex < 2β(λ). Assume that ∠vx, ex < 2β(λ).

By Lemma 4.3, ∠ex, nx ≤ α(λ) + β(λ). We conclude that ∠vx, nx ≤ ∠vx, ex +
∠ex, nx < α(λ)+3β(λ). On the other hand, ‖v−x‖ ≤ 2λf(x)/(1−λ) by Lemma 4.2.
Then Lemma 2.4 implies that ∠vx, nx ≥ arccos(λ/(1 − λ)). Combining this with the
previous upper bound on ∠vx, nx yields arccos(λ/(1− λ)) < α(λ) + 3β(λ) and hence
λ/(1 − λ) > cos(α(λ) + 3β(λ)). But this contradicts the fact that λ ≤ λ0.

4.4. Violation at Voronoi cells. The TBP requires that Vp∩Σ is a topological
disk. There are several possibilities when this condition is violated. We assume that
Σ meets the edges or facets of Vp transversally because tangential contacts are already
handled by Lemmas 4.7 and 4.8.

• Vp ∩ Σ has more than one boundary cycle.
• Some connected component of Vp ∩ Σ is a surface without boundary.
• Vp ∩ Σ has nonzero genus.

Notice that Vp ∩Σ is orientable because Σ is orientable. We deal with the first possi-
bility in section 4.4.1. The second possibility is eliminated because the initialization
in our algorithm inserts all critical points of Σ in the x3-direction. Any component
of Σ would contain two such critical points which would violate the emptiness of Vp.
It turns out that the last possibility is hard to detect. In section 4.4.2, we propose to
enforce a stronger condition based on the notion of silhouette. Detecting the violation
of this stronger condition is easier, and a new point can be sampled readily in case of
a violation.

Since we allow Voronoi vertices to lie on Σ, we give a definition of boundary
cycles of Vp ∩Σ that capture degenerate cases as well. Let Bd X denote the boundary
of a topological space X. Consider a connected component C in Σ ∩ BdVp. The
nontangential contact assumption implies that C is either a nondegenerate closed
curve or a vertex of Vp. If C is a nondegenerate closed curve, then C is clearly a
boundary cycle of Vp ∩ Σ. The case of C being a vertex v of Vp happens when Σ
barely cuts Vp at v. We consider v as a degenerate boundary cycle of Vp ∩ Σ.

4.4.1. Two or more boundary cycles. We first prove a technical result as
stated in Lemma 4.11. This lemma says that the distance from p to any point in a
topological interval is dominated by its distances to the interval endpoints. (Recall
that a topological interval is allowed to degenerate to a vertex of Vp.)

Lemma 4.11. Let F be a facet of a Voronoi cell Vp. Suppose that Σ meets edges
of F transversally and F ∩ Σ contains a topological interval I. If the distances from
p to the endpoints of I are less than λf(p), the distance from p to any point in I is
less than λf(p).

Proof. The lemma is trivially true if I degenerates to a vertex of Vp. So we can
assume that I has two distinct endpoints.

Let B be the ball centered at p with radius λf(p). Let Π denote the plane of F .
Since the distances from p to the endpoints of I are less than λf(p), B ∩ Π is a disk
D, and the endpoints of I lie in IntD. To prove the lemma, it suffices to show that
I ⊆ IntD. Assume to the contrary that I 
⊆ IntD.

Let C be the connected component of Π∩Σ containing I. Notice that C 
⊆ IntD
because I ⊂ C and I 
⊆ IntD by assumption. For any point x ∈ Π ∩ Σ ∩ D,
since ‖p − x‖ ≤ λf(p), x cannot be a tangential contact point between Π and Σ
by Lemma 4.4(ii). Thus, C ∩ IntD is a collection of disjoint simple curves (open or
closed).
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Fig. 5. Shrinking D to D′: (a) shows the radial shrinking, and (b) shows the shrinking by
moving the center.
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Fig. 6. D′ and D′′.

We claim that C ∩ IntD is not connected. Assume to the contrary that C ∩ IntD
is connected, i.e., C ∩ IntD is a single curve. Recall that I ⊂ C, I 
⊆ IntD, and the
endpoints of I lie in C ∩ IntD. It follows that (C ∩ IntD)∪ I is a closed curve. Take
an edge e of F that contains an endpoint x of I. Since Σ meets e transversally by
assumption, the support line � of e crosses C. Because � intersects I only at x, � must
intersect C ∩ IntD at x and at least one other point y. Since x, y ∈ D, both ‖p− x‖
and ‖p− y‖ are at most λf(p). By Lemma 4.3, ∠xy, nx = ∠e, nx ≤ α(λ) + β(λ). But
then Lemma 4.6 implies that ‖p−x‖ or ‖p−y‖ is greater than λf(p), a contradiction.

So we can assume that C ∩ IntD consists of at least two disjoint curves. Then, D
can be shrunk to a smaller disk D′ as follows so that D′ meets C tangentially at two
points and C ∩ IntD′ = ∅. First, shrink D radially until it touches C at some point
a. Refer to Figure 5(a). It follows that ‖p− a‖ < λf(p). If this shrunken D does not
meet the requirement of D′ yet, we shrink it further by moving its center towards a
until we obtain the disk D′ as required. Refer to Figure 5(b). Notice that a is one of
the contact points between D′ and C.

The plane Π intersects the two medial balls of Σ at a in two disks. Among these
two disks, let D′′ be the one that intersects D′. Let B′′ be the medial ball so that
D′′ = B′′ ∩ Π. The boundary circles of D′ and D′′ meet tangentially at a. So either
D′′ ⊆ D′ (Figure 6(a)) or D′ ⊂ D′′ (Figure 6(b)).
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We claim that D′′ ⊆ D′ and radius(D′′) > λf(p). Suppose that D′ ⊂ D′′. By
construction, D′ meets Σ tangentially at two points. So one of these contact points
must lie in IntD′′. This is a contradiction because D′′ = B′′ ∩ Π and IntB′′ ∩ Σ = ∅
as B′′ is a medial ball. This shows that D′′ ⊆ D′. By Lemma 4.4(ii), the acute
angle between Π and na is less than α(λ)+β(λ). Observe that the angle between the
diametric segments of B′′ and D′′ incident to a is equal to the angle between na and
Π. Therefore, radius(D′′) > radius(B′′) · cos(α(λ)+β(λ)) ≥ f(a) · cos(α(λ)+β(λ)) >
λf(a)/(1 − λ) as λ ≤ λ0. It follows from Lemma 4.1 that radius(D′′) > λf(p). This
completes the proof of our claim.

By our claim, radius(D′) ≥ radius(D′′) > λf(p). But D′ is obtained by shrink-
ing D = B ∩ Π and radius(B) = λf(p), a contradiction. In all, the contrapositive
assumption that I 
⊆ IntD cannot hold. It follows that the distance from p to any
point in I is less than λf(p).

Lemma 4.11 is used in proving Lemma 4.12, which says that if Vp ∩ Σ has more
than one boundary cycle, some edge of Vp intersects Σ in a point far away from
existing sample points. It is convenient to distinguish between different types of
cycles in Vp∩Σ. A boundary cycle is of type 1 if it is degenerate or a concatenation of
topological intervals in the intersections between Σ and the facets of Vp. A boundary
cycle is of type 2 if it is nondegenerate and contained in a facet of Vp.

Lemma 4.12. Let p be a sample point. Assume that the following conditions hold.
• Σ meets edges or facets of Vp transversally.
• Vp ∩ Σ contains at least two boundary cycles of type 1.

Then the distance from p to the furthest intersection point between Σ and the edges
of Vp is at least λf(p).

Proof. Assume to the contrary that the distances from p to the intersection points
between Σ and the edges of Vp are less than λf(p). This will lead to contradictions
thereby proving the lemma. We first prove a technical result that will be used later.

Claim 1. Let x ∈ Σ be a vertex of Vp such that ‖p− x‖ ≤ λf(p). Let E be a set
of edges of Vp incident to x that point towards the same side of Σ. The smallest cone
enclosing E with apex x and axis nx cannot contain a point y ∈ Σ other than x such
that ‖p− y‖ ≤ λf(p).

Proof. By Lemma 2.3, each edge in E makes an angle at most β(λ) with np.
By Lemma 2.2, ∠nx, np ≤ α(λ). Therefore, each edge in E makes an angle at most
α(λ) + β(λ) with nx. So the aperture of the smallest cone enclosing E with apex
x and axis nx is at most 2α(λ) + 2β(λ). Let y ∈ Σ be any point other than x
in this cone. Thus, ∠nx, xy ≤ α(λ) + β(λ) < π/3 as λ ≤ λ0. Then Lemmas 2.4
and 4.1 imply that ‖x − y‖ ≥ 2f(x) cos(∠nx, xy) ≥ f(x) ≥ (1 − λ)f(p). Since
‖p− y‖ ≥ ‖x− y‖− ‖p− x‖ ≥ (1− 2λ)f(p), ‖p− y‖ ≥ λf(p) as λ ≤ λ0 = 0.06.

Lemma 4.11 implies that the boundary cycles of type 1 lie strictly inside a closed
ball B centered at p with radius λf(p). By a result of Boissonnat and Cazals [5], any
closed ball centered at p with radius less than f(p) intersects Σ in a topological disk.
Thus B ∩ Σ is a topological disk. It follows that each nondegenerate boundary cycle
of type 1 bounds exactly one topological disk in B ∩ Σ (strictly inside B). Since the
boundary cycles are disjoint, the topological disks bounded by them are either disjoint
or nested. This means there exists one such topological disk that does not contain
any cycle of type 1. The next claim proves some properties of such a topological disk.

Claim 2. Let C be a boundary cycle of type 1 bounding a topological disk D which
does not contain any other boundary cycle of type 1. Then (i) C is a nondegenerate
boundary cycle, (ii.a) D does not contain any other boundary cycles, and (ii.b) D lies
in Vp.
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Fig. 7. Proof of Claim 2: disk D with the opening C is like a “sack” that contains a part of Vp.

Proof. Consider (i). If not, C is an isolated vertex v of Vp in the intersection
Vp ∩Σ. The edges of Vp incident to v must point towards the same side of Σ. Indeed,
otherwise, Σ intersects the interior of Vp in a small neighborhood of v, contradicting
the assumption that v is an isolated point in the intersection Vp ∩ Σ. On the other
hand, Claim 1 is contradicted because ‖p− v‖ < λf(p) and p lies inside the smallest
cone with apex v and axis nv that encloses the edges of Vp incident to v. This
proves (i).

Consider (ii.a). By the definition of C, D does not contain other boundary cycles
of type 1. Assume to the contrary that D contains a boundary cycle C ′ of type 2. So
C ′ is contained in a facet of Vp. Since D lies strictly inside B, C ′ lies strictly inside
B. But by applying Lemma 4.9 to C ′, the distance from p to some point in C ′ is at
least λf(p) = radius(B), a contradiction.

Consider (ii.b). It is sufficient to show that IntD lies in Vp. Suppose not. Then
IntD lies completely outside Vp. Otherwise, IntD would contain a boundary cycle
which is prohibited by (ii.a). Refer to Figure 7. Take an edge e of Vp that intersects
C. Let x be an intersection point between e and C. By Lemma 4.3, ∠e, nx < π/3.
Thus, the support line of e intersects Σ transversally at x. Let � be a line outside Vp

that is parallel to and arbitrarily close to the support line of e. Then � must intersect
IntD transversally at a point x1 arbitrarily close to x.

Since BdVp is a topological sphere, it is divided by C into two topological disks.
Let T denote one of them. Then T ∪ D is a topological sphere. Since � intersects
IntD at x1, � must intersect T ∪D at another point x2 
= x1.

The point x2 must lie on D because T ⊆ BdVp and � lies outside Vp. By
Lemma 2.4, ‖x2−x1‖ ≥ 2f(x1) cos(∠�, nx1

). Note that x1 is arbitrarily close to x and
∠�, nx = ∠e, nx < π/3. Thus, ∠�, nx1 < π/3 and so ‖x2 − x1‖ ≥ f(x) ≥ (1 − λ)f(p)
by Lemma 4.1. But this is a contradiction because D lies inside B whose diameter is
2λf(p) < (1 − λ)f(p).

Let C be a boundary cycle as stated in Claim 2. Let D be the topological disk in
B ∩Σ bounded by C. Let F be the set of facets of Vp that intersect C. Each facet in
F bounds a half-space containing p. The intersection of these half-spaces is a convex
polytope P containing Vp. Since D lies in Vp by Claim 2, D lies in P , too.

Let C ′ be another boundary cycle of type 1 which must exist by the assumption
of the lemma. Recall that both C and C ′ lie inside B ∩ Σ by Lemma 4.11. Let ρ be
a curve in (B ∩ Σ) \ IntVp such that ρ connects C with C ′. Since D ⊂ P and the
contact between D and BdP is nontangential, ρ leaves P when ρ leaves D. Since
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Fig. 8. (a) Two cycles C and C′ drawn schematically on the patch B ∩Σ. The path ρ starting
from C goes outside Vp and then has to reach Vp again to reach C′. (b) A different view with the
polyhedron P . The lower bold curve denotes C, and its intersection with the shaded facet G is a
topological interval I. The curved patch shown is part of (B ∩ Σ) \ IntVp. The curved path on the
curved patch is ρ.

C ′ ⊂ Vp ⊆ P , ρ must return to some facet of P in order to meet C ′ eventually. Let
G be a facet of P that ρ intersects after leaving D. Let y be a point in ρ ∩G. Let F
be the facet of Vp contained in G. By the definition of P , C must intersect F .

If C ∩ F consists of two or more topological intervals, Lemma 4.10 is applicable,
and we are done. So we assume in the rest of the proof that C∩F is a single topological
interval I. Refer to Figure 8.

Claim 3. Each edge of F that contains an endpoint of I is contained in some
edge of G.

Proof. Consider an endpoint z of I. The point z lies on the boundary of F , which
means that the other facet(s) of Vp that share z with F are intersected by C. So the
planes of these facets also bound P . It follows that the edges of F containing z are
contained in some edges of G.

It follows from Claim 3 that the endpoints of I lie on the boundary of G. Let x
be the closest point to y on I. Notice that x ∈ I ⊂ C ⊂ B ∩ Σ and y ∈ ρ ⊂ B ∩ Σ.
So the distances from p to x and y are at most radius(B) = λf(p). Let L be the line
passing through x and y. There are three cases to consider.

• Case 1. I is a degenerate interval. So I = x is a vertex of F . By Claim 3,
the two edges of F incident to x are contained in edges of G. So x is also a
vertex of G. Let e1 and e2 be the two edges of G incident to x (which contain
the edges of F incident to x). Since I is a degenerate interval, e1 and e2 must
point towards the same side of Σ. But then Claim 1 is contradicted because
y lies inside the smallest cone with apex x and axis nx that encloses e1 and
e2.

• Case 2. I is nondegenerate, and x lies in the interior of G. Then L intersects
I at x at a right angle. By Lemma 4.5, ∠L, nx < α(λ) + β(λ). But then
‖p− x‖ or ‖p− y‖ is greater than λf(p) by Lemma 4.6, a contradiction.

• Case 3. I is nondegenerate, and x lies on the boundary of G. Let e be an
edge of G containing x. By Claim 3, e contains an edge of F which contains
x. Let d be the projection of nx onto the plane of G. Refer to Figure 9(a).
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Fig. 9. In (a), the curve denotes C ∩ F , and ∠L, d ≤ ∠e, d. In (b), the angle ∠�, nx is an
increasing function of ∠�, d.

Since x is the closest point on I to y, ∠L, d ≤ ∠e, d. Next, observe that for
any line � in the plane of G, the angle ∠�, nx increases as the angle ∠�, d
increases. Refer to Figure 9(b). We conclude that ∠L, nx ≤ ∠e, nx, which is
at most α(λ) + β(λ) by Lemma 4.3. But then ‖p − x‖ or ‖p − y‖ is greater
than λf(p) by Lemma 4.6, a contradiction.

4.4.2. Silhouette. Consider the possibility of some connected component of
Vp ∩ Σ being a closed surface. This closed surface must contain two critical points
of Σ in the x3-direction. Therefore, this possibility is eliminated by our algorithm
because we start by including all critical points of Σ in the x3-direction as sample
points.

The remaining possible violation of TBP is that Vp ∩Σ is connected, has exactly
one boundary cycle, and has positive genus. Intuitively, Vp ∩ Σ contains a handle,
and Morse theory says that there should be a critical point of Σ in the x3-direction.
However, it is not guaranteed that this critical point lies inside Vp. (If it did, the
initialization in our algorithm would eliminate this possibility.)

Figure 10 illustrates this possibility. A closed dashed curve cuts a topological disk
from the torus. The parts of the topological disk in front are shown shaded, and the
rest of the topological disk is at the back. All the critical points of the torus lie on

Fig. 10. The closed dashed curve cuts a topological disk from the torus which contains all four
critical points of the torus: a maximum (black), a minimum (gray), and two saddles (white).



SAMPLING AND MESHING A SURFACE 1215

the topological disk. Suppose that the facets of a Voronoi cell Vp intersect a torus
at this closed dashed curve such that the bounded topological disk lies outside Vp

and the rest of the torus lies inside Vp. Then Vp violates TBP although the surface
clipped within Vp is connected, has a single boundary cycle, and has no critical point.
Apparently it may seem that a convex polytope cannot intersect the standard torus
in a closed curve as shown in the figure. However, one may imagine deforming the
torus to admit a closed curve with the stated property.

We propose a stronger condition to ensure that Vp ∩Σ is a topological disk. The
violation of this stronger condition can be detected, and a new point can be sampled
readily.

Lemma 4.13 below states that if a connected component M of Vp∩Σ is connected,
has exactly one boundary cycle, and avoids Jd, then M is a topological disk.

Lemma 4.13. Let M be a connected component of Vp ∩Σ such that the boundary
of M is a single boundary cycle. If the boundary cycle of M is degenerate or there is
a direction d such that M ∩ Jd = ∅, then M is a topological disk.

Proof. If the boundary cycle of M is degenerate, M is a vertex of Vp and thus
M is a degenerate topological disk. Otherwise, M is a connected compact 2-manifold
and its boundary is a simple closed curve by the assumption of the lemma. Let d be
a direction satisfying the condition of the lemma. Let H be a plane perpendicular to
d. Consider the map ϕ : M → H that projects each point of M orthogonally to H.
Since M is connected and compact and M has a single boundary cycle, it suffices to
prove that ϕ is injective.

Assume to the contrary that ϕ is not injective. Then there is a line L parallel to d
that intersects M in two or more points. Let x and y be two consecutive intersection
points along L. Let M ′ be the connected component of Σ containing M . By the
convexity of Vp, x and y are consecutive intersection points in L ∩M ′, too.

Since M ∩ Jd = ∅, neither x nor y belongs to Jd, which means that neither nx

nor ny is orthogonal to d. Because x and y are consecutive in L ∩ M ′, nx and ny

are oppositely oriented in the sense that the inner products 〈nx, d〉 and 〈ny, d〉 have
opposite signs. Since M is connected, there is a smooth curve ρ in M connecting x
and y. The normal to Σ changes smoothly from nx to ny along ρ. By the mean-value
theorem, there is a point z ∈ ρ such that nz is orthogonal to d. But then z ∈ M ∩ Jd,
contradicting the emptiness of M ∩ Jd.

By Lemma 4.13, when we are left with the case that Vp ∩ Σ is connected and
has a single boundary cycle, it suffices to check whether Vp ∩ Σ intersects Jd where
d = np. If not, Vp ∩ Σ is a topological disk. Otherwise, the following result says that
any point in Vp ∩ Jd can be inserted as a new sample point.

Lemma 4.14. Let p be a sample point. Let d = np. If x is a point in Vp ∩ Jd,
‖p− x‖ ≥ λf(p).

Proof. If ‖p − x‖ < λf(p), Lemma 2.2 would imply that ∠np, nx ≤ α(λ). But
this cannot be the case because nx is orthogonal to np by definition.

5. Topology recovery. In this section, we present an algorithm to sample a
point set S from Σ. We discuss how to handle Voronoi vertices lying on Σ in
section 5.1, which is the remaining violation of GIP that we did not address in
the previous section. When some Voronoi vertices lie on Σ, DelS|Σ contains their
dual Delaunay tetrahedron. The handling of this case boils down to extracting a
triangulated surface TriS|Σ from DelS|Σ to approximate Σ. The definition of TriS|Σ
is given in section 5.1. In section 5.2, we present some numerical primitives needed by
our algorithm. Section 5.3 describes several subroutines. These subroutines sample
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points from Σ based on the results in section 4. In section 5.4, we put these subrou-
tines together to form the topology recovering algorithm. Section 5.5 describes the
analysis of the algorithm.

5.1. Handling Voronoi vertices on the surface. Our idea is to conceptually
perturb Σ to obtain another surface Σ′ so that no Voronoi vertex lies on Σ′. The
perturbation is kept small so that Σ remains homeomorphic to Σ′.

We elaborate on the conceptual perturbation. Let S be the current set of sample
points on Σ. Let U be the subset of Voronoi vertices of VorS that lie on Σ. Let Bv,δ

denote the ball centered at v ∈ U with radius δ. Refer to Figure 11(a). First, choose
δ small enough so that the following conditions hold for each v ∈ U :

C1: Σ ∩Bv,δ is a topological disk.
C2: Bv,δ does not intersect Bw,δ for any other Voronoi vertex w ∈ U .
C3: Bv,δ intersects only the Voronoi edges and facets incident to v.
C4: Within Bv,δ, the Voronoi edges incident to v intersect Σ only at v.

Condition C1 guarantees that for each v ∈ U , Σ ∩ Bv,δ separates Bv,δ into two
regions, one on each side of Σ. Let Rv denote the region inside Σ. Let Dv denote the
portion of the boundary of Bv,δ inside Rv. Notice that Dv is a topological disk.

We obtain a new surface by replacing Σ ∩Bv,δ with Dv for every Voronoi vertex
v ∈ U . Refer to Figure 11(b). The new surface needs to be smoothed at the sharp
boundary of Dv. The smoothing can be restricted in an arbitrarily small neighborhood
of the boundary of Dv by introducing arbitrarily high curvature. Hence, it has no
effect on the conceptual perturbation. Let Σ′ denote the resulting surface.

Condition C2 guarantees that the above disk replacements can be performed
simultaneously for all vertices in U . Condition C3 guarantees that only Voronoi
edges, facets, and cells incident to v are affected by the perturbation.

The idea is to use DelS|Σ′ instead of DelS|Σ as the triangulation approximating
Σ. We do not actually perturb Σ to obtain a new surface Σ′. Instead, we perform a
simulation. This allows us to exclude some triangles from DelS|Σ to obtain DelS|Σ′ .
The details of the simulation are as follows.

Let uv be a Voronoi edge incident to v. Since our topology recovery algorithm will
first check for tangential contacts between Σ and the Voronoi edges, we can assume
that uv is not orthogonal to nv. Condition C4 means that uv does not intersect Σ′ if
〈u− v, nv〉 > 0. (Recall that nv is the unit outward normal at v.) In this case, if uv
does not intersect Σ in a point other than v, we exclude the dual Delaunay triangle

δB

Σ
v

e’

v, e δB
vD

v

e’

v, e

(a) (b)

Fig. 11. The solid curve denotes Σ. The shaded area denotes the inside of Σ. The bold curve
on the right denotes the topological disk Dv. The Voronoi edge e′ is treated as not intersecting Σ at
v, while the Voronoi edge e is treated as intersecting Σ at v.
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of uv. On the other hand, if uv intersects Σ in a point other than v, we keep its dual
Delaunay triangle.

Repeating the above for every v ∈ U yields DelS|Σ′ . Since we compute with Σ
instead of Σ′, it is more concrete to have a notation for DelS|Σ′ using Σ. We use
TriS|Σ to denote DelS|Σ′ . The surface Σ′ cannot introduce new tangential intersec-
tions. In the rest of this section, we argue that if VorS violates TBP with Σ′, it
violates TBP with Σ, too. Therefore, when Σ intersects the edges and facets of VorS
transversally and VorS satisfies TBP with Σ, VorS satisfies GIP and TBP with Σ′.
Applying Theorem 2.1, we obtain that TriS|Σ = DelS|Σ′ is homeomorphic to Σ.

Take a Voronoi edge e incident to v ∈ U . Let v′ be the point near v in which Σ′

intersects e after perturbation. Suppose that e violates TBP with respect to Σ′. The
violation means that e intersects Σ′ in v′ and at least one other point. It follows that
e intersects Σ in v and at least one other point. So e violates TBP with respect to Σ
too.

Take a Voronoi facet F incident to v ∈ U . If Σ cuts through F at v, the topology
of F ∩ Σ does not change after perturbation at v. The interesting case is that Σ′

intersects both edges of F incident to v at points near v after perturbation. In this
case, F ∩ Σ′ is not just a geometric perturbation of F ∩ Σ because F ∩ Σ′ and F ∩ Σ
have different topologies. Specifically, F ∩ Σ′ contains a short topological interval
I ′ near v. If I ′ participates in a violation of TBP with respect to Σ′, F ∩ Σ′ must
contain a connected component other than I ′. Then, F intersects Σ in at least two
components, one of them being the degenerate topological interval v. So F violates
TBP with respect to Σ too.

Similarly, consider a Voronoi cell Vp incident to v ∈ U . The interesting case is
that Σ′ intersects all edges of Vp incident to v at points near v after perturbation. So
Vp ∩ Σ′ contains a small topological disk D′ near v. If D′ participates in a violation
of TBP with respect to Σ′, Vp ∩Σ′ must have a connected component other than D′.
It follows that Vp ∩ Σ has at least two connected components, one of them being the
degenerate boundary cycle v. So Vp violates TBP with respect to Σ too.

5.2. Numerical primitives. We introduce six numerical primitives. They are
responsible for computing the intersections between Σ and lines and computing the
critical points of certain height functions on Σ. We assume a numerical or symbolic
solver for solving a system of equations (e.g., [27]).

• SurfaceCritical(surface Σ): Let d denote the x3-direction. This primitive
returns the critical points of Σ in the x3-direction by returning the solutions
of the system of equations E(x) = 0, gradE(x) × d = 0.

• SurfaceLine(surface Σ, line �): This primitive returns the intersection points
between Σ and the line �. We assume that � is given by its direction and a
point on it. Using this information, we can compute two planes H1(x) = 0
and H2(x) = 0 whose intersection is equal to �. The intersection points are
the solutions of the system of equations E(x) = 0, H1(x) = 0, H2(x) = 0.

• SurfacePlaneContact(surface Σ, plane Π): This primitive returns the
tangential contact points between Σ and the plane Π. Let H(x) be the equa-
tion of Π. Let d be the normal to Π. The contact points are the solutions of
the system of equations E(x) = 0, H(x) = 0, gradE(x) × d = 0.

• CurveCritical(surface Σ, plane Π, vector d): We assume that d is parallel
to Π. This primitive returns the critical points of Σ ∩ Π in direction d and
the tangential contact points in Σ∩Π. Let d′ be a normal of Π. The tangent
to a point x ∈ Σ ∩ Π is parallel to gradE(x) × d′. So x is a critical point in
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direction d if and only if 〈gradE(x) × d′, d〉 = 0. Let H(x) be the equation
of Π. The critical points desired satisfy the system of equations E(x) = 0,
H(x) = 0, 〈gradE(x) × d′, d〉 = 0. The same system captures all tangential
contact points x ∈ Σ ∩ Π, too, because gradE(x) × d′ = 0 in this case.

• SilhouettePlane(surface Σ, plane Π, vector d): Let Jd be the silhouette of
Σ in direction d. Let H(x) be the equation of Π. This primitive returns the
intersection points between Jd and Π, which are the solutions of the system
of equations E(x) = 0, H(x) = 0, 〈gradE(x), d〉 = 0.

• SilhouetteCritical(surface Σ, vector d, vector d′): Let Jd be the silhou-
ette of Σ in direction d. This primitive returns the critical points of Jd
in direction d′, i.e., points on Jd whose tangents are orthogonal to d′. Let
G(x) = 〈gradE(x), d〉. The silhouette Jd is the intersection of the isosurface
G(x) = 0 and the input surface E(x) = 0. Therefore, the tangent to a point
x ∈ Jd is parallel to gradG(x)×gradE(x). So x is a critical point if and only if
〈gradG(x)×gradE(x), d′〉 = 0. The critical points desired are the solutions of
the system of equations E(x) = 0, G(x) = 0, 〈gradG(x)× gradE(x), d′〉 = 0.

5.3. Subroutines. We now describe five subroutines, VorEdge, TopoDisk,
FacetContact, FacetCycle, and Silhouette, that implement the results in sec-
tion 4. They check for any violation of GIP and TBP at Voronoi edges and facets. In
case of violation, they sample new points on Σ. We use S to denote the set of sample
points maintained by our algorithm.

The first subroutine, VorEdge, checks the GIP and TBP for a Voronoi edge. In
case of violation, it returns a point as stated in Lemma 4.7.

VorEdge(Voronoi edge e)
1. Compute X := SurfaceLine(Σ, �), where � is the support line

of e.
2. Let Vp be a Voronoi cell incident to e.
3. If � meets Σ tangentially at some point x on e, return x.
4. If |e ∩X| ≥ 2, return the point in e ∩X furthest from p.
5. Return null.

The next subroutine, FacetContact, detects any violation GIP at a Voronoi
facet (Lemma 4.8).

FacetContact(Voronoi facet F )
1. Compute X := SurfacePlaneContact(Σ,Π), where Π is the

plane of F .
2. If some point in X lies on F , return it. Otherwise, return null.

In the next subroutine, TopoDisk, we need to check whether the triangles in
TriS|Σ incident to a sample point p form a topological disk. It is assumed that
VorEdge has been called and returns null for all Voronoi edges. This implies that Σ
meets Voronoi edges transversally, which allows the extraction of triangles of TriS|Σ
using the conceptual perturbation.

TopoDisk performs the checking in two steps. Let Tp be the set of triangles
in TriS|Σ incident to p. First, check whether every triangle edge in Tp is incident
to exactly two triangles in Tp. Second, check whether Tp forms exactly one cycle of
triangles around p. If both tests are passed, Tp forms a topological disk; otherwise, it
does not.

In the subsequent proof of correctness, we will see that TopoDisk handles two
possible violations of TBP. First, a facet of Vp intersects Σ in two topological intervals
(Lemma 4.10). Second, Vp ∩ Σ contains two or more boundary cycles (Lemma 4.12).
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TopoDisk(sample point p)
1. If the triangles in TriS|Σ incident to p form a topological disk,

return null.
2. Otherwise, find the intersection point x between Σ and the edges

of Vp that is furthest from p. Return x.

The next subroutine, FacetCycle, guards against the possibility of a Voronoi
facet F intersecting Σ in a cycle. It assumes that FacetContact(F ) has been called
and returns null. This implies that Σ intersects F transversally. It returns a point as
stated in Lemma 4.9.

FacetCycle(Voronoi facet F )
1. Compute X := CurveCritical(Σ,Π, d), where Π is the plane

of F and d is a direction parallel to Π.
2. If no point in X lies on F , return null.
3. Since FacetContact(F ) returned null, F ∩Σ is a collection of

disjoint simple curves (open or closed) and X ∩ F is the set of
critical points of these curves in direction d. Let Vp be a Voronoi
cell incident to F . For each x ∈ X ∩ F , do the following:
(a) Compute the line �x in Π through x parallel to d. Notice

that �x is normal to F ∩ Σ at x.
(b) Compute X ′ := SurfaceLine(Σ, �x). If |X ′ ∩ F | ≥ 2,

return the point in X ′ ∩ F furthest from p.
4. Return null.

The next subroutine, Silhouette, checks if a Voronoi cell Vp intersects the sil-
houette Jd, where d = np (Lemma 4.14). If Vp ∩ Jd 
= ∅, either Jd intersects some
facets of Vp or Vp completely contains a component of Jd. The second possibility can
be detected by checking if Vp contains any critical point of Jd in a direction orthogonal
to d.

Silhouette(sample point p)
1. Choose a direction d′ orthogonal to np.
2. Compute X := SilhouetteCritical(Σ, np, d

′).
3. If X contains a point inside Vp, return it.
4. Otherwise, for each facet F of Vp, do the following:

(a) Compute X ′ := SilhouettePlane(Σ,Π, np), where Π is
the plane of F .

(b) If X ′ contains a point in F , return it.
5. Return null.

5.4. Topology recovery algorithm. Algorithm SampleTopology samples a
set of points S on Σ so that TriS|Σ is homeomorphic to Σ. It begins with initializing
S to contain the critical points of Σ in the x3-direction. We denote it by S0, the
seeds. Then the algorithm calls a procedure Topology that repeatedly invokes the
subroutines presented in the last subsection in case of any violation of GIP or TBP.
Upon the return of Topology, TriS|Σ is homeomorphic to Σ. However, it is possible
that some seeds are too close together, which means that the surface triangulation may
be denser than necessary around the seeds. We fix this problem by deleting the seeds
incrementally. One may observe that we may start the algorithm with a single initial
point and then let Silhouette generate more points on each component of Σ instead
of computing the seed set S0. However, to avoid the more expensive computation of
critical points of the silhouette in a given direction, we recommend starting with the
seed set S0.
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SampleTopology(surface Σ)
1. Compute S0 := SurfaceCritical(Σ).
2. Compute S := Topology(S0).
3. While there is a seed p ∈ S, delete p from S and compute

S := Topology(S).
4. Return S.

Topology(sample set S)
1. Perform steps (a)–(e) in order. Terminate the current step as

soon as the returned x is nonnull, skip the following steps, and
go to step 2.
(a) For every edge e of VorS, compute x := VorEdge(e).
(b) For every facet F of VorS, compute x := FacetContact(F ).
(c) For every p ∈ S, compute x := TopoDisk(p).
(d) For every facet F of VorS, compute x := FacetCycle(F ).
(e) For every p ∈ S, compute x := Silhouette(p).

2. If x is nonnull, insert x into S, update VorS, and go to step 1.
Otherwise, return S.

5.5. Analysis. We first prove that any point x inserted in step 2 of Topology is
at distance λf(p) or more from its closest sample p in S. This shows that Topology

terminates after introducing only finitely many points on Σ.
Lemma 5.1. Let x be a point inserted by Topology into S. The distance from

x to its closest sample p in the current S is at least λf(p).
Proof. If x is returned by VorEdge(e) for some edge e of a Voronoi cell Vp,

Lemma 4.7 implies that ‖p− x‖ ≥ λf(p).
If x is returned by FacetContact(F ) (resp., FacetCycle(F )) for some facet

F of a Voronoi cell Vp, then ‖p− x‖ ≥ λf(p) by Lemma 4.8 (resp., Lemma 4.9).
If x is returned by TopoDisk(p) for some sample p ∈ S, the set Tp of triangles

in TriS|Σ incident to p do not form a topological disk. There are three possibilities.
• Case 1. Some triangle edge in Tp is not shared by another triangle in Tp. Let

F ⊂ Vp be the dual Voronoi facet of this triangle edge. This case happens
because Σ intersects only one boundary edge e of F . Since Σ has no bound-
ary, the endpoint(s) of F ∩ Σ must lie on e. Thus, e intersects Σ in more
than one point or e intersects Σ tangentially. But this is impossible because
VorEdge(e) did not return any point.

• Case 2. Three or more triangles in Tp share an edge. Let F ⊂ Vp be the dual
Voronoi facet of this common edge. This case happens because Σ intersects
three or more distinct boundary edges of F . Since VorEdge did not return
any point for all edges of VorS, every edge of F intersects Σ in at most one
point (nontangentially). Also, Σ meets F transversally as FacetContact

did not return any point. It follows that F∩Σ contains two or more topological
intervals. Thus, Lemma 4.10 applies, implying that ‖p− x‖ ≥ λf(p).

• Case 3. Tp contains two or more cycles of triangles around p. It implies
that Vp ∩ Σ has at least two boundary cycles C1 and C2, and that if Ci

is nondegenerate, Ci is not contained in a facet of Vp. Thus, Lemma 4.12
applies, implying that ‖p− x‖ ≥ λf(p).

If x is returned by Silhouette(p) for some p ∈ S, then ‖p − x‖ ≥ λf(p) by
Lemma 4.14.

The next result shows a useful property of the Voronoi diagram enforced by step 1
of SampleTopology.
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Lemma 5.2. If a sample set S includes all critical points of Σ in the x3-direction,
then no connected component of Σ is contained in a Voronoi cell in VorS.

Proof. The critical points of any connected component M in the x3-direction
belong to S by assumption. Each connected component has at least two critical
points. Thus, if M is contained inside a Voronoi cell Vp, Vp must contain two seed
points. This is a contradiction to the emptiness of Vp even though p may be one of
the seed points.

We are ready to show that at the end of step 2 of SampleTopology, GIP and
TBP are satisfied.

Lemma 5.3. Let S0 be a sample set such that no connected component of Σ is
contained in a Voronoi cell in VorS0. Let Σ′ be the surface obtained by perturbing
Σ as presented in section 5.1. Then Topology(S0) returns a set S such that VorS
satisfies GIP and TBP with respect to Σ′.

Proof. By Lemma 5.1 Topology(S0) maintains a positive lower bound on inter-
point distances for the points it inserts. This means it can insert only finitely many
points on a compact surface Σ. Therefore, it must terminate and return a sample set
S. VorEdge and FacetContact make sure that Σ intersects all edges and facets of
VorS transversally. Any vertex of VorS on Σ is perturbed by the method presented
in section 5.1. Thus, VorS satisfies GIP for Σ′.

VorEdge guarantees that Σ does not intersect any Voronoi edge in VorS in
more than one point at the end of Topology. Neither does Σ′.

Consider a Voronoi facet F in VorS. The intersection F ∩Σ′ cannot contain more
than two or more topological intervals. (Because of the perturbation, any topologi-
cal interval in F ∩ Σ′ is nondegenerate.) Otherwise, Σ′ must intersect at least four
boundary edges of F because Σ′ intersects any edge of F in at most one point. This
means that the dual Delaunay edge of F is incident to more than two triangles in
TriS|Σ. But then TopoDisk should have detected this, a contradiction. The inter-
section F ∩ Σ′ cannot contain any cycle. Otherwise, F ∩ Σ would contain the same
cycle and Topology would not have terminated because FacetCycle(F ) would
have returned a point. In all, if F ∩Σ′ is nonempty, it is a single topological interval.

Consider a Voronoi cell Vp in VorS. The intersection Vp ∩ Σ′ is a manifold pos-
sibly with boundary. By assumption, no Voronoi cell of VorS0 contains a connected
component of Σ. Hence, no Voronoi cell of VorS0 contains a connected component of
Σ′ too. Since S0 ⊆ S, no connected component of Σ′ is contained in any Voronoi cell
in VorS either.

Can Vp∩Σ′ have two or more boundary cycles? If so, Vp∩Σ also has two or more
boundary cycles. (Some may degenerate to a vertex of Vp.) VorEdge guarantees that
the boundary of Vp ∩ Σ does not intersect the same edge of Vp twice. FacetCycle

guarantees that no nondegenerate boundary cycle of Vp ∩ Σ is contained in a facet
of Vp. Therefore, the boundary cycles of Vp ∩ Σ must induce at least two cycles of
triangles in TriS|Σ around p. But then TopoDisk(p) should have detected this, a
contradiction.

We conclude that Vp ∩ Σ′ must be connected and have a single boundary cycle.
Assume to the contrary that Vp∩Σ′ is not a topological disk; i.e., its genus is positive.
The perturbation scheme in section 5.1 does not create any component inside Vp with
positive genus. Thus, Vp ∩ Σ has a connected component M with positive genus.
So M is not a single vertex of Vp; i.e., the boundary cycle of M is nondegenerate.
Lemma 4.13 implies that M must intersect the silhouette of Σ with respect to direction
np. But then Topology would not have terminated because Silhouette(p) would
have returned a point, a contradiction.
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Corollary 5.4. Let S0 be a sample set such that no connected component of
Σ is contained in any Voronoi cell in VorS0. Then Topology(S0) returns a set S
where the underlying space of TriS|Σ is homeomorphic to Σ.

Proof. Let Σ′ be the surface obtained by perturbing Σ as presented in section 5.1.
By Lemma 5.3, TriS|Σ = DelS|Σ′ is homeomorphic to Σ′ and hence to Σ.

The lower bound in Lemma 5.1 on the distances from any new point inserted by
Topology to existing samples is instrumental to the analysis of the size of the final
triangulation. However, the seeds inserted in step 1 of SampleTopology can be
arbitrarily close together (unlikely in practice though). Therefore, we delete the seeds
one by one in step 3 of SampleTopology. The GIP or TBP may become invalid
after the deletion of a seed. Thanks to the next lemma, we can restore it by running
Topology.

Lemma 5.5. Suppose that no Voronoi cell in VorS contains a connected compo-
nent of Σ and no Voronoi facet in VorS intersects Σ in a cycle. For any p ∈ S, no
connected component of Σ is contained in a Voronoi cell in Vor (S \ {p}).

Proof. Assume to the contrary that a connected component M of Σ is contained
in the Voronoi cell of a sample q in Vor (S \ {p}). Consider the insertion of p into
S \{p} and the corresponding update of the Voronoi diagram. Let H be the bisecting
plane of p and q. If H does not intersect M , the Voronoi cell of p or q in VorS
would contain M , contradicting our assumption. If H intersects M , then H ∩ M
would contain a cycle in the facet between the Voronoi cells of p and q in VorS, a
contradiction again.

Lemma 5.5 enables us to invoke Corollary 5.4 after the deletion of one seed. This
shows that TriS|Σ will be homeomorphic to Σ after running Topology.

Corollary 5.6. Following each deletion of a seed in step 3 of SampleTopology,
the invocation of Topology guarantees that the underlying space of TriS|Σ is home-
omorphic to Σ afterward.

6. Meshing algorithm. Our meshing algorithm DelMesh first invokes the
algorithm SampleTopology to capture the topology of Σ. Topological guarantee
alone is not sufficient for many applications. In finite element methods, it is important
that the surface triangles have bounded aspect ratio. Also, the output approximation
should be smooth enough as it approximates a smooth surface. We introduce two
procedures to address these issues in section 6.1. Notice that these two procedures
help in capturing the geometry of Σ but cannot guarantee a nontrivial upper bound
on the Hausdorff distances between input and output relative to the local feature
sizes. It seems that such a guarantee would require computing the local feature sizes
explicitly, which we want to avoid. In section 6.2, we give the complete description of
DelMesh and its analysis.

6.1. Geometry sampling. Given a triangle t, define ρ(t) to be the ratio of the
circumradius of t to the shortest side length of t. It is well known that t has bounded
aspect ratio if ρ(t) is bounded from above by some constant. Following Chew [15], if
there is a triangle t in TriS|Σ with ρ(t) > 1+λ, the procedure Quality below inserts
into S the intersection point between Σ and the dual Voronoi edge of t.

Quality(sample set S)
1. While there is a triangle t in TriS|Σ with ρ(t) > 1 + λ, do the

following:
(a) Compute an intersection point x between Σ and the dual

Voronoi edge of t. (Arbitrarily choose one if there are more
than one.)
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(b) Insert x into S and update VorS.
2. Return S.

Assuming that TriS|Σ is an orientable 2-manifold without boundary, we measure
its smoothness using the dihedral angles at the edges. Specifically, for each edge e in
TriS|Σ, we define the roughness of e, denoted by g(e), to be π minus the dihedral
angle at e. The procedure Smooth below samples a point from Σ if the roughness of
some edge exceeds 2β(λ).

Smooth(sample set S)
1. If there is an edge pq in TriS|Σ such that g(pq) > 2β(λ), do the

following:
(a) Compute the intersections between Σ and the dual Voronoi

edges of the triangles in TriS|Σ incident to pq.
(b) Pick the furthest intersection point x from p.
(c) Insert x into S and update VorS.

2. Return S.

Quality enforces that the angles of every triangle are no less than arcsin( 1
2+2λ ).

Smooth enforces that the dihedral angles are no less than π − O(λ). Thus, we can
improve the triangle shape and smoothness by decreasing λ. However, as explained
in Theorem 6.2, the mesh size increases linearly in 1

λ2 .

6.2. Finale. We give the pseudocode of DelMesh below. DelMesh maintains
the sample set S and TriS|Σ throughout its execution. The final triangulation TriS|Σ
is the output surface mesh desired.

DelMesh(surface Σ)
1. Compute S := SampleTopology(Σ).
2. Compute S := Quality(S). If Quality inserted some point(s)

into S, compute S := Topology(S) and repeat step 2.
3. Compute S := Smooth(S). If Smooth inserted a point into

S, compute S := Topology(S) and go to step 2.
4. Output TriS|Σ.

Notice that after Quality or Smooth inserts new sample point(s), we call
Topology again because the new sample point(s) may disturb the topology of
TriS|Σ. It is worthwhile to note that one does not need to search the entire VorS for
possible topology violation. Instead, since the insertion of a new point changes VorS
locally, a local search suffices.

We need the following technical result to analyze DelMesh.

Lemma 6.1. Let x be a point whose distance to the nearest sample p ∈ S is at
least λf(p). For any point q ∈ S, (i) ‖q − x‖ ≥ λf(x)/(1 + λ) and (ii) ‖q − x‖ ≥
λf(q)/(1 + 2λ).

Proof. By the Lipschitz condition, f(x) ≤ f(p) + ‖p − x‖ ≤ (1 + λ) ‖p − x‖/λ.
Since p is the nearest sample to x, for any q ∈ S, ‖q− x‖ ≥ ‖p− x‖ ≥ λf(x)/(1 + λ).
By the Lipschitz condition again, f(q) ≤ f(x) + ‖q − x‖ ≤ (1 + 2λ) ‖q − x‖/λ.

We are ready to prove the performance guarantees of DelMesh.

Theorem 6.2. Let λ ≤ 0.06 be a constant chosen a priori. Given a smooth closed
surface Σ, DelMesh(Σ) outputs a mesh TriS|Σ consisting of Delaunay triangles such
that the following hold:

(i) The underlying space of TriS|Σ is homeomorphic to Σ.
(ii) The radius-edge ratio of every triangle in TriS|Σ is at most 1 + λ, and the

roughness of every edge of TriS|Σ is at most 2β(λ).
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(iii) For any ε < 1/5, the size of S is within a factor O( ε2

λ2 ) of the size of an
ε-sample of Σ.

Proof. Take a nonseed point x inserted by DelMesh. We prove by induction
that ‖p− x‖ ≥ λf(p), where p is a nearest sample in S to x at the time of insertion.

If x is a nonseed point inserted by SampleTopology, then ‖p− x‖ ≥ λf(p) by
Lemma 5.1.

Suppose that x is inserted by Quality. So x is an intersection point between Σ
and the dual Voronoi edge of some triangle t in TriS|Σ. Let pq be the shortest edge of
t. Since S does not contain any seed point at the end of SampleTopology, p and q
are nonseed points inserted some time in the past. Without loss of generality, assume
that p was inserted after q. Then ‖p − q‖ ≥ λf(p)/(1 + λ) by induction assumption
and Lemma 6.1(i). Observe that p and the other vertices of t are the nearest samples
to x when x is inserted. Since ρ(t) > 1 + λ, ‖p− x‖ > (1 + λ) ‖p− q‖ > λf(p).

Suppose that x is inserted by Smooth, triggered by an edge pq in TriS|Σ whose
roughness is greater than 2β(λ). Let pqr and pqs be the two triangles in TriS|Σ
incident to pq. So among the intersection points between Σ and the dual Voronoi
edges of pqr and pqs, x is the furthest one from p. Observe that p is a nearest sample
in S to x. Assume to the contrary that ‖p − x‖ < λf(p). This implies that the
circumradii of pqr and pqs are less than λf(p). Let d and d′ be the outward normals
of pqr and pqs, respectively. By Lemma 2.3, ∠d, np ≤ β(λ) and ∠d′, np ≤ β(λ).
Therefore, ∠d, d′ ≤ 2β(λ), which means that the roughness of pq is at most 2β(λ),
contradicting the insertion of x. Hence, ‖p− x‖ ≥ λf(p).

In all, when x is inserted by DelMesh, the distance from x to its nearest sample
p in S is at least λf(p). Therefore, DelMesh terminates by a packing argument.

By Lemma 5.2, Corollary 5.4, and Corollary 5.6, TriS|Σ is homeomorphic to Σ,
and no Voronoi cell in VorS contains a connected component of Σ at the end of the first
call to SampleTopology. We claim that the subsequent insertion of new point(s)
to repair the geometry preserves the property that no connected component of Σ is
contained in any Voronoi cell. This can be seen as follows. Suppose that we add a new
point p to repair the geometry after SampleTopology. Any existing Voronoi cell can
only shrink, and the shrunken Voronoi cell cannot contain a component. If the new
Voronoi cell Vp contains a component M , either p is the only vertex sampled from M or
no point is sampled from M at all. But this is impossible because SampleTopology

guarantees that TriS|Σ is homeomorphic to Σ, which means TriS|Σ has a vertex from
every connected component of Σ before we insert any point to repair the geometry.
By our claim, one can argue inductively that no Voronoi cell in VorS contains a
connected component of Σ throughout the execution of DelMesh. Then, (i) follows
from Corollary 5.4. The correctness of (ii) follows from the termination of DelMesh.

For the rest of the proof, S denotes the final sample set obtained by DelMesh.
Erickson [25] proved that for any ε < 1/5, the size of an ε-sampling of Σ is

Ω

(∫

Σ

1

ε2f(x)2
dx

)
.

Therefore, to prove (iii), it suffices to show that the size of S is O( 1
λ2 ) · ∫

Σ
1

f(x)2
dx).

Let q and r be two points in S. Irrespective of whether DelMesh inserted q or
r first, Lemma 6.1(i) and (ii) imply that ‖q − r‖ ≥ λf(q)/(1 + 2λ). Therefore, if we
put a ball Bq centered at q with radius λf(q)/(2 + 4λ) for each q ∈ S, the balls have
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disjoint interior. It follows that

∫

Σ

1

f(x)2
dx ≥

∑

q∈S

∫

Bq∩Σ

1

f(x)2
dx.

For each point x ∈ Bq∩Σ, the Lipschitz condition implies that f(x) ≤ f(q)+‖q−x‖ ≤
(2 + 5λ)f(q)/(2 + 4λ). Hence,

∫

Σ

1

f(x)2
dx ≥

∑

q∈S

∫

Bq∩Σ

4(1 + 2λ)2

(2 + 5λ)2f(q)2
dx.

By Lemma 2.4, ∠qx, nq ≥ arccos(λ/(4+8λ)). Let x′ be the orthogonal projection of x
onto the tangent plane of Σ at q. It follows that ‖q−x′‖ ≥ ‖q−x‖ · cos(arcsin(λ/(4+
8λ)), which is greater than ‖q − x‖/√2 for λ ≤ λ0 = 0.06. By a result of Boissonnat
and Cazals [5], Bq ∩ Σ is a topological disk as radius(Bq) < f(q). Moreover, it can
be verified using Lemmas 2.4 and 2.2 that Bq ∩ Σ is monotone in direction nq. We
conclude that the orthogonal projection of Bq ∩ Σ onto the tangent plane of Σ at
q covers a disk centered at q with radius λ

2
√

2(1+2λ)
f(q). Hence, area(Bq ∩ Σ) ≥

πλ2

8(1+2λ)2
f(q)2. Therefore,

∫

Σ

1

f(x)2
dx ≥

∑

q∈S

∫

Bq∩Σ

πλ2

2(2 + 5λ)2 area(Bq ∩ Σ)
dx =

πλ2 |S|
2(2 + 5λ)2

.

7. Discussions. We presented a provable algorithm for sampling and meshing
a smooth surface without boundary. Implicit surfaces can be meshed with this algo-
rithm, which offers guarantees on the topology, triangular shape, smoothness, and size
of the output triangulation. The mesh is Delaunay. It is worthwhile to note that we
also obtain a Delaunay meshing of the volume bounded by the output surface mesh.

We implemented a simplified version of DelMesh using CGAL [10]. We did
not implement the FacetContact, FacetCycle, and Silhouette subroutines.
Figure 12 shows the results of this implementation for some simple smooth sur-
faces. Although the theory applies to smooth surfaces, we experimented with some
triangulated surfaces obtained by a surface reconstruction software called Tight

Cocone [21]. Although these surfaces already have sample points, we disregarded all
these sample points for our experiments and considered the piecewise linear surface as
input. For each surface, DelMesh generated a new set of sample points and the cor-
responding restricted Delaunay triangulation. Figure 13 shows these triangulations.

Fig. 12. Meshing of a smooth sphere, torus, and a metaball, each of which is input with an
implicit equation.
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Fig. 13. The first column shows the surfaces to be sampled. The second column shows the
triangulations after capturing the topology and deleting the seeds. The third column shows the
results after improving the triangular shape and smoothing.

These examples show that DelMesh can be used for remeshing triangulated
surfaces while guaranteeing bounded aspect ratio. An open question remains if the
method or its variant can be proved to mesh nonsmooth surfaces with guarantees.
This question is partially addressed by Dey, Li, and Ray [20] and Boissonnat and
Oudot [9].

The critical point computations are the most costly computations in DelMesh.
Can we avoid them and under what circumstances?
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Abstract. We establish a close connection between (sub)exponential time complexity and pa-
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1. Introduction. The area of exact algorithms for hard algorithmic problems
has received considerable attention in recent years (see, e.g., [18, 19]). The goal
is to design exact, as opposed to approximative, algorithms for hard (usually NP-
complete) problems that are better than the trivial brute force algorithms but may
still be exponential. For example, the currently best deterministic algorithm for the
3-satisfiability problem (3-Sat) due to Brueggemann and Kern [3] has a running time
of O(1.473n), and the best randomized algorithm due to Rolf [17] has a running time
of O(1.3222n). Here n denotes the number of variables of the input formula.

Exponential complexity theory. A more qualitative question that has been
recognized as central for the emerging theory of “exponential time complexity” is
whether 3-Sat can be solved in time 2o(n). The hypothesis that this is not possible is
known as the exponential time hypothesis (ETH). It was first studied systematically
by Impagliazzo, Paturi, and Zane [16], who proved that the hypothesis is very ro-
bust and equivalent to analogous hypotheses for many other NP-complete problems.
For example, ETH is equivalent to the question of whether the Independent-Set

problem can be solved in time 2o(n), where n denotes the number of vertices of the
input graph. The reader may wonder why the running time is measured in terms of
the number of variables and number of vertices, respectively, and not in the actual
input size. The main contribution of Impagliazzo, Paturi, and Zane was to prove
that the ETH is independent of the “size measure” (number of variables or actual
size), that is, that 3-Sat is solvable in time 2o(n) if and only if it is solvable in time
2o(m) for the input size m.1 It is easy to see that this implies the corresponding re-
sult for Independent-Set and a number of further problems. However, in general,
subexponential solvability is very sensitive with respect to the size measure, as the
trivial example of the Clique problem shows: Clearly, Clique is solvable in time
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that m = O(n3). Otherwise the input size would not be bounded in terms of n, and hence the
problem would not be solvable in time f(n) for any function f . Later, this problem will disappear
because we will always admit a polynomial of the input size as a factor of the running time.

1228



SUBEXPONENTIAL AND PARAMETERIZED COMPLEXITY 1229

2o(n) if and only if Independent-Set is, but Clique is trivially solvable in time
nO(

√
m) = 2o(m), where m denotes the size of the input graph.

The example of the Clique problem illustrates that it is reasonable for a theory
of exponential time complexity to view problems as pairs (P, ν) consisting of a decision
problem P ⊆ Σ∗ over some finite alphabet Σ and a mapping ν : Σ∗ → N, which may
be viewed as the size measure. For technical reasons, the mapping ν is required to
be polynomial time computable. Typical size measures are the number of vertices or
the number of edges for graph problems or the number of variables for satisfiability
problems. Of course there is always the trivial size measure ν(x) = |x|. At first sight,
it seems reasonable to also require a size measure ν to be polynomially related to the
input length, that is, |x|c ≤ ν(x) ≤ |x|d for some c, d > 0 and all x ∈ Σ∗. However, we
prefer not to make this additional requirement, because there are problems where very
natural size measures do not fulfill it. The most important example is the satisfiability
problem Sat for arbitrary CNF formulas. The number of variables still seems to be
one of the most natural complexity parameters, but it may be exponentially smaller
than the input length. Hypergraph problems provide further natural examples; here
the number of vertices is a natural parameter. Of course for such examples it is no
longer appropriate to call ν a size measure, but other than that the role of ν remains
the same.

But what would it mean for Sat to be subexponential with respect to “number
of variables”? Clearly, Sat is not solvable in time 2o(n), because the size m of the
input formula may be 2Ω(n). The natural question is whether Sat is solvable in time
2o(n) · mO(1). More generally, we say that a problem (P, ν) is subexponential if it is
solvable in time

(1.1) 2o(ν(x)) · |x|O(1)

for every instance x. Of course, if ν is polynomially related to the input length, then
the term |x|O(1) is dominated by 2o(ν(x)) and can hence be omitted. We denote the
class of all subexponential problems by SUBEPT. We are interested in the dividing
line between exponential and subexponential solvability; the problems we consider
are usually (trivially) solvable in time 2O(ν(x)) · |x|O(1). Let us denote the class of all
of these problems by EPT.2 The main advantage of our “parameterized” approach
to exponential complexity is that it makes it easier to compare problems that oth-
erwise would not be by “rescaling” them. For example, Planar-Independent-Set

is solvable in time 2O(
√
n), and the question of whether it is solvable in time 2o(

√
n)

is equivalent to the question of whether Independent-Set is solvable in time 2o(n).
If we rescale Planar-Independent-Set by letting ν(n) =

√
n, we actually obtain

a problem that is equivalent to Independent-Set with the size measure number of
variables under suitable reductions. Thus by specifying size measures, we get a more
robust theory.

To develop a complexity theory, we need suitable reductions. Impagliazzo, Paturi,
and Zane [16] introduced so-called subexponential reduction families, which are a form
of Turing reductions that preserve subexponential solvability. We essentially work
with these reductions and also with a corresponding notion of many-one reductions.

The goals of exponential complexity theory may now be stated as classifying con-
crete problems within this framework and investigating the structure of the resulting
complexity classes.

2This terminology has been introduced in [15] in the context of parameterized complexity theory;
it will be explained in section 2.
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Parameterized complexity theory. The reader familiar with parameterized
complexity theory will have noticed that we are dealing with exactly the type of
problems as considered there. A parameterized problem is a pair (Q, κ), where Q ⊆ Σ∗

for some finite alphabet Σ and κ : Σ∗ → N, the parameterization, is polynomial time
computable. We usually denote parameterized problems in the “exponential world”
by (P, ν) and problems in the “parameterized world” by (Q, κ) because it will be
important for us to separate the two worlds, but formally both are the same. However,
the questions asked in parameterized complexity theory are different; parameterized
complexity theory’s main intention is to address complexity issues in situations where
the parameter is expected to be small compared to the input size, whereas in the
exponential theory the parameter was introduced as a size measure. A problem (Q, κ)
is fixed-parameter tractable if it can be solved in time f(κ(x)) · |x|O(1), where f is an
arbitrary computable function. The class of all fixed-parameter tractable problems is
denoted by FPT. There are suitable notions of FPT (many-one) reduction and FPT
Turing reduction.

As opposed to exponential complexity theory, parameterized complexity theory
has been developed in depth over the past fifteen years. A rich and perhaps unwieldy
structure has emerged. The most important parameterized complexity classes are
those of the W-hierarchy. Most natural parameterized problems are complete for one
of these classes. Parameterized complexity theory almost exclusively studies problems
which are in the class XP of all problems that can be solved in polynomial time for
every fixed parameter value (see also Definition 13).

Our results. Our main result is that exponential and parameterized complexity
theory are isomorphic. Let us explain what we mean by this: On the exponential
side, we consider the partial order induced by subexponential reduction families on
the degrees, that is, equivalence classes under subexponential reduction families. On
the parameterized side, we consider the partial order induced by FPT reductions
on the corresponding degrees. We define a mapping, the so-called miniaturization
mapping, that associates a problem (Q, κ) with every problem (P, ν) and prove that
this mapping is an isomorphism between the partial order of degrees inside EPT
under subexponential reduction families and the partial order of degrees inside XP
under FPT reductions. This result holds for both many-one and Turing reductions. In
particular, miniaturization maps the class SUBEPT (the lowest “exponential degree”)
to FPT (the lowest “parameterized degree”) and EPT to XP.

If we look at degrees outside of EPT, then the miniaturization mapping is still
an embedding, but we prove that it is no longer onto. That is, there are parameter-
ized degrees outside XP that are not in the image of the miniaturization mapping.
Technically, this is our most difficult result.

The precise technical statement of our results requires some additional uniformity
conditions. Essentially, the “little oh” in (1.1) has to be interpreted “effectively” (see
section 2 for a precise statement). Alternatively, the uniformity condition in the def-
inition of fixed-parameter tractability, requiring f to be computable, can be relaxed.

The miniaturization mapping is a fairly natural mapping between parameterized
problems that has been studied before [4, 7, 9], albeit not as an abstract mapping
between parameterized problems but just as a transformation between concrete prob-
lems such as vertex cover. As a matter of fact, there already is a body of work in
parameterized complexity theory, starting with Abrahamson, Downey, and Fellows [1],
that studies the relation between fixed-parameter tractability and exponential time
complexity [4, 5, 6, 7, 9, 13]. Notably, it follows from this work that the miniaturiza-
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tion mapping maps the degree of 3-Sat with the number of variables size measure to
a class M[1] between FPT and the first level W[1] of the W-hierarchy. The degree of
Sat is mapped to a class M[2] between W[1] and W[2], and the degree of the satisfi-
ability problem for Boolean circuits under the “number of input nodes” size measure
is mapped to the class W[P]. This shows that the miniaturization isomorphism is not
just an abstract mapping between partial orders but actually is a meaningful mapping
between concrete problems and complexity classes. In the last section of this paper,
we analyze the correspondence between the W-hierarchy and a natural hierarchy in
the exponential theory, and we determine the preimage of the W-hierarchy under the
miniaturization mapping.

2. Preliminaries. In this section we give the necessary background of expo-
nential and parameterized complexity. For more comprehensive details the reader is
referred to [12, 14, 16].

We use N to denote the set of natural numbers (positive integers). For m ≤ n ∈ N

we let [m,n] := {m,m+1, . . . , n} and [n] := [1, n]. A classical decision problem is a set
P ⊆ Σ∗, where Σ is a finite alphabet. A parameterized problem is a pair (Q, κ), where
Q ⊆ Σ∗ for some finite alphabet Σ and κ : Σ∗ → N is polynomial time computable.
The mapping κ is called the parameterization. We occasionally write x ∈ (Q, κ)
instead of x ∈ P .

Exponential complexity. Recall that in the exponential theory we study pa-
rameterized problems (P, ν) and view the parameterization ν as a size measure. The
most obvious size measure for a problem P ⊆ Σ∗ is the length of the input ν(x) = |x|.
Unfortunately, for most natural problems, the length of the input is not exactly what
we think of as its “size.” For example, we are used to thinking of the size of a graph
G with n vertices and m edges as being (m + n) rather than Θ(n + m · log n), which
would be the length of a reasonable encoding of G over a finite alphabet. To abstract
from such a heavy dependence on coding issues, we define the size ||G|| of a graph
G with n vertices and m edges to m + n. Hence we distinguish between size and
“length (of an encoding)” of a graph. Similarly, we define the size ||C|| of a Boolean
circuit to be the number of gates plus the number of lines. We view Boolean formulas
as special circuits, so they inherit the size measures for circuits. For example, for a
CNF formula α =

∧m
i=1

∨ki

j=1 λij this means that ||α|| = Θ(
∑m

i=1 ki). We denote the
parameterization of a graph problem or satisfiability problem P by the input size by
s-P . For example, we let

s-Sat

Instance: A CNF formula α.
Parameter: ||α||.

Problem: Decide whether α is satisfiable.

Other natural size measures are the “number of vertices” for graph problems
and the number of variables for satisfiability problems. As examples, consider the
following problems:

s-vert-Independent-Set

Instance: A graph G = (V,E) and a � ∈ N.
Parameter: |V |.

Problem: Decides whether G has an independent set of
cardinality �.
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s-var-3-Sat

Instance: A 3-CNF formula α.
Parameter: Number of variables of α.

Problem: Decide whether α is satisfiable.

Similarly, we can define the graph problems s-vert-Clique, s-vert-Vertex-Cover,
and s-vert-Dominating-Set and the satisfiability problems s-var-Sat (satisfiability
of CNF formulas) and s-var-Circuit-Sat (satisfiability of Boolean circuits, parame-
terized by the number of input gates).

For two functions f, g with range N, we say f is effectively little oh of g and write
f ∈ oeff(g), if there is a computable function ι that is nondecreasing and unbounded
such that

f = O
(g
ι

)
.

Definition 1. A parameterized problem (P, ν) is subexponentially solvable if
there is an algorithm A that for every instance x decides whether x ∈ P in time

2o
eff (ν(x)) · |x|O(1).

By 2o
eff (ν(x)) we mean 2f(x) for some function f ∈ oeff(ν). SUBEPT denotes the class

of all subexponentially solvable problems.
As mentioned in the introduction, an example of a problem in SUBEPT is

s-Clique, the clique problem parameterized by the input size, which is solvable in
time 2O(

√
m·logm), where m denotes the size of the input graph. Other, less trivial

examples of problems in SUBEPT are the planar restrictions of many standard op-
timization problems parameterized by the number of vertices (or the size, which is
equivalent for planar graphs). For example, the problems s-vert-Planar-Vertex-

Cover, s-vert-Planar-Independent-Set, and s-vert-Planar-Dominating-Set

are all solvable in time 2O(
√
n) and hence in SUBEPT [2]. However, most natural NP-

complete problems do not seem to be in SUBEPT. To establish a completeness theory
giving evidence to claims of problems not being in SUBEPT, we need an appropriate
notion of reduction. The following lemma offers an alternative characterization of
SUBEPT, which is the basis of the reductions we shall introduce afterwards.

Lemma 2. Let (P, ν) be a parameterized problem over the alphabet Σ. The
following are equivalent:

(1) (P, ν) ∈ SUBEPT.
(2) There is an algorithm A expecting inputs from Σ∗ × N and a computable

function f such that for all (x, �) ∈ Σ∗ × N the algorithm A decides if x ∈ P
in time f(�) · 2ν(x)/� · |x|O(1).

(3) There is an algorithm A expecting inputs from Σ∗×N, a computable function
f , and a constant c ∈ N such that for all (x, �) ∈ Σ∗ × N the algorithm A

decides if x ∈ P in time f(�) · 2c·ν(x)/� · |x|O(1).
Proof. (1) ⇒ (2): Assume (P, ν) ∈ SUBEPT. Let ι be a computable function that

is nondecreasing and unbounded, and let A be an algorithm deciding x ∈ P in time
2c·ν(x)/ι(ν(x)) · |x|O(1) for some constant c ∈ N. For � ∈ N, let n(�) := max({n | ι(n) <
c · �} ∪ {1}) and f(�) := 2c·n(�). Then for all (x, �) ∈ Σ∗ × N we have 2c·ν(x)/ι(ν(x)) ·
|x|O(1) ≤ f(�) · 2ν(x)/� · |x|O(1). Let A

′ be the algorithm that, given (x, �) ∈ Σ∗ × N,
simply ignores � and simulates A on input x. Then A

′ and f satisfy the conditions
of (2).
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The direction from (2) to (3) is trivial. We turn to (3) ⇒ (1): Let f : N →
N be a computable function, c ∈ N a constant, and A an algorithm that, given
(x, �) ∈ Σ∗ × N, decides if x ∈ P in time f(�) · 2c·ν(x)/� · |x|O(1). Without loss of
generality, we may assume f is increasing and time-constructible. Let ι : N → N

be the following computable function: ι(n) := max({� | f(�) < n} ∪ {1}), which is
clearly nondecreasing, unbounded, and computable in time polynomial in n. Let A

′

be the following algorithm for deciding P : Given x ∈ Σ∗, first compute n := ν(x) and
� := ι(n), and then simulate A on (x, �). The running time of A is bounded by

|x|O(1) + nO(1) + f(ι(n)) · 2c·n/ι(n) · |x|O(1)

≤ |x|O(1) + nO(1) + O(n) · 2oeff (n) · |x|O(1)

= 2o
eff (n) · |x|O(1).

Our notion of reduction is essentially that of subexponential reduction families,
as introduced in [16]. The reduction families in [16] are Turing reductions; we also
introduce a many-one version.

Definition 3. Let (P, ν) and (P ′, ν′) be parameterized problems over the alpha-
bets Σ and Σ′, respectively.

(1) A subexponential reduction family, or simply serf reduction, from (P, ν) to
(P ′, ν′) is a mapping R : Σ∗ × N → (Σ′)∗ such that:
(a) for all (x, �) ∈ Σ∗ × N we have (x ∈ P ⇐⇒ R(x, �) ∈ P ′);
(b) given a pair (x, �) ∈ Σ∗ × N, the image R(x, �) is computable in time

f(�) · 2ν(x)/� · |x|O(1)

for some computable function f : N → N;
(c) There is a computable function g : N → N such that

ν′(R(x, �)) ≤ g(�) · (ν(x) + log |x|)

for all (x, �) ∈ Σ∗ × N.
(2) A subexponential Turing reduction family, or serf Turing reduction, from

(P, ν) to (P ′, ν′) is an algorithm A with an oracle to P ′ such that there are
computable functions f, g : N → N with the following:
(a) Given a pair (x, �) ∈ Σ∗ × N, the algorithm A decides if x ∈ P in time

f(�) · 2ν(x)/� · |x|O(1).

(b) For all oracle queries “y ∈ P ′?” posed by A on input (x, �) ∈ Σ∗ × N it
holds that

ν′(y) ≤ g(�) · (ν(x) + log |x|).

We write (P, ν) ≤serf (P ′, ν′) (or (P, ν) ≤serf-T (P ′, ν′)) if there is a serf
reduction (serf Turing reduction, respectively) from (P, ν) to (P ′, ν′). We write
(P, ν) ≡serf (P ′, ν′) if (P, ν) ≤serf (P ′, ν′) and (P ′, ν′) ≤serf (P, ν).

It is clear that (P, ν) ≤serf (P ′, ν′) implies (P, ν) ≤serf-T (P ′, ν′). It is not com-
pletely trivial that serf reductions preserve subexponential solvability.

Proposition 4. Let (P, ν) and (P ′, ν′) be parameterized problems. If (P, ν)
≤serf-T (P ′, ν′) and (P ′, ν′) ∈ SUBEPT, then (P, ν) ∈ SUBEPT.
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Proof. Let Σ,Σ′ be the alphabets of (P, ν), (P ′, ν′), respectively. Let A be a
serf Turing reduction from (P, ν) to (P ′, ν′), and let f, g be the functions bounding
the running time and the parameter. Let f ′ : N → N be a computable function
and A

′ an algorithm that, given (x′, �′) ∈ (Σ′)∗ × N, decides if x′ ∈ P ′ in time
f ′(�′) · 2ν′(x′)/�′ · |x′|O(1). Such f ′,A′ exist by Lemma 2.

Let B be the algorithm that, given (x, �) ∈ Σ∗ × N, simulates A and answers the
oracle queries with instance x′ by simulating A

′ on input (x′, �′), where �′ := g(�) · �.
Observe that, since the running time of A is bounded by f(�) ·2ν(x)/� · |x|O(1), for each
oracle query with instance x′ we have |x′| ≤ f(�) · 2ν(x)/� · |x|O(1). Also recall that,
by the definition of subexponential reduction families, we have ν′(x′) ≤ g(�) · (ν(x) +
log |x|). Then B decides P , and the running time on input (x, �) is bounded by

f(�) · 2ν(x)/� · |x|O(1) · f ′(�′) · 2ν′(x′)/�′ · |x′|O(1)

≤ f(�) · 2ν(x)/� · |x|O(1) · f ′(g(�) · �)
· 2(ν(x)+log |x|)/� · f(�)O(1) · 2O(ν(x)/�) · |x|O(1)

≤ f(�)O(1) · f ′(g(�) · �) · 2O(ν(x)/�) · 2log |x|/� · |x|O(1)

≤ h(�) · 2O(ν(x)/�) · |x|O(1)

for a suitable computable function h. Thus by Lemma 2, (P, ν) ∈ SUBEPT.
Example 5. For every graph problem P we trivially have s-P ≤serf s-vert-P , and

as a reduction family we can simply use the mapping R(x, �) = x. Similarly, for every
satisfiability problem P we have s-P ≤serf s-var-P .

It is a highly nontrivial result due to Impagliazzo, Paturi, and Zane [16] that,
for many natural graph and satisfiability problems, the converse also holds. As
a matter of fact, Impagliazzo, Paturi, and Zane proved that, the following prob-
lems are all equivalent with respect to serf Turing reductions: s-3-Sat, s-var-3-Sat,
s-Independent-Set, s-vert-Independent-Set, s-Vertex-Cover, s-vert-Vertex-

Cover, s-Dominating-Set, and s-vert-Clique.
Note that s-Clique does not appear in this list of problems. Indeed, it seems

unlikely that s-Clique is equivalent to the problems above because it is in SUBEPT,
whereas the other problems are not in SUBEPT unless the exponential time hypothesis
(mentioned in the introduction) fails.

While unlikely to belong to SUBEPT, all problems considered in the previous
example belong to the class EPT:

Definition 6. A parameterized problem (P, ν) is in EPT if there is an algorithm
A that, for every instance x, decides if x ∈ P in time 2O(ν(x)) · |x|O(1).

It follows from the time hierarchy theorem that SUBEPT is a proper subclass of
EPT. The next proposition shows that EPT is closed under serf Turing reductions.

Proposition 7. Let (P, ν) and (P ′, ν′) be parameterized problems. If (P, ν)
≤serf-T (P ′, ν′) and (P ′, ν′) ∈ EPT, then (P, ν) ∈ EPT.

Proof. It is not hard to see that, from the serf Turing reduction from (P, ν) to
(P ′, ν′), we can construct an algorithm A with an oracle to P ′ satisfying the following:

(R1) A decides if x ∈ P in time O(2ν(x) · |x|O(1)) for any instance x.
(R2) For all oracle queries “y ∈ P ′?” posed by A on input x we have ν′(y) =

O(ν(x) + log |x|).
Let A

′ be an algorithm that, given x′, decides x′ ∈ P ′ in time 2O(ν′(x′)) · |x′|O(1).
Now we define the following algorithm B that, given an instance x, simulates A

and answers the oracle queries with instance x′ by simulating A
′ on x′. By (R1), for

each oracle query with instance x′ we have |x′| = O(2ν(x) · |x|O(1)). In addition, (R2)
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implies that ν′(x′) = O(ν(x) + log |x|). It is clear that B decides P , and its running
time on input x is bounded by

O(2ν(x) · |x|O(1)) · 2O(ν′(x′)) · |x′|O(1)

= O(2ν(x) · |x|O(1)) · 2O(ν(x)+log |x|) ·O(2O(ν(x)) · |x|O(1))

= 2O(ν(x)) · |x|O(1).

The following example introduces another problem that will turn out to be com-
plete for the class EPT under serf reductions.

Example 8. Consider the halting problem for alternating Turing machines with
a binary alphabet parameterized by the amount of space a computation uses (halting
problems parameterized by space are referred to as “compact” halting problems in
the parameterized complexity literature):

p-Compact-Bin-ATM-Halt

Instance: An alternating Turing machine M with binary alphabet,
k ∈ N.

Parameter: k.
Problem: Decide whether M accepts the empty input using at most

k tape cells.

It is easy to see that p-Compact-Bin-ATM-Halt ∈ EPT; just observe that,
for a given instance (M,k), there are at most N = 2O(k) · |M |O(1) many relevant
configurations. So we can first compute the configuration graph of M of size N
and then test the accepting condition in time polynomial in N by computing the
alternating reachability problem on that graph.

Parameterized complexity. As mentioned in the introduction, in parameter-
ized complexity we are dealing with the same type of problems as in exponential
complexity, namely, parameterized problems (Q, κ), where Q ⊆ Σ∗ and κ : Σ∗ → N

is polynomial time computable. However, we study the problems from a different
perspective; in parameterized complexity theory, we usually assume the parameter to
be small, whereas in the exponential theory, the parameter is supposed to be a size
measure and hence close to the size of the instance.

Definition 9. A parameterized problem (Q, κ) is fixed-parameter tractable if
there is an algorithm A and a computable function f such that for every instance x
A decides if x ∈ Q in time

f(κ(x)) · |x|O(1).

FPT denotes the class of all fixed-parameter tractable problems.
Observe that

EPT ⊆ FPT.

Example 10. The following parameterized vertex cover problem is maybe the
best-studied problem in parameterized complexity theory.

p-Vertex-Cover

Instance: A graph G and a nonnegative integer k.
Parameter: k.

Problem: Decide if G has a vertex cover of cardinality k.
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It is easy to see that p-Vertex-Cover is fixed-parameter tractable. Actually, the
problem is even in EPT.

Example 11. The problem s-var-Sat is in EPT and hence fixed-parameter
tractable.

Definition 12. Let (Q, κ) and (Q′, κ′) be two parameterized problems over the
alphabets Σ and Σ′, respectively.

(1) A (many-one) FPT reduction from (Q, κ) to (Q′, κ′) is a mapping R : Σ∗ →
(Σ′)∗ such that:
(a) for all x ∈ Σ∗ we have (x ∈ Q ⇐⇒ R(x) ∈ Q′);
(b) for all x ∈ Σ∗, the image R(x) is computable in time

f(κ(x)) · |x|O(1)

for a computable f : N → N;
(c) there is a computable function g : N → N such that κ′(R(x)) ≤ g(κ(x))

for all x ∈ Σ∗.
(2) An FPT Turing reduction from (Q, κ) to (Q′, κ′) is an algorithm A with an

oracle to Q′ such that there are computable functions f, g : N → N with the
following:
(a) Given an instance x ∈ Σ∗, the algorithm A decides if x ∈ Q in time

f(κ(x)) · |x|O(1).

(b) For all oracle queries “y ∈ Q′?” posed by A on input x ∈ Σ∗ it holds
that κ′(y) ≤ g(κ(x)).

We write (Q, κ) ≤FPT (Q′, κ′) (or (Q, κ) ≤FPT-T (Q′, κ′)) if there is an FPT
reduction (FPT Turing reduction, respectively) from (Q, κ) to (Q′, κ′), and we write
(Q, κ) ≡FPT (Q′, κ′) (and similarly (Q, κ) ≡FPT-T (Q′, κ′)) if (Q, κ) ≤FPT (Q′, κ′) and
(Q′, κ′) ≤FPT (Q, κ). It is easy to see that a many-one FPT reduction is also an FPT
Turing reduction, and FPT is closed under FPT Turing reductions.

Most parameterized problems that are studied in parameterized complexity the-
ory have the property that, for every fixed-parameter value, the instances with this
value are decidable in polynomial time (albeit by an algorithm whose running time is
bounded by a polynomial that may depend on the parameter k). Essentially, XP is
the class of all such problems but with a uniformity condition added.

Definition 13. A parameterized problem (Q, κ) is in XP if there is an algorithm
A and a computable function f : N → N such that A decides Q, and the running time
of A on input x is bounded by

O(|x|f(κ(x))).

Clearly, XP is closed under FPT and FPT Turing reductions.
Example 14. The parameterized compact halting problem for alternating Turing

machines is the following parameterized problem.

p-Compact-ATM-Halt

Instance: An alternating Turing machine M with arbitrary alphabet,
k ∈ N.

Parameter: k.
Problem: Decide whether M accepts the empty input using space k.

It has been proved by Demri, Laroussinie, and Schnoebelen [8] that p-Compact-

ATM-Halt is complete for XP under FPT reductions.
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3. The miniaturization mapping.
Definition 15. Let (P, ν) be a parameterized problem over the alphabet Σ. We

define the miniaturization M (P, ν) of (P, ν) as the following parameterized problem:

M (P, ν)
Instance: x ∈ Σ∗ and m ∈ N in unary.

Parameter: � ν(x)

logm� if m ≥ 2 and ν(x) otherwise.
Problem: Decide whether x ∈ P .

In other words, M (P, ν) is the parameterization of the classical problem

Instance: x ∈ Σ∗ and m ∈ N in unary.
Problem: Decide whether x ∈ P .

with κ(x,m) = �ν(x)/ logm�.
The ideas underlying the following result go back to [4, 9]. The theorem also

follows from Theorem 19 below, but nevertheless we find it worthwhile to state and
prove it separately first.

Theorem 16. Let (P, ν) be a parameterized problem. Then (P, ν) ∈ SUBEPT
⇐⇒ M (P, ν) ∈ FPT.

Proof. Let Σ be the alphabet of P . Assume (P, ν) is in SUBEPT. By Lemma 2,
there is an algorithm A expecting inputs from Σ∗ × N and a computable function f
such that, for all (x, �) ∈ Σ∗ × N, the algorithm A decides if x ∈ P in time f(�) ·
2ν(x)/� · |x|O(1).

Let B be the following algorithm: Given an instance (x,m) ∈ Σ∗ × N, first B

computes the parameter

k :=

⎧
⎨
⎩

⌈
ν(x)

logm

⌉
if m ≥ 2,

ν(x) otherwise.

It is easy to verify that

(3.1) 2ν(x)/k ≤ 2m.

Then B simulates A on (x, k). The time taken by the simulation is bounded by

f(k) · 2ν(x)/k · |x|O(1) ≤ f(k) · 2m · |x|O(1) (by (3.1))

≤ 2f(k) · (|x| + m)O(1).

Therefore M (P, ν) is fixed-parameter tractable.
For the converse direction, assume there is an algorithm A and a computable

function f : N → N that for every (x,m), with m ≥ 2, decides if (x,m) is a “yes”
instance of M (P, ν) in time

f

(⌈
ν(x)

logm

⌉)
· (|x| + m)O(1).

Without loss of generality we assume that f is nondecreasing. Now let B be the
algorithm that, for any given (x, �) ∈ Σ∗ × N, first computes

m :=
⌈
2ν(x)/�

⌉
,
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which can be done in time 2O(ν(x)/�) · |x|O(1). Note m ≥ 2. Then B simulates A on
(x,m), which requires time

f

(⌈
ν(x)

logm

⌉)
· (|x| + m)O(1) ≤ f(�) · 2O(ν(x)/�) · |x|O(1).

So again by Lemma 2, (P, ν) is in SUBEPT.
As the following two examples show, there are a number of problems that have

natural parameterized problems as their miniaturizations. The Hamming weight of a
finite Boolean-valued function is the number of arguments that are mapped to true.

Example 17. The miniaturization of s-var-Circuit-Sat is FPT-equivalent to the
following parameterized weighted circuit satisfiability problem:

p-W-Circuit-Sat

Instance: A Boolean circuit C and a k ∈ N.
Parameter: k.

Problem: Decide whether C has a satisfying assignment of Hamming
weight k.

Essentially, this result goes back to Abrahamson, Downey, and Fellows [1] (see [14] for
a proof). It derives its significance from the fact that p-W-Circuit-Sat is complete
for the important parameterized complexity class W[P].

Example 18. The miniaturization of p-Compact-Bin-ATM-Halt (see Exam-
ple 8) is FPT-equivalent to the parameterized problem p-Compact-ATM-Halt (see
Example 14).

Proof. First it is easy to see the miniaturization of p-Compact-Bin-ATM-Halt

is FPT-equivalent to the problem:

p-k · log n-Compact-Bin-ATM-Halt

Instance: An alternating Turing machine M with binary alphabet,
n ∈ N in unary, k ∈ N.

Parameter: k.
Problem: Decide whether M accepts the empty input using space

k · �log n�.

Therefore it suffices to show that p-Compact-ATM-Halt ≡FPT p-k · log n-Compact-

Bin-ATM-Halt.
p-Compact-ATM-Halt ≤FPT p-k · log n-Compact-Bin-ATM-Halt: Given

an alternating machine M of arbitrary alphabet, it is not very hard, albeit tedious, to
construct another alternating machine Mbin with a binary alphabet by encoding each
symbol in M by a binary string of length �log |M |�. Thus M accepts the empty input
using space k if and only if Mbin accepts the empty input using space k · �log |M |�. So

(M,k) �→ (Mbin, |M |, k)

is an appropriate FPT reduction.
p-k · log n-Compact-Bin-ATM-Halt ≤FPT p-Compact-ATM-Halt: For an

alternating machine M with a binary alphabet and a natural number n, we can con-
struct an alternating machine M�logn� whose alphabet is of size n, each corresponding
to a �log n�-bit binary. Thus M�logn� can simulate a computation of M which uses
space k · �log n� by a computation using space k. Hence

(M,n, k) �→ (M�logn�, k)

gives the required FPT reduction.
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The previous example can be generalized to the halting problems for determin-
istic and nondeterministic Turing machines parameterized by space. However for
the moment we do not have a similar exact correspondence between “time” halting
problems.

As we have seen in Theorem 16, miniaturization maps subexponential solvabil-
ity of a problem exactly into the fixed-parameter tractability of its miniaturization.
Indeed it can be viewed as a consequence of the following theorem.

Theorem 19. Let (P, ν) and (P ′, ν′) be parameterized problems. Then
(1) (P, ν) ≤serf (P ′, ν′) ⇐⇒ M (P, ν) ≤FPT M (P ′, ν′);
(2) (P, ν) ≤serf-T (P ′, ν′) ⇐⇒ M (P, ν) ≤FPT-T M (P ′, ν′).
Proof. We show (2), and the easier (1) is left to the reader. Let Σ and Σ′ be the

alphabets of P and P ′, respectively.
For the forward direction, let A be a serf Turing reduction from (P, ν) to (P ′, ν′)

such that for every input (x, �) ∈ Σ∗ × N the running time of A is bounded by
f(�) · 2ν(x)/� · |x|O(1) and for any oracle query “x′ ∈ P ′?” posed by A it holds that

(3.2) ν′(x′) ≤ g(�) · (ν(x) + log |x|)

for some computable function g : N → N. Without loss of generality we assume that
f is nondecreasing.

Let B be an algorithm that, given an instance (x,m) of M (P, κ), simulates A on
(x, k), where

k :=

⎧
⎨
⎩

⌈
ν(x)

logm

⌉
if m ≥ 2,

ν(x) otherwise

is the parameter of (x,m) and replaces each oracle query “x′ ∈ P ′?” posed by A by
“(x′,m′) ∈ M (P ′, ν′)?”, where m′ := max{|x′|,m, 2}.

The overall running time of B is bounded by

f(k) · 2ν(x)/k · |x|O(1) ≤ f(k) · 2m · |x|O(1).

Furthermore, for each oracle query “(x′,m′) ∈ M (P ′, ν′)?” posed by B, we have
ν′(x′) ≤ g(k) · (ν(x) + log |x|) by (3.2). Since m′ ≥ 2, the parameter of (x′,m′) is

� ν′(x′)
logm′ �.

- If m ≥ 2, then k = � ν(x)

logm�, and we have

⌈
ν′(x′)
logm′

⌉
≤ g(k) ·

⌈
ν(x) + log |x|

logm′

⌉

≤ g(k) ·
(⌈

ν(x)

logm

⌉
+ 1

)
(by m′ ≥ |x| and m′ ≥ m)

= g(k) · (k + 1).
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- Otherwise m = 1 and k = ν(x). It follows that

⌈
ν′(x′)
logm′

⌉
≤ g(k) ·

⌈
ν(x) + log |x|

logm′

⌉

≤ g(k) ·
(⌈

ν(x)

logm′

⌉
+ 1

)
(by m′ ≥ |x|)

≤ g(k) · (k + 1) (since m′ ≥ 2 and k = ν(x)).

Thus B is an FPT Turing reduction from M (P, ν) to M (P ′, ν′).
For the backward direction, let A be an algorithm with an oracle to M (P ′, ν′)

such that there are nondecreasing computable functions f, g : N → N and a constant
d ∈ N with the following:

(F1) Given an instance (x,m) ∈ Σ∗ × N, with m ≥ 2, the algorithm A decides if
(x,m) ∈ M (P, ν) in time

f

(⌈
ν(x)

logm

⌉)
· (|x| + m)d.

(F2) For all oracle queries “(x′,m′) ∈ M (P ′, ν′)?” posed by A on input (x,m),
with m ≥ 2, we have

⌈
ν′(x′)
logm′

⌉
≤ g

(⌈
ν(x)

logm

⌉)
,

if m′ ≥ 2, and

ν′(x′) ≤ g

(⌈
ν(x)

logm

⌉)
,

if m′ = 1.
To show (P, ν) ≤serf-T (P ′, ν′), let B be an algorithm with an oracle to (P ′, ν′) such
that, given a pair (x, �) ∈ Σ∗ × N, the algorithm B simulates A on (x,m), where

m := max
{
|x|,

⌈
2ν(x)/(d·�)

⌉}
,

and replaces oracle queries “(x′,m′) ∈ M (P ′, ν′)?” posed by A by “x′ ∈ P ′?”.
Observe that m ≥ 2 and

ν(x)

logm
≤ d · �.(3.3)

So by (F1) the running time of A on (x,m), and hence B on (x, �), is bounded by

f

(⌈
ν(x)

logm

⌉)
· (|x| + m)d ≤ f(d · �) · 2d · 2ν(x)/� · |x|d.

Here we assume without loss of generality that |x| > 0. Note that it follows that, for
any oracle query “(x′,m′) ∈ M (P ′, ν′)?” posed by A, we have

m′ ≤ f(d · �) · 2d · 2ν(x)/� · |x|d,(3.4)

since it is represented in unary.
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Now for any oracle query “x′ ∈ P ′?” posed by B, which comes from the simulation
of A over an oracle query “(x′,m′) ∈ M (P ′, ν′)?”, if m′ ≥ 2, then (F2) implies

⌈
ν′(x′)
logm′

⌉
≤ g

(⌈
ν(x)

logm

⌉)
.

Therefore by (3.3) and (3.4)

ν′(x′) ≤ g(d · �) · log(f(d · �) · 2d · 2ν(x)/� · |x|d) ≤ h(�) · (ν(x) + log |x|)

for some suitable computable function h. Otherwise m′ = 1. Again by (F2), we have

ν′(x′) ≤ g

(⌈
ν(x)

logm

⌉)
.

It follows that

ν′(x′) ≤ g(d · �) ≤ g(d · �) · (ν(x) + log |x|).

So B is a serf Turing reduction from (P, ν) to (P ′, ν′).
The main results of this and the following section can most elegantly be formu-

lated in the language of degrees from classical recursion theory. Suppose we have some
reducibility relation ≤ on parameterized problems, for example, ≤FPT. In general,
≤ only needs to be a reflexive and transitive relation. Let us denote the correspond-
ing equivalence relation by ≡. Then the ≤-degree of a problem (Q, ν), denoted by
�(Q, ν)�≤, is the ≡-equivalence class of (Q, ν). For example, the ≤FPT-degree of
p-Compact-ATM-Halt is the class of all XP-complete problems. The class of all
≤-degrees is denoted by D≤, and for a class C of parameterized problems that is
downward closed under ≤, the class of all degrees in C is denoted by C≤. The re-
duction ≤ induces a partial order on D≤. If ≤=≤FPT, then to simplify the notation
we speak of FPT-degrees instead of ≤FPT-degrees and write �(Q, ν)�FPT, DFPT, etc.
The same notational convention applies to reductions ≤FPT-T, ≤serf, and ≤serf-T.

Note that, by Theorem 19 (1), the miniaturization mapping induces a well-defined

mapping MMM : Dserf → DFPT, defined by MMM(�(P, ν)�serf) :=
�M (P, ν)

�FPT
, on the

serf-degrees. By Theorem 19(2), it also induces a mapping on the serf Turing degrees.
The main results of this section can be summarized in the following theorem.

Theorem 20 (embedding theorem). The miniaturization mapping induces an
embedding of the partially ordered set (Dserf,≤serf) into the partially ordered set
(DFPT,≤FPT) and also an embedding of the partially ordered set (Dserf-T,≤serf-T)
into the partially ordered set (DFPT-T,≤FPT-T).

4. An isomorphism between EPT and XP.
Lemma 21. Let (Q, κ) ∈ XP. Then there exists a problem (P, ν) ∈ EPT such

that (Q, κ) ≡FPT M (P, ν).
Proof. Let Σ be the alphabet of Q. Without loss of generality we may assume

that Q �= ∅ and Q �= Σ∗. In a first step we construct a problem (Q′, κ′) that is

FPT-equivalent to (Q, κ) and decidable in time O(|x|
√

κ′(x)).
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Suppose that x ∈ Q is decidable in time O
(|x|f(κ(x))

)
, where without loss of

generality f is increasing and time constructible. Let (Q′, κ′) be the following param-
eterized problem:

Input: x ∈ Σ∗, and � ∈ N in unary such that � ≥ f(κ(x))2.
Parameter: �.

Problem: Decide whether x ∈ Q.

It is easy to see that indeed (Q′, κ′) ≡FPT (Q, κ) and that Q′ is decidable in time

O(|x|
√

κ′(x)).
In the second step, we construct the desired problem (P, ν). Let Σ′ be the alphabet

of Q′. We let (P, ν) be the following problem:

Input: x ∈ (Σ′)∗.
Parameter: κ′(x) · �log |x|� if |x| ≥ 2 and κ′(x) otherwise.

Problem: Decide whether x ∈ Q′.

Then P = Q′; that is, (P, ν) is just a reparameterization of (Q′, κ′). Recall that Q′ is
decidable in time

O
(
|x|

√
κ′(x)

)
= O

(
2
√

κ′(x)·log |x|
)
≤ O

(
2ν(x)

)
.

It follows that (P, ν) ∈ EPT. Now we claim that M (P, ν) ≡FPT (Q′, κ′).
Let x+ ∈ Q′ and x− ∈ (Σ′)∗\Q′. To prove that M (P, ν) ≤FPT (Q′, κ′), we define

a reduction R by letting

R(x,m) :=

⎧
⎪⎨
⎪⎩

x+ if m ≥ |x|
√

κ′(x) and x ∈ Q′,

x− if m ≥ |x|
√

κ′(x) and x �∈ Q′,
x otherwise.

Then clearly for all (x,m) ∈ Σ∗ × N we have (x,m) ∈ M (P, ν) ⇐⇒ R(x,m) ∈ Q′.
Moreover, R(x,m) is computable in polynomial time, because x ∈ Q′ is decidable in

time O(|x|
√

κ′(x)), which is O(m) if m ≥ |x|
√

κ′(x).
It remains to prove that the parameter κ′(R(x,m)) of the image is effectively

bounded in terms of the parameter

k :=

⎧
⎨
⎩
�ν(x)/ logm� if m ≥ 2,

ν(x) otherwise

of the argument. Let (x,m) be an instance of M (P, ν). If m ≥ |x|
√

κ′(x), then
κ(R(x,m)) ≤ max{κ(x+), κ(x−)}, which is a constant. So let us assume that m <

|x|
√

κ′(x). Then κ′(R(x,m)) = κ′(x).
- If |x| ≥ 2, then logm <

√
κ′(x) · �log |x|� = ν(x)/

√
κ′(x), because ν(x) =

κ′(x) ·�log |x|�. Thus in the case m ≥ 2 we have κ′(x) = κ′(x) · logm/ logm <√
κ′(x) · ν(x)/ logm and therefore κ′(x) ≤ (ν(x)/logm)

2 ≤ k2. Otherwise, if
m = 1, we have k = ν(x) = κ′(x) · �log |x|� ≥ κ′(x).

- If |x| < 2, then κ′(x) is bounded by a constant, since there are only finitely
many such x.

This shows that indeed R is an FPT reduction and proves M (P, ν) ≤FPT (Q′, κ′).
For the other direction, (Q′, κ′) ≤FPT M (P, ν), we define a reduction R : (Σ′)∗ →

(Σ′)∗ × N by R(x) = (x, 2|x| + 2)). It is easy to see that ν(x) ≤ κ′(x) · �log(|x| + 2)�
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for every x ∈ (Σ′)∗. Thus
⌈

ν(x)

log(2|x| + 2))

⌉
≤

⌈
κ′(x) · �log(|x| + 2)�

log(2|x| + 2)

⌉
≤ κ′(x),

and R is an FPT reduction from (Q′, κ′) to M (P, ν).
Now we can establish a similar correspondence as Theorem 16 with respect to XP

and EPT.
Theorem 22. Let (P, ν) be a parameterized problem. Then (P, ν) ∈ EPT ⇐⇒

M (P, ν) ∈ XP.
Proof. Let (P, ν) ∈ EPT; in other words, (P, ν) is decidable in time 2O(ν(x)) ·

|x|O(1). Let (x,m) be an instance of M (P, ν). If m ≥ 2, then we let

k := �ν(x)/ logm� .
Then the instance is decidable in time 2O(ν(x)) · |x|O(1) ≤ mO(ν(x)/ logm) · |x|O(1) ≤
(m+ |x|)O(k). If m = 1, then the parameter k of (x,m) is ν(x). It follows that we can
decide whether (x,m) ∈ M (P, ν) in time 2O(ν(x)) · |x|O(1) = 2O(k) · |x|O(1). Hence,
M (P, ν) is in XP.

For another direction, assume M (P, ν) ∈ XP. By Lemma 21, there is a param-
eterized problem (P ′, ν′) ∈ EPT such that M (P, ν) ≡FPT M (P ′, ν′). Now Theo-
rem 19 implies (P, ν) ≡serf (P ′, ν′), and by Proposition 7, (P, ν) ∈ EPT.

Corollary 23. Let (P, ν) be a parameterized problem. (P, ν) is EPT-complete
(EPT-hard) under serf reductions if and only M (P, ν) is XP-complete (XP-hard,
respectively) under FPT reductions.

Example 24. p-Compact-Bin-ATM-Halt is complete for EPT under serf re-
ductions.

Proof. p-Compact-ATM-Halt is complete for XP under FPT reductions [8],
and the miniaturization of p-Compact-ATM-Halt is FPT-equivalent to p-Compact-

Bin-ATM-Halt (see Example 18). So Corollary 23 implies p-Compact-Bin-ATM-

Halt is complete for EPT under serf reductions.
Rephrasing the results of this section in the language of degrees introduced at the

end of the previous section, we obtain the following theorem.
Theorem 25 (isomorphism theorem). The miniaturization mapping induces an

isomorphism between (EPTserf,≤serf) and (XPFPT,≤FPT) and also an isomorphism
between (EPTserf-T,≤serf-T) and (XPFPT-T, ≤FPT-T).

Outside EPT and XP. The following theorem shows that the isomorphism
theorem cannot be extended from the degrees in EPT and XP to all degrees, because
outside of XP the mapping induced by the miniaturization mapping is not onto.

Theorem 26. There is a parameterized problem (Q, κ) that is not FPT-T-equiva-
lent to M (P, ν) for any (P, ν).

We need some preparation before we prove the theorem.
Definition 27. Let Q and Q′ be two classical problems. An algorithm A with

an oracle to Q′ is a 2-exptime Turing reduction from Q to Q′, if for any instance x
of Q, A decides if x ∈ Q in time

22|x|O(1)

.

2-exptime Turing reductions are slightly at odds with all of the usual reductions
(including those introduced in this paper so far); namely, they are not transitive. How-
ever, they are closed under the composition with polynomial time Turing reductions.
More precisely, we have the following.
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Lemma 28. Let Q, Q′, Q′′ be classical problems. There is a 2-exptime Turing
reduction from Q to Q′′:

• if there is a 2-exptime Turing reduction from Q to Q′ and a polynomial time
Turing reduction from Q′ to Q′′;

• or if there is a polynomial time Turing reduction from Q to Q′ and a 2-exptime
Turing reduction from Q′ to Q′′.

We omit the routine proof.
Lemma 29. There is a sequence of problems (Qi)i∈N such that
• {{i} ×Qi | i ∈ N

}
is decidable, and

• for all i ∈ N, Qi is not 2-exptime Turing reducible to

Li :=
{
(j, x) | j �= i and x ∈ Qj

}
.

Proof. Fix an alphabet Σ. Let A1,A2, . . . be an effective enumeration of all of
the 2-exptime Turing reductions from problems over the alphabet Σ to problems that
are subsets of N × Σ∗.

For S ⊆ N × Σ∗, e ∈ N, and x ∈ Σ∗, we define

A
S
e (x) :=

{
1 Ae accepts x with an oracle to S,

0 otherwise

and let

u(S, e, x) := max
{|y| ∣∣ in the computation of A

S
e (x)

there is an oracle query “y ∈ S?”
}
.

Clearly, for a computable S the sets A
S
e (x) and u(S, e, x) are both computable in e

and x.
Note that, for given S1, S2 ⊆ N × Σ∗, e ∈ N, and x ∈ Σ∗, if for all y ∈ N × Σ∗,

with |y| ≤ u(S1, e, x), (y ∈ S1 ⇐⇒ y ∈ S2), then the computation of A
S1
e (x) exactly

coincides with that of A
S2
e (x); in particular, A

S1
e (x) = A

S2
e (x).

Let 〈 · , · 〉 : N × N → N be a reasonable bijective encoding function. We shall
construct a computable sequence of pairwise distinct elements (aj)j∈N ∈ Σ∗ such that,
for j = 〈i, e〉, aj witnesses the fact that

Ae is not a reduction from Qi to Li.

Simultaneously, we will define a sequence 0 = �0 < �1 < �2 · · · of nonnegative integers
and a sequence ∅ = P0 ⊆ P1 ⊆ P2 ⊆ · · · ⊆ N×Σ∗ of sets such that for all j ∈ N, with
j = 〈i, e〉,

�j−1 < |(i, aj)| ≤ �j ,(4.1)

and |Pj\Pj−1| ⊆ {(i, aj)}.(4.2)

Then we set, for each i ∈ N,

Qi :=
{
a ∈ Σ∗ | (i, a) ∈

⋃

j∈N

Pj

}
.(4.3)

Recall that �0 = 0 and P0 = ∅. Now for j ∈ N, with j = 〈i, e〉, assume �j−1 and
Pj−1 are already defined. Let aj ∈ Σ∗ be the minimal element in the lexicographical
order such that

|(i, aj)| > �j−1



SUBEXPONENTIAL AND PARAMETERIZED COMPLEXITY 1245

and that aj is distinct from all aj′ for 1 ≤ j′ < j. Now let

Tj :=
{
(i′, a) ∈ Pj−1 | i′ �= i

}
= Pj−1\

({i} × Σ∗)(4.4)

and

�j := max
{
u(Tj , e, aj), |(i, aj)|

}
.(4.5)

(i) If A
Tj
e (aj) = 0, let Pj := Pj−1 ∪ {(i, aj)}.

(ii) Otherwise, if A
Tj
e (aj) = 1, let Pj := Pj−1.

This finishes the construction.
Now we show that, for each i, e ∈ N, Ae is not a reduction from Qi to

Li =
{
(i′, a) | i′ �= i and a ∈ Qi′

}

=
{
(i′, a) | i′ �= i, and there exists a j ∈ N such that (i′, a) ∈ Pj

}
.(4.6)

Let j := 〈i, e〉. Note that it suffices to prove that it is not the case that

aj ∈ Qi ⇐⇒ A
Li
e (aj) = 1.

First observe that (4.4) and (4.6) imply Tj ⊆ Li. Also by (4.1), (4.2), and (4.5),
for any (i′, a′) ∈ Li\Tj , we have |(i′, a′)| > u(Tj , e, aj). It follows that

A
Li
e (aj) = A

Tj
e (aj).(4.7)

Recall during the construction that we have two cases for A
Tj
e (aj):

(i) If A
Tj
e (aj) = 0, then A

Li
e (aj) = 0 by (4.7). Also by our construction (i, aj) ∈

Pj , and therefore aj ∈ Qi by (4.3).

(ii) If A
Tj
e (aj) = 1, then A

Li
e (aj) = 1. Hence (i, aj) �∈ Pj\Pj−1. It follows that

(i, aj) �∈ Pj′ for all j′ ∈ N by (4.2). Consequently aj �∈ Qi.
To see that {{i} × Qi | i ∈ N} is decidable, let (i, a) ∈ N × Σ∗ be an instance.

Clearly

a ∈ Qi ⇐⇒ (i, a) ∈
⋃

j∈N

Pj .

We compute the minimal j ∈ N such that

|(i, a)| ≤ �j

and then decide if (i, a) is in the finite set Pj .
Proof of Theorem 26. Let (Qi)i∈N be as stated in Lemma 29. Also for each e ∈ N,

let φe denote the eth partially recursive function.
For any e ∈ N and n ∈ N ∪ {0}, let

C(e, n) :=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k k is maximum such that φe(1), . . . , φe(k) are defined,

together can be computed in at most n steps,

and each is smaller than n,

1 if no such k exists.
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Clearly for any fixed e, C(e, n) can be computed in time polynomial in n, and
C(e, n) ≤ n. Moreover if φe(1) is defined, then

(4.8) φe(C(e, n)) ≤ max{φe(1), n}.
Now let

Q :=
{
(e, a, k) | e ∈ N, a ∈ Qe, and k = C(e, |a|)}.

Define the parameterization κ by κ(e, a, k) := k.
Suppose for contradiction that

(Q, κ) ≡FPT-T M (P, ν)

for a parameterized problem (P, ν) over some alphabet Σ′. Let

μ(x,m) =

⌈
ν(x)

logm

⌉

be the parameterization of M (P, ν).
Let A be an FPT-T reduction from (Q, κ) to M (P, ν), and let f : N → N be a

computable function such that, for all instances x, the algorithm A decides if x ∈ Q
in time

f(κ(x)) · |x|O(1).

Let e ∈ N be such that φe = f . We leave e fixed for the rest of the proof.
Claim 1. There is a polynomial time Turing reduction from Qe to M (P, ν).
Proof of the claim. Let B be the following Turing reduction from Qe to Mini(P, ν):

Given an instance a ∈ Σ∗, the algorithm B computes in polynomial time k := C(e, |a|).
Then it simulates the FPT-T reduction A on (e, a, k). Since a ∈ Qe ⇐⇒ (e, a, k) ∈ Q,
this algorithm B correctly decides if a ∈ Qe.

Moreover (4.8) implies that

φe(κ(e, a, k)) = φe(k) = O(|a|)
for φe is total. Hence the running time of A (and hence of B) on (e, a, k) is

φe(κ(e, a, k)) · |(e, a, k)|O(1) = O(|a|) · |(e, a, k)|O(1)

= O(|a|) · |a|O(1)

= O(|a|O(1)).

The second equality follows from the fact that k = C(e, |a|) ≤ |a|, and e is a constant.
Thus B is a desired polynomial time Turing reduction, which proves Claim 1.

Since ν is polynomial time computable, without loss of generality we assume

ν(x) ≤ 2|x|(4.9)

for any x ∈ (Σ′)∗. Let

P ′ :=
{

(x, 22|x|
) | x ∈ P

}
.3

3Here 22|x|
is represented in unary.
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It follows that for all (x,m) ∈ P ′

m = 22|x|
.(4.10)

Claim 2. M (P, ν) is 2-exptime Turing reducible to P ′.
Proof of the claim. Given an instance (x,m) ∈ (Σ′)∗ × N, we have

(x,m) ∈ M (P, ν) ⇐⇒ x ∈ P ⇐⇒ (x, 22|x|
) ∈ P ′.

This can be easily turned into a 2-exptime Turing reduction, and thus Claim 2 is
proved.

Note that for all (x,m) ∈ P ′ we have

μ(x,m) =

⌈
ν(x)

logm

⌉

≤
⌈

2|x|

log 22|x|

⌉
(by (4.9) and (4.10))

= 1.(4.11)

Claim 3. There is a polynomial time Turing reduction B from P ′ to Q. Moreover
the set

{
(e, a, k) ∈ Q | for some (x,m) ∈ (Σ′)∗ × N, there is

an oracle query “(e, a, k) ∈ Q?” in the computation of B on (x,m)
}

is finite.
Proof of the claim. Recall that we assume M (P, ν) ≡FPT-T (Q, κ). So there is

an algorithm A
′ with an oracle to (Q, κ) and a computable function g : N → N such

that, given an instance (x,m) ∈ (Σ′)∗ × N:
(E1) A

′ decides if (x,m) ∈ M (P, ν) in time

g(μ(x,m)) · |(x,m)|O(1);

(E2) for each oracle query “(e′, a′, k′) ∈ Q?” posed by A
′,

κ(e′, a′, k′) = k′ ≤ g′(μ(x,m))

for a computable function g′ : N → N. For simplicity, we assume g′ = g.
Given an instance (x,m) of P ′, the algorithm B first checks in polynomial time

if m �= 22|x|
or μ(x,m) > 1. If so, then (x,m) is a “no” instance by (4.10) and (4.11).

Otherwise m = 22|x| ≥ |x|, and μ(x,m) = 1. It follows that

(x,m) ∈ P ′ ⇐⇒ x ∈ P ⇐⇒ (x,m) ∈ M (P, ν) .

Therefore B decides if (x,m) ∈ P ′ by simulating A
′ on (x,m), which by (E1) requires

time

g(μ(x,m)) · |(x,m)|O(1) = g(1) · |(x,m)|O(1),

and is therefore polynomial in |(x,m)|.
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Now for any oracle query “(e′, a′, k′) ∈ Q?” that occurs in the simulation of A
′

on (x,m), by (E2) we have

k′ = κ(e′, a′, k′) ≤ g(μ(x,m)) = g(1).

If (e′, a′, k′) ∈ Q and e′ = e, then k′ = C(e, |a′|) is the maximum such that ϕe(1), . . . ,
ϕe(k

′) can be computed in at most |a′| steps and all bounded by |a′|. As k′ is bounded
by the fixed constant g(1) independent of x and m, there are only finitely many such
a′ with (e, a′, k′) ∈ Q for all possible instances (x,m); otherwise, φe is not total. Thus
Claim 3 is proved.

Claim 4. There is a polynomial time Turing reduction from P ′ to

Le =
{
(e′, a) | e′ �= e and a ∈ Qe′

}
.

Proof of the claim. By Claim 3 it suffices to give a polynomial time Turing
reduction from

{(e′, a, k) ∈ Q | e′ �= e}

to Le: For any instance (e′, a, k), if k �= C(e′, |a|) or e′ = e, then it is a no instance.
Otherwise

(e′, a, k) ∈ {
(e′, a, k) ∈ Q | e′ �= e

} ⇐⇒ (e′, a) ∈ Le.

This proves Claim 4.
Combining Claims 1, 2, and 4, we have a 2-exptime Turing reduction from Qe to

Le by Lemma 28, which contradicts our construction.

5. The S-hierarchy and the W-hierarchy. The purpose of this last section
of the paper is to gather further evidence that the miniaturization mapping is not only
an abstract isomorphism between exponential and parameterized complexity theory
but actually establishes a relation between interesting and relevant complexity classes
on both sides. Specifically, we shall lay out a relation between a natural hierarchy of
the exponential theory and the W-hierarchy of parameterized complexity theory. The
basic ideas underlying this section go back to Abrahamson, Downey, and Fellows [1]
and have been refined in [5, 6, 13].

The W-hierarchy is defined in terms of weighted satisfiability problems for classes
Γ of Boolean formulas or circuits:

p-WSat(Γ)
Instance: γ ∈ Γ and k ∈ N.

Parameter: k.
Problem: Decide whether γ has a satisfying assignment of Hamming

weight k.

We denote the class of Boolean circuits by Circ and the class of formulas by Form.
Recall that Form is viewed as a subclass of Circ. Note that p-WSat(Circ) is
exactly the parameterized problem p-W-Circuit-Sat introduced in Example 17.
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For t ≥ 0 and d ≥ 1 we inductively define the following classes Γt,d and Δt,d of
Boolean formulas:

Γ0,d := {λ1 ∧ · · · ∧ λc | c ≤ d, λ1, . . . , λc literals},
Δ0,d := {λ1 ∨ · · · ∨ λc | c ≤ d, λ1, . . . , λc literals},

Γt+1,d :=
{∧

i∈I

δi | I finite, δi ∈ Δt,d for all i ∈ I
}
,

Δt+1,d :=
{∨

i∈I

γi | I finite, γi ∈ Γt,d for all i ∈ I
}
.

The W-hierarchy of parameterized complexity theory consists of the following
classes.

Definition 30. (1) For t ≥ 1, W[t] :=
⋃

d≥1{(Q, κ) | (Q, κ) ≤FPT p-WSat(Γt,d)}.
(2) W[Sat] := {(Q, κ) | (Q, κ) ≤FPT p-WSat(Form)}.
(3) W[P] := {(Q, κ) | (Q, κ) ≤FPT p-WSat(Circ)}.
This definition of the W-hierarchy establishes the role of weighted satisfiability

problems as the “generic” (hard) problems of parameterized complexity theory. We
propose that plain (unweighted) satisfiability problems with the number of variables
size measure can play a similar role in exponential complexity theory. For every class
Γ of Boolean formulas or circuits, we let:

s-var-Sat(Γ)
Instance: γ ∈ Γ.

Parameter: Number of variables of γ.
Problem: Decide whether γ is satisfiable.

The S-hierarchy consists of the following classes.
Definition 31. (1) For t ≥ 1, S[t] :=

⋃
d≥1{(P, ν) | (P, ν) ≤serf s-var-Sat(Γt,d)}.

(2) S[Sat] := {(P, ν) | (P, ν) ≤serf s-var-Sat(Form)}.
(3) S[P] := {(P, ν) | (P, ν) ≤serf s-var-Sat(Circ)}. So far, mainly the first

level S[1] of the S-hierarchy has been studied, and some highly nontrivial complete-
ness results are known. Most importantly, Impagliazzo, Paturi, and Zane [16] have
proved that s-var-Sat(Γ1,3) (that is, 3-satisfiability) is complete for S[1] under serf
Turing reductions. Thus the exponential hypothesis (discussed in the introduction)
is equivalent to S[1] �= SUBEPT.

The image of the S-hierarchy.
Definition 32. (1) For a class C of parameterized problems that is downward

closed under serf reducibility, the image of C under the miniaturization mapping is
the class

M (C) := {(Q, κ) | (Q, κ) ≤FPT M (P, ν) for some (P, ν) ∈ C
}
.

(2) For a class C of parameterized problems that is downward closed under FPT
reducibility, the preimage of C under the miniaturization mapping is the class

M−1(C) := {(P, ν) | M (P, ν) ∈ C}.

To relate the S-hierarchy and the W-hierarchy, we consider the image of the S-
hierarchy under the miniaturization mapping (the so-called M-hierarchy).
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Definition 33. For t ≥ 1, we let M[t] := M (S[t]). Furthermore, we let
M[Sat] := M (S[Sat]) and M[P] := M (S[P]).

The M-hierarchy is a natural hierarchy within the realm of parameterized com-
plexity theory. It is populated not only by the miniaturizations of the satisfiability
problems but also by the following reparameterizations. For every class Γ of Boolean
formulas or circuits, we let:

p-log−1-Sat(Γ)
Instance: A circuit γ ∈ Γ of size m with n inputs (variables).

Parameter: �n/ logm�.
Problem: Decide whether γ is satisfiable.

The motivation to study these problems can be explained as follows: For sim-
plicity, let us consider Γ = Circ, and let m denote the size and n the number of
input gates. If we parameterize Sat(Circ) by n, then we obtain the familiar problem
s-var-Sat(Circ), which is fixed-parameter tractable; it even belongs to the class EPT.
A parameterized problem gets “harder” if we decrease the parameter. For the satisfi-
ability problem, we may consider the parameterizations (Sat(Circ), κh) for functions
h : N → N, where for every circuit γ of size m with n inputs we let

κh(γ) =

⌈
n

h(m)

⌉
.

For constant h = 1, κh is just our old parameterization by the number of inputs, and
therefore the problem (Sat(Circ), κh) = s-Sat(Circ) is fixed-parameter tractable.
At the other end of the scale, for h(m) ≥ m ≥ n we have κh(γ) = 1, and essentially
(Sat(Circ), κh) is just the NP-complete unparameterized problem Sat(Circ). More
formally, the problem is complete for the parameterized complexity class para-NP
(cf. [14]). Thus by increasing the function h we can shift the fixed-parameter tractable
problem s-Sat(Circ) to a highly intractable problem that is not even contained in
the class XP (unless PTIME = NP). We leave it as an easy exercise for the reader to
prove that for h(m) ∈ oeff(logm) the problem (Sat(Circ), κh) is still fixed-parameter
tractable. For h(m) ∈ ω(logm), it seems unlikely that the problem (Sat(Circ), κh)
is in XP, and therefore it is not so interesting from the point of view of parameterized
complexity. However, for h(m) ∈ Θ(logm) the problem (Sat(Circ), κh) is right on
the “boundary” of XP. Note that p-log−1-Sat(Circ) is (Sat(Circ), κh) for h(m) =
logm.

While the problem p-log−1-Sat(Γ) bears some similarity with M (s-var-Sat(Γ)),
the two problems are not the same. Nevertheless, it can be shown that for “well-
behaved” classes Γ of circuits, which include Circ, Form, and all classes Γt,d, the
two problems are FPT-equivalent [13]. Hence the M-hierarchy can be characterized
directly in terms of the log-parameterizations:

M[t] =
⋃

d≥1

{
(Q, κ)

∣∣ (Q, κ) ≤FPT p-log−1-Sat(Γt,d)
}

for t ≥ 1,

M[Sat] =
{
(Q, κ)

∣∣ (Q, κ) ≤FPT p-log−1-Sat(Form)
}
,

M[P] =
{
(Q, κ)

∣∣ (Q, κ) ≤FPT p-log−1-Sat(Circ)
}
.

From the fact that s-Sat(Γ1,3) (i.e., 3-SAT) is complete for S[1] under serf Turing
reductions, it follows that p-log−1-Sat(Γ1,3) is complete for M[1] under FPT Turing
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SUBEPT

S[1]

S[2]

...

S[SAT]

S[P]

EPT

M−→

FPT

M[1]

W[1]

M[2]

W[2]

...

W[SAT]

W[P]

XP

Fig. 5.1. Overview over the complexity classes and hierarchies.

reductions. Another natural problem complete for M[1] is the following reparameter-
ized vertex cover problem; this result is due to Cai and Juedes [4]:

p-log−1-Vertex-Cover

Instance: A graph G of size m and a nonnegative integer k.
Parameter: �k/ logm�.

Problem: Decide whether G has a vertex cover of cardinality k.

The following theorem shows how the M-hierarchy relates to the W-hierarchy.
Theorem 34 (Abrahamson, Downey, and Fellows [1]). For every t ≥ 1, M[t] ⊆

W[t] ⊆ M[t + 1]. Moreover M[Sat] = W[Sat] and M[P] = W[P].
For a proof, we refer the reader to [13] or [14].
A schematic image illustrating the relations between the complexity classes con-

sidered so far can be found in Figure 5.1.
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The preimage of the W-hierarchy. The discussion above shows that the M-
hierarchy, that is, the image of the S-hierarchy under the miniaturization mapping,
is reasonably well understood and is interesting also for “intrinsically parameterized
complexity” reasons. What about the preimage of the W-hierarchy in the world of
exponential complexity (shown as dashed ovals in Figure 5.1)? The remainder of the
section is devoted to this question.

When we studied the M-hierarchy and, more generally, the image of problems in
EPT under the miniaturization mapping, we reparameterized the problems by divid-
ing the parameter by the logarithm of the instance size, hence making the parameter
smaller and the problems harder. It turned out that this increased the parameterized
complexity by just the right amount, shifting problems from EPT to XP. The natural
idea for the converse direction is to multiply the parameter by the logarithm of the
instance size, hence making the parameter larger and the problems “easier.” Again,
we will see that this simple idea works.

It will be convenient to first prove that the reparameterization of problems by
multiplying the parameter by the logarithm of the instance size gives an inverse for
the miniaturization mapping for all problems satisfying certain technical conditions.
After that, we shall prove that the W-hierarchy can be characterized in terms of
problems satisfying these technical conditions.

Definition 35. Let (Q, κ) be a parameterized problem over the alphabet Σ.
The log reparameterization of (Q, κ) is the mapping L between parameterized

problems defined by L (Q, κ) := (Q,λ), where λ : Σ∗ → N, with

λ(x) =

{
�κ(x) · log |x|� if |x| ≥ 2,

1 otherwise

for all x ∈ Σ∗.
Then obviously the lemma below follows.
Lemma 36. For all parameterized problems (Q, κ) it holds that

(Q, κ) ≤FPT M(L(Q, κ)).

Proof. The mapping x �→ (x, |x|) is an FPT reduction.
We can prove a partial converse for problems that have the following property.
Definition 37. A parameterized problem (Q, κ) over the alphabet Σ is scalable

if there is a mapping F : Σ∗ ×N such that for all x ∈ Σ∗ and s ≥ max{|x|, 2} it holds
that:

(1) (x ∈ Q ⇐⇒ F (x, s) ∈ Q);
(2) F (x, s) is computable in time polynomial in (|x| + s);

(3) κ(F (x, s)) ≤ �κ(x) · log |x|
log s �.

Example 38. The parameterized independent set problem

p-Independent-Set

Instance: A graph G and k ≥ 1.
Parameter: k.

Problem: Decide whether G has an independent set of cardinality k.

is scalable.
To see this, let G = (V,E) be a graph and k ∈ N. Let m be the size of the

instance (G, k) and s ≥ 2. Clearly m ≥ 2. Let � := �log s/ logm�. Then m�−1 <
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s ≤ m�. Without loss of generality we assume that k is a multiple of � (in the proof
of Lemma 42, we shall see how to avoid such an assumption). Let G′ be the graph
whose vertices are all independent sets of G of size �, with an edge between two such
independent sets if they are disjoint and their union is an independent set of size 2�.
Then G has an independent set of size k if and only if G′ has an independent set of
size

k

�
≤ k · logm

log s
≤

⌈
k · logm

log s

⌉
.

We let (G′, k/�) be the scaled instance of p-Independent-Set.
The slices of a parameterized problem (Q, κ) are the classical problems Qi = {x ∈

Q | κ(x) = i} for i ≥ 1. Observe that, if a problem is scalable and its first slice is
polynomial time decidable, then the problem is in XP. To see this, let (Q, κ) be a
scalable problem such that Q1 is polynomial time decidable. Let x be an instance.
Scale x with s = |x|κ(x). Then the resulting instance x′ has parameter value 1. Hence
x′ ∈ Q can be decided in polynomial time. Note that this actually gives an algorithm
deciding x ∈ Q in time |x|O(κ(x)).

Lemma 39. Let (Q, κ) be a scalable problem. Then

M (L (Q, κ)) ≡FPT (Q, κ).

Proof. By Lemma 36, we have (Q, κ) ≤FPT M (L (Q, κ)). Thus we have only to
prove the converse. Let Σ be the alphabet of Q. Let F : Σ∗ × N → Σ∗ be a function
witnessing that (Q, κ) is scalable. We define a reduction R : Σ∗ × N → Σ∗ by:

R(x,m) :=

{
F (x,m) if m ≥ |x| ≥ 2,

x otherwise.

Obviously, (x,m) ∈ M (L (Q, κ)) if and only if R(x,m) ∈ Q. Furthermore, R is
polynomial time computable because F is. To see that the parameter of the R-image
of an instance can be bounded in terms of the parameter of the instance, let (x,m)
be an instance of M (L (Q, κ)) and x′ := R(x,m). If |x| < 2, then x′ = x, and
κ(x′) = κ(x) is bounded by a constant, since there are only finitely many x with
|x| < 2. So we assume |x| ≥ 2 and let

k :=

⎧
⎨
⎩

⌈
�κ(x)·log |x|�

logm

⌉
if m ≥ 2,

�κ(x) · log |x|� otherwise

be the parameter value of (x,m). If m ≥ |x|, then x′ = F (x,m) and

κ(x′) ≤
⌈
κ(x) · log |x|

logm

⌉
≤ k,

where the first inequality holds by the definition of scalability. Otherwise m < |x|. It
follows that x′ = x and κ(x′) = κ(x).

- If m ≥ 2, then

κ(x) =
κ(x) · logm

logm
<

κ(x) · log |x|
logm

≤
⌈�κ(x) · log |x|�

logm

⌉
= k.

- Otherwise, m = 1, and we have

k = �κ(x) · log |x|� ≥ κ(x).
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The notation in the following example requires explanation: For functions f, g :
N

2 → N we say that g ∈ oeff(f) if there is a computable function ι : N → N

that is nondecreasing and unbounded such that for all m, k it holds that g(m, k) ≤
f(m, k)/ι(m + k). We say that g ∈ 2o

eff (f(m,k)) if there is a function g′ ∈ oeff(f) such
that g(m, k) ≤ 2g

′(m,k) for all m, k. Some care needs to be taken with this notation.
For example,

2o
eff (k·logn) ⊂ oeff(nk).

An example of a function in oeff(nk) \ 2o
eff (k·logn) is nk/2.

Example 40. The log reparameterization of p-Independent-Set is the problem:

s-log-Independent-Set

Instance: A graph G of size m and k ≥ 1.
Parameter: �k · logm�.

Problem: Decide whether G has an independent set of cardinality k.

Hence the miniaturization mapping maps s-log-Independent-Set to a parameter-
ized problem FPT-equivalent to p-Independent-Set or, equivalently, maps the serf-
degree �s-log-Independent-Set�serf to the FPT-degree �p-Independent-Set�FPT.
As p-Independent-Set is complete for W[1] under FPT reductions [11], it follows
that s-log-Independent-Set is complete for M−1(W[1]) under serf reductions.

An interesting consequence of this result is that FPT = W[1] if and only if there
is an algorithm deciding whether a graph of size m has an independent set of size k in

time 2o
eff (k·logm) ·mO(1) or, equivalently, an algorithm deciding whether an n-vertex

graph has an independent set of size k in time 2o
eff (k·logn) · nO(1).

We cannot apply the same technique as in the previous example to the defining
problems p-WSat(Γt,d) of the W-hierarchy directly, because they are not (obviously)
scalable. We take a detour through the monotone and antimonotone versions of these
problems. Let us call a Boolean formula monotone if it contains no negations and
antimonotone if all variables are negated and no other negations occur. For a class Φ
of formulas, we use Φ+ to denote the class of monotone formulas in Φ and similarly
Φ− for the antimonotone formulas.

Lemma 41 (Downey and Fellows [10, 11]). Let t, d ∈ N such that t + d ≥ 3.
(1) If t is even, then p-WSat(Γ+

t,d) is complete for W[t] under FPT reductions.

(2) If t is odd, then p-WSat(Γ−
t,d) is complete for W[t] under FPT reductions.

Lemma 42. Let t, d ∈ N such that t + d ≥ 3.
(1) If t is even, then p-WSat(Γ+

t,d) is scalable.

(2) If t is odd, then p-WSat(Γ−
t,d) is scalable.

Furthermore, the problems p-WSat(Form) and p-WSat(Circ) are scalable.
Proof. Assume first that t is odd. Let γ ∈ Γ−

t,d be a formula of size m with n
variables. Without loss of generality we assume m ≥ n ≥ 2 and let k, s ∈ N such that
n ≥ k ≥ 1, s ≥ m, and � := �log s/ log n�. Let us assume first that k is a multiple of �.

Let V denote the set of variables of γ. For each �-element subset S ⊆ V we
introduce a new variable YS �∈ V . Now we replace each negative literal ¬X in γ by
the conjunction

∧

S ⊆ V with
|X| = � and X ∈ S

¬YS .
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The resulting formula can be transformed into an equivalent Γ−
t,d formula γ′ in time

O(md·�). We let

γ′′ := γ′ ∧
∧

S, S′ ⊆ V with

|S| = |S′| = � and S ∩ S′ = ∅

(¬YS ∨ ¬YS′).

As t + d ≥ 3, the resulting formula is still in Γ−
t,d. It is easy to see that γ′′ has

a satisfying assignment of Hamming weight k/� if and only if γ has a satisfying
assignment of Hamming weight k. Furthermore,

k

�
≤ k · log n

log s
≤ k · logm

log s
≤

⌈
k · logm

log s

⌉
.

It remains to explain what we do if k is a multiple not of �. We let k̃ be the least
multiple of � greater than k. Then we choose s̃ ≥ s such that

⌈
log s̃/ log(n + 1 + k̃ − k)

⌉
= �.

We let γ̃ be the Γ+
t,d formula

γ ∧ (¬Y1 ∨ ¬Z) ∧ · · · ∧ (¬Yk̃−k ∨ ¬Z),

where the Y1, . . . , Yk̃−k, Z are new variables not in γ. Then γ̃ has a satisfying assign-

ment of Hamming weight k̃ if and only if γ has a satisfying assignment of Hamming
weight k. We apply the construction above to the instance (γ̃, k̃) and s̃ to obtain a
Γ+
t,d formula γ̃′′ that has a satisfying assigment of Hamming weight k̃/� if and only if

γ has a satisfying assignment of weight k. As �k̃/�� = �k/�� by the choice of k̃, this
is good enough.

Assume now that t is even. Let γ ∈ Γ+
t,d be a formula of size m with n variables,

and let k, s ∈ N such that n ≥ k ≥ 1, s ≥ m. Let � := �log s/ log n�. Without loss of
generality, we may assume that k is a multiple of �. Let V be the set of variables of
γ. For each �-element subset S ⊆ V we introduce a new variable YS . Now we replace
each variable X in γ by the disjunction

∨
S⊆V with X∈S YS . The resulting formula

can be transformed into an equivalent Γ+
t,d formula γ′ in time O(md·�). It is easy to

see that γ′ has a satisfying assignment of Hamming weight k/� if γ has a satisfying
assignment of Hamming weight k. Conversely, if γ′ has a satisfying assignment of
Hamming weight k/�, then γ has a satisfying assignment of Hamming weight at most
k and hence, by monotonicity, a satisfying assignment of weight exactly k. Moreover,
we have k/� ≤ �k · logm/log s� (as above).

Using similar ideas, it is easy to prove that p-WSat(Form) and p-WSat(Circ)
are scalable.
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For every class Γ of Boolean formulas or circuits, we let:

s-log-WSat(Γ)
Instance: γ ∈ Γ of size m and k ∈ N.

Parameter: �k · logm�.
Problem: Decide whether γ has a satisfying assignment of Hamming

weight k.

Corollary 43. Let t, d ∈ N such that t + d ≥ 3.
(1) If t is even, then s-log-WSat(Γ+

t,d) is complete for M−1(W[t]) under serf
reductions.

(2) If t is odd, then s-log-WSat(Γ−
t,d) is complete for M−1(W[t]) under serf

reductions.
As M−1(W[Sat]) = S[Sat] and M−1(W[P]) = S[P], we also get the following.
Corollary 44. (1) s-log-WSat(Form) is complete for S[Sat] under serf re-

ductions.
(2) s-log-WSat(Circ) is complete for S[P] under serf reductions.
Note that, combined with our earlier results, (2) implies the following corol-

lary. (Statement (1) has a similar consequence for formulas, which we do not state
explicitly.)

Corollary 45. The following statements are equivalent:
(1) There is an algorithm deciding if a circuit of size m with n inputs is satisfiable

in time 2o
eff (n) ·mO(1).

(2) There is an algorithm deciding if a circuit of size m with n inputs has a

satisfying assignment of Hamming weight k in time 2o
eff (k·logm) ·mO(1).

Corollary 43 already yields a characterization of the preimage of the W-hierarchy
under the miniaturization mapping, but we find it not yet completely satisfactory
because it involves a restriction of the satisfiability problems not used so far. Fortu-
nately, we can easily get rid of this restriction.

Lemma 46. Let t, d ∈ N such that t + d ≥ 3.
(1) If t is even, then s-log-WSat(Γt,d) ≡serf s-log-WSat(Γ−

t,d).

(2) If t is odd, then s-log-WSat(Γt,d) ≡serf s-log-WSat(Γ+
t,d).

Proof. In [15], the authors give polynomial time reductions from WSat(Γt,d)
to WSat(Γ+

t,d) for even t and from WSat(Γt,d) to WSat(Γ+
t,d) for odd t that are

linear in the parameter. These reductions can easily be turned into the desired serf
reductions.

Finally, we are ready to state and prove the main result of this section.
Theorem 47. For every t ≥ 1,

M−1
(
W[t]

)
=

⋃

d≥1

{
(P, ν)

∣∣ (P, ν) ≤serf s-log-WSat(Γt,d)
}
.

6. Concluding remarks. This paper is a contribution to a (not yet clearly
established) exponential complexity theory. A long-term goal of such a theory might
be to prove that the exponential time hypothesis is equivalent to P �= NP and thus
obtain a solid basis for exponential lower bounds such as the one for 3-Sat stated
by the exponential time hypothesis. However, with current methods this goal seems
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out of reach, and maybe such an equivalence cannot be established without actually
proving that the exponential time hypothesis and hence P �= NP holds.4

What we can establish now is a close connection between exponential and param-
eterized complexity theory. The obvious open question is whether the exponential
time hypothesis is equivalent to FPT �= W[1] or, more or less equivalently, whether
M[1] = W[1]. Despite serious efforts, so far researchers in parameterized complexity
have not been able to prove that M[1] = W[1], even though this still seems quite
plausible. However, it would also be compatible with our current knowledge that
M[2] = W[1].

The higher levels of the S-hierarchy (or, equivalently, the M-hierarchy) have not
yet received much attention. Specifically, no completeness results for S[2] are known,
even though the class contains natural problems such as s-var-Sat that are not be-
lieved to be in S[1]. It may be worthwhile to study the class S[2] and develop a
completeness theory for this class similar to the S[1]-completeness theory, which is
based on Impagliazzo, Paturi, and Zane’s sparsification lemma [16].
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problem, in a restricted model which requires that clients, upon becoming active, must remain so for
at least log(n) time steps. In contrast to our primarily negative results in the oblivious case, here we
present an algorithm which is constant-competitive. Our lower bounds justify the intuition, implicit
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Symposium on Foundations of Computer Science, 1994, pp. 240–249], that some such restriction
(i.e., requiring some stability in the demand pattern over time) is necessary in order to achieve a
constant—or even polylogarithmic—competitive ratio.

Key words. distributed algorithms, maximum matching, multicommodity flow, oblivious rout-
ing

AMS subject classifications. 68W15, 68W20

DOI. 10.1137/S009753970444661X

1. Introduction. We consider distributed algorithms for maximizing through-
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with VL representing the clients, VR representing the servers, and E representing the
client-server assignments which are considered admissible, e.g., because of proximity
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is impossible to get an instantaneous snapshot of the demand pattern. Our focus is on
distributed algorithms in which clients must make decisions knowing nothing about
the current demand pattern other than their own demand, and servers must make de-
cisions knowing nothing other than what they learn from their adjacent clients. (We
also assume that servers may report their load to the adjacent clients at the end of a
round, though this is not necessarily predictive of their load in future rounds.) This
emphasis on decentralized algorithms with an extremely limited amount of communi-
cation distinguishes the present paper from most of the previous work on distributed
load balancing.

Most of the present paper is devoted to analyzing the following game between
an adversary and a distributed network of clients and servers, joined together in a
bipartite graph with edges connecting clients to servers. First, the adversary specifies a
subset of clients as active. Next, each active client chooses an adjacent server (possibly
using randomization) and sends a request to that server. In choosing a server, a client
is not assumed to know any information other than the set of servers to whom it
is connected and the fact that the client itself is active. Finally, each server which
received at least one request chooses to satisfy one of those requests. In choosing to
satisfy a request, the server is not assumed to know any information other than the set
of clients from whom it received requests. We say that an algorithm has competitive
ratio ρ, or is ρ-competitive, if it is the case that no matter what set of clients the
adversary designates as active, the expected number of active clients whose requests
are satisfied is at least k/ρ, where k is the maximum number of requests that could
possibly have been satisfied, i.e., the size of a maximum matching between active
clients and servers. While it is possible to achieve competitive ratios significantly
better than the trivial O(n) bound for this problem, we show that it is impossible to
achieve a polylog(n) competitive ratio. (Here n denotes the total number of clients
in the network.)

As a counterpoint to these primarily negative results, we consider an online version
of the same problem. In this online problem, the game described above (henceforth,
the “one-shot game”) is played repeatedly, with the adversary specifying a potentially
different set of active clients each time. If no restriction is placed on the adversary’s
behavior over time, then the repeated game reduces to a sequence of unrelated in-
stances of the one-shot game, and there is no essential difference between the online
setting and the one-shot setting: the best competitive ratio achievable by randomized
algorithms in the online case is identical to the best competitive ratio achievable by
randomized algorithms in the one-shot case. However, the situation becomes quite dif-
ferent when we consider a restricted adversarial model in which a client who becomes
active must remain active for at least r > 0 rounds thereafter. In this environment, we
present an algorithm whose competitive ratio is O(Δ6/r), where Δ is an upper bound
(known to all parties) on the degree of any client. In particular, the algorithm achieves
a constant competitive ratio when r = Ω(log Δ). Our algorithm is structurally similar
to the concurrent routing algorithm of Awerbuch and Azar [2], with two important
differences: the latter algorithm assumes that clients are not entering and leaving
the system over time, and it requires the clients to gradually increase their flow until
eventually reaching the desired level of throughput. Our algorithm permits clients to
become active and inactive over time (provided that a client, upon becoming active,
remains active for the next r steps), and it permits them to route their full demand
in each round in which they are active (though the demand may not be satisfied if it
is sent to a congested server).

All of the algorithms presented in this paper are very easy to implement, re-
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quiring straightforward decision making and communication protocols on the part of
clients and servers. Some of the lower bound proofs, on the other hand, are relatively
sophisticated. We show that oblivious algorithms for throughput maximization can
be obstructed by the presence of substructures in the bipartite graph which we call
γ-focal matchings. The task of proving competitive-ratio lower bounds is thereby
reduced to a combinatorial problem of packing as many γ-focal matchings as pos-
sible into a bipartite graph of size n. Our construction of such graphs involves an
interesting mixture of combinatorial, algebraic, and probabilistic techniques. These
lower bound techniques constitute one of the main contributions of this paper, and
we believe it may be interesting to consider whether they can be used to obtain lower
bounds for other problems.

2. Related work. Recall that this paper considers load balancing for a client-
server model which has two essential characteristics. The first one is that our system
is fully dynamic and the input can change drastically from one time period to the
next. The second one is that there is no central “dispatcher” in the system that
could communicate the result of the maximum matching computation to the clients,
thus guiding their routing decisions. Indeed, the interplay of these two aspects plays
an important role in this paper, since otherwise there are many algorithms in the
literature for models possessing only one of these characteristics. Below, we review
some of these results.

2.1. Centralized control. Finding a maximum matching, or its generalization
to maximum flow, is one of the classical problems in combinatorial optimization.
The fastest known sequential algorithm for the problem has running time close to
O(|E||V |) [12]. For the more general problem of solving a positive linear program
to within a (1 + ε) factor of optimality, Plotkin, Shmoys, and Tardos [19] present a
sequential algorithm which repeatedly identifies a globally minimum weight path and
pushes more flow along that path. The algorithm of Plotkin et al. is further improved
by Garg and Könemann [10], who give faster and simpler primal-dual algorithms for
multicommodity flow and other fractional packing problems with the same approx-
imation factor (1 + ε). In addition, several (deterministic and randomized) parallel
algorithms for maximum bipartite matching and maximum flow have been proposed
(see, e.g., [9, 12, 15]). Although these algorithms have efficient implementations, they
are all centralized algorithms and require global knowledge of the demand pattern and
global coordination, which make them unsuitable for fast distributed implementation
with local information.

2.2. Distributed control with persistent demands.

Routing and admission control. Assuming that the demand pattern remains
stable for at least Ω(log n) rounds at a time, a distributed routing and flow control
algorithm with a global objective function has been given by Awerbuch and Azar [2].
This work is based on fundamental results from competitive analysis [1, 3] and as-
sumes clients can gradually increase their flow; while the flow is still small it could,
for example, be buffered at the client. In this case, under the assumption that there
is a small number of routing paths, they provide an O(log n)-competitive algorithm
for the routing problem, which takes a polylogarithmic number of rounds to con-
verge. Awerbuch and Leighton [4, 5] have suggested general methods for distributed
routing and admission control that use a polynomial amount of buffer space. Our
lower bounds demonstrate that at least one of these two assumptions—persistence



1262 AWERBUCH, HAJIAGHAYI, KLEINBERG, AND LEIGHTON

of demands over time, or the ability to buffer packets—is really required in order to
achieve a polylogarithmic competitive ratio.

Distributed admission control alone. For the distributed admission control
problem (in which clients do not choose a server or routing path but only their sending
rate) Papadimitriou and Yannakakis [18] initiated the study of flow control using
distributed routers based only on local information. More precisely, they presented
a framework for solving positive linear programs by distributed agents. Luby and
Nisan [16], Bartal, Byers, and Raz [7], and Garg and Young [11] obtained (1 + ε)-
competitive algorithms converging in a polylogarithmic number of rounds.

Even though all of these results are distributed, they converge to their final so-
lution in a polylogarithmic number of rounds, which makes them unsuitable for our
client-server model.

2.3. Distributed control without persistence of demands. One possible
approach to distributed load-balancing is to use an “oblivious” solution. Such an
oblivious algorithm exists for the congestion minimization problem in undirected edge-
capacitated graphs (see Räcke’s original paper [20] and its subsequent improvement by
Harrelson, Hildrum, and Rao [14]) and for directed and node-capacitated graphs [13].
No such solution exists for the throughput problem, though Räcke and Rosén [21]
(independently and concurrently with our work) gave a distributed online call control
algorithm which is closely related to oblivious throughput maximization in undirected
graphs. One of the main results in our paper establishes nearly tight upper and lower
bounds on the performance of oblivious routing schemes in directed bipartite graphs, in
terms of throughput. The performance gap between the optimal and oblivious solution
is polynomial; our lower bounds show that this gap is inherent. A comparably strong
lower bound for oblivious routing in bipartite directed graphs, with the objective of
congestion minimization, was established using a simple construction in [6]. Our lower
bound requires a significantly more sophisticated construction because we seek a lower
bound on competitive ratio for throughput rather than edge congestion. This is the
first polynomial lower bound on throughput for oblivious routing.

3. Formal model and statement of results. Our graph terminology is as
follows. All the graphs in this paper are directed bipartite graphs without multiple
edges. For such a graph G = (VL, VR, E), we will refer to elements of VL as clients
and elements of VR as servers. The number of clients is denoted by n and the number
of servers by m. The edges of E are directed from clients to servers. For a vertex
set S ⊆ VL ∪ VR we denote the set of adjacent vertices by Γ(S), the set of outgoing
edges by δ+(S), and the set of incoming edges by δ−(S). When S is a singleton set
{v}, these will be abbreviated to Γ(v), δ+(v), δ−(v). The degree of a vertex v will be
denoted by d(v).

The prototypical problem we will analyze is the following throughput maximiza-
tion problem. An adversary designates a set S of clients, called the active clients.
Each active client i generates a request and must choose a (possibly random) adja-
cent server to which it will send this request, without knowing which other clients are
active. Each server that receives one or more requests may choose to satisfy any one
of them. The goal is to maximize the expected number of satisfied requests, called the
throughput. The algorithm is judged according to its competitive ratio, i.e., the ratio
of its throughput to that of the omniscient algorithm which chooses a throughput-
maximizing assignment. We will use the letter k to denote the throughput of the
optimal assignment, i.e., the size of a maximum matching from the active clients to



LOAD BALANCING WITHOUT GLOBAL INFORMATION 1263

VR.

The following variants of the problem are also of interest.

Multicast model. In contrast to the unicast model described above, we may con-
sider a model in which a client may send its request to any subset of the adjacent
servers. A server receiving one or more requests may choose to satisfy any one of
them, but it must make this choice without any knowledge about the set of active
clients other than the information contained in the requests it received. The through-
put is defined as the number of distinct clients whose requests are satisfied; i.e., a
client whose request is satisfied by two or more servers still contributes only 1 to
the throughput. (This definition of throughput is appropriate if we suppose that
each client generates at most one job and that when many servers satisfy one client’s
request they are duplicating each other’s work.)

Fractional assignments. Instead of requiring each active client i to choose one of
its adjacent servers, it may choose a fractional load distribution among its outgoing
edges. In other words, each client chooses a function fi : δ+(i) → [0, 1] satisfying∑

e∈δ+(i) f(e) ≤ 1. As always, client i must specify fi without knowing which other

clients are in S. The load on a server j, denoted by �(j), is equal to the total load on
all incoming edges. The throughput is defined by

∑
j∈VR

min{1, �(j)}.
Online with restricted adversary. In the online restricted adversary model, we

assume that the adversary designates a sequence of instances of the throughput max-
imization problem described above by specifying a different set St of active clients in
each time period t. The adversary is restricted to choose a sequence of sets satisfying
the following constraint: every client, upon becoming active, must remain active for
at least r rounds. In other words, if i ∈ St, then there exist t0, t1 such that t0 ≤ t ≤ t1,
t1 − t0 ≥ r, and i ∈ St′ for t0 ≤ t′ ≤ t1. (We call r the minimum activity period.) We
also assume that servers may report their load and capacity to the adjacent clients at
the end of each round. In distinguishing this online model from the original through-
put maximization problem stated at the beginning of this section, we will call the
latter problem the one-shot model.

In proving lower bounds in this paper, we will assume that the structure of the
entire graph G is known to all clients and servers and that they have access to an
unlimited supply of shared random bits. In contrast, our upper bounds will be based
on algorithms which require much less knowledge on the part of the participants: each
vertex needs only know which vertices are adjacent to it. (In section 7 we must also
assume that they share a common estimate of the maximum client degree, Δ.)

The following theorems summarize our main results.

Theorem 1. In the unicast one-shot model, there is an algorithm whose com-
petitive ratio is O(

√
k), and this bound is tight in terms of k, even if the algorithm

is randomized and is allowed to use fractional assignments. In terms of m, the same
algorithm has a competitive ratio of O(

√
m), and this is again tight. In terms of n,

the competitive ratio of any algorithm is Ω(n0.103).

Theorem 2. In the multicast one-shot model, there is an algorithm whose com-
petitive ratio is O(k1/3), provided that the servers know the degree of their adjacent
clients or that the clients can communicate this information in their request headers.
This bound is tight in terms of k, even if the clients are allowed to put an arbitrary
amount of information in the request header. In terms of m, the same algorithm has
a competitive ratio of O(m1/3), and this is again tight. In terms of n, the competitive
ratio of any algorithm is Ω(n0.069).

Theorem 3. In the restricted adversary model with fractional assignments and
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with minimum activity period r, if the clients know the value of r as well as an upper
bound Δ on the maximum degree of any client, then there is an algorithm whose
competitive ratio is O(Δ6/r). In particular, if r = Ω(log Δ), the competitive ratio is
constant.

4. Lower bounds for the one-shot model. Our lower bounds in the one-shot
model depend on finding matchings M between a set of clients ML and servers MR,
such that removing M from the edge set of G leaves ML with a very small set of
neighbors. We call such structures γ-focal matchings; the structure is illustrated in
Figure 1 and defined precisely as follows.

Definition 1. Let M be a matching in G, and let ML,MR denote the sets of
left and right endpoints, respectively, of the matching edges. We call M a γ-focal
matching if |Γ(ML) \ MR| < |M |/γ and G contains no edges between ML and MR

other than those which belong to M .
Intuitively, the presence of many disjoint γ-focal matchings in G is a barrier to

achieving high throughput in an oblivious assignment algorithm for the following
reason. When the set of active clients is equal to ML for some γ-focal matching M ,
the optimum throughput is |M |. Any assignment achieving throughput significantly
higher than |M |/γ must send many requests along the edges of M , because all other
outgoing edges from ML lead to the set Γ(ML)\MR, whose cardinality is only |M |/γ.
Now suppose that M is chosen at random from among a large set of disjoint γ-focal
matchings. If every client i has many outgoing edges, each belonging to a different
one of these matchings, then i is unlikely to send its request along the outgoing edge
which belongs to the chosen matching M , since it has no information about which
matching was chosen other than the fact that it belongs to ML.

M

M M

V \ MV \ M

L R

L L R R

Fig. 1. A γ-focal matching.
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4.1. Unicast lower bounds. Let A denote the set of all fractional assignments
in G, i.e.,

A =

⎧
⎨
⎩f : E → [0, 1] | ∀i ∈ VL

∑

j∈Γ(i)

f(i, j) = 1

⎫
⎬
⎭ .

A set S of active clients may be represented by a function D : VL → {0, 1} mapping
S to 1 and VL \ S to 0; we call this the demand pattern associated with S. Given a
fractional assignment f , define the load on server j by

�(j) =
∑

i∈Γ(j)

f(i, j)D(i)

and the throughput of f by

θ(f) =
∑

j∈VR

min{�(j), 1}.

We may think of a randomized assignment algorithm in the one-shot model as com-
puting a function A : {0, 1}VL ×Ω → A, where Ω is a probability space encapsulating
all the random bits (both shared and private) which the parties may use in their deci-
sion making. The fact that the assignment is oblivious (i.e., that clients must choose
their own assignment without knowing which other clients are active) is captured by
the following constraint: in the fractional assignment f = A(D,ω), for any edge (i, j),
the value of f(i, j) may depend only on D(i) and ω. In other words, if f ′ = A(D′, ω)
and D′(i) = D(i), then f ′(i, j) = f(i, j).

Theorem 4. Let G be a bipartite graph which is (dL, dR)-biregular; i.e., every
i ∈ VL has degree dL and every j ∈ VR has degree dR. Assume all servers have unit
capacity. If the edge set of G can be partitioned into γ-focal matchings of equal size,
then the competitive ratio of any oblivious randomized fractional assignment algorithm
for G is at least 1

2
min{dL, γ}.

Proof. Let A be any oblivious randomized fractional assignment algorithm, and
let M (1), . . . ,M (s) be a partition of E into γ-focal matchings of equal size k. Note
that the number of edges satisfies sk = |E| = dLn, whence

n

s
=

k

dL
.

Let the demand pattern D : VL → {0, 1} be defined by selecting a matching M =
M (r) uniformly at random from {M (1), . . . ,M (s)}, independently of the algorithm’s
random seed ω ∈ Ω, and setting D(i) = 1 if i is the left endpoint of an edge of M , 0
otherwise. As in Definition 1, let ML,MR denote the sets of left and right endpoints,
respectively, of edges of M . The throughput of the assignment f = A(D,ω) satisfies

θ(f) =
∑

j∈MR

min{�(j), 1} +
∑

j∈Γ(ML)\MR

min{�(j), 1}

≤
∑

j∈MR

�(j) +
∑

j∈Γ(ML)\MR

1

≤
∑

e∈M

f(e) + k/γ.
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Let D∗ denote the demand pattern in which all clients are active, i.e., D∗(i) = 1
for all i, and let f∗ = A(D∗, ω). By the definition of “oblivious,” we have that
f(i, j) = f∗(i, j) for all i ∈ ML. Hence

θ(f) ≤ k/γ +
∑

e∈M

f∗(e).

Now let us take the expectation over the random choice of ω and M :

E[θ(f)] ≤ k

γ
+

∑

e∈E

Pr(e ∈ M)E[f∗(e)]

=
k

γ
+

1

s

∑

e∈E

E[f∗(e)]

=
k

γ
+

1

s
E

⎡
⎣
∑

i∈VL

∑

e∈δ+(i)

f∗(e)

⎤
⎦

≤ k

γ
+

n

s
=

k

γ
+

k

dL
≤ 2k

min{dL, γ} .

The optimal assignment sends the k requests along the edges of M , thus achiev-
ing throughput k. Hence the competitive ratio of A is at least 1

2
min{dL, γ}, as

claimed.
Theorem 5. There exists a bipartite graph G such that the competitive ratio

of any oblivious randomized fractional assignment algorithm for G is at least
√
k/2,

where k is the maximum throughput achievable in the given problem instance.
Proof. The graph G is defined as follows. Given a positive integer d, let VR be the

set {1, 2, . . . , d2}, and let VL be the set of all d-element subsets of VR. Each such set
i ∈ VL is joined by an edge to each of its elements j ∈ VR. G is a biregular bipartite

graph, with dL = d and dR =
(
d2−1

d−1

)
.

For each (d − 1)-element subset S ⊆ VR, let M(S) be the matching containing,
for each j ∈ VR \ S, an edge from i = S ∪ {j} to j. Each such matching has size
d2 − d + 1, and each edge (i, j) ∈ E belongs to exactly one such matching M(S).
(Namely, S = i \ {j}.)

We claim that each matching M = M(S) is a d-focal matching. We have MR =
VR \ S, and each i ∈ ML has one edge joining it to MR (namely, the matching edge)
and d− 1 edges joining it to S. Thus G contains no edges between ML and MR other
than the matching edges, and

|Γ(ML) \MR| < |M |/d,

because the left-hand side is equal to d − 1 while the right-hand side is equal to
d− 1 + 1/d.

Applying Theorem 4, we find that the competitive ratio of any oblivious ran-
domized fractional assignment algorithm is at least d/2, which is greater than

√
k/2

because k = d2 − d + 1.
Note that the proof of Theorem 5 also gives a lower bound of

√
m/2, where m is

the number of servers. (We will see later that this bound is tight, up to a constant
factor, in terms of m.) However, the number of clients in this example, n, is equal to(
d2

d

)
, and so the competitive ratio lower bound of d/2 translates only into a very weak
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lower bound of Ω(logn/ log log n) in terms of n. The following theorem demonstrates
that a much stronger lower bound is possible.

Theorem 6. There exists a bipartite graph G such that the competitive ratio of
any oblivious randomized fractional assignment algorithm for G is Ω(n0.103).

Proof. The construction of the graph G in this case is quite complicated. For
a positive integer d, let X be the ring (F2)

d, i.e., the Cartesian product of d copies
of the field F2 = {0, 1}. Considering X as a vector space over F2, let Y be a linear
subspace of dimension bd. (We will optimize the value of the parameter b < 1 later.)
Let Z denote the set of all z in X such that zy is nonzero for all nonzero y ∈ Y . (If we
identify elements of X with subsets of {1, 2, . . . , d}, then the nonzero elements of Y
constitute a set system and Z consists of all hitting sets for this set system.) We will
want the complement, X \ Z, to be as small as possible. Here is a calculation which
bounds the expected size of X \ Z when Y is a random linear subspace of dimension
bd. For any nonzero y ∈ X, the probability that it belongs to Y is 2(b−1)d, and the
number of z such that zy = 0 is 2d−wt(y), where wt(y) denotes the Hamming weight
of y. This means that an upper bound for the expected size of X \ Z is given by

∑

y∈X, y �=0

2(b−1)d2d−wt(y) = 2bd
∑

y∈X, y �=0

2−wt(y)

= 2bd
d∑

j=1

(
d

j

)
2−j

= 2bd
[
(3/2)d − 1

]

< (3 · 2b−1)d.

Henceforth we assume that we have chosen a specific linear subspace Y such that the
cardinality of X \ Z is at most (3 · 2b−1)d. Later, when we specify the value of b, it
will be the case that 3 · 2b−1 =

√
3 · (1 + o(1)), and so the fraction of elements of X

which are not contained in Z is exponentially small in d.
The bipartite graph G is defined as follows. We put

VL = X × Z,

VR = X,

E = {((xL, zL), xR) | xR − xL = yzL for some y ∈ Y }.

By abuse of notation, we will write an edge e with left endpoint (xL, zL) and right
endpoint xR as an ordered triple e = (xL, zL, xR). Note that if xR − xL = yzL for
some y ∈ Y , then this y is actually unique. (If yzL = y′zL, then (y− y′)zL = 0. Since
y− y′ ∈ Y and z ∈ Z, this implies y− y′ = 0.) We will refer to this unique value of y
as the type of edge e = (xL, zL, xR).

We have seen that each (xL, zL) ∈ VL has exactly |Y | outgoing edges, one of each
type y ∈ Y . Similarly, each xR ∈ VR has exactly |Y × Z| incoming edges. Given
(y, z) ∈ Y × Z, one may easily verify that there is one and only one edge of type y
joining X×{z} to xR, namely the edge e = (xR−yz, z, xR). We have thus established
that G is (2bd, 2bd · |Z|)-biregular.

We must now specify a partition of the edge set into γ-focal matchings of equal
size. For each pair (x, y), where x ∈ X, y ∈ Y , let

M(x, y) = {(x + ((1 − y)z), z, x + z) | z ∈ Z},
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where “1” denotes the vector (1, 1, 1, . . . , 1) ∈ X. Note that (x + ((1 − y)z), z, x + z)
is a valid edge of type y in G, because x + z = x + 1 · z = x + ((1 − y)z) + yz. The
matchings M(x, y) each have size |Z|. To see that every edge belongs to exactly one
such matching, observe that if e = (xL, zL, xR) with xR − xL = yzL, then e belongs
to M(xR − zL, y). There can be no other M(x′, y′) containing e, since y′ must equal
the type of e and x′ must equal xR − zL in order for e to belong to M(x′, y′).

Next, we wish to see that each such matching M = M(x, y) is γ-focal for a
reasonably large (i.e., exponential in d) value of γ. To do so, we will first show that
every edge between ML and the set MR = x + Z = {x + z | z ∈ Z} belongs to M .
Let e = (xL, zL, xR) be such an edge, with xR − xL = y′zL for some y′ ∈ Y . Since
(xL, zL) ∈ ML, we have xL = x+(1−y)zL, whence xR = x+(1+y′−y)zL. If y′ = y,
then e ∈ M . If y′ 
= y, then we use the fact that every element w of the ring X satisfies
w(1 − w) = 0. Applying this with w = y − y′, we see that (y − y′)(1 + y′ − y)zL = 0.
As y−y′ is a nonzero element of Y , we may conclude that (1+y′−y)zL 
∈ Z, whence
xR 
∈ x + Z. Finally, observe that

|Γ(ML) \MR| ≤ |VR \MR| = |X \ (x + Z)| ≤ (3 · 2b−1)d.

Recalling that |M | = |Z| = (1 − o(1))2d, we see that M is γ-focal with

γ = (1 − o(1))
(
22−b/3

)d
.

Applying Theorem 4, we find that no oblivious randomized fractional assignment
algorithm achieves a competitive ratio better than

1

2
min{dL, γ} =

1

2
min

{
2bd,

(
22−b

3

)d

(1 − o(1))

}
.

This approximately maximized when 2b = 22−b/3, i.e., when b = 1 − 1
2

log2(3) =
0.2075 . . .. (Of course, b must be rounded to the nearest multiple of 1/d, since bd, the
dimension of the vector space Y , must be an integer.) Recalling that n = |X × Z| <
22d, we see that the lower bound of Ω(2bd) on competitive ratio may be expressed as
Ω(nb/2) = Ω(n0.103).

4.2. Multicast lower bounds. Proving lower bounds in the multicast model is
slightly more difficult than in the unicast model, because clients may broadcast their
request to every adjacent server if they wish. If the set of active clients is equal to
ML for some γ-focal matching M , and each client chooses to broadcast its request to
all adjacent servers, then each server in MR will receive exactly one request and will
satisfy it, leading to a throughput of |M |, the optimum throughput for the designated
set of active clients. Nevertheless, it is possible to use γ-focal matchings to prove
lower bounds in the multicast model by combining them with another device which
we call a smokescreen. A smokescreen is simply a random set of clients whose size is
small relative to the size of the matching and whose purpose is to confuse the servers
in MR by making it difficult for them to distinguish which incoming request is coming
from ML.

We will begin by formalizing the class of protocols which we will be consider-
ing. We will assume once again that there is a probability space Ω encapsulating the
random bits (both shared and private) available to the parties in their computation.
There is also a (not necessarily finite) message space MSG encapsulating all the mes-
sages that clients may send to servers. A protocol is specified by a communication
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function

Ai : {0, 1} × Ω → MSGd(i)

for each client i and a decision function

Bj : MSGd(j) × Ω → Γ(j)

for each server j. The value of Ai(D,ω) specifies the d(i)-tuple of messages which i
will send on its outgoing edges if its demand is D and the random seed is ω. The
value of Bj(m1,m2, . . . ,md(j), ω) specifies which client’s request will be served by j
if the random seed is ω and j receives messages m1,m2, . . . ,md(j) on its incoming
edges. We will call such a protocol {Ai, Bj} an oblivious assignment protocol for G
in the multicast model.

Without loss of generality we may assume that MSG = {0, 1} and that each
communication function Ai is simply the function Ai(D,ω) = D. In other words, each
client simply informs all adjacent servers whether or not it is active. This assumption
is without loss of generality because for any other protocol P̂ = {Âi, B̂j}, we can
construct a protocol P = {Ai, Bj} with Ai defined as above and with Bj defined

as follows. For each client i ∈ Γ(j), Bj(m1, . . . ,md(j), ω) simulates Âi(mi, ω) to
determine what message m̂i would have been sent from i to j under the protocol P,
and it then computes B̂j(m̂1, . . . , m̂d(j), ω) to determine what request it would have

satisfied. This new protocol P has precisely the same outcome as P̂.

Based on this reduction, we will assume from now on that each server’s decision
function is a mapping Bj : {0, 1}Γ(j) × Ω → Γ(j) which chooses, for each subset
S ⊆ Γ(j), a random element Bj(S, ω) ∈ Γ(j) determined by the random seed ω. The
notion that servers have difficulty distinguishing elements of ML from elements of the
smokescreen is captured by the following lemma.

Lemma 1. Let Γ be a set of d elements, and consider any function B : 2Γ → Γ.
Suppose a random element i ∈ Γ is sampled according to the uniform distribution,
and a random set S ⊆ Γ \ {i} is sampled by choosing each element independently with
probability p. Then Pr(B(S ∪ {i}) = i) = O

(
1
pd

)
.

Proof. For any nonempty set T ⊆ Γ of cardinality t, we have

Pr(B(T ) = i ‖S ∪ {i} = T ) =

{
1
t if B(T ) ∈ T,
0 otherwise.

This is obvious if B(T ) 
∈ T . Assuming B(T ) ∈ T , it holds because for every element
i0 ∈ T ,

Pr(i = i0 ∧ S = T \ {i0}) =
1

d
· pt−1 · (1 − p)d−t.

Denoting this probability by p0, we have

Pr(S ∪ {i} = T ) =
∑

i0∈T

Pr(i = i0 ∧ S = T \ {i0}) = tp0
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and

Pr(B(T ) = i ‖S ∪ {i} = T ) =
Pr(i = B(T ) ∧ S = T \ {B(T )})

Pr(S ∪ {i} = T )
=

p0

tp0

=
1

t
.

Summing over all t, we have

Pr(B(S ∪ {i}) = i) =
d∑

t=1

1

t
· Pr(|S ∪ {i}| = t)

≤ Pr

(
|S| < p(d− 1)

2

)
+

2

p(d− 1)
Pr

(
|S| ≥ p(d− 1)

2

)

< e−p(d−1)/8 +
2

p(d− 1)
= O

(
1

pd

)
,

where the last line follows from the Chernoff bound [17] and from the fact that the
expectation of |S| is p(d− 1).

Theorem 7. Let G be a bipartite graph which is (dL, dR)-biregular. If the edge
set of G can be partitioned into γ-focal matchings of size k = Ω(m), then the com-
petitive ratio of any oblivious assignment protocol for G in the multicast model is
Ω(min{γ,√dL}).

Proof. Let M (1), . . . ,M (s) be a partition of the edge set into γ-focal matchings of
size k, and let the set of active clients S be defined as follows. Every client i ∈ ML

belongs to S, and in addition, every i ∈ VL\ML joins S independently with probability

p =
√

m
dRn . The set Q = S \ML is referred to as the smokescreen.

In the discussion preceding Lemma 1, we argued that one can assume without loss
of generality that the protocol operates as follows: each client broadcasts its request
to all adjacent servers; each server j receives requests from a set Tj ⊆ Γ(j) and chooses
which request to satisfy by computing a function Bj(Tj , ω) which depends on Tj and
the (shared) random seed ω.

Since each client in Q and each server in Γ(ML) \ MR contributes at most one
unit of throughput, we have the following bound on the expected total throughput θ
(where the expectation is over the random choice of S as well as the random seed ω):

θ ≤ E (|Q|) + E (|Γ(ML) \MR|) +
∑

j∈VR

Pr(j ∈ MR ∧ Bj(Tj , ω) ∈ ML)

≤ pn + k/γ +
∑

j∈VR

Pr(Bj(Tj , ω) ∈ ML ‖ j ∈ MR).

We may bound Pr(Bj(Tj , ω) ∈ ML ‖ j ∈ MR) using Lemma 1. The key observation is
that, conditional on the event j ∈ MR, the set of active clients adjacent to j consists
of one element i of ML, uniformly distributed in Γ(j), as well as a random subset of
Γ(j) \ {i} sampled by including each element independently with probability p. Thus

Pr(Bj(Tj , ω) ∈ ML ‖ j ∈ MR) = O

(
1

pdR

)
= O

(√
n

mdR

)
= O

(√
1

dL

)
,

where the last step follows from the fact that mdR = |E| = ndL. We are assuming
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k = Ω(m), and so

θ ≤ pn +
k

γ
+ O

(
m

√
1

dL

)
,

θ/k ≤ O

(
pn

m
+

1

γ
+

√
1

dL

)

= O

(√
n

mdR
+

1

γ
+

√
1

dL

)

= O

(
1

γ
+

√
1

dL

)

= O

(
max

{
1

γ
,

√
1

dL

})
,

and the competitive ratio k/θ is Ω(min{γ,√dL}).
Theorem 8. There exists a graph G such that the competitive ratio of any

oblivious assignment protocol for G in the multicast model is Ω(k1/3).
Proof. For an arbitrary positive integer d, let VR = {1, 2, . . . , d3}, and let VL be

the set of all d2-element subsets of VR. Define the edge set by joining such a set i to
an element j ∈ VR if j is an element of i, as in the proof of Theorem 5. As in that
proof, the edge set may be partitioned into matchings M(S), where S runs over all
(d2 − 1)-subsets of VR and M(S) is the matching containing, for each j ∈ VR \ S, the
edge from i = S ∪ {j} to j. Each such matching has size k = d3 − d2 + 1, satisfies
|Γ(ML) \MR| = |S| = d2 − 1, and has the property that G contains no edges between
ML and MR other than the edges of M(S). Thus M(S) is a (d − 1)-focal matching
for each S. The matchings M(S) also satisfy |M(S)| = Ω(m) since m = d3. We may
thus apply Theorem 7 with γ = d − 1 = Ω(k1/3) and

√
dL = d = Ω(k1/3) to obtain

the desired lower bound.
As above, the proof of Theorem 8 also establishes a lower bound of Ω(m1/3) on

the competitive ratio of the optimal assignment protocol in the multicast model, and
we will later see a matching upper bound. However, as before, this graph gives us only
a very weak lower bound, Ω(logn/ log log n), in terms of n. For a polynomial lower
bound in terms of n, we may use the same construction as was used in Theorem 6.

Theorem 9. There exists a graph G such that the competitive ratio of any
oblivious assignment protocol for G in the multicast model is Ω(n0.069).

Proof. The graph G is defined by the same construction as in the proof of Theo-
rem 6, but this time we choose b by rounding off (4/3)−(2/3) · log2(3) = 0.27669 . . . to
the nearest multiple of 1/d. (Note that this value of b still satisfies 3 · 2b−1 < 1.) We
have already proved that the edge set of G may be partitioned into γ-focal matchings
of size k = |Z|. Here m = 2d and |Z| ≥ 2d−(3·2b−1)d = (1−o(1))m, and so k = Ω(m)
as required by Theorem 7. Recall that for this graph G,

γ = (1 − o(1))
(
22−b/3

)d
,

dL = 2bd.

We have chosen b so that 2b/2 =
(
1 + O

(
1
d

))
22−b/3, and so

√
dL and γ are equal up

to constant factors, and the competitive ratio of any oblivious assignment protocol
is Ω(

√
dL) = Ω

(
2bd/2

)
. Recalling that n = 22d, this means the competitive ratio is

Ω
(
nb/4

)
= Ω(n0.069).
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5. Algorithm for the unicast model. In this section we present an algorithm
which is O(

√
k)-competitive, where k denotes the maximum throughput achievable for

the given demand pattern. We will initially work in the fractional assignment model.
Later we will show that a simple randomized rounding of the fractional assignment
yields an integral assignment with the same expected throughput, up to a constant
factor.

Theorem 10. There exists an oblivious fractional assignment algorithm which is
O(

√
k)-competitive with the optimum fractional assignment for every demand pattern

D.
Proof. The oblivious fractional assignment algorithm is extremely simple. Each

active client i sends 1
d(i) units of flow into each of its outgoing edges; each inactive

client sends zero flow.
For a server j, recall that the load �(j) is defined as the sum of the flows on all

incoming edges. With the flow defined according to the algorithm specified, let Φ be
the set of full servers, i.e., those with �(j) ≥ 1. Let φ = |Φ|. We consider two cases.
If φ ≥ √

k, then the algorithm’s throughput is at least
√
k and we are done.

Now consider the case in which φ <
√
k. Let A be the set of active clients i with

Γ(i) ⊆ Φ, and let B be the set of all other active clients. Note that k ≤ |Φ|+ |B|, since
every unit of flow in the optimal assignment passes through Φ or B. Our algorithm
achieves a throughput of 1 from each server in Φ and a throughput of �(j) from each
server j ∈ VR \ Φ. Therefore, to finish proving the theorem it suffices to show that

(5.1)
∑

j∈VR\Φ
�(j) ≥ |B|

√k� .

To do so, we will show that each client i ∈ B contributes at least 1/√k� to the left-
hand side of (5.1). Note that each i ∈ B has at least max{1, d(i)−φ} neighbors which
are not in Φ, and so i contributes at least max{1/d(i), 1 − φ/d(i)} to the left-hand
side of (5.1). If d(i) < √k�, then 1/d(i) ≥ 1/√k�. If d(i) ≥ √k�, then using the
fact that φ ≤ √k� − 1 we obtain

1 − φ

d(i)
≥ 1 − √k� − 1

√k� =
1

√k� ,

as desired.
Theorem 5 demonstrates that no algorithm can achieve a better competitive ratio

in terms of k than our simple algorithm, up to constant factors. An obvious corollary
of Theorem 10 is that our algorithm’s competitive ratio, in terms of n, is O(

√
n). This

bound is tight in terms of n for our algorithm; i.e., there exist instances for which the
algorithm’s throughput is O(k/

√
n).1 We do not know if there exists an algorithm

achieving a better competitive ratio in terms of n; the best known lower bound is the
one specified in Theorem 6.

5.1. Rounding fractional to integral assignments. We wish to demonstrate
that for any oblivious fractional assignment algorithm A achieving competitive ratio

1Consider sets A, B, and C, where |A| = n, |B| = n, and |C| =
√
n. Let VL = A and

VR = B ∪C. The edge set of graph G consists of a perfect matching joining A to B and a complete
bipartite subgraph joining A to C. In this example each client has degree at least

√
n. Now if the

adversary chooses A as the set of active clients, then the optimum throughput, k, is equal to n, while
our algorithm’s throughput is only O(

√
n).
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R, there is a randomized integral assignment algorithm A′ achieving competitive ratio
O(R). If f is the fractional assignment computed by A for a given demand pattern,
let A′ select a random integral assignment as follows: each active client i chooses a
random outgoing edge independently of the other clients’ random choices, with f(e)
representing the probability of choosing edge e.

Lemma 2. Let θ(A), θ(A′) denote the throughput of A,A′, respectively, on the
given demand pattern. Then E(θ(A′)) ≥ (

1 − 1
e

)
θ(A).

Proof. θ(A′) is equal to the expected number of servers which receive at least one
packet when an assignment is sampled at random according to A. Now

Pr(j receives no packets) =
∏

e∈δ−(j)

(1 − f(e))

<
∏

e∈δ−(j)

e−f(e)

= exp

⎛
⎝−

∑

e∈δ−(j)

f(e)

⎞
⎠ = e−�(j).(5.2)

If �(j) ≥ 1, the right-hand side of (5.2) is at most 1/e, and if �(j) < 1, the right-hand
side is at most 1− (

1 − 1
e

)
�(j), using the inequality e−x ≤ 1 · (1− x) +

(
1
e

) · x, which
follows from the convexity of the function e−x. Thus,

Pr(j receives a packet) ≥
(

1 − 1

e

)
min {1, �(j)} .

Summing over j, we obtain E(θ(A′)) ≥ (
1 − 1

e

)
θ(A).

Corollary 1. There exists a randomized oblivious integral assignment algo-
rithm which is O(

√
k)-competitive in expectation with the optimum assignment (i.e.,

maximum matching) for every demand pattern.

6. Algorithm for the multicast model. In this section, we describe a simple
algorithm which achieves a competitive ratio of O(k1/3) for the multicast model,
where clients are allowed to send their request to more than one server, and a server
may select any one of the requests it receives and satisfy this request. The algorithm
requires no shared random bits, nor does it require the parties to know the structure
of the graph G. The clients need only know which servers are adjacent to them, and
the servers need only know the degrees of the adjacent active clients. (If necessary,
the active clients may communicate this information in their request headers.)

Theorem 11. There exists an oblivious assignment protocol in the multicast
model which is O(k1/3)-competitive with the optimum assignment (i.e., maximum
matching) for every demand pattern.

Proof. The algorithm is as follows. Each client broadcasts its request to all
adjacent servers. If i is a client whose degree in the bipartite graph is d(i), then a
server receiving a request from i assigns weight 1

d(i) to this request. After receiving all

requests, a server chooses to satisfy a random request with probability proportional
to its weight.

For a server j, define its weight w(j) to be the sum of the weights of all requests
it receives. Let M be a specific maximum matching from the set of active clients to
VR; as usual we denote the size of this matching by k. For every edge e = (i, j) in M ,
at least one of the following must hold:
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1. d(i)w(j) ≤ k1/3.
2. w(j) > k−1/3.
3. d(i) > k2/3.

Thus one of the three possibilities is applicable to at least k/3 of the edges in M . We
deal with them case-by-case.

In case 1, for each matching edge e = (i, j) satisfying (1), we have

Pr(j selects the request from i) = (1/d(i))/w(j) = 1/(d(i)w(j)) ≥ k−1/3.

There are k/3 such edges; each has at least a k−1/3 chance of being satisfied, and
each of them corresponds to a distinct client. Hence the expected number of satisfied
clients is Ω(k2/3) as desired.

In case 2, let S denote the set of servers which are right endpoints of matching
edges satisfying (2). By assumption, there are Ω(k) such servers. The fact that they
satisfy Ω(k2/3) distinct requests, in expectation, is a consequence of the following
lemma, which we also use for case 3.

Lemma 3. For any real number 0 < r ≤ 1, let S denote the set of servers of
weight at least r. The expected number of distinct requests satisfied by the servers in
S is at least r

e |S|.
Proof. For each server j in S, flip an independent coin and color server j red with

probability r. Consider the following two events:

E1 : j is colored red.

E2 : The client i whose request was satisfied by j did not have

its request satisfied by any red server other than j.

It is clear that E1 and E2 are independent. (E1 depends only on j’s choice of color, E2
depends only on j’s choice of job and on the random choices made by other servers.)
The probability of E1 is r. We claim that the probability of E2 is at least 1/e. To
see this, let d = d(i). For each element j′ ∈ S \ {j} adjacent to i, the probability
that j′ satisfied i’s request is at most 1

d(i)r , and the probability that it was colored

red is r, and so there is at most a 1/d(i) chance that j′ was colored red and satisfied
i’s request. Thus the probability that j′ is not a red server satisfying i’s request is
≥ 1 − 1/d(i). Multiplying at most d(i) − 1 such terms together, we get a probability
which is at least 1/e.

Thus the expected number of elements of S satisfying E1 and E2 is at least
(r/e)|S|. No client can be satisfied by more than one such server, and so altogether
the expected number of distinct clients satisfied by S is at least (r/e)|S|.

Finally, we address case 3. Partition the servers into two sets, A and B, where A
consists of all servers whose weight is at least 1, and all others belong to B. Let X
denote the set of clients i which satisfy

1. i is the left endpoint of an edge in the matching M ;
2. d(i) ≥ k2/3.

By hypothesis, |X| is at least k/3. For each server j, let w′(j) denote the total weight
of the requests it receives from elements of X. The sum of w′(j) over all servers j
is simply |X| (since each client contributes exactly one unit of weight, in total), and
hence one of the following subcases applies:

3.1.
∑

j∈A w′(j) ≥ |X|/2 ≥ k/6.
3.2.

∑
j∈B w′(j) ≥ |X|/2 ≥ k/6.
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We handle the two subcases separately. For case 3.1, note that w′(j) is bounded
above by k1/3, because j is adjacent to at most k elements of X, and each of them
contributes at most k−2/3 units of weight to w′(j). So in order for case 3.1 to hold,
it must be the case that |A| ≥ k2/3/6. Applying the lemma above with r = 1, we
find that the expected number of distinct clients satisfied by servers in A is Ω(k2/3)
as desired. For case 3.2, at least 3/4 of the clients in X have at least 1/3 of their
neighbors in B. (Otherwise these clients would contribute less than |X|/4 to the sum
on the left-hand side of case 3.2, and the remaining |X|/4 clients would contribute at
most |X|/4 to that sum.) For a client with 1/3 of its neighbors in B, the probability
of its request being satisfied is bounded below by a constant, namely 1 − e−1/3. To
see this, let i be such a client and j any neighbor of i in B. The probability that j
satisfies i’s request is 1

d(i)w(j) ≥ 1
d(i) , and so the probability that j does not satisfy i’s

job is at most 1 − 1/d(i). Multiplying at least d(i)/3 such terms together, we get a
failure probability which is less than e−1/3. So, in case 3.2, we find that the expected
number of elements of X whose request is satisfied by an element of B is at least
(1 − e−1/3) · (3/4) · |X| = Ω(k), which easily beats the required Ω(k2/3) bound.

Theorem 8 demonstrates that no algorithm can achieve a better competitive ratio
in terms of k than our algorithm, up to constant factors. An obvious corollary of
Theorem 11 is that our algorithm’s competitive ratio, in terms of n, is O(n1/3). This
bound is tight in terms of n for our algorithm; i.e., there exist instances for which the
algorithm’s throughput is O(k/n1/3).2 We do not know if there exists an algorithm
achieving a better competitive ratio in terms of n; the best known lower bound is the
one specified in Theorem 9.

7. Restricted adversary model. Returning from the setting of one-shot (obliv-
ious) algorithms to the online setting, we now consider online fractional assignment
algorithms for a sequence of demand patterns Dt : VL → {0, 1}, which may be ad-
versarially specified subject to the restriction that when a client becomes active, it
remains active for the next r rounds, where r is a positive integer known to all clients.
(As always, we refer to a client i as active at time t if Dt(i) = 1, inactive otherwise.)
We do not assume that any of the parties know the structure of the graph G; the only
requirement is that clients should know the set of adjacent servers, and they should
have common knowledge of a number Δ which is an upper bound on the degree of
any client. (Such an upper bound is often easy to obtain. For example, if the number
of servers m is common knowledge, this is a suitable value for Δ.)

Unlike previous sections, which assumed each server has unit capacity, we assume
here that each server j has a nonnegative capacity cj . No upper bound on cj is as-
sumed, but the capacities are assumed to remain constant over time. The throughput
of an assignment is defined to be the sum, over all servers j, of min{�(j), cj}, where
�(j) as always denotes the load on server j.

Our algorithm runs in a series of synchronous, concurrent rounds. In each round,
each client assigns load fractionally among the adjacent servers. (As in Lemma 2, such
a fractional assignment may be converted into an integral assignment by randomized
rounding, decreasing the expected throughput by only a constant factor.) Each server

2Consider a bipartite graph G whose left vertices are partitioned into two sets A, B and whose
right vertices are partitioned into two sets C,D, such that |A| = k, |B| = k2/3, |C| = k, |D| = k2/3.
A and C are joined by a perfect matching, B and C are joined by a complete bipartite graph, A and D
are joined by a complete bipartite graph, and there are no edges from B to D. If each client is active,
then it is an exercise to check that the algorithm specified above satisfies only O(k2/3) = O(k/n1/3)
distinct jobs in expectation.
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sums the assigned loads and reports its load/capacity ratio back to the adjacent
clients. This is the only communication in either direction.

7.1. Algorithm. The algorithm divides time into windows of length r/2�. Each
active client maintains a fractional assignment of load on its outgoing edges. When a
client of degree d becomes active, it waits for the start of the next window and then
initializes its fractional assignment by sending 1/d units of flow on each outgoing edge.
While a client remains active, it updates its fractional assignment f at the end of each
round, using the feedback from the adjacent servers as follows. Let α = (2Δ)6/r. A
server is defined to be “undersupplied,” “comfortable,” or “oversupplied,” according
to whether the corresponding server’s load/capacity ratio is less than 1/α, is in the
interval [1/α, 1], or is greater than 1, respectively. We will refer to edges as under-
supplied, comfortable, or oversupplied according to the status of the corresponding
server, and for a client i we will denote the total flow on undersupplied, comfort-
able, and oversupplied edges by fu(i), fc(i), fo(i), respectively. A client i with do(i)
oversupplied outgoing edges is called “unhappy” if

0 < (α− 1)fu(i) < fo(i) − do(i)

2Δ
,

“happy” otherwise. A happy client retains the same flow distribution in the next
round. An unhappy client redistributes flow from the oversupplied edges to the un-
dersupplied ones, so as to multiply the amount of flow on each undersupplied edge by
α. This requires increasing the total flow on the undersupplied edges by (α− 1)fu(i).
After the redistribution the total amount of flow remaining on the edges which were
oversupplied before redistribution will be fo(i)− (α−1)fu(i), and our definition of an
unhappy client ensures that this number is greater than do(i)/2Δ. Thus it is always
possible to arrange the redistribution in such a way that each edge which was oversup-
plied before redistribution has at least 1/2Δ units of flow after redistribution. Each
unhappy client chooses an arbitrary redistribution which satisfies this constraint.

7.2. Analysis. In a time window W , call a client eligible if it is active in every
round belonging to W . Define a modified sequence of demands D̂t(i) by specifying
that D̂t(i) = 1 if i is eligible in the window containing round t, 0 otherwise. The
analysis of the algorithm depends on proving that it is O(α)-competitive with the
throughput of the optimum sequence of assignments for the modified demands. The
following lemma explains why this is sufficient.

Lemma 4. Let θ, θ̂ denote the throughput of the optimum sequence of assignments
for the original demands and the modified demands, respectively. Then θ̂ ≥ θ/3.

Proof. Let f1, f2, . . . , fT be a throughput-maximizing sequence of assignments
for the original demands Dt. We may assume that each ft assigns to server j a load
�t(j) which is at most cj . (If not, we may adjust ft by reducing the flow on some of
the incoming edges to server j without reducing the throughput.) Now construct a

sequence of assignments f̂1, f̂2, . . . , f̂T as follows. Initially, f̂t = ft/3. For each client
i which is active but not eligible at time t, it must be the case that either of the
following holds:

• i became active during the window W containing t. If so, i is eligible in the
next window, W + 1. Let t′ = t + r/2�.

• i ceased to be active during W . If so, i is eligible in the preceding window,
W − 1. Let t′ = t− r/2�.

Now adjust f̂ by changing f̂t′(e) to f̂t(e) + f̂t′(e) for each outgoing edge e from i and

setting f̂t(e) to zero. In this way, we obtain a sequence of assignments f̂1, f̂2, . . . , f̂T
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such that the following hold:

• The outflow from ineligible clients is zero in each round.
• The outflow from an eligible client i is at most 1. (In the original assignments

ft, the outflow from i was at most 1 in each round. In f̂t, the outflow from i at
time t is bounded above by the average outflow in rounds t, t−r/2�, t+r/2�
of the original assignment.)

• The inflow to a server j is at most cj . (In the original assignments ft, the

inflow to j was at most cj in each round. In f̂t, the inflow to j at time t is
bounded above by the average inflow in rounds t, t − r/2�, t + r/2� of the
original assignment.)

• The throughput is θ/3. (We initialized f̂t to ft/3, and we subsequently shifted
flow without changing the combined throughput.)

By definition, the throughput of f̂1, . . . , f̂T is at most θ̂. Thus θ̂ ≥ θ/3.

Theorem 12. The algorithm specified in section 7.1 is O(Δ6/r)-competitive.

Proof. For a time window W , let θ̂(W ) be the optimum throughput achievable
by an assignment of the eligible clients only. By the preceding lemma, we know that
it is sufficient to prove that the algorithm’s throughput during W is Ω(θ̂(W )/α). For
the remainder of the analysis, we will limit our attention to the time rounds which
belong to W .

First, we note that the load on a server cannot increase by a factor of more than
α in any round, because the load on each edge cannot increase by a factor of more
than α. If a server is comfortable, the load on its incoming edges does not change at
all. Therefore a server may not become oversupplied in the next round unless it was
already oversupplied in the current round.

Second, we note that for an edge e = (i, j), the flow f(e) does not increase while
j is oversupplied; if j ever ceases to be oversupplied, in each subsequent round f(e)
either increases by a factor of α or remains the same. Moreover, the number of rounds
in which f(e) increases is at most r/6 because αr/6 = 2Δ, and f(e) is never less than
1

2Δ
and never more than 1.

For each edge e = (i, j) in each round t, one of the following applies:

1. i was happy in round t.
2. j was not undersupplied in round t.
3. The load on e increased by a factor of α at the end of round t.

We have already argued that the third case applies to at most r/6 of the r/2� rounds
in W . Therefore, either the first or the second case is satisfied by edge e in at least
r/6 of the rounds in t ∈ W .

Call a client “satisfied” if it is happy in at least r/6 of the rounds in W ; let X be
the set of all such clients. Call a server “satisfied” if it is oversupplied or comfortable
in at least r/6 rounds of W ; let Y be the set of all such servers. Above, we have
proven that every edge has either its left endpoint in X or its right endpoint in Y .
Therefore, in the maximum-throughput flow, every unit of flow goes through either a
satisfied client or a satisfied server, resulting in the bound

(7.1)
θ̂(W )

r/2� ≤ |X| +
∑

j∈Y

cj .

However, it follows from the definition of “satisfied” that the algorithm’s throughput
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θ satisfies

(7.2)
θ

r/6
≥ max

⎧
⎨
⎩

1

2α
|X|, 1

α

∑

j∈Y

cj

⎫
⎬
⎭ .

The lower bound (1/α)
∑

j cj is immediate from the fact that a server j which is
not undersupplied has throughput at least cj/α. The lower bound (1/2α)|X| may be
derived as follows. If a client i is happy in round t, we have (α− 1)fu(i) ≥ fo(i)− 1

2
,

whence

αfu(i) + αfc(i) ≥ (α− 1)fu(i) + fu(i) + fc(i) ≥ (fo(i) + fu(i) + fc(i)) − 1

2
=

1

2
.

Every unit of flow which i sends to an undersupplied or comfortable server contributes
to the throughput in round t. Therefore a happy client contributes at least fu(i) +
fc(i) ≥ 1

2α units of throughput in round t, which justifies (7.2).

Finally, putting together (7.1), (7.2), we obtain 18α
( �r/2�

r

)
θ ≥ θ̂(W ).

8. Discussion and open problems. In the one-shot model, we proved strong
lower bounds on the competitive ratio of decentralized client-server load-balancing
algorithms. However, there is still a significant gap between the lower and upper
bounds expressed in terms of n, the number of clients. In the unicast model the lower
and upper bounds are Ω(n0.103) and O(n1/2), respectively. In the multicast model
the lower and upper bounds are Ω(n0.069) and O(n1/3), respectively. Closing these
gaps would most likely require the development of interesting new techniques.

Also, and perhaps more importantly, we do not know of a graph parameter, de-
fined for all bipartite graphs G, which characterizes (or closely approximates) the
competitive ratio of the optimum assignment algorithm for G. In this paper we have
shown that when the edge set can be partitioned into some number of γ-focal match-
ings, then it implies a lower bound on the competitive ratio of oblivious assignment
algorithms for G. We do not know of any partial converse result asserting that a suffi-
ciently large lower bound on the competitive ratio of oblivious assignment algorithms
for G implies the existence of γ-focal matchings in G for some large value of γ.

We observed earlier that our lower bounds for the one-shot model easily imply
equally strong lower bounds for the online model when the adversary is unrestricted.
One way of circumventing these lower bounds is to impose restrictions on the ad-
versary such as the minimum-activity-period restriction considered in section 7. An-
other interesting research direction is to try circumventing the online lower bounds
by comparing the algorithm against a weaker benchmark than the omniscient algo-
rithm which chooses the best client-server assignment in each period. For example,
one could adopt the approach used in the literature on regret minimization in online
learning theory. This entails comparing the algorithm’s expected throughput against
the maximum throughput achievable by a fixed client-server assignment which does
not change over time.
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(t, k)-DIAGNOSABILITY OF MULTIPROCESSOR SYSTEMS WITH
APPLICATIONS TO GRIDS AND TORI∗
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Abstract. (t, k)-diagnosis, which is a generalization of sequential diagnosis, requires at least
k faulty processors identified and replaced (or repaired) in each iteration provided there are at
most t faulty processors, where t ≥ k. This paper suggests lower bounds on the degrees of (t, k)-
diagnosability of multiprocessor systems under both the PMC and the MM* models. As a conse-

quence, grids and tori of d dimensions are shown to be (Ω(N
d

d+1 ), Ω(d))-diagnosable and (Ω(N
d

d+1 ),
Ω(2d))-diagnosable, respectively, where N is the number of processors.

Key words. diagnosability, diagnosis, MM* model, multiprocessor system, PMC model, se-
quential diagnosis, (t, k)-diagnosis
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1. Introduction. System-level diagnosis, which was introduced by Preparta,
Metze, and Chien [27], aims to identify faulty processors in a multiprocessor system
by analyzing the outcomes of available interprocessor tests. The problem has been
extensively studied in the literature [3], [10], [14], [17], [27]. The PMC (Preparta–
Metze–Chien) model, which was originally introduced in [27], is possibly the most
well-studied model for system-level diagnosis. It assumes that each processor can test
its neighboring processors and declare them fault-free or faulty. The test results are
considered reliable if the processor is fault-free. Previous work on the PMC model
can be found in [15], [18], [19], [20], [21], [28], [30].

In [29], Sengupta and Dahbura proposed another diagnosis model, called the MM*
model, under which each processor has to test any two of its neighboring processors.
The testing processor feeds the two tested processors with the same task and input
and then compares their outputs. It is assumed that the outputs are identical if they
are fault-free, and distinct otherwise. Only a fault-free testing processor can guarantee
a reliable test result. The MM* model was also studied in [2], [16], [24], [31].

There are three fundamental diagnosis strategies, i.e., one-step diagnosis, sequen-
tial diagnosis, and (t, k)-diagnosis, for system-level diagnosis. In one-step diagnosis,
all faulty processors are identified before replacement (or repair) is made. In sequential
diagnosis and (t, k)-diagnosis, faulty processors are identified and replaced iteratively.
Differently, in each iteration, at least one faulty processor is identified and replacd in
sequential diagnosis, whereas at least k faulty processors (or all faulty processors if
fewer than k faulty processors remain) are identified and replaced in (t, k)-diagnosis
provided there are at most t faulty processors, where t ≥ k. Notice that one-step
diagnosis (when t = k) and sequential diagnosis (when k = 1) are two instances of
(t, k)-diagnosis.
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Suppose that S is a system with at most t faulty processors. Under one-step
diagnosis, S is one-step t-diagnosable if all faulty processors can be identified [2], [11],
[15], [16], [20], [21], [24], [25], [30], [31]. Similarly, under sequential diagnosis (or
(t, k)-diagnosis), S is sequentially t-diagnosable (or (t, k)-diagnosable) if at least one
(or at least k) faulty processor can be identified in each iteration [22], [23] (or [1]). If
S is (t, k)-diagnosable, then S is also (t, k′)-diagnosable for any k′ ≤ k.

An algorithm that can identify all faulty processors in S is called a diagnosis
algorithm for S. Under the PMC model, a one-step diagnosis algorithm for arbi-
trary systems was proposed in [14]. In [22], [23], sequential diagnosis algorithms

were proposed and the following diagnosabilities were derived: sequentially Ω(N
d

d+1 )-
diagnosable for symmetric d-dimensional grids, sequentially Ω(N log logN

logN )-diagnosable

for hypercubes, sequentially Ω(
√
N)-diagnosable for cube-connected cycles, sequen-

tially Ω(
√N

k )-diagnosable for k-ary trees, and sequentially Ω(
√N

Δ
)-diagnosable for

arbitrary graphs, where N is the number of processors and Δ is the degree of the
graph. On the other hand, under the MM* model, a one-step diagnosis algorithm was
proposed in [29].

In this paper, we derive lower bounds on the degrees of (t, k)-diagnosability of
multiprocessor systems under the PMC and the MM* models. As two applications,

grids and tori of d dimensions are shown to be (Ω(N
d

d+1 ),Ω(d))-diagnosable and

(Ω(N
d

d+1 ),Ω(2d))-diagnosable, respectively. In the next section, some necessary def-
initions and notation are introduced. In section 3, a fundamental result is derived,
which is necessary to the computation of (t, k)-diagnosability of multiprocessor sys-
tems. Lower bounds on the degrees of (t, k)-diagnosability of multiprocessor systems
under the PMC and the MM* models are suggested in section 4. Lower bounds on
the degrees of (t, k)-diagnosability of grids and tori are derived in section 5. Finally,
in section 6, we conclude this paper with some remarks.

2. Preliminaries. Throughout this paper, the topology of a self-diagnosable
system S is represented with a directed graph G = (V,A), where each processor of
S is uniquely denoted by a vertex in V and each link of S is denoted by a pair of
opposite arcs, e.g., (u, v) and (v, u), in A (the two processors connected by the link
are denoted by vertices u and v, respectively). In order to diagnose faults, a number
of tests among processors need to be performed and the collection of all test results
is referred to as a syndrome. For each w ∈ V , let N(w) be the neighborhood of w,
i.e., the set of vertices in G that is neighboring to w. For a subset V ′ of V , define
N(V ′) =

⋃
w∈V ′ N(w) − V ′. A syndrome for S is formally defined below.

Definition 1. A syndrome σ for a system S under the PMC model is the set
{σ(u, v) : u, v ∈ V and u ∈ N(v)}, where

σ(u, v) =

{
0 if v is tested by u to be fault-free;

1 if v is tested by u to be faulty.

Definition 2. A syndrome σ for a system S under the MM* model is the set
{σ(u, v : w) : u, v, w ∈ V and u, v ∈ N(w)}, where

σ(u, v : w) =

{
0 if w declares that the outputs of testing u and v are identical;

1 if w declares that the outputs of testing u and v are distinct.

Since the test result initiated by a faulty processor is not predictable, more than
one syndrome may be produced for S with faulty processors. Based on Definitions 1
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Table 1

Invalidation rule of the PMC model.

Testing vertex Tested vertex Test result

fault-free fault-free 0
fault-free faulty 1

faulty fault-free 0 or 1
faulty faulty 0 or 1

Table 2

Invalidation rule of the MM* model.

Testing vertex Tested vertex pair Test result

fault-free (fault-free, fault-free) 0
fault-free (fault-free, faulty) 1
fault-free (faulty, faulty) 1

faulty (fault-free, fault-free) 0 or 1
faulty (fault-free, faulty) 0 or 1
faulty (faulty, faulty) 0 or 1

and 2, the invalidation rules of the PMC and MM* models are summarized in Tables 1
and 2, respectively.

Definition 3. A system S with a fault set F is (t, k)-diagnosable if, given any
syndrome σ for S, at least k faulty processors can be identified when k < |F | ≤ t and
all faulty processors can be identified when |F | ≤ k.

The vertex set, denoted by Λ, of a strongly connected subgraph of G is called an
aggregate if either all the vertices of Λ are fault-free and all the vertices of N(Λ) are
faulty or all the vertices of Λ are faulty and all the vertices of N(Λ) are fault-free [10].
The indegree (outdegree) of a vertex u in G is the number of arcs entering (leaving)
u. Since each vertex of G has indegree equal to outdegree, we simply use degree to
denote either of them when there is no ambiguity. In the rest of this paper, we use Δ
and δ to denote the maximal degree and minimal degree of G, respectively.

2.1. The PMC model. Let ΥP (x) be the set of neighboring vertices of x
that are tested by x as fault-free under the PMC model, i.e., ΥP (x) = {y : y ∈
N(x) and σ(x, y) = 0}. Suppose that (u1, u2, . . . , um) is a directed path from vertex
u1 to vertex um in G. If ui+1 ∈ ΥP (ui) for all 1 ≤ i ≤ m− 1, then either u1 is faulty

or u1, u2, . . . , um are all fault-free. By G†
P we denote the spanning subgraph of G

whose arcs are all (u, v)’s with v ∈ ΥP (u), i.e., G†
P = (V †

P , A
†
P ), where V †

P = V and

A†
P = {(u, v) : (u, v) ∈ A and v ∈ ΥP (u)}. In the rest of this paper, each strongly

connected subgraph of G†
P is referred to as a P-component. That is, if u and v are

two distinct vertices belonging to the same P-component, there are two directed paths
from u to v and from v to u in G†

P , respectively. Furthermore, for ease of subsequent
discussion, we let each P-component denote only the vertex set of the representing
subgraph.

Clearly, each P-component has all vertices fault-free or all vertices faulty. More-
over, each fault-free P-component is also a fault-free aggregate in G. For example, let
G be a 4 × 4 grid, as depicted in Figure 1(a), where white (black) vertices are fault-
free (faulty). There are four aggregates in G, two fault-free and two faulty, as shown
in Figure 1(b). Assume that σ(u, v) = 0 if u and v are fault-free, and σ(u, v) = 1

otherwise. Then, G†
P with respect to σ is shown in Figure 1(c), where an arc, say,

from u to v, means σ(u, v) = 0. There are seven P-components contained in G†
P , as
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shown in Figure 1(d). It is observed from Figures 1(b) and 1(d) that each fault-free
P-component is a fault-free aggregate in G.

Let CP denote the set of all P-components in G†
P . When |CP | = 1, either all

vertices of G are fault-free or all vertices of G are faulty. So, we assume |CP | ≥ 2.
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Fig. 1. An example: (a) G. (b) Aggregates in G. (c) G†
P . (d) P-components in G†

P . (e) G†
M .

(f) M-components in G†
M .

2.2. The MM* model. When the MM* model is considered, the definitions of
ΥP (x), G†

P , and P-component should be adapted, in accordance with the difference

between Definitions 1 and 2. We introduce the new notation ΥM (x), G†
M and M-

component for the MM* model. Similarly, ΥM (x) = {y : y ∈ N(x) and σ(y, z :
x) = 0 for some z ∈ N(x)} is the set of neighboring vertices of x that are tested by
x as fault-free under the MM* model. A directed path (u1, u2, . . . , um) from vertex
u1 to vertex um with ui+1 ∈ ΥM (ui) for all 1 ≤ i ≤ m − 1 means that either u1

is faulty or u1, u2, . . . , um are all fault-free. G†
M = (V †

M , A†
M ), where V †

M = V and

A†
M = {(u, v) : (u, v) ∈ A and v ∈ ΥM (u)}, is the spanning subgraph of G containing

all arcs (u, v)’s with v ∈ ΥM (u). An M-component is a strongly connected subgraph

of G†
M . For every two distinct vertices u, v in the same M-component, there are

two directed paths from u to v and from v to u in G†
M , respectively. We let each

M-component denote only the vertex set of the representing subgraph.
Like P-components, each M-component has all vertices fault-free or all vertices

faulty. But, differently, each fault-free aggregate in G may consist of one or more fault-
free M-components. For example, consider the graph G of Figure 1(a) again. Assume
that σ(u, v;w) = 0 if u, v, and w are all fault-free, and σ(u, v;w) = 1 otherwise.

Then, G†
M with respect to σ is shown in Figure 1(e), where an arc, say, from w to

u, means σ(u, v;w) = 0 for some v adjacent to w. As shown in Figure 1(f), there

are four fault-free M-components contained in G†
M ; one itself is a fault-free aggregate,

and the other three constitute another fault-free aggregate.
We use CM to denote the set of all M-components in G†

M . When |CM | = 1,
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either all vertices of G are fault-free or all vertices of G are faulty. So, we assume

|CM | ≥ 2. Let C
(1)

M = {{x} : {x} ∈ CM} be the set of all 1-vertex M-components in

G†
M . Clearly, C

(1)

M ⊆ CM .

Lemma 1. Suppose that Λ is a fault-free aggregate in G with |Λ| ≥ Δ + 2. If

{x} ∈ C
(1)

M and x ∈ Λ, then |N(x) ∩ Λ| ≤ 1 under the MM* model.

Proof. We have Λ − (N(x) ∪ {x}) not empty, as a consequence of |Λ| ≥ Δ + 2.
Suppose that z ∈ Λ − (N(x) ∪ {x}) is adjacent to (N(x) ∪ {x}) ∩ Λ, i.e., z ∈ N(y1)
for some y1 ∈ N(x) ∩ Λ. If |N(x) ∩ Λ| ≥ 2, then there exists y2 ∈ N(x) ∩ Λ − {y1}.
Consequently, σ(y1, y2;x) = 0 and σ(x, z; y1) = 0, i.e., y1 ∈ ΥM (x) and x ∈ ΥM (y1),
which means that x and y1 belong to the same M-component, which is a contradiction.

In Appendix A, we list some important variables and notation that are used in
this paper.

3. Identification of fault-free aggregates. Since all neighbors of a fault-free
aggregate are faulty, faulty vertices can be found provided some fault-free aggregates
are identified. Recall that when (t, k)-diagnosis is concerned, the number of faulty
vertices is bounded above by t. For the PMC model, since each fault-free P-component
is a fault-free aggregate, a vertex subset in G can be guaranteed to be a fault-free
aggregate provided it is a P-component and has size greater than or equal to t + 1.
In other words, t + 1 is a threshold for guaranteeing a fault-free aggregate under the
PMC model. Let ζP denote such a threshold. Clearly, t + 1 is a feasible value of ζP .

In the rest of this section, we consider the MM* model and use ζM to denote
a threshold for guaranteeing a fault-free aggregate. Since a fault-free aggregate may
contain multiple M-components under the MM* model, it is not an easy problem to
determine a feasible value of ζM . In the following, we intend to find a feasible value of
ζM , together with some conditions, so that a vertex subset in G can be guaranteed to
be a fault-free aggregate under the MM* model provided it satisfies these conditions
and has size greater than or equal to ζM .

First, a sufficient and necessary condition for a subset V ′ of V with |V ′| ≥ Δ
δ−2

×
t(≥ Δ + 2) to be a fault-free aggregate is proposed below.

Lemma 2. Suppose that V ′ = (
⋃

1≤i≤m Xi) ∪ (
⋃

1≤j≤n Yj) is a subset of V and

|V ′| ≥ Δ
δ−2

× t (≥ Δ + 2), where m ≥ 0, n ≥ 0, Xi ∈ C
(1)

M , Yj ∈ CM − C
(1)

M , and
δ > 2. Then, under the MM* model, V ′ is a fault-free aggregate in G if and only if
the following five conditions hold:

(C1) |N(Xi) ∩ V ′| = 1 for 1 ≤ i ≤ m;

(C2) N(Xi) ∩ V ′ ⊆ ⋃
1≤j≤n Yj for 1 ≤ i ≤ m;

(C3) n = 1;

(C4) for each Xi = {xi}, xi ∈ ΥM (yi) for some yi ∈ Y1;

(C5)
⋃

1≤i≤m Xi =
⋃

Xj∈C
(1)′
M

Xj, where C
(1)′

M = {Xj : Xj = {xj} ∈ C
(1)

M and xj ∈
ΥM (yj) for some yj ∈ Y1}.

Proof. (⇒) (C1) Clearly, |N(Xi) ∩ V ′| ≥ 1. On the other hand, since Xi ∈
C

(1)

M is fault-free, Lemma 1 ensures that Xi has at most one fault-free neighbor, i.e.,
|N(Xi) ∩ V ′| ≤ 1. So, |N(Xi) ∩ V ′| = 1.

(C2) Suppose conversely that (N(Xr)∩V ′)∩ (
⋃

1≤i≤m Xi) is not empty for some
1 ≤ r ≤ m. By (C1), N(Xr) ∩ V ′ = Xl, where 1 ≤ l ≤ m and l 
= r. It follows
that there is no arc between Xl ∪ Xr and V ′ − (Xl ∪ Xr), i.e., |V ′| = 2, which is a
contradiction.
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(C3) Suppose conversely that n ≥ 2. Since V ′ is an aggregate, it is implied by
(C2) that for each Yj , there exists Yl satisfying Yl ∩ N(Yj) 
= ∅. Suppose, without
loss of generality, that Y2 ∩ N(Y1) 
= ∅; i.e., there are arcs between y1 ∈ Y1 and

y2 ∈ Y2. Since y1, y2 are fault-free and Y1, Y2 ∈ CM − C
(1)

M , we have y1 ∈ ΥM (y2)
and y2 ∈ ΥM (y1). It follows that y1 and y2 should belong to the same M-component

(in G†
M ), which is a contradiction.

(C4) By (C2) and (C3), we have yi ∈ N(Xi) for some yi ∈ Y1. Since xi, yi are

fault-free and Y1 ∈ CM − C
(1)

M , we have xi ∈ ΥM (yi).
(C5) Clearly,

⋃
1≤i≤m Xi ⊆

⋃
Xj∈C

(1)′
M

Xj . Suppose conversely that there exists

z ∈ ⋃
Xj∈C

(1)′
M

Xj −
⋃

1≤i≤m Xi. Then, z ∈ ΥM (yj) for some yj ∈ Y1. Since yj is

fault-free, we have z fault-free, which implies z ∈ V ′, which is a contradiction.
For example, a fault-free aggregate Λ under the MM* model is shown in Figure 2,

where Λ = X1 ∪X2 ∪ Y1 is assumed. As a consequence of (C1), (C2), and (C3), X1

and X2 each have exactly one neighbor in Y1, and their other neighbors, which are
faulty, are outside Λ.
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Fig. 2. A fault-free aggregate under the MM* model.

(⇐) We first show that V ′ is fault-free. Suppose conversely that there are faulty
vertices in V ′. If Y1 is fault-free, then by (C4), each Xi is also fault-free, which is a
contradiction. Therefore, Y1 is faulty. Since |V ′| ≥ Δ

δ−2
× t, we suppose that there

are α fault-free vertices in
⋃

1≤i≤m Xi and they have β faulty neighbors outside V ′.
Then, we have

β < t(1)

and |V ′| − α + β ≤ t, which further imply

Δ

δ − 2
× t− α + β ≤ t.(2)
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Lemma 1 ensures that each fault-free vertex in
⋃

1≤i≤m Xi has at least δ−1 faulty
neighbors. As a consequence of (C1), (C2), and (C3), |N(Xi)∩V ′| = |N(Xi)∩Y1| = 1
for each Xi. Since Y1 is faulty, each fault-free vertex in

⋃
1≤i≤m Xi has at least δ − 2

faulty neighbors outside V ′. Also notice that each vertex of G has indegree (and
outdegree) smaller than or equal to Δ. So, we have

α× (δ − 2) ≤ β × Δ.(3)

Combining (1) and (3), we have

α× (δ − 2) < t× Δ.(4)

On the other hand, since β ≥ α×(δ−2)

Δ
(from (3)), (2) can be written as follows:

t× (Δ − δ + 2) ≤ (α− β) × (δ − 2)

≤
(
α− α× (δ − 2)

Δ

)
× (δ − 2)

=
α× (Δ − δ + 2) × (δ − 2)

Δ
,

from which t× Δ ≤ α× (δ − 2) is derived, which is a contradiction to (4).
Next, we show that V ′ is an aggregate in G. Suppose conversely that V ′ is not

an aggregate. Then, V ′ is a proper subset of a fault-free aggregate Λ, and there exists

an M-component Z in G†
M with Z ⊂ Λ − V ′. By (C3), we have Z ∈ C

(1)

M ; by (C4),
we have Z ⊆ ⋃

Xj∈C
(1)′
M

Xj . Further, (C5) ensures that Z ⊆ ⋃
1≤i≤m Xi ⊂ V ′, which

is a contradiction.
According to Lemma 2, when the five conditions hold, Δ

δ−2
× t can be a threshold

for guaranteeing a fault-free aggregate under the MM* model (i.e., set ζM to be
Δ

δ−2
× t). In the next section, it is shown that the value of t under the MM* model

depends on ζM , and in section 5, Δ
δ−2

× t is evaluated in order to compute the degrees
of (t, k)-diagnosability for grids and tori.

4. (t, k)-diagnosability. In [23], Khanna and Fuchs defined a function φ in
order to determine a lower bound on the degree of sequential diagnosability of a
general graph G. In this section, we intend to determine a lower bound on the
degree of (t, k)-diagnosability of G. We assume that the diagnosis model is the MM*
model. The discussion for the PMC model is all the same. We need only to replace
M-component, G†

M , and ζM with P-component, G†
P , and ζP , respectively. First we

adapt the definition of φ to (t, k)-diagnosis, as elaborated below.
Suppose that V ′ ⊂ V and {V1, V2, . . . , Vr} is a partition of V ′ so that the induced

subgraph of each Vi in G is strongly connected and no arc exists between Vi and
Vj if i 
= j. Let π(Vi) denote the set of all possible partitions of Vi, and define
Π(V ′) = {π1 ∪ π2 ∪ · · · ∪ πr : πi ∈ π(Vi) for all 1 ≤ i ≤ r} to be the set of all possible
partitions of V ′ that are induced by further partitioning V1, V2, . . . , Vr. An illustrative
example is shown in Figure 3, where V ′ = V1 ∪ V2 is the set of all black vertices in
G. For our purpose, V ′ = F is the fault set of G, each Vi is a faulty aggregate in G,
and each element (i.e., a subset of Vi) of πi ∈ π(Vi) is a faulty M-component in G†

M

under the MM* model.
Suppose that W ⊆ V −V ′ and the induced subgraph of W in G−V ′ is maximally

strongly connected. For each Γ ∈ Π(V ′), let ϑΓ,W = ΣZ∈Γand Z∩N(W ) �=∅|Z|, which
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Fig. 3. An example of (a) G, (b) V ′ = V1 ∪ V2, and (c) two elements of Π(V ′).
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Fig. 4. An example of (a) W , (b) Γ, and (c) the elements of Γ that overlap with N(W ).

is the total size (i.e., total number of vertices) of those elements (i.e., subsets of
V1, V2, or Vr) of Γ that overlap with N(W ). An illustrative example is shown in
Figure 4, where G and V ′ are the same as those used in Figure 3. Further, we define
ξV ′,W = min{ϑΓ,W : Γ ∈ Π(V ′)}, which is the minimum of ϑΓ,W ’s for all Γ ∈ Π(V ′).
We have the following lemma.

Lemma 3. If W ⊂ V − V ′, then ξV ′,W ≥ κ(G), where κ(G) is the vertex connec-
tivity of G.

Proof. Since W ⊂ V −V ′ and the induced subgraph of W in G−V ′ is maximally
strongly connected, there is no arc in G whose two end vertices belong to W and
G − V ′ − W , respectively. Hence, we have ϑΓ,W ≥ κ(G) for all Γ ∈ Π(V ′), which
further implies ξV ′,W ≥ κ(G).

For our purpose, W is a fault-free aggregate in G. Additionally, there exists
Γ′ ∈ Π(V ′), which is the set of faulty M-components in G†

M under the MM* model.
Consequently, ϑΓ′,W is the total number of vertices contained in those faulty M-
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components that are neighboring to the fault-free aggregate W under the MM* model.
Definition 4. Suppose that G = (V,A) is a directed graph. Define Φ(χ1, χ2) to

be the greatest integer p so that for each subset V ′ of V with |V ′| ≤ p, there exists
W ⊆ V − V ′ satisfying the following three conditions:

(C1) the induced subgraph of W in G− V ′ is maximally strongly connected;
(C2) |W | ≥ χ1;
(C3) ξV ′,W ≥ χ2 provided W ⊂ V − V ′.
Recall that the process of (t, k)-diagnosis is iterative. In each iteration (exclusive

of the last iteration), at least k faulty vertices can be identified provided there are at
most t faulty vertices in G. For the purpose of (t, k)-diagnosis under the MM* model,
we let V ′ = F , χ1 = ζM , and χ2 = q̈, where Φ(ζM , q̈) ≥ Φ(ζM , q) for all nonnegative

integers q. Then, G is (t̂, k̂)-diagnosable under the MM* model, where t̂ = Φ(ζM , q̈)

and k̂ = q̈. We have |F | ≤ t̂(= Φ(ζM , q̈)). There are at least k̂ faulty vertices identified
in each iteration (exclusive of the last iteration), as explained below.

There is a fault-free aggregate W with |W | ≥ ζM , which is guaranteed by (C1)
and (C2). Moreover, W can be identified, according to the discussion of section 3.

Suppose that n total iterations are required to complete the (t̂, k̂)-diagnosis of G. Let
F (i) be the resulting fault set of G at the beginning of the ith iteration, and let W (i)

be the fault-free aggregate identified in the ith iteration, where 1 ≤ i ≤ n. Without
loss of generality, suppose that W (i) ⊂ V − F (i) for i < m and W (i) = V − F (i) for
i ≥ m, where 1 < m ≤ n. For 1 ≤ i < m, at least q̈(= k̂) faulty vertices of G can
be identified in the ith iteration, which is ensured by (C3). For m ≤ i < n, at least

q̈(= k̂) faulty vertices of G can be identified in the ith iteration as well, which is shown
in Appendix B. In the nth iteration, all remaining faulty vertices of G are identified.

In the rest of this section, we aim to evaluate t̂(= Φ(ζM , q̈)) and k̂(= q̈) under
the MM* model. By Lemma 3, we have ξV ′,W ≥ κ(G) if W ⊂ V − V ′. Refer to
Definition 4 again. We have Φ(ζM , κ(G)) ≥ Φ(ζM , q) for all nonnegative integers q.

So, q̈ = κ(G) is a feasible value of k̂. On the other hand, if (C3) holds for χ2 = q̈,
then (C3) holds for χ2 < q̈ as well. That is, Φ(ζM , q̈) ≤ Φ(ζM , q̈ − 1) ≤ · · · ≤
Φ(ζM , 0). Also, since Φ(ζM , q̈) ≥ Φ(ζM , q) for all nonnegative integers q, we have
Φ(ζM , q̈) = Φ(ζM , 0). In order to evaluate Φ(ζM , 0), we define Φ̂(χ1) = min{|V ′′| :
V ′′ ⊂ V and there is no W ′ ⊆ V − V ′′ with |W ′| ≥ χ1 so that the induced subgraph
of W ′ in G− V ′′ is maximally strongly connected}. Clearly, Φ(ζM , 0) = Φ̂(ζM ) − 1.

Further, in order to evaluate Φ̂(ζM ), we let AṼ = {(z1, z2) : z1, z2 ∈ Ṽ and (z1, z2)

is an arc in G}, where Ṽ ⊆ V , and define I(α) = max{|AṼ | : Ṽ ⊆ V and |Ṽ | = α} to
be the maximal number of arcs in G whose two end vertices are contained in a fixed
α-vertex subset of V . It is rather difficult to evaluate I(α); instead, an approximation
of I(α) is evaluated below. Let Î : [0, |V |] → R+ ∪ {0} be a convex function with
Î(0) = 0 and Î(α) ≥ I(α) for all positive integers α, where [0, |V |] denotes the set of
real numbers ranging from 0 to |V | and R+ denotes the set of all positive real numbers.
Notice that Î is a continuous function defined on [0, |V |], while I is a discrete function
defined on {0, 1, 2, . . . , |V |}. We have the following lemma.

Lemma 4. Suppose that V ′ ⊂ V and {W1,W2, . . . ,Wr} is a partition of V −V ′ so
that the induced subgraph of each Wi in G−V ′ is maximally strongly connected, where

1 ≤ i ≤ r. If |Wi| < ζM for all 1 ≤ i ≤ r, then Σr
i=1Î(|Wi|) ≤ Σr

i=1|Wi|
ζM

× Î(ζM ).

Proof. Since Î is convex, we have Î(x)−Î(0)
x ≤ Î ′(x), where Î ′(x) is the first-

order derivative of Î(x). Hence, x × Î ′(x) − Î(x) ≥ 0. Let h(x) = Î(x)

x . Then,

h′(x) = x×Î′(x)−Î(x)

x2 ≥ 0. That is, Î(x)

x is nondecreasing. So, Î(ζM )

ζM
≥ Î(|Wi|)

|Wi| for all
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1 ≤ i ≤ r, which implies Σr
i=1Î(|Wi|) ≤ Σr

i=1|Wi|
ζM

× Î(ζM ).

By the aid of Lemma 4, a lower bound on Φ̂(ζM ) can be obtained as follows.

Lemma 5. Φ̂(ζM ) ≥ |A|×ζM−|V |×Î(ζM )

2×Δ×ζM−Î(ζM )
.

Proof. Suppose Φ̂(ζM ) = q. That is, there exists V ′′ ⊂ V with |V ′′| = q so that
there is no W ′ ⊆ V −V ′′ with |W ′| ≥ ζM and the induced subgraph of W ′ in G−V ′′

is maximally strongly connected. Also suppose that {W1,W2, . . . ,Wr} is a partition
of V − V ′′ so that the induced subgraph of each Wi in G− V ′′ is maximally strongly
connected, where 1 ≤ i ≤ r. Since each vertex of G has outdegree (and indegree)
smaller than or equal to Δ, |V ′′| × Δ is greater than or equal to I(|V ′′|) plus the
number of arcs from V ′′ to V − V ′′. Also, |V ′′| × Δ is greater than or equal to the
number of arcs from V − V ′′ to V ′′. Hence, we have

|A| ≤ Σr
i=1I(|Wi|) + I(|V ′′|) + (the number of arcs between V ′′ and V − V ′′)

≤ Σr
i=1I(|Wi|) + 2 × |V ′′| × Δ.(5)

Since |Wi| < ζM for 1 ≤ i ≤ r and Σr
i=1|Wi| = |V − V ′′|, we have Σr

i=1I(|Wi|) ≤
Σr

i=1Î(|Wi|) ≤ |V−V ′′|
ζM

× Î(ζM ) by Lemma 4. Thus, (5) can be rewritten as follows:

|A| ≤ |V − V ′′|
ζM

× Î(ζM ) + 2 × |V ′′| × Δ,

from which we have

|V ′′| ≥ |A| × ζM − |V | × Î(ζM )

2 × Δ × ζM − Î(ζM )
.

By Lemma 5, we have Φ(ζM , 0) = Φ̂(ζM ) − 1 ≥ |A|×ζM−|V |×Î(ζM )

2×Δ×ζM−Î(ζM )
− 1, i.e.,

t̂ ≥ |A| × ζM − |V | × Î(ζM )

2 × Δ × ζM − Î(ζM )
− 1,(6)

which means that |A|×ζM−|V |×Î(ζM )

2×Δ×ζM−Î(ζM )
− 1 is a lower bound on t̂.

Now that G is (t̂, k̂)-diagnosable, G is also (t̂′, k̂)-diagnosable for all t̂′ ≤ t̂. The
following theorem summarizes the discussion above.

Theorem 6. G is (t̂′, k̂)-diagnosable under the MM* model, where t̂′ =
|A|×ζM−|V |×Î(ζM )

2×Δ×ζM−Î(ζM )
− 1 and k̂ = κ(G).

Since the discussion for the PMC model is the same as the discussion for the
MM* model, we have the following theorem for the PMC model.

Theorem 7. G is (t̂′, k̂)-diagnosable under the PMC model, where t̂′ =
|A|×ζP−|V |×Î(ζP )

2×Δ×ζP−Î(ζP )
− 1 and k̂ = κ(G).

5. Applications. In this section, as two applications of Theorems 6 and 7, we
compute the (t, k)-diagnosability of grids and tori.

5.1. Grids. The Cartesian product [32] of G1 = (V1, E1) and G2 = (V2, E2),
written as G1 ⊗ G2, is the graph G = (V,E), where V = {〈u,v〉 : u ∈ V1 and v ∈
V2} and E = {(〈u,v〉, 〈u’,v’ 〉) : u = u′ and (v, v′) ∈ E2 or v = v′ and (u, u′) ∈
E1}. Let Pk denote a path of k vertices. A d-dimensional grid [23], denoted by
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Gd(n1, n2, . . . , nd), is the graph obtained by Pn1
⊗ Pn2

⊗ · · · ⊗ Pnd
, where each ni

(1 ≤ i ≤ d) is the length of dimension i. There are n1 × n2 × · · · × nd vertices
contained in Gd(n1, n2, . . . , nd). In subsequent discussion, we use Gd(n) to represent
Gd(n1, n2, . . . , nd) with n1 = n2 = · · · = nd = n. Figure 5 shows the topology of
G2(5).


 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 


Fig. 5. The topology of G2(5).

For Gd(n), we have |A| = 2×d×(|V |−|V | d−1
d ) (see [23]), Î(α) = 2×d×(α−α

d−1
d )

(see [23]), Δ = 2 × d, and δ = d (considering each edge of Gd(n) bi-directional).
Moreover, we have κ(Gd(n)) = d. Then, as a consequence of Theorems 6 and 7, we
have the following two theorems.

Theorem 8. Gd(n) is (Ω(|V | d
d+1 ),Ω(d))-diagnosable under the MM* model.

Proof. According to Theorem 6, we have

t̂′ =
|A| × ζM − |V | × Î(ζM )

2 × Δ × ζM − Î(ζM )
− 1

=
2 × d× (|V | − |V | d−1

d ) × ζM − |V | × 2 × d× (ζM − ζ
d−1
d

M )

4 × d× ζM − 2 × d× (ζM − ζ
d−1
d

M )
− 1

=
|V | − ζ

1
d

M × |V | d−1
d

1 + ζ
1
d

M

− 1,(7)

and k̂ = κ(Gd(n)) = d.
Since ζM = Δ

δ−2
× t̂′ = 2×d

d−2
× t̂′ (as a consequence of Lemma 2), we have

t̂′ > 1−|V |
−1

d×(d+1)

3
× |V | d

d+1 , which can be derived from (7). Now that G is

(t̂′, k̂)-diagnosable, G is also (t̂′′, k̂)-diagnosable for all t̂′′ < t̂′. Hence, the theorem
follows.

Theorem 9. Gd(n) is (Ω(|V | d
d+1 ),Ω(d))-diagnosable under the PMC model.

Proof. Similarly, according to Theorem 7, we have

(8) t̂′ =
|V | − ζ

1
d

P × |V | d−1
d

1 + ζ
1
d

P

− 1,

and k̂ = d. Since ζP = t̂′+1 (refer to section 3), we have t̂′ > 1−|V |
−1

d×(d+1)

2
×|V | d

d+1 −1,
which can be derived from (8). Hence, the theorem follows.

5.2. Tori. If we replace each path Pni of Gd(n1, n2, . . . , nd) with a cycle Cni , then
a d-dimensional torus [8], denoted by Td(n1, n2, . . . , nd), results, where Cni

denotes a
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cycle of ni vertices. That is, Td(n1, n2, . . . , nd) = Cn1
⊗Cn2

⊗· · ·⊗Cnd
. We use Td(n)

to represent Td(n1, n2, . . . , nd) with n1 = n2 = · · · = nd = n. Figure 6 shows the
topology of T2(5). For Td(n), we have |A| = 2 × d× |V |, Δ = δ = 2 × d (considering
each edge of Td(n) bidirectional), and κ(Td(n)) = 2d. The value of Î(α) is computed
below.
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�

�
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Fig. 6. The topology of T2(5).

Lemma 10. For Td(n), Î(α) = 2×d×α−2×n
d−μ
μ ×μ×α

μ−1
μ , where μ = ln(n

d

α ).

Proof. Refer to Appendix C.

Similarly, as a consequence of Theorems 6 and 7, we have the following two
theorems.

Theorem 11. Td(n) is (Ω(|V | d
d+1 ),Ω(2×d))-diagnosable under the MM* model.

Proof. According to Theorem 6 and Lemma 10, we have

t̂′ =
|A| × ζM − |V | × Î(ζM )

2 × Δ × ζM − Î(ζM )
− 1

=
2 × d× |V | × ζM − |V | × (2 × d× ζM − 2 × n

d−μ
μ × μ× ζ

μ−1
μ

M )

4 × d× ζM − (2 × d× ζM − 2 × n
d−μ
μ × μ× ζ

μ−1
μ

M )
− 1

=
|V | × n

d
μ × μ× ζ

−1
μ

M

d× n + n
d
μ × μ× ζ

−1
μ

M

− 1,(9)

and k̂ = κ(Td(n)) = 2 × d. Since μ = ln( nd

ζM
) and ζM = Δ

δ−2
× t̂′ = 2×d

2×d−2
× t̂′ (as a

consequence of Lemma 2), we have t̂′ > 0.1 × |V | d
d+1 , which can be derived from (9).

Hence, the theorem follows.

Theorem 12. Td(n) is (Ω(|V | d
d+1 ),Ω(2×d))-diagnosable under the PMC model.

Proof. Similarly, according to Theorem 7 and Lemma 10, we have

(10) t̂′ =
|V | × n

d
μ × μ× ζ

−1
μ

P

d× n + n
d
μ × μ× ζ

−1
μ

P

− 1,

and k̂ = κ(Td(n)) = d. Since μ = ln(n
d

ζP
) and ζP = t̂′ + 1, we have t̂′ > 0.1 × |V | d

d+1 ,

which can be derived from (10). Hence, the theorem follows.

For T2(n), Î(α) = 2×d×α−min{4×√
α, 2×√|V |} was computed in [26]. Since

|A| = 4 × (|V | − |V | 12 ), Δ = δ = 4, and κ(T2(n)) = 2, we have the following two
theorems.

Theorem 13. T2(n) is (Ω(|V | 23 ), 4)-diagnosable under the MM* model.
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Proof. According to Theorem 6, we have

t̂′ =
|A| × ζM − |V | × Î(ζM )

2 × Δ × ζM − Î(ζM )
− 1

=
2 × d× |V | × ζM − |V | × (2 × d× ζM − min{4 ×√

ζM , 2 ×√|V |})
4 × d× ζM − (2 × d× ζM − min{4 ×√

ζM , 2 ×√|V |}) − 1

=
|V | × min{2 ×√

ζM ,
√|V |}

2 × ζM + min{2 ×√
ζM ,

√|V |) − 1.(11)

Since ζM = Δ
δ−2

× t̂′ = 2×d
2×d−2

× t̂′ = 2 × t̂′ (as a consequence of Lemma 2), we have

t̂′ > min{ |V | 23
2

, |V |
8
}, which can be derived from (11). Hence, the theorem follows.

Theorem 14. T2(n) is (Ω(|V | 23 ), 4)-diagnosable under the PMC model.
Proof. Similarly, according to Theorem 7, we have

(12) t̂′ =
|V | × min{2 ×√

ζP ,
√|V |}

2 × ζP + min{2 ×√
ζP ,

√|V |) − 1.

Since ζP = t̂′ + 1, we have t̂′ > min{ |V | 23
2

, |V |−4

4
}, which can be derived from (12).

Hence, the theorem follows.
The values of Î(α) for Gd(n1, n2, . . . , nd) with n1 ≤ n2 ≤ · · · ≤ nd and Td(n) with

even d were computed in [4] and [9], respectively. Their (t, k)-diagnosability can also
be obtained by the aid of Theorems 6 and 7.

6. Discussion and conclusion. Research on fault diagnosis has spanned about
40 years, and now emphasis has shifted toward the identification of a large fraction
of faulty processors, i.e., sequential diagnosis and (t, k)-diagnosis. Now that (t, k)-
diagnosis is a generalization of sequential diagnosis, we focused our attention on (t, k)-
diagnosis under two popular diagnosis models: PMC and MM*. Theorems 6 and 7,
which are the main results of this paper, suggested lower bounds on the degrees of
(t, k)-diagnosability of general multiprocessor systems under the two models.

Previously, lower bounds on the degrees of (t, k)-diagnosability of general multi-
processor systems under the PMC model were proposed in [1]. An immediate conse-
quence of [1] is that under the PMC model, Gd(n) is (2×√

N − 2 × d + 2 + d− 3, d)-
diagnosable if N ≥ 2 × d + 7 and (N+d+2

3
, d)-diagnosable otherwise, and Td(n) is

(2×√
N − 4 × d + 2+2×d−3, 2×d)-diagnosable if N ≥ 4×d+7 and (N+4×d+2

3
, 2×d)-

diagnosable otherwise, where N = nd is the number of processors. By the aid of The-

orems 6 and 7, we have shown in this paper that Gd(n) and Td(n) are (Ω(N
d

d+1 ),Ω(d)-

diagnosable and (Ω(N
d

d+1 ),Ω(2× d))-diagnosable, respectively, under both the PMC
and the MM* models.

Matching composition networks (MCNs), which were first proposed in [24], in-
clude hypercubes, twisted cubes, crossed cubes, and Möbius cubes. Their (t, k)-
diagnosability under the PMC and the MM* models was investigated in [12] and [13],
respectively. The values of Î(α) for MCNs are available in [12]. When applying them
to Theorems 6 and 7, we can obtain the same results as in [12] and [13]. In Table 3, we
summarize the degrees of the (t, k)-diagnosability in asymptotical notations of Gd(n)
and Td(n) that are derivable from [1], [12], [13], and this paper.
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Table 3

Asymptotic degrees of the (t, k)-diagnosability of Gd(n) and Td(n).

PMC MM*

Gd(n) 1. (2 ×√|V | − 2 × d + 2 + d− 3, d) if |V | ≥ 2 × d + 7, (Ω(|V | d
d+1 ),Ω(d))

[this paper]

and ( |V |+d+2
3

, d) else [1]

2. (Ω(|V | d
d+1 ),Ω(d)) [this paper]

Td(n) 1. (2×√|V | − 4 × d + 2+2×d−3, 2×d) if |V | ≥ 4×d+7, (Ω(|V | d
d+1 ),Ω(2×d))

[this paper]

and ( |V |+2×d+2
3

, 2 × d) else [1]

2. (Ω(|V | d
d+1 ),Ω(2 × d)) [this paper]

MCNs Ω( |V |∗log log |V |
log |V | ) [12], [this paper] Ω( |V |∗log log |V |

log |V | )

[13], [this paper]

Table 4

Numerical degrees of the (t, k)-diagnosability of T2(n) under the PMC model.

[1] Theorem 12 Theorem 14

T2(20) (40, 4) (48, 4) (48, 4)
T2(40) (80, 4) (125, 4) (128, 4)
T2(80) (160, 4) (310, 4) (341, 4)
T2(160) (320, 4) (738, 4) (859, 4)
T2(320) (640, 4) (1729, 4) (2166, 4)
T2(640) (1280, 4) (3971, 4) (5460, 4)
T2(1280) (2560, 4) (8894, 4) (13758, 4)
T2(2560) (5120, 4) (19961, 4) (34670, 4)
T2(5120) (10240, 4) (44122, 4) (87363, 4)
T2(10240) (20480, 4) (95616, 4) (220141, 4)
T2(20480) (40960, 4) (554721, 4) (554721, 4)
T2(40960) (81920, 4) (1397811, 4) (1397811, 4)
T2(81920) (163840, 4) (3522263, 4) (3522263, 4)
T2(163840) (327680, 4) (8875546, 4) (8875546, 4)

Table 5

Numerical degrees of the (t, k)-diagnosability of T3(n) under the PMC model.

[1] Theorem 12

T3(20) (181, 6) (761, 6)
T3(40) (508, 6) (3822, 6)
T3(80) (1434, 6) (18374, 6)
T3(160) (4050, 6) (86495, 6)
T3(320) (11451, 6) (402782, 6)
T3(640) (32384, 6) (1812957, 6)
T3(1280) (91592, 6) (8133931, 6)
T3(2560) (259056, 6) (35894726, 6)
T3(5120) (732717, 6) (1.59 × 108, 6)
T3(10240) (2072433, 6) (6.96 × 108, 6)
T3(20480) (5861721, 6) (3.01 × 109, 6)
T3(40960) (16579445, 6) (2.36 × 1010, 6)
T3(81920) (46893747, 6) (1.13 × 1011, 6)
T3(163840) (1.32 × 108, 6) (5.39 × 1011, 6)



1294 GUEY-YUN CHANG AND GEN-HUEY CHEN

Table 6

Numerical degrees of the (t, k)-diagnosability of T5(n) under the PMC model.

[1] Theorem 12

T5(20) (3584, 10) (216158, 10)
T5(40) (20245, 10) (4213470, 10)
T5(80) (114493, 10) (79922574, 10)
T5(160) (647641, 10) (1.48 × 109, 10)
T5(320) (3663580, 10) (2.71 × 1010, 10)
T5(640) (20724309, 10) (4.87 × 1011, 10)
T5(1280) (1.17 × 108, 10) (8.66 × 1012, 10)
T5(2560) (6.63 × 108, 10) (1.52 × 1014, 10)
T5(5120) (3.75 × 109, 10) (2.65 × 1015, 10)
T5(10240) (2.12 × 1010, 10) (4.61 × 1016, 10)
T5(20480) (1.20 × 1011, 10) (9.10 × 1017, 10)
T5(40960) (6.79 × 1011, 10) (1.63 × 1019, 10)
T5(81920) (3.84 × 1012, 10) (2.93 × 1020, 10)
T5(163840) (2.17 × 1013, 10) (5.28 × 1021, 10)

We also evaluate the degrees of the (t, k)-diagnosability for some particular Td(n)’s
in Tables 4, 5, and 6. They show that our result (i.e., Theorem 12) is superior to
the result of [1] for all experimental values of n. Moreover, the value of t obtained
from Theorem 12 increases more quickly than that obtained from [1] as the value of n
increases. Table 4 also shows that the result of Theorem 14 is better than the result
of Theorem 12 for n = 40, 80, . . . , 10240, which is a consequence of using a tighter
upper bound of I(α) (i.e., a smaller value of Î(α)). A better (t, k)-diagnosability will
result from Theorems 6 and 7 if a tighter upper bound of I(α) is used.

In order to apply Theorems 6 and 7, the values of Î(ζP ) and Î(ζM ) must be
available. Previously, the values of Î(α) were computed for some particular graphs,
e.g., Cartesian power of regular graphs [6], products of trees [7], powers of the Petersen
graphs [5], and products of complete p-partite graphs [6]. Their (t, k)-diagnosability
can be obtained as well by the aid of Theorems 6 and 7.

Appendix A. A table of important variables and notation.
G = (V,A): A directed graph that represents a multiprocessor system
σ: A syndrome
ΥP (x) (ΥM (x)): The set of neighboring vertices of x that are tested by x as fault-free

under the PMC (MM*) model

G†
P (G†

M ): The spanning subgraph of G whose arcs are all (u, v)’s with v ∈ ΥP (u) (ΥM (u))

P-component (M-component): The vertex set of a strongly connected subgraph of G†
P (G†

M )

CP (CM ): The set of all P-components (M-components) in G†
P (G†

M )

C
(1)
M : The set of all 1-vertex M-components in G†

M
ζP (ζM ): A threshold for guaranteeing a fault-free aggregate under the PMC (MM*) model
Λ: An aggregate
Δ (δ): Maximal (minimal) degree of G
F : The set of faulty vertices in G
W : A fault-free aggregate in G
N(v): The neighborhood of vertex v in G
N(W ): The neighborhood of W in G, i.e., N(W ) =

⋃
v∈W N(v) −W

π(Vi): The set of all possible partitions of Vi

Π(V ′): The set of all possible partitions of V ′ that are induced by further partitioning
V1, V2, . . ., Vr ({V1, V2, . . . , Vr} is a partition of V ′ so that the induced subgraph
of each Vi in G is strongly connected and no arc exists between Vi and Vj if i �= j),
i.e., Π(V ′) = {π1 ∪ π2 ∪ · · · ∪ πr : πi ∈ π(Vi) for all 1 ≤ i ≤ r}
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ϑΓ,W : The total number of vertices in those elements of Γ that overlap with N(W ), where
W ⊆ V − V ′ and Γ ∈ Π(V ′), i.e., ϑΓ,W = ΣZ∈Γand Z∩N(W ) �=∅|Z|

ξV ′,W : Min{ϑΓ,W : Γ ∈ Π(V ′)}
Φ(χ1, χ2): Refer to Definition 4
I(α): The maximal number of arcs whose two end vertices belong to a fixed α-vertex

subset of V

Î(α): A convex function with Î(0) = 0 and Î(α) ≥ I(α)

W (i): The fault-free aggregate identified in the ith iteration

F (i): The set of faulty vertices at the beginning of the ith iteration
Gd(n) (Td(n)): A d-dimesional grid (torus) with equal dimension length n

Appendix B. Proof of at least q̈ faulty vertices identified when W (i) =
V − F (i). Suppose conversely that there exists a syndrome σ that may induce fewer
than q̈ faulty vertices identified in the m′th iteration, where m ≤ m′ < n. Refer
to Figure 7, where F (m′) − F (m′+1) is the fault set identified in the m′th iteration,
F (m′+1)−F (m′+2) is the fault set identified in the (m′ +1)th iteration, and so on. Let

X(⊆ F (n)) be a faulty M-component (in G†
M ) identified in the last iteration. Each

M-component that is neighboring to X in G†
M is contained in F (n) or F (n−1) − F (n);

i.e., all vertices in N(x) are faulty if x ∈ X.
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�
F (m′) − F (m′+1) F (m′+1) − F (m′+2) F (n−1) − F (n) F (n)

W (m′)

� � � ��
��
X

Fig. 7. An illustrative example.

Let us construct σ̃ from σ as follows: set σ̃(y, z : x) = 1 if y or z is in N(x) −X
and x is in X, and σ̃(y, z : x) = σ(y, z : x) otherwise. Notice that σ̃ is a syndrome that
may be generated by F (1). Besides, in each iteration, the fault-free M-components
induced by σ̃ are identical with those induced by σ. It follows that in each iteration,
each fault-free aggregate identified with respect to σ̃ is also identifiable with respect
to σ. In other words, each diagnosis process induced by σ̃ can be induced by σ as
well.

Notice that σ̃ can also be generated by F
′(1) = F (1) − X (i.e., considering X

fault-free). It follows that with the same syndrome σ̃, the fault-free aggregate and the
faulty vertices identified in the m′th iteration with respect to F (1) are also identifiable
in the m′th iteration with respect to F

′(1). Let F
′(m′) be the resulting fault set

of G at the beginning of the m′th iteration and W
′(m′) be the fault-free aggregate

identified in the m′th iteration when F
′(1) is the initial fault set of G and σ̃ is the

syndrome generated by F
′(1). Since X is fault-free, we have W

′(m′) ⊂ V − F
′(m′) (or

W
′(m′) ∪X = V −F

′(m′)). Then, according to Definition 4, there are at least q̈ faulty
vertices contained in the neighboring M-components of W

′(m′); i.e., at least q̈ faulty
vertices can be identified. It is implied that the syndrome σ generated by F (1) can
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also induce a diagnosis process that will identify at least q̈ faulty vertices in the m′th
iteration, which is a contradiction.

Appendix C. Proof of Lemma 10. We denote each vertex v of Td(n) by a
d-tuple (v1, v2, . . . , vd), where each vi, ranging from 0 to n − 1, is the ith coordinate
of v. Suppose that H is a set of α vertices in Td(n). We first recoordinate the vertices
of Td(n) so that

(1) the minimum of the ith coordinates of all vertices in H is 0,
(2) the maximum of the ith coordinates of all vertices in H is xi,
(3) xi obtained in (2) is minimum, i.e., there is no coordinate system of Td(n) in

which there exists x′
i < xi and for each v = (v1, v2, . . . , vd) ∈ H, 0 ≤ vi ≤ x′

i,
and

(4) 0 ≤ x1 ≤ x2 ≤ · · · ≤ xd ≤ n− 1,
where 1 ≤ i ≤ d.

Along a fixed dimension, say, γ, we first partition Td(n) into n Td−1(n)’s, denoted
by T1, T2, . . ., Tn, where 1 ≤ γ ≤ d and each Ti contains all the vertices of Td(n) whose
γth coordinates are i. Without loss of generality, assume x1 ≤ x2 ≤ · · · ≤ xμ < n− 1
and xμ+1 = xμ+2 = · · · = xd = n − 1, where 0 < μ ≤ d. If 1 ≤ γ ≤ μ, then Txγ+1

contains no vertex in H. In order to estimate Î(α), we intend to minimize the number
of arcs that each have one end vertex in H and the other end vertex not in H, as
elaborated below.

Let EH,γ(v′1, . . . , v
′
γ−1, v

′
γ+1, . . . , v

′
d) = {(v′1, . . . , v′γ−1, uγ,q1 , v

′
γ+1, . . . , v

′
d), (v

′
1, . . . ,

v′γ−1, uγ,q2 , v
′
γ+1, . . . , v

′
d), . . . , (v

′
1, . . . , v

′
γ−1, uγ,qp , v

′
γ+1, . . . , v

′
d)} be the set of vertices

in H that have the same jth coordinate v′j for j ∈ {1, . . . , γ − 1, γ + 1, . . . , d}
and have different γth coordinates uγ,q1 ≤ uγ,q2 ≤ · · · ≤ uγ,qp . When (uγ,q1 −
1)mod n 
∈ {uγ,q1 , uγ,q2 , . . . , uγ,qp} (or (uγ,qp + 1)mod n 
∈ {uγ,q1 , uγ,q2 , . . . , uγ,qp}),
the arc ((v′1, . . . , v

′
γ−1, uγ,q1 , v

′
γ+1, . . . , v

′
d), (v

′
1, . . ., v′γ−1, (uγ,q1 − 1)mod n, v′γ+1, . . . ,

v′d)) (or ((v′1, . . ., v′γ−1, uγ,qp , v
′
γ+1, . . . , v

′
d), (v

′
1, . . . , v

′
γ−1, (uγ,qp +1)mod n, v′γ+1, . . .,

v′d))) is referred to as an out-arc (thus named because (uγ,q1 − 1)mod n (or (uγ,qp +
1)mod n) is out of the range from uγ,q1 to uγ,qp).

On the other hand, when (uγ,qi − 1)mod n 
∈ {uγ,q1 , uγ,q2 , . . . , uγ,qp} and uγ,q1 ≤
(uγ,qi − 1)mod n ≤ uγ,qp (or (uγ,qi + 1)mod n 
∈ {uγ,q1 , uγ,q2 , . . . , uγ,qp} and uγ,q1 ≤
(uγ,qi + 1)mod n ≤ uγ,qp), the arc ((v′1, . . . , v

′
γ−1, uγ,qi , v

′
γ+1, . . . , v

′
d), (v

′
1, . . . , v

′
γ−1,

(uγ,qi − 1)mod n, v′γ+1, . . . , v′d)) (or ((v′1, . . . , v
′
γ−1, uγ,qi , v

′
γ+1, . . . , v

′
d), (v

′
1, . . . , v

′
γ−1,

(uγ,qi +1)mod n, v′γ+1, . . . , v
′
d))) is referred to as an in-arc. Both out-arcs and in-arcs

are directed from vertices in H to vertices not in H. A lower bound on the number
of out-arcs is estimated below.

When 1 ≤ γ ≤ μ, there are at least 2∗ |{(v1, . . . , vγ−1, vγ+1, . . . , vd) : EH,γ(v1, . . . ,
vγ−1, vγ+1, . . . , vd) 
= ∅}| arcs that each have one end vertex in H and the other end
vertex not in H, because (uγ,q1 − 1)mod n 
∈ {uγ,q1 , uγ,q2 , . . ., uγ,qp} and (uγ,qp +
1)mod n 
∈ {uγ,q1 , uγ,q2 , . . ., uγ,qp}. Clearly, 2 ∗ |{(v1, . . . , vγ−1, vγ+1, . . . , vd): EH,γ(v1,
. . . , vγ−1, vγ+1, . . . , vd) 
= ∅}| ≥ min{|Hi| : 1 ≤ i ≤ n}, where Hi is the set of vertices
in H that are located in Ti. The equality holds when |H1| = |H2| = · · · = |Hn| and
for i 
= j, if v ∈ Hi, then there exists u ∈ Hj so that the coordinates of u and v differ
only in dimension γ.

When μ < γ ≤ d, there are at least |{(v1, . . . , vγ−1, vγ+1, . . . , vd) : EH,γ(v1, . . . ,
vγ−1,vγ+1, . . . , vd) 
= ∅ and (v1, . . . , vγ−1, 0, vγ+1, . . . , vd) 
∈ H}|+|{(v1, . . ., vγ−1, vγ+1,
. . . , vd) : EH,γ(v1, . . . , vγ−1, vγ+1, . . . , vd) 
= ∅ and (v1, . . . , vγ−1, n − 1, vγ+1, . . . ,
vd) 
∈ H}| ≥ 0 arcs that each have one end vertex in H and the other end vertex
not in H. The equality holds when uγ,q1 = 0 and uγ,qp = n− 1 for every EH,γ(v1, . . . ,
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vγ−1, vγ+1, . . . , vd) 
= ∅.
A lower bound on the number of in-arcs is estimated as follows. There are at

least 2 × Σp−1
i=1 |{(v1, . . . , vγ−1, uγ,qi , vγ+1, . . . , vd) : (v1, . . . , vγ−1, uγ,qi , vγ+1, . . . , vd) ∈

H and (v1, . . . , vγ−1, uγ,qi + 1, vγ+1, . . . , vd) 
∈ H}| ≥ 0 arcs that each have one end
vertex in H and the other end vertex not in H. The equality holds when uγ,qi + 1 =
uγ,qi+1

for all 1 ≤ i ≤ p− 1.
When the three equalities above hold, H forms a d-dimensional hyperrectangle

with |H| = y1 × y2 × · · · × yμ × nd−μ, where each yj is the side length of the hy-
perrectangle along the dimension j. Now that min{|Hi| : 1 ≤ i ≤ n} = α

yγ
, we

have

I(α) ≤ 2 × d× α− 2 × min

⎧
⎨
⎩

μ∑

j=1

α

yj
: 1 ≤ μ ≤ d

⎫
⎬
⎭ .

Notice that 1
y1

+ 1
y2

+ · · · + 1
yμ

≥ μ × μ

√
1

y1×y2×···×yμ
= μ × (Πμ

j=1yj)
−1
μ . Since

the equality holds when y1 = y2 = · · · = yμ = ( α
nd−μ )

1
μ , we have Σμ

j=1
α
yj

≥ α × (μ ×
(( α

nd−μ )
1
μ×μ)

−1
μ ) = α× μ× ( α

nd−μ )
−1
μ = n

d−μ
μ × μ× α

μ−1
μ whose first-order derivative

with respect to μ is 0 at μ = ln(n
d

α ) and whose second-order derivative with respect

to μ is positive. Hence, n
d−μ
μ × μ × α

μ−1
μ is minimum when μ = ln(n

d

α ). That is,

I(α) ≤ 2 × d× α− 2 × n
d−μ
μ × μ× α

μ−1
μ with μ = ln(n

d

α ).
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ORACLES FOR DISTANCES AVOIDING A FAILED NODE OR LINK∗
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Abstract. We consider the problem of preprocessing an edge-weighted directed graph G to
answer queries that ask for the length and first hop of a shortest path from any given vertex x to
any given vertex y avoiding any given vertex or edge. As a natural application, this problem models
routing in networks subject to node or link failures. We describe a deterministic oracle with constant
query time for this problem that uses O(n2 logn) space, where n is the number of vertices in G.
The construction time for our oracle is O(mn2 + n3 logn). However, if one is willing to settle for
Θ(n2.5) space, we can improve the preprocessing time to O(mn1.5 + n2.5 logn) while maintaining
the constant query time. Our algorithms can find the shortest path avoiding a failed node or link in
time proportional to the length of the path.

Key words. graph algorithms, data structures, shortest paths, network failures
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1. Introduction. In the distance sensitivity problem, we wish to construct a
data structure (which we call distance sensitivity oracle) for an edge-weighted directed
graph G that supports the following queries:

v-dist(x, y, v): returns the distance from vertex x to vertex y in G − { v },
i.e., the length (sum of edge weights) of the shortest possible
path from x to y in G avoiding vertex v, if one exists, and +∞
otherwise.

e-dist(x, y, u, v): returns the distance from vertex x to vertex y in G−{ (u, v) },
i.e., the length (sum of edge weights) of the shortest possible
path from x to y in G avoiding edge (u, v), if one exists, and
+∞ otherwise.

We also consider the corresponding path queries, which we denote by v-path(x, y, v)
and e-path(x, y, u, v), respectively. In this article, we denote by n the number of
vertices and by m the number of edges in G. We also assume that edge weights are
nonnegative. In our bounds, space is measured as the number of memory words,
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where each word can hold the label of a vertex or edge or the weight of an edge or
path.

In our directed case, we note that edge failures subsume vertex failures. The
reduction is well known from work on disjoint paths. We split each vertex v into an
in-vertex v0 and an out-vertex v1, with an in-out edge (v0, v1). The original incoming
edges are moved to v0 and the outgoing edges are moved to v1. Now losing the edge
(v0, v1) due to a network failure has the same effect as losing vertex v in the original
graph.

1.1. Motivation. Our motivating scenario is a network where node/link failures
happen quite rarely. As soon as a node or link failure has been noticed, we want to
be able to answer distance queries and provide directions for shortest paths in the
network without the failed node or link. On the other hand, we assume that we
have plenty of time to compute a new data structure in the background. We model a
network as a weighted directed graph where vertices correspond to network nodes, and
edges correspond to network links. In this scenario, v-dist(x, y, v) yields the distance
from node x to node y in the network avoiding failed node v, and e-dist(x, y, u, v)
yields the distance from node x to node y in the network avoiding failed link (u, v).

We note that the ability to deal with node/link failures enables us to deal with
some other related aspects of the network. For example, by dealing with a link failure
(u, v), we actually deal with arbitrary changes to its weight. More precisely, we can
simply compute the distance from vertex x to vertex y in the graph where (u, v) has
its weight changed to w as min{e-dist(x, y, u, v), dxu + w + dvy}, where dxu is the
distance from vertex x to vertex u and dvy is the distance from vertex v to vertex y
in the graph. Here, a weight change could model that traffic is moving slower/faster
along a certain link. An interesting application of dealing with single weight changes
is a local search like the one in [9]. There, one wants to consider a neighborhood of a
given weight setting, where each neighbor is obtained by changing a single weight.

Another motivation for solving the distance sensitivity problem arises from recent
interest in Vickrey pricing of networks [11, 19]. We describe this application in more
detail in section 1.4.

1.2. Related work. A variant of the distance sensitivity problem, related to
reachability in directed acyclic graphs w.r.t. edge failures, was first introduced by
King and Sagert in [14], where they consider the problem of supporting sensitivity
queries of the kind: “Is there a path from vertex x to vertex y that does not contain
edge (u, v)?” Here, we are concerned with general weighted digraphs and distance
queries instead of reachability queries, and we consider both vertex and edge failures.

This problem is similar to the replacement paths problem [11] (see also the erratum
for [11] and [12, 18, 21]) which, given a pair of vertices x and y in G, computes the set
of shortest paths from x to y avoiding each of the vertices (or edges) on πxy one at a
time, where πxy is the original shortest path from x to y in G. A method for solving
this problem on undirected graphs in O(m + n log n) preprocessing time and O(n)
space is given for the vertex removal case in [18] and for the edge removal case in
[11]. A method for solving this problem on unweighted directed graphs in Õ(m

√
n)

preprocessing time and Õ(n3/2) space is given in [21].

However, in this paper we are interested in finding replacement paths for all
possible sources and destinations, blowing up each of the above bounds by a factor
n2. In particular, the space becomes O(n3). Moreover, we consider the general case
of a weighted directed graph.
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Of a similar flavor is the most vital node (or arc) problem [1, 2, 4, 18], which is the
problem of identifying the vertex (or edge) on a given shortest path, whose removal
results in the longest replacement path.

The most natural approach to the distance sensitivity problem would be to use
one of the recent dynamic all pairs shortest paths (APSP) algorithms [5, 6, 13, 15]

and delete the failed vertex or edge. The best bounds [6, 25] take Õ(n2) amortized
time for real weighted directed graphs, but then queries avoiding the failed vertex or
edge are answered in constant time. However, our goal here is to answer a query as
quickly as possible after a vertex or edge failure, and then it may be faster to compute
the answer from scratch at each query using an O(n log n+m) single-source shortest
paths (SSSP) algorithm [10].

Another extreme solution would be to construct a table that for each vertex pair
(x, y) and each vertex/edge stores the distance from x to y avoiding that vertex/edge.
For vertex failures, such a table of size O(n3) is trivially computed by n APSP com-
putations in O(mn2 + n3 log n) time. However, for edge failures the size of the trivial
table is Θ(mn2) and requires m APSP computations. Space can be reduced (at least
for the edge failure case) by working from one source x at a time, constructing a
shortest paths tree T (x). This tree changes only if we remove any of the O(n) ver-
tices or edges in it. Hence, it is only for these vertices and edges that we need to
record new distances from x. An implementation of this idea is given in [24]. If h is
the maximal hop count of a path in T (x), the construction uses h SSSP computations
in O(hm + hn log n) time and O(hn) space. However, we may have h = Ω(n), and
repeating the construction from all sources, we end up with a construction time of
O(mn2+n3 log n) and a space bound of O(n3) for our all pairs case. The fundamental
question considered here is if the cubic space bound can be improved.

Shortest paths computation. In the above time bounds, we have assumed that
SSSP is solved in O(m + n log n) time using Fibonacci heaps in Dijkstra’s SSSP
algorithm [10] and that APSP is solved with an SSSP from each vertex in O(mn +
n2 log n) time. We will make the same assumptions when stating our own results.

We note here that there are alternative faster algorithms in different situations.
For example, if the weights are represented as integer or floating point numbers, we
can compute SSSP in O(m+n log log n) time [26], or even in O(m) time if the graph is
undirected [23]. In the case of real weights, we can solve APSP in O(mn+n2 log log n)
time for sparse graphs [20] and in O(n3

√
log log n/log n) time for dense graphs [22, 27].

However, the above improvements are “only” by logarithmic factors, and in our
results for distance sensitivity oracles, we are aiming at polynomial improvements in
space and construction time. Hence we are satisfied just stating the time bounds
assuming Fibonacci heaps in Dijkstra’s algorithm.

1.3. Our results. The main result of this article is a deterministic oracle with
fast query time for both vertex and edge failures that uses nearly the same space as
that required for storing the distance matrix of the input graph. More precisely, we
construct an oracle that uses O(n2 log n) space and answers distance queries subject
to a vertex or edge failure in O(1) worst-case time. This result is quite surprising,
since the space bound is significantly smaller than Θ(n3) and yet our scheme answers
queries in O(1) time. We also present an Ω(m) space lower bound for the single-source
version of the problem. Since m can be as high as Ω(n2), our oracle is thus almost
space-optimal.

The construction time for our oracle is O(mn2 + n3 log n) in the worst case.
However, if one is willing to settle for Θ(n2.5) space, we can improve the preprocessing
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Table 1.1

Known results and our contribution.

References Context
Graph

type

Construction

time
Space

Query

time

Nardelli et al. [18]

Most vital node

detection

[v-dist(x, y, v)]

Undirected O(mn2 + n3 logn) O(n3) O(1)

Hershberger

& Suri [11]

Vickrey pricing

in networks

[e-dist(x, y, u, v)]

Undirected O(mn2 + n3 logn) O(n3) O(1)

Our contribution

Vertex/edge failure

[v-dist(x, y, v)]

[e-dist(x, y, u, v)]

Directed

(or undirected)

Method 1

O(mn2 + n3 log n) O(n2 log n) O(1)

Method 2

O(mn1.5 + n2.5 logn) O(n2.5) O(1)

time to O(mn1.5 + n2.5 log n), and the query time remains constant. In Table 1.1 we
place our bounds in perspective by comparing them to the bounds for related problems
obtainable with previous algorithms: in the context of most vital node detection and
Vickrey pricing, we are extrapolating the performance of algorithms designed for a
single source-destination pair to the all pairs case.

To achieve our bounds, we construct data structures where we store information
about APSP excluding only vertices or edges with specific properties, rather than
excluding all possible vertices or edges. We also store information about shortest paths
where we exclude vertices on entire subpaths, rather than single vertices. We remark
that our algorithms are very simple and thus amenable to efficient implementations.

We note that vertex failures in directed graphs trivially subsume vertex failures in
undirected graphs, but the same does not hold for link failures as an undirected link
failure corresponds to two symmetric directed link failures. However, our solutions
happen to work for the undirected case as well.

Part of the results presented in this paper for link failures were presented in two
conference papers: one by the first two authors [7] which presented the two algorithms,
and the other by the last two authors [3]. The paper [3] improves the query time from
[7], but it also has an extra claim on construction time which is incorrect. Additionally,
this paper presents results obtained by the last two authors on extending the oracles
in [7, 3] to efficiently handle node failures in addition to link failures. This paper
also presents a lower bound result obtained by the first two authors on the space
requirement for the single-source version of the distance oracle problem.

1.4. Vickrey pricing in networks. The Vickrey mechanism is a generalization
of the sealed bid second price auction, in which the highest bidder wins the auction but
pays a price equal to the second highest bid. This auction protocol motivates a rational
bidder to bid truthfully [17]. In a distributed network in which multiple rational self-
interested agents own different parts of the network, Vickrey mechanism is often the
best way to determine the utility of various network elements. In order to elicit
truthful responses from the agents, each agent is compensated in proportion to the
marginal utility he/she brings to the network. Willing manipulations by participating
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Table 1.2

Complexity of computing Vickrey payments for all vertex pairs.

Algorithm Time Space Query time

Näıve O(n2(m + n logn)) O(n3) O(1)

Our 1st result O(n2(m + n logn)) O(n2 logn) O(1)

Our 2nd result O(n1.5(m + n logn)) O(n2.5) O(1)

agents is eliminated by making an agent’s payment depend only on the declarations
of other agents.

Consider a scenario in which we need to find shortest paths in a network G,
where links are owned by self-interested agents. Agents are assumed to bid on each
link individually. Nisan and Ronen [19] formulated the following expression as the
payment pe(x, y) to be made to the owner of a link e for a given vertex pair (x, y):

pe(x, y) =

{
dxy(G|we=∞) − dxy(G|we=0) if e ∈ πxy,
0 otherwise,

where πxy is a shortest path from vertex x to vertex y in G, and dxy(G|we=k) is the
distance from vertex x to vertex y in G, where the weight of edge e is set to k. For any
e ∈ πxy, the term dxy(G|we=0) can be simply computed as dxy(G|we=0) = dxy − we,
where dxy is the distance from x to y in G. However, computing dxy(G|we=∞) näıvely
for all e ∈ πxy requires running an O(m+n log n) time shortest paths algorithm [8, 10]
on G − {e} for each e ∈ πxy. This can be as high as O(mn + n2 log n) in the worst
case. This problem was studied in [11], but no improvement to this trivial bound is
known.

The distance sensitivity problem we study in this article is a generalization of
the above problem to the situation where one is potentially interested in finding all
Vickrey payments for all vertex pairs (instead of a single pair). In this case our first
algorithm can carry out the entire computation using significantly less space than
that used by the näıve algorithm. On the other hand, our second algorithm reduces
both time and space requirements of the computation. The complexities of all three
algorithms are compared in Table 1.2. Observe, however, that for very sparse graphs
the running time of the näıve algorithm can be improved to O(mn(m + n log log n))
[20].

1.5. Organization of the article. The remainder of this article is organized
as follows. In section 2 we introduce the notation used in the article, and we discuss
some simple properties that will be useful in the description of our results. In par-
ticular, we define the notion of “path cover,” showing how to use information about
shortest paths which avoid all vertices on certain paths in the graph to determine
a shortest path that avoids a single vertex. In section 3 we show how to efficiently
compute shortest paths from any given vertex to all other vertices in a directed graph
G with nonnegative real-valued edge weights where we avoid all vertices on certain
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types of paths. These tools are used in section 4 to devise an oracle for the distance
sensitivity problem that answers v-dist queries in constant worst-case time using
nearly the same space required for storing a single distance matrix. This oracle can
be constructed in O(mn2 + n3 log n) worst-case time. In section 5 we show that,
if one is willing to settle for more space, we can reduce the preprocessing time to
O(mn1.5 + n2.5 log n). This second oracle uses O(n2.5) space while still answering
v-dist queries in constant worst-case time. Section 6 shows how to extend the ora-
cles designed for vertex failures to also deal with edge failures, and section 7 addresses
the problem of supporting path queries v-path and e-path. A space lower bound for
the single-source version of the distance sensitivity problem is discussed in section 8.
Finally, section 9 provides some concluding remarks.

2. Preliminaries. Let G = (V,E,w) be a directed graph with vertex set V ,
edge set E, and edge weight function w. Throughout the article, we assume that,
for each pair of vertices x and y such that y is reachable from x, there is a unique
shortest path from x to y. This is without loss of generality, since ties can be broken
arbitrarily (see, e.g., [6]).

2.1. Notation. In this article, a path pxy is a sequence of vertices of the form
pxy = 〈v0, v1, v2, . . . , vk−1, vk〉 such that v0 = x, vk = y, and (vi, vi+1) ∈ E for
every i, 0 ≤ i < k. Thus, G − pxy is the subgraph of G induced by the vertex set
V − {x, v1, . . . , vk−1, y}. We let pxy · pyz denote the concatenation of path pxy with
path pyz. We denote by wxy the weight of edge (x, y) in G, and we indicate with
w(pxy) the length of pxy, i.e., the sum of weights of edges in pxy. We also denote by
T (x) the single-source shortest path tree of G with source x, and we denote by πxy

the (unique) shortest path from vertex x to vertex y in G, if any. Using a geometrical
analogy, we sometimes look at shortest paths as “segments,” using the notation [x, y]
instead of πxy. Similarly, we sometimes use ]x, y[ to denote πxy − {x, y }, [x, y[ to
denote πxy − { y }, and ]x, y] to denote πxy − {x }. We indicate with dxy the length
of πxy (distance from x to y in G), and with hxy the number of edges in πxy (number

of hops). If y is not reachable from x, we assume that dxy = hxy = +∞. By Ĝ
we denote the directed graph obtained from G by reversing the orientation of edges.
Thus, π̂ and T̂ denote π and T in Ĝ. If T is a rooted tree, we let BT (i, j) denote the
set of paths in T that connect vertices at level i with vertices at level j > i in the
tree, assuming that the root of T has level 0. Notice that, if πcd ∈ BT (x)(i, j), then
hcd = j − i. Let a and b be vertices on pxy; we say that a < b if a appears before b
on pxy, and a ≤ b if a < b or a = b. Finally, by πuv

xy we denote a shortest path from
vertex x to vertex y in G − [u, v]. The path πuv

xy could be thought of as an optimal
“replacement path” from x to y to be used in case all vertices in [u, v] fail. Observe
that, for each internal vertex v in πxy, v-dist(x, y, v) = w(πvv

xy). Indeed, the goal of
this article is to provide methods for answering queries about πvv

xy. The notation used
in this article is summarized in Table 2.1.

2.2. Structural properties. By our assumption of uniqueness of shortest paths,
for any pair of vertices a, b ∈ πxy such that a ≤ b, πab is a subpath of πxy. Moreover, if
πxy = {v0, v1, . . . , vk−1, vk}, then π̂yx = {vk, vk−1, . . . , v1, v0}; i.e., one is the reversal
of the other.

We now discuss a simple structural property of πuv
xy . In particular, the following

claim shows that, if y is reachable from x in G − [u, v], then πuv
xy and πxy share a

common prefix and a common suffix and are vertex-disjoint elsewhere (see Figure 2.1).
Intuitively, the internal subpath of πuv

xy that is vertex-disjoint from πxy can be thought
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Table 2.1

Notation used in this article.

Notation Meaning

G edge-weighted directed graph G = (V,E,w)

wxy weight of edge (x, y) in G

pxy path 〈x, v1, v2, · · · , vk−1, y〉 from vertex x to vertex y in G

pxy · pyz concatenation of path pxy with path pyz

w(pxy) length of path pxy (sum of weights of edges in pxy)

πxy or [x, y] shortest path from vertex x to vertex y in G (we assume it is unique)

]x, y[ πxy − {x, y }
[x, y[ πxy − { y }
]x, y] πxy − {x }
hxy number of edges in πxy

dxy distance from vertex x to vertex y in G (dxy = w(πxy))

T (x) shortest path tree rooted at x in G (x is at level 0 in T (x))

Ĝ reversed graph (V, Ê, ŵ) s.t. Ê = {(x, y) : (y, x) ∈ E} and ŵxy = wyx

T̂ (x), π̂xy T (x) and πxy in Ĝ instead of G

BT (i, j) set of all paths in tree T connecting vertices at level i to vertices at level j

a < b in pxy vertex a precedes vertex b in pxy

πuv
xy shortest path from x to y in G− [u, v]

dxy(l1, l2, r1, r2)
min a ∈ [l1, l2[

b ∈ ]r1, r2]

{ dxa + w(πl2r1
ab ) + dby }

(see Definition 2.1)

of as an “optimal detour” that avoids vertices in [u, v].
Claim 1. Let G = (V,E,w) be an edge-weighted directed graph. For any x, y ∈ V

and for any u, v ∈ πxy with x < u ≤ v < y, if πuv
xy �= ∅, then there exist two vertices

a, b ∈ πxy such that πuv
xy = πxa · pab · πby, where pab ∩ πab = {a, b}.

Proof. We first notice that πxy and πuv
xy are both paths in G, since every path in

G− [u, v] is also a path in G. Moreover, πxy �= πuv
xy , since u ∈ πxy, but u �∈ πuv

xy .
Now, let pxa be the longest common prefix of πuv

xy and πxy, and let pby be their
longest common suffix. These subpaths are never empty, since πuv

xy and πxy share at
least their endpoints. This proves the existence of vertices a and b in our claim.

Since every subpath of πxy is a shortest path (by the optimal substructure prop-
erty of shortest paths) and shortest paths are unique in G, then pxa = πxa and
pby = πby. Furthermore, since πxy �= πuv

xy , then a �= b and pxa ∩ pby = ∅. Thus, we can
write πuv

xy as πxa · pab · πby for some pab.
It remains to prove that pab ∩ πab = {a, b}. Suppose by contradiction that there

is a vertex c ∈ pab ∩ πab such that a < c < b. Now, observe that c /∈ [u, v], since
pab∩[u, v] = ∅, and that [u, v] is a subpath of πab, since πxa∩[u, v] = ∅ and πby∩[u, v] =
∅. Assume without loss of generality that c < u in πxy (the case v < c is completely
analogous). Consider the subpath πac of πab, and notice that it is a shortest path in
both G and G − [u, v]. Now, pab is a shortest path in G − [u, v], and thus, by the
optimal-substructure property, its subpath pac has to be shortest as well in G− [u, v].
Since shortest paths are unique in G − [u, v], then pac = πac, and thus πxy and πuv

xy
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u v yx a b

π xa π by

= πuv
abpab

Fig. 2.1. Structure of a replacement path πuv
xy = πxa · pab · πby.

share the same subpath from x to c > a. This means that a cannot be the last vertex
of the longest common prefix of πuv

xy and πxy, which is clearly a contradiction.

2.3. Path covering. We now discuss the notion of “path covering” that will be
crucial to proving the correctness of our query algorithms.

Definition 2.1. Let x ≤ l1 < l2 ≤ r1 < r2 ≤ y be vertices on πxy. We define
dxy(l1, l2, r1, r2) as

dxy(l1, l2, r1, r2) = min
a ∈ [l1, l2[
b ∈ ]r1, r2]

{ dxa + w(πl2r1
ab ) + dby },

and we say that a value d covers [l1, l2[ × ]r1, r2] w.r.t. x, y if d ≤ dxy(l1, l2, r1, r2).

In this case, we also say that d covers all paths of the form πxa · πl2r1
ab · πby for each

a ∈ [l1, l2[ and for each b ∈ ]r1, r2].
Observe that dxy(l1, l2, r1, r2) is the distance from vertex x to vertex y in G using

paths that first follow a shortest path from x to some vertex a in [l1, l2[, then take
an optimal detour that avoids all vertices in [l2, r1], and finally go through a shortest
path from some vertex b in ]r1, r2] to y. The following claim, which easily follows from
Definition 2.1 and from Claim 1, states that, if l1 = x and r2 = y, then dxy(l1, l2, r1, r2)
is equal to the length of the shortest path from x to y avoiding [u, v].

Claim 2. Let x < u ≤ v < y be vertices on πxy. Then w(πuv
xy ) = dxy(x, u, v, y).

We now show how information about the distance from x to y avoiding [u, v]
with detours having constrained positions of their endpoints can be used to compute
w(πuv

xy ). The following claim will be useful to prove the correctness of our query
algorithms.

Claim 3. For any x < û ≤ ũ < u ≤ v < ṽ ≤ v̂ < y on πxy,

dxy(x, u, v, y) = min{dxy(x, ũ, ṽ, y), dxy(û, u, v, y), dxy(x, u, v, v̂)}.

Proof. Let the endpoints of the optimal detour in πuv
xy be a and b, a < b, and

consider all possible positions of a in [x, u[:
• a in [x, û[: d1 = dxy(x, u, v, v̂) handles the cases when b lies in ]v, v̂]; i.e., d1

covers [x, û[ × ]v, v̂] w.r.t. x, y. Moreover, d2 = dxy(x, ũ, ṽ, y) handles the
cases when b lies in ]v̂, y]; i.e., d2 covers [x, û[ × ]v̂, y] w.r.t. x, y. Thus,
d3 = min{dxy(x, u, v, v̂), dxy(x, ũ, ṽ, y)} handles all possible positions of b in
]v, y]; i.e., d3 covers [x, û[ × ]v, y] w.r.t. x, y.

• a in [û, u[: d4 = dxy(û, u, v, y) handles the cases where b lies in ]v, y]; i.e., d4

covers [û, u[ × ]v, y] w.r.t. x, y.
Thus, for each possible position of a in [x, u[, d5 = min(dxy(x, ũ, ṽ, y), dxy(û, u, v, y),
dxy(x, u, v, v̂)) handles all possible positions of b in ]v, y]; i.e., d5 covers [x, u[ × ]v, y]
w.r.t. x, y. Since d5 equals the length of some path from x to y in G− [u, v], we can
then conclude that d5 = dxy(x, u, v, y).
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3. Distances under deletion of paths. In this section we provide simple
algorithms for computing distances in a directed graph G with nonnegative real-
valued edge weights where we avoid all vertices on certain paths. These algorithms
will be useful in sections 4 and 5 for constructing distance sensitivity oracles.

Let x be a vertex and let P be a set of shortest paths in G. We consider the
problem of designing a procedure exclude(G, x, P ) that computes for each path π ∈ P
the distances from vertex x to all other vertices in G− π. Throughout this article we
assume that the deletion of the vertices on a given path π results in the deletion of
all its vertices including its endpoints.

We can compute exclude(G, x, P ) with a straightforward algorithm that runs in
O(|P |(m + n log n)) worst-case time using a Dijkstra computation [10] on the graph
G with all vertices in π deleted for each π ∈ P . In the remainder of this section we
show that this computation can be made considerably more efficient if we restrict our
attention to P ⊆ T (x) (i.e., every path in P is also a path in T (x)) and if we assume
that paths in P are “independent,” a notion we define in Definition 3.1.

3.1. Algorithm fast-exclude. In this section we devise a variant of exclude
(G, x, P ), which we call fast-exclude(G, x, P ), for the case when P ⊆ T (x). As
above, our goal is to compute for each path π ∈ P the distances from vertex x to all
other vertices in G− π.

Let P ⊆ T (x), and for any path π ∈ P , denote by Tx(π) the subtree of T (x)
rooted at the first vertex of π, and let Wπ be the set of all vertices in Tx(π) except the
vertices on π. We observe that only vertices in Wπ may have their distances from x
increased if we remove from G the vertices on π. Now, consider the following directed
graph Gπ = (Vπ, Eπ, wπ), where the following hold:

• Vπ = Wπ ∪ {x}.
• Eπ contains an edge from x to each vertex in Wπ and the edges in G induced

by vertices in Wπ.
• wπ,ab is the weight of edge (a, b) in Gπ defined as

wπ,ab =

{
minc�∈Tx(π){dxc + wcb} if a = x,
wab otherwise,

where we assume that dxc = +∞ if c is not reachable from x in G and
wcb = +∞ if (c, b) is not an edge of G.

It is not difficult to see (see proof of Claim 4) that the shortest path from vertex x
to a vertex v in Wπ has the same length in G − π as the shortest path from x to v
in Gπ. Hence, distances in G − π from x to all vertices in Wπ can be computed by
a Dijkstra computation on Gπ with source x. The algorithm fast-exclude(G, x, P )
works in the same way as exclude(G, x, P ), but it uses Gπ instead of G for each π in
P .

Since the graph Gπ is typically smaller than G, fast-exclude can be expected to
have better performance than exclude for any collection of paths P ⊆ T (x). We now
define the notion of independent shortest paths, and we show that fast-exclude per-
forms significantly better than exclude when P ⊆ T (x) is a collection of independent
shortest paths.

Definition 3.1. Let T be a rooted tree and let πuv and πu′v′ be two paths in T .
We say that πuv and πu′v′ are independent in T if the subtree of T rooted at u and
the subtree of T rooted at u′ are disjoint.

Claim 4. If P ⊆ T (x) is a set of pairwise independent shortest paths in T (x),
then algorithm fast-exclude(G, x, P ) requires O(m+n log n) time in the worst case
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and computes the same output as exclude(G, x, P ).

Proof. Using the notation given above, for a given π ∈ P , let π′
xy be the shortest

path from x to any y ∈ Wπ avoiding the vertices on π. Let b be the first vertex
on π′

xy such that b ∈ Wπ, and let c be the vertex preceding b. Then let us write
π′

xy = pxc · 〈c, b〉 · π′
by, where 〈c, b〉 is the path from c to b formed by the single edge

(c, b). Since for any z �∈ Tx(π), the path πxz is composed entirely of the vertices in
T (x)−Tx(π), it follows that pxc = πxc. Also note that π′

by cannot contain any vertex
z �∈ Tx(π), since if it contains such a vertex z, then πxz will be a shorter path to z,
contradicting our choice of b. These two observations justify the use of Gπ instead of
G− π in order to compute the shortest path tree rooted at x avoiding the vertices on
π.

For each π ∈ P , |Vπ| is never greater than the number of vertices in Tx(π). Since
the paths in P are pairwise independent, any two such subtrees are disjoint for distinct
paths in P . Since each Eπ contains edges in G induced by vertices in Wπ and edges
from x to only the vertices in Wπ, it follows that the sum of the cardinalities of all
Vπ and Eπ are linear in n and m, respectively. Hence, fast-exclude(G, x, P ) runs
in O(m + n log n) time when P ⊆ T (x) is a set of independent shortest paths.

4. Oracle with O(1) query time and O(n2 log n) space. In this section
we describe a deterministic oracle for single-vertex failure with constant query time
that uses nearly the same space as that required for storing a single distance matrix.
In particular, we show how to preprocess a graph with nonnegative real-valued edge
weights in O(mn2 + n3 log n) worst-case time, producing a compact oracle that uses
O(n2 log n) space and answers v-dist queries in O(1) worst-case time.

4.1. Data structure. Using O(n2 log n) space, we maintain each dxy and hxy,
and we maintain six matrices dl, dr, sl, sr, vl, and vr of size n× n× log2 n� defined
for every pair of distinct vertices x and y as follows:

• dl[x, y, i] = distance from vertex x to vertex y in G− π, where π is the sub-
path of πxy starting at level 2i−1 and ending at level 2i − 1 in T (x), and
1 ≤ i ≤ log2 hxy;

• dr[x, y, i] = distance from vertex y to vertex x in Ĝ− π, where π is the sub-

path of π̂yx starting at level 2i−1 and ending at level 2i − 1 in T̂ (y), and
1 ≤ i ≤ log2 hxy;

• sl[x, y, i] = distance from vertex x to vertex y in G − {v}, where v is the
vertex of πxy at level 2i−1 in T (x), and 1 ≤ i < 1 + log2 hxy;

• sr[x, y, i] = distance from vertex y to vertex x in Ĝ − {v}, where v is the

vertex of π̂yx at level 2i−1 in T̂ (y), and 1 ≤ i < 1 + log2 hxy;
• vl[x, y, i] = vertex of πxy at level 2i−1 in T (x), where 1 ≤ i ≤ 1 + log2 hxy;

• vr[x, y, i] = vertex of π̂yx at level 2i−1 in T̂ (y), where 1 ≤ i ≤ 1 + log2 hxy.

4.2. Preprocessing. The above quantities are computed in the preprocessing
phase as follows:

• Distances dxy and hxy and matrices vl and vr are easily initialized from
shortest path trees of G.

• To compute dl[x, y, i], we call procedure exclude(G, x,BT (x)(2
i−1, 2i − 1)),

discussed in section 3, for each x and for each i, 1 ≤ i < log2 n.

• To compute dr[x, y, i], we call procedure exclude(Ĝ, y, BT̂ (y)
(2i−1, 2i − 1)),

for each y and for each i, 1 ≤ i < log2 n.
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function v-dist(x, y, v) : R
1. if dxv + dvy > dxy then return dxy
2. l ← �log2 hxv�
3. if l = log2 hxv then return sl[x, y, l + 1]
4. r ← �log2 hvy�
5. if r = log2 hvy then return sr[x, y, r + 1]
6. û ← vr[x, v, l], v̂ ← vl[v, y, r]
7. d ← min{dxû + sl[û, y, l], sr[x, v̂, r] + dv̂y}
8. if hxv ≤ hvy then d ← min{d, dl[x, y, l]} {v in left half}
9. else d ← min(d, dr[x, y, r]) {v in right half}
10. return d

Fig. 4.1. Query algorithm for the first oracle.

• For each x and for each i, 1 ≤ i < 1 + log2 (n− 1), we compute sl[x, y, i] by
calling procedure fast-exclude(G, x,BT (x)(2

i−1, 2i−1)).

• We compute sr[x, y, i] by calling procedure fast-exclude(Ĝ, y, BT̂ (y)
(2i−1,

2i−1)) for each y and for each i, 1 ≤ i < 1 + log2 (n− 1).

4.3. Query. The query algorithm is shown in Figure 4.1. We address only the
general interesting case where v �= x and v �= y; otherwise, the answer is clearly +∞.
In line 1 of the algorithm, we get rid of the case where v /∈ πxy and return dxy as the
answer. Lines 2 and 3 take care of the case where v is 2l edges away from vertex x
on πxy for some nonnegative integer l, 0 ≤ l < log2 hxy. Lines 4 and 5 handle the
case where v is 2r edges away from vertex y on π̂yx for some nonnegative integer r,
0 ≤ r < log2 hxy. Lines 6 to 9 take care of the remaining cases.

4.4. Analysis. We first discuss the correctness of our query procedure. Using
the matrices sl and sr, lines 2 to 5 of the query algorithm answer the following two
types of trivial queries: (1) hxv = 2l for some nonnegative integer l, 0 ≤ l < log2 hxy,
and (2) hvy = 2r for some nonnegative integer r, 0 ≤ r < log2 hxy. So in order to
prove the correctness of v-dist, we need only to prove the correctness of the code
segment of lines 6 to 9 that handles the nontrivial case when neither of the above two
conditions holds.

In line 7, we assign d to the minimum of dxû + sl[û, y, l] and sr[x, v̂, r] + dv̂y,
where dxû + sl[û, y, l] = dxy(û, v, v, y) and sr[x, v̂, r] + dv̂y = dxy(x, v, v, v̂). In line 8,
we consider the case where hxv ≤ hvy, i.e., v is in the first half of πxy (see Figure 4.2).
In this case, 0 < hxû < hûv = 2l−1 ≤ hvv̂. The value dl[x, y, l] is the distance from x
to y avoiding a subpath having 2l−1 vertices and starting at a vertex that is 2l−1 edges
away from x on πxy. Let the endpoints of that subpath be ũ and ṽ, and hxũ < hxṽ.
So, we have x < û ≤ ũ < v < ṽ ≤ v̂ < y. Thus, by Claim 3, d covers [x, v[× ]v, y]
following the assignment in line 8. By construction of matrices dl, sr, and sr, d is
always equal to the weight of some path from x to y that does not use vertex v. Thus,
we can conclude that d is the desired answer to v-dist(x, y, v). A similar argument
holds for the case where hxv > hvy (line 9).

We now address the running times of preprocessing and query procedures.

Claim 5. Preprocessing requires O(mn2 + n3 log n) worst-case time and any
v-dist operation requires O(1) worst-case time.

Proof. We observe that the number of distinct paths in BT (x)(2
i−1, 2i − 1) is
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yvx

Paths covered by sr[x,v,r]^

û

2r-1

u~ v~ v̂

yvx

Paths covered by sl[u,y,l]^

û

2l-1

u~ v~ v̂

yv~vx u~

2l-1

Paths covered by dl[x,y,l]

û v̂

Fig. 4.2. Query example with hxv ≤ hvy: The distance from vertex x to vertex y in G − {v}
can be obtained by taking the minimum of dxû + sl[û, y, l], sr[x, v̂, r] + dv̂y, and dl[x, y, l]. Notice
that the union of the paths in the grey areas in the figure is the set of all possible detours avoiding
vertex v.

exactly the same as the number of vertices on level 2i − 1 in T (x). Hence, the total
number of distinct paths in all BT (x)(2

i−1, 2i − 1) for 1 ≤ i < log2 n is bounded
from above by the number of vertices in T (x). Since exclude(G, x, P ) runs in
O(|P |(m + n log n)) time and

∑
1≤i<log2 n |BT (x)(2

i−1, 2i − 1)| = O(n), the matri-

ces dl and dr can be calculated in O(mn2 + n3 log n) worst-case time. On the
other hand, for each x and for each i, 1 ≤ i < 1 + log2 (n− 1), we can compute
sl[x, y, i] by calling procedure fast-exclude(G, x,BT (x)(2

i−1, 2i−1)) since the single-
vertex paths in BT (x)(2

i−1, 2i−1) are trivially pairwise independent in T (x). Since
fast-exclude(G, x,BT (x)(2

i−1, 2i−1)) runs in O(m+n log n) time, the total time re-

quired to compute the matrix sl is O(mn log n+n2 log2 n). Similarly the matrix sr can
be computed in O(mn log n + n2 log2 n) time. Hence the preprocessing time is domi-
nated by the time to compute the dl and dr matrices and requires O(mn2 + n3 log n)
worst-case time.

Since the query algorithm executes a constant number of steps, it runs in O(1)
worst-case time.

5. Improving the preprocessing time. In this section we show that, if one
is willing to settle for more space, we can design a distance sensitivity oracle where
we reduce the preprocessing time to O(mn1.5 + n2.5 log n). This second oracle uses
O(n2.5) space and answers distance queries in O(1) worst-case time.

5.1. Data structure. We maintain each dxy and hxy, and we maintain five
matrices dh, dt, vc, dc, and bc using O(n2.5) space. Matrix dh has size n× n× √n�,
matrices dt, vc, and dc have size n× n× 2√n�, and matrix bc has size n× n. They
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(a) Sequence {li} obtained by cutting 
T'(x) at vertices of degree >1

(b) Sequence {si} obtained by cutting 
at regular intervals of height √n

(c) Sequence {qi} obtained by 
merging sequences {li} and {si}

l0

l1

l2
l3

x x xs0

s1

s2

s3

s4

q0

q1

q4
q5

q2

q3

q6

q7

Fig. 5.1. Constructing matrix dc: Cutting tree T ′(x) to form bands of pairwise independent
shortest paths in it.

are defined as follows:
• dh[x, y, i] = distance from vertex x to vertex y in G − {v}, where v is the

vertex of πxy at level i in T (x) and 0 < i ≤ √
n;

• dt[x, y, i] = distance from vertex x to vertex y in G − {v}, where v is the

vertex of πxy at level i in T̂ (y) and 0 < i ≤ 2
√
n;

• vc[x, y, i] = vertex of πxy at level qi in T (x), where q0 = 0 < q1 < · · · < qk < n
is any increasing sequence of k + 1 ≤ 2

√
n positive numbers depending on x,

and qi− qi−1 ≤ √
n for any i, 1 ≤ i ≤ k (a method for obtaining the sequence

{qi : 0 ≤ i ≤ k} is described in section 5.2.1);
• dc[x, y, i] = distance from vertex x to vertex y in G − [û, v̂], where û is the

successor of vc[x, y, i] in πxy and v̂ = vc[x, y, i+1] if hv̂y >
√
n and is undefined

otherwise;
• bc[x, y] = index i such that qi + 1 ≤ hxy ≤ qi+1.

5.2. Preprocessing. As distances dxy and hxy are easily initialized from short-
est path trees of G, we focus on constructing matrices dh, dt, dc, vc, and bc. Since
bands BT (x)(i, i) contain paths formed by single vertices, which are trivially pairwise
independent in T (x), constructing matrix dh can be done by performing calls to algo-
rithm fast-exclude(G, x, BT (x)(i, i)), presented in section 3, for each vertex x and
for each i such that 0 < i ≤ √

n. Similarly, matrix dt can be initialized via calls to

algorithm fast-exclude(Ĝ, y, BT̂ (y)
(i, i)) for each vertex y and for each i such that

0 < i ≤ 2
√
n.

To compute dc, we consider the problem of cutting each shortest path tree T (x)
into at most 2

√
n bands of height ≤ √

n, finding a suitable subset of each band
containing pairwise independent shortest paths in T (x), and calling fast-exclude to
compute distances without those paths. To do so, we need to compute for each vertex
x a suitable sequence {qi : 0 ≤ i ≤ k}.

5.2.1. Computing the qi’s. For each vertex x we wish to find a sequence
q0 = 0 < q1 < · · · < qk < n of length k + 1 ≤ 2

√
n such that qi − qi−1 ≤ √

n for any
i, 1 ≤ i ≤ k, and compute a subset of paths in BT (x)(qi + 1, qi+1) that are pairwise
independent in T (x). The following claim provides a nice combinatorial property on
trees that helps us solve the problem.

Let T be a rooted directed tree with n vertices and let size(v) be the number of
vertices in the subtree of T rooted at v. Let T ′ be obtained from T by deleting any
vertex u such that size(u) ≤ √

n in T .
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Claim 6. For any directed tree T with n vertices, at most
√
n vertices in T ′ have

out-degree > 1.
Proof. Since T ′ contains only vertices that have size greater than

√
n in T , T ′

has at most
√
n leaves. This implies that at most

√
n vertices of T ′ have out-degree

> 1.
Let l0 < l1 < · · · < lk be the sequence of levels in T ′ such that at each level li

there is a vertex with out-degree > 1 in T ′ (Figure 5.1(a)). By Claim 6, k ≤ √
n. We

now observe that cutting T ′ at each li yields bands of vertex-disjoint paths.
Claim 7. For any i, 1 ≤ i < k, BT ′(li+1, li+1) is a band of vertex-disjoint paths.
Proof. BT ′(li + 1, li+1) contains all paths that connect vertices at level li + 1

with vertices at level li+1 in T ′. The proof easily follows by observing that, by the
definition of sequence {li}, all vertices in T ′ at levels li +1 to li+1 −1 have out-degree
≤ 1.

Notice that, since by Claim 7 BT ′(li + 1, li+1) is a band of vertex-disjoint paths
and all of them start at the same level li + 1 in T ′, then they are clearly pairwise
independent in T ′. As T ′ is obtained by pruning T , BT ′(li +1, li+1) ⊆ BT (li +1, li+1)
and paths in BT ′(li + 1, li+1) are also pairwise independent in T . Unfortunately,
however, we are not guaranteed that li − li−1 ≤ √

n, as we need for constructing dc.
However, we note that splitting a band of vertex-disjoint paths yields again bands of
vertex-disjoint paths. This leads to the following claim.

Claim 8. If BT (i+1, j) is a band of vertex-disjoint paths, then for any i < h < j,
both BT (i + 1, h) and BT (h + 1, j) are bands of vertex-disjoint paths.

Let s0 < s1 < · · · < s	√n� be a sequence such that si = i · √n� (Figure 5.1b). By
Claim 8, if we merge sequences {li} and {si} and get rid of duplicates, we obtain an
ordered sequence {qi} of length at most 2

√
n with the desired properties (Figure 5.1c).

5.2.2. Computing vc, dc, and bc. We remark that {qi} induces at most
2
√
n bands of vertex-disjoint paths in T ′(x) with height ≤ √

n. Clearly, these paths
are pairwise independent in T ′(x). To initialize dc, we can thus perform calls to
fast-exclude(G, x,BT ′(x)(qi + 1, qi+1)) for each vertex x and for each 0 < i ≤ 2

√
n.

Again, we can use fast-exclude instead of exclude.
At this point, one may argue that excluding only independent paths in T ′(x),

which is obtained by pruning T (x), might not give the correct result for some dc[x, y, i]
if y �∈ T ′(x). However, dc[x, y, i] is defined only when hv̂y >

√
n, where v̂ =

vc[x, y, i + 1], and v̂ ∈ T ′(x) in this case. Thus dc[x, y, i] is correctly computed
by calling fast-exclude(G, x,BT ′(x)(qi + 1, qi+1)).

Finally, we observe that once sequences {qi} have been computed for each T (x),
matrices vc and bc can be easily initialized.

5.3. Query. The query algorithm is shown in Figure 5.2. We first get rid of the
cases where v �∈ πxy and hvy ≤ 2

√
n, for which the answers are stored explicitly in

dxy and dt[x, y, hvy], respectively (lines 1–2). In line 3 we retrieve the unique index i
such that v falls in BT (x)(qi + 1, qi+1), and then in lines 4–5 we identify the vertices
û and v̂ on the path πxy in T (x) that are at levels qi + 1 and qi+1, respectively. The
correct answer is given in line 6 by accessing matrices dc, dh, and dt.

5.4. Analysis. To prove the correctness of v-dist in the case that lines 3–7
are executed, we first note that hvy > 2

√
n implies hv̂y >

√
n, since by construction

qi − qi−1 ≤ √
n, and thus dc[x, y, i] is well defined. We now prove that the answer

takes into account all possible configurations of the endpoints of detours πuv
ab (see

Figure 2.1). It is easy to see that x < û < v < v̂ < y and
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function v-dist(x, y, v) : R
1. if dxv + dvy > dxy then return dxy
2. if hvy ≤ 2

√
n then return dt[x, y, hvy]

3. i ← bc[x, v]
4. û ← successor of vc[x, y, i] in πxy

5. v̂ ← vc[x, y, i + 1]
6. d ← min { dc[x, y, i],

dxû + dh[û, y, hûv],
dt[x, v̂, hvv̂] + dv̂y }

7. return d

Fig. 5.2. Query algorithm for the second oracle.

• dc[x, y, i] = dxy(x, û, v̂, y),
• dxû + dh[û, y, hûv] = dxy(û, v, v, y), and
• dt[x, v̂, hvv̂] + dv̂y = dxy(x, v, v, v̂).

Thus, by Claim 3, d = dxy(x, v, v, y).
Claim 9. Preprocessing requires O(mn1.5 + n2.5 log n) worst-case time and any

v-dist operation requires O(1) worst-case time.
Proof. Growing shortest path trees T (x) for all vertices x requires O(mn+n2 log n)

time in the worst case [10]. The proof for the preprocessing follows from Claim 4 by ob-
serving that initializing dc, dh, and dt is carried out via O(

√
n) calls to fast-exclude

for each vertex x. The bound for queries is straightforward.

6. Handling edge failures. The oracles in the previous two sections can be
easily extended to handle edge failures by maintaining one additional matrix de of
size n× n for any x and y:

• de[x, y] = distance from vertex x to vertex y in G without the first edge of
πxy.

Claim 10. The matrix de can be initialized in O(mn + n2 log n) time.
Proof. The proof directly follows from the properties of an earlier version of

the algorithm fast-exclude in [7] based on the notion of edge-independent paths.
However, since in this article we use the notion of vertex-independent paths instead,
we present a proof of the claim based on it.

Consider a given T (x), and let v1, v2, . . . , vk be the children of x in T (x). We
extend T (x) to T ′(x) and thus G to G′ by introducing k new vertices u1, u2, . . . , uk

and for 1 ≤ i ≤ k, replacing each edge (x, vi) in T (x) by two consecutive edges
(x, ui) and (ui, vi). Clearly removing any vertex ui from T ′(x) has the same effect
as removing the corresponding edge (x, vi) from T (x). Therefore, since the single-
vertex paths in BT ′(x)(1, 1) are trivially independent, we can compute de[x, y] for
all y ∈ V − {x} in time O(m + n log n) by calling fast-exclude(G′, x, BT ′(x)(1, 1)).
(Note that we can perform the same computation in the same time bound without
constructing G′ explicitly but instead extending fast-exclude to handle this special
case.) Since we need to call fast-exclude once for each x ∈ V , the total initialization
time for de is O(mn + n2 log n).

6.1. Query. The query algorithm is shown in Figure 6.1. In line 1 of the al-
gorithm, we get rid of the case where the failed edge is not on πxy. In line 2, d1 is
assigned the distance from x to y avoiding vertex u and thus edge (u, v). In line 3, d2

is assigned the distance from x to y that avoids the edge (u, v) but passes through the



1314 DEMETRESCU, THORUP, CHOWDHURY, AND RAMACHANDRAN

function e-dist(x, y, u, v) : R
1. if dxu + wu,v + dvy > dxy then return dxy
2. d1 ← v-dist(x, y, u)
3. d2 ← dxu + de[u, y]
4. d ← min{d1, d2}
5. return d

Fig. 6.1. Query algorithm for link failure.

vertex u. In line 4, d is assigned the minimum of d1 and d2 which is then returned in
line 5 as the shortest x to y distance avoiding (u, v).

6.2. Analysis. We observe that the paths in G from x to y that avoid (u, v) can
be divided into two groups: (1) paths that avoid u and (2) paths that pass through
u. Line 2 of the algorithm finds the length of the shortest path in group (1), and line
3 does the same for group (2). Thus the minimum of the two distances obtained in
lines 2 and 3 gives the required distance. Note that since v-dist runs in constant
worst-case time, so does e-dist.

6.3. Avoiding two consecutive edges. In this section we observe that the
distance from any vertex x to another vertex y avoiding two consecutive failed edges
on πxy can be computed in constant time by maintaining another n × n matrix d̂e,

which is the dual of de in Ĝ:

• d̂e[x, y] = distance from vertex y to vertex x in Ĝ without the first edge of
π̂yx.

Assuming that the two consecutive failed links are (u, v) and (v, w), all paths in
G from x to y avoiding those two edges can be divided into two groups: (1) paths that
avoid v (the length of the shortest such path can be found by calling v-dist(x, y, v))
and (2) paths that pass through v (the length of the shortest such path is given by

d̂e[x, v] + de[v, y]). Thus the smaller of these distances is the required distance.

7. Supporting path queries. The oracles presented in this paper can easily be
extended to support path queries of the form v-path(x, y, v) and e-path(x, y, u, v),
which return the first edge on the shortest path from vertex x to vertex y in G− {v}
and in G− {(u, v)}, respectively.

In this section, we show how to extend the oracle given in section 4 to support
v-path(x, y, v) queries. Extending the other oracles and supporting e-path(x, y, u, v)
queries can easily be done in a similar way. We add to the data structure of section 4.1
the following additional matrices:

• dle[x, y, i] = (x, x′), where (x, x′) is the first edge on the shortest path from
vertex x to vertex y (�= x) in G− π, and π is the subpath of πxy starting at
level 2i−1 and ending at level 2i − 1 (1 ≤ i ≤ log2 hxy) in T (x);

• dre[x, y, i] = (x, x′), where (x′, x) is the last edge on the shortest path from

vertex y to vertex x (�= y) in Ĝ− π, and π is the subpath of π̂yx starting at

level 2i−1 and ending at level 2i − 1 (1 ≤ i ≤ log2 hxy) in T̂ (y);
• sle[x, y, i] = (x, x′), where (x, x′) is the first edge on the shortest path from

vertex x to vertex y (�= x) in G−{v}, and v is the vertex of πxy at level 2i−1

(1 ≤ i < 1 + log2 hxy) in T (x);
• sre[x, y, i] = (x, x′), where (x′, x) is the last edge on the shortest path from
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function v-path(x, y, v) : E
1. if dxv + dvy > dxy then return first edge of πxy

2. l ← �log2 hxv�
3. if l = log2 hxv then return sle[x, y, l + 1]
4. r ← �log2 hvy�
5. if r = log2 hvy then return sre[x, y, r + 1]
6. û ← vr[x, v, l], v̂ ← vl[v, y, r]
7. d ← min{dxû + sl[û, y, l], sr[x, v̂, r] + dv̂y}
8. if d = dxû + sl[û, y, l] then e ← first edge of πxû

9. else e ← sre[x, v̂, r]
10. if hxv ≤ hvy and dl[x, y, l] < d then e ← dle[x, y, l] {v in left half}
11. if hxv > hvy and dr[x, y, r] < d then e ← dre[x, y, r] {v in right half}
12. return e

Fig. 7.1. Path version of the query algorithm for our first oracle.

vertex y to vertex x (�= y) in Ĝ−{v}, and v is the vertex of π̂yx at level 2i−1

(1 ≤ i < 1 + log2 hxy) in T̂ (y).

Matrices dle, dre, sle, and sre can easily be initialized in the preprocessing phase
within the same time bounds by a simple extension of procedures exclude and
fast-exclude described in section 3. Figure 7.1 shows an implementation of op-
eration v-path obtained as a modification of the query procedure v-dist given Fig-
ure 4.1. The analysis is straightforward and is left to the reader.

8. A space lower bound. In this section, we briefly discuss a space lower
bound for the single-source version of the distance sensitivity problem. This version
is relevant for shortest path routing in networks [16]: a router cares only about itself
as a source when deciding which outgoing link to use when forwarding a packet on a
shortest path to its destination. We would therefore like a single-source routing table
working under each possible failure. The solution in [24] uses O(hn) space if h is
the maximal hop count on a shortest path to a destination. However, we might have
h = Ω(n). Corresponding to our O(n2 log n) space solution for the all pairs case, we
would like an O(n log n) space solution for the single-source case. For single-source
and single-destination we can get down to O(n) space if the graph is undirected, and
this includes a representation of the alternative paths [11, 19], but now we want an
Õ(n) solution working for all possible destinations and failures. Below we show that
this is impossible if m is large. In fact, we will prove that the O(h · n) space bound
from [24] is tight. More precisely, for any number of vertices n > 2, and h < n, we will
demonstrate a graph with m = Θ(hn) edges, with maximal hop count h in shortest
paths from a specified source, and so that any single-source distance oracle for failures
requires Ω(hn) space no matter whether it is for edge or vertex failures or for directed
or undirected graphs.

First we present the construction for h = n− 1. We assume that the word length
w is even and at least 2(1 + log n). Let the vertices be v0, . . . , vn−1 where v0 is the
source vertex. For each i < j, we have an edge (vi, vj), and hence a total of

(
n
2

)

edges. Each edge will have an arbitrary half word stored in the least significant bits
of its weight. From the answers of a failure distance oracle, we will be able to recover
all these half words. It then follows that the full representation of a failure distance
oracle requires at least

(
n
2

)
/2 words.
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The low part of a weight represents numbers below 2w/2, and the high part
represents multiples of 2w/2. Hence, if the low part is x0 and the large part is x1, the
weight represented is x0 + 2w/2x1. If we know the full weight, we can easily recover
the low half word with the stored information.

We will now describe how to fill the high parts of the weights. The edges (vi, vi+1)
in the path (v0, v1, . . . , vn−1) are all given a high part of 0. The shortest path tree
will consist of this path. For an edge (vi, vj) with j ≥ i+2, the high part is 2n− j+ i.
It is easy to see that if link (vi, vi+1) or vertex vi+1 fails and we want to go to vj ,
j ≥ i + 2, then the unique shortest path first follows the original shortest path from
v0 to vi and then switches to the link (vi, vj). All this is true in both the directed
and the undirected cases.

With the above setting of the high parts of the weights, we can first use the regular
distances to find the weights along the path; that is, the weight of (vi, vi+1) is the
distance to vi+1 minus that to vi. Next, for each i and j ≥ i + 2, we fail (vi, vi+1) to
get a distance to vj , which is the known weight of the path (v0, . . . , vi) plus the weight
of (vi, vj). Thus, if we have a distance oracle that can handle failures, then we can
recover all the weights and hence all the low parts with arbitrary stored information.

In the case where h < n−1, we start with the source vertex v0, and then we create
�n−1/h� paths from v0, each of length between h/2 and h. Thus, if we removed v0, the
graph would fall into a set of disjoint paths. We now apply the previous construction

to each of the paths from v0. If a path has length h′, it uses
(
h′

2

)
= Θ(h2) edges.

Thus we get a total of Θ(nh) edges, all of whose weights can be recovered by a failure
distance oracle. The representation of the distance oracle therefore requires a space
of Θ(nh) words.

9. Conclusions. We have presented compact data structures for maintaining
information about shortest paths in a weighted directed graph in cases of both vertex
failures and edge failures. We have shown that, surprisingly, such a data structure
can be stored using nearly the same space required to store a single distance matrix,
while still supporting queries in constant time. Our oracle can easily be constructed in
O(mn2+n3 log n) time, matching the preprocessing time of all pairs variants of similar
problems such as most vital node detection [18] and Vickrey pricing [11] in networks;
while these algorithms require Θ(n3) space, our oracle requires only O(n2 log n) space.
Furthermore, we have shown that by using O(n2.5) space we can improve construction
time to O(mn1.5 + n2.5 log n).

Our oracles are different from the case of dynamic algorithms, where distances
have to be updated after each vertex or edge failure. Instead, our oracles are already
prepared to answer distance queries following the failure of any single vertex or edge,
and so the delay time in answering a query is minimized. If failures in a network
happen quite rarely, when a node or link goes down we have time to construct a
new oracle in the background to cope with a possible additional failure. It would be
interesting to explore whether compact oracles with fast query time that are able to
deal with more than one failure at a time can be constructed. Finally, can we further
improve construction time?
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Abstract. We consider a game-theoretical variant of the Steiner forest problem in which each
player j, out of a set of k players, strives to connect his terminal pair (sj , tj) of vertices in an
undirected, edge-weighted graph G. In this paper we show that a natural adaptation of the primal-
dual Steiner forest algorithm of Agrawal, Klein, and Ravi [SIAM J. Comput., 24 (1995), pp. 445–456]
yields a 2-budget balanced and cross-monotonic cost sharing method for this game. We also present
a negative result, arguing that no cross-monotonic cost sharing method can achieve a budget balance
factor of less than 2 for the Steiner tree game. This shows that our result is tight. Our algorithm
gives rise to a new linear programming relaxation for the Steiner forest problem which we term the
lifted-cut relaxation. We show that this new relaxation is stronger than the standard undirected cut
relaxation for the Steiner forest problem.
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1. Introduction. We consider the problem of devising a cost sharing mechanism
that is group-strategyproof and satisfies approximate budget balance for a natural
game-theoretical variant of the Steiner forest problem. In its most general form, the
game-theoretical setting that we consider in this paper can be described as follows.

We are given a service provider and a set R of potential players (or customers, or
agents) that are interested in a service offered by the provider. Each player j in R has
a utility uj for receiving this service. We assume that uj is kept private, i.e., that it is
known only to player j. The service provider now solicits bids {bj}j∈R from all players
and based on these bids (i) determines a set Q ⊆ R of players that receive the service,
(ii) computes a solution to service all players in Q, and (iii) for each j ∈ Q fixes a price
xj that j has to pay for receiving the service. A cost sharing mechanism is simply
a strategy that the service provider uses to make these decisions. We assume that
the mechanism complies with the following three natural assumptions: (i) a player is
not charged more than his bid, (ii) a player is charged only if he receives service, and
(iii) a player is guaranteed to receive service only if his bid is large enough.
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The total cost that is incurred to establish service for a player set Q ⊆ R is denoted
by c(Q). One objective that we wish to achieve is approximate budget balance. We
say that a cost sharing mechanism is α-budget balanced if

(1.1)
1

α
· c(Q) ≤

∑

j∈Q

xj ≤ optQ.

The first inequality states that at least a fraction 1/α of the total cost c(Q) of servicing
the players in Q is recovered by the sum of the prices of the players in Q. The second
inequality establishes fairness in that the sum of all prices is not allowed to exceed
the optimal cost of servicing the players in Q, denoted optQ. This second inequality
is often referred to as competitiveness. A cost sharing mechanism is budget balanced if
α = 1. Ideally we obtain cost sharing mechanisms that compute prices in polynomial
time and are budget balanced. However, this is clearly impossible if the underlying
problem is NP-hard, and we therefore resort to cost sharing mechanisms that are
approximately budget balanced.

Define the benefit of a player j to be uj − xj if j ∈ Q, and zero otherwise. We
assume that each player is selfish and may lie about his utility in order to maximize his
benefit. The task is to design a cost sharing mechanism that encourages players to bid
their true utility; that is, no player or group of players should be able to benefit from
lying about their utilities. A cost sharing mechanism is strategyproof if the dominant
strategy of each player is to bid his utility; it is said to be group-strategyproof if this
holds even if players are permitted to collude. More precisely, if, for any choice of
i ∈ Q′ ⊆ Q, the utility of a player i increases as a result of nontruthful behavior of
the players in Q′, then there is at least one other player j ∈ Q′ whose utility strictly
decreases.

In [14], Moulin and Shenker presented a powerful framework that reduces the
task of designing a group-strategyproof cost sharing mechanism for a game to that
of giving a cross-monotonic cost sharing method. In fact, Immorlica, Mahdian, and
Mirrokni [9] showed that all group-strategyproof mechanisms that satisfy a certain
technical fairness condition can be obtained using Moulin and Shenker’s framework.
A cost sharing method ξ is an algorithm that, given any subset Q ⊆ R of players,
computes a solution to service Q and for each j ∈ Q determines a nonnegative cost
share ξQ(j). Analogously to the definition in (1.1), we say that ξ is α-budget balanced
if

1

α
· c(Q) ≤

∑

j∈Q

ξQ(j) ≤ optQ.

A cost sharing method ξ is cross-monotonic if, for any two sets Q and S such that
Q ⊆ S and any player j ∈ Q, we have

ξS(j) ≤ ξQ(j).

In other words, the cost share of any player under the given cost sharing method does
not increase if the size of the player set increases.

Given a budget balanced and cross-monotonic cost sharing method ξ for a game,
the following cost sharing mechanism from [14] satisfies budget balance and group-
strategyproofness: Initially, let Q = R. If, for every player j ∈ Q, the cost share ξQ(j)
is less than or equal to his bid bj , stop. Otherwise, remove from Q all players whose
cost shares in Q are larger than their bids, and repeat. Eventually, let xj = ξQ(j)
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be the prices that are charged to players in the final set Q. Jain and Vazirani [10]
later proved that the result of Moulin and Shenker also holds true if one considers
cross-monotonic cost sharing methods that are approximately budget balanced.

The underlying optimization problem that we consider in this context is the
Steiner forest problem. In this problem, we are given an undirected graph G = (V,E),
a nonnegative cost function c : E → R

+ on the edges of G, and a set of k > 0 terminal
pairs R = {(s1, t1), . . . , (sk, tk)} ⊆ V × V . Each terminal pair (sj , tj), 1 ≤ j ≤ k, is
associated with a player j that wants to establish a connection between vertices sj
and tj . A feasible solution for terminal set R is a forest F ⊆ E such that vertices sj
and tj are in the same tree of F for all 1 ≤ j ≤ k. The objective is to find a feasible
solution of smallest total cost.

The Steiner tree problem is a special case of the Steiner forest problem in which
there is a root vertex r ∈ V and r ∈ {s, t} for all terminal pairs (s, t) ∈ R. In other
words, the problem consists of a set of terminals R ⊆ V , and a root vertex r ∈ V and
the goal is to connect the terminals in R to r in the cheapest possible way.

Previous work. Computing minimum-cost Steiner trees and forests is NP-hard
[7] and APX-complete [4, 5], and therefore, neither of the two problems admits a
polynomial time approximation scheme unless P = NP. The best known algorithm
for the Steiner forest problem, due to Agrawal, Klein, and Ravi [2] and generalized
by Goemans and Williamson [8], uses the primal-dual schema. The algorithms in
[2, 8] achieve an approximation ratio of (2− 1/k) and are both based on the classical
undirected cut formulation for the Steiner forest problem [3]. The integrality gap of
this relaxation is known to be (2 − 1/k), and the results in [2, 8] are therefore tight.

Despite the recent interest in computational game theory, examples of combina-
torial optimization problems that possess cross-monotonic cost sharing methods are
scarce: Moulin and Shenker [14] gave a cross-monotonic cost sharing method for prob-
lems whose optimal cost function is a submodular function of the set Q. However,
this condition does not hold for many important network design problems such as
Steiner trees and facility location.

The first cross-monotonic cost sharing method for the minimum-cost spanning
tree game is due to Kent and Skorin-Kapov [11]. Jain and Vazirani [10] presented
an alternative method that is based on the primal-dual spanning tree algorithm due
to Edmonds [6]; the authors then used this result to obtain a 2-budget balanced,
cross-monotonic cost sharing method for the Steiner tree game. Pál and Tardos [15]
developed a 3-budget balanced cross-monotonic cost sharing method for the facility
location problem and a 15-budget balanced cross-monotonic cost sharing method for
the single-source rent-or-buy network design problem.

In most of the methods proposed so far to obtain approximate budget balanced
cross-monotonic cost sharing methods, the cost shares are closely related to a feasible
dual solution generated by the algorithm, and therefore approximate budget balance is
an immediate consequence of the approximation guarantee achieved by the algorithm.

Immorlica, Mahdian, and Mirrokni [9] showed that NP-hardness of the underlying
combinatorial optimization problem is not the only obstruction in achieving budget
balance. The authors provide lower bounds on the budget balance factor α of cross-
monotonic cost sharing methods for several problems. Among other results they prove
(maybe most surprisingly) lower bounds of Ω(n) and Ω(n1/3) for the budget balance
factor of the set cover and the vertex cover problems, respectively. The authors left
open the issue of finding a lower bound on the budget balance factor for the Steiner
tree problem.
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Edmonds [6] proposed the bidirected cut relaxation for the Steiner tree problem.
It is a well-known fact that an integrality gap of α for this formulation implies that no
(α− ε)-budget balanced cross-monotonic cost sharing method can exist for any ε > 0
(see also [9]). The worst example known for the integrality gap of the bidirected-cut
relaxation is due to Goemans (cf. [1]) and shows a gap of 8/7.

Our contribution. While the performance guarantee of two of primal-dual approx-
imation algorithms for the Steiner tree problem is matched by a 2-budget balanced
cross-monotonic cost sharing method [10], a similar result for the Steiner forest prob-
lem was elusive so far. This contrasts the optimization version of the problem, where
primal-dual (2 − 1/k)-approximation algorithms exist for both problems [2, 8].

In this paper we present a cross-monotonic cost sharing method for the Steiner
forest problem that is 2-budget balanced. Our algorithm is a natural adaptation of
the primal-dual algorithm for computing Steiner forests due to Agrawal, Klein, and
Ravi [2], which we will review in section 2. We then show how a modification of this
algorithm turns it into a cross-monotonic cost sharing method in sections 3 and 4.

An interesting byproduct of the work in this paper is that our Steiner forest
algorithm is (2 − 1/k)-approximate despite the fact that the forest computed by our
method is usually costlier than those computed by known primal-dual algorithms in
[2, 8]. Although we are able to prove that the cost shares computed by our algorithm
are 2-budget balanced, they do not correspond to a feasible dual solution for any
of the known linear programming (LP) formulations of the Steiner forest problem.
Obvious questions that arise are: Is there an alternate Steiner forest LP formulation
such that the cost shares computed by our algorithm correspond to a feasible dual
solution? If so, how does this new LP relaxation relate to the standard undirected-cut
LP relaxation?

We answer these questions by presenting in section 5 a new LP relaxation for the
Steiner forest problem, the lifted-cut relaxation. The dual solution computed by our
algorithm is feasible for the dual linear program of the lifted-cut relaxation. We prove
that our new relaxation is stronger than the well-studied undirected-cut relaxation
for the Steiner forest problem. There are instances for which the optimal objective
function value of our lifted-cut relaxation provides a much better approximation of
the optimal cost of a Steiner forest than the undirected cut-relaxation.

Unfortunately, there exist instances that show that the LP/integer programming
(IP) gap of the lifted-cut relaxation is still nearly 2. For instances in which the lifted-
cut relaxation is stronger than the undirected-cut relaxation we can, however, show
that the additional strength can be used to improve the performance guarantee of the
existing primal-dual Steiner forest algorithms in [2, 8]. The details are presented in
section 6.

A natural question is whether there is a cross-monotonic cost sharing method for
the Steiner tree and forest games that achieves a budget balance factor smaller than 2.
We provide a negative answer to this question by showing (cf. section 7) that there is
no (2− ε)-budget balanced cross-monotonic cost sharing method for Steiner trees for
any ε > 0. This proves that the cross-monotonic cost sharing method for the Steiner
tree game [10, 11] as well as our cross-monotonic cost sharing method for the Steiner
forest game are tight with respect to the budget balance factor. We remark that our
lower bound holds for any cross-monotonic cost sharing method for the Steiner tree
game, including those taking exponential time.

2. A primal-dual algorithm for the Steiner forest problem. We review
the algorithm of Agrawal, Klein, and Ravi [2]. Subsequently, we use AKR to refer
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to this algorithm. AKR is a primal-dual algorithm; that is, the algorithm constructs
both a feasible and integral primal solution and a feasible dual solution for an LP
formulation of the Steiner forest.

A standard IP formulation for the Steiner forest problem has a binary variable
xe for all edges e ∈ E: xe has value 1 if edge e is part of the resulting forest and 0
otherwise. A subset U ⊆ V is a Steiner cut if it separates at least one terminal pair in
R. In other words, U is a Steiner cut iff there is a pair (s, t) ∈ R with |{s, t}∩U | = 1.
We use S to refer to the set of all Steiner cuts. For a subset U ⊆ V we define δ(U)
to be the set of all edges that have exactly one endpoint in U . Consider a Steiner cut
U ∈ S. Any feasible solution F for a given Steiner forest instance must cross this cut
at least once, i.e., |δ(U) ∩ F | ≥ 1. This gives rise to the following IP formulation for
the Steiner forest problem, which we refer to as the undirected-cut formulation:

optIP = min
∑

e∈E

c(e) · xe(IP)

s.t.
∑

e∈δ(U)

xe ≥ 1 ∀U ∈ S,(2.1)

xe ∈ {0, 1} ∀e ∈ E.

The dual of the LP relaxation of (IP) has a variable yU for each Steiner cut U ∈ S.
There is a constraint for each edge e ∈ E that limits the total dual assigned to sets
U ∈ S that contain exactly one endpoint of e to be at most the cost c(e) of the edge.

optD = max
∑

U∈S
yU(D)

s.t.
∑

U∈S: e∈δ(U)

yU ≤ c(e) ∀e ∈ E,(2.2)

yU ≥ 0 ∀U ∈ S.

Algorithm AKR constructs a primal feasible solution for (IP) and a dual feasible solu-
tion for (D). The algorithm starts with an infeasible primal solution and reduces the
degree of infeasibility as it progresses. At the same time, it greedily creates a feasible
dual packing of subsets of large total value. The algorithm raises dual variables of a
laminar family of vertex subsets. The final dual solution is maximal in the sense that
no single set can be raised without violating a constraint of type (2.2).

We can think of an execution of AKR as a process over time. Let xτ and yτ ,
respectively, be the primal incidence vector and feasible dual solution at time τ . We
use F τ to denote the forest corresponding to xτ . Initially, x0

e = 0 for all e ∈ E
and y0

U = 0 for all U ∈ S. In the following, we say that an edge e ∈ E is tight if
the corresponding constraint (2.2) holds with equality. Assume that the forest F τ at
time τ is infeasible. We use F̄ τ to denote the subgraph of G that is induced by the
tight edges for dual yτ . In the following, we will also use the term moat to refer to
a connected component U of F̄ τ . A connected component U of F̄ τ is active at time
τ iff it separates at least one terminal pair, i.e., iff U ∈ S. Let Aτ be the set of all
connected components of F̄ τ that are active at time τ .

AKR raises the dual variables for all sets in Aτ uniformly at all times τ ≥ 0. We
say that moats U1 and U2 collide at time τ if
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Fig. 3.1. Distributing the dual growth of each moat U in AKR uniformly among U ’s active
terminals does not lead to a cross-monotonic cost sharing method.

1. U1 and U2 are moats at some time τ ′ < τ , and
2. τ is the first time during the execution of the algorithm at which forest F̄ τ

contains a connected component containing the vertices of both U1 and U2.

If this happens, we add the edges on a shortest U1, U2-path to F τ and continue.

The following is the main result of [2].

Theorem 2.1. Suppose that algorithm AKR outputs a forest F and a feasible dual
solution {yU}U∈S . Then

c(F ) ≤
(

2 − 1

k

)
·
∑

U∈S
yU ≤

(
2 − 1

k

)
· optR,

where optR is the minimum cost of a Steiner forest for the given input instance with
terminal set R.

3. A cross-monotonic algorithm for the Steiner forest game. In this
section we use the ideas presented in the last section to develop a cross-monotonic
cost sharing method for the Steiner forest problem.

Consider a subset Q of players and let R be the corresponding set of terminal pairs.
Running AKR on this instance yields a feasible dual solution for (D) and Theorem 2.1
implies that its value is at least 1

2
optR and at most optR.

Can we distribute the dual computed by AKR as cost shares over the players in Q?
A natural strategy goes as follows: at any time τ during the run of the algorithm, and
for any active moat U ∈ Aτ , distribute the increase in yU evenly among the players
in Q whose terminals are separated by U .

This strategy does not lead to a cross-monotonic cost sharing method as the
example instance in Figure 3.1 shows. In the figure, the edges are labeled by their
costs. The instance shown has three players and the terminal pair of player i ∈
Q = {1, 2, 3} is (si, ti). Distributing the dual growth uniformly as proposed yields
a cost share of ξQ(1) = 3 for player 1. On the other hand, if player 3 leaves the
game and the set of remaining players is Q′ = {1, 2}, we have ξQ′(1) = 5/2, violating
cross-monotonicity.

The example above shows that the activity time of a terminal in AKR depends on
the presence of other terminals. We now present an adaptation of AKR (subsequently
referred to as KLS) that overcomes this problem.

Define the time of death d(s, t) for each terminal pair (s, t) ∈ R as

(3.1) d(s, t) =
1

2
· c(s, t),

where c(s, t) denotes the cost of the minimum-cost s, t-path in G. We assume for
ease of presentation that each vertex v ∈ V has at most one terminal on it. This
assumption is without loss of generality since we can replace each vertex in V by a
sufficient number of copies and link these copies by zero-cost edges. We extend the
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death time notion to individual terminals and define d(s) = d(t) = d(s, t) for terminals
s, t ∈ R.1

Recall that AKR raises the dual variables for all sets in Aτ . As a consequence, yτ

is a feasible dual solution for (D) at all times τ ≥ 0. Using the notation introduced
in the previous section, we obtain KLS by modifying the definition of Aτ . We say
that a connected component U of F̄ τ is active at time τ iff it contains at least one
terminal v ∈ U with death time at least τ ; i.e., U is active at time τ iff there exists
v ∈ U with d(v) ≥ τ . KLS grows all active connected components in Aτ uniformly at
all times τ ≥ 0. Observe that in this way KLS also raises dual variables of connected
components in Aτ that do not correspond to Steiner cuts. In what follows we denote
by N the set of all non-Steiner cuts, i.e.,

N = {U ⊆ V : U 	∈ S, U ∩R 	= ∅}.

Furthermore, we let U = S ∪ N be the set of all Steiner and non-Steiner cuts.
What is the intuition behind this? Consider a terminal pair (s, t) ∈ R and imagine

running the primal-dual Steiner forest algorithm AKR on the instance consisting of
this terminal pair only. In this case, AKR grows two moats corresponding to s and t,
respectively, at all times τ ≤ d(s, t). At time d(s, t) the moats of s and t collide and a
shortest path connecting the terminals is added. In KLS a terminal pair (s, t) is active
for the time it would take s and t to connect in the absence of any other terminals.
Therefore, the activity time of s and t is independent of other terminal pairs. This
independence is the crucial property leading to cross-monotonicity.

Consider an arbitrary terminal pair (s, t) ∈ R. Observe that our choice of the
death time d(s, t) in (3.1) implies that s and t end up in the same connected component
of the final forest F . Therefore, KLS constructs a feasible solution for the given Steiner
forest instance.

For a terminal v ∈ R and for τ ≤ d(v) we let Uτ (v) be the connected component
in F̄ τ that contains v. Also let aτ (v) be the number of terminals in Uτ (v) whose
death time is at least τ . We then define the cost share of terminal vertex v ∈ R as

(3.2) ξR(v) =

∫ d(v)

τ=0

1

aτ (v)
dτ,

and we let ξR(s, t) = ξR(s) + ξR(t) for all (s, t) ∈ R.
The proof of the following theorem is the subject of section 4.
Theorem 3.1. The cost shares ξ computed by KLS are cross-monotonic and

2-budget balanced.

4. Analysis. We denote the final forest produced by KLS(R) by F and use
{yU}U∈U for the dual computed by our method.

4.1. Proving cross-monotonicity. In order to prove the cross-monotonicity of
KLS we consider an arbitrary terminal pair (s, t) ∈ R and let R0 = R \ {(s, t)}. In
this section we study the effect of the removal of (s, t) on the cost shares of all other
terminal pairs (s′, t′) ∈ R0.

Let us first introduce some simplifying notation. Assume that KLS(R) terminates
at time τ∗ with forest F . Similarly, KLS(R0) finishes at time τ∗0 with a forest F0.

1Throughout this paper we slightly abuse notation by letting R refer to both the set of terminal
pairs and the set of terminal vertices.
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Moreover, for all times τ we let Cτ and Cτ
0 be the sets of connected components of F̄ τ

and of F̄ τ
0 , respectively. The next lemma shows that Cτ

0 is a refinement of Cτ .
Lemma 4.1. For all times τ ≤ τ∗ and for all U0 ∈ Cτ

0 there must be a set U ∈ Cτ

such that U0 ⊆ U .
Proof. The proof is by induction on the time τ . It is clear that the claim is true

for τ = 0 since C0 = C0
0 = V . Consider a point in time 0 ≤ τ < τ∗, and assume that

the claim is true at time τ . KLS(R0) grows active sets in Cτ
0 , and these are the only

sets that can potentially violate the claim at any time τ + ε for ε > 0. Let U0 ∈ Cτ
0 be

an active set at time τ in KLS(R0); i.e., there exists a terminal v ∈ U0 with d(v) ≥ τ .
From the induction hypothesis we know that there is a connected component U of
Cτ that contains U0. Then U must be active in KLS(R) at time τ , and hence KLS(R)
grows U at time τ . The claim follows.

Lemma 4.1 immediately implies cross-monotonicity. Let ξ(v) and ξ0(v) be the
cost share of terminal v ∈ R0 in KLS(R) and in KLS(R0), respectively.

Corollary 4.2. Algorithm KLS is cross-monotonic, i.e., for each v ∈ R0 we
have

ξ0(v) ≥ ξ(v).

Proof. Let Uτ (v) and Uτ
0 (v) be the moats containing terminal v at time τ in

KLS(R) and KLS(R0), respectively. Similarly, let aτ (v) and aτ0(v) be the number of
terminals with death time at least τ in Uτ (v) and Uτ

0 (v). Lemma 4.1 implies that
Uτ

0 (v) ⊆ Uτ (v) and hence aτ0(v) ≤ aτ (v) for all τ ≤ τ∗ and for all v ∈ R0. Hence we
obtain

ξ(v) =

∫ d(v)

τ=0

1

aτ (v)
dτ ≤

∫ d(v)

τ=0

1

aτ0(v)
dτ = ξ0(v)

for all v ∈ R0 and the corollary follows.

4.2. Proving approximate budget balance. We first prove that the cost
shares computed by KLS satisfy approximate cost recovery.

Lemma 4.3. Suppose that algorithm KLS outputs a forest F and a dual solution
{yU}U∈U . We then have

(4.1) c(F ) ≤ 2 ·
∑

U∈U
yU = 2 ·

∑

(s,t)∈R

ξR(s, t).

Proof. Using Definition 3.2 it can then be seen that the cost share sum on the
right-hand side of (4.1) increases by ε whenever the total dual value increases by ε for
some ε > 0. Hence we must have

∑
(s,t)∈R ξR(s, t) =

∑
U∈U yU .

We next prove that c(F ) ≤ 2 · ∑U∈U yU . We construct a new instance of the
Steiner forest problem as follows. For each terminal v ∈ R, introduce a new terminal
pair (ṽ, ṽ′) and edges (v, ṽ) with c(v, ṽ) = 0 and (ṽ, ṽ′) with c(ṽ, ṽ′) = 2d(v). Run
the algorithm AKR on the set of terminal pairs R̃ ∪ R, where R̃ = {(ṽ, ṽ′) : v ∈ R}.
We denote by S̃ the set of all Steiner cuts in this new problem, and we use Ẽ for
the set of only the new edges. Since the edge (v, ṽ) will go tight at time τ = 0, the
component containing v will be active for precisely the same amount of time as in
the run of KLS, so we can convert the dual constructed by AKR on the new problem
to the dual constructed by KLS, and vice versa. Let {yAKRU }U∈S̃ and {yKLSU }U∈U be the
dual solutions computed by AKR and KLS, respectively. Since the new edges do not
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become tight before the death time of a vertex v, the solution computed by AKR, when
restricted to the original graph, must be equal to the solution computed by KLS. By
Theorem 2.1 the solution returned for this new problem is within a factor 2 of the
optimal solution for this problem. Using this, we see

∑

e∈E∪Ẽ

c(e)xe =
∑

e∈E

c(e)xe +
∑

e∈Ẽ

c(e)xe

≤ 2
∑

U∈S̃
yAKRU = 2

∑

U∈S∪N
yKLSU + 2

∑

v∈R

yAKR{ṽ′}.

Furthermore, we know that edge (ṽ, ṽ′) is added exactly at time c(ṽ, ṽ′)/2. Hence

∑

e∈Ẽ

c(e)xe = 2
∑

v∈R

yAKR{ṽ′}.

The lemma follows immediately since c(F ) =
∑

e∈E c(e)xe.
We remark that Lemma 4.3 does not imply that the cost c(F ) of forest F produced

by our cost sharing method is at most twice that of an optimal Steiner forest. In fact,
{yU}U∈U is not a feasible solution for (D) since our algorithm raises duals for active
sets that correspond to non-Steiner cuts U ∈ N .2 Surprisingly, however, we can show
that the total dual

∑
U∈U yU is bounded by the cost optR of an optimal Steiner forest

for the given instance on terminal set R.
Lemma 4.4. Let {yU}U∈U be the dual computed by KLS(R), and let optR be the

minimum cost of any feasible Steiner forest for the given instance. We have

∑

U∈U
yU ≤ optR.

Lemmas 4.3 and 4.4 imply the following corollary on the approximate budget
balance of KLS.

Corollary 4.5. Let F be the Steiner forest computed by KLS(R). We then have

1

2
· c(F ) ≤

∑

(s,t)∈R

ξR(s, t) ≤ optR.

It remains to prove Lemma 4.4.

4.3. A proof of Lemma 4.4. Recall the definition of the death time d(s, t) of
a terminal pair (s, t) ∈ R. In the following, let

R = {(s1, t1), · · · , (sk, tk)}
such that

d(s1, t1) ≤ · · · ≤ d(sk, tk).

We define a precedence order ≺ on R by letting (si, ti) ≺ (sj , tj) iff i ≤ j. We extend
this order to terminal vertices by letting

s1 ≺ t1 ≺ s2 ≺ t2 ≺ · · · ≺ sk ≺ tk.

2Observe, however, that the projection of y on the set of Steiner cuts is feasible for (D).
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For ease of notation we assume that v ≺ v for all v ∈ R.
Let Uτ be an active connected component in KLS(R) at some time τ ≥ 0. A

terminal vertex v ∈ Uτ is responsible for the growth of Uτ iff there does not exist a
terminal u ∈ Uτ different from v with v ≺ u. This way, each active moat in KLS has
a unique responsible terminal vertex. For a terminal vertex v ∈ R and a time τ ≥ 0,
let rτ (v) = 1 if v is responsible at time τ and rτ (v) = 0 otherwise. We then define
the responsibility time of a terminal v ∈ R as

(4.2) r(v) =

∫ d(v)

τ=0

rτ (v) dτ.

As before, we let Uτ (v) be the connected component of F̄ τ containing terminal
v ∈ R. We can show that a terminal v ∈ R is responsible for a unique moat at all
times 0 ≤ τ ≤ r(v).

Claim 4.6. Let v ∈ R be a terminal, and let r(v) be its responsibility time. Then,
v is responsible for Uτ (v) in KLS(R) for all 0 ≤ τ < r(v).

Proof. Assume for the sake of contradiction that there is a point of time τ ∈
[0, r(v)) such that v is not responsible for U = Uτ (v). Since U is active, we know that
there must be a terminal u ∈ U that is responsible. We therefore must have v ≺ u
and also d(v) ≤ d(u). Since u and v are contained in the same active moat in KLS

at time τ , this means that v cannot be responsible after time τ , and hence r(v) < τ ,
which is a contradiction.

Definition (4.2) also implies that

(4.3)
∑

U∈U
yU =

∑

v∈R

r(v),

and hence it suffices to bound the sum on the right-hand side in order to prove
Lemma 4.4.

Let F ∗ be a minimum-cost Steiner forest for the given instance with terminal
set R. Consider a tree T in F ∗ and suppose that T connects the terminals R(T ) =
{v1, . . . , vp}. We let Rτ (T ) be the set of terminal vertices in R(T ) that are responsible
at time τ , i.e.,

Rτ (T ) = {v ∈ R(T ) : rτ (v) = 1}.

The following claim shows that at any time τ the moats in

Uτ (T ) = {Uτ (v) : v ∈ Rτ (T )}

are pairwise disjoint.
Claim 4.7. Consider a point of time τ and two terminal vertices u, v ∈ Rτ (T ),

u 	= v. The two moats Uτ (u) and Uτ (v) must be disjoint.
Proof. Assume for the sake of contradiction that Uτ (u) and Uτ (v) are not dis-

joint. Since both Uτ (u) and Uτ (v) are connected components of F̄ τ it must therefore
be the case that Uτ (u) = Uτ (v). Claim 4.6 implies that both u and v are responsible
for this moat, and hence, we must have u = v. This contradicts our choice of u
and v.

The example in Figure 4.1 shows three terminal pairs (s1, t1), (s2, t2), and (s3, t3)
that are connected by a tree T in an optimal solution F ∗. The figure shows a snapshot
of algorithm KLS at some time τ > 0. At this time, five of the terminals are responsible:
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Fig. 4.1. Snapshot of algorithm KLS at some time τ > 0.

Rτ (T ) = {s1, s2, s3, t1, t3} (assuming that t2 ≺ s1). Consequently, Claim 4.7 implies
that the five moats Uτ (s1), U

τ (s2), U
τ (s3), U

τ (t1), and Uτ (t3) are pairwise disjoint.
But this means that each of the moats has a nonempty intersection with T and
therefore, we can charge their dual growth in the algorithm to the cost c(T ) of tree
T .

Let w ∈ R(T ) be the terminal vertex with highest responsibility time among
all terminals spanned by tree T . Then, for all terminals vi ∈ R(T ) \ {w} and for
all 0 ≤ τ ≤ r(vi), Claim 4.7 implies that the moats Uτ (w) and Uτ (vi) are disjoint.
Therefore,

∑

vi∈R(T )\{w}
r(vi) ≤ c(T ).

On the other hand, r(w) must be at most d(w) which in turn is at most c(T )/2, and
hence, the last inequality implies that

p∑

i=1

r(vi) ≤ 3

2
c(T ).

In the remainder of this section, we will strengthen the above argument in order
to prove Lemma 4.4.

Lemma 4.8. If δ(Uτ (w)) ∩ T 	= ∅ for all 0 ≤ τ < r(w), then we must have

∑

v∈R(T )

r(v) ≤ c(T ).

Proof. Consider any point of time τ ≥ 0 where there are at least two terminals in
R(T ) that are responsible, i.e., |Rτ (T )| > 1. By Claim 4.7 we have that the moats in
Uτ (T ) are pairwise disjoint. On the other hand, the vertices in Rτ (T ) are connected
by T , and hence, each of the moats in Uτ (T ) loads a distinct part of the edges of T ;
see Figure 4.1.

Consider now a time τ where |Rτ (T )| = 1. It must be the case that w is the
only remaining responsible terminal among the vertices in R(T ), i.e., Rτ (T ) = {w}.
By assumption, Uτ (w) loads at least one edge of T . This concludes the proof of the
lemma.
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Recall that T is a tree in an optimal Steiner forest F ∗ and that T spans terminals
R(T ) ⊆ R. Furthermore, terminal w ∈ R(T ) has the highest responsibility time
among all terminals spanned by T . In the following, let w̄ be the mate of w, i.e.,
(w, w̄) ∈ R. From now on we will assume that there is a time τ0 ∈ [0, r(w)) such that
δ(Uτ0(w))∩T = ∅ and hence T ⊆ E(Uτ0(w)), where E(Uτ0(w)) denotes the subset of
those edges in E that have both endpoints in Uτ0(w). We also must have |Rτ (T )| = 1
for all τ ∈ [τ0, r(w)) since all vertices of R(T ) are in the same connected component of
F̄ τ . Furthermore, since w is responsible until time r(w) we must have Rτ (T ) = {w}
for all τ ∈ [τ0, r(w)), and thus u ≺ w and u ≺ w̄ for all u ∈ R(T ) \ {w, w̄}.

Let Pww̄ be the unique w, w̄-path in T . We define Iτ (T ) as the set of responsible
terminal pairs in Rτ (T ) \ {w, w̄} that inflict a dual load on path Pww̄ in KLS(R) at
time τ , i.e.,

Iτ (T ) = {v ∈ Rτ (T ) \ {w, w̄} : δ(Uτ (v)) ∩ Pww̄ 	= ∅}.

Claim 4.9. Consider a point in time τ and a terminal v ∈ Iτ (T ). Then Uτ (v)
contains neither w nor w̄.

Proof. By definition of Iτ (T ), we know that v 	∈ {w, w̄}. We also know that
v ≺ w and v ≺ w̄. The claim follows as v is responsible for Uτ (v), and hence
{w, w̄} ∩ Uτ (v) = ∅.

For a time τ and a vertex v ∈ Iτ (T ), let pτww̄(v) be the number of intersections
of Pww̄ and Uτ (v) at time τ :

(4.4) pτww̄(v) = |δ(Uτ (v)) ∩ Pww̄|.

We use slww̄ to denote the cost of that part of Pww̄ that does not feel any dual load
from any of the terminals in R(T ). Let lw and lw̄ be the total load on Pww̄ coming
from terminals w and w̄, respectively. We can then express the cost of Pww̄ as

(4.5) c(Pww̄) = lw + lw̄ + slww̄ +

∫ τ0

0

∑

v∈Iτ (T )

pτww̄(v) dτ.

We obtain the following lemma.
Lemma 4.10. If there is a τ0 ∈ [0, r(w)) with δ(Uτ0(w)) ∩ T = ∅, then we must

have
∑

v∈R(T )

r(v) ≤ c(T ).

Proof. Similar to the proof of Lemma 4.8, consider a time τ < r(w) where Rτ (T )
contains more than one terminal. The corresponding moats in Uτ (T ) are pairwise
disjoint by Claim 4.7, and the vertices in Rτ (T ) are connected by T . Hence, each
of the moats in Uτ (T ) loads a distinct part of T . Moreover, using the definition of
pτww̄(v) in (4.4), for all τ ∈ [0, τ0) and v ∈ Iτ (T ) moat Uτ (v) loads at least pτww̄(v)
edges of T .

Recall that slww̄ is the cost of the segments of Pww̄ that do not feel any load
from terminals in R(T ). Furthermore, w loads edges of T until time τ0, and hence we
must have

(4.6) c(T ) ≥ τ0 + slww̄ +

∫ τ0

0

∑

v∈Iτ (T )

(pτww̄(v) − 1) dτ +
∑

v∈R(T )\{w}
r(v).
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Observe that for all τ ∈ [0, τ0) and v ∈ Iτ (T ), we account a total contribution of
pτww̄(v): pτww̄(v) − 1 in the first sum and 1 in the second sum, respectively.

The death time of vertex w is at most half of the cost of Pww̄. Using (4.5) we
therefore obtain

r(w) ≤ lw + lw̄
2

+
slww̄

2
+

1

2
·
∫ τ0

0

∑

v∈Iτ (T )

pτww̄(v) dτ

≤ τ0 + slww̄ +

∫ τ0

0

∑

v∈Iτ (T )

(pτww̄(v) − 1) dτ,(4.7)

where the second inequality uses the fact that max{lw, lw̄} ≤ τ0 and that by Claim 4.9,
pτww̄(v) ≥ 2 for all v ∈ Iτ (T ). Combining (4.6) and (4.7) yields the lemma.

We can now sum over all trees T in the forest F ∗. Lemmas 4.8 and 4.10 together
with (4.3) imply that

∑

U∈U
yU =

∑

v∈R

r(v) =
∑

T∈F∗

∑

v∈R(T )

r(v) ≤
∑

T∈F∗

c(T ) = optR.

This finishes the proof of Lemma 4.4.

5. Lifted-cut LP relaxation for the Steiner forest problem. Recall that
without loss of generality we let

R = {(s1, t1), . . . , (sk, tk)}
such that

d(s1, t1) ≤ · · · ≤ d(sk, tk).

As before we define a precedence order ≺ on R by letting (si, ti) ≺ (sj , tj) iff i ≤ j,
and we extend this order to terminal vertices by letting

(5.1) s1 ≺ t1 ≺ s2 ≺ t2 ≺ · · · ≺ sk ≺ tk.

We assume that v ≺ v for all v ∈ R.
Let R(U) be the set of terminal pairs in R that are separated by a Steiner cut

U ∈ S, i.e., R(U) = {(s, t) ∈ R : |{s, t} ∩ U | = 1}. Consider a terminal v and let v̄
be v’s mate in the Steiner forest instance, i.e., (v, v̄) ∈ R. We let Sv ⊆ S be the set
of Steiner cuts that separate v and v̄ and for which (v, v̄) is the highest ranked such
terminal pair:

(5.2) Sv = {U ∈ S : v ∈ R(U), u ≺ v ∀ u ∈ R(U)}.
We also let Nv ⊆ N be the set of all non-Steiner cuts containing v and v̄ where (v, v̄)
is the terminal pair of highest rank:

Nv = {U ∈ N : {v, v̄} ⊆ U ∩R, (u, ū) ≺ (v, v̄) ∀ (u, ū) ∈ U ∩R}.
Recall that we define U = S ∪ N as the set of all Steiner and non-Steiner cuts. We
then say that a terminal v ∈ R is responsible for a cut U ∈ U if U ∈ Sv ∪Nv. Observe
that for a non-Steiner cut U ∈ N two terminals are responsible. Also note that the
responsibility notion introduced here differs from the one that was used in section 4
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in that a terminal can only be responsible for a Steiner cut if the cut separates it from
its mate.

The dual of the lifted-cut relaxation for the Steiner forest problem is as follows:

optLC-D = max
∑

U∈U
yU(LC-D)

s.t.
∑

U∈U : e∈δ(U)

yU ≤ c(e) ∀e ∈ E,(5.3)

∑

U∈Sv

yU +
∑

U∈Nv

yU ≤ d(v) ∀v ∈ R,(5.4)

yU ≥ 0 ∀U ∈ U .
Notice that a feasible solution to (LC-D) may assign positive values to non-Steiner

cuts U ∈ N . The constraints of type (5.4) are necessary as the objective function
value of (LC-D) would be unbounded in their absence.

The LP dual of (LC-D) has variables xe for every edge e ∈ E and variables xv

for every terminal v ∈ R:

optLC-P = min
∑

e∈E

c(e) · xe +
∑

v∈R

d(v) · xv(LC-P)

s.t.
∑

e∈δ(U)

xe + xv ≥ 1 ∀U ∈ Sv, ∀v ∈ R,(5.5)

∑

e∈δ(U)

xe + xv + xv̄ ≥ 1 ∀U ∈ Nv, ∀v ∈ R,(5.6)

xe, xv ≥ 0 ∀e ∈ E, ∀v ∈ R.

Lemma 5.1. Let {xe, xv}e∈E,v∈R be an integral solution that is feasible for
(LC-P). Then there is a feasible Steiner forest of cost at most

∑

e∈E

c(e) · xe +
∑

v∈R

d(v) · xv.

Proof. Given {xe, xv}e∈E,v∈R, define F = {e ∈ E : xe = 1}. The total cost c(F )
of F is

∑
e∈E c(e) · xe. F is not necessarily a feasible Steiner forest since there might

exist a Steiner cut U ∈ S with no crossing edge, i.e., δ(U) ∩ F = ∅. Let U ∈ Sv

be such a set and let v̄ be the mate of v. Constraint (5.5) for U and v implies that
xv = 1 in this case. Next consider the complement Ū = V \ U . It can be seen that
v̄ is responsible for Ū and hence, Ū ∈ Sv̄. As no edge crosses Ū , constraint (5.5)
for Ū and v̄ implies that xv̄ = 1. Therefore, we can add all edges along the shortest
v, v̄-path to F at a cost of at most 2d(v, v̄). Observe that this addition is sufficient
to satisfy all Steiner cuts in Sv, so we need only add this path once for v and v̄. We
can therefore repeat this procedure for all remaining terminals v ∈ R for which there
exists a Steiner cut U ∈ Sv that is not crossed by F . The total cost in this solution
incurred by the additional paths is not more than

∑
v∈R d(v) · xv, which completes

the proof.
In the remainder of this section we prove the following theorem.
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Theorem 5.2. The objective value of an optimal solution to the lifted-cut relax-
ation (LC-P) is at most the cost of any feasible Steiner forest for the given instance.
The dual linear program (LC-D) is stronger than the well-known undirected-cut relax-
ation for the Steiner forest problem. Moreover, the dual solution computed by KLS is
feasible for (LC-D). There exist instances for which the IP/LP gap is about 2.

The following lemma relates the cost of any feasible solution for the given Steiner
forest instance to the objective function value of an optimal solution for (LC-P).

Lemma 5.3. Let F be a feasible solution for the underlying Steiner forest instance.
We can then construct a half-integral solution {xe, xv}e∈E,v∈R that is feasible for (LC-
P) and satisfies

∑

e∈E

c(e) · xe +
∑

v∈R

d(v) · xv ≤ c(F ).

In particular, this implies that optLC-P ≤ optR.
Proof. Let T be a tree in F . We use E(T ) and V (T ) to refer to the edges and

vertices of T , respectively. We construct a solution {xe, xv}e∈E,v∈R that is feasible
for (LC-P) and show that for each tree T ∈ F

∑

e∈E(T )

c(e) · xe +
∑

v∈R∩V (T )

d(v) · xv ≤ c(T ).

The lemma then follows by summing over all trees in F .
Consider a tree T ∈ F . Let (w, w̄) be the terminal pair such that w and w̄ are

responsible for the non-Steiner cut V (T ). Moreover, let Pww̄ denote the unique w, w̄-
path in T . We set xe = 1/2 for each edge e ∈ E(Pww̄) and xe = 1 for each edge
e ∈ E(T ) \E(Pww̄). Moreover, we assign xw = xw̄ = 1/2 and xv = 0 for all terminals
v ∈ (R∩V (T ))\{w, w̄}. By definition (3.1) of death time, d(w, w̄) ≤ c(Pww̄)/2. Thus,
the objective value for x on T is

∑

e∈E(T )

c(e) · xe +
∑

v∈R∩V (T )

d(v) · xv = c(T ) − c(Pww̄)

2
+ d(w, w̄) ≤ c(T ).

It remains to be shown that x is feasible for (LC-P). We show for each tree T in
F and for all v ∈ R ∩ V (T ) that x satisfies the cut requirements of constraints (5.5)
and (5.6) for sets U ∈ Sv ∪Nv.

Consider a cut U ∈ Sv for some v ∈ R ∩ V (T ). If v ∈ {w, w̄}, constraint (5.5)
holds since U intersects Pww̄ and xv = 1/2. Now let v /∈ {w, w̄}. As U ∈ Sv and
v ≺ w, by assumption, it follows that either {w, w̄} ⊆ U or {w, w̄} ∩ U = ∅. We also
have v̄ 	∈ U . As T connects v and v̄, it can be seen that U either intersects at least
one edge e of T that is not on Pww̄ (and hence xe = 1) or intersects at least two edges
e1 and e2 on Pww̄ (and therefore xe1 = xe2 = 1/2). Thus, constraint (5.5) holds in
this case as well.

Next consider a non-Steiner cut U ∈ Nv for terminal v ∈ R∩V (T ). If v 	∈ {w, w̄},
then {w, w̄} ∩ U = ∅ and U crosses at least one edge of T that is not on Pww̄ or at
least two edges of Pww̄. Hence constraint (5.6) holds. Otherwise, U may cross no
edge of T but xw + xw̄ = 1 and thus (5.6) is satisfied.

Running algorithm KLS on terminal set R yields a cost share ξR(s, t) for all (s, t) ∈
R. It also returns a dual solution {yU}U∈U such that

∑
(s,t)∈R ξR(s, t) =

∑
U∈U yU . It

is easy to verify that y is feasible for (LC-D). Lemma 5.3 therefore yields an alternate
proof of the competitiveness of KLS.
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Corollary 5.4. ξ satisfies competitiveness; i.e.,

∑

(s,t)∈R

ξR(s, t) =
∑

U∈U
yU ≤ optLC−D = optLC−P ≤ optR.

The next lemma shows that (LC-D) is at least as strong as the standard LP dual
(D).

Lemma 5.5. Let {yU}U∈S be a feasible dual solution for (D). Then there is a
feasible dual solution {y′U}U∈U for (LC-D) with

∑

U∈S
yU ≤

∑

U∈U
y′U .

This implies that optD ≤ optLC−D.
Proof. Let y be a feasible solution for (D). The sets Sv for terminals v ∈ R form

a partition of S: S =
⋃

v∈R Sv. We define a candidate dual solution y′ for (LC-D) as
follows: for a set U ∈ S, let Ū ∈ S be its complement and define

y′U = y ′̄U =
yU + yŪ

2
.

Let y′U = 0 for all non-Steiner cuts U ∈ N .
We claim that y′ satisfies all constraints of type (5.3). To see this, consider an

edge e ∈ E and observe that

∑

U∈S:e∈δ(U)

y′U =
∑

U∈S:e∈δ(U)

yU + yŪ
2

=
∑

U∈S:e∈δ(U)

yU ,

where the last equality uses the fact that U is a Steiner cut iff its complement is. The
dual feasibility of y for (D) shows that y′ satisfies (5.3).

We will now show that y′ also satisfies all constraints of type (5.4). Assume for
the sake of contradiction that y′ violates constraint (5.4) for some terminal v ∈ R.
We then have

(5.7)
∑

U∈Sv

y′U +
∑

U∈Nv

y′U =
∑

U∈Sv

y′U > d(v) = c(Pvv̄)/2,

where c(Pvv̄) is the cost of a minimum-cost v, v̄-path in G.
Consider a Steiner cut U ∈ S and observe that U and its complement Ū separate

the same set of terminal pairs. Therefore, U ∈ Sv iff Ū ∈ Sv̄ for a terminal pair
(v, v̄) ∈ R, and thus,

(5.8)
∑

U∈Sv

y′U =
∑

U∈Sv

yU + yŪ
2

=
∑

U∈Sv̄

y′U .

Together with (5.7), this implies that

∑

U∈Sv

y′U +
∑

U∈Sv̄

y′U > c(Pvv̄).

On the other hand, adding the constraints of type (2.2) for all edges e ∈ E(Pvv̄) yields

∑

U∈Sv

y′U +
∑

U∈Sv̄

y′U ≤
∑

U∈S
|δ(U) ∩ Pvv̄| · yU =

∑

e∈E(Pvv̄)

∑

U∈S: e∈δ(U)

yU ≤ c(Pvv̄),
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and this is a contradiction.
The dual of the lifted-cut relaxation is stronger than the standard LP dual (D).
Lemma 5.6. There exist instances for which optD < optLC−D.
Proof. Consider a cycle of 2n vertices with unit edge costs. Let V = {v1, . . . , v2n}

and define R = {(v1, vj)}2≤j≤2n. The cost of an optimal solution is optR = 2n− 1.
We define a dual solution as follows: y{v} = 1/2 for each v ∈ V and yU = 0 for

all other sets U ∈ S. Clearly, {yU}U∈S is a feasible solution to (D). It can easily be
verified that this is an optimal solution for (D): If we set xe = 1/2 for each edge e of
the cycle, we obtain a feasible solution for the LP relaxation (LP) having the same
objective function value. Thus, optD = n.

For (LC-D), on the other hand, we can define a dual solution y′{v} = 1/2 for each

v ∈ V , y′V = n/2 − 1/2, and y′U = 0 for all other sets U ∈ U . It is easy to verify that
y′ is a feasible solution for (LC-D). We conclude that

optLC−D ≥
∑

U∈U
y′U =

3n

2
− 1

2
.

The latter term is strictly larger than n if n > 1.
Unfortunately, as with the undirected cut formulation for the Steiner forest prob-

lem, the IP/LP gap of the lifted-cut relaxation is close to 2 for certain instances.
Lemma 5.7. There exist instances for which optR/optLC−P = 2 − 2/(k + 1),

where k is the number of terminal pairs.
Proof. Consider a clique Kn with vertices V = {v1, v2, . . . , vn} and unit edge

costs. Define R = {(v1, vj)}2≤j≤n. Without loss of generality, let (w, w̄) = (v1, v2) be
the highest ranked terminal pair among all terminal pairs in R.

Consider path P = (v2, v3, . . . , vn, v1) spanning all vertices of Kn. The following
is a feasible solution for (LC-P): set xw = xw̄ = 1/2 and xv = 0 for all v ∈ V \{w, w̄},
and set xe = 1/2 for all edges e ∈ E(P ) and xe = 0 for all edges e /∈ E(P ). This
solution satisfies constraints (5.5) and (5.6). The objective function value for x is n/2.
Next consider the following dual solution. Let y{v} = 1/2 for all v ∈ V and yU = 0 for
all other U ∈ U . Then y satisfies constraints (5.3) and (5.4). The objective value of
y is n/2, and thus x and y are optimal solutions to (LC-P) and (LC-D), respectively.

Clearly, the optimal solution optR has cost n − 1. The ratio between optR and
optLC−D is 2 − 2/n. Since k = n− 1, the lemma follows.

6. Algorithmic consequences of the lifted-cut relaxation. In this section
we show that, for some instances of the Steiner forest problem, we can use the addi-
tional strength of the lifted-cut relaxation in order to prove that algorithm AKR returns
a Steiner forest of cost strictly less than (2 − 1/k)optR.

Consider an instance of the Steiner forest problem with terminal set R. Assume
that algorithm AKR, when executed on this instance, finishes at time τ∗ ≥ 0 with forest
F and feasible dual solution {yU}U∈S . Let U1, . . . , Up be the connected components
of F̄ τ∗

and define Ri ⊆ R to be the set of terminal pairs contained in Ui for all
1 ≤ i ≤ p. Further let (si, ti) be the terminal pair in Ri of highest rank according to
the precedence order ≺ defined in (5.1), i.e.,

(s, t) ≺ (si, ti)

for all (s, t) ∈ Ri and for all 1 ≤ i ≤ p. For 1 ≤ i ≤ p, we now define the combined
slack sli of the constraints (5.4) for the terminal vertices si and ti with respect to
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dual solution y:

sli = 2d(si, ti) −
∑

U∈Ssi
∪Sti

yU .

Let slR = max1≤i≤p sli be the slack of the given instance of the Steiner forest
problem.

Theorem 6.1. The forest F returned by AKR for an instance of the Steiner forest
problem with terminal pairs R has cost at most

(
2 − 1

k

)(
Y

Y + slR/2

)
optR,

where Y is the objective function value of the dual computed by AKR.
Proof. From the proof of Lemma 5.5 (see (5.8)) we know that we may assume

without loss of generality that y is symmetric; i.e., we may assume that

∑

U∈Ss

yU =
∑

U∈St

yU

for all (s, t) ∈ R.
We observe that the proof of Lemma 5.5 works for any fixed precedence order ≺

on R; in particular, at no point in the proof of this lemma do we use the fact that
(s, t) ≺ (s′, t′) implies d(s, t) ≤ d(s′, t′).

Choose 1 ≤ q ≤ p such that slq = max1≤i≤p sli. We will now define an alterna-
tive order ≺′ on R in which the terminal pairs in Rq have highest rank. The order
on terminal pairs in R \Rq and the order within Rq is that induced by ≺. Formally,
consider two terminal pairs (s, t), (s′, t′) ∈ R. We let (s, t) ≺′ (s′, t′) iff

• (s, t) ≺ (s′, t′) and either {(s, t), (s′, t′)} ⊆ R \Rq or {(s, t), (s′, t′)} ⊆ Rq, or
• (s, t) ∈ R \Rq and (s′, t′) ∈ Rq.

Similar to the definition of Sv in (5.2), we let S ′
v be the set of Steiner cuts that

separate v and its mate v̄ and for which (v, v̄) has highest ≺′-rank among all such
terminal pairs. The definition of ≺′ implies that (s, t) ≺ (s′, t′) iff (s, t) ≺′ (s′, t′) for
all {(s, t), (s′, t′)} ⊆ Ri for all 1 ≤ i ≤ p. Therefore, we also must have

∑

U∈Sv

yU =
∑

U∈S′
v

yU

for all terminals v ∈ R. Specifically, this and the symmetry of y imply that

∑

U∈S′
sq

yU +
∑

U∈Nsq

yU ≤ d(sq, tq) − slq

2
,

∑

U∈S′
tq

yU +
∑

U∈Ntq

yU ≤ d(sq, tq) − slq

2
,

where Nsq = Ntq and yU = 0 for all U ∈ Nsq . Finally notice that V ∈ Nsq as (sq, tq)
is the highest ranked terminal pair in R under ≺′. We now let y′U = yU for all Steiner
cuts U ∈ S and we define y′V = slq/2. It is not hard to see that y′ is feasible for the
lifted-cut dual (LC-D) for the given instance of the Steiner forest problem.
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In the following, we use Y as a short for
∑

U∈S yU . We then have

(
1 +

slR

2Y

)
· Y = y′V +

∑

U∈S
y′U ≤ optR,

and this together with Theorem 2.1 implies

c(F ) ≤
(

2 − 1

k

)
· Y ≤

(
2 − 1

k

)(
Y

Y + slR/2

)
optR.

Suppose now that we are given an instance of the Steiner tree problem with
terminal set R and root vertex r. Let ΔR be the maximum distance among any two
terminals in R ∪ {r}. We call ΔR the diameter of the given instance. Let r′ be an
arbitrary terminal in R ∪ {r} such that there exists a terminal u ∈ R ∪ {r} with
c(r′, u) = ΔR. The Steiner forest instance with terminal pairs

R′ = {(u, r′) : u ∈ R ∪ {r}}

is easily seen to be equivalent to the given instance of the Steiner tree problem.
Suppose again that AKR finishes at time τ∗ when run on this instance. It is not hard
to convince oneself that the slack slR′ of this instance is

slR′ = ΔR − τ∗.

We therefore obtain the following corollary of Theorem 6.1.
Corollary 6.2. Given an instance of the Steiner tree problem with terminal set

R, AKR returns a tree T of cost at most

(
2 − 1

|R|
)(

Y

Y + (ΔR − τ∗)/2

)
optR,

where Y is the objective function value of the dual computed by AKR.

7. A lower bound for the Steiner tree game. We next prove that no cross-
monotonic cost sharing method for the Steiner tree game can achieve a budget balance
factor better than 2.

Theorem 7.1. There is no (2− ε)-budget balanced, cross-monotonic cost sharing
method for the Steiner tree game for any ε > 0.

The tools used in this section are adaptations of those used in [9]. In particular,
we consider any given cross-monotonic cost sharing method ξ for the Steiner tree
game and show that there is an instance of the game where the sum of the cost shares
of all players is considerably smaller than the cost of an optimal solution. Instead
of using a probabilistic argument similar to the one described in [9], we use a more
direct (but ultimately equivalent) proof based on convex combinations.

The family of instances used in our proof resembles the one used for the facility
location lower bound in [9]. We construct an undirected graph G = (V,E). First we
describe the vertex set. There are k pairwise disjoint sets Ai, i = 1, . . . , k, each of
which contains m vertices. Every one of these vertices corresponds to a player who
wants to connect this vertex with a root vertex (which is different from the vertices in
Ai). The set of all players that have a vertex associated with them in Ai is denoted

by Ai. The set of all players is R =
⋃k

i=1 Ai.
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fB2

A1 A3

1

1

3

A2

r A4

1

3

11

1

1

1

fB1

Fig. 7.1. Example of G in which k = 4, m = 5, and only two of the fB are drawn.

Let B be the collection of all sets with exactly one element from each of the Ai,
i.e.,

B =
{{a1, . . . , ak} : ai ∈ Ai, i = 1, . . . , k

}
.

For each set B ∈ B, we introduce a unique vertex fB and edges (b, fB) of cost 1 for
all vertices b ∈ B. The distance to the vertices not in B is, by the triangle inequality,
equal to 3. Finally, there is, for each B, an edge (fB , r) of cost 3. See Figure 7.1.

The following lemma argues that we may assume that ξ is symmetric, i.e., that
it does not differentiate between players from the same set Ai.

Lemma 7.2. Suppose that there is an α-budget balanced cost sharing method for
the Steiner tree game. Then there is also an α-budget balanced cost sharing method
that satisfies, for every subset Q ⊆ R of players,

ξQ(c) = ξQ(d)

for all c, d ∈ Q ∩ Ai and for all 1 ≤ i ≤ k. Moreover, for all c ∈ Q ∩ Ai and for all
d ∈ Ai \ Q,

ξQ(c) = ξ(Q\{c})∪{d}(d).

Proof. Let ξ̃ be an α-budget balanced cost sharing method for the Steiner tree
game. Let Π be the set of permutations of R that leave the Ai invariant; i.e., if π ∈ Π
and c ∈ Ai, then π(c) ∈ Ai. Then |Π| = (m!)k. Write π(Q) := {π(c) : c ∈ Q}.
Define, for c ∈ R,

ξQ(c) :=
∑

π∈Π

1

(m!)k
ξ̃π(Q)

(
π(c)

)
.

Notice that, for a player c 	∈ Q, the value ξQ(c) is 0 as π(c) 	∈ π(Q) for all π ∈ Π.
Since we average over all player permutations, for all 1 ≤ i ≤ k and for any two players
c, d ∈ Ai ∩ Q, we have ξQ(c) = ξQ(d). It remains to show that ξ is cross-monotonic
and α-budget balanced.
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Consider adding a player d to set Q. We have to argue that the cost share of an
individual player cannot increase. For a player c ∈ Q we see that

ξQ∪{d}(c) =
∑

π∈Π

1

(m!)k
ξ̃π(Q∪{d})(π(c)) ≤

∑

π∈Π

1

(m!)k
ξ̃π(Q)(π(c)) = ξQ(c).

This follows since π(Q ∪ {d}) = π(Q) ∪ {π(d)}, and hence the cross-monotonicity of
ξ̃ can be applied to each term.

Now we show α-budget balance. To this end we must specify which solution is
returned by the algorithm. If we denote with Sπ the solution returned by cost sharing
method ξ̃ when run on set π(Q), we return the solution S ∈ {Sπ : π ∈ Π} with cost
c(S) = minπ∈Π c(Sπ).

Of course this solution is not necessarily feasible for the original player set, but
because of the symmetry of the instance there is a graph isomorphism that maps the
solution back to a feasible one without changing the cost.

Now we can write
∑

c∈Q
ξQ(c) =

∑

c∈Q

∑

π∈Π

1

(m!)k
ξ̃π(Q)(π(c)) =

∑

π∈Π

1

(m!)k

∑

c∈Q
ξ̃π(Q)(π(c))

≥
∑

π∈Π

1

(m!)k
1

α
· c(Sπ) ≥

∑

π∈Π

1

(m!)k
1

α
· c(S) =

1

α
· c(S).

Competitiveness can be proved using a similar line of reasoning: the cost of the
optimal solution must be the same in any permutation. With that, the proof is
complete.

Now suppose we are given a symmetric cost sharing method ξ. From this point
on we will identify players and vertices to avoid complication of notation. Ask the
algorithm for cost shares for a subset of players {a1, . . . , ak}, where ai ∈ Ai. By
construction of the graph, all these terminals can connect to vertex f{a1,...,ak} at cost
1, at which point they are only 3 units away from the root. Hence there is a solution
of cost k + 3 for this subset. Competitiveness states that

k∑

j=1

ξ{a1,...,ak}(aj) ≤ opt{a1,...,ak} ≤ k + 3.

Therefore, there must be at least one index i such that ξ{a1,...,ak}(ai) ≤ (k + 3)/k,
and Lemma 7.2 implies that

ξ{a1,...,ai−1,c,ai+1,...,ak}(c) ≤ (k + 3)/k(7.1)

for all c ∈ Ai.
For this index i we consider the instance with subset Q = {a1, . . . , ak} ∪ Ai. We

bound the sum of the cost shares for this set as follows:
∑

c∈Q

ξQ(c) =
∑

c∈Ai

ξQ(c) +
∑

j 	=i

ξQ(aj)

≤
∑

c∈Ai

ξ{a1,...,ai−1,c,ai+1,...,ak}(c) +
∑

j 	=i

ξ{a1,...,ai−1,ai+1,...,ak}(aj)(7.2)

≤ m · k + 3

k
+ k + 2.(7.3)
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The first inequality is an application of cross-monotonicity; the second follows from
(7.1) and the fact that there is a solution of cost k + 2 for a set

{a1, . . . , ai−1, ai+1, . . . , ak}

of players where aj ∈ Aj .
Due to the large amount of symmetry in this instance, we can in fact describe the

optimal solution.
Lemma 7.3. The optimal solution for connecting the players in a set Q, as defined

above, to the root has cost 2m + k + 1.
Proof. We observed above that connecting all terminals {a1, . . . , ak} via f{a1,...,ak}

to the root has cost k+3. Fix a terminal aj ∈ Q with aj /∈ Ai. Each of the remaining
m−1 terminals in Ai\{ai} can connect to aj at cost 2. Thus, optQ ≤ k+3+2(m−1) =
2m + k + 1.

We next show that 2m + k + 1 is a lower bound on the optimal cost. Suppose F
is the set of vertices fB , B ∈ B, that are used to connect all terminals in Q to the
root r, and define f = |F |. Clearly, 1 ≤ f ≤ m. The cost of connecting all vertices in
F to the root is 3f . Moreover, connecting all k − 1 terminals in Q \Ai to F has cost
at least k− 1. At most f terminals in Ai are adjacent to a vertex in F , and the total
cost of connecting these terminals to F is f . The remaining m − f terminals in Ai

are not adjacent to any of the f vertices in F , and therefore the cost of connecting
these terminals to F is at least 2(m− f). Hence, the cost of connecting all terminals
in Q via vertices in F is at least

3f + k − 1 + f + 2(m− f) = 2m + k + 2f − 1 ≥ 2m + k + 1.

Combining Lemma 7.3 with inequality (7.3), we can now prove Theorem 7.1.
Proof Theorem 7.1. The ratio between the cost shares of players in the subset Q

as defined above and the cost of the network they use can be bounded as follows:

∑
c∈Q ξQ(c)

c(Q)
≤

∑
c∈Q ξQ(c)

optQ
≤ mk+3

k + k + 2

2m + k + 1
=

k2 + 4k + 2

2k2 + k + 1
,

where the last equality holds if we choose m = k2. This ratio tends to 1/2 as k → ∞,
which completes the proof.
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THE FORGETRON: A KERNEL-BASED PERCEPTRON
ON A BUDGET∗

OFER DEKEL† , SHAI SHALEV-SHWARTZ† , AND YORAM SINGER‡

Abstract. The Perceptron algorithm, despite its simplicity, often performs well in online clas-
sification tasks. The Perceptron becomes especially effective when it is used in conjunction with
kernel functions. However, a common difficulty encountered when implementing kernel-based on-
line algorithms is the amount of memory required to store the online hypothesis, which may grow
unboundedly as the algorithm progresses. Moreover, the running time of each online round grows
linearly with the amount of memory used to store the hypothesis. In this paper, we present the
Forgetron family of kernel-based online classification algorithms, which overcome this problem by
restricting themselves to a predefined memory budget. We obtain different members of this family
by modifying the kernel-based Perceptron in various ways. We also prove a unified mistake bound
for all of the Forgetron algorithms. To our knowledge, this is the first online kernel-based learning
paradigm which, on one hand, maintains a strict limit on the amount of memory it uses and, on the
other hand, entertains a relative mistake bound. We conclude with experiments using real datasets,
which underscore the merits of our approach.

Key words. online classification, kernel methods, the Perceptron algorithm, learning theory
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1. Introduction. The introduction of the Support Vector Machine (SVM) [11]
sparked a widespread interest in kernel methods as a means of solving binary classi-
fication problems. Although SVM was initially stated as a batch-learning technique,
it significantly influenced the development of kernel methods in the online-learning
setting. Online classification algorithms that can incorporate kernels include the Per-
ceptron [10], ROMMA [9], ALMA [5], NORMA [7], and the Passive-Aggressive family
of algorithms [2]. Each of these algorithms observes examples in a sequence of rounds
and constructs its classification function incrementally by storing a subset of the ob-
served examples in its internal memory. The classification function is then defined
by a kernel-dependent combination of the stored examples. This set of stored exam-
ples is the online equivalent of the support set in SVMs; however, in contrast to the
support, it constantly changes as learning progresses. In this paper, we call this set
the active set, as it includes those examples that actively define the current classi-
fier. Typically, an example is added to the active set every time the online algorithm
makes a prediction mistake, or when its confidence in a prediction is inadequately
low. Under certain circumstances, the active set often grows to be very big, and this
can lead to significant computational difficulties. Naturally, since computing devices
have bounded memory resources, there is the danger that an online algorithm would
require more memory than is physically available. This problem becomes especially
eminent in cases where the online algorithm is implemented as part of a specialized
hardware system with a small memory, such as a mobile telephone or an autonomous
robot. Moreover, the growth of the active set can lead to unacceptably long running
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times, as the time-complexity of each online round scales linearly with the size of the
active set.

Crammer, Kandola, and Singer [3] first addressed this problem by describing an
online kernel-based modification of the Perceptron algorithm in which the active set
does not exceed a predefined budget. Their algorithm removes redundant examples
from the active set in an attempt to make the best use of the limited memory resource.
Weston, Bordes, and Bottou [12] followed with their own online kernel machine on
a budget. Both techniques work relatively well in practice; however, they both lack
formal guarantees on prediction accuracy.

In this paper we present an online kernel-based classifier which is restricted to a
fixed budget of active examples and for which we derive a formal learning-theoretic
analysis. To the best of our knowledge, this is the first online algorithm on a budget
for which a rigorous mistake bound has been proven. Like [3], our approach also uses
the kernel-based Perceptron as a starting point and enforces the budget constraint
by removing an example from the active set whenever the size of this set exceeds
the predefined limit. We name our algorithm Forgetron, since it is a variation of the
Perceptron algorithm which forgets active examples as necessary.

Besides forgetting active examples, the Forgetron algorithm also shrinks the online
hypothesis every time it performs an update. This repeated shrinking technique is the
key ingredient that makes our theoretical analysis possible. Every time a new example
is added to the active set, the entire hypothesis is multiplied by a positive scalar which
is at most 1, and often smaller than 1. This causes the weight of each active example
to diminish from update to update. If this scaling procedure is done correctly, it
ensures that there always exists an active example with a small weight and a minor
influence on the current hypothesis. This example can be safely removed from the
active set without causing serious damage to the accuracy of our online classifier. The
scaling step should be performed carefully, since an overaggressive scaling policy could
significantly impair the algorithm’s prediction abilities. The delicate balance between
safe removal of active examples and overaggressive scaling is the main accomplishment
of this paper.

Following the preliminary presentation of the Forgetron algorithm [4], Cesa-
Bianchi and Gentile devised a randomized online classification algorithm on a budget
[1]. They also proved an upper bound on the expected number of prediction mistakes
made by their algorithm. We revisit the algorithm of Cesa-Bianchi and Gentile in
section 8.

This paper is organized as follows. In section 2 we begin with a more formal pre-
sentation of our problem and discuss a profound difficulty in proving mistake bounds
for kernel methods on a budget. In sections 3 and 4 we lay the groundwork for our
algorithm by analyzing two possible modifications to the Perceptron algorithm. In
section 5 we derive the basic Forgetron algorithm, and in sections 6 and 7 we present
two possible improvements to the basic algorithm. We conclude with an empirical
evaluation of our algorithms in section 8 and a discussion in section 9.

2. Problem setting. Online learning is performed in a sequence of consecutive
rounds. On round t, the online algorithm observes an instance xt, which is drawn
from some predefined instance domain X . The algorithm predicts the binary label
associated with that instance and is then given the correct label yt ∈ {−1,+1}. At
this point, the algorithm may use the new example (xt, yt) to improve its prediction
mechanism for future rounds. We make no assumptions about the way in which the
sequence of examples is generated. The goal of the algorithm is to correctly predict
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as many labels as possible.
The predictions of the online algorithm are determined by a function which is

stored in its internal memory and is updated from round to round. We refer to this
function as the hypothesis of the algorithm and denote the hypothesis used on round t
by ft. Our focus in this paper is on margin-based hypotheses, namely, ft is a function
from X to R where sign(ft(xt)) constitutes the actual binary prediction and |ft(xt)| is
the confidence in this prediction. The term yf(x) is called the margin of the prediction
and is positive whenever y and sign(f(x)) agree. We can evaluate the performance of
a hypothesis on a given example (x, y) in one of two ways. First, we can check whether
the hypothesis makes a prediction mistake, namely, determine whether y = sign(f(x))
or not. Throughout this paper, we use M to denote the number of prediction mistakes
made by an online algorithm on a sequence of examples (x1, y1), . . . , (xT , yT ). The
second way we can evaluate the predictions of a hypothesis is by using the hinge-loss
function, defined as

�
(
f ; (x, y)

)
=

{
0 if yf(x) ≥ 1,

1 − yf(x) otherwise.
(1)

The hinge-loss penalizes a hypothesis for any margin less than 1. Additionally, if
y �= sign(f(x)) then �(f, (x, y)) ≥ 1, and therefore the cumulative hinge-loss suffered
over a sequence of examples upper bounds M . The algorithms discussed in this paper
use kernel-based hypotheses, namely, they are defined with respect to a symmetric
positive semidefinite kernel operator K : X × X → R. A kernel-based hypothesis
takes the form

f(x) =
k∑

i=1

αiK(xi,x),(2)

where x1, . . . ,xk are members of X and α1, . . . , αk are real valued weights. To facil-
itate the derivation of our algorithms and their analysis, we associate a reproducing
kernel Hilbert space (RKHS) with K in the standard way common to all kernel-
based learning methods. First, we define the inner product between the functions
f(x) =

∑k
i=1 αiK(xi,x) and g(x) =

∑l
j=1 βjK(zj ,x) to be

〈f, g〉 =

k∑

i=1

l∑

j=1

αiβjK(xi, zj).

This inner product naturally induces a norm defined by ‖f‖ = 〈f, f〉1/2 and a metric
‖f−g‖ = (〈f, f〉−2〈f, g〉+〈g, g〉)1/2. Next, we let HK denote the closure of the set of
all hypotheses of the form given in (2), with respect to this metric. These definitions
play an important role in the analysis of our algorithms.

Online kernel methods typically restrict themselves to hypotheses that are defined
by a subset of the examples observed on previous rounds. That is, the hypothesis used
on round t takes the form

ft(x) =
∑

i∈It

αiK(xi,x),(3)

where It is a subset of {1, . . . , (t− 1)} and xi is the instance observed on round i. As
stated above, It is called the active set, and we say that example (xi, yi) is active on
round t if i ∈ It.
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Perhaps the most well-known online algorithm for binary classification is the Per-
ceptron [10]. Stated as a kernel method, the hypotheses generated by the Perceptron
take the form ft(x) =

∑
i∈It

yiK(xi,x). Namely, the weight assigned to each active
example is either +1 or −1, depending on the label of that example. The Perceptron
initializes I1 to be the empty set, which implicitly sets f1 to be the zero function. It
then updates its hypothesis only on rounds where a prediction mistake is made. Con-
cretely, if on round t the margin ytft(xt) is nonpositive, then the index t is inserted
into the active set. As a consequence, the size of the active set on round t equals the
number of prediction mistakes made on previous rounds. A relative mistake bound
can be proven for the Perceptron algorithm. The bound holds for any sequence of
examples and compares the number of mistakes made by the Perceptron with the
cumulative hinge-loss of any fixed hypothesis g ∈ HK , even one defined with prior
knowledge of the sequence.

Theorem 1. Let K be a kernel and let (x1, y1), . . . , (xT , yT ) be a sequence of
examples such that K(xt,xt) ≤ 1 for all t. Let g be an arbitrary function in HK

and define ��t = �
(
g; (xt, yt)

)
. Then the number of prediction mistakes made by the

Perceptron on this sequence is bounded by

M ≤ ‖g‖2 + 2

T∑

t=1

��t .

The proof of this theorem is given in the next section and serves as the basis of the
analysis in this paper. Although the Perceptron is guaranteed to be competitive with
any fixed hypothesis g ∈ HK , the fact that its active set grows with every mistake may
pose a serious computational problem, as already noted in the introduction. In fact,
this problem is common to most kernel-based online methods which do not explicitly
monitor the size of It.

On the limitation of algorithms on a memory budget. Our goal is to derive and
analyze an online prediction algorithm which resolves the problems discussed above
by enforcing a fixed bound on the size of the active set. Formally, let B be a positive
integer which we refer to as the budget parameter. We would like to devise an algorithm
which enforces the constraint |It| ≤ B on every round t. Furthermore, we would like
to prove a relative mistake bound for this algorithm along the lines of Theorem 1.
Regretfully, it turns out that this goal cannot be reached without making additional
assumptions. We show this inherent limitation by presenting a simple counterexample.
That is, for any kernel-based algorithm that uses a prediction function of the form
given in (3) and which adheres to the constraint |It| ≤ B, we can find a kernel K,
a hypothesis g ∈ HK , and an arbitrarily long sequence of examples such that the
algorithm makes a prediction mistake on every single round while g suffers no loss at
all. Our counterexample is constructed as follows. We choose X to be the set of B+1
standard unit vectors in R

B+1, namely, X = {ei}B+1
i=1 , where ei is the vector with 1 in

its ith coordinate and zeros elsewhere. The kernel function K is set to be the standard
dot product in R

B+1; thus K(x,x′) = x ·x′. On every round t, the online hypothesis,
ft, is a linear combination of at most B vectors from X . Since |X | = B + 1, there
exists a vector xt ∈ X which is not currently active. Furthermore, by construction, xt

is orthogonal to all of the active vectors, and therefore ft(xt) = 0. Assume without
loss of generality that the online algorithm we are using predicts yt to be −1 when
ft(x) = 0. If on every round we were to present the online algorithm with the example
(xt,+1), then the online algorithm would make a prediction mistake on every round.

On the other hand, the hypothesis ḡ =
∑B+1

i=1 ei is a member of HK and attains a
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hinge-loss of 0 on every round. We have found a sequence of examples and a fixed
hypothesis (which is indeed defined by more than B vectors from X ) that attains a
cumulative loss of zero on this sequence, while the number of mistakes made by our
online algorithm equals the number of rounds. Clearly, a general theorem along the
lines of Theorem 1 cannot be proven.

One way to resolve the problem illustrated above is to limit the set of competing
hypotheses to a subset of HK in a way that would naturally exclude ḡ in the example
above. In this paper, we limit the set of competitors to hypotheses with a bounded
norm. Formally, we wish to devise an online algorithm which is competitive with every
hypothesis g ∈ HK for which ‖g‖ ≤ U , where U is a predefined positive constant.
The counterexample above indicates that we cannot prove a relative mistake bound
with U ≥ √

B + 1, since the norm of ḡ in our counterexample is
√
B + 1. In this

paper we come close to this upper bound by proving that our algorithms can compete
with any hypothesis whose norm is bounded from above by 1

4

√
(B + 1)/ log(B + 1).

Limiting the set of competing hypotheses to a ball of norm U about the origin of
HK is one possible way to overcome the problem exposed by our counterexample. It
seems plausible that other restrictions on the general problem setting, such as specific
choices of the instance domain X or the kernel function K, could resolve this problem
equally well.

As mentioned in the previous section, Cesa-Bianchi and Gentile devised a random-
ized online classification algorithm on a budget [1]. Their analysis shows that their
algorithm is competitive with any hypothesis whose norm is bounded from above by
O(

√
B + 1). However, in contrast to our analysis, which bounds the actual num-

ber of prediction mistakes (M), the analysis of Cesa-Bianchi and Gentile bounds the
expected number of mistakes (E[M ]), where expectation is taken over the internal
randomization of their algorithm. Namely, the actual performance of their random-
ized algorithm varies from run to run. We illustrate this phenomenon empirically in
section 8.

3. The Remove-Oldest Perceptron. The Perceptron algorithm and its mis-
take bound (Theorem 1) serve as our starting point. Therefore, it is important to
understand the proof of Theorem 1 before proceeding. The key to proving Theorem 1
is the observation that the hypothesis of the Perceptron is drawn toward good hy-
potheses in HK . Specifically, whenever the Perceptron makes a prediction mistake,
its hypothesis moves closer to every hypothesis g ∈ HK which attains a margin of at
least 1

2
on the current example. This fact is formally stated and proven below.

Lemma 1. Let (x, y) be an example, where x ∈ X , K(x,x) ≤ 1, and y ∈
{−1,+1}. Let f ∈ HK be a function such that yf(x) ≤ 0, and define f ′ = f+yK(x, ·).
Then for any function g ∈ HK it holds that

‖f − g‖2 − ‖f ′ − g‖2 ≥ 2yg(x) − 1.

Proof. Using the definition of f ′, we can write

‖f − g‖2 − ‖f ′ − g‖2

= ‖f − g‖2 − ‖(f − g) + yK(x, ·)‖2

= ‖f − g‖2 − ‖f − g‖2 − 2y〈(f − g),K(x, ·)〉 −K(x,x)

= −2y〈f,K(x, ·)〉 + 2y〈g,K(x, ·)〉 −K(x,x).
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Using the reproducing property of HK , we know that 〈f,K(x, ·)〉 = f(x) and that
〈g,K(x, ·)〉 = g(x), and thus we get

‖f − g‖2 − ‖f ′ − g‖2 = − 2yf(x) + 2yg(x) −K(x,x).(4)

Using our assumption that yf(x) ≤ 0, it follows that −2yf(x) ≥ 0. Additionally,
recall that we made the assumption that K(x,x) ≤ 1. Plugging these facts back into
(4) gives

‖f − g‖2 − ‖f ′ − g‖2 ≥ 2yg(x) − 1.(5)

This concludes the proof.
The term ‖ft − g‖2 − ‖ft+1 − g‖2 measures how much the hypothesis of the

Perceptron gets closer to g, as a result of the update on round t. This term plays an
important role in our paper and we therefore denote it by Δt. It is worth noting that
Δt also plays an important role in the analysis of other online algorithms [8, 6, 2].
The proof of Theorem 1 is a simple corollary of Lemma 1.

Proof of Theorem 1. We prove the theorem by bounding
∑T

t=1 Δt from above
and from below. First note that

∑
t Δt is a telescopic sum which reduces to

T∑

t=1

Δt = ‖f1 − g‖2 − ‖fT+1 − g‖2.

Using the facts that ‖fT+1 − g‖2 ≥ 0 and that f1 is the zero function, we can upper
bound

∑
t Δt by ‖g‖2. Next we show a lower bound on

∑
t Δt. For rounds on

which the Perceptron makes a correct prediction, we have that ft+1 = ft, and thus
Δt = 0. For rounds on which the Perceptron makes a mistake, Lemma 1 tells us that
Δt ≥ 2ytg(xt)−1. The definition of the hinge-loss in (1) implies that ��t ≥ 1−ytg(xt)
and therefore 2ytg(xt) ≥ 2 − 2��t . Therefore, we have that

‖ft − g‖2 − ‖ft+1 − g‖2 ≥ 1 − 2��t .

Recalling that M denotes the total number of prediction mistakes made on the entire
sequence of examples, we obtain that

T∑

t=1

Δt ≥ M − 2
∑

t:ytft(xt)≤0

��t .

Since the hinge-loss is nonnegative, it holds that

T∑

t=1

Δt ≥ M − 2

T∑

t=1

��t .(6)

Comparing this lower bound with the upper bound
∑

t Δt ≤ ‖g‖2 and rearranging
terms proves the theorem.

We now present the Remove-Oldest Perceptron, a simple modification of the
kernel Perceptron which conforms with a fixed budget constraint. As long as the
active set is smaller than the budget parameter B, the Remove-Oldest Perceptron
behaves exactly like the standard kernel Perceptron. The active set therefore grows
with every mistake and eventually contains B examples. Once the active set reaches
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B examples, the online update is performed in two steps. Whenever the algorithm
makes a mistake, it first adds an example to the active set by performing the standard
Perceptron update, and then it reduces the size of the active set back to B by removing
the oldest active example. More formally, for all 1 ≤ t ≤ T , let I ′t define the active
set obtained on round t after applying the standard Perceptron update. That is,

I ′t =

{
It if ytft(xt) > 0,

It ∪ {t} if ytft(xt) ≤ 0.
(7)

Also, let f ′
t denote the hypothesis defined by I ′t, namely,

f ′
t =

∑

t∈I′
t

ytK(xt, ·).(8)

Now, define It+1 to be

It+1 =

{
I ′t \ {rt} if |I ′t| = B + 1,

I ′t if |I ′t| ≤ B,
(9)

where rt = min I ′t. Besides being an interesting algorithm, the Remove-Oldest Per-
ceptron is an important intermediate step toward the Forgetron algorithm.

We are unable to prove a mistake bound for the Remove-Oldest Perceptron; how-
ever, we are able to quantify the damage due to the second step of the update, defined
in (9). Assume that the algorithm is run for T rounds. Let J denote the set of rounds
on which a prediction mistake is made, namely, J = {1 ≤ t ≤ T : ytft(xt) ≤ 0} and
M = |J |. Note that IT+1, the active set at the end of T rounds, is a subset of J .
To analyze the Remove-Oldest Perceptron, we again assume that g is an arbitrary
function in HK and define Δt = ‖ft−g‖2−‖ft+1−g‖2. As in the proof of Theorem 1,

the sum
∑T

t=1 Δt can be upper bounded by ‖g‖2, and we concentrate on bounding it
from below. Using the notation f ′

t , defined in (8), we can rewrite Δt as follows:

Δt = ‖ft − g‖2 − ‖f ′
t − g‖2 + ‖f ′

t − g‖2 − ‖ft+1 − g‖2.

For brevity, let us define

αt = ‖ft − g‖2 − ‖f ′
t − g‖2 and γt = ‖f ′

t − g‖2 − ‖ft+1 − g‖2,

and thus
∑

t Δt =
∑

t αt +
∑

t γt. Since Δt �= 0 only for t ∈ J , we can rewrite

T∑

t=1

Δt =
∑

t∈J

(αt + γt) =
∑

t∈IT+1

αt +
∑

t∈J\IT+1

αt +
∑

t∈J

γt.(10)

The summands in
∑

t∈J γt which are equal to zero can be omitted from the sum.
Specifically, note that γt is nonzero only on rounds for which |It| = B, and therefore,

∑

t∈J

γt =
∑

t∈J : |It|=B

γt.(11)

The set J \ IT+1 consists of the indices of the examples that were inserted into the
active set and later removed from it. Another way to write this set, using the nota-
tion rt defined above, is {rt : t ∈ J ∧ |It| = B}, since active examples are removed
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precisely on rounds on which a mistake occurs and the active set is full. Therefore, it
holds that

∑

t∈J\IT+1

αt =
∑

t∈J : |It|=B

αrt .(12)

Using (11) and (12), we can rewrite (10) as

T∑

t=1

Δt =
∑

t∈IT+1

αt +
∑

t∈J : |It|=B

(αrt + γt).(13)

We have rewritten
∑

t Δt as the sum of two terms. Next, we lower bound each term
individually. The first term deals with examples that were added to the active set
and never removed. For these examples, only the effect of the standard Perceptron
update (αt) must be taken into account. The second term deals with examples that
were added and then later removed from the active set. Decomposing

∑
Δt in this

way, and dealing with the two terms separately, is an important technique which we
reuse in our main formal result, namely, the proof of Theorem 3.

We first consider the first term on the right-hand side of (13). For every t ∈ IT+1

we can use Lemma 1 to bound αt ≥ 2ytg(xt)−1. Using the definition of the hinge-loss
in (1), we know that 2ytg(xt) − 1 ≥ 1 − 2��t , and therefore,

αt ≥ 1 − 2��t .(14)

Moving on to the second term on the right-hand side of (13), we note that for every
round t on which an example was removed from the active set, αrt measures the
benefit of initially adding the example rt to the active set, whereas γt measures the
damage caused by removing this example later. We will actually analyze a more
general case where instead of entirely removing example rt on round t, we may only
decrease its weight. In other words, instead of subtracting yrtK(xrt , ·) from the
current hypothesis, we subtract λyrtK(xrt , ·) for some 0 < λ ≤ 1. For the purpose of
lower bounding (13), we can simply assume that λ = 1. However, the more general
form of our analysis will prove useful later, as we make further progress toward an
algorithm with a budget constraint and a mistake bound.

Next, we show that our lower bound on αrt + γt is influenced by two factors:
the parameter λ, which determines what portion of the example xrt is removed, and
the term yrtf

′
t(xrt), which is the margin attained by the current hypothesis on the

example being removed. More precisely, we show that the lower bound on αrt + γt is
similar to the lower bound in (14) minus the additional penalty

Ψ(λ, μ) = λ2 + 2λ− 2λμ,(15)

where μ is an abbreviation for yrtf
′
t(xrt).

Lemma 2. Let f , f ′, and g be arbitrary functions in HK , let (x, y) be an example
such that x ∈ X , K(x,x) ≤ 1, and y ∈ {−1,+1}, and define �� = �(g; (x, y)). Assume
that yf(x) ≤ 0. Then for any λ ∈ (0, 1] it holds that

(
‖f − g‖2 − ‖(f + yK(x, ·)) − g‖2

)
+
(
‖f ′ − g‖2 − ‖(f ′ − λyK(x, ·)) − g‖2

)

≥ 1 − 2�� − Ψ(λ, yf ′(x)).
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Proof. We rewrite ‖f ′ − g‖2 − ‖(f ′ − λyK(x, ·)) − g‖2 as

‖f ′ − g‖2 − ‖f ′ − λyK(x, ·) − g‖2

= ‖f ′ − g‖2 − ‖f ′ − g‖2 + 2λy〈f ′ − g,K(x, ·)〉 − λ2‖K(x, ·)‖2

= 2λy〈f ′,K(x, ·)〉 − 2λy〈g,K(x, ·)〉 − λ2‖K(x, ·)‖2.

Using the reproducing property of HK , it holds that 〈f ′,K(x, ·)〉 = f ′(x), 〈g,K(x, ·)〉 =
g(x), and ‖K(x, ·)‖2 = K(x,x). Plugging these equalities into the above, and using
our assumption that K(x,x) ≤ 1, we have

‖f ′ − g‖2 − ‖f ′ − λyK(x, ·) − g‖2 ≥ 2λyf ′(x) − 2λyg(x) − λ2.(16)

Using Lemma 1 and denoting f ′ = f + yK(x, ·) we get the bound

‖f − g‖2 − ‖f ′ − g‖2 ≥ 2yg(x) − 1.(17)

For brevity, let us denote the term on the left-hand side of the statement of the lemma
by δ. Summing (17) with (16), we have

δ ≥ 1 − 2(1 − λ)(1 − yg(x)) −
(
2λ + λ2 − 2λyf ′(x)

)
.

Using the definition of the hinge-loss, it holds that �� ≥ 1−yg(x), and since (1−λ) ≥ 0,
we get

δ ≥ 1 − 2(1 − λ)�� −
(
2λ + λ2 − 2λyf ′(x)

)
.

Finally, we neglect the nonnegative term 2λ��, and the lemma is proven.
Using Lemma 2 with λ set to 1 and f ′ set to f ′

t , we get

αrt + γt ≥ 1 − 2��rt − Ψ(1, yrtf
′
t(xrt)).(18)

Combining (13) with (14) and (18), we obtain the lower bound

T∑

t=1

Δt ≥ M − 2
∑

t∈J

��t −
∑

t∈J : |It|=B

Ψ(1, yrtf
′
t(xrt)).

Comparing this bound to the upper bound
∑

t Δt ≤ ‖g‖2, using the fact that the
hinge loss is always nonnegative, yields the following corollary.

Corollary 1. Let K be a symmetric positive semidefinite kernel and let (x1, y1),
. . . , (xT , yT ) be a sequence of examples such that K(xt,xt) ≤ 1 for all t. Let g be an
arbitrary function in HK , define ��t = �

(
g; (xt, yt)

)
, and let Ψ be as defined in (15).

Then the number of prediction mistakes made by the Remove-Oldest Perceptron on
this sequence is bounded by

M ≤ ‖g‖2 + 2

T∑

t=1

��t +
∑

t∈J : |It|=B

Ψ(1, yrtf
′
t(xrt)).

This corollary does not constitute a relative mistake bound since we cannot pro-
vide any guarantee of the value of Ψ(1, yrtf

′
t(xrt)). The magnitude of this term
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depends on how well the classifier f ′
t classifies the example being removed, xrt . Refer-

ring back to the definition of Ψ in (15), we get that Ψ(1, yrtf
′
t(xrt)) = 3−2yrtf

′
t(xrt).

Therefore, every time yrtf
′
t(xrt) ≥ 3

2
, the bound in Corollary 1 is actually strength-

ened, whereas every time yrtf
′
t(xrt) <

3
2
, it is weakened. Clearly, the term yrtf

′
t(xrt)

plays an important role in determining whether or not xrt can be safely removed
from the active set on round t. In order to obtain a concrete mistake bound, we must
modify the Remove-Oldest Perceptron in a way which controls the damage caused by
the removal step. Lemma 2, in its general form (0 < λ ≤ 1), helps us gain this control.
Namely, we can control the magnitude of the term Ψ(λ, yrtf

′
t(xrt)) by ensuring that

|f ′
rt(xt)| is sufficiently small, and by setting λ to a value smaller than 1. Both tasks

can be achieved by repeatedly shrinking the online hypothesis on every update. The
details of this modification are discussed in the next section.

4. Repeatedly shrinking the Perceptron hypothesis. In the previous sec-
tion, we discussed the damage caused by removing the oldest active example from
the active set. The key to controlling the extent of this damage is to ensure that the
example being removed has a sufficiently small influence on the current hypothesis.
One way to achieve this is by shrinking the norm of the online hypothesis following
each update. Namely, on each round t where an update is performed, the online
hypothesis is multiplied by a scalar 0 < φt ≤ 1 (the concrete value of φt is specified
in the next section). To study the effect of the shrinking step on the accuracy of the
online algorithm, let us momentarily forget about the removal step introduced in the
previous section and focus only on the shrinking step. The two techniques, removal
and shrinking, are combined in the next section.

To facilitate the analysis of the shrinking technique, we introduce a new online
algorithm, the Shrinking Perceptron. This algorithm is a variation of the standard
kernel-based Perceptron and constructs an online hypothesis which is a weighted com-
bination of functions in HK ,

ft =
∑

i∈It

yiσi,tK(xi, ·),

where σi,t ∈ [0, 1]. The update procedure starts with the standard Perceptron update.
Specifically, if a correct prediction is made then ft+1 = ft. Otherwise, It+1 is set to
It ∪ {t} and σt,t is set to 1. We use the notation f ′

t to denote the intermediate
hypothesis which results from this update, namely,

f ′
t(x) = ft(x) + ytσt,tK(xt,x).(19)

The second step of the update is the shrinking step, which sets ft+1 to be φtf
′
t , where

φt is a shrinking coefficient in (0, 1]. Setting σi,t+1 = φtσi,t for all 1 ≤ i ≤ t, we can
write

ft+1 =
∑

i∈It+1

yiσi,t+1K(xi, ·).

The recursive definition of each weight σi,t can be unraveled to give the following
explicit form:

σi,t =
∏

j∈It−1 ∧ j≥i

φj .
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By choosing sufficiently small shrinking coefficients φt, we can make the weights σi,t

decrease as quickly as we like. If these weights indeed decrease rapidly enough, the
contribution of older active examples to the online hypothesis becomes negligible.
This demonstrates the potential of shrinking as a means of controlling the effect of
old active examples on the current hypothesis. However, this benefit comes at a
price. Repeatedly shrinking the norm of the Perceptron hypothesis takes a toll on
the accuracy of the online algorithm. A good choice of φt should balance the need
to attenuate the influence of older active examples with the damage caused by the
shrinking step. In the remainder of this section, we prove a bound on the damage
caused by the shrinking step.

To remind the reader, our goal, as stated in section 2, is to find an algorithm
which is competitive with any g ∈ HK whose norm ‖g‖ is bounded above by U ,
where U = 1

4

√
(B + 1)/ log(B + 1). The term Δt = ‖ft − g‖2 − ‖ft+1 − g‖2, which

played a major role in the proof of Theorem 1, again appears in our analysis. We now
show how this term is affected by the shrinking step. As before, Δt = 0 on rounds
where a correct prediction was made, and we can focus on rounds where Δt �= 0. As
before, we denote the set of indices t for which Δt > 0 by J . Using the notation f ′

t

defined above, we can rewrite Δt as

Δt = ‖ft − g‖2 − ‖f ′
t − g‖2 + ‖f ′

t − g‖2 − ‖ft+1 − g‖2.

For brevity, define

αt = ‖ft − g‖2 − ‖f ′
t − g‖2 and βt = ‖f ′

t − g‖2 − ‖ft+1 − g‖2,(20)

and so
∑

t Δt =
∑

t∈J αt+
∑

t∈J βt. For each t, αt measures the progress made by the
Perceptron update on round t, while βt measures the damage caused by the shrinking
step which follows the Perceptron update. Our first task is to lower bound

∑
t∈J βt.

In order to do so, we partition the set J into the following three subsets:

J1 = {t ∈ J : φt ‖f ′
t‖ ≥ U},

J2 = {t ∈ J : ‖f ′
t‖ ≤ U ∧ φt ‖f ′

t‖ < U},
J3 = {t ∈ J : ‖f ′

t‖ > U ∧ φt ‖f ′
t‖ < U}.(21)

To gain some insight, we can think of the shrinking step in geometric terms. On round
t, we first apply the Perceptron update and obtain f ′

t . The function f ′
t is a point in the

Hilbert space HK . Then, we perform the shrinking step which moves f ′
t toward the

origin of HK , resulting in ft+1. Now let BU ⊂ HK be a ball of radius U , centered at the
origin of HK . The set J1 represents those rounds where both f ′

t and ft+1 lie outside
or on the surface of BU . The set J2 represents the rounds where f ′

t ∈ BU and ft+1 lies
in the interior of BU . Finally, J3 represents rounds where f ′

t �∈ BU and the shrinking
step moves ft+1 into the interior of BU . This geometric interpretation is illustrated
in Figure 1. We now deal with each of the three cases individually, beginning with
the set J1. The following lemma builds on our assumption that ‖g‖ ≤ U .

Lemma 3. Let U > 0 and 0 < φ ≤ 1 be scalars, and let g and f be two functions
in HK such that ‖g‖ ≤ U ≤ φ‖f‖. Then,

‖f − g‖2 − ‖φf − g‖2 ≥ 0.

Proof. We begin by noting that φ‖f‖2 ≥ U‖f‖ ≥ ‖g‖‖f‖. Using the Cauchy–
Schwarz inequality, we have that ‖g‖‖f‖ ≥ 〈f, g〉, and therefore

φ‖f‖2 ≥ 〈f, g〉.(22)
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g
φf ′

f ′

g

φf ′

f ′
g

φf ′

f ′

J1 J2 J3

Fig. 1. A geometrical interpretation of the three hypothesis-shrinking cases.

The term ‖f − g‖2 − ‖φf − g‖2 can now be rewritten as

‖f − g‖2 − ‖φf − g‖2 =
(‖f‖2 − 2〈f, g〉 + ‖g‖2

)− (
φ2‖f‖2 − 2φ〈f, g〉 + ‖g‖2

)

= (1 − φ2)‖f‖2 − 2(1 − φ)〈f, g〉.(23)

Since (1− φ) is nonnegative, we can plug (22) into the right-hand side above and get
the bound

‖f − g‖2 − ‖φf − g‖2 ≥ (1− φ2)‖f‖2 − 2(1− φ)φ‖f‖2 = (1− φ)2 ‖f‖2 ≥ 0.

To recap, the geometric implication of Lemma 3 is that the shrinking step does not
have an adverse effect on Δt so long as ft+1 remains outside the interior of BU .

Next, we prove a looser bound, compared to the bound provided by Lemma 3,
which holds for all t ∈ J and in particular for t ∈ J2.

Lemma 4. Let g and f be two functions in HK . Then, for any φ in (0, 1] the
following bound holds:

‖f − g‖2 − ‖φf − g‖2 ≥ ‖g‖2(φ− 1).

Proof. As in (23), the left-hand side in the statement of the lemma can be
rewritten as

‖f − g‖2 − ‖φf − g‖2 = (1 − φ2)‖f‖2 − 2(1 − φ)〈f, g〉.
We now use the elementary fact that for any u, v ∈ HK , ‖u− v‖2 ≥ 0, which can be

rewritten as ‖u‖2 − 2〈u, v〉 ≥ −‖v‖2. Setting u =
√

1 − φ2 f and v =
√

1−φ
1+φ g, this

inequality becomes

(1 − φ2)‖f‖2 − 2(1 − φ)〈f, g〉 ≥ − 1 − φ

1 + φ
‖g‖2.

Combining the above inequality with the fact that 1+φ ≥ 1 proves the bound.
Finally, we focus on rounds from J3.
Lemma 5. Let U > 0 and 0 < φ ≤ 1 be scalars, and let g and f be two functions

in HK such that ‖g‖ ≤ U , ‖f‖ > U , and ‖φf‖ < U . Then,

‖f − g‖2 − ‖φf − g‖2 ≥ ‖g‖2

(
φ‖f‖
U

− 1

)
.
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Proof. Defining ν = U/‖f‖, we can rewrite the left-hand side of our claim as

(‖f − g‖2 − ‖νf − g‖2
)

+
(‖νf − g‖2 − ‖φf − g‖2

)
.

Since 0 < ν < 1 and ‖νf‖ = U , we can use Lemma 3 to lower bound the first term
above by 0. Similarly, we can use Lemma 4 to lower bound the second term above by
−‖g‖2(1 − φ

ν ). Summing the two bounds, we get

‖f − g‖2 − ‖φf − g‖2 ≥ − ‖g‖2

(
1 − φ

ν

)
= ‖g‖2

(
φ‖f‖
U

− 1

)
,

which proves the lemma.
Combining Lemmas 3, 4, and 5, and recalling that βt = ‖f ′

t − g‖2 − ‖ft+1 − g‖2,
we obtain the following lower bound:

∑

t∈J

βt ≥ ‖g‖2

(
∑

t∈J2

(φt − 1) +
∑

t∈J3

(φt‖f ′
t‖

U
− 1

))
.

This bound can be restated as follows:

∑

t∈J

βt ≥ ‖g‖2
∑

t∈J

(Φt − 1), where Φt =

⎧
⎪⎨
⎪⎩

1 if t ∈ J1,

φt if t ∈ J2,
φt‖f ′

t‖
U if t ∈ J3.

(24)

Using the inequality x− 1 ≥ log(x), we obtain the following corollary.
Corollary 2. Let g be a function in HK such that ‖g‖ ≤ U , where U ≥ 0. Let

βt be as defined in (20) and Φt be as defined in (24). Then it holds that

∑

t∈J

βt ≥ ‖g‖2 log

(
∏

t∈J

Φt

)
.

Repeating the analysis of the kernel Perceptron, we can lower bound
∑

t∈J αt ≥
M − 2

∑T
t=1 �

�
t (as in (6)) and upper bound

∑
t∈J(αt + βt) ≤ ‖g‖2. Combining these

two inequalities with the result from Corollary 2 gives

M ≤ ‖g‖2

(
1 − log

(
∏

t∈J

Φt

))
+ 2

T∑

t=1

��t .

The above mistake bound can be applied to any concrete strategy of choosing the
shrinking coefficient φt. In the next section, we combine elements from the analysis of
the Remove-Oldest Perceptron and the Shrinking Perceptron to derive the Forgetron
algorithm, our first online algorithm on a budget for which we prove a mistake bound.

5. The Forgetron algorithm. In this section we present the Forgetron algo-
rithm, which combines the removal and shrinking techniques presented in the previous
sections. The result is a provably correct online learning algorithm on a fixed budget.
The main challenge in combining the two techniques revolves around the choice of the
shrinking coefficients φ1, . . . , φT . On one hand, the shrinking step must be aggressive
enough to attenuate the contribution of old active examples to the online hypothesis.
On the other hand, an overly aggressive shrinking policy could damage the accuracy
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of our algorithm. Concretely, we show that the following choice of φt successfully
balances this tradeoff:

φt = min

{
(B + 1)−

1
2(B+1) ,

U

‖f ′
t‖

}
,(25)

where f ′
t = ft + ytK(xt, ·) and

U =
1

4

√
B + 1

log(B + 1)
.(26)

Although this simple choice of φt enables us to prove a formal mistake bound, we
note that it has some deficiencies, which we discuss at the end of this section. In the
next section, we describe a refined mechanism for choosing φt, which overcomes these
deficiencies.

The Forgetron algorithm initializes I1 to be the empty set, which implicitly sets f1

to be the zero function. If a prediction mistake occurs on round t, namely, ytft(xt) ≤
0, a three step update is performed. The first step is the Perceptron update, which
inserts the index t into the active set. We denote the resulting active set by I ′t and
the resulting hypothesis by

f ′
t = ft(x) + ytK(xt, ·).(27)

The second step is the shrinking step, which sets

f ′′
t = φtf

′
t ,(28)

where φt ∈ (0, 1] is the shrinking coefficient. The last step of the update is the removal
step: if the budget constraint is violated, we remove the oldest element from the active
set. Put more formally, if |I ′t| > B, we set It+1 = I ′t \ {rt}, where rt = min I ′t, and
otherwise, if |I ′t| ≤ B, we set It+1 = It. Following the notation established in the
previous section, we can rewrite ft as

ft =
∑

i∈It

yi σi,t K(xi, ·), where σi,t =
∏

j∈It−1 ∧ j≥i

φj .

The pseudocode of the Forgetron algorithm is given in Figure 2.
We now turn to the analysis of the Forgetron algorithm. Recall that our goal is

to prove a mistake bound similar to that of the Perceptron (see Theorem 1), relative
to any competitor g from the set {g ∈ HK : ‖g‖ ≤ U}. To gain some insight into our
proof technique, assume that g attains a zero loss on every example from the input
sequence, that is, yt g(xt) ≥ 1 for all t. As in the proof of Theorem 1, we prove a
mistake bound for the Forgetron by tracking the dynamics of ‖ft−g‖2. We informally
refer to ‖ft−g‖2 as our instantaneous distance from the competitor g. Initially, f1 ≡ 0,
and therefore ‖f1−g‖2 = ‖g‖2. For rounds on which the Forgetron makes a prediction
mistake, we first perform the Perceptron update and obtain f ′

t . From Lemma 1 we
know that ‖ft − g‖2 − ‖f ′

t − g‖2 ≥ 2ytg(xt) − 1 ≥ 1, namely, the Perceptron update
moves our classifier closer to g by at least one unit. Next, we perform the shrinking
and removal steps. These steps might increase the distance between our classifier and
g. Suppose that we could show that the deviation caused by these two steps is at most
a half. Then overall, after performing the three step update, the distance between our
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Input: symmetric positive semidefinite kernel K(·, ·) ; budget B > 0

Initialize: I1 = ∅ ; f1 ≡ 0 ; U = 1
4

√
B+1

log(B+1)

For t = 1, 2, . . .
receive an instance xt

predict sign(ft(xt))
receive correct label yt
If ytft(xt) > 0

set It+1 = It
and for all (i ∈ It) set σi,t+1 = σi,t

Else

(1) set I′t = It ∪ {t}
// define f ′

t = ft + ytK(x, ·)
(2) set φt = min{ (B + 1)

− 1
2(B+1) , U/‖f ′

t‖ }
set σt,t+1 = φt and for all (i ∈ It) set σi,t+1 = φt σi,t

// define f ′′
t = φtf ′

t

(3) If |I′t| ≤ B

set It+1 = I′t
Else

define rt = min It

set It+1 = I′t \ {rt}
define ft+1 =

∑
i∈It+1

σi,t+1 yi K(xi, ·)

Fig. 2. The basic Forgetron algorithm.

classifier and g decreases by at least a half. Therefore, after M prediction mistakes,
the distance to g decreases by at least 1

2
M . Using the facts that the initial distance to

g is ‖g‖2 and the final distance cannot be negative, we conclude that ‖g‖2 − 1
2
M ≥ 0,

which gives us a bound on M . Therefore, to obtain a mistake bound, we must bound
the total amount by which the shrinking and removal steps increase our distance to
g. We now formalize this intuition and prove the following relative mistake bound.

Theorem 2. Let (x1, y1), . . . , (xT , yT ) be a sequence of examples such that
K(xt,xt) ≤ 1 for all t. Assume that this sequence is presented to the Forgetron
algorithm with a budget parameter B ≥ 83 and with φt defined as in (25). Let
g be a function in HK such that ‖g‖ ≤ U , where U is given by (26), and define
��t = �

(
g; (xt, yt)

)
. Then, the number of prediction mistakes made by the Forgetron

on this sequence is at most

M ≤ 2 ‖g‖2 + 4

T∑

t=1

��t .

Before proving this theorem, we must quantify the negative effect of the shrinking
and removal steps on our mistake bound. As before, let J denote the set of rounds
on which the Forgetron makes a prediction mistake, and for every t ∈ J define Φt

as in (24). The role played by Φt in our analysis below is similar to its role in the
analysis of the shrinking Perceptron in section 4. Namely, Φt bounds the effect of the
shrinking step on our mistake bound. Furthermore, let t be a round in J on which
|It| = B, and let rt denote the index of the example which is removed from the active
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set on that round. Recall the definition of the function Ψ in (15) and define

Ψt =

{
Ψ
(
σrt,t+1 , yrtf

′′
t (xrt)

)
if t ∈ J ∧ |It| = B,

0 otherwise.
(29)

It should come as no surprise that the function Ψ plays a role in the analysis of the
removal step of the Forgetron update similar to the role it played in our analysis
of the Remove-Oldest Perceptron in section 3. The following lemma formalizes the
relationship between Φt, Ψt, and the number of mistakes made by the Forgetron.

Lemma 6. Let (x1, y1), . . . , (xT , yT ) be a sequence of examples such that K(xt,
xt) ≤ 1 for all t and assume that this sequence is presented to the Forgetron algorithm.
Let Φt and Ψt be as defined in (24) and (29), respectively. Then, the following bound
holds for any g ∈ HK :

M −
(
‖g‖2

∑

t∈J

log(1/Φt) +
∑

t∈J

Ψt

)
≤ ‖g‖2 + 2

∑

t∈J

��t .

Proof. For each t define Δt = ‖ft − g‖2 −‖ft+1 − g‖2. As in our previous proofs,

we prove the lemma by bounding
∑T

t=1 Δt from above and from below. First note
again that

∑
t Δt is a telescopic sum which collapses to ‖f1−g‖2−‖fT+1−g‖2. Using

the facts that ‖fT+1 − g‖2 ≥ 0 and that f1 ≡ 0, we obtain the upper bound

T∑

t=1

Δt ≤ ‖g‖2.(30)

Next we show a lower bound on
∑

t Δt. On rounds where the Forgetron makes a
correct prediction, we have that ft+1 = ft and thus

T∑

t=1

Δt =
∑

t∈J

Δt.(31)

Next, we rewrite Δt as a sum of three terms for rounds on which the Forgetron makes
a mistake,

Δt = ‖ft − g‖2 − ‖f ′
t − g‖2

︸ ︷︷ ︸
αt

+ ‖f ′
t − g‖2 − ‖f ′′

t − g‖2

︸ ︷︷ ︸
βt

+ ‖f ′′
t − g‖2 − ‖ft+1 − g‖2

︸ ︷︷ ︸
γt

,

(32)
where f ′

t and f ′′
t are defined in (27) and (28), respectively. Summing over t ∈ J and

using (13) we get that

∑

t∈J

Δt =
∑

t∈J

αt +
∑

t∈J

βt +
∑

t∈J

γt =
∑

t∈IT+1

αt +
∑

t∈J:|It|=B

(αrt + γt) +
∑

t∈J

βt.(33)

We now bound each of the summands in the above equation. First, we use Lemma 1
and (14) to get that

∑

t∈IT+1

αt ≥
∑

t∈IT+1

(1 − 2��t ) .(34)
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Recall that f ′
rt = frt + yrtK(xrt , ·), and in addition we can rewrite ft+1 as f ′′

t −
σrt,t+1yrtK(xrt , ·). Using Lemma 2 with f = frt , f

′ = f ′′
t , and λ = σrt,t+1, we get

that for any t ∈ J for which |It| = B we have that

αrt + γt ≥ 1 − 2��rt − Ψt.

Combining the above with (34) gives

∑

t∈IT+1

αt +
∑

t∈J:|It|=B

(αrt + γt) ≥
∑

t∈IT+1

(1 − 2��t ) +
∑

t∈J:|It|=B

(
1 − 2��rt − Ψt

)
.

Note that for each t ∈ J we have that either t ∈ IT+1 or there exists i ∈ J for which
|Ii| = B and ri = t. In addition, Ψt is defined to be zero if on round t we do not
remove any element from the active set. Therefore, we can further write

∑

t∈IT+1

αt +
∑

t∈J:|It|=B

(αrt + γt) ≥ M − 2
∑

t∈J

��t −
∑

t∈J

Ψt.(35)

Next, we bound
∑

t βt using Corollary 2:

∑

t∈J

βt ≥ ‖g‖2
∑

t∈J

log(Φt) = − ‖g‖2
∑

t∈J

log(1/Φt).(36)

Using (35) and (36) in (33) yields

∑

t∈J

Δt ≥ M − 2
∑

t∈J

��t − ‖g‖2
∑

t∈J

log(1/Φt) −
∑

t∈J

Ψt.

Combining the above with (30) and (31) gives

M −
(
‖g‖2

∑

t∈J

log(1/Φt) +
∑

t∈J

Ψt

)
≤ ‖g‖2 + 2

∑

t∈J

��t .

This concludes the proof.
Lemma 6 bounds the total damage to our mistake bound due to the shrinking

and removal steps. To prove Theorem 2, we show that our choice of the shrinking
coefficient in (25) ensures that the term

(‖g‖2
∑

t∈J log(1/Φt) +
∑

t∈J Ψt

)
is well

behaved. First, we prove an upper bound on ‖g‖2
∑

t∈J log(1/Φt), the negative effect
due to the shrinking step of the Forgetron update.

Lemma 7. Let (x1, y1), . . . , (xT , yT ) be a sequence of examples presented to the
Forgetron algorithm with φt defined as in (25). Let J denote the online iterations on
which the Forgetron algorithm makes a prediction mistake, and let M = |J |. Let g be
any function in HK with ‖g‖ ≤ U , where U is given in (26), and let Φt be as defined
in (24). Then

‖g‖2
∑

t∈J

log(1/Φt) ≤ M

32
.

Proof. We begin the proof by showing that

Φt ≥ (B + 1)−
1

2(B+1)(37)
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for all t ∈ J . If t ∈ J1 then Φt = 1, which is clearly greater than (B + 1)−
1

2(B+1) . If
t ∈ J2 then Φt is defined to equal φt. It follows from the definition of J2 in (21) that
U ≥ ‖f ′

t‖, and therefore

(B + 1)−
1

2(B+1) ≤ 1 ≤ U

‖f ′
t‖

.

Referring back to (25), we get that φt = (B + 1)−
1

2(B+1) , and therefore (37) holds
in this case as well. Finally, if t ∈ J3 then Φt is defined to equal φ‖f ′

t‖/U . From
the definition of J3 in (21), we have that U < ‖f ′

t‖, and therefore Φt > φt. If

φt = (B + 1)−
1

2(B+1) then (37) holds trivially. Otherwise, φt = U/‖f ′
t‖, Φt > 1, and

once again (37) holds. We can now rewrite (37) as

log

(
1

Φt

)
≤ log(B + 1)

2(B + 1)
.

Combining the above with the assumption that ‖g‖2 ≤ U2 and using the definition
of U in (26) results in

‖g‖2 log(1/Φt) ≤ B + 1

16 log(B + 1)

log(B + 1)

2(B + 1)
=

1

32
.

Summing both sides of the above over all t ∈ J proves the lemma.

Next, we prove that our choice of φt in (25) guarantees an upper bound on∑
t∈J Ψt, the negative effect due to the removal step of the Forgetron update.

Lemma 8. Let (x1, y1), . . . , (xT , yT ) be a sequence of examples such that K(xt,
xt) ≤ 1 for all t. Assume that this sequence is presented to the Forgetron algorithm
with a budget parameter B ≥ 83 and with φt defined as in (25). Let J denote the
online iterations on which the Forgetron algorithm makes a prediction mistake and let
M = |J |. Let g be a function in HK such that ‖g‖ ≤ U , where U is given in (26),
and let Ψt be as defined in (15). Then,

∑

t∈J

Ψt ≤ 15M

32
.

Proof. Let t be an online round in J , and recall that It is the active set of the
Forgetron algorithm on round t and that B is the predefined memory budget. If
|It| < B then Ψt = 0. Otherwise, Ψt equals

Ψt = σ2
rt,t+1 + 2σrt,t+1 − 2σrt,t+1 yrt f

′′
t (xrt).(38)

The definition of φt given in (25) implies that φt ≤ (B + 1)−1/(2(B+1)) for all t ∈ J .
Since the oldest element in the active set, whose index is rt, is scaled B + 1 times
before it is removed from the active set, we get

σrt,t+1 ≤
(
(B + 1)−

1
2(B+1)

)B+1

=
1√

B + 1
.(39)

Next, we use the Cauchy–Schwarz inequality to bound the term −yrtf
′′
t (xrt) by

‖f ′′
t ‖ ‖K(xrt , ·)‖. The definition of φt implies that ‖f ′′

t ‖ ≤ U , and we assumed
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K(xt,xt) ≤ 1 for all t, so −yrtf
′′
t (xrt) ≤ U . Plugging this inequality and the in-

equality in (39) into (38) gives

Ψt ≤ 1

B + 1
+

2√
B + 1

+
2U√
B + 1

.

Using the definition of U from (26), we have

Ψt ≤ 1

B + 1
+

2√
B + 1

+
1

2
√

log(B + 1)
.(40)

The right-hand side of the above inequality decreases monotonically with B and is at
most 15/32 for B ≥ 83. Thus,

∑
t∈J Ψt ≤ 15M

32
.

Proof of Theorem 2. From Lemma 6 we have

M −
(
‖g‖2

∑

t∈J

log(1/Φt) +
∑

t∈J

Ψt

)
≤ ‖g‖2 + 2

∑

t∈J

��t .

Plugging the bounds in Lemmas 7 and 8 into the above inequality gives

M −
(
M

32
+

15M

32

)
≤ ‖g‖2 + 2

∑

t∈J

��t .

Multiplying both sides of the above inequality by 2 provides the desired mistake
bound.

We have shown that the choice of φt in (25) indeed results in a provably correct
learning algorithm on a budget. However, this definition of φt suffers from several
drawbacks. First and foremost, the resulting algorithm performs poorly in practice.
In the next section, we present the self-tuned Forgetron, which uses a refined shrinking
mechanism and significantly outperforms the algorithm presented in this section (see
experimental results in section 8). Another problem with the definition of φt in (25)
is that it forces ‖f ′′

t ‖ to be at most U . We used this property in the proof above
to bound −yrt f

′′
t (xrt), which in turn provided us with an upper bound on Ψt. In

practice, it is often the case that rt can be safely removed from the active set without
any shrinking, and the norm of f ′′

t can be allowed to grow beyond U . The refined
shrinking mechanism of the self-tuned Forgetron uses the actual values of Ψ1, . . . ,Ψt

to define φt and does not explicitly use U .

6. The self-tuned Forgetron. In section 5 we introduced the Forgetron frame-
work and proposed a simple definition of the shrinking coefficients in (25). Besides
constants, which do not change from round to round, the definition in (25) depends
solely on ‖f ′

t‖. Moreover, it makes explicit use of the upper bound U . In this section
we propose an improved shrinking scheme which does not rely on the knowledge of
U . We name the resulting algorithm the self-tuned Forgetron. The main principle
which we follow in the derivation of the self-tuned Forgetron is to apply the gentlest
possible shrinking step. For example, if we are fortunate, and the damage from the
removal step happens to be small without applying any shrinking, then our improved
shrinking scheme will set φt = 1. On such rounds, the self-tuned Forgetron algorithm
update reduces back to the Remove-Oldest Perceptron update discussed in section 3.

Recall that in our analysis in section 5, Lemma 7 provided an upper bound on
‖g‖2

∑
t∈J log(1/Φt) and Lemma 8 provided an upper bound on

∑
t∈J Ψt. Together
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with Lemma 6, these upper bounds were sufficient to prove the Forgetron mistake
bound in Theorem 2. On every update, the self-tuned Forgetron chooses the gentlest
shrinking that still ensures that the bounds in Lemmas 7 and 8 still hold and that our
mistake bound remains valid. More formally, given an input sequence of examples of
length T , define Mt to be the number of prediction mistakes made by our algorithm
on rounds {1, 2, . . . , t}. On round t, if an online update is invoked, the self-tuned
Forgetron chooses the shrinking coefficient φt to be the largest number in (0, 1] that
satisfies the condition

∀t,
∑

i∈J : i≤t

Ψi ≤ 15

32
Mt.(41)

More concretely, define

Qt =
∑

i∈J : i<t

Ψi.

Let t ∈ J be an index of a round on which the Forgetron makes a prediction mistake
and is required to remove an example from the active set (|It| = B). The tth constraint
from (41) can be rewritten as

Ψ
(
σrt,t φt , yrtφtf

′
t(xrt)

)
+ Qt ≤ 15

32
Mt.

The self-tuned Forgetron sets φt to be the maximal value in (0, 1] for which the above
inequality holds, namely,

φt = max

{
φ ∈ (0, 1] : Ψ

(
σrt,t φ , yrtφf

′
t(xrt)

)
+ Qt ≤ 15

32
Mt

}
.(42)

Note that Ψ is a quadratic function in φ, and thus the optimal value of φt can be
found analytically. Simple algebraic manipulations yield that

φt =

⎧
⎪⎪⎨
⎪⎪⎩

min
{

1, −b+
√
d

2a

}
if a > 0 ∨ (a < 0 ∧ d > 0 ∧ −b−√

d
2a > 1),

min{1,−c/b} if a = 0,

1 otherwise,

(43)

where

a = σ2
rt,t − 2σrt,t yrtf

′
t(xrt), b = 2σrt,t,

c = Qt − 15
32
Mt, and d = b2 − 4ac.

(44)

The pseudocode of the self-tuned Forgetron is given in Figure 3.
By construction, the effect of the removal step is upper bounded by

∑

t∈J

Ψt ≤ 15

32
M.(45)

This fact replaces Lemma 8. Therefore, to apply the same proof technique as in the
previous section, it now suffices to show that the bound

‖g‖2
∑

t

log(1/Φt) ≤ 1

32
M(46)
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Input: symmetric positive semidefinite kernel K(·, ·) ; budget B > 0

Initialize: I1 = ∅ ; f1 ≡ 0 ; Q1 = 0 ; M0 = 0

For t = 1, 2, . . .
receive an instance xt

predict sign(ft(xt))
receive correct label yt
If ytft(xt) > 0

set It+1 = It, Qt+1 = Qt, Mt = Mt−1,
and for all (i ∈ It) set σi,t+1 = σi,t

Else

set Mt = Mt−1 + 1

(1) set I′t = It ∪ {t}
// define f ′

t = ft + ytK(x, ·)
If |I′t| ≤ B

set It+1 = I′t, Qt+1 = Qt, σt,t = 1,

and for all (i ∈ It+1) set σi,t+1 = σi,t

Else

(2) define rt = min It

define a, b, c, d as in (44) and set φt as in (43)

set σt,t+1 = φt and for all (i ∈ It) set σi,t+1 = φt σi,t

set Qt+1 = Ψ
(
σrt,t+1 , yrtf

′′
t (xrt )

)
+ Qt

// define f ′′
t = φtf ′

t

(3) set It+1 = I′t \ {rt}
define ft+1 =

∑
i∈It+1

σi,t+1 yi K(xi, ·)

Fig. 3. The self-tuned Forgetron algorithm.

still holds. To prove the above inequality, we require the following lemma.
Lemma 9. Let (x1, y1), . . . , (xT , yT ) be a sequence of examples such that K(xt,

vxt) ≤ 1 for all t and assume that this sequence is presented to the self-tuned Forgetron
with a budget parameter B ≥ 83. Let J denote the set of rounds on which the algorithm
makes a prediction mistake, let φt be as in (42), and let Φt be as defined in (24).
Finally, let t be a round in J such that Φt < 1. Then,

Φt σrt,t ≥ 1√
B + 1

.

Proof. Define

φ′ = min

{
1 ,

U

‖f ′
t‖

,
1

σrt,t

√
B + 1

}
.

This definition implies the following: (i) φ′ ∈ (0, 1]. (ii) φ′‖f ′
t‖ ≤ U , and, there-

fore, using the Cauchy–Schwarz inequality, φ′f ′
t(xrt) ≤ U . (iii) σrt,t φ

′ ≤ 1/
√
B + 1.

Therefore,

(σrt,t φ
′)2 + 2σrt,t φ

′ (1 − yrtφ
′f ′

t(xrt)) ≤ 1

B + 1
+

2√
B + 1

(1 + U).

The left-hand side of the above equals Ψ
(
σrt,t+1, yrtf

′′
t (xrt)

)
. Using the definition of

U we get that

Ψ
(
σrt,tφ

′, yrtφ
′f ′

t(xrt)
) ≤ 1

B + 1
+

2√
B + 1

+
1

2
√

log(B + 1)
.



THE FORGETRON 1363

The right-hand side of the above inequality is at most 15
32

for B ≥ 83. In addition, the
definition of the self-tuned Forgetron implies that Qt ≤ 15

32
Mt−1 for each t. Therefore,

Ψ
(
σrt,tφ

′ , yrtφ
′f ′

t(xrt)
)

+ Qt ≤ 15

32
Mt.(47)

Since φ′ is in (0, 1] and satisfies (47), and φt is the largest value which satisfies (47),
we get that φt ≥ φ′. By the definition of Φt in (24) we have Φt ≥ φt, and therefore
Φt ≥ φ′. We have therefore reduced our problem to proving φ′σrt,t ≥ 1/

√
B + 1.

The assumption that Φt < 1 implies that φ′ < 1 as well. We are left with two
possibilities: either φ′ = U/‖f ′

t‖ or φ′ = 1

σrt,t

√
B+1

. If φ′ = U/‖f ′
t‖, then

φt ‖f ′
t‖ ≥ φ′ ‖f ′

t‖ =
U

‖f ′
t‖

‖f ′
t‖ = U.

Therefore, t ∈ J1 , that is, the norm of the hypothesis after the shrinking step is still
as large as U (see also Figure 1). This immediately implies that Φt = 1, which stands
in contradiction to the assumption that Φt < 1. We have thus shown that φ′ must
equal 1/(σrt,t

√
B + 1). It therefore holds that φ′σrt,t ≥ 1/

√
B + 1, and this concludes

our proof.
Equipped with the above lemma, we can prove a mistake bound for the self-tuned

Forgetron.
Theorem 3. Let (x1, y1), . . . , (xT , yT ) be a sequence of examples such that

K(xt,xt) ≤ 1 for all t. Assume that this sequence is presented to the self-tuned
Forgetron of Figure 3 with a budget parameter B ≥ 83. Let g be a hypothesis in HK

such that ‖g‖ ≤ U , where U is given by (26), and define ��t = �
(
g; (xt, yt)

)
. Then, the

number of prediction mistakes made by the self-tuned Forgetron on this sequence is at
most

M ≤ 2 ‖g‖2 + 4

T∑

t=1

��t .

Proof. We follow the proof of Theorem 2. The bound in (45) holds by con-
struction, and therefore it suffices to show that (46) holds. Since ‖g‖ ≤ U , we know
that

‖g‖2
∑

t∈J

log(1/Φt) ≤ B + 1

16 log(B + 1)

∑

t∈J

log(1/Φt).

Therefore, to prove that (46) holds, it suffices to show that

∑

t∈J

log(1/Φt) ≤ log(B + 1)

2(B + 1)
M

or, equivalently, that

∏

t∈J

Φt ≥ (B + 1)−
M

2(B+1) .(48)

We prove the above inequality by strong induction on the number of prediction mis-
takes made by the self-tuned Forgetron. Once again, J denotes the online rounds on
which the algorithm made a prediction mistake. First note that if |J | < B then φt = 1
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for all t ∈ J , in which case the claim is trivial. Therefore, we assume that |J | ≥ B.
Assume that the claim holds for every J ′ ⊂ J (which means that |J ′| < M), and let
us prove the claim for J . That is, we need to show that

∏

t∈J

Φt ≥ (B + 1)−
|J|

2(B+1) .(49)

Let j = max J denote the index of the last element that was inserted into J . If Φj = 1,
then

∏

t∈J

Φt =
∏

t∈J\{j}
Φt.

Applying the inductive assumption to the set J ′ = J \ {j} ⊂ J , we get that

∏

t∈J

Φt =
∏

t∈J′

Φt ≥ (B + 1)−
|J′|

2(B+1) ≥ (B + 1)−
|J|

2(B+1) .

Therefore, it is left to show that the claim holds for Φj < 1. Recall that I ′j denotes the
active set after applying the Perceptron update step and before applying the removal
step on round j. Using the inductive assumption on the set J ′ = J \ I ′j , we have
|J ′| = |J | − (B + 1), and therefore,

∏

t∈J

Φt =
∏

t∈J′

Φt

∏

t∈I′
j

Φt ≥ (B + 1)−
|J|−(B+1)

2(B+1)

∏

t∈I′
j

Φt.(50)

Recall that rj = min I ′j . Using the fact that Φj ≥ φj and the definition of σrj ,j , we
get that

∏

t∈I′
j

Φt ≥ Φj

∏

t∈Ij

φt = Φj σrj ,j .

From Lemma 9 we know that the right-hand side of the above is at least 1/
√
B + 1.

Using this fact in (50) gives

∏

t∈J

Φt ≥ (B + 1)−
|J|−(B+1)

2(B+1)
1√

B + 1
= (B + 1)−

|J|
2(B+1) .

This concludes our proof.

7. A greedy removal scheme. The variants of the Forgetron algorithm we
discussed so far always remove the oldest element from the active set. The accom-
panying shrinking step controls the damage due to the removal step. Our approach
stands in contrast to earlier online learning algorithms on a budget [3, 12] which focus
on choosing which example to remove from the active set and do not take any mea-
sures to control the damage due to this removal. While earlier work did not provide
any mistake bounds, we would like to build on the intuition conveyed in previous work
to devise a greedy removal scheme that may skip the shrinking step when possible.

In this section we describe an extension of the Forgetron framework which allows
removal of examples other than the oldest one. Our removal criterion is based on the
analysis presented in section 5. Specifically, in Lemma 6 we showed that the damage
inflicted upon the hypothesis due to the removal step is Ψ

(
σrt,t φt, yrtφtf

′′
t (xrt)

)
. The
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goal of the shrinking step is to ensure that the total damage due to the removal step
is at most 15

32
times the number of prediction mistakes. According to our analysis, if

there exists an example i ∈ It for which

Ψ
(
σrt,t, yrtf

′
t(xrt)

) ≤ 15

32
,(51)

then this example can be safely removed from the active set without any shrinking.
We therefore employ the following two stage approach. If indeed there exists an index
i ∈ It for which (51) holds, then we skip the shrinking step and remove this index
from the active set. Otherwise, we perform the self-tuned Forgetron update discussed
in the previous section. Formally, define

j = arg min i ∈ ItΨ(σi,t , yif
′
t(xi)).

The example to be removed is set to

rt =

{
j if Ψ(σj,t , yjf

′
t(xj)) ≤ 15

32
,

min It otherwise.
(52)

The shrinking coefficient φt is set as before, namely,

φt = max

{
φ ∈ (0, 1] : Ψ

(
σrt,t φ , yrtφf

′
t(xrt)

)
+ Qt ≤ 15

32
Mt

}
,

where Qt =
∑

i∈J:i<t Ψi.
The greedy removal scheme entertains the mistake bound proven for the self-tuned

Forgetron. To see this, first note that Lemma 6 does not assume that rt = min It.
In fact, the lemma holds for any choice of rt ∈ It. In particular, Lemma 6 holds
for the example chosen by the greedy removal scheme. In addition, the inequality∑

t Ψt ≤ 15
32
M holds by construction. Thus, it again suffices to show that

‖g‖2
∑

t

log(1/Φt) ≤ 1

32
M.(53)

To prove the above inequality, note that whenever Φt < 1 (and thus φt < 1) we
have that rt = min It. Therefore, the update coincides with the update of the self-
tuned Forgetron and the proof of Lemma 9 can be repeated verbatim. Moreover, it
is immediate to verify that the same reasoning used to prove Theorem 3 carries over
to the greedy removal scheme. In summary, the bound of Theorem 3 also applies to
the greedy removal scheme.

8. Experiments. In this section we present experimental results which demon-
strate the merits of the Forgetron algorithms. Since the focus of this paper is on the
online-learning setting, we ran different online algorithms on various datasets and we
report the online error for each experiment. The online error is the number of predic-
tion mistakes an algorithm makes on a sequence of examples, divided by the sequence
length. Throughout this section we consistently use the online error to assess the
performance of the different algorithms.

We compare the performance of our algorithms with the two methods described in
[3] and [1], abbreviated by CKS and CG, respectively, and with the standard kernel-
based Perceptron. The CKS algorithm is a variant of the kernel-based Perceptron,
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Table 8.1

Each of the three tables corresponds to a different ratio between B, the budget parameter, and p,
the size of the active set used by the Perceptron on the respective dataset. For example, the top table
sets the B to be a quarter of the number of mistakes suffered by the standard Perceptron algorithm.
Each entry in the table gives the average online error attained by the algorithms on each dataset.

B = p/4
Perceptron F (basic) F (slf-tuned) F (greedy) CKS

MNIST 6.08 35.22 11.25 9.54 17.45
USPS 7.73 40.70 14.88 12.70 18.52
ADULT 20.33 30.44 22.31 24.06 33.48
synth. (5%) 9.56 11.60 9.89 11.84 32.76
synth. (10%) 18.16 20.30 18.38 21.07 41.13

B = p/2
Perceptron F (basic) F (slf-tuned) F (greedy) CKS

MNIST 6.08 27.05 8.62 7.78 9.02
USPS 7.73 31.95 11.03 9.78 10.26
ADULT 20.33 26.67 21.40 23.70 27.82
synth. (5%) 9.56 10.66 9.70 11.98 20.16
synth. (10%) 18.16 19.10 18.27 21.74 30.05

B = p
Perceptron F (basic) F (slf-tuned) F (greedy) CKS

MNIST 6.08 16.07 6.08 6.08 6.08
USPS 7.73 20.29 7.73 7.73 7.73
ADULT 20.33 22.06 20.33 20.33 20.33
synth. (5%) 9.56 9.79 9.56 9.56 9.56
synth. (10%) 18.16 18.37 18.16 18.16 18.16

which uses the following heuristic to enforce a strict memory budget. When the
budget is exceeded, the algorithm calculates the margin attained by removing each
active example from the active set and then applying the resulting hypothesis to the
removed example. The removed example is the one which attains the maximal margin.
This removal scheme is similar to the removal scheme described in section 7. The CKS
algorithm guarantees only that its removal scheme does not damage the accuracy of
the hypothesis when the margin attained by the removed example is greater than one.
If no such example exists in the active set, no formal guarantees are provided. We
therefore anticipate that the CKS algorithm would work well when the examples form
a separable dataset but is likely to fail on more difficult, inseparable, datasets.

The CG algorithm is a randomized method for online learning on a budget. When
the CG algorithm exceeds its budget, it removes a randomly chosen example from the
active set. In all our experiments, we ran the CG algorithm 10 times on each dataset
and report the online error averaged over the 10 different runs. A disadvantage of
this average-case analysis in the online setting is that in real-world online-learning
problems, we typically run the algorithm over the sequence of examples only once.
We discuss this disadvantage in our last experiment below.

In all our experiments, we focus on the self-tuned Forgetron described in sec-
tion 6 and on the greedy removal Forgetron described in section 7. We also conducted
experiments with the basic Forgetron algorithm described in section 5; however, its
performance was found to be significantly inferior to the other Forgetron variants.
This can be attributed to the worst-case definition of the shrinking coefficients em-
ployed by the basic Forgetron. Also note that the self-tuned Forgetron and the greedy
removal Forgetron are identical to the original Perceptron when the active set used
by the Perceptron is less than the budget parameter, while the basic Forgetron is
different due to the fixed shrinking coefficient. For clarity, we present the results of
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Fig. 4. The average online error of different budget algorithms as a function of the budget B
on the USPS dataset (left) and the MNIST dataset (right). The online error of the Perceptron and
its budget requirements for each problem are marked with a circle.

the basic Forgetron only in Table 8.1 and not in the graphs in Figures 4, 5, 6, and 7.
Our first experiment was performed with two standard datasets: the MNIST

dataset, which consists of 60,000 training examples, and the USPS dataset, with
10,000 examples. These two datasets are well known and induce relatively easy clas-
sification problems. The instances in both datasets are handwritten images of digits;
thus each image corresponds to one of the 10 digit classes. We generated 126 bi-
nary problems by splitting the 10 labels into two equal-size sets in all possible ways
(
(
10

5

)
/2 = 126). We report the online error averaged over these 126 problems. We

ran the various algorithms with different values of the budget parameter B, using
a Gaussian kernel defined as K(x1,x2) = exp(− 1

2
‖x1 − x2‖2). The results of these

experiments are summarized in Figure 4 and in Table 8.1. Since the standard Percep-
tron does not take a budget parameter, we mark its accuracy and active set size in
Figure 4 with a small circle. All four algorithms perform quite well on these datasets.
It is apparent that for both datasets, the greedy removal Forgetron is slightly better
than the alternative methods. Comparing the performance of the self-tuned Forgetron
and CKS, we note that the former performs better on small budgets while the latter
is better on large budgets. It is also apparent that the average online error of the CG
method is similar to the online error of the self-tuned Forgetron.

Our next experiment was performed with the census-income (adult) dataset,
which consists of 199,523 examples. This dataset is highly nonbalanced (only 6.21
percent of the labels are positive). We overcame this problem by randomly generat-
ing a balanced subset of this dataset. We repeated this process 10 times, generating
10 different balanced datasets. The results we report were obtained by averaging over
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Fig. 5. The average online error of different budget algorithms as a function of the budget B on
the census-income (adult) dataset. The average error of the Perceptron and its budget requirements
are marked with a circle.

the 10 different selections. We first ran the Perceptron algorithm on each dataset with
a Gaussian kernel. The online error of the Perceptron was approximately 21 percent.
We then ran the various budget algorithms on each dataset with different values of B.
The results are given in Figure 5 and in Table 8.1. It is apparent that the self-tuned
Forgetron and the CG method perform very well on this dataset and outperform both
the greedy removal Forgetron algorithm and the CKS method. The performance of
the greedy removal Forgetron is also relatively good for small budgets. The relatively
poor performance of CKS on this dataset, when B takes small values, may be due to
the difficulty of the classification task. As mentioned above, the analysis of CKS is
based on the assumption that there always exists an example whose margin, after its
removal, is greater than 1. Whenever we are unfortunate, and there is no such exam-
ple in the active set, the CKS removal step may significantly damage the accuracy of
the current hypothesis.

To further investigate the performance of the various algorithms, our last exper-
iment examines the accuracy of the algorithms in the presence of label noise. Recall
that the number of active examples used by the basic Perceptron algorithm grows
with each prediction mistake. Therefore, we expect the Perceptron algorithm to re-
quire a large active set in the presence of noise. As in our previous experiments,
we ran the various budget algorithms with a Gaussian kernel. We generated two
synthetic datasets as follows. We randomly sampled 5000 positive examples from
a two-dimensional Gaussian with a mean vector of (1, 1) and a diagonal covariance
matrix with (0.2, 2) as its diagonal. We then sampled 5000 negative examples from
a normal distribution with a mean vector of (−1,−1) and the same covariance as
before. Finally, we flipped each label with a probability of 0.1 for the first dataset
and with a probability of 0.05 for the second dataset, thus introducing two noise rates.
We then presented the data to each of the algorithms. We repeated this process for
different values of the budget parameter B, ranging from 10 to 2000. We repeated
the entire experiment 100 times and averaged the results. The average online error
attained by each algorithm for each choice of B is given in Figure 6 and in Table 8.1.
The graphs underscore several interesting phenomena. First note that the self-tuned
Forgetron and the CG method outperform both the greedy removal Forgetron and the
CKS method. In fact, the self-tuned Forgetron and the CG method achieve almost
the same accuracy as the vanilla Perceptron algorithm while requiring less than a fifth
of the active set size required by the Perceptron. The ability to obtain a low error
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Fig. 6. The average online error of different budget algorithms as a function of the budget B
on synthetic datasets with 5% label noise (left) and 10% label noise (right). The average accuracy
of the Perceptron and its budget requirements for each problem are marked by a circle.

with a small budget on this dataset is not surprising as the decision boundary can
be described by a small number of examples. The performance of the greedy removal
Forgetron is also reasonable. The inferior performance of the CKS method on these
datasets may be attributed to the following observation. A mislabeled example in
the active set is likely to decrease the accuracy of the classifier. In addition, if these
examples are removed from the active set, they are likely to be incorrectly classified by
the resulting classifier. Alas, the removal criterion of the CKS method prefers to leave
mislabeled examples in the active set. As mislabeled examples start accumulating in
the active set, the damage to the classifier’s accuracy becomes more pronounced. In
contrast, the Forgetron algorithms demote the weight of each example in the active
set on each round, thus ensuring that noisy examples do not remain active for a very
long period. The removal criterion of the greedy removal Forgetron algorithm is also
affected by the above argument. Indeed, we can see that the performance of the
greedy removal Forgetron is rather good with small budgets, it worsens as the budget
increases, and finally it improves again when the budget is large. When the budget
is very small, the greedy removal Forgetron cannot find an example rt ∈ It for which
Ψ ≤ 15

32
. Thus, the example removed is the oldest example in the active set (see (52)).

As the budget increases, there are examples whose margins are greater than 1, so the
greedy removal Forgetron removes them without further scaling. As with the CKS
algorithm, this removal criterion prefers to leave noisy examples in the active set and
we can see deterioration in the performance.

So far, we have calculated the average online error of the CG algorithm, and our
experiments indicate that it is similar to the online error of the self-tuned Forgetron.
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Fig. 7. The online error of the self-tuned Forgetron and the CG algorithm on a single dataset
with 5% label noise (left) and on a single dataset with 10% label noise. For the CG algorithm, the
range of online errors over 10 runs is given.

However, the CG algorithm is a randomized method and its performance on individual
runs may vary. Recall that the goal of online learning is to accurately predict a
sequence of labels that is revealed incrementally as learning proceeds. Once all of
the labels have been revealed, the prediction task becomes vacuous. Therefore, it
only makes sense to run the online algorithm over the sequence of examples once.
In our last experiment, we compared single runs of the CG algorithm with the self-
tuned Forgetron. We ran the self-tuned Forgetron on a single dataset with 5% label
noise and on a single dataset with 10% label noise, without averaging the results over
several datasets. We also ran the CG algorithm 10 times on each of these datasets. In
Figure 7 we give the online error of the self-tuned Forgetron and the range of online
errors attained by the CG algorithm. The self-tuned Forgetron outperforms the CG
algorithm approximately half of the time, and the performance of the CG algorithm
varies significantly from run to run. Therefore, when running the CG algorithm a
single time on a given sequence of examples, we can only hope that we are lucky and
that its performance is close to average or better. On the other hand, the deterministic
self-tuned Forgetron does not suffer from this problem and consistently attains the
average accuracy of the CG algorithm.

We conclude this section with a brief discussion of the time complexity of the
various algorithms. Let κ denote the time required for a single evaluation of the
kernel function. The implementation of the self-tuned Forgetron requires at most B
kernel operations on each online round and an additional O(B) operations. Therefore,
its total complexity is O(Bκ) on each round. The complexity of a single round of the
CG method is also O(Bκ). A direct implementation of the greedy removal Forgetron
and of the CKS method requires calculating the prediction of the current hypothesis
on each example in the active set. The resulting complexity is therefore O(B2κ). A
more sophisticated implementation can decrease the number of kernel operations on
each online round to be at most B. This can be done by maintaining a matrix with all
the kernel evaluations for pairs xi,xj , where i, j ∈ It, and updating only a single row
and a single column of this matrix on each online round. The resulting complexity
of this implementation is O(Bκ + B2). However, this implementation requires an
additional storage for the B ×B matrix described above.

9. Discussion. We presented a family of kernel-based online classifiers that re-
strict themselves to a memory of fixed size. The main idea behind our construction
is to control the influence that each individual active example has on the online hy-
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pothesis. We achieve this control mechanism by repeatedly shrinking the weights that
define the online hypothesis. Our shrinking step is done in a way that ensures that
an active example can always be removed from the active set without significantly
sacrificing classification accuracy.

Our empirical evaluation demonstrates that the gentle shrinking policy employed
by the self-tuned Forgetron update significantly outperforms the aggressive shrinking
policy of the basic Forgetron algorithm. Moreover, the original Perceptron algorithm,
which neither performs any shrinking nor removes active examples, consistently out-
performs the Forgetron variants. These observations reinforce our view of the shrink-
ing and removal steps as a type of noise which interferes with the online-learning
process. By making this noise as small as possible, we obtain online-learning algo-
rithms that approach the performance of the original Perceptron.

A nice property of this work, also shared by [1], is the way in which theory and
practice go hand-in-hand. As mentioned in the introduction of this paper, previous
attempts to address the task of online learning on a budget have all lacked a rigor-
ous mathematical justification. In contrast, our algorithm and the algorithm in [1]
both entertain formal worst-case guarantees. Our experiments demonstrate that the
theoretically motivated algorithms consistently outperform the heuristic approach.

Our experiments suggest that an online kernel method on a memory budget fails
when its active set accumulates many noisy active examples. The basic Forgetron
and the self-tuned Forgetron avoid this problem by always removing the oldest active
example from the active set. This strategy ensures that a noisy active example is
removed from the active set after precisely B updates. Even if an adversary creates
the sequence of examples, our algorithms cannot be maneuvered into accumulating
the noisy examples for a longer number of updates. The CG algorithm [1] exhibits
a similar characteristic. Its randomized removal policy always gives an equal prob-
ability to removing each active example and therefore cannot be manipulated into
accumulating noisy examples. On the other hand, the more sophisticated removal
strategies of the CKS algorithm [3] and the greedy Forgetron update can be exploited
by an adversary. These algorithms can be tricked into maintaining noisy examples
in their memory and discarding informative ones. Our experiments demonstrate that
this phenomenon is exhibited even in the case of random label noise, where the input
is not controlled by an adversary. This observation sheds a somewhat pessimistic light
on the prospects of developing more sophisticated online kernel methods on a budget.
It seems that any algorithm that applies a nontrivial removal strategy makes itself
vulnerable to manipulation and may be coerced into accumulating noise.

Several interesting open problems remain to be solved. A first challenge is to
bridge the gap between the theoretical upper bound of

√
B + 1 on the norm of the

competitor and

U =
1

4

√
B + 1

log(B + 1)
,

achieved by our algorithms. The CG algorithm of [1] managed to close this gap using
a randomized algorithm and proving a bound on the expected number of mistakes
(where expectation is taken over the internal randomization of their algorithm). The
question whether there exists a deterministic algorithm which matches the upper
bound of

√
B + 1 is open.

The intersection of machine learning and computational resource management is
a fascinating research field, from both theoretical and practical standpoints. In this
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paper, we investigated a very simple online-learning scenario, but our construction
can be leveraged to solve more complex and realistic problems. For example, one
could try to use our framework to devise online algorithms on a memory budget for
tasks such as online regression, ranking, and sequence prediction. Another interesting
problem is how to train thousands or even millions of online classifiers in parallel,
where all of the classifiers share a common global memory of limited size. Rather
than just limiting the number of active examples available to each classifier, we would
like to dynamically allocate the global memory resource to the various classifiers in a
way that would make optimal use of it.
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ON k-D RANGE SEARCH WITH PATRICIA TRIES∗
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Abstract. Patricia tries are explored for indexing combined text and spatial data. A com-
bined text and spatial data range search algorithm is presented for reporting all data from a set
of size n intersecting a query hyperrectangle. We also use Patricia tries to answer ε-approximate
orthogonal range search on a set of n random points and hyperrectangles in k-dimensional data
space. ε-approximate orthogonal range counting queries can be answered in O(k logn/εk−1) time,
and the number of nodes visited for orthogonal range counting queries is shown to be O(logn +
k(1+2n1/kΔ)k−1) for cubical range of side length Δ. Patricia tries are evaluated experimentally for
both orthogonal range search and ε-approximate orthogonal range search (for 2 ≤ k ≤ 14 and n up to
1,000,000) using uniformly distributed random data. The expected range search time is determined
theoretically and found to agree with experimental results.
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1. Introduction. Range search represents an important class of problems that
occur in applications of databases, geographical information systems, computer graph-
ics, and computational geometry. Given a collection of n records, each containing
multidimensional attributes or keys, a range search asks for all records in the collec-
tion with key values each inside specified ranges. Over the past 30 years, more than
60 data structures for the range search problem have been presented [1, 4, 8, 11, 15].
The motivation for this research is to find a dynamic, linear space data structure that
supports efficient combined text and spatial data orthogonal range search. Patricia
tries are well suited for text indexing and search and seem appropriate for combining
text and spatial data in one data structure for efficient range search. This paper
explores Patricia tries for a variety of orthogonal range search problems, including
those with high dimension k (i.e., k ≈ log n).

1.1. Background and previous results. One of the earliest data structures
for solving points in range search problems is the k-dimensional (k-d) tree [3]. Its
preprocessing time and storage requirements are O(n log n) and O(nk), respectively.
Lee and Wong [12] have shown that in the worst case its range reporting time is
O(n1−1/k+F ) (F is the number of points in the range). The range tree was introduced
by Bentley and Friedman [4]. It has a good worst-case search time (O(logk n+F )) but
has relatively high preprocessing and storage costs: O(n logk−1 n) and O(n logk−1 n),
respectively. Lower bounds for range search were studied by Chazelle [7], who showed
that a sequence of n operations for insertion, deletion, and reporting points in a given
range costs Ω(n(log n)k), and the worst-case query time for an orthogonal range search
data structure, using m units of storage, is Ω((logn/ log(2m/n))k−1).

To obtain better performance, several researchers turned to an approximate ver-
sion of the range search problem; instead of counting the points in the exact spec-
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ified ranges, the data point whose distance to the boundary of the range is within
ε times the range’s diameter may or may not be included in the count. The ap-
proximate range search problem was solved optimally by Arya and Mount [2]. With
an O(kn)-space structure called the balanced box-decomposition tree (which can be
constructed in O(kn log n) time), ε-approximate range counting queries can be an-
swered in O(2k log n + (3

√
k/ε)k) time. If the ranges are convex, the query time can

be strengthened to O(2k log n + k2(3
√
k/ε)k−1). They also presented a lower bound

of Ω(logn + 1/εk−1) for the complexity of answering ε-approximate range counting
queries assuming a partition tree approach for cubical range in fixed dimension.

The Patricia trie was discovered by Morrison [13]. All nodes in Patricia tries have
degree greater than or equal to two by eliminating all one-child internal nodes. Patricia
tries are well-balanced trees [18] in the sense that a random shape of Patricia tries
resembles the shape of complete balanced trees. Patricia tries can be preprocessed in
O(n log n) time and O(kn) space, and fewer internal nodes are visited for a partial
match search of a Patricia trie compared to a k-d trie [10].

1.2. Our results. In section 2 we use binary Patricia tries to represent multidi-
mensional points and hyperrectangles, as well as combined text and spatial data, and
we present a range search algorithm for reporting all k-d records from a set of size n
intersecting a query hyperrectangle. In section 3 we theoretically analyze the average
cost of range search, which is proportional to the number of nodes in the trie visited
during the range search. For a cubical range query with side length Δ, the orthogonal
range reporting queries visit O(log n + k(1 + 2n1/kΔ)k−1) nodes. In section 4 we
state the problem of ε-approximate orthogonal range search and theoretically analyze
its cost using Patricia tries. ε-approximate orthogonal range counting queries can be
answered in O(k log n/εk−1) time for a cubical query. We show that Patricia tries are
appropriate for ε-approximate range search and support efficient approximate range
search both for k-d points and k-d hyperrectangles. In section 5 we present an exten-
sive experimental study of the practical performance of the Patricia trie using uniform
randomly generated spatial data and place names selected from the Canadian geo-
graphical names database [19]. We compare the performance of the Patricia trie to
the k-d tree, the k-d trie, the 2k-d trie, the R∗-tree, and the naive method and find
that Patricia tries are best when F is small relative to n (e.g., F ≤ log2 n) and k ≤ 10.
The experimental results agree well with the theoretical analysis and show that allow-
ing small errors can significantly improve the query execution time of ε-approximate
range counting, with a less dramatic effect on the complexity of approximate range
reporting.

2. Patricia tries for text and spatial data. Binary tries are data structures
which use a binary representation of the key to store keys as a path in the tree. Binary
k-d tries use the principle of bit interleaving, e.g., a set of n k-d keys:

P1 = (P11 , P12 , . . . , P1k),

...

Pn = (Pn1 , Pn2 , . . . , Pnk),

where Pij can be spatial data or text data, 1 ≤ i ≤ n and 1 ≤ j ≤ k. Letting P̃ij

be the binary representation of Pij , P̃ij ∈ {0 , 1}∞, we produce one sequence P̃i ∈
{0 , 1}∞ for each Pi by regular shuffling of the components P̃i1, ·, P̃ik and use these new
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composite keys P̃1, ·, P̃n to construct a trie. More precisely, if P̃ij = P̃ 0
ijP̃

1
ijP̃

2
ij · · · , then

P̃i = P̃ 0
i1 · · · P̃ 0

ikP̃
1
i1 · · · P̃ 1

ikP̃
2
i1 · · · , where the superscript indicates the bit position.

We denote by T the Patricia trie constructed by inserting n keys into an initially
empty trie. Altogether there are n− 1 internal nodes and n leaves in T . The skipped
bits are stored in an array SKIPSTR, and every leaf is associated with one key.

2.1. Spatial data. We assume our search space is defined on the set of positive
integers in k-d space and the space is finite, limited by the number of bits B used to
represent an integer in binary, B = log2(MAX - MIN + 1), where MIN and MAX are
the whole search space’s lower and upper bounds. For example, we have a set of three
keys in a 2-dimensional (2-d) space of bits (as shown in Figure 2.1(a)): P1 = (2, 5),
P2 = (6, 1), and P3 = (7, 3). We assume B = 3, and so we have

P1 = (010, 101) −→ P̃1 = 011001,

P2 = (110, 001) −→ P̃2 = 101001,

P3 = (111, 011) −→ P̃3 = 101111.

The thick lines in Figure 2.1(a) represent partitions. The principle of partition is
that each partition splits a space into two subspaces of equal size. k-d tries select the
attributes to be split cyclically, i.e., 1 , . . . , k , 1 , . . .. Figure 2.1(b) is a regular 2-d trie
built up using the sequences P̃1, P̃2, and P̃3. Removing the one-child internal nodes
and storing the skipped information at the internal nodes, we get a 2-d Patricia trie
(Figure 2.1(c)). In [5] a binary 2k-d trie data structure for k-d hyperrectangle range
search was investigated.

4
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Fig. 2.1. A 2-d space with three points and their corresponding tries.

Each node in k-d tries covers part of the k-d space; that is, every node has a cover
space defined as NC = [L1,U1] × [L2,U2] × · · · × [Lk,Uk]. Arrays L and U store the
lower and upper bounds of a node’s cover space. In Figure 2.1(b) and (c), the list of
tuples is the cover space NC of each internal node. The root of k-d tries covers the
whole space, and child nodes cover half of the search space volume of their parent.
The nodes on level � split attribute p = (� mod k) + 1 (at the root, � = 0). If a node
on level � has cover space [L1,U1]× · · · × [Lp ,Up]× · · · × [Lk,Uk], then its left child’s
cover space is [L1,U1] × · · · × [Lp , (Lp + Up)/2] × · · · × [Lk,Uk], and its right child’s
cover space is [L1,U1]× · · · × ((Lp +Up)/2,Up]× · · · × [Lk,Uk]. For k-d Patricia tries,
� is not the level of the trie but the length of the path from root to the node plus
the length of the skipped bits in the internal nodes along the path. The node cover
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space must take the skipped bit string stored in the nodes into consideration. For
example, in Figure 2.1(c), the node cover space of the root of the 2-d Patricia trie is
[0, 7] × [0, 7] (� = 0), and the node cover space of its right child (denoted by NCr) is
computed as follows: first, p = � mod 2+1 = 1, NCr = [4, 7]× [0, 7], and � = 1; then
the first bit of the skipped bits string is “0”, which means a left child node has been
removed, p = � mod 2 + 1 = 2, NCr = [4, 7] × [0, 3], and � = 2; the second and last
bit of the skipped bit string is “1”, which means a right child node has been removed,
p = � mod 2 + 1 = 1, NCr = [6, 7] × [0, 3], and � = 3. So the node cover space of
root’s right child is [6, 7] × [0, 3], as shown in Figure 2.1(c).

2.2. Text data.
Definition 2.1 (numeric mapping [9]). Assume strings are comprised of symbols

drawn from an alphabet of size α, and each symbol is mapped to an integer in the range
0 to α − 1. Let a string of length c be s1s2 · · · sc, with each symbol si mapped to an
integer ti. The string s is mapped to t1

α + t2
α2 + t3

α3 + · · · + tc
αc , which is a one-to-one

mapping.
For an alphabet of size α, we assign a new decimal value in the range 0 to α− 1

for each symbol, different from its decimal value in ASCII table, and use �log2 α�
bits to represent each symbol’s decimal value. For example, assume an alphabet with
four characters {A,E, I,O}. We have α = 4 and assign an integer from 0 to 3 to
them, respectively, in sequence, and each symbol can be well represented by two bits.
Consider the five strings AE, AO, E, I, and O. We use the bit representation of each
string to build up the trie. The mapping and the corresponding binary Patricia trie
are shown in Figure 2.2.
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0/4+3/16=3/16

1/4
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[1/2,1]
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0001

0011

01

10

11

Fig. 2.2. Mapping strings to rational numbers and the corresponding binary Patricia trie; the
tuples beside the internal nodes are the node cover spaces.

2.3. Combined text and spatial data. We assume each of the coordinate
values can be represented in B bits, and the symbols in strings are drawn from an
alphabet of size α and each text symbol can be represented in �log2 α� bits. For
simplicity, we assume the first r dimensions in a k-d key P = (P1 , P2 , . . . , Pk) are
spatial data and the remainder are text data; that is, P1 , P2 , . . . , Pr are numeric data
and Pr+1 , . . . , Pk are text data, and 0 ≤ r ≤ k. First, we get the bit string of each
dimension. If the length of the bit string of the text data Pi is smaller than B, “0” is
added at the end of the bit string to extend its length to B, r + 1 ≤ i ≤ k. Then we
can use the bit interleaving to get a sequence P̃ of P and insert P using P̃ into the
trie T .

Given a query hyperrectangle W = [L1, H1]×[L2, H2]×· · ·×[Lk, Hk], and Li ≤ Hi,
a k-d key P = (P1 , P2 , . . . , Pk) is in range iff Pi ∈ [Li, Hi] ∀ i ∈ {1 , 2 , . . . , k}. We
obtain the query hyperrectangles’s cover space WC = [Li, Hi]

k. Each node in T has
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one of the three color types based on the relation between WC and NC:
1. black: WC(p) ⊇ NC(p) ∀p ∈ {1, 2, . . . , k},
2. white: WC(p) ∩NC(p) = ∅ ∃p ∈ {1, 2, . . . , k},
3. grey: all other cases,

where WC(p) is the pth component of the k-d vector WC, and NC(p) is the pth
component of the k-d vector NC. The range search algorithm is presented in [17].

2.4. Dynamic operations. Binary Patricia tries support insertion and dele-
tion. Deletion is similar to insertion as described in [17].

3. Orthogonal range search cost. We adapt the approach used in [6] to an-
alyze the range search cost of k-d Patricia tries using Theorem P of [10]. Without
loss of generality, the following discussions are all based on unit space [0, 1]k, and we
assume the input data and the query hyperrectangle W are drawn from a uniform
random distribution.

Given a query q = (q1, q2, . . . , qk) when each qj can be specified or unspecified
(denoted by *), a partial match query returns all records whose attributes coincide
with the specified attributes of q. If, e.g., q = (17, ∗, ∗, 30), we look for all records
whose first attribute is 17 and whose fourth attribute is 30; the second and third
attributes are left unspecified. The specification pattern ω of q is a word in {S, ∗}k,
where ωj = S if qj is specified and ωj = ∗ if qj is unspecified; in our example we
have the specification pattern S ∗ ∗S. Partial match queries make sense if at least
one attribute of the query is specified and at least one attribute is not. The analysis
of the average cost of partial match queries in k-d Patricia tries was addressed by
Kirschenhofer and Prodinger [10]. We restate their theorem as follows.

Theorem 3.1. Given a Patricia trie T built from n k-d keys and a partial match
query of specification pattern ω, let S ⊂ {1, 2, . . . , k} be the set of specified coordinates.
The average cost of a partial match query measured by the number of nodes traversed
in T is

QS(n, k) ∼ n1− s
k

⎛
⎝ ( s

k + 1)(1 − 2−s/k)

k log 2

Γ( s
k )

1 − s
k

k−1∑

j=0

(δ1 δ2 · · · δj)2−j(1−s/k) + β(log2 n
1/k)

⎞
⎠ ,

where s is the number of specified attributes in ω, 1 ≤ s ≤ k − 1, δj = 1 if the jth
attribute of ω is specified and δj = 2 if it is unspecified, and β(x) is a continuous
periodic function with mean zero and small amplitude.

The following proposition relates the performance of range searches with the
performance of partial match queries.

Proposition 3.2. Given a Patricia trie T built from n k-d keys and a partial
match query of specification pattern ω, let S ⊂ {1, 2, . . . , k} be the set of specified
coordinates. The average cost of a partial match query measured by the number of
nodes traversed in T is

QS(n, k) = E

⎧
⎨
⎩

2n−1∑

t=1

∏

p∈S

|NCt(p)|
⎫
⎬
⎭ ,

where |NCt(p)|, 1 ≤ p ≤ k, are the cover spaces of node t in T.
Proof. If a node is visited, qp ∈ NC(p) = [Lp,Up] ∀p ∈ S. The probability that a

node in trie T will be visited is determined by the volume of every node’s cover space
in the space [0, 1].
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We use the probabilistic model of random range queries introduced in [6]. A
range query is a k-d hyperrectangle W = [L1, H1] × [L2, H2] × · · · × [Lk, Hk] with
0 ≤ Li ≤ Hi ≤ 1 for 1 ≤ i ≤ k. To get the color types for a node in the trie, we
compare all the k ranges of WC with NC. In our range search algorithm [14], the
range search proceeds from the root to the leaves. On each level, we do at least one
comparison of the k ranges and store the color as the node’s state. Traversing stops
on paths when we meet with black or white nodes and continues when grey nodes are
encountered and continues to collect black nodes in the subtree of the black nodes we
first meet. The time complexity of range search is proportional to the number of grey
nodes (GN) and black nodes (BN) visited in the trie built from the input data. We
have the following equation:

Q(n, k) =

2n−1∑

t=1

1[nodet∈GN∪BN ],

where we use 1[A] as the indicator variable for the event A.

Lemma 3.3.

∑2n−1

t=1

∏k
p=1 |NCt(p)| ≤ 1 + log2 n.

Proof. We denote the volume of the node t in the Patricia trie T as |NCt|, and

|NCt| =
∏k

p=1 |NCt(p)|. If there are no skipped bits in the root, |NCt| = 1. As the level

� visited in T increases, the value of |NCt| decreases.
∑2n−1

t=1

∏k
p=1 |NCt(p)| is maximal

when every level except possibly the deepest in T is completely filled, and there is
no skipped bit string in any internal node. Then we have

∑2n−1

t=1

∏k
p=1 |NCt(p)| ≤

1 + 2 × 1
2

+ 4 × 1
4

+ 8 × 1
8

+ · · · + 2�log2 n� 1

2�log2 n� ≤ 1 + log2 n.

Theorem 3.4. Given a Patricia trie T built from n random k-d data points
uniformly distributed on [0, 1]k, and given a query hyperrectangle W with side lengths
Δ1 . . .Δk and with a center Z which is uniformly distributed on [0, 1]k, the orthogonal
range reporting query is expected to visit

O

⎛
⎝n

k∏

p=1

Δp + log n +

k−1∑

s=1

⎛
⎝

∑

S⊂{1,...,k},|S|=s

γ(k, S)
∏

p/∈S

Δp

⎞
⎠n1− s

k

⎞
⎠

nodes in T, where γ(d, S) =
( s
k+1)(1−2−s/k)

k log 2

Γ( s
k )

1− s
k

∑k−1

j=0 (δ1 δ2 · · · δj)2−j(1−s/k) with s =

|S|, δj = 1 if j ∈ S, and δj = 2 if j /∈ S.

Proof. E{Q(n, k)} = E{∑2n−1

t=1 1[nodet∈GN∪BN ]}. This calculation includes the
reporting time for collection of the subtree of black nodes which arises during the
traversal. The probability that a node t in the Patricia trie T is black or grey is
given as Pr(nodet ∈ GN ∪ BN) ≤ ∏k

p=1(|NC(p)| + Δp). The probability for query
hyperrectangle W intersecting a node’s cover space NCt is the probability that Zj ,

the center of W , is within the distance
Δj

2
of NC(j). This probability is bounded by

the volume of NCt expanded by Δj in the jth dimension ∀j ∈ {1, . . . , k}. We have

E{Q(n, k)} ≤ E

{
2n−1∑

t=1

k∏

p=1

(Δp + |NCt(p)|)
}

=
∑

S⊆{1,...,k}

⎛
⎝
∏

p/∈S

Δp

⎞
⎠E

⎧
⎨
⎩

2n−1∑

t=1

∏

p∈S

|NCt(p)|
⎫
⎬
⎭
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=
∑

S=∅

⎛
⎝
∏

p/∈S

Δp

⎞
⎠E

⎧
⎨
⎩

2n−1∑

t=1

∏

p∈S

|NCt(p)|
⎫
⎬
⎭

+
∑

S={1,...,k}

⎛
⎝
∏

p/∈S

Δp

⎞
⎠E

⎧
⎨
⎩

2n−1∑

t=1

∏

p∈S

|NCt(p)|
⎫
⎬
⎭

+
∑

S⊂{1,...,k},1≤|S|≤k−1

⎛
⎝
∏

p/∈S

Δp

⎞
⎠E

⎧
⎨
⎩

2n−1∑

t=1

∏

p∈S

|NCt(p)|
⎫
⎬
⎭

= (2n− 1)
k∏

p=1

Δp + E

{
2n−1∑

t=1

k∏

p=1

|NCt(p)|
}

+
∑

S⊂{1,...,k},1≤|S|≤k−1

⎛
⎝
∏

p/∈S

Δp

⎞
⎠E

⎧
⎨
⎩

2n−1∑

t=1

∏

p∈S

|NCt(p)|
⎫
⎬
⎭ .

Using Proposition 3.2, we obtain

E{Q(n, k)} ≤ (2n− 1)

k∏

p=1

Δp + E

{
2n−1∑

t=1

k∏

p=1

|NCt(p)|
}

+
∑

S⊂{1,...,k},1≤|S|≤k−1

QS(n, k)
∏

p/∈S

Δp.

The results follow by Theorem 3.1 and Lemma 3.3.
Corollary 3.5. Given a Patricia trie T built from n random k-d data points

and a query hypercube W with side length Δ, the orthogonal range reporting query is
expected to visit

O(nΔd + log n + d(1 + 2n1/dΔ)d−1)

nodes in T .
Proof. When the query hyperrectangle W is a hypercube, i.e., Δ1 = Δ2 = · · · =

Δk = Δ, we have

γ(k, S) =
( s
k + 1)(1 − 2−s/k)

k log 2

Γ( s
k )

1 − s
k

k−1∑

j=0

(δ1 δ2 · · · δj)2−j(1−s/k).

Assuming the worst case where the first (k−s) dimensions are unspecified (i.e., δi = 2
∀i ∈ {1, . . . , k − s}), we have

γ(k, S) ≤ ( s
k + 1)(1 − 2−s/k)

k log 2

Γ(1 + s
k )

(1 − s
k ) s

k

⎛
⎝

k−s∑

j=0

2j2−j(1−s/k) +

k−1∑

j=k−s+1

2k−s2−j(1−s/k)

⎞
⎠

=
(1 − 2−s/k)Γ(2 + s

k )

s(1 − s
k ) log 2

2s/k − 2(k−s+1)s/k

(2s/k − 1)(2s/k − 2)

=
(1 − 2s(1−s/k))Γ(2 + s

k )

s(1 − s
k )(2s/k − 2) log 2
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=
(21−s/k + 22(1−s/k) + · · · + 2s(1−s/k))Γ(2 + s

k )

s(1 − s
k )2 log 2

≤ k2s(1−s/k)

(k − s) log 2
,

since 1 ≤ Γ(2 + s
k ) < 2. Now we can write the third part of Theorem 3.4 as

k−1∑

s=1

∑

S⊂{1,...,k},|S|=s

γ(n, S)n1− s
k Δk−s

≤
k−1∑

s=1

C(k, s)
k2s(1−s/k)

(k − s) log 2
(n1/kΔ)k−s

=

k−1∑

s=1

C(k − 1, s− 1)
k2

s(k − s) log 2
(2s/kn1/kΔ)(k−1)−(s−1)

≤ k((1 + 2n1/kΔ)k−1 − 1),

where C(k, s) denotes the number of ways to choose an s-element subset from a k-
element set. The last step in the proof uses the binomial theorem. The result follows
from Theorem 3.4.

For orthogonal range counting queries, the term nΔk in reporting query time
disappears, leaving E{Q(n, k)} = O(log n + k(1 + 2n1/kΔ)k−1).

4. Approximate orthogonal range search. Given n k-d points and a k-d
query hyperrectangle W = [L1, H1]×[L2, H2]×· · ·×[Lk, Hk], and Li ≤ Hi with center
Z = (L1+H1

2
, L2+H2

2
, . . . , Lk+Hk

2
), the ε-approximate orthogonal range query counts

(or reports) points in the query hyperrectangle, allowing errors near the boundary of
the query hyperrectangle. The edges of W have given lengths Δ1,Δ2, . . . ,Δk, where
Δi = Hi − Li ∀ i ∈ {1 , 2 , . . . , k}. We define [MINi,MAXi] ∀ i ∈ {1 , 2 , . . . , k} as
the minimum and maximum possible data coordinate values for dimension i. Given
0 ≤ ε ≤ 0.5, let W− = [L1 +Δ1ε, H1 −Δ1ε]× [L2 +Δ2ε, H2 −Δ2ε]×· · ·× [Lk +Δkε,
Hk − Δkε] be the k-d inner query hyperrectangle with center at Z, and let W+ =
[L1 − Δ1ε, H1 + Δ1ε] × [L2 − Δ2ε, H2 + Δ2ε] × · · · × [Lk − Δkε, Hk + Δkε] be the
k-d outer query hyperrectangle with center at Z. (We assume MINi ≤ Li − Δiε and
Hi + Δiε ≤ MAXi ∀ i ∈ {1 , 2 , . . . , k}.) For an ε-approximate range search query,
points inside W− must be counted, points outside W+ must not be counted, and
points between W− and W+ may be miscounted (see Figure 4.1). The approximate
orthogonal range search algorithm is presented in [16].
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Fig. 4.1. Approximate orthogonal range search queries.
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+

2− 2

2W

NC

W −

1

2 2

1

W

Fig. 4.2. An illustration of a node in T with cover space NC intersecting both the 1-facet of
W− and the 1-facet of W+; ε = 0.1.

Theorem 4.1. Given a Patricia trie T built from n random k-d data points
and a random query hyperrectangle W with side lengths Δ1 . . .Δk, and 0 < ε ≤ 0.5,
ε-approximate range counting queries visit

O

⎛
⎝log n

k∑

p=1

⎛
⎝

k∏

i=1,i =p

(
2 +

Δi

Δp

(
1

ε
− 2

))⎞
⎠
⎞
⎠

nodes in T .

Proof. A node is said to be expanded if the algorithm visits the children of this
node. For a node to be expanded, its node cover space must intersect with both the
inner query hyperrectangle W− and the outer query hyperrectangle W+. We call
the facet of the query hyperrectangle perpendicular to the pth orthogonal axis the
p-facet. According to the definition of W− and W+, the p-facets of W− and W+ are
separated from each other at least by a distance of 2Δpε ∀p ∈ {1, . . . , k}. So a node in
T with |NC(p)| < 2Δpε ∀p ∈ {1, . . . , k} is never expanded in the approximate range
search algorithm, where |NC(p)| is the length of the pth side of node cover space NC.

Each partition of T splits a region of the search space into two equal subregions.
Each coordinate axis gets cut in turn, in a cyclical fashion of 1, 2, . . . , k, 1, 2, . . ., which
results in regions such that the length of the longest side is equal to or twice that of the
smallest side, and |NC(1)| ≤ |NC(2)| ≤ · · · ≤ |NC(k)|. Assume a node in T intersects
both the p-facet of W− and the p-facet of W+, and 1 ≤ p ≤ k; then |NC(p)| ≥ 2Δpε,
|NC(i)| ≥ Δpε ∀i ∈ {1, . . . , p − 1}, and |NC(j)| ≥ 2Δpε ∀j ∈ {p + 1, . . . , k} (see
Figure 4.2). So there are at most

(
p−1∏

i=1

(
1 +

⌈
Δi − 2Δiε

Δpε

⌉))⎛
⎝

k∏

j=p+1

(
1 +

⌈
Δj − 2Δjε

2Δpε

⌉)⎞
⎠

regions intersecting with both the p-facet of W− and the p-facet of W+. Each k-
dimensional hyperrectangle has 2k facets, and so altogether there are at most

2

k∑

p=1

(
p−1∏

i=1

(
1 +

⌈
Δi − 2Δiε

Δpε

⌉))⎛
⎝

k∏

j=p+1

(
1 +

⌈
Δj − 2Δjε

2Δpε

⌉)⎞
⎠
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≤ 2

k∑

p=1

(
p−1∏

i=1

(
2 +

Δi − 2Δiε

Δpε

))⎛
⎝

k∏

j=p+1

(
2 +

Δj − 2Δjε

2Δpε

)⎞
⎠

≤ 2
k∑

p=1

⎛
⎝

k∏

i=1,i =p

(
2 +

Δi − 2Δiε

Δpε

)⎞
⎠

regions overlapping both W− and W+. The depth of the Patricia trie is O(log n) [18],
and so we reach the desired result.

Corollary 4.2. Given a Patricia trie T built from n random k-d data points
and a random query hypercube W , and 0 < ε ≤ 0.5, ε-approximate range counting
queries visit O(k log n/εk−1) nodes in T .

Besides the number of nodes visited in the approximate range counting algorithm,
up to 2F additional nodes are visited in answering the approximate range search
reporting queries [16], where F is the number of points in range.

5. Experiments. We have conducted a series of experiments to validate the
theoretical analysis of sections 3 and 4. Our experiments were performed using uni-
formly and randomly distributed data from the interval [0, 1] for ε ranging from 0
to 0.5, 2 ≤ k ≤ 14, and n up to 1,000,000. The programs were run on a Sun Microsys-
tems V880 with four 1.2 GHz UltraSPARC III processors, 16 GB of main memory,
and running Solaris 8. Each experimental point in the following graphs was done with
an average of 300 test cases.

5.1. k-d points. We rearranged the theoretical result in Theorem 3.4 for query
hypercubes with side length Δ and obtained the equation

Q = nΔk + log n +

k−1∑

s=1

⎛
⎝

∑

S⊂{1,...,k},|S|=s

γ(k, S)

⎞
⎠Δk−sn1−s/k.

We compared the experimental results of range reporting queries using Patricia tries to
the value of Q and found that they are consistent when 2 ≤ k ≤ 14 and n = 1,000,000
(see Figure 5.1), where Δ = vol1/k.
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Fig. 5.1. The experimental and theoretical number of nodes visited for Patricia trie range
search for the volume of the query hypercubes (left) vol = 0.00001 and (right) vol = 0.001, where
n = 1,000,000 and 2 ≤ k ≤ 14.

The experimental results for approximate range reporting and counting queries
with k-d query hypercube volume of 0.001 for Patricia tries are shown in Figure 5.2.
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(a) Range reporting
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(b) Range counting

Fig. 5.2. Number of nodes visited versus ε in Patricia trie for k-d points with k-d query
hypercube volume of 0.001 (n = 1,000,000).

The corresponding time for range search is directly proportional to the number of
nodes visited. We find that there are significant improvements when ε grows from 0
to 0.5. As ε increases, the numbers of nodes visited tend to converge, irrespective of
k. Figure 5.2 shows that the average improvement of the approximate range counting
queries when ε = 0.05 and k ≤ 5 is more dramatic than that of the range reporting
queries.

We define the fraction of points miscounted in approximate range search as δε=x =
|Fε=x−Fε=0|

Fε=0
, where Fε=x is the number of points in range for an ε-approximate range

query when ε = x, and Fε=0 is the number of points in the exact range query. The
experimental results show that when k = 2, n = 1,000,000, and vol = 0.001, δε=x

ranges from 0.002 (ε = 0.05) to 0.05 (ε = 0.5) [16], and so relatively few points are
miscounted.

5.2. k-d hyperrectangles. Data hyperrectangle centers are uniformly distribut-
ed in [0, 1]d and the lengths of their sides uniformly and independently distributed
between 0 and maxsize. Range search reports hyperrectangles that intersect with the
query hyperrectangle. We show the results of experiments with k-d query hypercubes
with volumes that range from 0.01% to 0.1% of the total space for Patricia tries for
k-d rectangles in Figure 5.3, in comparison with the R∗-tree (the maximum number
of children M = 10), the 2k-d trie, and the naive method. When maxsize = 0.01 and
the query hypercube volume is 0.0001, the Patricia trie has a speed-up factor between
1.2 and 2.6 over the R∗-tree and between 3.0 and 4.6 over the 2k-d trie. With increas-
ing volume of the query hypercube, the Patricia trie has a speed-up factor between
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4.4 and 5.8 over the 2k-d trie. The R∗-tree is best when k ≥ 9. The Patricia trie not
only needs less space than the 2k-d trie but spends less time on range search. The
experimental results of ε-approximate range search are presented in [16]. An average
of 40% fewer nodes are visited for the Patricia trie when 0.05 ≤ ε ≤ 0.5, compared to
the exact range counting queries.
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Fig. 5.3. The range search time in milliseconds for the R∗-tree, the Patricia trie, the 2k-d trie,
and the naive search for k-d query hypercube sizes of (left) 0.01% and (right) 0.1% of total space
volume for maxsize = 0.01 (n = 100,000 and 2 ≤ k ≤ 10).

5.3. Combined text and spatial data. We tested the Patricia tries with
real-life text data (names randomly chosen from the Canadian geographical names
database [19]). We used kr to denote the number of dimensions of the text data; i.e.,
given a k-d key v = (v1, v2, . . . , vk), kr = 1 means that one attribute in v is the text
string, and the remaining k − 1 attributes are the point data. Experimental results
are shown in Figure 5.4 for the range search time in the k-d tree, the Patricia trie, the
ternary search tree (TST), and the naive search for E(F ) = log2 n. When kr = 1 and
k < 12, the Patricia trie has a speed-up factor up to 3.2 over the k-d tree, and 3.3 over
the TST. When kr = 3, the Patricia is up to 2.9 times faster than the k-d tree and
3.1 times faster than the TST. The naive search method is best when k ≥ 12.
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Fig. 5.4. Range search time for the k-d tree, the Patricia trie, the TST, and the naive method
for n = 100,000 k-d combined textual and spatial data, where (left) kr = 1 and (right) kr = 3.
(E(F ) = log2 n. The textual data are chosen from the Canadian geographical names database [19].)

6. Conclusions and open questions. We have shown that Patricia trie is
a good linear space data structure supporting dynamic operations for a variety of
orthogonal range search problems. Using Patricia tries for combined text and spatial
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data search is straightforward as we treat text data as additional (k− r) dimensions.
Our expected time analysis of range search for the k-d Patricia trie shows that we
expect to visit O(F + log n + k(1 + 2n1/kΔ)k−1) nodes for cubical range queries of
side length Δ. Experimental results show that the Patricia trie outperforms the k-d
tree when F ≤ log2 n and k < log n for uniform random k-d points and random
k-d hyperrectangle queries. We also show that Patricia tries can be used to answer
ε-approximate orthogonal range counting queries visiting O(k log n/εk−1) nodes for
cubical range queries. Can the ε-approximate range search result be improved closer
to the lower bound of Ω(logn + 1/εk−1) in fixed dimension? Experimental results
show that if we allow small relative errors, the number of nodes visited for range
counting can be reduced on average by 1/2 for query hypercubes with volumes of
0.001, ε = 0.05, 2 ≤ k ≤ 10, and n = 1,000,000. Range reporting queries have a
less dramatic improvement, because of additional O(F ) nodes visited, which is the
dominating term in the number of the nodes visited during range reporting. It is
an open question how well this approach works when the text search dominates (i.e.,
has more dimensions than the spatial data). How will the Patricia trie behave under
different distributions of the input data and the query hyperrectangles?
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Abstract. A language L has a property tester if there exists a probabilistic algorithm that
given an input x queries only a small number of bits of x and distinguishes the cases as to whether
x is in L and x has large Hamming distance from all y in L. We define a similar notion of quantum
property testing and show that there exist languages with good quantum property testers but no
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1. Introduction. Suppose we have a large data set, for example, a large chunk
of the World Wide Web or a genomic sequence. We would like to test whether the
data has a certain property, but we may not have the time to look at the entire data
set or even a large portion of it.

To handle these types of problems, Rubinfeld and Sudan [35] and Goldreich,
Goldwasser, and Ron [25] have developed the notion of property testing. Testable
properties come in many varieties including graph properties, e.g., [25, 4, 20, 22, 1,
27, 33, 26, 6, 8, 7], algebraic properties of functions [13, 35, 18], Boolean functions
and languages [5, 21], and geometric objects [3, 16]. Nice surveys in this area can be
found in [34, 19].

In this model, the property tester has random access to the n input bits similar
to the black-box oracle model. The tester can query only a small number of input
bits; the set of indices is usually of constant size and chosen probabilistically. Clearly,
we cannot determine from this small number of bits whether the input sits in some
language L. However, for many languages we can distinguish the case that the input
is in L from the case that the input differs from all inputs in L of the same length by
some constant fraction of input bits. Note that we do not consider the time complexity
of the testing algorithms in this paper.

Since there are many examples where quantum computation gives us an advantage
over classical computation [12, 37, 36, 28], one may naturally ask whether using
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quantum computation may lead to better property testers. By using the quantum
oracle-query model developed by Beals et al. [10], we can easily extend the definitions
of property testing to the quantum setting.

Beals et al. [10] have shown that for all total functions we have a polynomial
relationship between the number of queries required by quantum machine and that
needed by a classical machine. For greater separations one needs to impose a promise
on the input. The known examples, such as those due to Simon [37] and Bernstein
and Vazirani [12], require considerable structure in the promise. Property testing
amounts to the natural promise of either being in the language or far from each
input in the language. This promise would seem to have too little structure to give
a separation, but in fact we can prove that quantum property testing can greatly
improve on classical testing.

We show that every subset of Hadamard codes has a quantum property tester
with O(1) queries and that most subsets would require Θ(logn) queries to test with
a probabilistic tester. This shows that indeed quantum property testers are more
powerful than classical testers. Moreover, we also give an example of a language
where the quantum tester is exponentially more efficient.

Beals et al. [10] observed that every k-query quantum algorithm gives rise to a
degree-2k polynomial in the input bits, which gives the acceptance probability of the
algorithm; thus, a quantum property tester for P gives rise to a polynomial that is on
all binary inputs between 0 and 1, that is, at least 2/3 on inputs with the property
P and at most 1/3 on inputs far from having the property P . Szegedy [39] asked
whether it is possible to algebraically characterize the complexity of classical testing
by the minimum degree of such polynomials; however, our separation results imply
that there are properties, for which such polynomials have constant degree, but for
which the best classical tester needs Ω(log n) queries. Hence, the minimum degree is
only a lower bound, which sometimes is not tight.

A priori it is conceivable that every language has a quantum property tester with
a small number of queries. We show that this is not the case. We prove that for
most properties of a certain size, every quantum algorithm requires Ω(n) queries.
We then show that a natural property, namely, the range of a d-wise independent
pseudorandom generator, cannot be quantumly tested with less than (d+1)/2 queries
for every odd d ≤ n/ log n− 1.

While our paper is the first to explicitly consider property testing in the quantum
setting, several previous papers have considered related testing problems [31, 17]. The
algorithms of Hales and Hallgren [29] give a property tester for periodicity when the
bad function is also periodic.

2. Preliminaries. We will use the following formal definition of property testing
from Goldreich [24].

Definition 1. Let S be a finite set and P a set of functions mapping S to {0, 1}.
A property tester for P is a probabilistic oracle machine M , which given a distance
parameter ε > 0 and oracle access to a function f : S → {0, 1} satisfies the following
conditions:

1. the tester accepts f if it is in P : if f ∈ P , then Pr(Mf (ε) = 1) ≥ 2/3;
2. the tester rejects f if it is far from P : if |{x ∈ S : f(x) �= g(x)}| > ε · |S|, for

every g ∈ P , then Pr(Mf (ε) = 1) ≤ 1/3.
Here Mf denotes that the machine M is provided with the oracle for f .
Definition 2. The complexity of the tester is the number of oracle queries it

makes: a property P has an (ε, q)-tester if there is a tester for P that makes at most
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q oracle queries for distance parameter ε.
We often consider a language L ⊆ {0, 1}∗ as the family of properties {Pn} with

Pn the characteristic functions of the length-n strings from L and analyze the query
complexity q = q(ε, n) asymptotically for large n.

To define quantum property testing we simply modify Definition 1 by allowing
M to be a quantum oracle machine. We need to be careful to make sure our oracle
queries are unitary operations. If |f(x)| = |g(y)| for all x, y ∈ S and f, g ∈ P , we use
the oracle-query model by Beals et al. [10]: we define the unitary transformation Uf

that maps the basis state |x, y, z〉 to |x, y⊕f(x), z〉, where |x| = 
log |S|�, |y| = |f(x)|,
and ⊕ denotes bitwise exclusive or. In case there are x, y, f, g so that |f(x)| �= |g(y)|,
we define Uf as mapping |x, l, y, z〉 to

∣∣x, l+ |f(x)| mod k, y⊕0k−|f(x)|f(x), z
〉
, where

k = max{|f(x)| : f ∈ P and x ∈ S}, |x| = 
log |S|�, |l| = 
log k�, and |y| = k.
We recommend the book of Nielsen and Chuang [32] for background information

on quantum computing.

3. Separating quantum and classical property testing. We show that
there exist languages with (ε,O(1)) quantum property testers that do not have (ε,O(1))
classical testers.

Theorem 1. There is a language L that is ε-testable by a quantum test with
O(1/ε) queries but for which every probabilistic ε-test with ε ≤ 1/2 requires Ω(log n)
queries.

We use Hadamard codes to provide examples for Theorem 1.
Definition 3. The Hadamard code of y ∈ {0, 1}log n is x = h(y) ∈ {0, 1}n, where

xi = y · i for every index i. Here i ∈ {0, . . . , n − 1} and we identify {0, . . . , n − 1}
with {0, 1}logn; y · i =

∑logn−1

j=0 yjij mod 2 denotes the inner product of two vectors

y, i ∈ F
logn
2 .

Note that the Hadamard mapping h : {0, 1}log n → {0, 1}n is one-to-one. Bern-
stein and Vazirani [12] showed that given a codeword x, a quantum computer can
extract the y for which x = h(y) with one query to an oracle for the bits of x, whereas
a classical probabilistic procedure needs Ω(logn) queries. Based on this separation
for a decision problem we construct for A ⊆ {0, 1}logn the property PA ⊆ {0, 1}n:

PA := {x : ∃y ∈ A s.t. x = h(y)}.

Theorem 1 follows from the following two lemmas.
Lemma 2. For every A, PA has an (ε,O(1/ε)) quantum tester. Furthermore, the

test has one-sided error.
Lemma 3. For most A ⊆ {0, 1}logn, PA requires Ω(log n) queries for a 1/2-test,

even for testers with two-sided error.
Before we prove Lemma 2 we note that for every A, PA can be tested by a

classical one-sided-error algorithm with O(1/ε + log n) queries even nonadaptively;
hence, the result of Lemma 3 is tight. An O(1/ε log n)-test follows from Theorem 4
below. The slightly more efficient test, of query complexity log n + O(1/ε), is the
following: First we query x2i , i = 0, . . . , log n − 1. Note that if x = h(y), then
yi = x2i for i = 0, . . . , log n− 1. Thus a candidate y for x = h(y) is found. If y /∈ A,
then x is rejected. Then k = O(1/ε) times the following check is performed: an index
i ∈ {0, . . . , n− 1} is chosen independently and uniformly at random and if xi �= y · i,
then x is rejected. Otherwise, x is accepted. Clearly, if x is rejected, then x /∈ PA. It
is easily verified that if x has Hamming distance more than εn from every z in PA,
then with constant probability x is rejected.
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Proof of Lemma 2. PA can be checked with O(1/ε) queries on a quantum com-
puter: The test is similar to the test above, except that y can be found in O(1)
queries: k times query for random i, j values xi, xj , and xi⊕j . If xi ⊕ xj �= xi⊕j , re-
ject. k = O(1/ε) is sufficient to detect an input x that is εn-far from being a Hadamard
codeword with high probability. Now run the Bernstein–Vazirani algorithm to obtain
y. Accept if and only if y ∈ A. Obviously, if x ∈ PA, the given procedure accepts, and
if x is far from each x′ ∈ PA, then it is either far from being a Hadamard codeword
or it is close to a Hadamard codeword h(y′) for a y′ /∈ A; note that in this case x
is far from every h(y), y ∈ A, as two distinct Hadamard codewords are of Hamming
distance n/2. Thus, in this case the second part of the tester succeeds with high
probability in finding y′ and rejects because y′ /∈ A. We also note that this algorithm
has one-sided error.

Proof of Lemma 3. The lower bound makes use of the Yao principle [40]: let
D be an arbitrary probability distribution on positive and negative inputs, i.e., on
inputs that either belong to PA or are n/2-far from PA. Then if every deterministic
algorithm that makes at most q queries errs with probability at least 1/16 with respect
to input chosen according to D, then q is a lower bound on the number of queries of
any randomized algorithm for testing PA with error probability bounded by 1/16.

For our lower bound, D will be the uniform distribution over Hadamard codewords
of length n, namely, generated by choosing y ∈ {0, 1}logn uniformly at random and
setting x = h(y). Note that for any A ⊂ {0, 1}log n, D is concentrated on positive and
negative inputs as required, as two Hadamard codewords are of Hamming distance
n/2 apart.

The lower bound will be established by a counting argument. We show that for
a fixed tester that makes q ≤ (log n)/2 queries the probability over random choices
of A that the algorithm errs on at most 1/16 of the inputs is much less than 1/T ,
where T is the number of such algorithms. By the union bound it follows that for
most properties there is no such algorithm.

Indeed, choose A ⊆ {0, 1}logn by picking independently each i ∈ {0, 1}log n to be
in A with probability 1/2. Let T be any fixed deterministic decision tree performing
at most q queries in every branch. Let AT := {y | T (h(y)) = accept} and let
err(T , A) :=

∣∣(A\AT )∪(AT \A)
∣∣/n denote the error probability of T for property PA

with input distribution D. Assume first that |AT | ≤ n/2. Since for a h(y) ∈ {0, 1}n
chosen according to D we have Pry[T (h(y)) = accept] = |AT |/n ≤ 1/2, it follows by a
Chernoff-type bound [9] that PrA[|A ∩AT | ≥ 3/4|A|] ≤ 2−n/8. If |A ∩AT | < 3/4|A|,
then T will be wrong on at least |A|/4 of the positive inputs. With high probability,
A is not too small: a Chernoff-type bound implies PrA[|A| ≤ n/4] ≤ 2−n/16. Then
PrA[err(T , A) < 1/16] ≤ PrA

[|A| ≤ n/4
]

+ PrA
[
err(T , A) < 1/16

∣∣ |A| ≥ n/4
] ≤

2−n/8 + 2−n/16 ≤ 2 · 2−n/16. If |AT | > n/2, the same reasoning shows that with
probability of at most 2 · 2−n/16, T will err with D-probability less than 1/16 on the
negative inputs. Overall, we have for every fixed T

Pr
A

[err(T , A) ≤ 1/16] ≤ 2 · 2−n/16.

Now let us bound from above the number T of algorithms that make at most q
queries. As an algorithm may be adaptive, it can be defined by 2q −1 query positions
for all queries on all branches and a Boolean function f : {0, 1}q → {accept, reject} of
the decision made by the algorithm for the possible answers. Hence, there are at most
T ≤ (2n)2

q

such algorithms. However, for q ≤ (log n)/2, we have T · 2 · 2−n/16 = o(1),
which shows that for most A as above, every 1/2-test that queries at most (log n)/2
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many queries has error probability of at least 1/16. Standard amplification techniques
then imply that for some constant c, every 1/2-test that performs c log n many queries
has error greater than 1/3.

Theorem 4. Let P ⊆ {0, 1}n be a property with |P | > 0. For any ε > 0, P can
be ε-tested by a one-sided error classical algorithm using O((log |P |)/ε) queries.

Proof. Denote the input by y ∈ {0, 1}n and s := |P |. Consider the following
algorithm: query the input y in k := ln(3s2)/ε random places; accept if there is at
least one x ∈ P consistent with the bits from the input and reject otherwise. Clearly,
if y ∈ P , this algorithm works correctly.

If y is ε-far from each x ∈ P , then for every specific x ∈ P , Pr[xi = yi] ≤ 1−ε when
choosing an i ∈ [n] uniformly at random. With k indices chosen independently and
uniformly at random, the probability for no disagreement with x becomes (1 − ε)k ≤
1/(3s2). Therefore, the probability that there is no disagreement for at least one of
the s members of P is at most 1/(3s), and so with probability 2/3 for a y that is far
from P , we will rule out every x ∈ P as being consistent with y.

4. An exponential separation. In this section, we show that a quantum com-
puter can be exponentially more efficient than a classical computer in testing certain
properties.

Theorem 5. There exists a language L that for every ε = Ω(1) is (ε, log n log log n)
quantumly testable, but every classical 1/8-test for L requires Ω(

√
n) queries.

The language that we provide is inspired by Simon’s problem [37], and our quan-
tum testing algorithm makes use of Brassard and Høyer’s algorithm for Simon’s prob-
lem [14]. Simon’s problem is to find s ∈ {0, 1}n \ {0n} from a function-query oracle
for some f : {0, 1}n → {0, 1}n with the promise that f(x) = f(y) ⇔ x = y ⊕ s.
Simon proved that, classically, Ω(2n/2) queries are required on average to find s and
gave a quantum algorithm for determining s with an expected number of queries that
is polynomial in n; Brassard and Høyer improved the quantum algorithm to worst-
case polynomial time. Their algorithm produces in each run a z with z · s = 0 that
is linearly independent to all previously computed such z’s. Essentially, our quan-
tum tester uses this subroutine to try to extract information about s until it fails
repeatedly. Høyer [30] analyzed this approach in group-theoretic terms, obtaining an
alternative proof to Theorem 7. Friedl et al. [23] generalize Theorem 7 to hold for
languages based on any finite Abelian group.

In the following, let N = 2n denote the length of the binary string encoding a
function f : {0, 1}n → {0, 1}. For x ∈ {0, 1}n let x[j] denote the jth bit of x, i.e.,
x = x[1] . . . x[n]. We define

L := {f ∈ {0, 1}N : ∃s ∈ {0, 1}n \ {0n} ∀x ∈ {0, 1}n f(x) = f(x⊕ s)}.

Theorem 5 follows from the following two theorems.

Theorem 6. Every classical 1/8-tester for L must make Ω(
√
N) queries, even

when allowing two-sided error.

Theorem 7. There is a quantum property tester for L making O(logN log logN)
queries. Moreover, this quantum property tester makes all its queries nonadaptively.

Proof of Theorem 6. We again apply the Yao principle [40] as in the proof of
Lemma 3: we construct two distributions, P and U , on positive and at least (N/8)-
far negative inputs, respectively, and let D be a distribution that is defined by D =
(P +U)/2. We will show that every adaptive decision tree T has error 1/2− o(1) on
a random input chosen according to D.
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The distribution P is defined as follows: We first choose s ∈ {0, 1}n at random.
This defines a matching Ms of {0, 1}n by matching x with x⊕ s. Now a function fs is
defined by choosing for each matched pair independently fs(x) = fs(x⊕ s) = 1 with
probability 1/2 and fs(x) = fs(x⊕ s) = 0 with probability 1/2. Clearly, this defines
a distribution that is concentrated on positive inputs. Note that it might be that by
choosing different s’s we end up choosing the same function. However, these will be
considered different events in the probability space; i.e., the atomic events in P are
the pairs (s, fs) as described above.

Now let Ũ be the uniform distribution over all functions: we select the function
by choosing for each x independently f(x) = 1 with probability 1/2 and 0 with
probability 1/2. Since every function has a nonzero probability, Ũ is not supported
exclusively on the negative instances. We define U to be Ũ conditioned on the event
that the input is N/8 far from the property. As we show in Lemma 8, a function
chosen according to Ũ is N/8 far from having the property with very high probability,
and hence it will be a good approximation for U .

Let T be any deterministic decision tree. Let v be a vertex of T . We will show
that for every vertex v of small depth in T , PrP [input f is consistent with v] =
PrU [input f is consistent with v](1 + o(1)), from which we will conclude that T has
error 1/2 − o(1).

Definition 4. For f : {0, 1}n → {0, 1} and s ∈ {0, 1}n, we define ns :=
|{x : f(x) = f(x⊕ s)}|.

Lemma 8. Let f be chosen according to Ũ . Then PrŨ [∃s ∈ {0, 1}n : ns ≥
3N/4] = e−Ω(N).

Proof. Let f be chosen according to Ũ and s ∈ {0, 1}n. By a Chernoff bound [9],
we obtain PrŨ [ns ≥ 3N/4] = e−Ω(N) for every fixed s. Together with the union bound
over all 2n = N choices of s this yields PrŨ [∃s ∈ {0, 1}n : ns ≥ 3N/4] = N · e−Ω(N) =
e−Ω(N).

For every s, we need to change (N −ns)/2 values of f to get an input f ′ that has
the property f ′(x) = f ′(x⊕s) for all x. Hence, Lemma 8 implies that with probability
1− e−Ω(N) an input chosen according to Ũ will be N/8 far from having the property.

From the definition of Ũ , we immediately obtain the following.
Lemma 9. Let T be any fixed deterministic decision tree and let v be a vertex of

depth d in T . Then PrŨ [f is consistent with the path to v] = 2−d.
We now want to derive a similar bound as in Lemma 9 for functions chosen

according to P . For this we need the following definition for the event that after d
queries, nothing has been learned about the hidden s.

Definition 5. Let T be a deterministic decision tree and u a vertex in T at
depth d. We denote the path from the root of T to v by path(v). Every vertex v in T
defines a query position xv ∈ {0, 1}n. For f = fs chosen according to P , we denote
by Bv the event Bv := {(s, fs) : s �= xu ⊕ xw ∀u,w ∈ path(v)}.

Lemma 10. Let v be a vertex of depth d in a decision tree T . Then PrP [Bv] ≥
1 − (

d−1

2

)/
N .

Proof. Bv does not occur if for some v, w on the path to v we have s = xv ⊕ xw.
As there are d − 1 such vertices, there are at most

(
d−1

2

)
pairs. Each of these pairs

excludes exactly one s, and there are N possible values of s.
Lemma 11. Let v be a vertex of depth d in a decision tree T and let f be chosen

according to P . Then PrP [f is consistent with v | Bv] = 2−d.
Proof. By the definition of P , f gets independently random values on vertices

that are not matched. But if Bv occurs, then no two vertices along the path to v are
matched, and hence the claim follows.
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Procedure SimonTester
1: for k = 0 to n− 1 do
2: l ← 0
3: repeat
4: z ← SimonSampler(z1, . . . , zk)
5: l ← l + 1
6: until z �= 0n or l > 2(log n)/ε2

7: if z = 0n then
8: accept
9: else

10: zk+1 ← z
11: reject

Procedure SimonSampler(z1, . . . , zk)

1: input: z1, . . . , zk ∈ {0, 1}n
2: output: z ∈ {0, 1}n
3: quantum workspace: X ⊗ Y ⊗ Z, where
4: X is n qubits X = X1 ⊗ · · · ⊗ Xn, Xi = C

2,
5: Y = C

2 is one qubit, and
6: Z is k qubits Z = Z1 ⊗ · · · ⊗ Zk, Zj = C

2

7: initialize the workspace to |0n〉|0〉|0k〉
8: apply H2n to X
9: apply Uf to X ⊗ Y

10: apply H2n to X
11: for j = 1 to k do
12: i ← min{i : zj [i] = 1}
13: apply CNOT with control Xi and target Zj

14: apply |x〉 �→ |x⊕ zj〉 to X conditional on Zj

15: apply H2 to Zj

16: return measurement of X

Now we can complete the proof of the theorem: assume that T is a deterministic
decision tree of depth d = o(

√
N) and let v be any leaf of T . Then by Lemmas 10

and 11, we get that PrP [f is consistent with v] = (1 ± o(1))2−d. On the other hand,
by Lemmas 8 and 9 we get that PrU [f is consistent with v] = (1 ± o(1))2−d, and
hence T has only o(1) bias factor of being right on every leaf. This implies that its
error probability is 1/2 − o(1).

Proof of Theorem 7. We give a quantum algorithm making O(logN log logN)
queries to the quantum oracle for input f ∈ {0, 1}N . We will show that it accepts
with probability 1 if f ∈ L and rejects with high probability if the Hamming distance
between f and every g ∈ L is at least εN . Pseudocode for our algorithm is given in the
above procedures; it consists of a classical main program SimonTester and a quantum
subroutine SimonSampler adapted from Brassard and Høyer’s algorithm for Simon’s
problem [14, section 4]. The quantum gates used are the 2n-dimensional Hadamard
transform H2n , which applies

1√
2

(
1 1
1 −1

)
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individually to each of n qubits, the quantum oracle query Uf , and classical reversible
operations run in quantum superposition.

The following technical lemma captures the operation of the quantum subroutine
SimonSampler. For i1, . . . , iJ fixed, let YJ := {y ∈ {0, 1}n : ∀j ≤ J y[ij ] = 0} denote
the length-n binary strings that are 0 at positions i1, . . . , iJ .

Lemma 12. When SimonSampler is passed k linearly independent vectors z1, . . . , zk
so that all ij := min{i : zj [i] = 1} are distinct for 1 ≤ j ≤ k, then the state |ψ〉 before
the measurement is

√
2k

N

∑

x∈{0,1}n

∑

y∈Yk

(−1)x·y|y〉|f(x)〉|x · z1〉 · · · |x · zk〉.

Proof. We follow the steps of subroutine SimonSampler when it is passed k
linearly independent vectors z1, . . . , zk so that all ij := min{i : zj [i] = 1} are distinct
for 1 ≤ j ≤ k:

|0n〉|0〉|0k〉 �→ 1√
N

∑

x∈{0,1}n

|x〉|0〉|0k〉 �→ 1√
N

∑

x∈{0,1}n

|x〉|f(x)〉|0k〉

�→ 1

N

∑

x,y∈{0,1}n

(−1)x·y|y〉|f(x)〉|0k〉.

This is the state before the for loop is entered. We claim and proceed to show by
induction that after the Jth execution of the loop body, the state is

√
2J

N

∑

x∈{0,1}n

∑

y∈YJ

(−1)x·y|y〉|f(x)〉|x · z1〉 · · · |x · zJ〉|0k−J〉.

Executing the body of the loop for j = J + 1,
√

2J

N

∑

x∈{0,1}n

∑

y∈YJ

(−1)x·y|y〉|f(x)〉|x · z1〉 · · · |x · zJ〉|0〉|0k−J−1〉

�→
√

2J

N

∑

x∈{0,1}n

∑

y∈YJ

(−1)x·y|y〉|f(x)〉|x · z1〉 · · · |x · zJ〉|y[ij+1]〉|0k−J−1〉

=

√
2J

N

∑

x∈{0,1}n

y∈YJ+1

b∈{0,1}

(−1)x·(y⊕bzJ+1)|y ⊕ bzJ+1〉|f(x)〉|x · z1〉 · · · |x · zJ〉|b〉|0k−J−1〉

(Here we used the fact that YJ = YJ+1 ∪̇ (zJ+1 ⊕ YJ+1).)

�→
√

2J

N

∑

x∈{0,1}n

y∈YJ+1

b∈{0,1}

(−1)x·(y⊕bzJ+1)|y〉|f(x)〉|x · z1〉 · · · |x · zJ〉|b〉|0k−J−1〉

=

√
2J+1

N

∑

x∈{0,1}n

∑

y∈YJ+1

(−1)x·y|y〉|f(x)〉|x · z1〉 · · · |x · zJ〉

× 1√
2

∑

b∈{0,1}
(−1)x·(bzJ+1)|b〉|0k−J−1〉



QUANTUM PROPERTY TESTING 1395

�→
√

2J+1

N

∑

x∈{0,1}n

∑

y∈YJ+1

(−1)x·y|y〉|f(x)〉|x · z1〉 · · · |x · zJ+1〉|0k−J−1〉.

As an immediate consequence, we can establish the invariant that in SimonTester
{z1, . . . , zk} is always linearly independent with ij = min{i : zj [i] = 1} distinct for
1 ≤ j ≤ k; moreover, if f ∈ L, then just as in Simon’s algorithm, a nonzero z is
orthogonal to the hidden s.

Lemma 13. If measuring the first register, X , yields a nonzero value z, then
1. {z1, . . . , zk, z} is linearly independent;
2. min{i : z[i] = 1} is distinct from ij for 1 ≤ j ≤ k; and
3. if f ∈ L, then z · s = 0 for every s �= 0n such that f(x) = f(x⊕ s) for all x.

Proof. If we measure the state from Lemma 12, then for the value z of the first
register it holds that z ∈ Yk. This implies 2, from which follows 1. For 3, as in Simon’s
original algorithm, if there is a s �= 0n so that for all x, f(x) = f(x⊕ s), then we can
rewrite the state from Lemma 12 as

√
2k

N

∑

x:x<x⊕s
y∈Yk

|y〉
(
(−1)x·y|f(x)〉 + (−1)(x⊕s)·y|f(x⊕ s)〉

)
|x · z1〉 · · · |x · zk〉

=

√
2k

N

∑

x:x<x⊕s

∑

y∈Yk

|y〉(−1)x·y (1 + (−1)s·y) |f(x)〉|x · z1〉 · · · |x · zk〉.

Hence, only y with s · y = 0 will have nonzero amplitude.
Next, we want to assess the probability of obtaining z = 0n in SimonTester

line 4. We let P0 denote the projection operator mapping |0n〉|y〉|z〉 �→ |0n〉|y〉|z〉
and |x〉|y〉|z〉 �→ 0 for x �= 0n; hence, ‖P0|ψ〉‖2 is the probability of obtaining 0 when
measuring subspace X of the quantum register in state |ψ〉. We can characterize the
probability for outcome z = 0n in terms of the following definition and lemma.

Definition 6. For c ∈ {0, 1}k and z1, . . . , zk ∈ {0, 1}n we define Dc := {x ∈
{0, 1}n : x · z1 = c[1], . . . , x · zk = c[k]}.

Lemma 14. Let |ψ〉 be the state before the measurement in SimonSampler when
SimonSampler is passed k linearly independent vectors z1, . . . , zk so that all ij :=
min{i : zj [i] = 1} are distinct for 1 ≤ j ≤ k.

1. ‖P0|ψ〉‖2 = 1 if and only if for every c ∈ {0, 1}k, f is constant when restricted
to Dc.

2. If ‖P0|ψ〉‖2 ≥ 1−ε2/2, then f differs in at most εN points from some function
g that is constant when restricted to Dc for every c ∈ {0, 1}k.

Proof. For b ∈ {0, 1} let Db,c := Dc ∩ f−1{b} = {x : f(x) = b and x · z1 = c[1],
. . . , x · zk = c[k]}. Note that the Db,c and Dc also depend on z1, . . . , zk and the Db,c

depend on f . Let

|ψ0〉 :=

√
2k

N

∑

x∈{0,1}n

|0n〉|f(x)〉|x · z1〉 · · · |x · zk〉

=

√
2k

N

∑

b∈{0,1}

∑

c∈{0,1}k

|Db,c| |0n〉|b〉|c[1]〉 · · · |c[k]〉.

By Lemma 12, at the end of SimonSampler the system is in state |ψ〉 = |ψ0〉+ |ψ⊥
0 〉 for

some |ψ⊥
0 〉 orthogonal to |ψ0〉. We consider the case ‖P0|ψ〉‖2 = 1. Then the register
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X must be in state |0n〉, and thus |ψ〉 = |ψ0〉. Since the state has norm 1, we know
that

(1)
∑

b∈{0,1}

∑

c∈{0,1}k

|Db,c|2 =
N2

2k
.

The Db,c partition {0, 1}n and the Dc = D0,c ∪ D1,c have the same size for all c ∈
{0, 1}k because they are cosets of D0. Therefore,

(2)
∑

b∈{0,1}

∑

c∈{0,1}k

|Db,c| = N and |D0,c| + |D1,c| =
N

2k
∀c ∈ {0, 1}k.

|D0,c|2 + |D1,c|2 ≤ N2/22k, but in order for (1) to hold, |D0,c|2 + |D1,c|2 must be
exactly N2/22k. This can be achieved only if either D0,c or D1,c is empty. Thus f
must be constant when restricted to Dc for any c ∈ {0, 1}k. Conversely, if f is constant
when restricted to Dc for any c ∈ {0, 1}k, then (1) holds; therefore ‖|ψ0〉‖ = 1 and
|ψ〉 = |ψ0〉. This concludes the proof of case 1 of the lemma.

If ‖P0|ψ〉‖2 = ‖|ψ0〉‖2 ≥ 1 − δ, then

(3)
∑

b∈{0,1}

∑

c∈{0,1}k

|Db,c|2 ≥ (1 − δ)
N2

2k
.

Nevertheless, the constraints (2) hold; let r2k be the number of c ∈ {0, 1}k so that
min{|D0,c|, |D1,c|} ≥ γN/2k. Then

∑

b∈{0,1}

∑

c∈{0,1}k

|Db,c|2 ≤ r2k(γ2 + (1 − γ)2)
N2

22k
+ (1 − r)2k

N2

22k
,

and using (3), we obtain r ≤ δ/(1 − γ2 − (1 − γ)2). With δ = ε2/2 and γ = ε/2, this
implies r ≤ ε. But then

∑

c∈{0,1}k

min {|D0,c|, |D1,c|} ≤ r2k
N

2k+1
+ (1 − r)2kγ

N

2k
≤ εN.

We need to relate these two cases to membership in L and bound the number
of repetitions needed to distinguish between the two cases. This is achieved by the
following two lemmas.

Lemma 15. Let k be the minimum number of linearly independent vectors z1, . . . , zk
so that for each c ∈ {0, 1}k, f is constant when restricted to Dc. Then f ∈ L if and
only if k < n.

Proof. If k < n, then there exists an s �= 0n with s · z1 = 0, . . . , s · zk = 0.
For each such s and all x, we have x · z1 = (x ⊕ s) · z1, . . . , x · zk = (x ⊕ s) · zk
and x ∈ Df(x),x·z1,...,x·zk and x ⊕ s ∈ Df(x⊕s),x·z1,...,x·zk ; therefore f(x) = f(x ⊕ s).
Conversely, for f ∈ L, S := {s : ∀x, f(x) = f(x ⊕ s)} is a nontrivial subspace of
{0, 1}n; therefore S⊥ = {z : z · s = 0 ∀s ∈ S} is a proper subspace of {0, 1}n. Let
z1, . . . , zk be an arbitrary basis of S⊥.

Lemma 16. Let 0 < q < 1 and let |φ1〉, . . . , |φm〉 be quantum states satisfying
‖P0|φj〉‖2 < 1− δ for 1 ≤ j ≤ m. If m = log q / log(1− δ) = Θ(−(log q)/δ), then with
probability at most q measuring the X register of |φ1〉, . . . , |φm〉 will yield m times
outcome 0.
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Proof.

Pr
[
m times 0

∣∣ ∀j : ‖P0|φj〉‖2 < 1 − δ
]
< (1 − δ)m = (1 − δ)log q / log(1−δ) = q.

Now all the ingredients for wrapping up the argument are at hand; first consider
f ∈ L. Let S := {s : f(x) = f(x ⊕ s) ∀x} be the set of all “Simon promises” of
f and S⊥ := {z : z · s = 0 ∀s ∈ S} the vectors that are orthogonal to all such
promises. By Lemma 13 the nonzero z computed by the algorithm lie in S⊥ and are
linearly independent; therefore after dimS⊥ rounds of the for loop in SimonTester,
we measure z = 0n with certainty. Since f ∈ L, dimS > 0, and thus dimS⊥ < n.

If f is εn-far from being in L, then by Lemma 15 f is εn-far from being close to a
function for which a k < n and z1, . . . , zk exist so that f is constant when restricted
to Dc for any of the c ∈ {0, 1}k. Therefore, by case 2 of Lemma 14, for all k < n,
‖P0|ψ〉‖2 < 1− ε2/2. Thus, Lemma 16 guarantees that we accept with probability at
most 1/3 if we let q = 1/(3n), and thus m = O((logn)/ε2).

This concludes the proof of Theorem 7.

5. Quantum lower bounds. In this section we prove that not every language
has a fast quantum property tester.

Theorem 17. Most properties containing 2n/20 elements of {0, 1}n require quan-
tum property testers using Ω(n) queries.

Proof. Fix n, a small ε, and a quantum algorithm A making q := n/400 queries.
Pick a property P as a random subset of {0, 1}n of size 2n/20. Let

Pε := {y : d(x, y) < εn for some x ∈ P},
where d(x, y) denotes the Hamming distance between x and y. Using

∑εn
k=0

(
n
k

) ≤
2H(ε)n for

H(ε) := −ε log ε− (1 − ε) log(1 − ε),

we obtain |Pε| ≤ 2(1/20+H(ε))n. In order for A to test properties of size 2n/20, it needs
to reject with high probability on at least 2n − 2(1/20+H(ε))n inputs; but then, the
probability that A accepts with high probability on a random x ∈ {0, 1}n is bounded
by 2(1/20+H(ε))n/2n, and therefore the probability that A accepts with high probability
on |P | random inputs is bounded by

2−(1−1/20−H(ε))n|P | = 2−2n/20+Θ(log n)

.

We would like to sum this success probability over all algorithms using the union
bound to argue that for most properties no algorithm can succeed. However, there
is an uncountable number of possible quantum algorithms with arbitrary quantum
transitions. But by Beals et al. [10], the acceptance probability of A can be written as
a multilinear polynomial of degree at most 2q where the n variables are the bits of the
input; using results of Bennett et al. [11] and Solovay and Yao [38], every quantum
algorithm can be approximated by another algorithm such that the coefficients of
the polynomials describing the accepting probability are integers of absolute value

less than 2n
O(1)

over some fixed denominator. There are less than 2nH(2q/n) degree-

2q monomials in n variables, and thus we can limit ourselves to 2n
O(1)2nH(2q/n) ≤

22(n/20)·(91/100)+Θ(log n)

algorithms.
Thus, by the union bound, for most properties of size 2n/20, no quantum algorithm

with q queries will be a tester for it.
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We also give an explicit natural property that requires a large number of quantum
queries to test. We will make use of the following lemma.

Lemma 18 (see [2]). Suppose n = 2k − 1 and d = 2t + 1 ≤ n. Then there exists
a multiset of n-bit strings P = P (n, d) ⊆ {0, 1}n of size 2(n + 1)t such that under
the uniform distribution over P , the Boolean random variables ξ1, . . . , ξn that are the
projection of ξ ∈ P on its coordinates are d-wise independent, each taking the values
0 and 1 with probability 1/2.

The proof of Lemma 18 is constructive, and the construction is uniform in n. For
given n and d, consider the language P (n, d) of n-bit strings, where P (n, d) is the range
of n Boolean d-wise independent variables, as asserted by the lemma. Classically,
deciding membership in P (n, d) takes more than d queries: for all d positions i1, . . . , id
and every string v ∈ {0, 1}d, there is a z ∈ P (n, d) whose restriction to i1, . . . , id is v.
On the other hand, �log |P |� + 1 = O(d log n) queries are always sufficient.

Theorem 19. Let d ≤ n/ log n − 1 be odd and let P = P (n, d) be the range of
a d-wise independent Boolean variable as asserted by Lemma 18. Then for constant
ε < 1/2, any ε-quantum tester for P requires at least (d + 1)/2 quantum queries.

Proof. For a property P ⊆ {0, 1}n, again let Pε := {y : d(x, y) < εn for some
x ∈ P}. By [10], a quantum computer that ε-tests a property P with T queries
gives rise to a degree-2T multilinear n-variable polynomial p(x) = p(x1, . . . , xn) that
approximates P in the sense that |p(x)− f(x)| ≤ 1/3 for every x ∈ P ∪ ({0, 1}n \Pε).
Let p(x1, . . . , xn) be the corresponding polynomial to a quantum ε-test for P . We
show that there must be high-degree monomials in p by comparing the expectation
of p(x) for randomly chosen x ∈ {0, 1}n with the expectation of p(x) for randomly
chosen x ∈ P .

By the definition of Pε and Lemma 18 we have

|Pε| ≤ 2H(ε)n|P | = O(2H(ε)n+d log n).

Hence for d = n/ log n − ω(1/ log n) and ε < 1/2 we get that |Pε| = o(2n). Thus for
x uniformly distributed over {0, 1}n we have

E[p(x)] =
|Pε|
2n

E[p(x) | x ∈ Pε] +

(
1 − |Pε|

2n

)
E[p(x) | x /∈ Pε] ≤ 1/3 + o(1).

On the other hand, by the properties of p above, for x distributed uniformly over
P it holds that E[p(x) | x ∈ P ] ≥ 2/3. Considering p(x) =

∑
i αimi(x) as a linear

combination of n-variable multilinear monomials mi, we have, by the linearity of
expectation, E[p(x1, . . . , xn)] =

∑
i αi E[mi(x1, . . . , xn)]. But for every mi of degree

at most d, by the d-wise independence of the bits of each x ∈ P it follows that
E[mi(x) | x ∈ P ] = E[mi(x) | x ∈ U ], where U is the uniform distribution on
{0, 1}n. Thus p must contain monomials of degree greater than d in order for those
two expectations to differ by 1/3 − o(1). We conclude that the number of queries T
is greater than d/2.

6. Further research. Our paper opens the door to the world of quantum prop-
erty testing. Several interesting problems remain, including the following:

• Can one get the greatest possible separation of quantum and classical property
testing; i.e., is there a language that requires Ω(n) classical queries but only
O(1) quantum queries to test?

• Are there other natural problems that do not have quantum property testers?
We conjecture, for instance, that the language {uuvv : u, v ∈ Σ∗} does not
have a quantum property tester.
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• Beals et al. [10] observed that any k-query quantum algorithm gives rise to
a degree-2k polynomial in the input bits that gives the acceptance proba-
bility of the algorithm; thus, a quantum property tester for P gives rise to
a polynomial that is on all binary inputs between 0 and 1, that is, at least
2/3 on inputs with the property P and at most 1/3 on inputs far from hav-
ing the property P . Szegedy [39] suggested algebraically characterizing the
complexity of classical testing by the minimum degree of such polynomials;
as mentioned in the introduction, our results imply that this cannot be the
case for classical testers. However, it is an open question whether quantum
property testing can be algebraically characterized in this way.

• Related to the second and the third item is the following question about
polynomials: Is there a property P ⊆ {0, 1}n for which every quantum ε-tester
requires at least Ω(n) queries but for which there is a polynomial of constant
degree p(x1, . . . , xn) such that 0 ≤ p(x) ≤ 1 for every x and p(x) ≤ 1/3 for x’s
that are ε-far from P while p(x) ≥ 2/3 for every x ∈ P? Such a P will show
that polynomial characterization of quantum property testing, as suggested
above, is impossible. It will also require other means of proving quantum
nontestability results.

We hope that further research will lead to a greater understanding of what can and
cannot be tested with quantum property testers.

Acknowledgment. We thank Ronitt Rubinfeld for discussions and pointers on
property testing.
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1. Introduction. In this paper we present efficient compression algorithms for
the elements of the subgroup of order q2 − q + 1 in F

×
q6 , the multiplicative group of

the finite field with q6 elements, and for the elements of the subgroup of order q + 1
in F

×
q2 . We use our compression algorithms to create efficient public key cryptosys-

tems, called CEILIDH and T2. We also disprove some conjectures from [4] about
efficient compression in F

×
qn . In addition, we show that our compression algorithms,

Lucas-based, XTR, and Gong–Harn compression, and conjectural generalizations rely
on the mathematical properties of algebraic tori, which are concepts from algebraic
geometry that are generalizations of the multiplicative group of a field. We believe
that understanding the mathematics that underlies the associated cryptosystems is a
useful aid to better understand their properties and their security.

Let Φn(x) denote the nth cyclotomic polynomial, i.e., the monic polynomial in
Z[x] of degree ϕ(n) whose complex roots are exactly the primitive nth roots of unity.
The multiplicative group F

×
q = Fq−{0} is a cyclic group of order q−1 = Φ1(q). Note

that

xn − 1 =
∏

d|n
Φd(x), so |F×

qn | = qn − 1 =
∏

d|n
Φd(q).

For example,

|F×
q2 | = q2 − 1 = (q + 1)(q − 1) = Φ2(q)Φ1(q),

|F×
q6 | = q6 − 1 = (q2 − q + 1)(q2 + q + 1)(q + 1)(q − 1) = Φ6(q)Φ3(q)Φ2(q)Φ1(q).
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Let Gq,n denote the subgroup of F
×
qn of order Φn(q).

In Diffie–Hellman key agreement, a finite field Fq and an element g ∈ Gq,1 = F
×
q

are public. Alice (resp., Bob) transmits ga (resp., gb), where a (resp., b) is Alice’s
(resp., Bob’s) secret. Then Alice and Bob share the secret gab = (ga)b = (gb)a.

When doing cryptography in the multiplicative group of a finite field Fqn , math-
ematically one is taking the Fqn-points of the multiplicative group Gm, which is the
same as the Fq-points of the restriction of scalars ResFqn/Fq

Gm. This restriction of
scalars decomposes (up to isogeny) as a product of algebraic tori that we will de-
note Td, one for each divisor d of n. Thus when doing cryptography in F

×
qn , one

is reduced to studying the tori Td. The torus Td is an algebraic group over Fq of
dimension ϕ(d) whose Fq-points form the group Gq,d defined above. Being an alge-
braic torus just means that over an extension field (in this case, Fqd) the algebraic
variety is isomorphic to a product of copies of the multiplicative group Gm. Since
Td(Fq) ∼= Gq,d ⊆ F

×
qd

, the subgroup Td(Fq) is subject to index calculus attacks on

F
×
qd

; so if d < n, then Td does not inherit the full security of F
×
qn . Since almost no

element of Tn(Fq) lies in a proper subfield of Fqn , the torus Tn can be viewed as the
cryptographically most significant part of F

×
qn .

Since dim(Tn) = ϕ(n), when the transmitted information comes from the group
Gq,n = Tn(Fq) one would hope to be able to compress transmissions down to ϕ(n) log q
bits, rather than the n log q bits one must use for arbitrary elements of F

×
qn . In other

words, one would like to find an efficiently computable “compression” function f ,

defined on almost all of Gq,n, with values in F
ϕ(n)
q , such that

(i) f(h) and a determine f(ha),
(ii) f(g) and f(h) determine f(gh),
(iii) f has an efficiently computable inverse j (a “decompression” map), defined

on almost all of F
ϕ(n)
q .

This would improve the efficiency of transmissions of group elements for discrete log-
based cryptography on F

×
qn by a factor of n/ϕ(n).

We represent this with a diagram:

(1.1) F
ϕ(n)
q

j

��� � � � �
Gq,n

f

�� �����

where the dotted arrows signify that f and j need not be defined everywhere; they
might be undefined on a “small” number of elements.

Whenever one has a compression map f with a corresponding decompression map
j as above, the following protocols give generalized Diffie–Hellman key agreement and
ElGamal encryption and signature schemes for the group Gq,n. Note that such maps f
and j allow one to compress and decompress transmissions not only for Diffie–Hellman
and ElGamal, but also for any cryptosystem whose security relies on the difficulty of
the discrete logarithm problem in the multiplicative group F

×
qn .

Choose an element g ∈ Gq,n whose order � is divisible by a large prime number
(having chosen a prime power q such that Φn(q) has a large prime divisor).
Torus-based Diffie–Hellman key agreement:
Alice chooses an integer a randomly in the interval [1, �− 1]. Similarly, Bob chooses
a random integer b from the same range.

• Alice sends PA := f(ga) ∈ F
ϕ(n)
q to Bob.
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• Bob sends PB := f(gb) ∈ F
ϕ(n)
q to Alice.

• They share (j(PB))a = gab = (j(PA))b, and also f(gab).
Torus-based ElGamal encryption:
Alice’s private key: An integer a, random in the interval [1, �− 1].

Alice’s public key: PA := f(ga) ∈ F
ϕ(n)
q .

• Bob represents the message M in 〈g〉 and picks a random r between 1 and
�− 1. The ciphertext is (c, d), where c = f(gr) and d = f(M · j(PA)r).

• To decrypt a ciphertext (c, d), Alice computes M = j(d) · j(c)−a.
As pointed out by a referee, in practice one would use hybrid encryption rather

than textbook ElGamal, in which case a symmetric encryption key would be derived
from f(j(PA)r).
Torus-based ElGamal signatures:
Fix a cryptographic hash function H : {0, 1}∗ → Z/�Z (i.e., the function is easy to

compute but hard to invert) and a key derivation function h : F
ϕ(n)
q → Z/�Z.

Alice’s private key: An integer a, random in the interval [1, �− 1].

Alice’s public key: PA := f(ga) ∈ F
ϕ(n)
q .

• To sign a message M ∈ {0, 1}∗, Alice chooses a random integer r between
1 and � − 1 with gcd(r, �) = 1. Alice’s signature on M is (c, d), where c =

f(gr) ∈ F
ϕ(n)
q and d = r−1(H(M) − ah(c)) (mod �).

• Bob accepts Alice’s signature if and only if

gH(M) = j(PA)h(c) · j(c)d.
The signature length is ϕ(n) log2(q)+log2(�) bits, as opposed to n log2(q)+log2(�)

bits in the classical ElGamal signature scheme over Fqn .
Examples of compression functions f that satisfy (i) above (but not (ii) or (iii))

are the trace functions used in the XTR and Lucas-based cryptosystems, which we
now recall. (See also [19, 2].)

Lucas-based cryptosystems [25, 39, 40, 34, 35, 3], including LUC, are based on
Lucas functions [23]. One way to interpret them is that they compress elements of
Gq,2 ⊂ F

×
q2 using the trace map Tr : Fq2 → Fq defined by Tr(x) = x + xq. In

Lucas-based key agreement, Alice and Bob transmit Tr(ga) and Tr(gb), respectively,
where g ∈ Gq,2. It turns out that Alice and Bob each have enough information to
reconstruct Tr(gab). Each party transmits only one element of Fq, rather than one
element of Fq2 , thereby doubling the efficiency over Diffie–Hellman per unit of security
against attacks on the discrete log problem in 〈g〉 ⊂ F

×
q2 .

The Gong–Harn cryptosystem [10], which is based on linear feedback shift reg-
isters, can be viewed as using two symmetric functions to compress elements of
Gq,3 ⊂ F

×
q3 , namely, the trace map Tr : Fq3 → Fq defined by Tr(x) = x+xq +xq2

and

the map σ2 : Fq3 → Fq defined by σ2(x) = x ·xq+x ·xq2

+xq ·xq2

. These are two of the

three symmetric functions on {x, xq, xq2}; the third is the norm map x 	→ x · xq · xq2

,
which sends Gq,3 to 1. In Gong–Harn key agreement, Alice (resp., Bob) transmits
(Tr(ga), σ2(g

a)) (resp., (Tr(gb), σ2(g
b))), where g ∈ Gq,3. It turns out that Alice and

Bob each have enough information to reconstruct Tr(gab) and σ2(g
ab). Each party

transmits only two elements of Fq, rather than one element of Fq3 , thereby improving
efficiency over Diffie–Hellman by a factor of 3/2 = 3/ϕ(3) per unit of security against
attacks on the discrete log problem in 〈g〉 ⊂ F

×
q3 .

Brouwer, Pellikaan, and Verheul [5] and XTR [21] use the trace map Tr : Fq6 →
Fq2 defined by Tr(x) = x+xq2

+xq4

to compress elements of Gq,6 ⊂ F
×
q6 . In XTR key
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agreement, Alice and Bob transmit Tr(ga) and Tr(gb), respectively, where g ∈ Gq,6.
It turns out that they each have enough information to reconstruct a shared secret
Tr(gab). Each party transmits only one element of Fq2 , rather than one element of
Fq6 , thereby tripling the efficiency over Diffie–Hellman per unit of security against
attacks on the discrete log problem in 〈g〉 ⊂ F

×
q6 . Brouwer, Pellikaan, and Verheul

[5] asked whether this can be extended to larger n to represent elements of Gq,n by
ϕ(n) elements of Fq. In [4], Bosma, Hutton, and Verheul state precise conjectures on
extending the above systems to larger n.

In XTR, the Gong–Harn cryptosystem, and the Lucas-based cryptosystems, Alice
can compute f(gab) from f(gb) and a, for a suitable f coming from symmetric func-
tions. In other words, these cryptosystems can exponentiate, as is needed for doing
(analogues of) Diffie–Hellman. However, they cannot multiply in a straightforward
way, as is needed for a direct use of ElGamal, since, for example, Tr(g) and Tr(h)

do not determine Tr(gh). For example, for XTR, Tr(h) = Tr(hq2

) for every h, but

it is not the case in general that Tr(hg) = Tr(hq2

g) for all g, h ∈ Gq,6. However, if
one orders the Galois conjugates and transmits a couple of extra bits to specify which
conjugate has been chosen, then one can reconstruct an element of Gq,6 from its trace.

In sections 2–3 below we present our compression algorithms. We construct ex-
plicit maps f and j as in (1.1) when n = 2 and 6 and obtain the T2 and CEILIDH
(or T6) cryptosystems. We show that they can be explained and implemented in an
elementary way without any knowledge of algebraic geometry or algebraic tori (only
basic definitions of finite fields are required).

We give background on algebraic tori in section 4 and study the algebraic tori Tn

in section 5. In section 6 we consider rationality results and conjectures for the tori
Tn, since whenever the torus Tn is rational over Fq, compression and decompression
maps f and j exist for Gq,n. In particular, we explain the mathematics that we used
to obtain the CEILIDH compression algorithm and prove that it works. We briefly
mention stable rationality in section 7. In section 8 we discuss security considerations.

In section 9.1 we study group actions on tori, in order to give in sections 9.2 and 10
a deeper mathematical understanding of the Lucas-based systems, XTR, Gong–Harn,
and the Bosma–Hutton–Verheul conjectural cryptosystems of [4]. We define an action
of certain symmetric groups on the tori Tn and show (with Se denoting the symmetric
group on e letters) that

• the Lucas-based cryptosystems are “based on” the quotient variety T2/S2,
• the Gong–Harn cryptosystem is based on the quotient variety T3/S3,
• XTR is based on the quotient variety T6/S3, and
• conjectural cryptosystems of Bosma–Hutton–Verheul would rely on the quo-

tient varieties T30/(S3 × S5) or T30/(S2 × S3 × S5).

These quotient varieties are not groups. This is why the Lucas-based systems, Gong–
Harn, and XTR do not have straightforward multiplication. However,

• Diffie–Hellman is based on the algebraic group (and algebraic torus) T1 = Gm,
• the T2-cryptosystem is based on the algebraic group (and algebraic torus) T2,
• CEILIDH is based on the algebraic group (and algebraic torus) T6, and
• the (sometimes conjectural) Tn-cryptosystems are based on the algebraic

group (and algebraic torus) Tn.

We therefore called the Tn-cryptosystems “torus-based cryptosystems.” (Later au-
thors used our terminology more generally to refer to any cryptosystem using the
group Gq,n for some q and n, even those based on quotients of tori.)

In section 10 we disprove conjectures from [4] and thereby show that symmetric
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polynomials are not the correct functions to use for compression in Gq,n when n has
at least 3 distinct prime divisors.

Security and parameter selection for CEILIDH are exactly the same as for XTR.
The advantage of the CEILIDH (resp., T2) cryptosystem over XTR (resp., LUC) is
that CEILIDH and T2 make full use of the multiplication in the group Gq,n (for n = 6
and 2). This is especially useful for signature schemes. However, XTR and LUC have
computational efficiency advantages over CEILIDH and T2 (key agreement can be
performed with fewer operations). See [11] for a comparison of CEILIDH and XTR.

Since the pairings in pairing-based cryptography take values in the algebraic tori
considered here, our torus-based cryptography techniques can be used to improve the
efficiency of pairing-based cryptography by compressing pairing values [33, 12].

In [31] we study analogues in the setting of elliptic curves and abelian varieties.

2. T2 compression and the T2-cryptosystem. Let n = 2 and let q be a
prime power. One can write Fq2 = Fq(δ) for some δ ∈ F

×
q2 with D := δ2 ∈ F

×
q if q is

odd and D := δ2 + δ ∈ F
×
q if q is even. Since δq = −δ if q is odd and δq = δ + 1 if q

is even, we have

Gq,2 = {a + bδ : a, b ∈ Fq and (a + bδ)q+1 = 1}

=

{
{a + bδ : a, b ∈ Fq and a2 −Db2 = 1} if q is odd,

{a + bδ : a, b ∈ Fq and a2 + Db2 + ab = 1} if q is even.

Hilbert’s Theorem 90 leads naturally to the following maps f and j. Define a
compression map

f : Gq,2 − {1,−1} → Fq by f(c + dδ) =
1 + c

d
,

and define a decompression map

j : Fq → Gq,2 by j(a) =
a + δ

a + δq
=

{
a+δ
a−δ if q is odd,

a+δ
a+δ+1 if q is even.

It is easy to check that f and j are inverse maps where they are defined, and if
a, b ∈ Fq and a 
= −b (resp., a 
= b + 1), then

j(a)j(b) = j
(
ab+D
a+b

)
if q is odd,

j(a)j(b) = j
(

ab+D
a+b+1

)
if q is even.

To do T2-cryptography, use f to represent the elements of Gq,2 − {1,−1} in Fq, and
do all multiplications and exponentiations directly in Fq (without needing to use j),
using the operation on (most of) Fq:

a ∗ b =
ab + D

a + b
, respectively, a ∗ b =

ab + D

a + b + 1

if q is odd, respectively, even.
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3. CEILIDH compression and the CEILIDH public key system. The
acronym CEILIDH (pronounced “cayley,” like the Scottish Gaelic word ceilidh) stands
for Compact, Efficient, Improves on LUC, Improves on Diffie–Hellman. The CEILIDH
key agreement (resp., encryption, resp., signature) scheme is torus-based Diffie–Hell-
man (resp., ElGamal encryption, resp., ElGamal signatures) in the case n = 6.

3.1. CEILIDH compression algorithm. When n = 6, we can generate ex-
plicit examples of maps f and j at will. Next we give our algorithm for doing so.
In section 6 below we will give a proof that it works and explain the mathematics
behind it.

For a polynomial h in two variables with coefficients in Fq, let

V (h) = {(a, b) ∈ F
2
q : h(a, b) = 0}.

Fix a prime power q. Fix x ∈ Fq2 − Fq, so Fq2 = Fq(x), and choose a basis
{α1, α2, α3} of Fq3 over Fq. Then {α1, α2, α3, xα1, xα2, xα3} is a basis of Fq6 over

Fq. Let σ ∈ Gal(Fq6/Fq) be the element of order 2, i.e., σ(z) = zq
3

. Define a map
j0 : F

3
q ↪→ F

×
q6 by

j0(u, v, w) =
γ + x

γ + σ(x)
,

where γ = uα1 + vα2 + wα3. Let

U = {(u, v, w) ∈ F
3
q : NFq6/Fq2

(j0(u, v, w)) = 1}.

A calculation in Mathematica shows that U is a hypersurface in F
3
q defined by a

quadratic equation in u, v, w. Fix a point β = (β1, β2, β3) ∈ U(Fq). Adjust the basis
{α1, α2, α3} if necessary, to ensure that the tangent plane at β to the surface U is
u = β1. If (a, b) ∈ Fq×Fq, then the intersection of U with the line β+t(1, a, b) consists
of two points, namely, β and a point g(a, b) ∈ U of the form β + 1

h(a,b) (1, a, b), where

h(a, b) ∈ Fq[a, b] is an explicit polynomial that can be computed using Mathematica.
The map g is an isomorphism

g : F
2
q − V (h)−→∼ U − {β},

and j0 ◦ g defines an isomorphism

j : F
2
q − V (h)−→∼ Gq,6 − {1, j0(β)}.

For the inverse isomorphism, suppose that t = c + dx ∈ Gq,6 − {1, j0(β)} with
c, d ∈ Fq3 . Write (1 + c)/d = uα1 + vα2 + wα3 with u, v, w ∈ Fq, and define

f(t) =

(
v − β2

u− β1
,
w − β3

u− β1

)
.

Then f : Gq,6 − {1, j0(β)}−→∼ F
2
q − V (h) satisfies f ◦ j = id and j ◦ f = id.

3.2. Explicit examples of maps f and j. Using the above algorithm, we
produce explicit examples, where ζm denotes an mth root of unity in F̄q.

Example 3.1. To ensure that Fq6 = Fq(ζ9), restrict to prime powers q ≡ 2 or 5
(mod 9). Let x = ζ3 and let (α1, α2, α3) = (1, ζ9 + ζ−1

9 , ζ2
9 + ζ−2

9 ). The hypersurface
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U is given by the quadratic equation u2 − u − v2 + vw − w2 = 0. Let β = (0, 0, 0).
The above algorithm gives a map j : F

2
q → Gq,6 defined by

j(a, b) = (r + sζ3)/(r + sζ2
3 ),

where

r = 1 + a(ζ9 + ζ−1
9 ) + b(ζ2

9 + ζ−2
9 ), s = h(a, b) = 1 − a2 − b2 + ab,

and a map f : Gq,6 − {1, ζ2
3}−→∼ F

2
q − V (h) defined by f(t) = (v/u,w/u), where

t = c + dζ3 with c, d ∈ Fq3 and (1 + c)/d = u + v(ζ9 + ζ−1
9 ) + w(ζ2

9 + ζ−2
9 ) with

u, v, w ∈ Fq.

Example 3.2. In order to ensure that Fq6 = Fq(ζ7), restrict to prime powers
q ≡ 3 or 5 (mod 7). We can then let x =

√−7, β = (1, 0, 2), and (α1, α2, α3) =
(1, ζ7 + ζ−1

7 , ζ2
7 + ζ−2

7 + 1). The above algorithm outputs a map j : F
2
q → Gq,6 defined

by j(a, b) = (r + s
√−7)/(r − s

√−7), where

s = h(a, b) = (2a2 + b2 − ab + 2a− 4b− 3)/14,

r = h(a, b) + 1 + a(ζ7 + ζ−1
7 ) + (2h(a, b) + b)(ζ2

7 + ζ−2
7 + 1),

and a map f : Gq,6 − {1, ζ2
7}−→∼ F

2
q − V (h) defined by

f(t) =
( v

u− 1
,
w − 2

u− 1

)
,

where t = c+d
√−7 with c, d ∈ Fq3 and (1+ c)/d = u+ v(ζ7 + ζ−1

7 )+w(ζ2
7 + ζ−2

7 +1)
with u, v, w ∈ Fq. Here U is defined by 3u2 − 2uv − 2v2 + 4uw + vw − w2 = 7.

Example 3.3. Let q be an odd prime power congruent to 2, 6, 7, or 11 (mod 13),
and let z = ζ13 + ζ−1

13 . Then Fq12 = Fq(ζ13) and Fq6 = Fq(z). Let x =
√

13, let

β = (−1, 0, 3), let y = ζ13+ζ−1
13 +ζ5

13+ζ−5
13 ∈ Fq3 , and let (α1, α2, α3) = (y2, y+ y2

2 , 1).
The above algorithm outputs a map j : F

2
q → Gq,6 defined by

j(a, b) = (r − s
√

13)/(r + s
√

13),

where

r = (3(a2 + b2) + 7ab + 34a + 18b + 40)y2 + 26ay

− (21a(3 + b) + 9(a2 + b2) + 28b + 42),

s = 3(a2 + b2) + 7ab + 21a + 18b + 14,

and a map f : Gq,6 − {1,−2z5 + 6z3 − 4z − 1} → F
2
q defined by

f(t) =
( v

u + 1
,
w − 3

u + 1

)
,

where t = c + d
√

13 with c, d ∈ Fq3 and (1 + c)/d = uy2 + v(y + y2

2 ) + w with
u, v, w ∈ Fq. Here U is defined by 14u2 + 21uv + 3v2 + 18uw + 7vw + 3w2 = −13.
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4. Algebraic tori. In this section we briefly introduce algebraic tori in order to
explain the mathematics underlying compression algorithms for Gq,n ⊆ F

×
qn .

If M/k is a finite Galois extension and V is a variety defined over M , write
ResM/kV for the Weil restriction of scalars of V from M to k. Then ResM/kV is a
variety defined over k together with a morphism

(4.1) η : ResM/kV → V

defined over M that induces an isomorphism

(4.2) η : (ResM/kV )(k)−→∼ V (M).

A precise technical definition is that the restriction of scalars ResM/kV is uniquely
defined by the universal property that for every scheme X over k (and therefore every
variety X over k) and every morphism f : X → V , there exists a unique morphism
f0 : X → ResM/kV such that η ◦ f0 = f . See section 1.3 of [38] or section 3.12 of [36]
for more on the restriction of scalars.

If V is an algebraic variety and D is a finite set, write

V D :=
⊕
δ∈D

V ∼= V |D|.

If D is a group, then D acts on V D by permuting the summands. Let A
d denote

d-dimensional affine space (so A
d(k) = kd), and let A

D := (A1)D.
If V is defined over k and Γ = Gal(M/k), then the morphism η of (4.1) induces

an isomorphism

(4.3)
⊕
γ∈Γ

ηγ : ResM/kV −→∼ V Γ

defined over M (see section 1.3 of [38]), where ηγ : ResM/kV → V is the morphism
defined by applying γ to the coefficients of the rational functions that define η.

Let Gm denote the multiplicative group over a field k. Then Gm (⊂ A
1) is an

algebraic group over k such that Gm(F ) = F× for all extension fields F of k.
Definition 4.1. An algebraic torus over a field k is an algebraic group over k

that over some larger field is isomorphic to a product of copies of Gm. A field over
which the torus becomes isomorphic to a product of multiplicative groups is called a
splitting field for the torus; one says that the torus splits over that field.

Good references for algebraic tori are [26, 36].
Example 4.2. (i) For every positive integer n, G

n
m is an n-dimensional algebraic

torus.
(ii) If L/k is an extension of degree n, then ResL/kGm is an n-dimensional alge-

braic torus over k that splits over L (by (4.3) with V = Gm).

5. The algebraic tori TL/k and Tn. Next we define the algebraic tori that
underlie the XTR, Gong–Harn, Lucas-based, T2, and CEILIDH cryptosystems and
give some of their basic properties.

Suppose L/k is a finite Galois extension and n := [L : k] is squarefree. Suppose
k ⊆ F ⊆ L, and let G = Gal(L/k), H = Gal(L/F ), and e = |H|. For 1 ≤ i ≤ e let
σi,F denote the composition

(5.1) σi,F : ResL/FA
1 −→∼ A

H −→ A
1,
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where the first map is the isomorphism (defined over L) coming from (4.3) and the
second map is the ith symmetric polynomial of the e projection maps A

H → A
1.

(Recall that the first symmetric polynomial of x1, . . . , xe is
∑e

i=1 xi, the second is∑
i<j xixj , and the eth is

∏e
i=1 xi.)

The next lemma will be used to define the algebraic tori TL/k and prove properties
about them.

Lemma 5.1.

(i) The maps σi,k : ResL/kA
1 −→ A

1 are defined over k.
(ii) For every 1 ≤ i ≤ n the following diagram is commutative:

(ResL/kA
1)(k)

∼=
��

σi,k �� A1(k)

∼=
��

L
σi,k �� k

where the bottom map σi,k sends α ∈ L to the ith symmetric polynomial evaluated on
the set of G-conjugates of α, the right map is the natural identification, and the left
map is the composition of (4.2) with the natural identification A

1(L) ∼= L.
Proof. Part (i) follows since symmetric functions are symmetric, while (ii) follows

from the definitions and the fact that (η(v))σ = ησ(v) for all v ∈ (ResL/kA
1)(k) and

σ ∈ Gal(L/k).
Lemma 5.1(ii) shows that σn,k and σ1,k correspond to the usual norm and trace

maps from (ResL/kA
1)(k) ∼= L to k. Applying ResF/k to (5.1) and using that

ResL/kA
1 = ResF/k(ResL/FA

1), we obtain maps

(5.2) σ̃i,F : ResL/kA
1 −→ ResF/kA

1

for 1 ≤ i ≤ e. Let NL/F,k := σ̃e,F and TrL/F,k := σ̃1,F .
Definition 5.2. Define TL/k by

TL/k := ker

[
ResL/kGm

⊕NL/M,k−−−−−−→ ⊕
k⊆M�L

ResM/kGm

]
.

Let Tn (or Tn,q) denote TFqn/Fq
.

By definition, TL/k is a subvariety and algebraic subgroup of ResL/kGm, defined
over k. When L/k is abelian but not cyclic, the algebraic group TL/k has dimension
zero (see Proposition 5.3 of [24]). Lemmas 5.4 and 5.6 below show that if L/k is

cyclic, then TL/k is isomorphic over L to G
ϕ(n)
m , and thus TL/k is an algebraic torus

of dimension ϕ(n) that splits over L. When L/k is cyclic, TL/k is the variety VL

defined in section 5 of [24] with V = Gm (see Remark 5.11 of [24]). We first need
some notation, which will also be used in sections 9–10.

Definition 5.3. If Γ is a finite group and Δ is a subgroup, let Γ/Δ denote
the coset space. For i = 1, . . . , |Δ|, let σi denote the ith symmetric function for
i = 1, . . . , |Δ| and define

si : A
Γ → A

Γ/Δ by (αg)g∈Γ 	→ (σi({αγ : γ ∈ gΔ}))gΔ∈Γ/Δ.

Let NΔ be the restriction of s|Δ| to G
Γ
m, i.e.,

NΔ : G
Γ
m → G

Γ/Δ
m , (αg)g∈Γ 	→

⎛
⎝

∏

γ∈gΔ

αγ

⎞
⎠

gΔ∈Γ/Δ

,
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and let

TΓ : = ker

[
G

Γ
m

⊕NΔ−−−→ ⊕
1 �=Δ⊆Γ

G
Γ/Δ
m

]

=

{
(xg)g∈Γ :

∏

h∈Δ

xgh = 1 for all g ∈ Γ and all subgroups Δ 
= 1 of Γ

}
.

Viewing Gm as an algebraic group over a field k, then TΓ is an algebraic group
over k. The next lemma, which we will use repeatedly, follows directly from the
definitions of TL/k and TG.

Lemma 5.4. The isomorphism ResL/kGm −→∼ G
G
m given by (4.3) (with V = Gm)

restricts to an isomorphism TL/k −→∼ TG (defined over L).
The next result is used to prove Lemma 5.6 and Proposition 5.8 below. For a

proof see, for example, Theorem 1 of [6] or Theorem 2 of [32]. We thank D. Bernstein
and H. Lenstra for pointing out these references.

Lemma 5.5. For every positive integer n, Φn(x) and the set

{xn − 1

xt − 1
: t | n and 1 ≤ t 
= n

}

generate the same ideal of Z[x].
Lemma 5.6 is used to prove Theorems 5.7 and 10.9 below. Its proof can be ignored

by the casual reader.
Lemma 5.6. Suppose Γ is a cyclic group of squarefree order. Let Ω be the subset

of Γ consisting of all generators of Γ. The projection map G
Γ
m � G

Ω
m restricts to an

isomorphism TΓ −→∼ G
Ω
m of algebraic groups over k.

Proof. Let m = |Γ|. If Δ is a subgroup of Γ, let NΔ :=
∑

h∈Δ h. Let I
denote the ideal of Z[Γ] generated by {NΔ : Δ 
= 1 is a subgroup of Γ}. The map
HomZ(Z[Γ],Gm) → G

Γ
m defined by φ 	→ (φ(g))g∈Γ induces a commutative diagram

Hom(Z[Γ]/I,Gm) � � ��

∼=
��

Hom(Z[Γ],Gm) �� ��

∼=
��

Hom(⊕γ∈ΩZγ,Gm)

∼=
��

TΓ
� � �� G

Γ
m

�� �� G
Ω
m

where the vertical maps are group isomorphisms and the top and bottom rows are the
natural maps. For each g ∈ Γ, let ḡ denote its image in Z[Γ]/I. Let τ denote a gener-
ator of Γ. Since Γ is cyclic, τ 	→ x induces an isomorphism Z[Γ]−→∼ Z[x]/(xm−1)Z[x].
By Lemma 5.5, this map induces an isomorphism Z[Γ]/I −→∼ Z[x]/Φm(x)Z[x] ∼= Z[ζm]
that sends τ to ζm. Since m is squarefree, the primitive mth roots of unity form a Z-
basis for Z[ζm] (see, for example, [22]), i.e., Z[ζm] = ⊕a∈RZζam, where R := (Z/mZ)×.
It follows that Z[Γ]/I = ⊕a∈RZτ̄a = ⊕γ∈ΩZγ̄. This says exactly that the natural
group homomorphism ⊕γ∈ΩZγ → Z[Γ]/I is an isomorphism. Therefore, the com-
position in the top line of the commutative diagram is an isomorphism. Thus the
composition in the bottom line of the diagram is an isomorphism, as desired.

If V and W are algebraic groups over k, a homomorphism f : V → W is an
isogeny over k if f is surjective and defined over k and dim(V ) = dim(W ). If an
isogeny between V and W exists, we say V and W are isogenous over k.

Theorem 5.7. If L/k is a cyclic extension of degree n, then
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(i) TL/k is an algebraic torus of dimension ϕ(n) that splits over L;
(ii) letting NL/M denote the usual norm map from L to M , then

TL/k(k) ∼= {α ∈ L× : NL/M (α) = 1 for all k ⊆ M � L}; and

(iii) ResL/kGm is isogenous over k to ⊕MTM/k, where M runs over all inter-
mediate extensions k ⊆ M ⊆ L.

Proof. By Lemma 5.4, TL/k is isomorphic over L to TG, which by Lemma 5.6 is

isomorphic over k to G
ϕ(n)
m . This gives (i). Part (ii) follows from Lemma 5.1(ii) with

i = n. For (iii), see pp. 60–61 of [36] or Theorem 5.2 of [24].
Recall that Gq,n is the subgroup of F

×
qn of order Φn(q).

Proposition 5.8.

(i) Tn(Fq) ∼= Gq,n.
(ii) Gq,n = {α ∈ F

×
qn : NFqn/Fqt

(α) = 1 for all t|n with t 
= n}.
(iii) #Tn(Fq) = Φn(q).
Proof. The cyclic group Gal(Fqn/Fq) is generated by the Frobenius automorphism

α 	→ αq. Hence if t divides n, then NFqn/Fqt
(α) = α(qn−1)/(qt−1) for all α ∈ Fqn . Thus

by Theorem 5.7(ii),

Tn(Fq) ∼= {α ∈ F
×
qn : NFqn/Fqt

(α) = 1 for all t|n with t 
= n}

= {α ∈ F
×
qn : αc = 1},

where c = gcd{(qn − 1)/(qt − 1) : t | n and t 
= n}. By Lemma 5.5, c = Φn(q). Now
(i) and (ii) follow from the definition of Gq,n, and (iii) follows from (i).

6. Rationality and the Tn-cryptosystem. We will recall what it means for
a variety to be rational. This concept is useful since whenever an algebraic torus is
rational, there exist compression and decompression maps. We give a mathematical
explanation for why the torus T6 that underlies CEILIDH (and XTR) is rational that
proves the correctness of the algorithm in section 3.1 and the formulas in section 3.2.
We also discuss generalizing CEILIDH and XTR.

Definition 6.1. A rational map between algebraic varieties is a function defined
by quotients of polynomials that is defined almost everywhere (i.e., on a Zariski open
set). A birational isomorphism between algebraic varieties is a rational map that has
a rational inverse (the maps are inverses wherever both are defined). A d-dimensional
variety over k is rational over k if it is birationally isomorphic over k to A

d.
Note that birational isomorphisms of algebraic groups are not necessarily group

isomorphisms. Further, rational maps are not necessarily functions—they might fail
to be defined on a lower dimensional set.

If Tn is rational over k (i.e., birationally isomorphic over k to A
ϕ(n)), then by

Proposition 5.8(i), almost all elements of Gq,n can be represented by ϕ(n) elements
of Fq, and we obtain efficient “Tn-cryptosystems” using the “torus-based” protocols
given in the introduction.

The sets Gq,n and F
ϕ(n)
q are of size approximately qϕ(n). The “bad” sets where

the maps f or j are not defined lie in algebraic subvarieties of dimension at most
ϕ(n)− 1 and therefore have at most cqϕ(n)−1 elements for some constant c. Thus the
probability that an element lands in the bad set is at worst c/q, which will be small
for large q. In any given case the bad sets might be even smaller. In the examples in
section 3, the maps j are defined on all of F

2
q, and the maps f are defined at all but

2 elements of Gq,6.
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Next we give the mathematics that proves that the algorithm of section 3.1 is cor-
rect. Suppose L/k is a cyclic degree 6 extension, and F2 (resp., F3) are the quadratic
(resp., cubic) extensions of k in L:

L

F2

�����
F3

�����

k
2

������ 3

������

The one-dimensional algebraic torus TL/F3
is, by definition, the kernel of the norm

map NL/F3
: L → F3. Let T := ResF3/k(TL/F3

). Then T is an algebraic torus over
k of dimension 3. As in section 2, the torus TL/F3

, corresponding to the quadratic
extension L/F3, is rational over k (i.e., is birationally isomorphic over k to A

1), and
thus the torus T is rational over k (i.e., birationally isomorphic over k to A

3). The two-
dimensional torus TL/k is the hypersurface cut out by the equation NL/F2

= 1 inside
the torus T, where NL/F2

denotes the norm map from L to F2. This hypersurface
is defined by a quadratic equation that can be used to parametrize the hypersurface.
When k = Fq, then the above says that T6,q is the two-dimensional subvariety of the
three-dimensional torus ResFq3/Fq

(T2,q3) that is cut out by the equation NFq6/Fq2
= 1.

Fix x ∈ F2 − k, so F2 = k(x), and choose a basis {α1, α2, α3} of F3 over k. Then
{α1, α2, α3, xα1, xα2, xα3} is a basis of L over k. Let σ ∈ Gal(L/k) be the element of
order 2. Define a (one-to-one) map j0 : A

3(k) ↪→ L× by

j0(u, v, w) =
γ + x

γ + σ(x)
,

where γ = uα1 + vα2 + wα3. Then NL/F3
(j0(u)) = 1 for every u = (u, v, w). Let

U = {u ∈ A
3 : NL/F2

(j0(u)) = 1}.

By Definition 5.2, j0(u) ∈ TL/k if and only if u ∈ U , so restricting j0 to U gives a
morphism

(6.1) j0 : U → TL/k − {1}.

We will next define a birational map from A
2 to U . A calculation in Mathematica

shows that U is a hypersurface in A
3 defined by a quadratic equation in u, v, w. Fix

a point β = (β1, β2, β3) ∈ U(k). By adjusting the basis {α1, α2, α3} if necessary,
we can assume without loss of generality that the tangent plane at β to the surface
U is the plane u = β1. If (a, b) ∈ k × k, then the intersection of U with the line
β + t(1, a, b) consists of two points, namely, β and g(a, b) = β + 1

h(a,b) (1, a, b) for some

h(a, b) ∈ k[a, b]. The map g defines a morphism

(6.2) g : A
2 − V (h) → U − {β},

so j0 ◦ g defines a morphism

(6.3) j : A
2 − V (h) → TL/k − {1, j0(β)}.



TORUS-BASED CRYPTOGRAPHY 1413

For the inverse, write t = c + dx ∈ TL/k(k) − {1, j0(β)} with c, d ∈ F3. One
checks easily that d 
= 0, and if γ = (1 + c)/d, then γ/σ(γ) = t. Write (1 + c)/d =
uα1 + vα2 + wα3 with ui ∈ k, and define

f(t) =

(
v − β2

u− β1
,
w − β3

u− β1

)
.

It follows from the discussion above that f : TL/k − {1, j0(β)}−→∼ A
2 − V (h) satisfies

f ◦ j = id and j ◦ f = id, so (6.1), (6.2), and (6.3) are isomorphisms, and we obtain
the following.

Theorem 6.2. The above maps f and j induce inverse birational isomorphisms
over k between TL/k and A

2.
Note that in the examples in section 3.2, the coefficients of the rational maps f

and j are independent of q.
Remark 6.3. While the choice of j0 on first glance might look obvious, in fact

replacing j0 by the seemingly just as obvious j1(u, v, w) = (γx+ 1)/(γσ(x) + 1) leads
to a hypersurface U defined by a cubic, rather than a quadratic, that does not seem
to easily lead to a parametrization, and thus does not easily lead to efficient functions
f and j. This is especially relevant when trying to generalize to the case of n = 30,
where it is not at all clear how to correctly choose a generalization of j0.

Lenstra [20] asked whether XTR can be generalized to obtain more security (see
also [5]). The next interesting case after n = 6 (i.e., the first case where n/ϕ(n) >
6/ϕ(6) = 3) is when n = 30, where finding efficient generalizations of the XTR or
CEILIDH compression/decompression maps is an open question. (However, see the
next section for other techniques.) The following problem is discussed in sections 5–6
of [36] and can be viewed as giving a general mathematical framework for the question
of extending XTR and CEILIDH.

Voskresenskĭı’s Conjecture. If L/k is a finite cyclic extension of fields, then
TL/k is rational over k; i.e., if n = [L : k], there is a birational isomorphism over k

TL/k ����� A
ϕ(n).

By work of Klyachko and Voskresenskĭı, this conjecture is known to hold when n is
a product of at most two prime powers [17] (see also section 6.3 of [36]). In sections 3.2
and 2 above we gave explicit birational isomorphisms in some cases where n = 6 and
2. A Tn-cryptosystem arises for every n for which Voskresenskĭı’s Conjecture is true
over a finite field with efficiently computable birational maps.

When n is divisible by more than two distinct primes, Voskresenskĭı’s Conjecture
is still an open question (despite a claim to the contrary in [37]). In particular, the
conjecture is not known when n = 30 = 2 · 3 · 5.

7. Stable rationality. In Definition 7.1 below we give the definition of stable
rationality. One reason that Voskresenskĭı’s Conjecture would be difficult to disprove
is that the tori TL/k (for L/k cyclic) are known to always be stably rational over
k (see the corollary on p. 61 of [36]), and it seems to be very difficult to prove the
nonrationality of a stably rational torus. Although the stable rationality of TL/k does

not enable one to represent elements of Gq,n in F
ϕ(n)
q , it does allow one to represent

elements of Gq,n×F
r
q in F

ϕ(n)+r
q for a suitable r. In the language of the mathematical

framework of this paper, the paper [8] of van Dijk and Woodruff can be viewed as a
way to make clever use of the stable rationality of the algebraic tori Tn by encoding
the message to be encrypted or signed in the extra affine piece A

r.
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Definition 7.1. A variety V over k is called stably rational over k if V ×A
r is

rational over k for some r ≥ 0 (i.e., V × A
r is birationally isomorphic over k to A

s

for some r and s).
In [8], van Dijk and Woodruff used the polynomial identity

Φn(x) =
∏

d|n
(xd − 1)μ(n/d)

to obtain an “almost bijection” between Gq,n × F
r
q and F

s
q, where

r =
∑

d|n,μ(n/d)=−1

d, s =
∑

d|n,μ(n/d)=1

d.

In particular, this gave an “almost bijection” between Gq,30×F
32
q and F

40
q , from which

they obtained public key cryptosystems. In [7], the rationality of T6, the ideas of [8],
and the polynomial identity

Φn(x)

r−1∏

i=2

Φp1···pi(x
pi+2···pr ) = Φp1p2(x

p3···pr ),

where n = p1 · · · pr is a product of r ≥ 2 distinct primes, are used to obtain an “almost

bijection” between Gq,n × F
n/3−ϕ(n)
q and F

n/3
q if n is divisible by 6, giving a useful

“almost bijection” between Gq,30 × F
2
q and F

10
q . This improves the efficiency of the

cryptosystems in [8].
It is an open question to find a birational isomorphism over Fq between T30 ×A

1

and A
9 (or to prove its nonexistence).

8. Security considerations. The map α 	→ (α(qn−1)/Φt(q))t|n gives a homo-
morphism

F
×
qn

∼= (ResFqn/Fq
Gm)(Fq) →

⊕
t|n

Tt(Fq) ∼=
⊕
t|n

Gq,t = Gq,n ⊕ ⊕
t|n
t�=n

Gq,t

whose kernel and cokernel have orders whose prime divisors all divide n. We have
Gq,t ⊆ F

×
qt for all t, so for t|n and t < n the elements of the subgroups Gq,t lie in a

strictly smaller field than Fqn and are therefore vulnerable to attacks on the discrete
logarithm problem in F

×
qt for t|n with t < n. By Lemma 1 of [4], if h ∈ Gq,n is an

element of prime order not dividing n, then Fq(h) = Fqn ; i.e., almost none of the
elements of Gq,n lie in a proper subfield of Fqn .

Part (ii) of the following result shows that the finite cyclic group Gq,n = Tn(Fq)
is as cryptographically secure as F

×
qn against the known subexponential attacks on the

discrete logarithm problem.
Proposition 8.1. Suppose p is a prime, m and n are positive integers, q = pm,

and (n, q) 
= (6, 2). Then
(i) min{k ∈ Z

+ : Φn(q) divides pk − 1} = mn; and
(ii) the smallest extension F of Fp such that Gq,n ⊆ F× is Fqn .

Proof. Let k be the smallest positive integer such that Φn(q) divides pk−1. Since
Φn(q) divides qn − 1, we have k ≤ mn. First suppose mn > 2. Since (n, q) 
= (6, 2), it
follows from a result of Zsigmondy (see Theorem 8.3, section IX of [14]) that Φmn(p)
has a prime divisor � that does not divide mn. By Lemma 4 of [27], mn is the order
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of p modulo �. Since � divides Φmn(p), which divides Φn(pm), which divides pk − 1,
we have mn ≤ k. Thus k = mn, as desired. If n = 1, then clearly k = m. If
n = 2 and m = 1, then clearly k = 2. This gives (i). Part (ii) follows from (i) since
|Gq,n| = Φn(q) and qn = pmn.

In a 2004 preprint, Kohel [18] suggests attacking cryptography on Gq,n by using
the fact that when n is odd and relatively prime to q, the tori Tn and T2n are
subschemes of the generalized Jacobian of a singular hyperelliptic curve y2 = cxf(x)2,
where f(x) ∈ Fq[x] is irreducible of degree n. This seems like an interesting point of
view that needs to be fleshed out and studied more fully.

Gaudry introduced a new probabilistic index calculus attack on the discrete loga-
rithm problem for abelian varieties in his 2004 preprint [9]. Granger and Vercauteren
[13] did an analogue of Gaudry’s attack for the multiplicative group Gm, which gives
an attack on a subgroup of F

×
q6 whose order is a 160-bit prime that is faster than Pol-

lard ρ (which has complexity O(
√
q)) when q is a sufficiently large fifth power (and

therefore this attack applies also to subgroups of F
×
q30), but has not been compared

to index calculus attacks.
Joux et al. [15, 16] recently obtained efficient variants of the function field and

number field sieve that bring the complexity of these attacks on the discrete log
problem in F

×
pn to Lpn(1/3) for all finite fields Fpn , including the intermediate range

where only Lpn(1/2) was previously known. They point out that the tori T2 and T6,
which underlie LUC, XTR, and CEILIDH, appear to be safe from such attacks, as
are cryptosystems based on the difficulty of the discrete log problem in T30 over Fp

for 64-bit primes p, but not for 32-bit p.
To summarize, CEILIDH and XTR seem to be safe from known attacks, if one

takes the parameter q to be a prime of at least 170 (≈ 1024
6 ) bits. For T30-crypto-

systems, Joux recommends taking 64-bit primes q to avoid all known attacks.

9. Interpreting discrete log cryptosystems in terms of quotients of tori.
We will show that the XTR, Gong–Harn, and Lucas-based cryptosystems are based
on the rationality of certain quotients of algebraic tori by the action of certain (finite)
symmetric groups. In particular, Theorems 9.7 and 9.8, and the definition of the
maps σ̃i,F in (5.2), show that the Lucas-based, Gong–Harn, and XTR cryptosystems
are “based on” the quotient varieties T2/S2, T3/S3, and T6/S3, respectively, and the
conjectural “Looking beyond XTR” systems in [4] would be based on the quotient
varieties T30/(S3×S5) or T30/(S2×S3×S5), where Sr denotes the symmetric group on
r letters, and the actions of these symmetric groups on Tn are defined in section 9.1.
Theorem 9.11 shows that T2/S2, T3/S3, and T6/S3 are rational varieties (and that is
why the cryptosystems have efficient compression).

More precisely, for XTR, information exchanged corresponds to a Gal(Fq6/Fq2)-
conjugacy class of Gq,6, which by Theorems 9.7 and 9.8 corresponds to an element of
T6/S3. The cryptosystem XTR takes advantage of the fact that T6/S3 is rational,
and the trace map from Fq6 to Fq2 induces a morphism and birational isomorphism
T6/S3 → A

2(= ResFq2/Fq
A

1) over Fq as in Theorem 9.11 and therefore gives a compact

representation of T6/S3 (i.e., an element of (T6/S3)(Fq) is represented by two elements
of Fq). The set of equivalence classes T6/S3 is not a group, because multiplication
in T6 does not send S3-orbits to S3-orbits. This explains why XTR does not have a
straightforward way to multiply. However, exponentiation in T6 does send S3-orbits
to S3-orbits, and it induces a well-defined exponentiation in T6/S3, and therefore in
the set Λ(Fq,Fq2 ,Fq6) of XTR traces (defined below).

Similarly for Lucas-based cryptosystems, the elements being exchanged corre-
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spond to elements of T2/S2, and the trace map from Fp2 to Fp induces a morphism
and birational isomorphism T2/S2 → A

1 over Fp.
From now on, L/k is a finite cyclic extension, n := [L : k] is squarefree, and

k ⊆ F ⊆ L, G := Gal(L/k), H := Gal(L/F ), e := |H|, d := n/e.

We define an algebraic variety XF that underlies XTR, Gong–Harn, and the
Lucas-based cryptosystems (with k = Fq and (F,L) = (Fq2 ,Fq6), (Fq,Fq3), and
(Fq,Fq2), respectively). Theorem 9.11 below shows that in those cases, XF is rational.
Theorem 9.11 can be viewed as a rephrasing of a result in [5]. Phrasing Theorem 9.11
in terms of quotients of algebraic tori and birational isomorphisms makes precise the
underlying mathematics. This helped us find counterexamples in more general cases
(see section 10), and may be useful in the future to indicate what ideas might be
necessary to obtain correct and useful generalizations.

When (k, F, L) = (Fq,Fqn ,Fqn), then (n, d, e) = (n, n, 1) and the varieties XF and
Tn/Se are Tn itself, corresponding to the Tn-cryptosystems (T2 is the case (n, d, e) =
(2, 2, 1) and CEILIDH is the case (6, 6, 1)). An effective proof of Voskresenskĭı’s
Conjecture would provide a birational isomorphism between Tn and A

ϕ(n).
Because the details become more technical from this point on, we recommend

that the casual reader ignore the proofs, lemmas, and propositions and concentrate
on the definitions, theorem statements, and examples.

9.1. Group actions on tori. We next define actions of symmetric groups on
the tori TL/k. If Γ is a finite set, let ΣΓ denote the group of permutations of Γ. As
an abstract group, ΣG (resp., ΣH) is the symmetric group Sn (resp., Se). Since n is
squarefree, there is a unique subgroup J ⊆ G such that G = H × J . This decompo-
sition induces inclusions ΣH ⊆ ΣG ⊆ Autk(A

G) and ΣH ⊆ ΣG ⊆ Autk(G
G
m). More

concretely, the action of π ∈ ΣH = Se on A
G = A

n is (xi)i∈Z/nZ 	→ (xπ−1(i))i∈Z/nZ,
where Se acts on G = Z/nZ via the decomposition Z/nZ ∼= Z/eZ×Z/dZ, with trivial
action on the second factor. See also Examples 9.3 and 9.4 below. We have

A
n = A

G ∼=
L

ResL/kA
1 ⊃ ResL/kGm ⊃ TL/k.

The action of ΣH on ResL/kA
1 ∼= A

G sends ResL/kGm to ResL/kGm. The images
of ΣH in AutL(ResL/kA

1) ∼= AutL(AG) and in AutL(ResL/kGm) ∼= AutL(GG
m) are

stable under the action of Gal(L/k) (by Corollary 1.7(i) of [24] with I = J = Z[G]
and V = Ga = A

1 and V = Gm and Proposition 4.1 of [24] with O = Z and V = Ga

and Gm), and it follows that the quotient varieties A
G/ΣH , (ResL/kA

1)/ΣH , and
(ResL/kGm)/ΣH are all defined over k.

Recall the maps σ̃i,F from (5.2). We will make repeated use of the following
lemma.

Lemma 9.1 (Proposition 3.2 of [29]). The maps σ̃i,F for 1 ≤ i ≤ e factor through
(ResL/kA

1)/ΣH and induce a commutative diagram

ResL/kGm �� ��

⊕e
i=1σ̃i,F ������������������������������ (ResL/kGm)/ΣH

� � �� (ResL/kA
1)/ΣH

��
⊕e

i=1σ̃i,F

��
(ResF/kA

1)e

where the right-hand vertical map is an isomorphism over k.
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If e is divisible by two or more primes, then the action of ΣH on ResL/kGm does
not send TL/k to itself. We illustrate this concretely in Examples 9.3 and 9.4 below.
The following result, which is used in Theorem 9.7 below, tells us which elements of
ΣG do send TL/k to itself. In particular, Lemma 9.2 shows that if p is a prime divisor
of n, then the action of Sp on A

n (= A
G) does take Tn to itself.

Write G =
∏

Gi, with the Gi cyclic groups of (distinct) prime order.
Lemma 9.2. If σ ∈ ΣG, then σ(TL/k) ⊆ TL/k if and only if σ ∈ ∏

i ΣGi
.

Proof. This follows from Theorem 7.3 of [24]; see also Lemma 3.5 of [29].
The following examples give concrete realizations of the tori Tn that allow explicit

computation and show how the symmetric groups act.
Example 9.3. Let n = e = 6 and d = 1, and let

Γ = Z/6Z ∼= Z/2Z × Z/3Z ⊃ Ω = (Z/2Z)× × (Z/3Z)× ∼= (Z/6Z)×.

By Definition 5.3, TΓ ⊂ G
Γ
m −→∼ G

6
m can be identified with the 2× 3 matrices over Gm

for which each row and column product is 1. By Lemma 5.4 we have T6
∼= TΓ over

Fq6 , and by Lemma 5.6 we have G
2
m

∼= G
Ω
m −→∼ TΓ ⊂ G

Γ
m −→∼ G

6
m via

(x1, x2) 	→
(

x1 x2 (x1x2)
−1

x−1
1 x−1

2 x1x2

)
.

The action of S2 interchanges the rows, and the action of S3 permutes the columns
of the 2 × 3 matrix. However, the action of S6 on G

Γ
m = G

6
m does not take TΓ into

itself (i.e., there are permutations of the 6 matrix entries that do not give a matrix of
the same form). Thus, the action of S6 does not take T6 into itself.

Example 9.4. More generally, if n = pq and

Γ = Z/nZ ∼= Z/pZ × Z/qZ ⊃ Ω = (Z/pZ)× × (Z/qZ)× ∼= (Z/nZ)×,

then by Definition 5.3, TΓ ⊂ G
Γ
m −→∼ G

n
m can be identified with the p× q matrices over

Gm for which each row and column product is 1. By Lemma 5.4 we have Tn
∼= TΓ

over Fqn , and by Lemma 5.6 we have G
(p−1)(q−1)
m

∼= G
Ω
m −→∼ TΓ ⊂ G

Γ
m −→∼ G

n
m via

(xi,j)1≤i≤p−1,1≤j≤q−1 	→
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1,1 x1,2 · · · x1,q−1 (
∏q−1

�=1 x1,�)
−1

x2,1 x2,2 · · · x2,q−1 (
∏q−1

�=1 x2,�)
−1

...
...

...
...

...

xp−1,1 xp−1,2 · · · xp−1,q−1 (
∏q−1

�=1 xp−1,�)
−1

(
∏p−1

k=1 xk,1)
−1 (

∏p−1
k=1 xk,2)

−1 · · · (
∏p−1

k=1 xk,q−1)
−1

∏q−1
�=1

∏p−1
k=1 xk,�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now Sp acts on TΓ by permuting the rows of the matrix, and Sq acts by permuting
the columns. However, the action of Sn on G

Γ
m = G

n
m does not take TΓ into itself

and so does not take Tn into itself. More generally, taking n = p1p2 · · · pr, one can
represent TΓ via a p1 × · · · × pr multidimensional matrix. The proof of Lemma 5.6
can be viewed as a coordinate-free version of this representation.

Definition 9.5. Let XF denote the image of TL/k in (ResL/kGm)/ΣH . Let
XH be the image of TG under the map G

G
m � G

G
m/ΣH , with ΣH acting on G

G
m by

permuting the factors as above.
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It follows from Lemma 5.6 that TG and TL/k, and thus XH and XF , are absolutely
irreducible.

Write H =
∏

Hi with {Hi} ⊆ {Gi}, and define

Σ′
H :=

∏

i

ΣHi
⊆ ΣH .

More concretely, letting e = p1 · · · pr be the prime factorization of the squarefree
positive integer e, and letting S′

e := Sp1 × · · ·×Spr , then Σ′
H = S′

e. Note that when e
is prime, then S′

e = Σ′
H = ΣH = Se. By Lemma 9.2, Σ′

H ⊆ Autks
(TL/k). Clearly the

map TL/k → XF factors through TL/k/Σ
′
H . When k = Fq, we will denote TL/k/Σ

′
H

by Tn/S
′
e.

The next lemma is used to prove Theorem 9.7.

Lemma 9.6. Suppose Y is an affine variety defined over k, and X is an irreducible
affine subvariety of Y defined over k. Suppose Autks(Y ) contains a finite group Σ,
and let Σ0 = {γ ∈ Σ : γ(X) ⊆ X}. Then the natural map X/Σ0 → Y/Σ induces a
birational isomorphism over k from X/Σ0 to its image in Y/Σ.

Proof. If g ∈ Σ, let Ug = X − g−1(X). Let U = ∩g∈Σ−Σ0
Ug. Then U is a

nonempty Zariski-open subset of X. By the definition of U , the natural map X/Σ0 →
Y/Σ is injective on the image of U in X/Σ0, proving the desired result.

Theorem 9.7. The natural map TL/k/Σ
′
H → XF is a birational isomorphism

over k.

Proof. By Lemmas 9.6 and 9.2, the natural map TL/k/Σ
′
H → (ResL/kGm)/ΣH

induces a birational isomorphism to XF .

The next result will be used to prove Theorems 10.5 and 10.9.

Theorem 9.8. Fix an isomorphism (φ1, . . . , φd) : ResF/kA
1 −→∼ A

d over k (for
example, by fixing a k-basis of F ). Then the function field k(XF ) is generated by the
symmetric functions {φj ◦ σ̃i,F : 1 ≤ i ≤ e, 1 ≤ j ≤ d}.

Proof. By Lemma 9.1, the function field k((ResL/kA
1)/ΣH) is generated by the

maps φj ◦ σ̃i,F . Since XF is a subvariety of (ResL/kA
1)/ΣH , the restrictions of those

maps to XF generate k(XF ).

Remark 9.9. Let GL/k ⊆ L× be the image of TL/k(k) under the map of The-
orem 5.7(ii), and let ρ : TL/k → XF be the natural map. Then Theorem 9.8 (com-
bined with Lemma 5.1) shows that ρ induces a one-to-one correspondence between
the Gal(L/F )-orbits of GL/k and the subset ρ(TL/k(k)) of XF (k). In particular, the
Gal(Fqn/Fqd)-orbits of Gq,n are in bijection with the image of Tn(Fq) in XF

qd
(Fq).

When n = 6, k = Fq, and F = Fq2 , the map ResFq6/Fq
Gm → (ResFq6/Fq

Gm)/S3

induces ρ : T6 → T6/S3 = XF , a (generically) 6-to-1 map. However, for the in-
duced map on Fq-points ρ : T6(Fq) → XF (Fq), almost all nonempty fibers have size
3, corresponding to Gal(Fq6/Fq2)-orbits in Gq,6.

9.2. Interpreting XTR, Gong–Harn, and Lucas-based systems. Theo-
rem 9.11 below can be viewed as a rephrasing, in the language of this paper, of a
result in section 5 of [5] (see also Proposition 1 of [4]) that says that the minimal
polynomial over Fqd of an element of Gp,n can be represented using ϕ(n) log2(p) bits
if d = 1 or 2 and e is prime.

With notation k, L, F , G, H, n, e, and d as before, let u = �ϕ(n)/d�. There is a
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commutative diagram

TL/k

����

⊆ ResL/kGm
� � �� ResL/kA

1

⊕u
i=1σ̃i,F

��

∼ ��

����											
A

G

⊕u
i=1si

��
TL/k/Σ

′
H

�� (ResL/kA
1)/Σ′

H
�� (ResF/kA

1)u
∼ �� (AG/H)u

where the top and bottom isomorphisms are defined over L and F , respectively, and
the functions si were defined in Definition 5.3. Let

(9.1) λF := (σ̃1,F , . . . , σ̃u,F ) : TL/k/Σ
′
H → (ResF/kA

1)u

denote the composition in the bottom row, and let

Λ(k, F, L) := {λF (α) : α ∈ TL/k(k)} ⊆ (ResF/kA
1)u(k) ∼= Fu.

Note that Λ(Fq,Fqd ,Fqn) = {(σ1(α), . . . , σu(α)) : α ∈ Gq,n} ⊆ (Fqd)
�ϕ(n)/d�,

where σi(α) is the ith symmetric function on {αγ : γ ∈ Gal(Fqn/Fqd)}. The Lucas-
based and XTR cryptosystems correspond to the cases (n, d, e) = (2, 1, 2) and (6, 2, 3),
respectively. In these two cases, λF is essentially the trace map from Fqn to Fqd ,
and Λ(Fq,Fqd ,Fqn) is the set of traces used in the Lucas-based systems and XTR,
respectively. Further, when (n, d, e) = (3, 1, 3), then Λ(Fq,Fqd ,Fqn) is the set of
values that occur in the Gong–Harn cryptosystem. In Theorem 10.5 below we will
show that a conjecture in [4] on how to generalize XTR would imply that λF is always
a birational isomorphism.

The following result, which will be used to prove Theorem 10.9, gives equivalent
conditions for λF to be a birational isomorphism.

Proposition 9.10.

(i) The isomorphism TL/k −→∼ TG of Lemma 5.4 induces an isomorphism

XF −→∼ XH

defined over F .
(ii) Lemma 9.1 remains true when ResL/kGm, ResL/kA

1, and σ̃i,F are replaced
by G

G
m, A

G, and si, respectively, where the si were defined in Definition 5.3.
(iii) There is a commutative diagram, with maps defined over F ,

XF
∼ ��

⊕e
i=1σ̃i,F

��

XH

⊕e
i=1si

��
(ResF/kA

1)e
∼ �� (AG/H)e

where the top map is the isomorphism of (i), the bottom isomorphism is given
by the eth power of (4.3) (with V = A

1), and the left map is induced by the
map of Lemma 9.1.

(iv) There is a commutative diagram

TL/k/Σ
′
H

��

λF ��











XF

∼ ��

⊕u
i=1σ̃i,F

��

XH

⊕u
i=1si

��
(ResF/kA

1)u
∼ �� (AG/H)u
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where the top left map is the birational isomorphism of Theorem 9.7, the top
right map is from (i), and the bottom map is the uth power of (4.3).

(v) The following are equivalent:
(a) λF is a birational isomorphism,
(b) ⊕u

i=1σ̃i,F is a birational isomorphism,
(c) ⊕u

i=1si is a birational isomorphism.

Proof. Part (i) follows from Lemma 5.4, (4.3), and the definitions of XF and XH .
Part (ii) follows from (4.3). Part (iii) now follows immediately, while (iv) follows from
Theorem 9.7 and the definition of λF . Part (v) follows from (iv) and the fact that
being a birational isomorphism is invariant under change of base field.

Theorem 9.11. Suppose e is prime and d = 1 or 2. Then λF is a birational
isomorphism and injective morphism

TL/k/Σ
′
H ↪→ (ResF/kA

1)ϕ(n)/d (∼= A
ϕ(n))

such that Λ(k, F, L) is the image of the composition

TL/k(k) −→ (TL/k/Σ
′
H)(k) ↪→ (ResF/kA

1)ϕ(n)/d(k) ∼= Fϕ(n)/d.

In this way, Λ(k, F, L) can be identified with the image of TL/k(k) in (TL/k/Σ
′
H)(k).

Proof. By definition, Λ(k, F, L) is the image of the composition

TL/k(k) → (TL/k/Σ
′
H)(k) → (ResF/kA

1)u(k) ∼= Fu.

When d divides ϕ(n), then TL/k and (ResF/kA
1)u are both ϕ(n)-dimensional varieties

over k. Thus to prove the theorem we need only show that when d = 1 or 2 and e is
prime then λF is injective. By Lemma 9.1,

(9.2) (σ̃1,F , . . . , σ̃e,F ) : (ResF/kA
1)/ΣH −→∼ (ResF/kA

1)e.

Suppose e is prime. Then Σ′
H = ΣH , and TL/k/Σ

′
H is a subvariety of ResF/kA

1/ΣH .

Suppose first that d = 1. By the definitions of TL/k and σ̃e,F , we have σ̃e,F =
NL/F,k = 1 on TL/k. Thus (σ̃1,F , . . . , σ̃e,F ) = (λF , 1) on TL/k. The injectivity of λF

follows from the injectivity of (9.2).

Now suppose that d = 2 (so e is an odd prime). Let M denote the degree e
extension of k in L and let ρ denote the element of order 2 in G. We have NL/M,k(g) =
g ·gρ and NL/M,k = 1 on TL/k. Thus ρ is the same as inversion on TL/k. By definition,

σ̃i,F (g1, . . . , ge) =
∑

S⊆{1,...,e}
|S|=i

∏

j∈S

gj ,
σ̃e−i,F

σ̃e,F
(g1, . . . , ge) =

∑

S⊆{1,...,e}
|S|=i

∏

j∈S

g−1
j .

Since ρ is inversion on TL/k and σ̃e,F = 1 on TL/k, we have σ̃ρ
i,F = σ̃e−i,F /σ̃e,F =

σ̃e−i,F on TL/k. Thus

(σ̃1,F , . . . , σ̃e,F ) = (σ̃1,F , . . . , σ̃(e−1)/2,F , σ̃
ρ
(e−1)/2,F , . . . , σ̃

ρ
1,F , 1)

on TL/k. Since λF = (σ̃1,F , . . . , σ̃(e−1)/2,F ), the injectivity of λF again follows from
(9.2).
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10. Looking beyond XTR. Lenstra [20] asked if one can use n = 30 to do
better than XTR. The Bosma–Hutton–Verheul paper “Looking beyond XTR” [4],
building on a conjecture in [5], asked whether, for n > 6, some set of elementary
symmetric polynomials can be used in place of the trace. In particular, [4] asked
whether one can recover the values of all the elementary symmetric polynomials (i.e.,
the entire characteristic polynomial) for Gal(Fpn/Fpd) from the first �ϕ(n)/d� of them
(this was already answered in the affirmative in [5] when (d, n/d) = (1, �) or (2, �) with
� prime). If this were true, one could use the first �ϕ(n)/d� elementary symmetric
polynomials on the set of Gal(Fpn/Fpd)-conjugates of an element h ∈ Gq,n to compress
h, representing it via ϕ(n) elements of Fq.

Of the four conjectures stated in [4], the two “strong” conjectures were disproved
there. In Theorem 10.1 and Corollary 10.2 below we disprove the two remaining
conjectures (Conjectures 1 and 3 of [4], which were also called (d, e)-BPV and n-
BPV in [4]). In fact, we can do better. We have constructed examples that show not
only that the conjectures are false but also that weakening the conjectures does not
help. In particular, when n = 30 and p = 7, we can show that

• for d = 1, no 8 (= ϕ(n)/d) elementary symmetric polynomials determine any
of the remaining ones, except for those determined by the symmetry of the
characteristic polynomial;

• for d = 1, no 10 elementary symmetric polynomials determine all of them;
and

• for d = 2, no 4 (= ϕ(n)/d) elementary symmetric polynomials determine all
of them.

Rationality of the varieties Tn/S
′
n (or, more generally, the varieties Tn/S

′
e) would

imply the conjecture in [5] that characteristic polynomials (i.e., Galois-conjugacy
classes) of elements of Gp,n can be represented using ϕ(n) log2(p) bits. We see in
Theorem 10.5 below that the conjectures in [4] would imply the stronger statement
(when d divides ϕ(n)) that the map λF

qd
of (9.1) is a (morphism and) birational

isomorphism

Tn/S
′
e → (ResF

qd
/F

q
A

1)ϕ(n)/d ∼= A
ϕ(n).

Theorem 9.11 above showed this is true when e is a prime and d = 1 or 2. In
particular, it is true when (d, e) is (1, 1) (Diffie–Hellman), (1, 2) (Lucas-based), (1, 3)
(Gong–Harn), and (2, 3) (XTR). Theorem 10.9 below shows that this is false for
(d, e) = (1, 30) and (2, 15) in all but at most finitely many characteristics p; i.e., the
first eight elementary symmetric polynomials do not induce a birational isomorphism
T30/S

′
30 = T30/(S2 ×S3 ×S5) → A

8 over Fp, and the first four elementary symmetric
polynomials on the Gal(Fp30/Fp2)-conjugates of an element in T30 do not induce a
birational isomorphism T30/S

′
15 = T30/(S3 ×S5) → (ResFp2/Fp

A
1)4 ∼= A

8 over Fp. In

summary, elementary symmetric polynomials are not the correct functions to use.
Fix an integer n > 1, a prime p, and a factorization n = de with e > 1. For

h ∈ Gp,n, let P
(d)
h be the characteristic polynomial of h over Fpd , and define functions

aj : Gp,n → Fpd by

P
(d)
h (X) = Xe + ae−1(h)Xe−1 + · · · + a1(h)X + a0(h).

Then a0(h) = (−1)e. If n is even, then

(10.1) aj(h) = (−1)e(ae−j(h))p
n/2
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for all j ∈ {1, . . . , e − 1} (see, for example, Theorem 1 of [4] or the proof of Theo-
rem 9.11 above). Let

Sp,n = {h ∈ Gp,n : Fp(h) = Fpn}.

Next we state Conjectures 1 and 3 (also called (d, e)-BPV and n-BPV, resp.) of
[4].

Conjecture (d, e)-BPV. Let n = de with e > 1. Then �ϕ(n)/d� is the smallest
positive integer u for which there are polynomials

Qj ∈ Z[X
(0)
1 , . . . , X

(d−1)
1 , X

(0)
2 , . . . , X

(d−1)
2 , . . . , X(0)

u , . . . , X(d−1)
u ]

for all 1 ≤ j ≤ e− u− 1, such that for every prime p and every h ∈ Sp,n,

aj(h) = Q̄j(ae−1, a
p
e−1, . . . , a

pd−1

e−1 , ae−2, a
p
e−2, . . . , a

pd−1

e−2 , . . . , ae−u, a
p
e−u, . . . , a

pd−1

e−u ),

where Q̄j denotes Qj with coefficients taken modulo p.
Conjecture n-BPV . Suppose 1 < n ∈ Z. Then n has a divisor d such that d

divides ϕ(n) and Conjecture (d, n/d)-BPV holds.
Theorem 10.1. Conjecture (d, e)-BPV is false when (d, e) = (1, 30) and (2, 15).
Proof. Let u = �ϕ(n)/d�. Conjecture (d, e)-BPV would imply there are poly-

nomials Q1, . . . , Qe−u−1 ∈ Z[x1, . . . , xu] such that aj(h) = Qj(ae−u(h), . . . , ae−1(h))
for all primes p, h ∈ Sp,n, and j ∈ {1, . . . , e − u − 1}; so for each p and h the values
ae−u(h), . . . , ae−1(h) would determine aj(h) for every j. We will disprove Conjecture
(d, e)-BPV by exhibiting two elements h, h′ ∈ Sp,n such that aj(h) = aj(h

′) whenever
e− u ≤ j ≤ e− 1 but aj(h) 
= aj(h

′) for at least one j < e− u, with p = 7 and 11.
Let n = 30, and p = 7 or 11. Note that Φ30(7) = 6568801 (a prime) and Φ30(11) =

31 × 7537711. Since Φ30(p) is relatively prime to 30, by Lemma 1 of [4] we have
Sp,30 = Gp,30 −{1}. View the field Fp30 as Fp[x]/f(x) with an irreducible polynomial
f(x) ∈ Fp[x], and fix a generator g of Gp,n. Specifically, let r = (p30 − 1)/Φ30(p)
and let

f(x) = x30 + x2 + x + 5, g = xr if p = 7,

f(x) = x30 + 2x2 + 1, g = (x + 1)r if p = 11.

Case 1. d = 1, e = 30. Then u = �ϕ(n)/d� = ϕ(30) = 8. For h ∈ Sp,30 =
Gp,30 − {1} and 1 ≤ j ≤ 29 we have aj(h) = a30−j(h) by (10.1), so we need only
consider aj(h) for 15 ≤ j ≤ 29. By constructing a table of gi and their characteristic

polynomials P
(d)
gi for i = 1, 2, . . . , and checking for matching coefficients, we found the

examples in Tables 1 and 2 below. The examples in Table 1 (resp., Table 2) disprove
Conjecture (1, 30)-BPV with p = 7 (resp., 11).

Case 2. d = 2, e = 15. Then u = �ϕ(n)/d� = ϕ(30)/2 = 4. For h ∈ Sp,30 =
Gp,30 − {1} and 1 ≤ j ≤ 14 we have aj(h) = ā15−j(h) by (10.1), where ā denotes
conjugation in Fp2 . Thus we need only consider aj(h) for 8 ≤ j ≤ 14. View Fp2 as
Fp(i), where i2 = −1. A computer search as above leads to the examples in Tables 3
and 4. The examples in Table 3 (resp., Table 4) disprove Conjecture (2, 15)-BPV
with p = 7 (resp., 11).

If n > 1 is fixed, then Conjecture n-BPV of [4] says that there exists a divisor
d of both n and ϕ(n) such that (d, n/d)-BPV holds. Since gcd(30, ϕ(30)) = 2, when
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Table 1

Values of aj(h) ∈ F7 for several h ∈ G7,30.

h \ j 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

g2754 3 2 0 6 4 4 2 5 4 0 2 2 1 4 4

g6182 5 4 4 5 5 3 1 5 4 0 2 2 1 4 4

g5374 2 0 5 2 1 6 4 6 1 1 5 6 4 2 6

g23251 4 2 0 2 3 6 4 6 1 1 5 6 4 2 6

Table 2

Values of aj(h) ∈ F11 for several h ∈ G11,30.

h \ j 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

g7525 10 2 9 7 7 5 6 9 2 1 8 10 4 1 10

g31624 10 2 2 4 2 3 10 9 2 1 8 10 4 1 10

g46208 9 9 6 10 6 10 10 8 1 3 2 7 4 6 5

g46907 7 8 0 0 1 7 10 8 1 3 2 7 4 6 5

Table 3

Values of aj(h) ∈ F49 for certain h ∈ G7,30.

h \ j 8 9 10 11 12 13 14

g173 4 + 4i 5 + i 1 + 6i 4i 2 + 3i 6 + 3i 3+i

g2669 6 6 + 3i 5 + i 4i 2 + 3i 6 + 3i 3+i

g764 6 + 6i 5 5 0 0 6 2

g5348 6 + i 5 5 0 0 6 2

Table 4

Values of aj(h) ∈ F121 for certain h ∈ G11,30.

h \ j 8 9 10 11 12 13 14

g9034 10 + i 10i 3 + 3i 1 + 4i 8 + 9i 5 + 4i 9

g18196 6 + 8i 9 + 10i 8 + i 1 + 4i 8 + 9i 5 + 4i 9

n = 30 we need only consider d = 1 and 2. The following is an immediate consequence
of Theorem 10.1.

Corollary 10.2. Conjectures (1, 30)-BPV, (2, 15)-BPV, and 30-BPV of [4]
are false. Thus, Conjectures 1 and 3 of [4] are both false.

Remark 10.3. For d = 1 and e = 30, the last two lines of Table 1 (resp.,
Table 2) show that even the larger collection of values a18(h), a20(h), . . . , a29(h)
(resp., a21(h), . . . , a29(h)) does not determine any of the other values when p = 7
(resp., p = 11). We also found that no eight coefficients determine all the rest; we
found 64 pairs of elements so that given any set of eight coefficients, one of these 64
pairs agrees on these coefficients but not everywhere. In fact, we computed additional
examples that show that when p = 7, no ten coefficients determine all the rest. We
also show that when p = 7 no set of eight coefficients determines even one additional
coefficient.

Suppose now d = 2, e = 15, and p = 7. Then the last two lines of Table 3 show
that even the larger collection of values a9(h), . . . , a14(h) does not determine the
remaining value a8(h) ∈ F49. We have computed additional examples that show that
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no choice of four of the values a8(h), . . . , a14(h) determines the other three.
The next lemma is used to prove Theorem 10.5 (and Lemma 10.6) below.
Lemma 10.4. Suppose L/k is a cyclic extension of degree n, and τ is a generator

of G := Gal(L/k). Then the natural ring homomorphism γ : Z[G] → End(TL/k) has
kernel (Φn(τ)).

Proof. This follows from Proposition 4.2(iii) and Lemma 5.4 of [24].
Theorem 10.5. Suppose k is a prime field (Q or Fp), n is a squarefree integer,

L/k is a cyclic extension of degree n, k ⊆ F ⊆ L, d := [F : k], and e := [L : F ].
Suppose d divides ϕ(n). Then Conjecture (d, e)-BPV of [4] implies that the map λF

defined in (9.1) is a birational isomorphism.
Proof. Let u = ϕ(n)/d. Since dim(XF ) = dim((ResF/kA

1)u), it suffices to show
that λF induces a surjective map on function fields k((ResF/kA

1)u) → k(XF ). Fix an

isomorphism (φ1, . . . , φd) : ResF/kA
1 −→∼ A

d over k. Since {φj ◦ σ̃i,F : 1 ≤ i ≤ e, 1 ≤
j ≤ d} generates k(XF ) by Theorem 9.8, it suffices to show that for all 1 ≤ i ≤ e and
1 ≤ j ≤ d there is a gi,j ∈ k((ResF/kA

1)u) such that gi,j ◦ λF = φj ◦ σ̃i,F .
For 1 ≤ j ≤ d, let tj : (ResF/kA

1)u → ResF/kA
1 be the jth projection. Then

ti ◦ λF = σ̃i,F . With Qi from Conjecture (d, e)-BPV and writing [τ i] for γ(τ i) with
τ and γ as in Lemma 10.4, for 1 ≤ i ≤ e define fi : TL/k → ResF/kA

1 by

fi = σ̃i,F −Qi(σ̃e−1,F , [τ ] ◦ σ̃e−1,F , [τ
2] ◦ σ̃e−1,F , . . . , [τ

d−1] ◦ σ̃e−1,F ,

σ̃e−2,F , . . . , [τ
d−1] ◦ σ̃e−u,F ).

We show below that fi = 0. The desired result then follows by taking

gi,j := φj ◦Qi(t1, [τ ] ◦ t1, . . . , [τd−1] ◦ t1, t2, [τ ] ◦ t2, . . . , [τd−1] ◦ te−u).

First suppose k = Q. Viewing TL/Q(Q) ⊆ L× via Theorem 5.7(ii), let AL :=
{α ∈ TL/Q(Q) : L = Q(α)}. Fix any α ∈ AL. Let S(α) be the set of all primes � such
that Frob�(L/Q) = τ , α is integral at �, and � does not divide the discriminant of the
minimal polynomial for α over Q. Let OL denote the ring of integers of the number
field L. Since Frob�(L/Q) = τ , we have OL/�OL

∼= F�n . Since α is integral at �, and
� does not divide the discriminant of α’s minimal polynomial, we have F�n = F�(α̃),
where α̃ is the image of α under (OL)(�) → OL/�OL, with (OL)(�) the localization.
Conjecture (d, e)-BPV implies ord�(fi(α)) > 0 for all � ∈ S(α). Since S(α) is an
infinite set (by the Cebotarev density theorem), fi(α) = 0. Lemma 10.6(ii) below
shows that AL is Zariski-dense in TL/Q; therefore, fi = 0.

Now suppose k = Fp. Let L′ be any cyclic extension of Q of degree n for which
p is inert, and let F ′ be the subfield of L′ of degree d over Q. Since p is inert, the
residue field of F ′ at p is Fpd = F . The map fi is the reduction modulo p of the fi
defined in characteristic zero and thus is zero.

The previous proof made use of the following lemma.
Lemma 10.6. Suppose k is an infinite field, and L is a cyclic extension of k of

finite squarefree degree. Let ι : TL/k(k) ↪→ L× be the inclusion of Theorem 5.7(ii) and
let AL = {α ∈ TL/k(k) : L = k(ι(α))}. Then

(i) TL/k(k) is Zariski-dense in TL/k, and
(ii) AL is Zariski-dense in TL/k.

Proof. By Theorem 5.7(iii), there is a surjective morphism f defined over k from
ResL/kGm onto the connected algebraic group TL/k. Since k is infinite and ResL/kGm

is rational, (ResL/kGm)(k) is Zariski-dense in ResL/kGm. If U is a nonempty open
subset of TL/k, then f−1(U) is a nonempty open subset of ResL/kGm and so contains
an x ∈ (ResL/kGm)(k). Then f(x) ∈ TL/k(k) ∩ U . Now (i) follows.
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Let τ be a generator of G := Gal(L/k) and let n = |G|. Let ω =
∏n−1

i=1 (1 − τ i) ∈
Z[G] and let W := ker γ(ω) ⊆ TL/k, with γ as in Lemma 10.4. Then W is closed.

Since
∏n−1

i=1 (1 − xi) is not divisible by Φn(x), Lemma 10.4 implies that γ(ω) 
= 0, so
W 
= TL/k. Suppose β ∈ TL/k(k)−AL. By the definition of AL, L 
= k(ι(β)), so there
is a j ∈ {1, . . . , n − 1} such that τ j(ι(β)) = ι(β). Thus γ(τ j)(β) = β, so β ∈ W (k).
Thus TL/k(k) − AL ⊆ W (k), so AL ∪W (k) = TL/k(k). Let A be the Zariski closure
of AL in TL/k. Then TL/k(k) ⊆ A(k) ∪W (k). By (i), TL/k = A ∪W . Since TL/k is
irreducible and W 
= TL/k, we have A = TL/k, giving (ii).

Our next goal (Theorem 10.9) is to show that the conjectures in [4] are false when
n = 30 in almost all characteristics. Since we do not know whether T30 is rational, we
cannot find nice coordinates on T30. However, by Lemma 5.4, T30 is isomorphic over
Fq30 to TG, which is isomorphic to G

8
m by Lemma 5.6. Using explicit coordinates on

G
8
m, we can take derivatives with respect to these coordinates, as we do below in the

proof of Proposition 10.8. We do not know a direct proof of Theorem 10.9, without
going through Proposition 10.8.

Suppose Γ is a cyclic group of order 30, and Δ is a subgroup of Γ of index d = 1
or 2. Let u = �ϕ(n)/d�, and let

sΔ := (s1, . . . , su) : XΓ −→ (AΓ/Δ)u.

The idea of the proof of Proposition 10.8 is as follows. Suppose for simplicity that
d = 1, so Δ = Γ. We showed in Theorem 10.1 that λF7 is not injective. Using the coun-
terexample to injectivity constructed there, and the diagram of Proposition 9.10(iv),
we deduce (via the computation of a derivative and Hensel’s lemma) that sΓ over Q7

is generically not injective, so in particular sΓ over Q7 is not a birational isomorphism.
It follows that sΓ over Q is not a birational isomorphism. Reducing mod � shows that
sΓ over F� is not a birational isomorphism for all but finitely many primes �.

Lemma 10.7. With notation as in Definition 5.3, the function field k(XΔ) is
generated by the symmetric functions {si : 1 ≤ i ≤ |Δ|}.

Proof. Apply Theorem 9.8, Proposition 9.10, and Lemma 5.4.
Proposition 10.8. Fix a field k. There is a finite set P of prime numbers such

that if char(k) /∈ P , Γ is a cyclic group of order 30, and Δ is a subgroup of Γ of index
1 or 2, then the morphism sΔ is not a birational isomorphism.

Proof. Suppose that Δ = Γ. The proof when [Γ : Δ] = 2 is exactly analogous. Let
s := sΓ. Note that if Ω is an extension field of k, then the morphism s is a birational
isomorphism over k if and only if it is a birational isomorphism over Ω.

Lemma 5.6 gives an isomorphism G
8
m −→∼ TΓ ⊆ G

Γ
m. Let t1, . . . , t8 be the coordi-

nates on TΓ induced by this isomorphism. Viewing the restrictions of s1, . . . , s8 to
TΓ as rational functions of t1, . . . , t8, let J : TΓ → A

1 be the Jacobian determinant
det

(
∂si
∂tj

)
i,j=1,...,8

.

Let x and y be the image in TΓ, under the isomorphism of Lemma 5.4, of the
first two entries in Table 1 (resp., Table 3 in the case [Γ : Δ] = 2). Then x and y are
two elements of TΓ(F730), distinct modulo the action of ΣΓ (since the first 2 rows of
the table differ), such that s(x) = s(y) (since the first 8 entries agree). We computed
further that J(x) 
= 0 and J(y) 
= 0.

Set β = s(x) = s(y) ∈ (F730)8, and let L̃ be the unramified extension of Q7 of
degree 30. Since J(x) 
= 0 and J(y) 
= 0, by Hensel’s lemma for every lift β̃ of β to
L̃8 we can find unique lifts x̃ of x and ỹ of y to TΓ(L̃) such that s(x̃) = s(ỹ) = β̃.
Thus there is an open (in the 7-adic topology) subset U ⊆ L̃8 contained in the image
of s, over which s is not one-to-one. It follows that as an algebraic map over L̃, s is
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dominant and deg(s) > 1. Therefore, s is not a birational isomorphism over L̃. The
theorem now follows for all k of characteristic zero. Note that we have shown that
Q(XΓ) is a finite nontrivial extension of Q(A8).

Let A := Z[x1, . . . , x8] ⊂ Q(A8) ⊂ Q(XΓ) and B := Z[s1, . . . , s30]. Note that A
is a subring of B via the map induced by xi 	→ si. The field of fractions Frac(B)
of B is Q(XΓ) by Lemma 10.7. Since this field is a finite nontrivial extension of
Frac(A) = Q(A8), we can choose 0 
= f ∈ A such that B′ := B[1/f ] is integral over
A′ := A[1/f ] and A′ 
= B′.

Let P be the (finite) set of prime numbers that divide f in A. Suppose p /∈ P .
Then pA′ is a prime ideal of A′. Since B/pB = Fp[s1, . . . , s30] ⊆ Fp(XΓ), B/pB is
an integral domain, so pB is a prime ideal of B. Since B′ is integral over A′, p does
not divide f in B, so pB′ is a prime ideal of B′. Let A′

(p) (resp., B′
(p)) denote the

localization of A′ (resp., B′) at pA′ (resp., pB′). Then

(10.2) Frac(A′
(p)) = Frac(A′) = Q(A8) 
= Q(XΓ) = Frac(B′) = Frac(B′

(p)).

Since A′
(p) is a Noetherian local domain of dimension one and its maximal ideal pA′

(p)

is principal, it follows from Proposition 9.2 of [1] that A′
(p) is a principal ideal domain.

It follows that B′
(p) is a free A′

(p)-module, of rank > 1 by (10.2). Thus

Fp(x1, . . . , x8) = Frac(A′/pA′) = A′
(p)/pA

′
(p)


= B′
(p) ⊗A′

(p)
(A′

(p)/pA
′
(p)) = B′

(p)/pB
′
(p) = Frac(B′/pB′) = Fp(XΓ).

Thus s is not a birational isomorphism over Fp, and the same holds with Fp replaced
by any field of characteristic p.

Theorem 10.9. Fix a field k. There is a finite set P of prime numbers such that
if char(k) /∈ P , L/k is cyclic of degree 30, and k ⊆ F ⊆ L with [F : k] = 1 or 2, then
the morphism λF is not a birational isomorphism.

Proof. With Γ = Gal(L/k) and Δ = Gal(L/F ), apply Propositions 9.10(iv,v)
and 10.8.

Remark 10.10. Theorems 10.9 and 10.5 show that Conjectures (1, 30)-BPV and
(2, 15)-BPV of [4] are false in all but finitely many characteristics.

Acknowledgment. We thank the referees for helpful comments.
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[36] V. E. Voskresenskĭı, Algebraic Groups and Their Birational Invariants, Transl. Math.
Monogr. 179, AMS, Providence, RI, 1998.
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Abstract. We present an improved “cooling schedule” for simulated annealing algorithms for
combinatorial counting problems. Under our new schedule the rate of cooling accelerates as the
temperature decreases. Thus, fewer intermediate temperatures are needed as the simulated an-
nealing algorithm moves from the high temperature (easy region) to the low temperature (difficult
region). We present applications of our technique to colorings and the permanent (perfect matchings
of bipartite graphs). Moreover, for the permanent, we improve the analysis of the Markov chain
underlying the simulated annealing algorithm. This improved analysis, combined with the faster
cooling schedule, results in an O(n7 log4 n) time algorithm for approximating the permanent of a
0/1 matrix.
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1. Introduction. Simulated annealing is an important algorithmic approach for
counting and sampling combinatorial structures. Two notable combinatorial applica-
tions are estimating the partition function of statistical physics models and approxi-
mating the permanent of a nonnegative matrix. For combinatorial counting problems,
the general idea of simulated annealing is to write the desired quantity, say, Z, (which
is, for example, the number of colorings or matchings of an input graph) as a tele-
scoping product:

(1.1) Z =
Z�+1

Z�

Z�

Z�−1

. . .
Z1

Z0

Z0,

where Z�+1 = Z and Z0 is trivial to compute. By further ensuring that each of the
ratios Zi/Zi−1 is bounded, a small number of samples (from the probability distribu-
tion corresponding to Zi−1) suffices to estimate the ratio. These samples are typically
generated from an appropriately designed Markov chain.

Each of the quantities of interest corresponds to the counting problem at a differ-
ent temperature. The final quantity Z = Z�+1 corresponds to the zero temperature,
whereas the trivial initial quantity Z0 is the infinite temperature. The temperature
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slowly decreases from a high temperature (easy region) to a low temperature (difficult
region). A notable application of simulated annealing to combinatorial counting is
the algorithm of Jerrum, Sinclair, and Vigoda [10] for approximating the permanent
of a nonnegative matrix. In their algorithm, the cooling schedule is uniform: the rate
of cooling was constant.

Our first main result is an improved cooling schedule. In contrast to the pre-
vious cooling schedule for the permanent, our schedule is accelerating (the rate of
cooling accelerates as the temperature decreases). Consequently, fewer intermediate
temperatures are needed, and thus fewer Markov chain samples overall suffice. It is
interesting to note that our schedule is similar to the original proposal of Kirkpatrick,
Gelatt, and Vecchi [13] and is related to schedules used recently in geometric settings
by Lovász and Vempala [14] and Kalai and Vempala [11].

We illustrate our new cooling schedule in the context of colorings, corresponding
to the antiferromagnetic Potts model from statistical physics. We present general
results defining a cooling schedule for a broad class of counting problems. These
general results seem applicable to a wide range of combinatorial counting problems,
such as the permanent, and binary contingency tables [1].

The permanent of an n× n matrix A is defined as

per(A) =
∑

σ

n∏

i=1

ai,σ(i),

where the sum goes over all permutations σ of [n]. The permanent of a 0/1 matrix A is
the number of perfect matchings in the bipartite graph with bipartite adjacency matrix
A. In addition to traditional applications in statistical physics [12], the permanent has
recently been used in a variety of areas, e.g., computer vision [16] and statistics [15].
Jerrum, Sinclair, and Vigoda presented a simulated annealing algorithm [10] for the
permanent of nonnegative matrices with running time O(n10 log3 n) for 0/1 matrices.

Our cooling schedule reduces the number of intermediate temperatures in the sim-
ulated annealing for the permanent from O(n2 log n) to O(n log2 n). We also improve
the analysis of the Markov chain used for sampling. The improved analysis comes
from several new inequalities relating sets of perfect matchings in bipartite graphs.
The consequence of the new analysis and improved cooling schedule is an O(n7 log4 n)
time algorithm for estimating the permanent of a 0/1 n×n matrix. Here is the formal
statement of our result.

Theorem 1.1. For all ε > 0, there exists a randomized algorithm to approx-
imate, within a factor (1 ± ε), the permanent of a 0/1 n × n matrix A in time
O(n7 log4(n)+n6 log5(n)ε−2). The algorithm extends to arbitrary matrices with non-
negative entries.

The remainder of the paper is organized as follows. We introduce some basic
machinery and definitions in the following section. In section 3 we present our new
cooling schedule, motivated by its application to colorings. We then focus on the
permanent in section 4. We begin by presenting the simulated annealing algorithm
for the permanent in section 4. In section 5 we explain the background techniques for
analyzing the Markov chain. We present our new inequalities in section 6. Finally, in
section 7 we use these new inequalities for bounding the mixing time of the Markov
chain. We then conclude the analysis of the permanent algorithm for 0/1 matrices in
section 8.
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2. Preliminaries.

2.1. Colorings and Potts model. Let G = (V,E) be the input graph and k
be the number of colors. A (valid) k-coloring of G is an assignment of colors from [k]
to the vertices of G such that no two adjacent vertices are colored by the same color
(i.e., σ(u) �= σ(v) for every (u, v) ∈ E). Let Ω = Ω(G) denote the set of all k-colorings
of G. For input parameters ε, δ, our goal is to approximate |Ω| within a multiplicative
factor 1 ± ε with probability ≥ 1 − δ. This is commonly known as a fully polynomial
randomized approximation scheme (fpras) for counting colorings.

The colorings problem corresponds to the zero-temperature version of the anti-
ferromagnetic Potts model. In addition to the underlying graph G and the number of
colors k, the Potts model is also specified by an activity1 λ. The configuration space
of the Potts model, denoted [k]V , is the set of all labelings σ : V → [k]. The partition
function of the Potts model counts the number of configurations weighted by their
distance from a k-coloring. More precisely, for activity λ ≥ 0, the partition function
of the Potts model is

Z(λ) =
∑

σ∈[k]V

λM(σ),

where M(σ) = MG(σ) = |(u, v) ∈ E : σ(u) = σ(v)| is the number of monochromatic
edges of the labeling σ. For λ = 0 we also define 00 = 1, and thus Z(0) = |Ω|. In
section 3.1 we will consider simulated annealing algorithms for estimating the partition
function of the Potts model.

An elementary component of the upcoming algorithms is the following approach
for estimating the ratio of the partition function at a pair of temperatures. In partic-
ular, for a sequence 1 = λ0 > λ1 > · · · > λ� > λ�+1 = 0 we will estimate the ratios
αi := Z(λi+1)/Z(λi) for all 0 ≤ i ≤ �. Assuming 1/2 ≤ αi ≤ 1, we can approximate
αi efficiently using the following unbiased estimator. Let Xi ∼ πi denote a random
labeling chosen from the distribution πi defined by Z(λi) (i.e., the probability of a

labeling σ is πi(σ) = λi
M(σ)/Z(λi)). Let Yi = (λi+1/λi)

M(Xi). Then Yi is an unbiased
estimator for αi:

(2.1) E (Yi) = EXi∼πi

(
(λi+1/λi)

M(Xi)
)

=
∑

σ∈[k]V

(λi+1)
M(σ)

Z(λi)
=

Z(λi+1)

Z(λi)
= αi.

The expected value of Y = Y0Y1 . . . Y� is

E (Y ) =
�∏

i=0

E (Yi) =
Z(0)

Z(1)
,

where Z(1) is easy to compute. Thus, our goal of estimating Z(0) = |Ω| can be
reduced to estimating E (Y ).

Assume that we have an algorithm for generating labelings Xi from πi. We draw
64(� + 1)/ε2 samples of Xi and take the mean Y i of their corresponding estimators
Yi. We have

Var
(
Y i

)

E
(
Y i

)2 =
ε2

64(� + 1)

Var (Yi)

E (Yi)
2

≤ ε2

16(� + 1)
.

1The activity corresponds to the temperature of the system. Specifically, the temperature is
−1/ lnλ; thus λ = 1 corresponds to the infinite temperature and λ = 0 corresponds to the zero
temperature.



1432 BEZÁKOVÁ, ŠTEFANKOVIČ, VAZIRANI, AND VIGODA

Hence for Y = Y 0Y 1 . . . Y � we have

Var
(
Y
)

E
(
Y
)2 =

(
1 +

Var
(
Y 0

)

E
(
Y 0

)2

)
. . .

(
1 +

Var
(
Y �

)

E
(
Y �

)2

)
− 1 ≤ eε

2/16 − 1 ≤ ε2/8,

where in the last two inequalities we used 1 + x ≤ ex (true for all x), and ex − 1 ≤ 2x
(true for x ∈ [0, 1]). Now, by Chebyshev’s inequality, with probability at least 7/8 we
have that the value of Y is in the interval [(1 − ε)E (Y ), (1 + ε)E (Y )].

Of course, we will not be able to obtain perfect samples from πi. Assume now that
we have X ′

i which are from a distribution with a variation distance ≤ ε2/(512(�+1)2)
of πi (we choose the variation distance to be 1/8th of the reciprocal of the number of

all samples). Let Y
′
be defined as Y above, but instead of Xi we will use X ′

i. If we

couple Xi with X ′
i optimally, then with probability ≥ 7/8 we have Y = Y

′
. Hence,

Y
′
is in the interval [(1 − ε)E (Y ), (1 + ε)E (Y )] with probability ≥ 3/4.

2.2. Markov chain basics. For a pair of distributions μ and π on a finite space
Ω we will measure their distance using variation distance, defined to be

dTV(μ, π) =
1

2

∑

x∈Ω

|μ(x) − π(x)|.

For an ergodic Markov chain with finite state space Ω, transition matrix P , and unique
stationary distribution π, we are interested in the mixing time, defined to be

τ(δ) = max
x∈Ω

τx(δ),

where

τx(δ) = min{t : dTV(P t(x, ·), π) ≤ δ}.
In the case of the permanent, we will bound the mixing time by the canonical

paths method. For some S ⊆ Ω, for each (I, F ) ∈ Ω×S, we will define a canonical path
from I to F , denoted γ(I, F ), which is of length ≤ �. The path is along transitions of
the Markov chain (i.e., along pairs (x, y) ∈ Ω2 where P (x, y) > 0). We then bound the
weighted sum of canonical paths (or “flow”) through any transition. More precisely,
for a transition T = x → y, let

ρ(T ) =
∑

(I,F )∈Ω×P:
T∈γ(I,F )

π(I)π(F )

π(x)P (x, y)

denote the congestion through the transition T .
Let

ρ = max
T

ρ(T ).

Then (see [17, 4]), for any initial state x ∈ Ω, the mixing time is bounded as

τx(δ) ≤ 7�ρ

π(S)

(
lnπ(x)−1 + ln δ−1

)
.

The factor 1/π(S) comes from restricting to F ∈ S; see Lemma 9 in [10].
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3. Improved cooling schedule. We begin by motivating the simulated an-
nealing framework in the context of colorings. We then present a general method for
obtaining improved cooling schedules and show how it can be applied to colorings.
We conclude with the proofs of technical lemmas for improved cooling schedules.

3.1. Basic cooling schedule for counting colorings. Our focus in this sec-
tion is obtaining an fpras for counting all k-colorings of a given graph G. Let Ω = Ω(G)
denote the set of k-colorings of G. We are of course considering only cases where
|Ω| ≥ 1. There are various situations where a polynomial-time algorithm for approx-
imating |Ω| exists; see, e.g., [5] for a survey and [6] for a more recent result when
k = Ω(Δ/ log Δ) for planar graphs. Our aim is to improve the running time of these
approximate counting algorithms.

For the purposes of reducing the approximation of |Ω| to sampling from Ω, we
will define a sequence of activities of the antiferromagnetic Potts model (defined in
section 2.1). We will express |Ω| as a telescoping product over instances of the Potts
model where we slowly move from the original k-colorings (corresponding to activity
λ = 0) to a trivial instance of the Potts model, namely, λ = 1, since Z(1) = kn.
We specify a sequence of activities so that the partition functions do not change by
more than a constant factor between successive activities. This allows us to reduce
the activity to an almost zero value while being able to estimate the ratios of two
consecutive partition functions.

The partition function Z(λ) can be viewed as a polynomial in λ. Notice that its
constant coefficient equals |Ω|, the number of k-colorings of G. Moreover, Z(1) =
|Ω(Gm)| = kn is the sum of the coefficients of Z. It can be shown that for k > Δ, the
number of k-colorings of G is bounded from below by (k/e)n (i.e., |Ω| ≥ (k/e)n). For
completeness, we prove this lower bound in the appendix in Corollary A.2. If we used
the trivial lower bound of |Ω| ≥ 1, we would introduce an extra factor of O(log k) in
the final running time. Observe that the value of the partition function at λ = 1/en

is at most 2|Ω|:
(3.1) |Ω| ≤ Z(1/en) ≤ |Ω| + Z(1)(1/en) ≤ |Ω| + kn/en ≤ 2|Ω|.
This will be sufficiently close to |Ω| so that we can obtain an efficient estimator for |Ω|.

We will define a sequence, called a cooling schedule,

λ0 = 1, λ1, . . . , λ� ≤ 1/en, λ�+1 = 0,

where � = O(n log n), and, for all 0 ≤ i ≤ �,

1

2
≤ Z(λi+1)

Z(λi)
≤ 1.

Notice that for i = � the inequality follows from (3.1), so we need to take care of i < �.
We estimate the number of k-colorings of G via the telescoping product

|Ω| = kn
∏

0≤i≤�

αi,

where αi = Z(λi+1)/Z(λi). We will estimate αi by sampling from the probability
distribution corresponding to Zi as described in section 2.1.

A straightforward cooling schedule sets λi+1 = 2−1/mλi. Then,

Z(λi+1) ≥ (2−1/m)mZ(λi) = Z(λi)/2,
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as required. This specifies a uniform cooling schedule with a rate of decrease 2−1/m.
Note that once λ� ≤ k−n we can set λ�+1 = 0 since we then have Z(λ�) ≤ |Ω| + 1 ≤
2Ω, assuming |Ω| ≥ 1. Therefore, this uniform cooling schedule is of length � =
O(nm log k). We present a new cooling schedule which is only of length O(n log n).

Our goal is to obtain a general cooling schedule which applies to all instances of the
colorings problem and which will also apply to many other combinatorial problems. If
we restrict our attention to certain regions of k versus Δ, sometimes a straightforward
telescoping product is more efficient for colorings. In particular, assume k ≥ (1+ε)Δ,
where ε > 0 is a constant; then the removal of all at most Δ edges adjacent to one of
the vertices increases the number of colorings by a factor at most k/(k−Δ) ≤ (1+ε)/ε.
Hence, in this case one can obtain a schedule of length O(n), but such a schedule does
not apply, for example, to the previously mentioned results of [6], which hold for
k = Ω(Δ/ log Δ) for planar graphs.

3.2. New cooling schedule. Note that if we had Z(λ) = knλm, we could not
decrease λ faster than 2−1/m. Fortunately, in our case the constant term of Z(λ) is
at least one. To illustrate the idea of nonuniform decrease, let fi(λ) = λi. As we
decrease λ, the polynomial fm will always decrease faster (in a relative sense) than Z.
At first (for values of λ close to 1) this difference will be small; however, as λ goes to 0,
the rate of decrease of Z slows because of its constant term. Thus, at a certain point
fm−1 will decrease faster than Z. Once λ reaches this point, we can start decreasing
λ by a factor of 2−1/(m−1). As time progresses, the rate of Z will be bounded by the
rate of polynomials fm; then fm−1, fm−2, . . . , all the way down to f1 for λ close to 0.
When the polynomial fi “dominates” we can decrease λ by a factor of 2−1/i. Note
that the rate of decrease increases with time; i.e., the schedule is accelerating.

Now we formalize the accelerated cooling approach. We state our results in a
general form which proves useful in other contexts, e.g., for the permanent later in
this paper, and binary contingency tables [1].

Let Z(λ) be the partition function polynomial. Let s be the degree of Z(λ) (note
that s = m for colorings). Our goal is to find 1 = λ1 > λ2 > · · · > λ� > λ�+1 = 0 such
that Z(λi)/Z(λi+1) ≤ c (e.g., for colorings we took c = 2). The important property of
Z(λ) for colorings is Z(0) ≥ 1 (e.g., Z(λ) has positive constant term). In fact, when
k > Δ, we have Z(0) ≥ (k/e)n, which will save a factor of O(log k) in the final result.
For completeness, we prove this lower bound in the appendix in Corollary A.2.

For some applications it will not be possible to make the constant term positive;
instead we will show that a coefficient aD of λD is large (for some small D). Finally,
let γ be an upper bound on Z(1)/aD. For colorings we can take γ = en. The γ
measures how small λ needs to get for Z(λ) to be within constant factor of Z(0).
Now we present a general algorithm in terms of parameters s, c, γ,D.

Algorithm for computing the cooling schedule λ, given parameters s, c, γ, and D:
Set λ0 = 1, i = s, and j = 0.
While λj > 1/γ do

Set λj+1 = c−1/iλj .

If i > D + 1 and λj+1 < (s/γ)1/(i−D),

Set λj+1 = (s/γ)1/(i−D) and decrement i = i− 1.
Increment j = j + 1.

Set � = j.

The following lemmas prove that the above algorithm produces a short schedule.
We prove the lemmas in section 3.3. The first lemma bounds the number of interme-
diate temperatures in the above cooling schedule, i.e., the length � of the λ sequence.
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Lemma 3.1. Let c, γ > 0, D ≥ 0, and let λ0, . . . , λ� be the sequence computed by
the above algorithm. Then � = O([(D + 1) log(s−D) + s/(s−D)] logc(sγ)). If c and
D are constants independent of s, then � = O((log s) log(sγ)).

Note that for colorings � = O(n(log n) log k) (assuming Z(0) ≥ 1), and when
k > Δ, we have � = O(n log n) since Z(0) ≥ (k/e)n.

The following lemma shows that for the sequence of the λi the value of Z(λ)
changes by a factor ≤ c for consecutive λi and λi+1. For the later application to
the permanent, we will need to simultaneously consider a collection of polynomials.
Therefore, we state the following lemma in this more general context.

Lemma 3.2. Let c, γ,D ≥ 0, and let Z1, . . . , Zq be a collection of polynomials
of degree s. Suppose that for every i ∈ [q], the polynomial Zi satisfies the following
conditions:

(i) Zi has nonnegative coefficients.
(ii) There exists d ≤ D such that the coefficient of xd in Zi is at least Zi(1)/γ.

Let λ0, λ1, . . . , λ� be the sequence constructed by the above algorithm. Then

Zi(λj) ≤ cZi(λj+1) for every i ∈ [q] and j ∈ [�].

Recall from section 2.1 that to estimate
∏�

i=0 αi within a factor (1 ± ε) with
probability ≥ 3/4 we need to generate O(�/ε2) samples from within variation distance
O(ε2/�2) of πi for all i = 0, . . . , �. To illustrate the application of the shorter cooling
schedule, recall that for colorings, when k > Δ we have � = O(n log n). Hence, we
need a total of O(n2ε−2 log2 n) samples. For k > 2Δ, for all activities 1 ≤ λ ≤ 0, there
is a Markov chain with mixing time T (ε) = k

k−2Δ
n log(n/ε) [3, 8]. Consequently, we

can approximate |Ω| within a multiplicative factor 1 ± ε with probability ≥ 3/4 in

O( k
k−2Δ

n3 log2 n
ε2 ln(n/ε)) time.

For k ≤ 2Δ there are a variety of results showing fast convergence of Markov
chains for generating a random k-coloring [5]. These results are proved for k-colorings,
but they can most likely be extended to the nonzero temperature. One particular
example is the previously mentioned result of [6] which for planar graphs shows O∗(n)
mixing time of a Markov chain when k = Ω(Δ/ log Δ) for all activities. (The O∗()
notation hides logarithmic factors and the dependence on ε.) Consequently, in this
case we again obtain an O∗(n3) time algorithm for approximating the number of
k-colorings.

3.3. Proof of Lemmas 3.1 and 3.2. The rest of this section is devoted to the
proof of Lemmas 3.1 and 3.2.

Proof of Lemma 3.1. We define the following intervals:

Ii =

⎧
⎨
⎩

[(s/γ)1/(s−D),∞) for i = s,
[(s/γ)1/(i−D), (s/γ)1/(i+1−D)] for D + 1 < i < s,
(0, (s/γ)1/2] for i = D + 1.

Let �i be the number of λ values lying in the interval Ii. For i ∈ {D+2, . . . , s−1}
we have the estimate

�i ≤ logc

(
[(s/γ)1/(i+1−D)]i

[(s/γ)1/(i−D)]i

)
≤ D + 1

i−D
logc γ.

Similarly,

�s ≤ logc

(
γ

[(s/γ)1/(s−D)]s

)
≤ 2s−D

s−D
logc γ,
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and

�D+1 ≤ logc

(
[(s/γ)1/2]D+1

[1/γ]D+1

)
=

D + 1

2
logc(sγ).

Recall that s ≥ 1. Putting it all together, we get the bound

� ≤
s∑

i=D+1

�i ≤
(

(D + 1)Hs−D +
2s−D

s−D
+

D + 1

2

)
logc(sγ),

where Hi =
∑i

j=1 1/j = O(log i) is the harmonic sum. Therefore,

� = O([(D + 1) log(s−D) + s/(s−D)] logc(sγ)).

We now present a few preliminary lemmas before proving Lemma 3.2. The log-
derivative of a function f is (log f)′ = f ′/f . The log-derivative measures how quickly
a function increases.

Definition 3.3. We say that a polynomial f is dominant over a polynomial g
on an interval I if f ′(x)/f(x) ≥ g′(x)/g(x) for every x ∈ I.

Lemma 3.4. Let f, g : I → R+ be two nondecreasing polynomials. If f dominates
over g on I, then f(y)/f(x) ≥ g(y)/g(x) for every x, y ∈ I, x ≤ y.

We partition the interval (0,∞) into subintervals ID+1, . . . , Is such that xi dom-
inates over every Z-polynomial on the interval Ii. The λj in Ii will be such that xi

decreases by a factor c between consecutive λ. Therefore, the Z-polynomials decrease
by at most a factor of c.

Lemma 3.5. Let g(x) =
∑s

j=0 ajx
j be a polynomial with nonnegative coefficients.

Then xs dominates over g on the interval (0,∞).
Proof. It suffices to verify that (xs)′/xs ≥ g′(x)/g(x) for every x > 0.
Lemma 3.6. Let g(x) =

∑s
j=0 ajx

j be a polynomial with nonnegative coefficients
such that g(1) ≤ γ and at least one of a0, a1, . . . , aD is ≥ 1. Then for any i ≥ D + 1
the polynomial xi dominates over g on the interval (0, (s/γ)1/(i+1−D)].

Proof. The log-derivative of xi is i/x. Hence we need to prove that ig(x) ≥ xg′(x)
for x ≤ (s/γ)1/(i+1−D).

Let d be the smallest integer such that ad ≥ 1. From the assumptions of the
lemma, d ≤ D. For x ≤ (s/γ)1/(i+1−D) the following holds:

s∑

j=i+1

jajx
j−d ≤

s∑

j=i+1

sajx
j−D ≤

s∑

j=i+1

saj

(
s

γ

)(j−D)/(i+1−D)

≤
s∑

j=i+1

saj

(
s

γ

)
≤ 1.

Since i > d, for x ≤ (s/γ)1/(i+1−D) we have

xg′(x) =

i∑

j=0

jajx
j +

s∑

j=i+1

jajx
j ≤

i∑

j=d

jajx
j + adx

d ≤
i∑

j=d

iajx
j ≤ ig(x).

Proof of Lemma 3.2. Let ID+1, . . . , Is be as in the proof of Lemma 3.1. Let
Qq(λ) = γZq(λ)/Zq(1). Notice that the Qq satisfy the conditions required of g by
Lemma 3.6. Therefore, xi dominates over every Qq (and hence also every Zq) on the
interval Ii for i < s. Moreover, Lemmas 3.6 and 3.4 imply that xs dominates over
every Qq (and hence every Zq) on the interval Is. Notice that if λj , λj+1 ∈ Ii, then
cλi

j+1 ≥ λi
j (where inequality happens only if λj+1 = (s/γ)1/(i−D)). Therefore, all

of the Zq-polynomials decrease by a factor of at most c between consecutive values
of λ.
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4. Permanent algorithm. Here we describe the simulated annealing algorithm
for the permanent. For simplicity we consider the case of a 0/1 matrix A. The
generalization to nonnegative matrices proceeds as in [10]. We assume per(A) > 0;
i.e., there is at least one perfect matching.

We show the application of our improved cooling schedule and our improvement
in the mixing time bound for the Markov chain underlying the simulated annealing
algorithm. We present the new inequalities which are key to the improved mixing
time result in section 6.

4.1. Preliminaries. Let G = (V1, V2, E) be a bipartite graph with |V1| = |V2| =
n. We will let u ∼ v denote the fact that (u, v) ∈ E. For u ∈ V1, v ∈ V2 we will
have a positive real number λ(u, v) called the activity of (u, v). If u ∼ v, λ(u, v) = 1
throughout the algorithm, and otherwise, λ(u, v) starts at 1 and drops to 1/n! as the
algorithm evolves. Once nonedges have activity ≤ 1/n! we have that the total activity
of perfect matchings containing at least one nonedge is < 1, and hence they alter the
permanent by at most a factor of 2. The activities allow us to work on the complete
bipartite graph between V1 and V2.

Let P denote the set of perfect matchings (recall that we are working on the
complete graph now), and let N (u, v) denote the set of near-perfect matchings with
holes (or unmatched vertices) at u and v. Similarly, let N (x, y, w, z) denote the set
of matchings that have holes only at the vertices x, y, w, z. Let Ni denote the set of
matchings with exactly i unmatched vertices. The set of states of the Markov chain
is Ω = P ∪N2. For any matching M , denote its activity as

λ(M) :=
∏

(u,v)∈M

λ(u, v).

For a set S of matchings, let λ(S) :=
∑

M∈S λ(M). For u ∈ V1, v ∈ V2 we will have a
positive real number w(u, v) called the weight of the hole pattern u, v. Given weights
w, the weight of a matching M ∈ Ω is

w(M) :=

{
λ(M)w(u, v) if M ∈ N (u, v), and
λ(M) if M ∈ P.

The weight of a set S of matchings is

w(S) :=
∑

M∈S

w(M).

For given activities, the ideal weights on hole patterns are the following:

(4.1) w∗(u, v) :=
λ(P)

λ(N (u, v))
.

Note that for the ideal weights all the N (u, v) and P have the same weight; i.e.,
w∗(P) = w∗(N (u, v)) for all u, v. Hence, since w∗(P) = λ(P), we have w∗(Ω) =
(n2 + 1)λ(P).

For the purposes of the proof, we need to extend the weights to 4-hole matchings.
Let

w∗(x, y, w, z) :=
λ(P)

λ(N (x, y, w, z))
,

and for M ∈ N (x, y, w, z), let

w∗(M) := λ(M)w∗(x, y, w, z).
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4.2. Markov chain definition. At the heart of the algorithm lies a Markov
chain MC, which was used in [10], and a slight variant was used in [2, 9]. Let
λ : V1 × V2 → R+ be the activities and w : V1 × V2 → R+ be the weights. The
state space is Ω, the set of all perfect and near-perfect matchings of the complete
bipartite graph on V1, V2. The stationary distribution π is proportional to w; i.e.,
π(M) = w(M)/Z, where Z =

∑
M∈Ω w(M).

The transitions Mt → Mt+1 of the Markov chain MC are defined as follows:
1. If Mt ∈ P, choose an edge e uniformly at random from Mt. Set M ′ = Mt \ e.
2. If Mt ∈ N (u, v), choose vertex x uniformly at random from V1 ∪ V2.

(a) If x ∈ {u, v}, let M ′ = M ∪ (u, v).
(b) If x ∈ V2 and (w, x) ∈ Mt, let M ′ = M ∪ (u, x) \ (w, x).
(c) If x ∈ V1 and (x, z) ∈ Mt, let M ′ = M ∪ (x, v) \ (x, z).

3. With probability min{1, w(M ′)/w(Mt)}, set Mt+1 = M ′; otherwise, set Mt+1 = Mt.

Note that cases 1 and 2(a) move between perfect and near-perfect matchings,
whereas cases 2(b) and 2(c) move between near-perfect matchings with different hole
patterns. Case 3 applies the Metropolis filter, which ensures that the stationary
distribution of the Markov chain is proportional to w.

The key technical theorem is that the Markov chain quickly converges to the
stationary distribution π if the weights w are close to the ideal weights w∗. The
mixing time τ(δ) is the time needed for the chain to be within variation distance δ
from the stationary distribution.

Theorem 4.1. Assuming the weight function w satisfies inequality

(4.2) w∗(u, v)/2 ≤ w(u, v) ≤ 2w∗(u, v)

for every (u, v) ∈ V1×V2 with N (u, v) �= ∅, then the mixing time of the Markov chain
MC is bounded above by τM (δ) = O(n4(lnπ(M)−1 + ln δ−1)).

This theorem improves the mixing time bound by O(n2) over the corresponding
result in [10]. The theorem will be proved in section 7.

4.3. Bootstrapping ideal weights. We will run the chain with weights w close
to w∗, and then we can use samples from the stationary distribution to redefine w so
that they are arbitrarily close to w∗. For the Markov chain run with weights w, note
that

π(N (u, v)) =
w(u, v)λ(N (u, v))

Z
=

w(u, v)λ(P)

Zw∗(u, v)
= π(P)

w(u, v)

w∗(u, v)
.

Rearranging, we have

(4.3) w∗(u, v) =
π(P)

π(N (u, v))
w(u, v).

Given weights w which are a rough approximation to w∗, identity (4.3) implies an
easy method to recalibrate weights w to an arbitrarily close approximation to w∗. We
generate many samples from the stationary distribution and observe the number of
perfect matchings in our samples versus the number of near-perfect matchings with
holes u, v. By generating sufficiently many samples, we can estimate π(P)/π(N (u, v))
within an arbitrarily close factor, and hence we can estimate w∗(u, v) (via (4.3)) within
an arbitrarily close factor.

More precisely, recall that for w = w∗, the stationary distribution of the chain
satisfies π(N (u, v)) = 1/(n2 + 1). For weights w that are within a factor of 2 of
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the ideal weights w∗, it follows that π(N (u, v)) ≥ 1/4(n2 + 1). Then, by Chernoff
bounds, S = O(n2 log(1/η̂)) samples of the stationary distribution of the chain suffice
to approximate π(P)/π(N (u, v)) within a factor

√
2 with probability ≥ 1 − η̂. Thus,

by (4.3) we can also approximate w∗ within a factor
√

2 with the same bounds.
Theorem 4.1 (with δ = Θ(1/n2)) implies that T = O(n4 log n) time is needed to

generate each sample (we will choose η̂ so that the failure probability of the entire
algorithm is small; e.g., η̂ = Θ(1/n4) suffices). To be precise, this requires the use of
“warm start” samples in which the initial matching for the Markov chain simulation
is a reasonable approximation to the stationary distribution. In particular, after the
initial sample from (close to) the stationary distribution, the initial matching for each
simulation is the final matching from the previous simulation. (The application of
warm starts in our work is identical to their use in [10]; hence we refer the interested
reader to [10] for further details.)

4.4. Simulated annealing with new cooling schedule. In this section we
present an O∗(n7) algorithm for estimating the ideal weights w∗. The algorithm will
be used in section 4.5 to approximate the permanent of a 0/1 matrix. The algorithm
can be generalized to compute the permanent of general nonnegative matrices; see
section 9.

The algorithm runs in phases, each characterized by a parameter λ. In every
phase,

(4.4) λ(e) :=

{
1 for e ∈ E,
λ for e �∈ E.

We start with λ = 1 and slowly decrease λ until it reaches its target value 1/n!.
At the start of each phase we have a set of weights within a factor 2 of the ideal

weights for all u, v, with high probability. Applying Theorem 4.1 we generate many
samples from the stationary distribution. Using these samples and (4.3), we refine
the weights to within a factor

√
2 of the ideal weights:

(4.5)
w∗(u, v)√

2
≤ w(u, v) ≤

√
2w∗(u, v).

This allows us to decrease λ so that the current estimates of the ideal weights for λi

are within a factor of 2 of the ideal weights for λi+1.
In [10], O(n2 log n) phases are required. A straightforward way to achieve this

is to decrease λ by a factor of 2−1/n between phases as considered in section 3.1 for
colorings.

We use only � = O(n log2 n) phases by progressively decreasing λ by a larger
amount per phase. Initially we decrease λ by a factor of 2−1/n per phase, but during
the final phases we decrease λ by a constant factor per phase.

Here is the pseudocode of our algorithm. The algorithm outputs w, which is a
2-approximation of the ideal weights w∗ with probability ≥ 1−η. Recall from the last
paragraphs of the previous section that S = O(n2(log n + log η−1)) since η = O(�η̂),
and T = O(n4 log n).

Algorithm for approximating ideal weights of 0/1 matrices:
Initialize λ = 1 and i = n.
Initialize w(u, v) ← n for all (u, v) ∈ V1 × V2.
While λ > 1/n! do:

Take S samples from MC with parameters λ,w, using a warm start simulation



1440 BEZÁKOVÁ, ŠTEFANKOVIČ, VAZIRANI, AND VIGODA

(in particular, initial matchings for the simulation are the final matchings
from the previous simulation). We use T steps of the MC per sample,
except for the first sample which needs O(Tn logn) steps.

Use the samples to obtain estimates w′(u, v) satisfying condition (4.5)
for all u, v. The algorithm fails (i.e., (4.5) is not satisfied) with small
probability.

Set λ = 2−1/(2i)λ.

If i > 2 and λ < (n− 1)!−1/(i−1),

Set λ = (n− 1)!−1/(i−1) and decrement i = i− 1.
If λ < 1/n!, set λ = 1/n!.
Set w(u, v) = w′(u, v) for all u ∈ V1, v ∈ V2.

Output the final weights w(u, v).

By Lemma 3.1, the above algorithm consists of O(n log2 n) phases. This follows
from setting s = n, c =

√
2, γ = n!, and D = 1 (the choice of D becomes clear

in section 8). In section 8 we show that Lemma 3.2 implies that our weights at the
start of each phase satisfy (4.2) assuming that the estimates w′ satisfied condition
(4.5) throughout the execution of the algorithm. Therefore, the total running time is
O(STn log2 n) = O(n7 log4 n).

4.5. Reduction from counting to sampling. Let λ0 = 1 > λ1 > · · · > λ� =
1/n!, � = O(n log2 n), be the sequence of λ used in the weight-estimating algorithm
from the previous section. Assume that the algorithm did not fail, i.e., the hole
weights w0, . . . , w� computed by the algorithm are within a factor of

√
2 from the

ideal weights w∗
0 , . . . , w

∗
� .

It remains to use these (constant factor) estimates of the ideal weights to obtain a
(1±ε)-approximation of the permanent. This is done by expressing the permanent as
a telescoping product as was done for colorings in section 3.1. We refer the interested
reader to section 5 from [10] for details of the argument. The only difference from [10]
is that the number of intermediate temperatures is � = O(n log2 n) as opposed to
O(n2 log n). The total running time of this part of the algorithm is O(�2/ε2n4 log n) =
O(n6 log5 nε−2). This completes the description of the algorithm for 0/1 matrices.

5. Canonical paths for proving Theorem 4.1. Recall the canonical paths
method from section 2.2. We will use this approach with S = P. To prove Theorem 4.1
we need to define canonical paths γ(I, F ) for all initial I ∈ Ω and final F ∈ P. These
paths will have length � ≤ n, and hence we need to show that the congestion satisfies
ρ(T ) = O(n) for every transition T . The canonical paths we use are identical to those
considered in [10] (and in the earlier work of [9]).

We define the canonical paths now and defer the bound on the congestion to
section 7, after presenting some combinatorial lemmas in section 6. We will assume
that the vertices of G are numbered. If I ∈ P, then I ⊕ F consists of even length
cycles, where ⊕ denotes the symmetric difference. Let us assume that the cycles are
numbered according to the smallest numbered vertex contained in them. The path
γ(I, F ) “corrects” these cycles in order. Let v0, v1, . . . , v2k−1 be a cycle C, where v0 is
the smallest numbered vertex in C and (v0, v1) ∈ I. The path starts by unmatching
edge (v0, v1) and successively interchanging edge (v2i, v2i+1) for edge (v2i−1, v2i) for
1 ≤ i ≤ k − 1. Finally, it adds edge (v2k−1, v0) to the matching.

If I ∈ N (w, z), then there is an augmenting path from w to z in I ⊕ F . The
canonical path starts by augmenting I along this path by first exchanging edges and
finally adding the last edge. It then “corrects” the even cycles in order. Figure 5.1
shows an intermediate transition on the canonical path from I to F .



ACCELERATING SIMULATED ANNEALING FOR THE PERMANENT 1441

2i+1

v2k−1

v2i

v1 v0

v2i−1
v

C
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w

T, an intermediate transition on the path from I to F

I, a near−perfect matching with holes at w, z

F, a perfect matching

Legend:

Fig. 5.1. This figure illustrates a near-perfect matching I and a perfect matching F, along with
a transition T on the canonical path from I to F . The transition is “sliding” an edge in the cycle
denoted as C. The components of I ⊕ F are shown in increasing order (from left to right). The
alternating path and the cycles to the left of C have been already “corrected,” whereas the cycles on
the right still need to be “corrected.” The unfinished cycle is partially corrected: From v0 to v2i−1

the cycle is the same as F, whereas from v2i+1 to v2k−1 the cycle is the same as I. (A similar
picture arises on the canonical path from a perfect matching to a perfect matching, except in that
case there is no alternating path.)

This completes the definition of the canonical paths, and it remains to bound
their associated congestion. To this end, in the following section we present several
inequalities which are used to improve the analysis of the congestion.

6. Key technical lemmas. The following lemma contains the new combinato-
rial inequalities which are the key to our improvement of O(n2) in Theorem 4.1. These
inequalities will be used to bound the total weight of (I, F ) pairs whose canonical path
passes through a specified transition. In [10] weaker inequalities were proved without
the sum in the left-hand side and were a factor of 2 smaller in the right-hand side.
The proof of Lemma 6.2 below improves on Lemma 7 in [10] by constructing more
efficient mappings. We first present our mappings in the simpler setting of Lemma 6.1
and later use them to prove Lemma 6.2. Using these new inequalities to bound the
congestion requires more work than the analysis of [10].

Lemma 6.1. Let u,w ∈ V1, v, z ∈ V2 be distinct vertices. Then,
1.

∑

x,y:(u,y),(x,v)∈E

|N (u, v)||N (x, y)| ≤ 2|P|2,

2.

∑

x:(x,v)∈E

|N (u, v)||N (x, z)| ≤ 2|N (u, z)||P|,

3.

∑

x,y:(u,y),(x,v)∈E

|N (u, v)||N (x, y, w, z)| ≤ 2|N (w, z)||P|.

The basic intuition for the proofs of these inequalities is straightforward. For
example, consider the first inequality. Take matchings M ∈ N (u, v), M ′ ∈ N (x, y).



1442 BEZÁKOVÁ, ŠTEFANKOVIČ, VAZIRANI, AND VIGODA

yv

(a)

u x
u

v

x

y

(b)

L1

L0Legend:

Fig. 6.1. Proof of Lemma 6.1, part 1. Two different possibilities for L0 ⊕ L1.

The set M ∪M ′ ∪ (u, y)∪ (x, v) consists of a set of alternating cycles. Hence, this set
can be broken into a pair of perfect matchings. One of the perfect matchings contains
the edge (u, y), and one matching contains the edge (x, v). Hence, given the pair of
perfect matchings, we can deduce the original unmatched vertices (by guessing which
of the two edges is incident to u) and thereby reconstruct M and M ′. This outlines
the approach for proving Lemma 6.1.

Proof. 1. We will construct a one-to-one map:

f1 : N (u, v) ×
⋃

x,y:(u,y),(x,v)∈E

N (x, y) → P ×P × b,

where b is a bit, i.e., b is 0/1.
Let L0 ∈ N (u, v) and L1 ∈ ∪x,y:(u,y),(x,v)∈EN (x, y). In L0 ⊕ L1 the four vertices

u, v, x, y each have degree one, and the remaining vertices have degree zero or two.
Hence these four vertices are connected by two disjoint paths. Now there are three
possibilities:

• If the paths are u to x and v to y, they must both be even length, as seen in
Figure 6.1(a).

• If the paths are u to v and x to y, they must both be odd length, as seen in
Figure 6.1(b).

• The third possibility, u to y and v to x, is ruled out since such paths start
with an L0 edge and end with an L1 edge and hence must be even length; on
the other hand, they connect vertices across the bipartition and hence must
be of odd length.

Now, the edges (u, y) and (v, x) are in neither matching, and so (L0 ⊕ L1) ∪
{(u, y), (v, x)} contains an even cycle, say, C, containing (u, y) and (x, v). We will
partition the edges of L0 ∪ L1 ∪ {(u, y), (v, x)} into two perfect matchings as follows.
Let M0 contain the edges of L0 outside C and alternate edges of C starting with edge
(u, y). M1 will contain the remaining edges. Bit b is set to 0 if (x, v) ∈ M0 and to 1
otherwise. This defines the map f1.

Next, we show that f1 is one-to-one. Let M0 and M1 be two perfect matchings
and b be a bit. If u and v are not in one cycle in M0 ⊕M1, then (M0,M1, b) is not
mapped onto by f1. Otherwise, let C be the common cycle containing u and v. Let y
be the vertex matched to u in M0. If b = 0, denote by x the vertex that is matched to
v in M0; else denote by x the vertex that is matched to v in M1. Let L0 contain the
edges of M0 outside C, and let it contain the near-perfect matching in C that leaves
u and v unmatched. Let L1 contain the edges of M1 outside C, and let it contain
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the near-perfect matching in C that leaves x and y unmatched. It is easy to see that
f1(L0, L1) = (M0,M1, b).

2. We will construct a one-to-one map:

f2 : N (u, v) ×
⋃

x:(x,v)∈E

N (x, z) → N (u, z) × P × b.

Let L0 ∈ N (u, v) and L1 ∈ ∪x:(x,v)∈EN (x, z). As before, u, v, x, z are connected
by two disjoint paths of the same parity in L0 ⊕ L1 and (v, x) /∈ L0 ∪ L1. Hence,
L0 ∪ L1 ∪ {(x, v)} contains an odd length path from u to z, say, P . Construct
M0 ∈ N (u, z) by including all edges of L0 not on P and alternate edges of P , leaving
u, z unmatched. Let M1 ∈ P consist of the remaining edges of L0 ∪L1 ∪{(x, v)}. Let
b = 0 if (v, x) ∈ M0, and b = 1 otherwise. Clearly, path P appears in M0 ⊕M1, and
as before, L0 and L1 can be retrieved from (M0,M1, b).

3. We will construct a one-to-one map:

f3 : N (u, v) ×
⋃

x,y:(u,y),(x,v)∈E

N (x, y, w, z) → N (w, z) × P × b.

Let L0 ∈ N (u, v) and L1 ∈ ∪x,y:(u,y),(x,v)∈EN (x, y, w, z). Consider L0 ⊕ L1. There
are two cases. If there are two paths connecting the four vertices u, v, x, y (and a
separate path connecting w and z), then the mapping follows using the construction
given in case 1. Otherwise, by parity considerations the only possibilities are

• u to w and v to y are even length paths and x to z is an odd length path;
• u to x and v to z are even length paths and w to y is an odd length path;
• u to w and v to z are even length paths and x to y is an odd length path;

and
• u to v, x to z, and w to y are odd length paths.

Now, L0∪L1∪{(u, y), (v, x)} contains an odd length path, say, P , from w to z. Now,
the mapping follows using the construction given in case 2.

The following lemma is an extension of the previous lemma, which served as a
warm-up. This lemma is used to bound the congestion.

Lemma 6.2. Let u,w ∈ V1, v, z ∈ V2 be distinct vertices. Then,
1.

∑

x∈V1,y∈V2

λ(u, y)λ(x, v)λ(N (u, v))λ(N (x, y)) ≤ 2λ(P)2,

2.
∑

x∈V1

λ(x, v)λ(N (u, v))λ(N (x, z)) ≤ 2λ(N (u, z))λ(P),

3.
∑

x∈V1,y∈V2

λ(u, y)λ(x, v)λ(N (u, v))λ(N (x, y, w, z)) ≤ 2λ(N (w, z))λ(P).

Proof. We will use the mappings f1, f2, f3 constructed in the proof of Lemma 6.1.
Observe that since mapping f1 constructs matchings M0 and M1 using precisely the
edges of L0, L1 and the edges (u, y), (x, v), it satisfies

λ(u, y)λ(x, v)λ(L0)λ(L1) = λ(M0)λ(M1).
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Summing over all pairs of matchings in

N (u, v) ×
⋃

x,y:(u,y),(x,v)∈E

N (x, y),

we get the first inequality. The other two inequalities follow in a similar way using
mappings f2 and f3.

7. Bounding congestion: Proof of Theorem 4.1. We bound the congestion
separately for transitions which move between near-perfect matchings (cases 2(b)
and 2(c) in the definition of chain MC in section 4.2) and transitions which move
between a perfect and near-perfect matching (case 1). Our goal for this section will
be to prove for every transition T = M → M ′,

(7.1)
∑

(I,F )∈Ω×P:
T∈γ(I,F )

w∗(I)w∗(F )

w∗(M)
= O(w∗(Ω)).

At the end of this section we will prove that this easily implies the desired bound on
the congestion.

For a transition T = M → M ′, we need to bound the number of canonical paths
passing through T . We partition these paths into 2n2 + 1 sets,

cpT = {(I, F ) ∈ P × P : γ(I, F ) � T} ,

and, for all w, z,

cpw,z
T = {(I, F ) ∈ N (w, z) × P : γ(I, F ) � T} .

The following lemma converts into a more manageable form the weighted sum of
I, F pairs which contain a transition of the first type.

Lemma 7.1. Let T = M → M ′ be a transition which moves between near-
perfect matchings (i.e., case 2(b) or 2(c)). Let M ∈ N (u, v), M ′ ∈ N (u, v′), u ∈ V1,
v, v′ ∈ V2, and M ′ = M \ (x, v′) ∪ (x, v) for some x ∈ V1. Then, the following hold:

1.

∑

(I,F )∈cpT

λ(I)λ(F ) ≤
∑

y∈V2

λ(N (x, y))λ(u, y)λ(x, v)λ(M).

2. For all z ∈ V2,

∑

(I,F )∈cpu,z
T

λ(I)λ(F ) ≤ λ(N (x, z))λ(x, v)λ(M).

3. For all w ∈ V1, w �= u, and z ∈ V2, z �= v, v′,
∑

(I,F )∈cpw,z
T

λ(I)λ(F ) ≤
∑

y∈V2

λ(N (w, z, x, y))λ(u, y)λ(x, v)λ(M).

Proof. 1. We will first construct a one-to-one map:

ηT : cpT →
⋃

x,y:(u,y),(x,v)∈E

N (x, y).
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Fig. 7.1. Proof of Lemma 7.1, part 1.

Let I, F ∈ P and (I, F ) ∈ cpT . Let S be the set of cycles in I ⊕ F . Order the
cycles in S using the convention given in section 5. Clearly, u, v, x lie on a common
cycle, say, C ∈ S, in I ⊕ F . Since T lies on the canonical path from I to F , M has
already corrected cycles before C and not yet corrected cycles after C in S. Let y
be a neighbor of u on C. Define M ′′ ∈ N (x, y) to be the near-perfect matching that
picks edges as follows: outside C, it picks edges (I ∪ F ) −M , and on C it picks the
near-perfect matching leaving x, y unmatched. Figure 7.1 shows the definition of M ′′.
Define ηT (I, F ) = M ′′.

Clearly, (M ⊕M ′′) ∪ {(u, v), (x, y)} consists of the cycles in S, and I and F can
be retrieved from M,M ′′ by considering the order defined on S. This proves that the
map constructed is one-to-one. Since the union of edges in I and F equals the edges
in M ∪M ′′ ∪ {(u, v), (x, y)},

λ(I)λ(F ) = λ(M)λ(M ′′)λ(u, y)λ(x, v).

Summing over all (I, F ) ∈ cpT , we get the first inequality.
2. For all z ∈ V2, we will again construct a one-to-one map:

ηu,zT : cpu,zT → N (x, z).

Let I ∈ N (u, z), F ∈ P, and (I, F ) ∈ cpu,zT . Let S be the set of cycles and P be the
augmenting path from u to z in I ⊕ F . Clearly, x and v lie on P . M has “corrected”
part of the path P and none of the cycles in S. It contains the edges of I from z to
v and the edges of F from x to u. Also, it contains the edges of I from the cycles in
S as well as the edges in I ∩ F .

Construct matching M ′′ ∈ N (x, z) as follows. It contains the edges of F from the
cycles in S, the edges I ∩ F , and (P − {(x, v)} −M). Define ηu,zT (I, F ) = M ′′. It is
easy to see that M ∪M ′′ = I ∪ F ∪ {(x, v)}. Therefore,

λ(I)λ(F ) = λ(M)λ(M ′′)λ(x, v).

Furthermore, I, F can be retrieved from M,M ′′. Hence, summing over all (I, F ) ∈
cpu,zT , we get the second inequality.

3. For all w ∈ V1, w �= u, and z ∈ V2, z �= v, v′, we will construct a one-to-one
map:

ηw,z
T : cpw,z

T →
⋃

y:u∼y

N (w, z, x, y).

Let I ∈ N (w, z), F ∈ P, and (I, F ) ∈ cpw,z
T . Let S be the set of cycles and P be the

augmenting path from w to z in I ⊕ F . Clearly, u, v, x lie on a common cycle, say,
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C ∈ S, in I⊕F . Therefore, M has already “corrected” P , and so it looks like F on P .
Construct M ′′ ∈ N (w, z, x, y) as follows. On P , it looks like I. Outside P ∪C, it picks
edges (I∪F )−M , and on C it picks the near-perfect matching leaving x, y unmatched.
Define ηw,z

T (I, F ) = M ′′. It is easy to see that M ∪ M ′′ = I ∪ F ∪ {(u, y), (x, v)}.
Therefore,

λ(I)λ(F ) = λ(M)λ(M ′′)λ(u, y)λ(x, v).

Furthermore, I, F can be retrieved from M,M ′′. Hence, summing over all (I, F ) ∈
cpw,z

T , we get the third inequality.

We now prove (7.1) for the first type of transitions. The proof applies Lemma 7.1
and then Lemma 6.2. We break the statement of (7.1) into two cases depending on
whether I is a perfect matching or a near-perfect matching.

Lemma 7.2. For a transition T = M → M ′ which moves between near-perfect
matchings (i.e., case 2(b) or 2(c)), the congestion from (I, F ) ∈ P ×P is bounded as

(7.2)
∑

(I,F )∈cpT

w∗(I)w∗(F )

w∗(M)
≤ 2w∗(Ω)

n2
.

And, the congestion from (I, F ) ∈ N2 × P is bounded as

(7.3)
∑

w∈V1,z∈V2

∑

(I,F )∈cpw,z
T

w∗(I)w∗(F )

w∗(M)
≤ 3w∗(Ω).

Proof. The transition T is sliding an edge; let x denote the pivot vertex, and let
M ∈ N (u, v) and M ′ ∈ N (u, v′), where u ∈ V1, v, v

′ ∈ V2. Thus, M ′ = M \ (v′, x) ∪
(x, v) for some x ∈ V1.

We begin with the proof of (7.2):

∑

(I,F )∈cpT

w∗(I)w∗(F )

w∗(M)

=
∑

(I,F )∈cpT

λ(I)λ(F )
λ(N (u, v))

λ(M)λ(P)

≤
∑

y∈V2

λ(N (x, y))λ(u, y)λ(x, v)λ(N (u, v))

λ(P)
(by Lemma 7.1)

≤ 2λ(P) (by Lemma 6.2)

=
2w∗(Ω)

n2 + 1
.

Note that the application of Lemma 6.2 uses only the summation over y and
does not require the summation over x. We have now completed the proof of (7.2).
We now prove (7.3) in two parts. This first bound covers the congestion due to the
first part of the canonical paths from a near-perfect matching to a perfect matching,
unwinding the augmenting path. The second bound covers the second part of these
canonical paths when we unwind the alternating cycle(s). During the unwinding of
the augmenting path, one of the holes of the transition is the same as one of the holes
of the initial near-perfect matching. This is what characterizes the first versus the
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second part of the canonical path.

∑

z∈V2

∑

(I,F )∈cpu,z
T

w∗(I)w∗(F )

w∗(M)

=
∑

z∈V2

∑

(I,F )∈cpu,z
T

λ(I)λ(F )
λ(N (u, v))

λ(M)λ(N (u, z))

≤
∑

z∈V2

λ(N (x, z))λ(x, v)λ(N (u, v))

λ(N (u, z))
(by Lemma 7.1)

≤
∑

z∈V2

2λ(P) (by Lemma 6.2)

=
2n

n2 + 1
w∗(Ω)

≤ w∗(Ω).

Finally, bounding the congestion from the unwinding of the alternating cycle(s)
on canonical paths from near-perfect matchings to perfect matchings,

∑

w∈V1,z∈V2:
w �=u

∑

(I,F )∈cpw,z
T

w∗(I)w∗(F )

w∗(M)

=
∑

w∈V1,z∈V2:
w �=u

∑

(I,F )∈cpw,z
T

λ(I)λ(F )
λ(N (u, v))

λ(M)λ(N (w, z))

≤
∑

w∈V1,z∈V2:
w �=u

∑

y∈V2

λ(N (w, z, x, y))λ(u, y)λ(x, v)λ(N (u, v))

λ(N (w, z))
(by Lemma 7.1)

≤
∑

w∈V1,z∈V2:
w �=u

2λ(P) (by Lemma 6.2)

≤ 2w∗(Ω).

We now follow the same approach as Lemmas 7.1 and 7.2 to prove (7.1) for
transitions moving between a perfect and a near-perfect matching. The proofs in this
case are easier.

Lemma 7.3. For a transition T = M → M ′ which removes an edge (i.e., case 1)
or adds an edge (i.e., case 2(a)), let (u, v) be the removed/added edge, and let N be
the near-perfect matching from the pair M,M ′ (i.e., if adding an edge N = M, and
if removing an edge N = M ′). Then,

∑

(I,F )∈cpT

λ(I)λ(F ) ≤ λ(P)λ(u, v)λ(N).

And, for all w ∈ V1, z ∈ V2,
∑

(I,F )∈cpw,z
T

λ(I)λ(F ) ≤ λ(N (w, z))λ(u, v)λ(N).

Proof. Let P denote the perfect matching from the pair M,M ′. Define η = ηw,z
T :

cpw,z
T → N (w, z) as

η(I, F ) = I ∪ F \ P.
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The mapping satisfies λ(I)λ(F ) = λ(P )λ(η(I, F )). Note that λ(P ) = λ(N)λ(u, v).
Since the mapping is one-to-one, summing over all N ′ ∈ N (w, z) proves the lemma
for all w, z. The proof is identical for cpT with the observation that when I ∈ P, we
have that I ∪ F \ P is in P.

Lemma 7.4. For a transition T = M → M ′ which adds or subtracts an edge
(i.e., case 1 or 2(a)), the congestion from (I, F ) ∈ Ω × P is bounded as

∑

w,z

∑

(I,F )∈cpw,z
T

w∗(I)w∗(F )

w∗(M)
≤ w∗(Ω)

and

∑

(I,F )∈cpT

w∗(I)w∗(F )

w∗(M)
≤ w∗(Ω)

n2
.

Proof. Let M ∈ N (u, v) and M ′ ∈ P; thus the transition adds the edge (u, v).
The proof for the transition which subtracts the edge will be analogous. The proof is
a simplified version of Lemma 7.2, using Lemma 7.3.

Observe that for any x, y,

(7.4) λ(x, y)λ(N (x, y)) ≤ λ(P).

We begin with the proof of the first inequality in Lemma 7.4.

∑

w,z

∑

(I,F )∈cpw,z
T

w∗(I)w∗(F )

w∗(M)
=

∑

w,z

∑

(I,F )∈cpw,z
T

λ(I)λ(F )
λ(N (u, v))

λ(M)λ(N (w, z))

≤
∑

w,z

λ(u, v)λ(N (u, v)) (by Lemma 7.3)

≤ w∗(Ω) (by (7.4)).

We now prove the second inequality in Lemma 7.4.

∑

(I,F )∈cpT

w∗(I)w∗(F )

w∗(M)
=

∑

(I,F )∈cpT

λ(I)λ(F )
λ(N (u, v))

λ(M)λ(P)

≤ 2λ(u, v)λ(N (u, v)) (by Lemma 7.3)

≤ λ(P) (by (7.4)).

We now restate Theorem 4.1 and then present its proof.
Theorem 4.1. Assuming the weight function w satisfies inequality

(4.2) w∗(u, v)/2 ≤ w(u, v) ≤ 2w∗(u, v)

for every (u, v) ∈ V1×V2 with N (u, v) �= ∅, then the mixing time of the Markov chain
MC is bounded above by τM (δ) = O(n4(lnπ(M)−1 + ln δ−1)).

Proof of Theorem 4.1. Inequality (4.2) implies for any set of matchings S ⊂ Ω that
the stationary distribution π(S) under w is within a factor of 4 of the distribution
under w∗. Therefore, to prove Theorem 4.1 it suffices to consider the stationary
distribution with respect to w∗. In other words, we need to prove, for every transition
T , ρ(T ) = O(n) where, for M ∈ Ω, π(M) = w∗(M)/w∗(Ω). Then for weights



ACCELERATING SIMULATED ANNEALING FOR THE PERMANENT 1449

satisfying (4.2) the congestion increases by at most a constant factor. Thus, we need
to prove

∑

(I,F )∈Ω×P:
T∈γ(I,F )

w∗(I)w∗(F )

w∗(M)P (M,M ′)
= O(nw∗(Ω)).

Recall case 3 in the definition of the Markov chain MC (section 4.2), where the
Metropolis filter is applied.

In particular, from Mt, a new matching N is proposed with probability 1/4n, and
then the proposed new matching is accepted with probability min{1, w∗(N)/w∗(Mt)}.
Hence, for the transition T = M → M ′,

w∗(M)P (M,M ′) =
1

4n
min{w∗(M), w∗(M ′)}.

The chain is reversible; thus for every transition T = M → M ′, there is a reverse
transition T ′ = M ′ → M . Hence, to prove Theorem 4.1, it suffices to prove that for
every transition T = M → M ′,

(7.5)
∑

(I,F )∈Ω×P:
T∈γ(I,F )

w∗(I)w∗(F )

w∗(M)
= O(w∗(Ω)).

Lemmas 7.2 and 7.4 imply (7.5) which completes the proof of the theorem.

8. Phases in the permanent algorithm. In this section we show that the
choice of λ from the weight-estimating algorithm ensures that (4.2) is satisfied in
each phase. Recall that we can obtain a refined estimate of the ideal weights in each
phase; see (4.5). We need to guarantee that the weights of two consecutive phases do
not differ too much. Namely, if they are within a

√
2 factor of each other, together

with (4.5) we have (4.2) for the next phase. As we will see shortly, for our choice
of activities the ideal weights w∗(u, v) are a ratio of two polynomials of degree ≤ n
evaluated at λ. This observation will allow us to use Lemma 3.2.

Definition 8.1. We say that a matching M ∈ P of a complete bipartite graph
covers k edges of a graph G if the size of M ∩ E(G) is k. Let

RG(x) =

n∑

k=0

pkx
n−k,

where pk is the number of matchings in P covering k edges of G.
Note that the ideal weights w∗, defined by (4.1), for activities given by (4.4) can

be expressed as

(8.1) w∗
λ(u, v) =

RG(λ)

RG\{u,v}(λ)
.

First we observe that every R-polynomial has a positive low-degree coefficient
(and consequently in the application of Lemma 3.2 we will have that D is small).
In particular, the coefficient of either x0 or x1 is positive in each of the polynomials
RG, RG\{u,v} for every u ∈ V1, v ∈ V2. This follows from the fact that G contains
a perfect matching. Let M be a perfect matching of G. The existence of M implies
that the constant term in RG is positive. Similarly, if (u, v) ∈ M , then the constant
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term in RG\{u,v} is positive because M \ {(u, v)} is a perfect matching in G \ {u, v}.
If (u, v) �∈ M , let u′, respectively, v′, be the vertices matched to u and v in M , and
let M ′ = M ∪ {(v′, u′)} \ {(u, u′), (v, v′)}. Depending on (v′, u′) being an edge in G,
the cardinality of M ′ is either n − 1 or n − 2. Therefore, the coefficient of either x0

or x1 in RG\{u,v} is positive.

Now we are ready to apply Lemma 3.2. Let c =
√

2, γ = n!, D = 1, s = n,
and Z1 = RG, and the polynomials Z2, . . . , Zn2+1 are the RG\{u,v} polynomials for
u ∈ V1, v ∈ V2. Let λ0, . . . , λ� be the sequence obtained from the algorithm in
section 3.2. Notice that we obtain the same sequence in the algorithm for estimating
weights of the permanent. Then

(8.2)
RG(λk) ≥ RG(λk+1) ≥ RG(λk)/

√
2, and

RG\{u,v}(λk) ≥ RG\{u,v}(λk+1) ≥ RG\{u,v}(λk)/
√

2 for every u, v.

Equations (8.1) and (8.2) imply the w∗
λk

and w∗
λk+1

are within a
√

2 factor. More-

over, if the weight-estimating algorithm does not fail, i.e., the wλk
satisfy (4.5), then

wλk
also satisfy (4.2), as required by Theorem 4.1.

9. Nonnegative matrices. The extension to nonnegative matrices follows iden-
tically as in section 7 of [10]; hence we refer the interested reader to [10].

10. Discussion.

10.1. Recent improvements. In this paper, we have presented a near-optimal
cooling schedule subject to the constraint that each of the ratios Zi/Zi−1 in (1.1)
is bounded. However, in order to estimate the ratio efficiently, it suffices to have
an unbiased estimator with bounded variance and the ratio itself might be large. A
recent paper [18] presents a general cooling schedule achieving the bounded variance
property. As a consequence, for many combinatorial problems, such as colorings or
matchings, [18] achieves a cooling schedule of length O∗(

√
n), whereas in this paper we

present a schedule of length O∗(n). Therefore, the improved schedule of [18] reduces
(compared with this paper) the overall running time by a factor of O∗(n) for many
combinatorial counting problems. For the permanent, the improved cooling schedule
of [18] does not appear to apply, since the algorithm for approximating the permanent
needs to consider multiple polynomials simultaneously.

10.2. Permanent application. With the improvement in running time of the
approximation algorithm for the permanent, computing permanents of n×n matrices
with n ≈ 100 now appears feasible. Further improvement in the running time is an
important open problem.

Some avenues for improvement are the following. We expect that the mixing
time of the underlying chain is better than O(n4). Some slack in the analysis is in
the application of the new inequalities to bound the congestion. In their application
we simply use a sum over y, whereas the inequalities hold for a sum over x and y as
stated in Lemma 6.2.

Another direction is reducing the number of samples needed per phase. It is
possible that fewer samples are needed at each intermediate activity for estimating
the ideal weights w∗. Perhaps the w∗ satisfy relations which allow for fewer samples
to infer them.

Appendix. A lower bound of the number of k-colorings. We will use ab

to denote a!/(a− b)!. Let G be a graph, and for each vertex i of G let Li be a list of
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colors. A valid list-coloring of G is a coloring such that each i has a color from Li,
and no two neighbors have the same color.

Lemma A.1. Let G be a graph with n vertices. Let dj be the number of vertices
of degree j in G. Let s be an integer, s ≥ 1. Let L1, . . . , Ln be sets such that
|Li| ≥ s + deg i for each vertex i of G. Let Ω be the set of valid list-colorings of G.
Then

|Ω| ≥
n∏

j=0

c
dj

j ,

where cj = ((s + j)j+1)1/(j+1).
Proof. We will use induction on d0 + · · · + dk. Let v be the vertex of minimum

degree �. We have |Lv| ≥ � + s. Let j1, . . . , j� be the degrees of the neighbors of v.
Note that ji ≥ � for i = 1, . . . , �.

By the induction hypothesis
(A.1)

|Ω| ≥ (� + s)

⎛
⎝

n∏

j=0

c
dj

j

⎞
⎠ 1

c�

(
�∏

i=1

cji−1

cji

)
≥ (� + s)

⎛
⎝

n∏

j=0

c
dj

j

⎞
⎠ 1

c�

(
c�−1

c�

)�

=

n∏

j=0

c
dj

j ,

where in the second inequality we used the inequality cj/cj+1 ≥ cj−1/cj , which we
prove next.

Let T = (s + j)j+1. We want to show

T 2/(j+1) ≥
(

T

s + j

)1/j

(T (s + j + 1))
1/(j+2)

.

After raising both sides to −j(j + 1)(j + 2)/2 and multiplying by T (j+1
2 )+(j+2

2 ), we
obtain an equivalent inequality

(A.2) T ≤ (s + j)(
j+2
2 )

(s + j + 1)(
j+1
2 )

.

Using the inequality between the arithmetic and geometric means,

(
(s + j)j+1(s + j + 1)(

j+1
2 )

)1/(j+2
2 ) ≤ s + j,

which implies (A.2). Therefore, c2j ≥ cj+1cj−1, and hence the induction step (A.1) is
proved.

For k-colorings we obtain the following result.
Corollary A.2. Let G be a graph with n vertices and maximum degree Δ. Let

k > Δ. Let Ω be the set of valid k-colorings of G. Then

|Ω| ≥ (
kΔ+1

)n/(Δ+1) ≥
(
k − Δ

(
1 − 1

e

))n

≥
(
k

e

)n

.

Proof. Let s = k − Δ. The first inequality follows from Lemma A.1 with the
Li = [k].

The second inequality is equivalent to

(A.3) (s + Δ)Δ+1 ≥ (s + Δ/e)
Δ+1

.
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The inequality (A.3) is true for Δ = 0, and hence from now on we assume Δ ≥ 1.

Let f(s,Δ) =
∑Δ

i=0 ln s+i
s+Δ/e . Inequality (A.3) is equivalent to f(s,Δ) ≥ 0.

Claim.

(A.4) f(1,Δ) > 0.

Proof of the claim. We need to show that (A.3) holds with strict inequality for
s = 1. Let n = Δ + 1. We want to show n! > (1 + (n − 1)/e)n. The inequality
n! >

√
2πn(n/e)n implies that it is enough to show 2πn ≥ ((n + e − 1)/n)2n, which

(using 1 + x ≤ ex) is implied by 2πn ≥ e2(e−1). Hence we proved (A.3) for s = 1 and
n ≥ 5. For n ≤ 4 and s = 1 the (strict version of) inequality (A.3) is easily verified
by hand.

Each term in the definition of f goes to zero as s goes to infinity. Hence we have

(A.5) lim
s→∞ f(s,Δ) = 0.

Note that

f ′(s,Δ) =
∂f

∂s
(s,Δ) =

1

s + Δ/e

Δ∑

i=0

Δ/e− i

s + i
.

From Δ(Δ + 1)/e < Δ(Δ + 1)/2 it follows that for every Δ there exists sΔ such that

(A.6) f ′(s,Δ) < 0 for all s > sΔ.

Let g(s,Δ, y) =
∑Δ

i=0
y−i
s+i . We have g(s,Δ, y) = 0 iff

y = yΔ(s) :=

(
Δ∑

i=0

i

s + i

)/(
Δ∑

i=0

1

s + i

)
.

We will show that yΔ(s) is an increasing function of s. This will imply that the
equation Δ/e = yΔ(s) has at most one solution for any fixed Δ. Note that f ′(s,Δ) =
g(s,Δ,Δ/e). Hence we will obtain that f ′(s,Δ) = 0 has at most one solution for any
fixed Δ. This, together with (A.4), (A.5), and (A.6), implies f(s,Δ) ≥ 0.

It remains to show that

(A.7) (∂yΔ/∂s)(s) > 0.

The sign of (∂yΔ/∂s)(s) is the same as the sign of

h(s,Δ) :=

(
Δ∑

i=0

i

s + i

)(
Δ∑

i=0

1

(s + i)2

)
−
(

Δ∑

i=0

1

s + i

)(
Δ∑

i=0

i

(s + i)2

)
.

For Δ = 0 we have h(s,Δ) = 0. To show (A.7) it is enough to show that for Δ ≥ 1
the following quantity is positive:

h′(s,Δ) := h(s,Δ) − h(s,Δ − 1) =
1

s + Δ

(
Δ∑

i=0

Δ − i

(s + i)2

)
+

1

(s + Δ)2

(
Δ∑

i=0

i− Δ

s + i

)
.
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For Δ = 0 we have (s+ Δ)2h′(s,Δ) = 0. To show h′(s,Δ) > 0 for Δ ≥ 1 it is enough
to show that for Δ ≥ 1 the following quantity is positive:

h′′(s,Δ) := (s + Δ)2h′(s,Δ) − (s + Δ − 1)2h′(s,Δ − 1) =

Δ−1∑

i=0

2Δ − 2i− 1

(s + i)2
.

We have that h′′(s,Δ) is a sum of positive numbers and hence h′′(s,Δ) > 0 for Δ ≥ 1.
This implies h′(s,Δ) > 0 for Δ > 0 and this in turn implies h(s,Δ) > 0 for Δ ≥ 1.
We just proved (A.7), which was all that remained to be proved.
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IMPROVED DYNAMIC REACHABILITY ALGORITHMS
FOR DIRECTED GRAPHS∗

LIAM RODITTY† AND URI ZWICK†

Abstract. We obtain several new dynamic algorithms for maintaining the transitive closure of
a directed graph and several other algorithms for answering reachability queries without explicitly
maintaining a transitive closure matrix. Among our algorithms are: (i) A decremental algorithm
for maintaining the transitive closure of a directed graph, through an arbitrary sequence of edge
deletions, in O(mn) total expected time, essentially the time needed for computing the transitive
closure of the initial graph. Such a result was previously known only for acyclic graphs. (ii) Two
fully dynamic algorithms for answering reachability queries. The first is deterministic and has an
amortized insert/delete time of O(m

√
n), and worst-case query time of O(

√
n). The second is

randomized and has an amortized insert/delete time of O(m0.58n) and worst-case query time of
O(m0.43). This significantly improves the query times of algorithms with similar update times. (iii)
A fully dynamic algorithm for maintaining the transitive closure of an acyclic graph. The algorithm
is deterministic and has a worst-case insert time of O(m), constant amortized delete time of O(1),
and a worst-case query time of O(n/ logn). Our algorithms are obtained by combining several new
ideas, one of which is a simple sampling idea used for detecting decompositions of strongly connected
components, with techniques of Even and Shiloach [J. ACM, 28 (1981), pp. 1–4], Italiano [Inform.
Process. Lett., 28 (1988), pp. 5–11], Henzinger and King [Proceedings of the 36th Annual Symposium
on Foundations of Computer Science, Milwaukee, WI, 1995, pp. 664–672], and Frigioni et al. [ACM
J. Exp. Algorithmics, 6 (2001), (electronic)].
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1. Introduction. The problem of maintaining the transitive closure of a dy-
namic directed graph, i.e., a directed graph that undergoes a sequence of edge inser-
tions and deletions, is a well studied and well motivated problem. Demetrescu and
Italiano [5], improving an algorithm of King [15], recently obtained an algorithm for
dynamically maintaining the transitive closure under a sequence of edge insertions
and deletions with an amortized insert/delete time of O(n2), where n is the number
of vertices in the graph. King and Thorup [17] reduced the space requirements of
these algorithms. All these algorithms support extended insert and delete operations
in which an arbitrary set of edges, all touching the same vertex, may be inserted, and
a completely arbitrary set of edges may be deleted, all in one update operation.

When the transitive closure of a graph is explicitly maintained, it is of course
possible to answer every reachability query, after each update, in O(1) time. As
the insertion or deletion of a single edge may change Ω(n2) entries in the transitive
closure matrix, an amortized update time of O(n2), in the worst-case, is essentially
optimal. When the number of queries after each update operation is relatively small,
it is desirable to have a dynamic algorithm with a smaller update time, at the price
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of a nonconstant query time. Such algorithms can escape the Ω(n2) lower bound on
the amortized update time by implicitly maintaining the transitive closure matrix.

Several dynamic algorithms for answering reachability queries, without explicitly
maintaining the transitive closure, were developed. Most recently, Demetrescu and
Italiano [5, 6] gave such a Monte Carlo algorithm with an amortized update time
of O(n1.58) and worst-case query time of O(n0.58). They exhibit, in fact, a tradeoff
between the update and query times. Smaller query times may be obtained at the
cost of higher update times. However, their algorithm can handle only acyclic graphs,
and can insert or delete only one edge at a time. Furthermore, it relies on fast rect-
angular matrix multiplication and thus may not be very efficient in practice. Earlier,
Henzinger and King [10] gave two Monte Carlo algorithms for answering reachability
queries. The first algorithm has an amortized update time of O(m

√
n log2 n) and a

worst-case query time of O(n/ log n), where m is the number of edges in the graph.
The second one has an amortized update time of O(m0.58n) and a query time of
O(n/ log n).

We present two new fully dynamic reachability algorithms for general graphs
that improve upon the results of Henzinger and King [10]. The first is a deterministic
algorithm that has an amortized update time of O(m

√
n) and a worst-case query time

of O(
√
n). The update time of this algorithm is faster by a polylogarithmic factor

than the update time of the first algorithm of Henzinger and King [10] while the query
time is reduced from O(n/ log n) to O(

√
n). Furthermore, we can obtain a tradeoff

between the update and query times. For every t ≤ √
n, we can get an update time

of O(mn/t) and query time O(t). This algorithm is purely combinatorial and does
not use fast matrix multiplication algorithms.

Our second algorithm is a randomized algorithm with an amortized update time
of O(m0.58n) and worst-case query time of O(m0.43). This improves the query time of
the second algorithm of Henzinger and King [10] from O(n/ log n) to O(m0.43). This
algorithm does use fast matrix multiplication. We again get a tradeoff. For every
t ≤ (m log n)1/ω, we can get an update time of O(mn log n/t) and a query time of
O(t), where ω < 2.376 is the matrix multiplication exponent (see Coppersmith and
Winograd [3]). Note that this is essentially the same tradeoff as that of the first
algorithm. But, when m ≥ nω/2 log n, larger values of t may be chosen, giving lower
update times.

We also obtain a fully dynamic reachability algorithm for acyclic graphs. This
algorithm is deterministic and has a linear amortized update time of O(m) and a
worst-case query time of O(n/ log n). A comparison between our dynamic reachability
algorithms and the previously available ones is given in Table 1.1.

In the time bounds given above for decremental algorithms, m stands for the
initial number of edges in the graph. In time bounds given above for fully dynamic
algorithms, m stands for the maximum number of edges in the graph during the phase
in which the update operation is performed. (Phases will be defined later.)

One of the ingredients used in obtaining the improved fully dynamic reachabil-
ity algorithms is an improved decremental algorithm for maintaining the transitive
closure. A decremental algorithm is an algorithm that can handle deletions but not
insertions. Italiano [14] obtained a decremental algorithm for acyclic graphs that
processes any sequence of deletions in O(mn) time. Slower algorithms for general,
i.e., not necessarily acyclic, graphs were obtained by La Poutré and van Leeuven [19],
Frigioni et al. [8], Demetrescu and Italiano [5], and by Baswana, Hariharan, and Sen
[1]. A summary of previous decremental algorithms for maintaining the transitive
closure, and for answering reachability queries is given in Table 1.2. (All the algo-
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Table 1.1

Fully dynamic reachability algorithms.

Graphs Algorithm Query Amortized update time Reference

DAGs Monte Carlo O(1) O(n2) [16]
DAGs Monte Carlo O(n0.58) O(n1.58) [5]

DAGs Deterministic O( n
log n

) O(m) This paper

General Monte Carlo O( n
log n

) O(m
√
n log2 n) [10]

General Monte Carlo O( n
log n

) O(m0.58n) [10]

General Monte Carlo O(1) O(n2.26) [16]
General Deterministic O(1) O(n2 logn) [15]
General Deterministic O(1) O(n2) [5]

General Deterministic O(
√

n) O(m
√

n) This paper
General Monte Carlo O(m0.43) O(m0.58n) This paper

Table 1.2

Decremental reachability algorithms.

Graphs Algorithm Query Total update time Reference

DAGs Deterministic O(1) O(mn) [14]

General Monte Carlo O( n
log n

) O(mn log2 n) [10]

General Deterministic O(1) O(m2) [19, 8]
General Deterministic O(1) O(n3) [5]
General Monte Carlo O(1) Õ(mn4/3) [1]

General Las Vegas O(1) O(mn) This paper

rithms there, except that of Henzinger and King [10], explicitly maintain the transitive
closure matrix.)

We obtain a new randomized decremental algorithm for maintaining the transitive
closure of arbitrary, not necessarily acyclic, graphs. It processes any sequence of edge
deletions in a total expected time of O(mn). The algorithm is a Las Vegas algorithm,
i.e., its answers are always correct. This matches the time bound of Italiano [14]
for acyclic graphs, and answers an open problem raised there. As mentioned in the
abstract, a time bound of O(mn) is essentially optimal for the problem, as Ω(mn)
time is needed just for computing the transitive closure of the initial graph using the
currently best matrix multiplication-free algorithm. The new decremental algorithm
is based on a very simple sampling idea.

Next, we adapt the results of Cohen [2] on estimating the size of the transitive
closure to the dynamic setting. In particular, we obtain an incremental algorithm
that can process any sequence of edge insertions and requests to estimate the number
of vertices reachable from a certain vertex in O(m log n + q) time, where m is the
total number of edges inserted and q is the number of queries. We also obtain such a
decremental algorithm for acyclic graphs. In the fully dynamic setting, we can provide
such estimates at the cost of O(log n) reachability queries.

The rest of this extended abstract is organized as follows. In the next section we
present a new decremental algorithm for maintaining the strongly connected com-
ponents of a directed graph. This algorithm is used in section 3 to obtain the
O(mn) decremental algorithm for maintaining the transitive closure of general di-
rected graphs. In section 4 we then describe three new fully dynamic reachability
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algorithms for general graphs. (Only two of them were mentioned above.) In sec-
tion 5 we describe a new fully dynamic reachability algorithm for acyclic graphs. In
section 6 we sketch our dynamic size estimation results. We end in section 7 with
some concluding remarks and open problems.

Recent developments. Since the appearance of the preliminary version of this
paper, some additional dynamic algorithms for maintaining the transitive closure and
for answering reachability queries were obtained. None of them, however, supersedes
the results presented in this paper. Roditty [20] obtained another fully dynamic
algorithm, with an amortized update time of O(n2) and a worst-case query time of
O(1), for maintaining the transitive closure matrix of a general graph. Sankowski [24]
obtained a randomized algorithm with a worst-case update time of O(n2) and a worst-
case query time of O(1) for maintaining, with high probability, the transitive closure
matrix. We [22] obtained yet another algorithm for answering reachability queries that
has an amortized update time of O(m + n log n) and a query time of O(n). Finally,
Krommidas and Zaroliagis [18] have implemented some of the algorithms presented
in this paper and they report that they work fairly well in practice.

2. Decremental maintenance of strongly connected components. In this
section we consider the dynamic maintenance of the strongly connected components
(SCCs) of a directed graph under a sequence of edge deletions. This is a seemingly
easier problem than the maintenance of the transitive closure of a graph. In sec-
tion 3, however, we use the results of this section to obtain an improved decremental
algorithm for the maintenance of the transitive closure, and in section 4 we use this
decremental algorithm as a building block in our new fully dynamic reachability al-
gorithms.

The new algorithm is given in Figure 2.1. It handles any sequence of edge deletions
and queries in O(mn+ q) total expected time, where q is the number of queries. Each
query is answered correctly in O(1) worst-case time. The expected amortized time
per edge deletion, if all edges are eventually deleted, is O(n).

The algorithm starts by computing the SCCs of the graph using any linear time
algorithm (see Tarjan [26], Sharir [25], Gabow [9], or Chapter 22 of Cormen et al. [4]).
In each SCC C of the graph it then constructs and maintains a shortest-paths in-tree
In(w) and a shortest-paths out-tree Out(w) rooted at a random representative w of
this SCC. These shortest-paths trees are maintained using the decremental algorithm
of Even and Shiloach [7], as adapted to directed graphs by Henzinger and King [10].
If C is composed of n′ vertices and m′ edges, then the total cost of maintaining these
two shortest-paths trees, over any sequence of edge deletions, is O(m′n′).

The algorithm also maintains an array A of length n that holds for every vertex
v the representative vertex of the SCC containing v. Using this array it is easy to
answer any strong connectivity query in O(1) time.

Edge deletions are handled as follows. If the edge e = (u, v) is not contained in
an SCC, i.e., if A(u) �= A(v), then nothing needs to be updated. If e is contained in
an SCC C with representative vertex w, i.e., A(u) = A(v) = w, and e is not contained
in the trees In(w) and Out(w), then again, the SCCs of the graph do not change and
we need only record that the edge e was deleted.

The difficult case, of course, is when e is contained in one of the trees In(w) or
Out(w). In this case, we use the decremental algorithm to update the shortest-paths
trees In(w) and Out(w). If after this update we have u ∈ In(w) and v ∈ Out(w),
then there is still a directed path from u to v in the graph. Thus C is still an SCC,
and the partition of the graph into SCCs did not change.
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init(V ):
1. Allocate an array A of size n.
2. Choose a random vertex w ∈ V .
3. Call findSCC(V,w).

findSCC(C, w):
1. Find the SCCs C1, C2, . . . , Ck of the graph G[C].
2. In each SCC Cj , where 1 ≤ j ≤ k, do:

(a) If w ∈ Cj , then let wj ← w.
Otherwise, choose a random representative wj ∈ Cj .

(b) For every v ∈ Cj , let A(v) ← wj .
(c) Initialize decremental data structures for maintaining a

shortest-paths in-tree In(wj) and a shortest-paths out-tree
Out(wj) of G[Cj ] rooted at wj .

query(u, v):
1. If A(u) = A(v) then “yes,” otherwise “no.”

delete(u, v):
1. If A(u) �= A(v), i.e., u and v are not in the same SCC, do nothing.
2. Otherwise, let w ← A(u), and let C be the vertices of the SCC

containing w.
3. Delete the edge (u, v), if necessary, from the trees In(w) and

Out(w) using the appropriate decremental data structures.
4. If u �∈ In(w) or v �∈ Out(w), i.e., C decomposed, then call

findSCC(C,w).

Fig. 2.1. A randomized decremental algorithm for maintaining strongly connected components.

If u �∈ In(w) or v �∈ Out(w), then clearly C is no longer a SCC. We construct,
in O(m′ + n′) time, the new SCCs C1, C2, . . . , Ck to which C decomposed. Let Ci be
the new SCC containing w. We let wi = w be the representative of Ci. In every other
SCC Cj , for j �= i, we choose a random representative wj ∈ Cj .

By removing from In(w) and Out(w) the vertices that do not belong to Ci, we
obtain shortest-paths trees that span Ci. It is crucial for the analysis of the algorithm
to note that the decremental data structures maintaining these two shortest-paths
trees do not have to be reinitialized.

From each random representative wj , for j �= i, we build from scratch shortest-
paths trees In(wj) and Out(wj) that span Cj , and initialize the data structure of Even
and Shiloach [7] for maintaining them. Finally, we update the array A accordingly.
We now claim the following theorem.

Theorem 2.1. The algorithm of Figure 2.1 correctly handles any sequence of
deletions and strong connectivity queries. Each query is answered in O(1) time. The
expected running time of the algorithm, for any sequence of deletions and queries is
O(mn + q), where q is the number of queries.

Proof. The correctness of the algorithm follows easily from the above discussion.
(Note that the random choices of the representatives affect only the running time,
not the answers given.) It remains, therefore, to show that the expected time spent
in processing all edge deletions is only O(mn).

Let f(m,n) be an upper bound on the expected running time of the algorithm
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on the worst possible strongly connected graph with m edges and n vertices, and for
the worst sequence of edge deletions. (If the initial graph is not strongly connected,
we repeat the analysis in each strongly connected component.) In the upper bound
f(m,n) we charge m′n′ units of time for the decremental maintenance of the in-tree
and out-tree of an SCC containing, initially, n′ vertices and m′ edges, even if the
actual cost of maintaining these trees is smaller.

We claim that

f(m,n) ≤ mn +

k∑

i=1

(
f(mi, ni) − min

2
i

n

)
,

for some k ≥ 2 and m1,m2, . . . ,mk ≥ 0, n1, n2, . . . , nk ≥ 1 such that
∑k

i=1 mi ≤ m

and
∑k

i=1 ni = n. Here, k is the number of SCCs to which the graph breaks when it
is no longer strongly connected, and mi and ni, respectively, are the number of edges
and vertices in the ith SCC. (Note that k, the ni’s and the mi’s do not depend on
the random choices made by the algorithm.)

The term mn covers the initialization cost of the algorithm and the cost of all fu-
ture maintenance operations performed on the shortest-paths trees In(w) and Out(w).
When the graph breaks into the k SCCs, the algorithm continues independently on
each one of them. So we clearly have f(m,n) ≤ mn +

∑k
i=1 f(mi, ni).

This naive estimate fails, however, to take advantage of the following fact. The
new component that contains w, the representative of the original component, inher-
its the shortest-paths trees In(w) and Out(w), and does not have to pay for their
construction and maintenance. Furthermore, as w was randomly chosen, the larger
a new component is, the more likely it is to receive this “gift.” The probability that
a new component of ni vertices will contain w is ni/n. Thus, with a probability of
ni/n, the term mini, incorporated into f(mi, ni), can be dispensed with, giving the
desired relation. We now claim the following lemma.

Lemma 2.2. f(m,n) ≤ 2mn.
Proof. The proof is by induction. The basis of the induction is easily established.

Suppose now that the claim holds for any (m′, n′) with m′ < m and n′ < n. We show
that it also holds for (m,n). We have to verify that

mn + 2

k∑

i=1

mini −
k∑

i=1

min
2
i

n
≤ 2mn.

Letting xi = mi/m and yi = ni/n, so that xi, yi ≥ 0,
∑k

i=1 xi ≤ 1, and
∑k

i=1 yi = 1,
we get after a simple manipulation that we have to verify that

2

k∑

i=1

xiyi −
k∑

i=1

xiy
2
i ≤ 1.

We show that in fact

2

k∑

i=1

xiyi −
k∑

i=1

xiy
2
i ≤

k∑

i=1

xi ≤ 1.

This follows as we have

k∑

i=1

xi − 2

k∑

i=1

xiyi +

k∑

i=1

xiy
2
i =

k∑

i=1

xi(1 − yi)
2 ≥ 0.
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This completes the proof of the lemma.
This completes the proof of the theorem.

3. Decremental maintenance of the transitive closure. Our goal in this
section is to prove the following two theorems.

Theorem 3.1. There is a randomized algorithm for maintaining the transitive
closure matrix of a graph that undergoes a sequence of edge deletions whose total
expected running time is O(mn).

Theorem 3.2. There is a deterministic algorithm for maintaining the transitive
closure matrix of a graph that undergoes a sequence of edge deletions whose total
running time is O(mn+del·m), where del is the number of delete operations performed
on the graph. Each delete operation may remove an arbitrary set of edges from the
graph.

The first result is obtained by combining the algorithm for the decremental main-
tenance of the strongly connected components of a graph, described in the previous
section, with an algorithm of Frigioni et al. [8] for the decremental maintenance of the
transitive closure matrix. The second result is obtained by a small modification of the
algorithm of Frigioni et al. For completeness, we sketch the operation of the algorithm
of Frigioni et al. and describe the modifications needed to obtain our results.

Italiano [14] describes a deterministic algorithm, with a total running time of
O(mn), for the decremental maintenance of the transitive closure matrix of an acyclic
directed graph. Frigioni et al. [8] extend Italiano’s algorithm so that it could handle
general, not necessarily acyclic, graphs. Frigioni et al. [8] report that their algorithm
works well in practice, though its worst-case time complexity is O(m2).

We begin with a sketch of the operation of Italiano’s algorithm. The algorithm
maintains, in addition to the transitive closure matrix M , a collection of reachability
trees, one rooted at every vertex of the graph. The tree of a vertex v, denoted by
T (v), contains all the vertices in the current version of the graph that are reachable
from v. Note that M(v, u) = 1 if and only if u ∈ T (v). Every vertex u has two linked
lists Ein(u) and Eout(u) of its incoming and outgoing edges that were not yet deleted.
If u ∈ T (v), then we let p(v, u) be a pointer to the edge (u′, u) in Ein(u) such that u′

is the parent of u in T (v). If u �∈ T (v), then p(v, u) = null.
When an edge (u,w) is deleted from the graph, the algorithm performs the fol-

lowing operations. For every vertex v, it checks whether (u,w) is an edge of the tree
T (v). (This is done by checking whether p(v, w) points to (u,w).) If (u,w) is not an
edge of T (v), then nothing needs to be done. Otherwise, if (u,w) is a tree edge, the
algorithm tentatively sets p(v, w) to point to the next edge (u′, w) in Ein(w), or to
null, if (u,w) is the last edge of Ein(w). Note that if u′ ∈ T (v), then the new edge
(u′, w) reconnects w to T (v). As this condition still needs to be checked, the algo-
rithm sets R(v) ← {w}. If (u,w) is not an edge of T (v), or if (u,w) is the last edge
in Ein(w), it lets R(v) ← φ. The set R(v) is thus the set of vertices with tentative
parent pointers that might or might not connect them to the remaining part of T (v).
After these operations, the edge (u,w) is removed from the graph, i.e., from the lists
Eout(u) and Ein(w).

For every vertex v, the algorithm now needs to check the tentative pointers of the
vertices in R(v). While there is a vertex w ∈ R(v), the algorithm scans the edges of
Ein(w), starting from the edge pointed to by p(v, w), until an edge (u′, w) for which
p(v, u′) �= null is found, or until the list Ein(w) is exhausted. If such an edge is
found, then w is removed from R(v). If the list Ein(w) is exhausted before finding
such an edge, the algorithm sets p(v, w) to null and M(v, w) to 0. It then scans all
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the outgoing edges of w. If (w,w′) is a tree edge, then it adds w′ to R(v).
As shown by Italiano [14], the algorithm sketched previously correctly maintains

the transitive closure of an acyclic graph that undergoes a sequence of edge deletions,
and its total running time is O(mn). To see that the total running time of the
algorithm is indeed O(mn), note that the lists Ein(u) and Eout(u) are examined only
once per reachability tree.

The algorithm of Frigioni et al. [8] maintains the strongly connected components of
the graph, and the skeleton of the graph, i.e., the acyclic graph induced on the strongly
connected components. The skeleton is maintained using Italiano’s algorithm [14].

For each SCC, the algorithm of Frigioni et al. [8] maintains a sparse certificate
composed of an in-tree and an out-tree rooted at an arbitrary vertex. When an edge
from this certificate is deleted, their algorithm may have to spend O(m + n) time
to check whether the SCC decomposed. As this may happen every time an edge is
deleted, the worst case total running time of the algorithm may be Ω(m2).

However, the total running time of the algorithm of Frigioni et al. [8], excluding the
time needed to detect decompositions of SCCs is only O(mn). Thus, combining their
algorithm with our algorithm for maintaining the SCCs yields a decremental algorithm
for maintaining the transitive closure of general graphs with a total expected time of
O(mn), matching the time bound of Italiano [14] for acyclic graphs. This proves
Theorem 3.1.

To provide a proof of Theorem 3.2 we need to sketch the operation of the algorithm
of Frigioni et al. [8] in more detail. The algorithm of Frigioni et al. [8] is similar to
the algorithm of Italiano [14], with SCCs playing the role played by vertices in the
algorithm of Italiano. Some of the details, however, are slightly more involved. A
sketch of (a variant of) the algorithm of Frigioni et al. [8] follows.

Every vertex u has a pointer C(u) to the component containing it. For every com-
ponent C, the algorithm maintains three linked lists Ein(C), Eout(C), and Eint(C) of
the incoming, outgoing, and the internal edges of the component C. An edge (u,w)
belongs to Ein(C) if u �∈ C while w ∈ C, to Eout(C) if u ∈ C while w �∈ C, and to
Eint(C) if u,w ∈ C. For every component C the algorithm maintains a tree T (C)
of all the components reachable from C. If C2 ∈ T (C1), then we let p(C1, C2) be a
pointer to the edge (u′, u) in Ein(C2) such that C(u′) is the parent of C(u) = C2 in
T (C1). If C2 �∈ T (C1), then p(C1, C2) = null.

The algorithm handles the deletion of a set of edges E′ in the following way.
First it lets E′ = E′

int ∪E′
ext, where E′

int are edges that connect two vertices that are
in the same component, while E′

ext are edges that connect vertices in two different
components. The algorithm first removes all the edges of E′

int and then all the edges
of E′

ext.
The first step is the computation of the new SCCs. This can be done determin-

istically in O(m+ n) time by simply recomputing the SCCs from scratch. (To get an
algorithm that satisfies the conditions of Theorem 3.1 we replace this step with the
randomized algorithm of the previous section.) Suppose that a component C breaks
into k new components C1, C2, . . . , Ck. The first step is to split the lists Ein(C),
Eout(C), and Eint(C) into new lists Ein(Ci), Eout(Ci), and Eint(Ci), for 1 ≤ i ≤ k,
and to replace the pointers p(D,C), for every component D by new pointers p(D,Ci).
This step also constructs for each component D a set R(D) of the components that
need to be reconnected, if possible, to T (D). We also initialize new reachability trees
for the new components C1, C2, . . . , Ck.

The incoming edges of C are now split between the new components C1, C2, . . . , Ck.
The splitting of Ein(C) is done as follows. We scan the edges Ein(C) and move each
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edge (u,w), where w ∈ Ci, to the list Ein(Ci). If p(D,C) = (u,w), then we let
p(D,Ci) = (u,w), while p(D,Cj), for each j �= i, is set to the next edge to be added
to Ein(Cj). In the latter case, we also add Cj to R(D), as Cj lost its link to T (D).
(Note that p(D,Cj) now is not the edge connecting Cj to T (D) but rather the first
edge that should be checked.) The list Eout(C) is split in a similar manner. Finally,
each edge (u,w) ∈ Eint(C) with u ∈ Ci and w ∈ Cj is moved into Eint(Ci), if i = j,
and to Eout(Ci) and Ein(Cj), otherwise. It is important to note that the edges of
Eint(C) are placed at the end of the lists Eout(Ci) and Ein(Cj). We can now remove
the edges of E′

int from the graph.
We now deal with the deletion of the edges of E′

ext. Suppose that (u,w) ∈ E′
ext.

If p(D,C) = (u,w), we move p(D,C) to point to the next edge in Ein(C), or to null
if there is no such edge, and add C to R(D).

Finally, we try to repair the trees. For every component D, while R(D) is not
empty, we choose C ∈ R(D) and scan the edges of Ein(C), starting from p(D,C),
until an edge (u,w) for which p(D,C(u)) �= null is found. If such an edge is found,
we let p(D,C) point to this edge and remove C from R(D). Otherwise, we find all
the components C ′ for which p(D,C ′) = (w, v) with w ∈ C and add them to R(D).

This completes the sketch of (a variant of the) algorithm of Frigioni et al. [8].
Frigioni et al. [8] show that the algorithm correctly maintains the transitive closure
matrix of the graph. It is easy to check that the worst case total running time of the
algorithm is indeed O(mn + del · m), where del is the number of delete operations
performed. This completes the proof of Theorem 3.2.

4. Fully dynamic reachability algorithms.

4.1. The first fully dynamic algorithm. Our first fully dynamic reachability
algorithm is given in Figure 4.1. It is essentially a combination of an algorithm of
Henzinger and King [10] with our improved decremental reachability algorithm, or
with the somewhat slower, but deterministic algorithm of Frigioni et al. [8] described
in the previous section.

The algorithm works in phases. In the beginning of each phase, a decremental
reachability data structure is initialized. We let S be the set of vertices that were
centers of insertions during the phase. Initially S = φ. When a set of edges Ev,
all touching v, is inserted, we add v to S and construct reachability trees In(v) and
Out(v) rooted at v. When the size of S, the set of insertion centers, reaches t, a
parameter fixed in advance, the phase is declared over, and all the data structures are
reinitialized.

The deletion of an arbitrary set E′ of edges is handled as follows. First, the edges
of E′ are removed from the decremental data structure. Next, for every w ∈ S, the
shortest-paths trees In(w) and Out(w) are rebuilt from scratch.

A query query(u, v) is answered as follows. First the decremental data structure
is queried to see whether there is a directed path from u to v composed solely of edges
that were present in the graph at the start of the current phase. If not, it is checked
whether there exists w ∈ S such that u ∈ In(w) and v ∈ Out(w). If such a vertex w
exists, then the answer is “yes.”

It is easy to check that the answer given for each query is always correct. Clearly,
if query(u, v) returns “yes,” then there is indeed a path from u to v in the graph.
Suppose now that there is a path p from u to v in the graph. If this path uses only “old”
edges, i.e., edges that were not inserted in the current phase, then the decremental
data structure would signal that out. Otherwise, let w be the last vertex on a path
from u to v that was the center of an insert operation during the current phase. This
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init:
1. Initialize a decremental reachability data structure.
2. Let S ← φ.

query(u, v):
1. Query the decremental reachability data structure.
2. For each w ∈ S check if u ∈ In(w) and v ∈ Out(w).

delete(E′):
1. Let E ← E − E′.
2. Delete E′ from the decremental data structure.
3. For every w ∈ S, rebuild the trees In(w) and Out(w).

insert(Ev):
1. Let E ← E ∪ Ev.
2. Let S ← S ∪ {v}.
3. If |S| > t, then call init.
4. Otherwise, construct the trees In(v) and Out(v).

Fig. 4.1. The first fully dynamic reachability algorithm for general graphs.

insert operation added w to S and constructed the trees In(w) and Out(w). At the
time of this insertion all the edges of the path p were already present in the graph,
so u ∈ In(w) and v ∈ Out(w). Some edges from these trees may be subsequently
deleted, but as the path p remains in the graph, the vertex u would stay in In(w),
and similarly v would stay in Out(w). This completes the proof of correctness. We
claim the following theorem.

Theorem 4.1. For any t ≤ √
n, the algorithm of Figure 4.1 handles each insert

or delete operation in O(mn/t) amortized time, and answers each query correctly in
O(t) worst-case time. In particular, when t =

√
n, the amortized update time is

O(m
√
n), and the worst-case query time is O(

√
n).

Proof. Assume, at first, that our decremental reachability algorithm is used. The
expected complexity of setting up the decremental data structure in the beginning of
each phase, and of handling all subsequent delete operations on it, is only O(mn). As
each phase, except possibly the last phase, is composed of at least t update operations,
we can cover this cost by charging O(mn/t) of these operations to each update.

Each delete operation involves the recomputation of up to 2t trees. This is easily
done in O(mt) time. An insert operation is even cheaper as only two trees need to be
constructed.

The total expected amortized cost per insert or delete operation is therefore
O(mn/t + mt). When t ≤ √

n, the first term dominates the second and the ex-
pected cost per operation is O(mn/t), assuming that at least t update operations are
performed. The query time is clearly O(t).

As presented, the algorithm is randomized (Las Vegas). We can get a determin-
istic version of the algorithm, with the same time bounds, by using the variant of the
decremental algorithm of Frigioni et al. [8] described in section 3.

4.2. The second fully dynamic algorithm. Our second fully dynamic reach-
ability algorithm is given in Figure 4.2. It is essentially a combination of a second
algorithm of Henzinger and King [10] with our decremental reachability algorithm, or
with the algorithm of Frigioni et al. [8].
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init:
1. Initialize a decremental reachability data structure.
2. Let S be a random set of t vertices.
3. For every w ∈ S, construct shortest-paths trees In(w) and Out(w)

of depth at most (cn lnn)/t, and initialize decremental data struc-
ture for them.

4. Call build(S).

build(S):
1. Construct Boolean matrices A1, A2, and B of sizes n×|S|, |S|×n,

and |S| × |S|:
(a) A1(u,w) = 1 iff u ∈ In(w), for every u ∈ V and w ∈ S.
(b) A2(w, v) = 1 iff v ∈ Out(w), for every w ∈ S and v ∈ V .
(c) B(w1, w2) = 1 iff w1 ∈ In(w2), for every w1, w2 ∈ S.

2. Compute B∗, the transitive closure of B, and A∗
1 = A1B

∗.

query(u, v):
1. Query the decremental data-structure.
2. Check whether there exists w ∈ S such that A∗

1(u,w) = A2(w, v) =
1.

delete(E′):
1. E ← E − E′.
2. Delete E′ from the decremental data structure.
3. For every w ∈ S, update the shortest-paths trees In(w) and Out(w)

of depth at most (cn lnn)/t using the decremental algorithm for
maintaining shortest-paths trees.

4. Call build(S).

insert(Ev):
1. E ∪ E ∪ Ev.
2. Let S ← S ∪ {v}.
3. If |S| > 2t, then call init.
4. Otherwise, construct shortest-paths trees In(v), Out(v) of depth

at most (cn lnn)/t, and initialize a data structure for maintaining
them under a sequence of edge deletions.

5. Call build(S).

Fig. 4.2. The second fully dynamic reachability algorithm for general graphs.

The algorithm again works in phases. In the beginning of each phase, a decre-
mental reachability data structure is again initialized. The algorithm again maintains
a set S of special vertices. For each vertex w ∈ S, the algorithm maintains an in-tree
In(w) and an out-tree Out(w). These trees are shortest-paths trees that contain all
vertices that are at distance at most (cn lnn)/t from w, where c is some fixed con-
stant. (For concreteness, we choose c = 10.) These trees are maintained using the
algorithm of Even and Shiloach [7]. In the beginning of each phase, t random vertices
are placed in S.

The algorithm also maintains two Boolean matrices, A∗
1 of size n × |S|, and A2

of size |S| × n. The columns of A∗
1 and the rows of A2 are indexed by the elements

of S. For every u ∈ V and w ∈ S, we have A∗
1(u,w) = 1 if and only if there is a path
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(of arbitrary length) in the graph from u to w, and A2(w, u) = 1 if and only if there
is a path of length at most (cn lnn)/t from w to u.

When a set of edges Ev touching v is inserted, we add v to the set S of special ver-
tices and construct shortest-paths trees In(v) and Out(v) of depth at most (cn lnn)/t
rooted at v. When the size of the set S reaches 2t, a parameter fixed in advance, the
phase is over, and all data structures are reinitialized.

The deletion of an arbitrary set E′ of edges is handled as follows. First the edges
of E′ are removed from the decremental data structure. Next, for every w ∈ S, the
shortest-paths trees In(w) and Out(w) are updated using the algorithm of Even and
Shiloach [7].

A query query(u, v) is answered as follows. First the decremental data structure
is queried to see whether there is a directed path from u to v composed solely of
“old” edges. If not, it is checked whether there exists w ∈ S such that A∗

1(u,w) =
A2(w, v) = 1. The correctness of the algorithm relies on the following observation of
Ullman and Yannakakis [27].

Lemma 4.2. Let G = (V,E) be a directed graph on n vertices. Let S be a set of
(cn lnn)/t random vertices. Then, with a probability of at least 1−n−(c−3), for every
two vertices u, v ∈ V , if there is a path from u to v in G, then there is also such a
path that among any t consecutive vertices on it there is a vertex from S.

As stated, the lemma applies to a fixed graph. However, it is easy to adapt it to
our dynamic setting.

Corollary 4.3. Let G1, G2, . . . , G� be directed graphs on the same set of n
vertices. Let S be a set of (cn lnn)/t random vertices. Then, with a probability of at
least 1 − �n−(c−3), for every 1 ≤ i ≤ � and every u, v ∈ V , if there is a path from u
to v in Gi, then there is also such a path in Gi that among any t consecutive vertices
on it there is a vertex from S.

The random set S may be chosen, of course, without knowing the sequence of
graphs. We note in passing that similar ideas are also used by Zwick [28] and King [15].

Theorem 4.4. For any t ≤ (m log n)1/ω, the algorithm of Figure 4.1 handles
each insert or delete operation in O(mn log n/t) amortized time and answers each
query correctly, with very high probability, in O(t) worst-case time. In particular,
when t = (m log n)1/ω, the expected amortized update time is O((m log n)1−1/ωn),
and the worst-case query time is O((m log n)1/ω).

Proof. The correctness of the algorithm follows easily from Corollary 4.3. As
with the previous algorithm, the O(mn) complexity of setting up and maintaining
the decremental data structure is split among the at least t updates operations of a
phase.

In the beginning of each phase, the algorithm also sets up 2t shortest-paths trees
of depth at most (cn lnn)/t. The cost of setting up and maintaining these trees
throughout the phase, using the algorithm of Even and Shiloach [7], is O(2t · m ·
cn lnn

t ) = O(mn log n). This cost is again split among the update operations of the
phase.

Each delete operation updates the decremental data structure and the shortest-
paths trees. These operations are already accounted for. It also involves the call
build(S). As |S| ≤ 2t, the complexity of this procedure is O(nt · tω) = O(ntω−1),
where ω < 2.376 is the exponent of matrix multiplication.

Each insert operation constructs two new shortest-paths trees of depth at most
(cn lnn)/t. The total cost of maintaining these trees throughout the phase, using the
algorithm of Even and Shiloach [7] is O(mn log n/t). The cost of calling build(S) is
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init:
1. Initialize a decremental reachability data structure.
2. Let S be a random set of t vertices.
3. For every w ∈ S, construct shortest-paths trees In(w) and Out(w) of

depth at most (cn lnn)/t, and initialize decremental data structures
for maintaining them.

4. Construct a directed graph H = (S, F ), where F = {(w1, w2) ∈ S2 |
w1 ∈ In(w2)}.

5. Initialize a fully dynamic algorithm for maintaining the transitive
closure B∗ of H.

query(u, v):
1. Query the decremental data-structure.
2. Check whether there exist w1, w2 ∈ S such that u ∈ In(w1),

B∗(w1, w2) = 1, and v ∈ Out(w2).

delete(E′):
1. E ∪ E − E′.
2. Delete E′ from the decremental data structure.
3. For every w ∈ S, update the shortest-paths trees In(w) and Out(w)

of depth at most (cn lnn)/t using the decremental algorithm.
4. Update the transitive closure B∗ of the graph H after the removal

of edges from F .

insert(Ev):
1. E ∪ E ∪ Ev.
2. Let S ← S ∪ {v}.
3. If |S| > 2t, then call init.
4. Otherwise, construct shortest-paths trees In(v) and Out(v) of depth

at most (cn lnn)/t and initialize decremental data structures for
maintaining them.

5. Update the transitive closure B∗ of the graph H after the addition
of v to it.

Fig. 4.3. A third fully dynamic reachability algorithm for general graphs.

again O(ntω−1).

Thus, the total amortized cost per each update operation is O(mn logn
t + ntω−1).

When t ≤ (m log n)1/ω, the first term is the dominant term, and the expected amor-
tized time per update is O((mn log n)/t). Each query is clearly answered in O(t)
worst-case time.

We note in passing that the tradeoff of an amortized update time of O((mn log n)/t)
and query time of O(t) can be extended to values of t that are slightly larger than
(m log n)1/ω using the fast rectangular matrix multiplication algorithms of Huang and
Pan [13].

4.3. A third fully dynamic reachability algorithm. Our third fully dy-
namic reachability algorithm for general graphs is given in Figure 4.3. It is somewhat
similar to our second algorithm. However, it does not maintain the matrices A∗

1 and
A2, and it uses a fully dynamic algorithm, e.g., the algorithm of Demetrescu and
Italiano [5], to maintain the matrix B∗. We now claim the following theorem.
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Theorem 4.5. For any 1 ≤ t ≤ √
m, the algorithm of Figure 4.3 handles each

insert or delete operation in O(mn log n/t) amortized time and answers each query
correctly, with very high probability, in O(t2) worst-case time. In particular, when
t = m(1−ε)/2, the amortized update time is O(m(1+ε)/2n log n), and the worst-case
query time is O(m1−ε).

Proof. The correctness proof of the algorithm is identical to the correctness proof
of the second fully dynamic algorithm. The cost of initializing a phase is O(mn log n+
t3). The cost of an insert operation is O(mn log n/t + t2). (The first term is the cost
of constructing and maintaining the trees In(v) and Out(v). The second term is the
cost of updating of the matrix B∗ using the fully dynamic algorithm for maintaining
the transitive closure.) The added cost of a delete operation is only O(t2), the cost of
updating B∗. Thus, the amortized cost of each update operation is O(mn log n/t+t2).
As t ≤ √

m, the first term is always dominant. The query time is clearly O(t2).

5. A very simple fully dynamic reachability algorithm for acyclic
graphs. A very simple fully dynamic reachability algorithm for acyclic graphs is
presented in Figure 5.1. The algorithm is based on the main idea of King [15]. The
acyclicity assumption allows us to greatly simplify the algorithm, and to obtain the
first fully dynamic reachability algorithm, for acyclic graphs, with a linear, i.e., O(m),
amortized update time. The query time of the algorithm, O(n/ log n), is quite large.
However, it is still much faster than the Ω(m) time that may be needed to answer
such a query without a dynamic data structure.

init(V ):
• For every v ∈ V construct reachability trees In(v) and Out(v) and

initialize appropriate decremental data structures for them.

query(u, v):
• For every w ∈ V , check whether u ∈ In(w) and v ∈ Out(w).

delete(E′):
• Delete E′ from all reachability trees and update each one of

them using the decremental single-source reachability algorithm
for DAGs.

insert(Ev):
• Call init({v}).

Fig. 5.1. A very simple dynamic reachability algorithm for acyclic graphs.

Italiano [14] showed that, in acyclic graphs, a forest of reachability trees, one
rooted at each vertex, can be decrementaly maintained in O(mn) total time. His
result is, in fact, stronger. Each of these trees can be individually maintained in
O(m) total time. Our algorithm exploits this fact.

Theorem 5.1. The algorithm of Figure 5.1 handles each insert operation, which
keeps the graph acyclic, in O(m) worst-case time, each delete operation in O(1) amor-
tized time, and answers every reachability query correctly in O(n/ log n) worst-case
time.

Proof. The algorithm starts by constructing a forest of in-trees and a forest of
out-trees. Each of these trees is individually maintained using the data structure
of Italiano [14]. When a set E′ of edges is deleted, we simply update each of these
trees individually. To insert a set Ev of edges, we simply rebuild the trees In(v)
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and Out(v). The cost of building these two trees, and of maintaining them through
all future delete operations, is only O(m). Thus, the cost of all delete operations is
covered by either the initialization cost, of O(mn), or by preceding insert operations.

A query query(u, v) is answered by checking whether there is a w ∈ V such that
u ∈ In(w) and v ∈ Out(w). If there is a path p from u to v, then this condition holds
when w is the last vertex on the path that was the center of an insert operation, or by
u and v themselves, if no such insertions took place. As described, each query would
require O(n) time.

However, it is easy to reduce the query time to O(n/ log n). The algorithm essen-
tially maintains two n × n Boolean matrices A and B such that A(u,w) = 1 if and
only if u ∈ In(w), and B(w, v) = 1 if and only if v ∈ Out(w). We can pack each
row of A and B into n/ log n machine words, and each query would then require only
O(n/ log n) time.

6. Dynamic estimation of the size of reachability sets. Cohen [2] presents
an O(m) time randomized algorithm that estimates, for every vertex of a given di-
rected graph, the number of vertices that are reachable from that vertex. We discuss
here adaptations of her ideas to the dynamic setting.

One of the variants of the algorithm of Cohen [2] works roughly as follows. It
chooses a random permutation on the vertices of the graph and labels the vertices
according to it. For every vertex v, it then finds the smallest label s(v) assigned to a
vertex reachable from v. In the static setting, this can be easily done in O(m) time.
Then, n/s(v) is a reasonable estimate to the number of vertices reachable from v.
To obtain higher accuracy and higher confidence, this experiment is repeated several
times and the results are combined in several possible ways. See Cohen [2] for exact
details.

Here we make the simple observation that a request to estimate the size of a
reachability set can be reduced to O(log n) reachability queries. This is done as follows.
Let ε > 0. Add k = log1+ε n new vertices u1, u2, . . . uk to the graph. For every 1 ≤
i ≤ k, add an edge (v, ui) for every vertex v ∈ V whose label is in [(1+ ε)i−1, (1+ ε)i].
Now, for every v ∈ V , the queries query(v, ui), for 1 ≤ i ≤ k, allow us to estimate
s(v) with a relative error of ε, which is good enough for our purposes. Furthermore,
these queries involve only k = O(log n) destinations. This can be exploited, especially
in the semidynamic setting, to obtain more efficient algorithms as there is only a
logarithmic number of trees to which we save reachability information. The cost of
maintaining a reachability tree while edges are added to the graph is O(m). Thus,
this leads to an incremental algorithm whose total running time is O(m log n + q).
The cost of maintaining a reachability tree while edges are removed from a directed
acyclic graph is O(m); thus, this leads to a decremental algorithm whose total running
time is O(m log n + q) in directed acyclic graphs.

7. Concluding remarks and open problems. We presented an essentially
optimal decremental algorithm for maintaining the transitive closure of a general
graph. We also presented several improved fully dynamic algorithms for the reacha-
bility problem. There is still a huge gap, however, between the results obtained here,
and elsewhere, for directed graphs, and the polylogarithmic results available for undi-
rected graphs (see Henzinger and King [11] and Holm, de Lichtenberg, and Thorup
[12]).

Many open problems still remain. Among them are the following.
1. Is there a decremental algorithm for maintaining the strongly connected com-

ponents of a directed graph whose total running time is O(mn)?
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2. Is there a decremental algorithm for maintaining a reachability tree, from a
single source in a general directed graph whose total running time is O(mn)?
(Note that the decremental maintenance of a single-source shortest paths tree
seems to be a harder task than just maintaining a reachability tree. See [23].)

3. Is there a deterministic decremental algorithm for maintaining the transitive
closure of a general directed graph whose total running time is O(mn)?
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A FASTER, BETTER APPROXIMATION ALGORITHM FOR THE
MINIMUM LATENCY PROBLEM∗

AARON ARCHER† , ASAF LEVIN‡ , AND DAVID P. WILLIAMSON§

Abstract. We give a 7.18-approximation algorithm for the minimum latency problem that
uses only O(n logn) calls to the prize-collecting Steiner tree (PCST) subroutine of Goemans and
Williamson. This improves the previous best algorithms in both performance guarantee and running
time. A previous algorithm of Goemans and Kleinberg for the minimum latency problem requires
an approximation algorithm for the k-minimum spanning tree (k-MST) problem which is called as
a black box for each value of k. Their algorithm can achieve an approximation factor of 10.77 while
making O(n(n + logC) logn) PCST calls, a factor of 8.98 using O(n3(n + logC) logn) PCST calls,
or a factor of 7.18 + ε using nO(1/ε) logC PCST calls, via the k-MST algorithms of Garg, Arya and
Ramesh, and Arora and Karakostas, respectively. Here n denotes the number of nodes in the instance,
and C is the largest edge cost in the input. In all cases, the running time is dominated by the PCST
calls. Since the PCST subroutine can be implemented to run in O(n2) time, the overall running
time of our algorithm is O(n3 logn). We also give a faster randomized version of our algorithm that
achieves the same approximation guarantee in expectation, but uses only O(log2 n) PCST calls, and
derandomize it to obtain a deterministic algorithm with factor 7.18 + ε, using O( 1

ε
log2 n) PCST

calls. The basic idea for our improvement is that we do not treat the k-MST algorithm as a black
box. This allows us to take advantage of some special situations in which the PCST subroutine
delivers a 2-approximate k-MST. We are able to obtain the same approximation ratio that would be
given by Goemans and Kleinberg if we had access to 2-approximate k-MSTs for all values of k, even
though we have them only for some values of k that we are not able to specify in advance. We also
extend our algorithm to a weighted version of the minimum latency problem.
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Start

Start

Fig. 1. Comparison of our algorithm (top) versus the optimal TSP tour (bottom) on the berlin52
instance.

traveling salesman problem (TSP). In this sense, the MLP takes a customer-oriented
view, whereas the TSP is server-oriented.

As one illustration of how different the MLP is from the TSP, in Figure 1 we show
a comparison of tours for a 2-dimensional Euclidean instance. This is the berlin52
instance, taken from the TSPLIB [33]. At the top we show the MLP tour produced
by the algorithm we develop in this paper, and below that we show the optimal TSP
tour for this instance. Note that the tour produced by the MLP algorithm attempts
to visit most of the nodes near the start node first, before making its way to the more
distant nodes. On this instance, the total latency of the optimal TSP tour is 4.48
times as large as that of the tour given by our algorithm.
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Koutsoupias, Papadimitriou, and Yannakakis [25] and Ausiello, Leonardi, and
Marchetti-Spaccamela [8] motivate the MLP in terms of searching a graph (such as
the Web) to find a hidden treasure. If the treasure is equally likely to reside at any
node of the graph, then the optimal MLP tour minimizes the expected time to find
it. If the location of the treasure is given by a nonuniform probability distribution,
the problem reduces to the weighted minimum latency problem that we define below.

The MLP was shown to be NP-hard for general metric spaces by Sahni and Gon-
zalez [34]. It is also Max-SNP hard, by a reduction from TSP(1,2) (the traveling
salesman problem with all distances restricted to be either 1 or 2) [31, 11]. Therefore,
there is no polynomial-time approximation scheme for the MLP on general metric
spaces unless P = NP. Sitters showed that the problem is NP-hard even for weighted
trees [36]. On the positive side, Arora and Karakostas gave quasi-polynomial-time
approximation schemes for the MLP on weighted trees and constant dimensional
Euclidean spaces [5]. Blum et al. gave the first constant factor approximation al-
gorithm for general metric spaces [11], which was later improved by Goemans and
Kleinberg [22]. We elaborate on these results below.

Much work has focused on exact (exponential time) solution approaches to the
MLP [35, 16, 10, 28, 42] and on the more general time-dependent traveling salesman
problem (TDTSP) [39, 32]. In the TDTSP, the distance between the ith and (i+1)st
nodes in the traveling salesman tour is multiplied by some weight w(i) in the objective
function. The ordinary TSP is the case where all w(i) = 1; the MLP is the case where
w(i) = n − i. The time-dependent orienteering problem (considered in [17]) is dual
to the TDTSP—the salesman aims to maximize the number of nodes visited before a
given deadline, given that travel times vary as in the TDTSP. Various heuristics for the
MLP are evaluated in [38, 40], while [2] analyzes a stochastic version of the problem. In
the online variant [15, 26], new nodes appear in the graph as the repairman is traveling.
Many authors have considered special cases of the MLP, where the metric is given by
an underlying network with some special structure [1, 30, 9, 37, 41]. Fakcharoenphol,
Harrelson, and Rao gave a constant factor approximation algorithm for the variant
where there are k repairmen who must collectively visit all of the nodes [14].

Because the MLP is NP-hard, we shall consider approximation algorithms for
the problem. An α-approximation algorithm runs in polynomial time and produces
a solution with total latency no more than α times the total latency of a minimum
latency tour. The value of α is called the performance guarantee of the algorithm.

The first constant factor approximation algorithm for the problem was given by
Blum et al. [11]. They also show how to use a β-approximation algorithm for the
rooted k-minimum spanning tree (k-MST) problem as a black box and convert it into
an 8β-approximation algorithm for the MLP. In the k-MST problem, we are given a
graph with costs on the edges and must find the minimum-cost tree spanning at least
k nodes. In the rooted version, the tree must contain some specified root r.1 The
connection between the k-MST problem and the MLP is that the cost of the optimal
k-MST rooted at r is a lower bound on the latency of the kth node visited by the
optimal MLP tour. Goemans and Kleinberg (GK) [22] subsequently improved the

1Although there has been some confusion in the literature on this point, the rooted and unrooted
versions of the k-MST problem can each be reduced to the other as follows. To solve the unrooted
version, one can run an algorithm for the rooted version with each of the n possible choices for the
root and take the cheapest solution. To solve the rooted version, one can generate an unrooted
instance where there are an extra n nodes, each connected to the root by an edge of zero cost, and
ask for an (n+k)-MST. The reduction works because every tree spanning n+k nodes in the modified
instance includes the root.
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performance guarantee of the algorithm of Blum et al. to 3.59β. When preliminary
versions of our work appeared [4, 3], the best approximation algorithms known for the
k-MST problem were a 3-approximation by Garg [19], a 2.5-approximation by Arya
and Ramesh [7], and a (2 + ε)-approximation by Arora and Karakostas [6], yielding
MLP guarantees of 10.77, 8.98, and 7.18 + ε, respectively. Each improvement in the
approximation guarantee came at the cost of a significant increase in the running time
of the algorithm.

In this paper we further explore the connection between the MLP and rooted
k-MST problems. We obtain a performance guarantee of 7.18, slightly improving the
previous best of 7.18+ε. Moreover, our algorithm also has a running time that is faster
than the GK algorithm using any of the k-MST algorithms above. In each of these
algorithms, the running time is dominated by multiple subroutine calls to an algorithm
of Goemans and Williamson for the prize-collecting Steiner tree (PCST) problem [21].
The GK algorithm using Garg’s 3-approximation as a subroutine requires O(n(n +
logC) log n) PCST calls, where C is the cost of the most expensive edge. Using Arya
and Ramesh it requires O(mn(n + logC) log n), if the metric space is the shortest
path metric in a graph with m edges. For general metric spaces, the m becomes
an n2. Using Arora and Karakostas it requires nO( 1

ε ) logC calls. For each of these
algorithms, the logC factor comes from binary searching for a particular parameter,
and by using Megiddo’s parametric search technique [29] we can obtain a strongly
polynomial version where the logC is replaced by an n2. Our algorithm requires only
O(n log n) PCST calls, and we also devise a randomized algorithm that achieves the
same approximation factor (in expectation) and uses only O(log2 n) PCST calls. This
randomized algorithm can be derandomized to obtain a deterministic algorithm with
factor 7.18 + ε using only O( 1

ε log2 n) PCST calls.
Goemans and Williamson showed how to implement their PCST algorithm in

O(n2 log n) time. Later work of Gabow and Pettie [18] improves this to O(n2). Thus,
our deterministic algorithm runs in time O(n3 log n) overall, our randomized algo-
rithm in time O(n2 log2 n), and our deterministic (7.18 + ε)-approximation in time
O( 1

εn
2 log2 n).

The main idea in achieving our result is that we do not treat the k-MST algorithm
as a black box. It can be shown that the PCST algorithm returns k-MSTs of cost
no more than twice optimal for some values of k that depend on the instance and
cannot be specified by the algorithm [13]. We refer to a tree spanning k nodes with
cost no more than α times the optimal k-MST as an α-approximate k-MST. If we
had 2-approximate k-MSTs for all k = 2, . . . , n, then we could run the GK algorithm,
which uses the costs of the trees to select some subset of them to concatenate into
an MLP tour. Our trick is to successfully bluff the GK algorithm. We pretend to
have trees of all sizes by interpolating the costs of the trees we do have to fill in the
tree costs for the missing values of k. We refer to these as “phantom” trees. We then
prove that, if the GK algorithm were to be run with both real and phantom trees,
it would never choose any of the phantom trees to concatenate, so it never calls our
bluff. Since the GK algorithm would never select any of the phantom trees anyway,
it suffices to use only the real trees we generated. For the analysis to go through, we
must also carefully extend our k-MST lower bounds to the phantom values of k. To
do this, we utilize the fact that the PCST problem is a Lagrangian relaxation of the
k-MST problem, as observed by Chudak, Roughgarden, and Williamson in [13].

The improvement in our running time derives from two sources. The first is
that the k-MST algorithms expend a significant amount of work in producing a near-
optimal solution of size exactly k. In contrast, the workhorse of our algorithms is a
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Table 1

A summary of the running times and approximation ratios of our deterministic and randomized
algorithms for the weighted and unweighted MLP. Here γ ≈ 3.5912 is the unique solution to γ ln γ =
γ + 1.

MLP Approx. Randomized or # PCST
version ratio deterministic calls
Unweighted 2γ det. O(n logn)

rand. O(log2 n)
2γ(1 + ε) det. O( 1

ε
log2 n)

Weighted 2γ det. O(n log2 W ) or O(n3 log2 n)
rand. O(log2 W ) or O(n2 log2 n)

2γ(1 + ε) det. O( 1
ε

log2 W ) or O( 1
ε
n2 log2 n)

subroutine that generates a pair of near-optimal trees of sizes klo and khi sandwiching
a given target value k, along with convenient lower bounds on the cost of the optimal
k-MST for every k ∈ [klo, khi]. This sandwiching operation can be done much more
rapidly than the k-MST algorithms. Second, the GK algorithm needs to run the k-
MST black box (n − 1) times, once for each value of k. The Lagrangian relaxation
technique we use to generate our k-MST lower bounds allows us to reduce this to
O(log n) sandwiching operations in our randomized algorithm. Our work supplies
a nice example where an improved analysis technique has led directly to faster and
better algorithms. See Table 1.

While Lagrangian relaxation has a rich history as an effective computational
technique (for example, in large scale linear programming), only relatively recently
has it also been used as a technique to design and analyze approximation algorithms,
starting with [24, 13]. Our work represents another early contribution to this emerging
body of research.

Our algorithms also extend to the weighted minimum latency problem, previously
considered in [5]. In this variant, each node v has an associated positive integer weight
wv, and the goal is to find a tour that minimizes

∑
v wv�v, where �v is the latency

of the node v in the tour. Note that this is equivalent to replacing each node v
with a clique of wv nodes joined by edges of cost zero. Let W =

∑
v wv (which

is always at least n, since each weight is a positive integer). The PCST routine
may be trivially modified to run in O(n2) time (that is, time which depends only
on the number of nodes in the original graph and not on W ). However, using this
reduction, our deterministic algorithm requires O(W logW ) PCST calls, which is only
a pseudopolynomial running time. Our randomized algorithm applied to the weighted
case makes only O(log2 W ) PCST calls and hence is weakly polynomial. We show
how to alter our randomized algorithm to use O(n2 log2 n) PCST calls, making it
strongly polynomial. These algorithms for the weighted MLP have an approximation
guarantee of 7.18 in expectation, just like our algorithm for the unweighted version.
Each of the algorithms can be derandomized to achieve a deterministic algorithm with
the same guarantee, at the expense of blowing up the running time by a factor of n.
Alternatively, we can derive a deterministic algorithm with a factor of 7.18 + ε while
blowing up the running time by a factor of only 1

ε .
Since the appearance of an extended abstract of this paper [4] and a subsequent

improved version [3], Chaudhuri, Godfrey, Rao, and Talwar [12] have given a 3.59-
approximation algorithm for the MLP. Instead of k-MSTs, they consider k-strolls,
which are paths starting at the root and visiting k nodes. Clearly, the length of the
shortest k-stroll also gives a lower bound on the latency of the kth node in any tour.
They give an algorithm that for some values of k finds a tree spanning k nodes whose
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cost is no worse than that of the best k-stroll. By invoking our framework above, they
are able to reduce the performance guarantee by the factor of 2 that our algorithm
incurred by using 2-approximate k-MSTs. Their algorithm uses a slightly modified
version of the PCST algorithm as its subroutine but requires guessing the last node
in the k-stroll and trying all guesses. Thus, their algorithm requires an extra factor
of n in the running time for each tree they generate.

Also after the initial publication of our results, Garg published a 2-approximation
algorithm for the k-MST problem [20]. While Garg does not state a running time,
the straightforward analysis of his algorithm as he presents it would lead to a running
time of O( 1

kmn2) PCST calls. However, we can show that a somewhat different
implementation requires only O( 1

kn(n + logC)) PCST calls. Using this algorithm
as a subroutine for the GK algorithm ties our approximation guarantee but requires
O(n(n + logC) log n) PCST calls, so our algorithm is still superior.

One might hope that the techniques from [20] and [12] could be combined to
obtain a tree spanning k nodes whose cost is no greater than that of the optimal k-
stroll, for any value of k chosen by the algorithm rather than just some “lucky” values
of k as in [12]. However, as Garg explains in [20], each of these techniques relies on
a certain piece of slack in the analysis of the PCST algorithm and each uses up the
entire slack, so they cannot be combined. Therefore, even in light of Garg’s new result,
our techniques are still necessary to obtain the 3.59-approximation algorithm in [12]
for the MLP, which is the best approximation ratio achieved to date. Without our
techniques, the best approximation ratio that is known would be 3.59 + ε from [12],

which requires nO( 1
ε ) logC PCST calls.

The techniques introduced by this paper have also been successfully applied by
Hassin and Levin to the minimum latency set cover problem [23] and by Lin, Nagara-
jan, Rajaraman, and Williamson [27] to develop a framework for designing incremental
approximation algorithms. Thus, our techniques have broader applicability than just
to the MLP.

The paper is structured as follows. In section 2, we review the main ideas of
previous approximation algorithms for the MLP. Section 3 gives our deterministic
algorithm, assuming we can generate approximate k-MSTs satisfying certain condi-
tions, and section 4 analyzes the performance guarantee of this algorithm. Section 5
motivates the conditions of section 3 and shows how to satisfy them using something
we call our critical search primitive, which relies on Lagrangian relaxation. We in-
clude a discussion of how one could implement the critical search primitive using
Megiddo’s parametric search technique [29]. Section 6 shows how to exploit some
slack in the previous analysis in order to accelerate the running time, given a slightly
different critical search primitive that uses binary search instead of Megiddo’s para-
metric search, although the details of this faster critical search primitive are deferred
to section 9. In section 7, we give our faster randomized algorithm, which requires
a somewhat different analysis than the deterministic algorithm. We also show how
to derandomize it. Section 8 discusses the weighted version of the problem and gives
extensions of our deterministic and randomized algorithms to the weighted case. In
section 10, we show some experimental results of our algorithm for the unweighted
case of MLP. We conclude in section 11 with some thoughts about approaches for
further improvements.

2. Intuition and overview. We now describe the basic ideas behind the Blum
et al. [11] and GK [22] algorithms and how our approach departs from them. Both
analyses use the cost of the optimal k-MST as a lower bound for the latency of the kth
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node visited in the optimal MLP tour, and both algorithms start with β-approximate
solutions to the k-MST problem rooted at r for k = 2, 3, . . . , n. They then select a
subsequence of these trees with geometrically increasing costs and concatenate them
to get a solution for the MLP. For the sake of intuition, let us assume throughout this
section that the sets of nodes spanned by these trees are nested, which turns out to
be the worst case for the analysis.

Without loss of generality, the cost of the k-MSTs increases with k. The Blum et
al. algorithm buckets the trees according to their cost—for each integer �, it selects
the most expensive tree with cost in (2�, 2�+1]. It doubles each of the selected trees,
shortcuts it to make a cycle rooted at r, and then traverses all of these cycles in
order, shortcutting nodes it has already visited. Since the last tree selected spans all
of the nodes, so does the resulting MLP tour. They compare the latency of the kth
node visited in the tour to the cost of the optimal k-MST. They upper bound the
latency of the kth node by the total cost of all of the concatenated cycles up to and
including the first one that visits this node. They lose a factor of β because the trees
are β-approximate k-MSTs, a factor of 2 from the bucketing ratio, a factor of 2 from
doubling the trees to get cycles, and a factor of 2 from the geometric sum. This yields
the approximation factor of 8β.

The GK improvement derives from two sources. First, it orients each of the
concatenated cycles in the direction that minimizes the total latency of the new nodes
visited by that cycle. Second, it applies a random shift to the bucket breakpoints.
Using buckets of ratio γ ≈ 3.59 instead of ratio 2, it achieves a performance guarantee
of γβ.

Our algorithm departs from these previous ones in that we do not start off with
approximate k-MSTs for every value of k. Instead, we obtain (2− 1

n−1
)-approximate

ni-MSTs for some subsequence n1 < · · · < n� (where n1 = 1 and n� = n) that is not
under our control. Let dk denote the cost of the tree spanning k nodes and bk denote
our lower bound on the optimal k-MST for k = n1, . . . , n�. We derive these trees
using a Lagrangian relaxation technique, which allows us to guarantee that linearly
interpolating the bni

to the missing values of k yields valid lower bounds on the cost of
the optimal k-MST. We will obtain our MLP solution by concatenating some subset
of these trees, as in Blum et al. and GK.

The GK analysis uses the idea of modified latency. Roughly, one can think of the
modified latency of node v as the average latency of all of the nodes first visited by
the cycle in the concatenation that first visits node v. The total modified latency is
an upper bound on the latency of the MLP tour we construct. The GK randomized
bucketing procedure yields a solution whose expected total modified latency is at most
γ(d2 + · · ·+dn) ≤ γβ(OPT2 + · · ·+OPTn) ≤ γβOPT (where OPT denotes the value
of the optimal MLP tour and OPTk denotes the optimal k-MST value). Goemans
and Kleinberg also observe that one can use a shortest path computation to determine
which concatenation of trees minimizes the total modified latency. Since the mini-
mum is no more than the expectation, this yields a deterministic γβ-approximation
algorithm. Whereas Goemans and Kleinberg introduce the shortest path calculation
merely to derandomize their algorithm, for us the use of the shortest path computation
is central to the analysis of our performance guarantee.

3. The algorithm. Having motivated and outlined the main points of our MLP
algorithm, in this section we describe it precisely.

We start by using our tree-generating algorithm of section 5 to produce some set
of � trees Tn1 , . . . , Tn�

rooted at r and spanning n1 < · · · < n� nodes, respectively
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(where n1 = 1 and n� = n). For k = n1, n2, . . . , n�, let dk denote the cost of tree Tk.
Without loss of generality, we assume dk is increasing with k. Our tree-generating
algorithm also establishes lower bounds on OPTk (the cost of the optimal k-MST
rooted at r) and hence on the latency of the kth node visited in the optimal MLP
tour for k = 2, . . . , n. These lower bounds bk satisfy the properties:

1. bk ≤ OPTk for 1 ≤ k ≤ n,
2. dni ≤ βbni

for 1 ≤ i ≤ �,

3. bk = bni−1
+

bni
−bni−1

ni−ni−1
(k − ni−1) for ni−1 ≤ k ≤ ni and i = 2, . . . , n.

That is, bk is the linear interpolation of bni−1 and bni , and each Tni is a β-approximate
ni-MST. In our algorithm, we can specify any β ≥ (2 − 1

n−1
). For now, think of β as

2. Later on, we will choose some β in the interval (2 − 1
n−1

, 2).
Now we use a shortest path calculation described below to select some subcol-

lection of these trees to concatenate. Denote the selected trees by Tj1 , . . . , Tjm , so
j1, . . . , jm is the increasing sequence of nodes they span. For each selected tree Ti,
double all of the tree edges and traverse an Eulerian tour starting at r, shortcutting
nodes already visited, to obtain a cycle Ĉi. Now obtain a cycle Ci from Ĉi by short-
cutting all nodes (except for r) that are visited by some Ĉk, with k < i. Because we
are in a metric space, this does not increase the length of the cycle. Let Si denote
the set of nodes visited by Ci, excluding the root r. Orient Ci in the direction that
minimizes the total latency of the nodes in Si. To obtain our MLP solution, simply
traverse each rooted, oriented cycle Cj1 , . . . , Cjm in order, shortcutting the intermedi-
ate visits to the root between cycles. Let C = Cj1 , . . . , Cjm denote this concatenated
tour. Following Goemans and Kleinberg, we define the modified latency of the kth
node of C to be

(1) πk = djp(k)
+ 2(djp(k)−1

+ · · · + dj1),

where p(k) is the smallest index such that k ≤ jp(k). The motivation for this definition
is that if the sets of nodes spanned by Tj1 , . . . , Tjm are nested, then πk is an upper
bound on the average latency of the nodes first visited by cycle Cjp(k)

. Indeed, in
section 4, we repeat an argument of Goemans and Kleinberg that in all cases π2 +
· · · + πn is an upper bound on the total latency of C.

We can now describe the shortest path computation whose solution identifies
a tree concatenation with minimum total modified latency. We construct a graph
G with nodes n1, . . . , n� and arcs i → k for each i < k. A path j1 → · · · → jm
corresponds to selecting trees Tj1 , . . . , Tjm . Thus, the cost on arc i → k is

(2) (k − i)dk + 2(n− k)dk = 2dk

(
n− i + k

2

)
,

which corresponds to the contribution made to the total modified latency by traversing
tree Tk immediately after traversing Ti. This is because tree Tk contributes dk to the
modified latencies of the (k − i) new nodes it visits and 2dk to each of the remaining
(n − k) unvisited nodes. If the shortest path from 1 to n in this graph goes j1 →
· · · → jm, then we select trees Tj1 , . . . , Tjm to concatenate.

4. Analyzing the approximation ratio. The analysis of our algorithm pro-
ceeds in three steps. First, we demonstrate that π2 + · · ·+πn really is an upper bound
on the latency of the tour we construct, even if the trees are not nested. Next, we
appeal to a result of Goemans and Kleinberg that upper bounds the total modified la-
tency of the tour given by the shortest path computation in terms of the tree costs, in
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the event that we have trees of all sizes, 2, . . . , n. Finally, we show that, if we were to
run this shortest path computation with our real trees and some “phantom” interpo-
lated trees, the computation would never select any of the phantom trees. Therefore,
we achieve the same performance guarantee that GK would achieve if we actually did
have access to the phantom trees.

For completeness, we begin by repeating an argument of Goemans and Kleinberg
showing that the modified latencies do upper bound the latency of the concatenated
tour.

Lemma 4.1 (see [22]). The total latency of the MLP tour obtained by concate-
nating trees Tj1 , . . . , Tjm (where j1 = 1, jm = n) is at most π2 + · · · + πn, where the
πk are given by (1).

Proof. The following argument essentially says that the worst case for our analysis
is when the sets of nodes spanned by the selected trees Tj1 , . . . , Tjm are nested. Let
us consider the latency of the kth node we visit in the concatenated tour C, where
r is considered to be the first node, whose latency is zero. If the kth node in C was
encountered as part of cycle Cjp , then we can upper bound its latency by the sum of
the costs of cycles Cj1 , . . . , Cjp−1 plus the portion of cycle Cjp that is traversed prior
to reaching this node. Since we traverse cycle Cjp in the direction that minimizes
the total latency of the new nodes Sjp , the average contribution of this cycle to
the latencies of the nodes in Sjp is at most half the cost of the cycle. To see this,
notice that, for any node i ∈ Sjp , traversing Cjp in one direction contributes some
amount x to the latency of i, and traversing Cjp in the other direction contributes
cost(Cjp)−x, so on average it contributes cost(Cjp)/2. The cost of Ci is at most 2di,
by the triangle inequality. Therefore, the average latency of the nodes in Sjp is at
most 2(dj1 + · · · + djp−1) + djp , so the total latency of C is at most

(3)

m∑

p=1

|Sjp |(2(dj1 + · · · + djp−1
) + djp).

Since
∑ |Sjp | = n, we can view this as a weighted sum. Clearly, the worst case for

this analysis is when the sets of nodes spanned by the trees Tj1 , . . . , Tjm are nested,
since this puts the greatest weight on the larger terms in (3). In this worst case,
our upper bound on the average latency of the (jp−1 + 1)th through jpth nodes in C
becomes 2(dj1 + · · · + djp−1) + djp . Thus since πk = djp(k)

+ 2(djp(k)−1
+ · · · + dj1),

where p(k) is the smallest index such that k ≤ jp(k), our tour has latency at most
π2 + · · · + πn.

The advantage of the upper bound π2 + · · · + πn is that it depends only on the
costs of the selected trees and the number of nodes they span, not on the structure
of the trees. We now state the main theorem of the Goemans and Kleinberg paper.

Definition 4.2. The number γ denotes the unique solution of γ ln γ = γ + 1,
which is approximately 3.5912.

Theorem 4.3 (see [22]). Given d2, . . . , dn ≥ 0, let G be the graph on nodes
1, . . . , n including all arcs i → k for i < k, with arc lengths given by (2). Then the
shortest path in G from node 1 to node n has length at most γ(d2 + · · · + dn).

Recall that our tree-generating procedure of section 5 returns trees of sizes n1, . . . ,
n� and costs dn1 , . . . , dn�

. It also establishes lower bounds bk on the cost OPTk of the
optimal k-MST for every k, and these bounds satisfy properties 1–3 from section 3.
Let us linearly interpolate the tree costs dni

to the missing values of k. That is, set

(4) dk = dni−1 +
dni − dni−1

ni − ni−1

(k − ni−1)
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for ni−1 ≤ k ≤ ni and i = 2, . . . , n. Then clearly dk ≤ βbk for all k – it is true for
the end points of each interval, so it is true for the linear interpolations. That is,
if we actually had a tree of cost dk spanning k nodes, it would be a β-approximate
k-MST, and therefore we could use the GK algorithm to generate a βγ-approximate
MLP tour. Unfortunately, we are missing these interpolated trees, so we must find a
way to get around this difficulty.

Notice that the GK shortest path computation can be defined independently of
trees and MLP tours—it just requires a set of ordered pairs to define the graph G in
which the shortest path is computed.

Definition 4.4. A tree signature is an ordered pair (k, c), where k is its size
and c is its cost. If we denote this tree signature by T , then we define |T | := k and
c(T ) := c. Analogously, if T is an actual tree, let |T | denote the number of nodes
spanned by it and c(T ) denote the total cost of its edges

∑
e∈T ce.

Obviously, a real tree T has an associated tree signature (|T |, c(T )). We will
find it convenient to consider the behavior of the GK shortest path computation on
graphs generated from tree signatures that may or may not correspond to actual
trees. When we talk about concatenating a sequence of tree signatures to get a
“tour,” we just mean to define the kth modified latency πk with respect to such a
concatenation using (1), exactly the same as if these tree signatures represented real
trees. Thus, tree signatures, concatenations of tree signatures, and modified latencies
are just a bookkeeping mechanism, with the property that if the tree signatures in a
concatenation correspond to actual trees, then these trees can be concatenated into
an actual MLP tour with latency at most π2 + · · ·+πn. When we use a tree signature
that may or may not correspond to an actual tree, we may think of it as corresponding
to a “phantom tree” that exists only in our minds. Unlike tree signature, phantom
tree is not a technical term but rather just a mnemonic to signify that we wish we
had a real tree with a particular signature.

In particular, we wish we had a full set of trees with the signatures (k, dk), k =
2, . . . , n, because this would immediately yield a βγ-approximate MLP tour. Why?
Suppose we were to run the GK shortest path computation using the full set of costs
d2, . . . , dn, i.e., using both the real trees and the phantom trees. Then by Theorem 4.3,
the modified latency of the resulting solution would be at most

γ(d2 + · · · + dn) ≤ βγ(b2 + · · · + bn)

≤ βγ(OPT2 + · · · + OPTn)

≤ βγOPT,

where OPT denotes the optimal MLP value. The difficulty is that the shortest path
computation might select one of the phantom trees, in which case we cannot actually
construct the MLP tour. Fortunately, we will show that this never occurs, because
the shortest path will go only through “corner points.”

Definition 4.5. With respect to a set of tree signatures (1, 0), (2, c2), . . . , (n, cn),
the signature (k, ck) is a corner point if k ∈ {1, n} or k ∈ {2, . . . , n − 1} and ck �=
1
2
(ck−1 + ck+1).

The corner points divide up the interval {1, . . . , n} such that the tree signatures
between any two consecutive corner points are just linear interpolations of those two
corner points.

Theorem 4.6. The Goemans–Kleinberg shortest path computation in the graph
generated from a set of tree signatures (1, 0), (2, c2), . . . , (n, cn) visits only corner
points (with respect to these signatures).
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Proof. Just to eliminate special cases that we would otherwise have to consider,
let us introduce self-loops at every node in our graph, with costs still given by (2). In
any case in our argument where we end up using a self-loop, we can obtain an even
shorter path by removing it.

Suppose on the contrary that a shortest path visits i → j → k, where j is not
a corner point. Let nlo and nhi be the sizes of the two nearest corner points that
sandwich j, where nlo < j < nhi. Set λ = (cnhi

− cnlo
)/(nhi − nlo); i.e., λ is the slope

of the line connecting these two corner points. If λ ≤ 0, we can decrease the modified
latencies πi+1, . . . , πn by visiting j + 1 instead of j. (This corresponds to replacing a
tree in the concatenation by a larger one of lesser cost.) Thus, we know λ > 0.

Treating j as a variable now, we show that we can obtain a strictly shorter path
by setting j to either max(i, nlo) or min(k, nhi), arriving at a contradiction. For j in
the interval between the sandwiching corner points, the tree signature (j, cj) is just
the linear interpolation of these corner points, i.e., cj = cnlo

+ λ(j − nlo). Thus, by
definition of the arc lengths (2), the subpath from i → j → k costs

(5) 2(cnlo
+ λ(j − nlo))

(
n− i + j

2

)
+ 2ck

(
n− j + k

2

)
.

This cost is valid for max(i, nlo) ≤ j ≤ min(k, nhi) and is a quadratic function of j,
where the coefficient on the j2 term is −λ. Thus, the cost is strictly concave in j, so
it attains a strict minimum at one of the end points max(i, nlo) or min(k, nhi). This
is a contradiction, because we already started with a shortest path.

We chose phantom trees that were linear interpolations of the real trees we had.
Thus, all of the corner points in our set of tree signatures correspond to real trees.
Since a shortest path in the graph with the phantom trees included never actually uses
any of the phantom trees, we might as well run the shortest path computation using
just the actual trees, as in the algorithm description of section 3. Putting Theorem 4.6
together with the discussion preceding it yields our main result. Recall that β < 2.

Theorem 4.7. The algorithm described in section 3 yields an MLP tour of cost
at most βγOPT .

5. Generating trees and lower bounds via Lagrangian relaxation. In
this section, we discuss how to use Lagrangian relaxation to obtain trees and lower
bounds satisfying properties 1–3 of section 3.

Lagrangian relaxation is a technique for generating lower bounds on the optimal
solution of one minimization problem by relaxing some of the constraints to generate a
related but simpler minimization problem, which ideally should be easier to solve. We
discuss here how the PCST problem serves as a Lagrangian relaxation of the k-MST
problem, a relationship first explored by [13].

Given a graph with a cost ce on each edge e, a root node r, and a penalty pv ≥ 0
for each node v, the PCST problem asks for a tree T rooted at r that minimizes the
quantity

∑

e∈T

ce +
∑

v/∈T

pv.

In other words, we ask for a tree that minimizes the sum of the edge costs in the
tree plus the penalties of the nodes not spanned by the tree. Throughout this paper,
we use PCST to refer to the PCST problem with uniform penalties, where all of the
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Fig. 2. The dots represent a signature (|T |, c(T )) for each possible tree T rooted at r. The
lowest dot in column k represents the optimal k-MST, while the lines forming the lower convex
hull of the dots represent the best lower bounds on OPTk that could be derived via our Lagrangian
relaxation.

penalties are set to the same value λ ≥ 0. In this case, the objective function becomes

∑

e∈T

ce + λ(n− |T |).

We now consider how the PCST problem can generate lower bounds for the k-MST
problem. Let T ∗(λ) be an optimal solution to the PCST problem when the penalty
parameter is set to λ. Since all trees spanning |T ∗(λ)| nodes incur the same penalty
term, T ∗(λ) must be the optimal |T ∗(λ)|-MST. Moreover, since the optimal k-MST
is one feasible solution to the PCST problem, we have c(T ∗(λ)) + λ(n − |T ∗(λ)|) ≤
OPTk + λ(n− k). Rearranging gives

(6) c(T ∗(λ)) + λ(k − |T ∗(λ)|) ≤ OPTk.

Notice that solving a single instance of PCST generates k-MST lower bounds for all
values of k simultaneously. Since the PCST problem is also NP-hard, this does not
help us directly in generating trees and k-MST lower bounds. However, we will con-
tinue with this thought experiment, which will guide us in how we use the Goemans–
Williamson approximation algorithm for PCST.

The following graphical interpretation of this Lagrangian relaxation is revealing.
Consider a plot of the signatures (|T |, c(T )) for all possible trees T rooted at r (see
Figure 2). Let T denote this set of points. Fixing the penalty parameter λ ≥ 0,
consider a line of slope λ and slide this line up vertically until the first time it hits
one of the points in T . This is the point corresponding to T ∗(λ), and the line L(λ) of
slope λ passing through it represents the k-MST lower bounds generated for all values
of k. Thus, if we consider the best lower bounds that can be generated by solving
PCST for all possible values of λ, this just yields the lower convex hull of the point
set T . Let P0, . . . , P� denote the sequence of tree signatures along the lower convex
hull of T starting with P0 = (1, 0) and ti denote the number of nodes spanned by the
tree corresponding to Pi. Let λ0 = 0, and for i = 1, . . . , � let λi be the slope of the
line connecting Pi−1 to Pi. Consider how the line L(λ) moves as we change λ. As λ
increases from 0 to λ1, the line starts out horizontally and pivots around the point P0

until it hits P1. In general, as λ increases from λi to λi+1, the line L(λ) rotates around
point Pi until it hits point Pi+1. Now consider how the k-MST lower bound changes
with λ, for various values of k. If k = ti, then the lower bound on OPTk strictly
increases for λ ∈ [0, λi), stays constant on [λi, λi+1], and then decreases on (λi+1,∞).
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If k ∈ (ti−1, ti), then the lower bound increases on [0, λi), attains its maximum at λi,
and decreases on (λi,∞). We refer to the values λi (i = 1, . . . , �), where the size of
the optimal tree changes, as critical values with respect to the optimal algorithm.

In general, suppose A is any PCST algorithm such that the tree generated (as a
function of λ) changes only at a finite number of breakpoints and remains constant
on the intervals between consecutive breakpoints. Then we say that A has critical
values and refer to those breakpoints as critical values with respect to the algorithm
A. If the algorithm is understood, we will just call them critical values.

Notice that, if we want to generate the best lower bounds for all values of k and
also the trees corresponding to the points Pi, it is sufficient to solve the PCST problem
just for the critical values of λ. The critical value λi generates the best k-MST lower
bounds for k in the interval [ti−1, ti]. By using all of the critical values, this collection
of intervals covers all values of k in [1, n]. Notice that this collection of trees and lower
bounds would satisfy conditions 1–3 of section 3, with β = 1.

Since the PCST problem is NP-hard, we cannot expect to solve it to optimality
in polynomial time. Fortunately, Goemans and Williamson [21] gave a (2 − 1

n−1
)-

approximation algorithm that also has the Lagrangian multiplier preserving property.
This means that running the algorithm with penalty parameter λ returns a tree T (λ)
and a lower bound LB(λ) such that

(7) c(T (λ)) ≤
(

2 − 1

n− 1

)
LB(λ)

and

(8) OPTk ≥ LB(λ) + λ(k − |T (λ)|).
In other words, the tree generated is a (2 − 1

n−1
)-approximate |T (λ)|-MST, and the

line L(λ) of slope λ through (|T (λ)|, LB(λ)) gives valid k-MST lower bounds for all
values of k. We will prove these inequalities in Lemma 9.2 of section 9.

How do these lower bounds change as we vary λ? The inner workings of the
Goemans–Williamson PCST algorithm are such that the algorithm has critical val-
ues.2 At a critical value of λ, we can generate the tree corresponding to one bordering
interval or the other depending on how we break ties in the algorithm, which does
not affect the line of lower bounds L(λ). Thus, if the two trees are Tlo and Thi with
corresponding lower bounds LBTlo

and LBThi
(where |Tlo| < |Thi|), then the interpo-

lated k-MST lower bounds for |Tlo| < k < |Thi| coincide with the line L(λ) and are
hence valid lower bounds. We say that this critical value of λ covers the size interval
[|Tlo|, |Thi|] and covers the bound interval [LBTlo

, LBThi
]. We refer to both the size

interval and the bound interval as critical intervals.
Suppose that we can find a collection of critical values of λ such that the union

of the size intervals they cover contains {1, . . . , n}. Each critical value generates a
line of lower bounds for the size interval that it covers. Let T denote the set of lower
bound tree signatures generated by all of these critical values. If we take the lower
convex hull of T , the interpolated lower bounds would be at most the lower bounds
generated by the covering intervals, and hence still valid (see Figure 3). Thus, the
desired properties 1–3 of section 3 would hold, with β = 2 − 1

n−1
.

How can we find the required critical values of λ? Let cmax denote the distance
from the root to the farthest node. Because of the inner workings of the PCST

2Unlike in the case of T ∗(λ), on the intervals where T (λ) is constant, LB(λ) may not be constant,
and |T (λ)| is not increasing in λ. However, this does not cause a problem.
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Fig. 3. Each dot represents a (size of tree, lower bound) pair returned by PCST, and the solid
lines are the interpolated lower bounds from Lemma 9.2. The lower envelope (dotted line) is still
clearly a valid lower bound at each point, since it is below the solid lines. We keep only the trees
whose dots are on the lower envelope.

algorithm, it is a fact that T (cmax) spans all n nodes, while T (0) spans only the root.
For any arbitrary target value k ∈ {1, . . . , n}, there is at least one critical value λ∗ that
covers a size interval containing k. Moreover, if we maintain an interval [λlo, λhi] such
that |T (λlo)| ≤ k ≤ |T (λhi)|, we know that there is some solution λ∗ ∈ [λlo, λhi]. We
can initialize the interval to [0, cmax], test some value λ in the interval, and update the
appropriate end point to maintain the invariant. It is a fact that all of the decisions in
the PCST algorithm involve comparing quantities that are linear in λ, and therefore
we can apply the parametric search technique of Megiddo to calculate λ∗ exactly [29].
This requires running the PCST algorithm once for each comparison made in the
PCST algorithm. Using the O(n2) implementation of Gabow and Pettie [18], this
means that we can compute a single critical value exactly using O(n2) PCST calls.
Since we need to compute at most (n− 1) critical values to cover [1, n], we obtain the
following theorem.

Theorem 5.1. There is a (2− 1
n−1

)γ-approximation algorithm for the minimum

latency problem that runs in time dominated by O(n3) PCST calls.
Aside from justifying (7) and (8) (which we do in section 9), this ends the dis-

cussion of our basic algorithm for the MLP problem. In section 6, we discuss how
to speed up this running time by allowing some small error in our computation of a
critical value λ∗, and, in section 7, we discuss how to further speed up the algorithm
by using randomization to reduce the number of critical values we need to calculate.
Before we move on to this, let us describe a slight variant of our algorithm.

In section 3, we discussed creating tree signatures by interpolating the sizes and
costs of pairs of real trees. We now describe a slightly different algorithm, based on
creating tree signatures from the interpolated lower bounds rather than interpolat-
ing real trees. This alternate view will be useful in section 7 when we discuss our
randomized algorithm.

Let b1, . . . , bn be the lower bounds given by the lower convex hull of T , described
above. Suppose we construct the graph G of section 3 using the tree signatures
(k, bk), k = 1, . . . , n, and compute the shortest path to select which tree signatures to
concatenate. By Theorem 4.3, the shortest path will have modified latency at most
γ(b2 + · · · + bn) ≤ γOPT , and, by Theorem 4.6, it will use only corner points. Since
every corner point is a tree signature corresponding to the end point of an interval we
generated, we may replace these phantom trees with real trees, blowing up the tree
costs and hence the modified latencies by at most a factor of β. Thus, our tour has
total latency at most βγOPT .
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6. Accelerating the running time. The goal of this section is to reduce the
number of PCST calls required by our algorithm to O(n log n) while achieving an
approximation ratio of 2γ.

Because the PCST algorithm gives an approximation factor of (2− 1
n−1

) instead
of 2, this allows us a little bit of slack if we just want a 2γ-approximation algorithm
for the MLP problem. We can use this slack to significantly speed up our algorithm.
Instead of using Megiddo’s parametric search technique to calculate a critical value
λ∗ exactly, we can instead use binary search to find a very small interval [λlo, λhi] that
contains λ∗. If the interval is small enough, then the lines L(λlo) and L(λhi) are close
enough together that we can replace them with a single line that gives valid lower
bounds bk on the interval [|T (λlo)|, |T (λhi)|] without degrading the lower bounds by
much.

By a probe, we mean a single PCST call to narrow the interval [λlo, λhi]. By a
critical search, we mean a series of probes used to narrow the interval [λlo, λhi] to the
desired size by binary search, so that the following three conditions hold:

1. bk ≤ OPTk for klo ≤ k ≤ khi,
2. c(T (λ)) ≤ βb|T (λ)| for λ ∈ {λlo, λhi},
3. bk = bklo

+
bkhi

−bklo

khi−klo
(k − klo),

where klo = |T (λlo)| and khi = |T (λhi)|. The bounds bklo
and bkhi

will take the form
δLB(λlo) and δLB(λhi), for some δ less than but close to 1 that we can specify in the
algorithm, and β = 1

δ (2 − 1
n−1

).
Let cmin denote the distance from the root to the closest other node. In Corol-

lary 9.5 of section 9, we show that O(log ncmax

cmin
) probes are sufficient to perform a

critical search with β = (2 − 1
2n ). We now show how to reduce the problem to the

case where cmax

cmin
= poly(n), so each critical search takes only O(log n) probes. Since

we require O(n) critical searches, our overall algorithm takes at most O(n log n) PCST
calls, as advertised.

How do we ensure cmax

cmin
= poly(n)? We first delete every node that is within

distance cmax

4n3 of the root (aside from the root itself). Clearly, this did not increase
the cost of an optimal solution. We are left with an instance where cmax

cmin
≤ 4n3,

and we apply our main algorithm to this instance, with β = (2 − 1
2n ). This yields a

tour of latency at most (2 − 1
2n )γOPT . To obtain a tour for the original instance,

we first visit the deleted nodes in arbitrary order, return to the root, and then visit
the remaining nodes in the order given by our main algorithm. By the triangle
inequality, the total length of the initial partial tour is at most cmax

2n2 . By visiting all
of these points first, it contributes at most an extra cmax

2n to the total latency of the
entire tour. Since cmax ≤ OPTn ≤ OPT , the total latency of our tour is at most
(2 − 1

2n )γOPT + cmax

2n < 2γOPT . This yields the following theorem.
Theorem 6.1. The algorithm described above is a 2γ-approximation algorithm

for the minimum latency problem and runs in time dominated by O(n log n) PCST
calls.

7. A faster randomized algorithm. In this section, we describe a randomized
algorithm that achieves the same approximation ratio of 2γ (in expectation) while
reducing the number of PCST calls to O(log2 n). We also show how to derandomize
it to achieve a deterministic algorithm with the improved running time but a slightly
worse approximation guarantee.

In the paper of Goemans and Kleinberg [22], Theorem 4.3 is proven via the
probabilistic method. They actually construct a random path in their graph and
show that the expected modified latency of their path is at most γ(d2 + · · · + dn).
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Therefore, the shortest path is at least this short, which yields Theorem 4.3. Thus,
instead of Theorem 4.3, a more fundamental statement of their main result is the
following.

Theorem 7.1 (see [22]). Given d2, . . . , dn ≥ 0, consider the graph G on nodes
1, . . . , n including all arcs i → k for i < k, with arc lengths given by (2). Let the
random variable U be drawn uniformly from [0, 1), let L0 = γU , and for each integer
i define Li = L0γ

i. For each i, mark the largest node j such that dj ≤ Li. Then the
expected length of the path from 1 through all of the marked nodes (in order) to n is
at most γ(d2 + · · · + dn).

We include a proof here, since we will need to generalize this result for our pur-
poses.

Proof. Recall that the path in G represents a concatenation of tree signatures,
and the length of the path equals the sum of the modified latencies π2 + · · ·+πn. Fix
k ∈ {2, . . . , n}. Let S = {L0γ

i : i ∈ Z} be the set of thresholds, and let L = min{L′ ∈
S : L′ ≥ dk}. Then L has the same distribution as dkγ

U . Moreover, the first tree
signature in the concatenation with size at least k has cost at most L, and the smaller
tree signatures have costs at most Lγ−i for i = 1, 2, . . . . Thus,

πk ≤ L + 2L(γ−1 + γ−2 + · · · ) =
γ + 1

γ − 1
L,

E[πk] ≤ γ + 1

γ − 1
E[dkγ

U ] =
γ + 1

ln γ
dk = γdk.

The last equality comes because γ satisfies the identity γ ln γ = γ + 1 (from Defini-
tion 4.2). Summing over k, the theorem follows by linearity of expectation.

This result generalizes readily to the following.
Theorem 7.2. Given d2, . . . , dn ≥ 0, select random thresholds as in Theorem 7.1.

For each threshold L, select one arbitrary tree signature T (L) such that |T (L)| ≥
max{k : dk ≤ L} and c(T (L)) ≤ L. The concatenation of these tree signatures has
total modified latency at most γ(d2 + · · · + dn), in expectation.

Proof. Fix k ∈ {2, . . . , n}, and let L be the smallest threshold such that dk ≤
L. By assumption, |T (L)| ≥ k. Then by the time the concatenation includes tree
signature T (L), it has visited at least k nodes, and the sum of the costs of all previous
tree signatures in the concatenation is at most L(γ−1 + γ−2 + · · · ). Thus, πk ≤
L + 2L(γ−1 + γ−2 + · · · ), and the rest follows as in the proof of Theorem 7.1.

We will use this theorem to analyze the following randomized algorithm, which
reduces the number of critical searches to O(log n) down from the O(n) of section 6.

Our algorithm starts by generating random thresholds, as in Theorem 7.2. For
each threshold L in the range [cmin, ncmax], we perform a critical search with β =
2 − 1

2n to cover a bound range that includes L. Each of these O(log ncmax

cmin
) critical

searches generates two actual trees. We use this collection of trees to create the
graph G of section 3 and compute the shortest path to determine which of these
trees to concatenate. In order to limit the number of critical searches to O(log n), we
preprocess the original input by deleting every node that is within distance cmax

8n3 of
the root (aside from the root itself). We visit all of these nodes first in arbitrary order
and then follow the tour given by the tree concatenation. The reason that we consider
only thresholds in the range [cmin, ncmax] is that cmin ≤ OPT2 and OPTn ≤ ncmax,
so these thresholds are the only relevant ones.

The tree signatures T (L) mentioned in Theorem 7.2 are used only for the analysis
and not for the actual algorithm. They will be derived from the critical searches.
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Theorem 7.3. The randomized algorithm described above yields a 2γ-approximate
solution to the minimum latency problem in expectation and runs in time dominated
by O(log2 n) PCST calls.

Proof. The number of thresholds we must consider is O(log ncmax

cmin
) = O(log n),

since we preprocessed the input to ensure cmax

cmin
= poly(n). For each of these, we

perform one critical search with β = 2− 1
2n , each of which requires only O(log ncmax

cmin
) =

O(log n) PCST calls, as we will show in Corollary 9.5. Thus, the total number of PCST
calls is O(log2 n).

Let us analyze the approximation ratio we achieve on the amended instance. For
each threshold L, select one tree signature as follows. Our critical search for L covers
some size interval [klo, khi] and some bound interval [bklo

, bkhi
] containing L. Thus,

there is some k ∈ {klo, klo + 1, . . . , khi − 1} such that the interpolated bounds satisfy
bk ≤ L < bk+1. Let T (L) be a tree signature of size k and cost bk. Because bk+1 is a
valid lower bound on OPTk+1, we get max{j : OPTj ≤ L} ≤ k = |T (L)|. Thus, this
choice of tree signatures satisfies the hypotheses of Theorem 7.2. Let π denote the total
modified latency given by concatenating this collection of tree signatures. Theorem
7.2 gives E[π] ≤ γ(OPT2 + · · · + OPTk) ≤ γOPT . Now we need to understand how
π compares to the cost of the MLP solution we generated.

Recall that each critical search covers some size interval [klo, khi] and generates a
set of lower bounds on OPTk for k in this size interval. We can think of each of these
lower bounds as a tree signature. Consider taking the lower convex hull of all of these
tree signatures generated by all of our critical searches, as in Figure 3. For each tree
signature T (L) chosen in the last paragraph, replace it with a tree signature of the
same size but cost equal to the corresponding point on the lower convex hull. This
can only decrease the total modified latency. By Theorem 4.6, we can further improve
the modified latency by selecting the best concatenation using only tree signatures
corresponding to the corners of the convex hull. But these tree signatures correspond
to end points of the size intervals covered by the critical searches, and therefore we
can replace these phantom trees with real trees of cost at most β times as much,
which were generated by our critical searches. This increases the modified latency to
at most βπ. But the modified latency of the concatenation we selected is no larger
than this, since we selected the best concatenation from a (perhaps) larger set of
trees corresponding to all end points of size intervals covered by critical searches, not
just the ones corresponding to the lower convex hull of the lower bounds. Thus, the
expected latency of our concatenation is at most E[βπ] ≤ βγOPT . All of the nodes
within distance cmax

8n3 of the root were visited in arbitrary order first, which increases

the total latency of the tour by at most cmax

4n ≤ OPTn

4n ≤ OPT
4n . Thus, the final tour

has expected latency at most (2 − 1
4n )γOPT < 2γOPT .

As Goemans and Kleinberg observed, the algorithm above can be derandomized
using the following observation. Instead of choosing L0 = γU , where U is drawn
uniformly from [0, 1), fix some positive integer p, and draw U uniformly from {k

p : 0 ≤
k < p}. This changes the factor of γ in the approximation guarantee of Theorem 7.2 to

(γ + 1)γ
1
p

p(γ
1
p − 1)

,

which we denote by r(p). Therefore, if we run the randomized algorithm for each of
the p choices of the discrete random variable U and take the best solution, we get a
deterministic algorithm that achieves an approximation factor of βr(p), plus the tiny
term for the nodes we deleted to create the amended instance.
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As we would expect, r(p) → γ as p → ∞. A Taylor series expansion reveals that

r(p) = γ

(
1 +

ln γ

2p
+ O

(
1

p2

))
.

This yields the following result.
Theorem 7.4. For any ε > 0, there is a deterministic algorithm for the minimum

latency problem that gives an approximation factor of (2 − 1
4n )γ(1 + ε) and runs in

time dominated by O( 1
ε log2 n) PCST calls.

Setting ε = 1
8n , we can recover a deterministic 2γ-approximation algorithm using

O(n log2 n) PCST calls, which is slower than our old deterministic algorithm. But for
any constant ε > 0, we save a factor of n

logn compared to Theorem 6.1.

8. The weighted minimum latency problem. In this section, we consider
the weighted MLP, in which each node v has an associated positive integer weight wv.
The goal is to find a tour that minimizes the sum over all nodes of the weight of the
node times its latency. As in the unweighted case, the latency of a node in a tour is
its distance along the tour from the root node. Since the root node r always has zero
latency, its weight is irrelevant. The unweighted case discussed so far is simply the
case in which wv = 1 for all nodes v.

8.1. A pseudopolynomial-time algorithm. As we observed in section 1, from
a weighted instance we can derive an equivalent unweighted instance by replacing each
node v with a clique of wv nodes at distance zero from each other. This new instance
has W =

∑
v wv nodes. Recall that all weights are positive integers, so W ≥ n. We

can apply our deterministic algorithm of section 3 to obtain a 2γ-approximation while
making O(W logW ) PCST calls. In particular, we use our tree-generating algorithm
of section 5 (along with the tweaks of section 6 to speed up the running time) to find
some set of � trees Tt1 , . . . , Tt� rooted at r and spanning total weights t1 < · · · < t�
respectively, where t1 = 1 and t� = W . For i = t1, t2, . . . , t�, we let di denote the cost
of tree Ti. The tree-generating algorithm also establishes lower bounds bw on OPTw,
the cost of the optimal tree rooted at r that has total node weight w. We call this a
w-MST, as it generalizes the notion of a k-MST. Just as the cost of an optimal k-MST
gives a lower bound on the latency of the kth node visited in the optimal MLP tour,
the cost OPTw of an optimal w-MST gives a lower bound on the length of the path
in the optimal MLP tour from the root until nodes of total weight at least w have
been visited. We claim then that

∑W
w=1 OPTw gives a lower bound on the cost of

any weighted MLP tour. To see this, observe that, if li is the latency of the ith node
visited in an optimal MLP tour, wi is the weight of that node, and Wi =

∑i
j=1 wj ,

then the cost of the optimal MLP tour is

n∑

i=1

wili ≥
n∑

i=1

wiOPTWi ≥
n∑

i=1

Wi∑

w=Wi−1+1

OPTw =

W∑

w=1

OPTw.

As in the unweighted case, our lower bounds satisfy the properties that
1. bw ≤ OPTw for 1 ≤ w ≤ W ,
2. dti ≤ βbti for 1 ≤ i ≤ �,

3. bw = bti−1 +
bti−bti−1

ti−ti−1
(w − ti−1) for ti−1 ≤ w ≤ ti and i = 2, . . . , �

for some β > 2 − 1
n−1

that we will specify in the algorithm. We will show in section
9 that we can run the PCST algorithm on the weighted instance without creating



1490 AARON ARCHER, ASAF LEVIN, AND DAVID P. WILLIAMSON

extra nodes, so that each invocation of the PCST algorithm runs in O(n2) time. The
algorithm and analysis of section 6 carry over, so we obtain a 2γ-approximation algo-
rithm for the weighted MLP that uses O(W logW ) PCST calls and takes overall time
O(max(n2W logW,W 2)). The max comes because the shortest path computation is
on a directed acyclic graph with W nodes and Θ(W 2) edges. This might dominate
the running time of the PCST calls if W is large.

8.2. Weakly polynomial-time algorithms. In section 7, we converted our
deterministic algorithm for the unweighted MLP to a faster randomized version. The
exact same method applies to the weighted MLP. The only difference is in which
nodes we delete to create the amended instance. This time we delete all nodes that
are within distance cmax

8n2W of the root, so cmax

cmin
≤ 8n2W in the amended instance. We

still set β = 2 − 1
2n when we perform our critical searches. By Corollary 9.5, each

one requires O(log Wcmax

cmin
) = O(log(nW )) = O(logW ) PCST calls (since W ≥ n).

The number of relevant threshold values is O(log ncmax

cmin
) = O(logW ). At the end, our

shortest path computation is on a directed acyclic graph with O(log2 W ) edges, so
the running time is dominated by the O(log2 W ) PCST calls. The weighted latency
of our tour on the amended instance is at most (2 − 1

2n )γOPT , in expectation. The
at most n nodes that were deleted to create the amended instance can be visited in
arbitrary order at the beginning of the tour, which adds at most cmax

4nW to the latency

of each node and so at most cmax

4n ≤ OPTW

4n ≤ OPT
4n to the total latency of the tour.

Theorem 8.1. The randomized algorithm described above yields an approxima-
tion guarantee of 2γ in expectation for the weighted minimum latency problem and
runs in time dominated by O(log2 W ) PCST calls.

The algorithm above actually gives an approximation factor of less than 2(1 −
1
8n )γ. Thus, if we derandomize it as in section 7, choosing p large enough so that
r(p) ≤ 1 + 1

8n , we get a deterministic algorithm with a factor of at most 2γ. If we
only want a factor of 2γ(1 + ε), we can save on the running time.

Corollary 8.2. The deterministic algorithm described above for the weighted
MLP gives an approximation factor of 2γ using O(n log2 W ) PCST calls, or a factor
of 2γ(1 + ε) using only O( 1

ε log2 W ) PCST calls, for any ε > 0.
Proof. As in Theorem 7.4, setting p = O(n) is sufficient to make r(p) ≤ 1 + 1

8n ,
and setting p = O( 1

ε ) is sufficient to make r(p) ≤ (1 + ε).

8.3. Strongly polynomial-time algorithms. Using one more clever trick, we
can make the running time depend only on n and not on W . As in section 8.2, we do
this first for our randomized algorithm, and then we derandomize it.

Corollary 9.5 of section 9 will show that we can perform each critical search using
at most O(log nWcmax

wmincmin
) probes (i.e., PCST calls), where wmin = minv �=r wv. Again,

the number of relevant threshold values in the randomized algorithm of section 7 is
O(log ncmax

cmin
). Thus, if we can limit ourselves to solving only amended instances where

both W
wmin

and cmax

cmin
are exp(poly(n)), then we will achieve a strongly polynomial

running time. In our weakly polynomial algorithm of section 8.2, we had cmax

cmin
=

O(Wpoly(n)), which yielded a dependence on logW in the running time.
We have already taken advantage of the fact that we can first visit all of the nodes

very close to the root without increasing the total latency by much. Since we need to
decrease cmax

cmin
, we will need to refine this reasoning. Since the weighted latency of the

node sitting at distance cmax from the root is at least wmincmax, this is a lower bound
on OPT . Thus, if we visit every node that is within distance cmaxwmin

8n2W of the root first,

this contributes at most OPT
4nW to the latency of each node and hence at most OPT

4n
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to the total weighted latency of the tour. Thus, we can amend our instance to one

in which cmax

cmin
≤ 8n2W

wmin
while giving up only an extra 1

4n in the approximation factor.

Therefore, we need only to worry about making W
wmin

small. We will accomplish this
by visiting the nodes of very small weight at the end.

With this motivation behind us, here is the description of our algorithm. Sort
the nonroot nodes by lowest to highest weight. Scan the sorted list from the begin-
ning, and insert a dividing point between any two consecutive nodes for which the
ratio of their weights is more than 8n3. Let Bi denote the set of nodes between the
(i− 1)th and ith dividing points. We will call this set a block, and we will construct
subtours on each block independently. If the blocks are B1, B2, . . . , B�, we will tra-
verse their subtours in the order B�, B�−1, . . . , B1. Within each block, we will apply
the randomized algorithm of section 8.2, where the amended instance for each block is

derived by deleting all nodes within distance
c′maxw

′
min

8n2W ′ of the root, where w′
min and W ′

are, respectively, the minimum weight of any node and the total weight of all nodes
in the block.

Theorem 8.3. The randomized algorithm described above for the weighted MLP
yields an approximation factor of (2− 1

4n )γ in expectation and runs in time dominated

by O(n2 log2 n) PCST calls.
Proof. Because the blocks partition the nodes and the running time for each block

is superlinear in the number of nodes in the block, the worst case is when there is only
one block. Thus, we analyze this case. Rename the nodes so that w1 ≤ w2 ≤ · · · ≤ wn.
By construction of the block, wi+1 ≤ 8n3wi for each i. Thus, W ≤ nwn ≤ (8n3)nwmin,

so O(log W
wmin

) = O(n log n). Because cmax

cmin
≤ 8n2W

wmin
, we have O(log cmax

cmin
) = O(n log n)

as well. Thus, by Corollary 9.5, each critical search takes O(log nWcmax

wmincmin
) = O(n log n)

PCST calls, and there are O(log ncmax

cmin
) = O(n log n) relevant threshold values that

require critical searches, for a total of O(n2 log2 n) PCST calls.
In analyzing the approximation ratio, we must account for the possibility of mul-

tiple blocks. First, let OPT (Bi) denote the total latency of the optimal tour that
starts at r and visits only the nodes in Bi. If w′

min is the minimum weight of any node
in block Bi and c′max is the distance from the root to the farthest node in Bi, then
w′

minc
′
max ≤ OPT (Bi). Moreover, OPT (Bi) is a lower bound on the total latency

of the nodes in Bi in the optimal tour that visits all nodes in the original instance.
Thus, OPT (B1)+· · ·+OPT (B�) ≤ OPT . Moreover, we will charge the latency of our
overall tour block by block but in two pieces. First, we will account for the latency of
block Bi’s subtour, as if it were traversed on its own. Second, we will account for the
amount that traversing Bi’s subtour adds to the latencies of the subtours Bi−1, . . . , B1

that come afterward in our final tour. Both costs will be charged against OPT (Bi).
The expected latency of the subtour we generated for block Bi’s amended instance

is at most (2− 1
2n )γOPT (Bi). Visiting the close deleted nodes in arbitrary order adds

at most
c′maxw

′
min

4n ≤ OPT (Bi)

4n to the total weighted latency of all nodes in block Bi.
Thus, the total latency of Bi’s subtour, if it were done in isolation, would be at most
[(2 − 1

2n )γ + 1
4n ]OPT (Bi).

No matter what subtour we generated for block Bi, its total length is at most

2nc′max. The total weight of all blocks Bi−1, . . . , B1 is at most
w′

min

8n2 , so putting block

Bi before them all adds at most
c′maxw

′
min

4n ≤ OPT (Bi)

4n to their total latency. Thus, the
total amount that our subtour for block Bi adds to the weighted latency of the overall
tour is at most (2 − 1

4n )γOPT (Bi). Summing this over the blocks gives the desired
result.
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Derandomizing this algorithm using the technique of section 7 with p = O(n)
yields the following result.

Corollary 8.4. There is a deterministic algorithm for the weighted MLP that
achieves an approximation factor of 2γ in time dominated by O(n3 log2 n) PCST calls
or a factor of 2γ(1 + ε) using only O( 1

εn
2 log2 n) PCST calls.

We note that one can obtain a deterministic 2γ(1 + ε)-approximation for the
weighted MLP using only O( 1

εn
2 log2 1

ε ) PCST calls, by dividing up the input nodes
into blocks more cleverly and then into subblocks based on their distances from the
root. However, since the description and analysis of this algorithm is significantly
more complex and the payoff is just to shave off a log2 n factor in the running time,
we will omit the details.

9. The critical search primitive. In this section, we show how to implement
the critical search primitive that forms the basis for most of the algorithms and
analyses of the previous sections. Recall our goal: Given a size target w∗ or a bound
target b∗, we wish to find an interval [λlo, λhi] of λ values such that

1. bw ≤ OPTw for wlo ≤ w ≤ whi,
2. c(T (λ)) ≤ βb|T (λ)| for λ ∈ {λlo, λhi},
3. bw = bwlo

+
bwhi

−bwlo

whi−wlo
(w − wlo),

where wlo ≤ w∗ ≤ whi in the case of a size target or bwlo
≤ b∗ ≤ bwhi

in the case of a
bound target.

For w = wlo, whi, let b̃w be the lower bound LB(λ) on OPTw delivered by the
PCST subroutine when run with λ = λlo, λhi, respectively. Set δ < 1. We aim to show
that, if λhi − λlo is small enough, then setting bw = δb̃w (for w = wlo, whi) satisfies
properties 1–3 above. In other words, scaling down the lower bounds by a factor of
δ makes the interpolated lower bounds valid. Since c(T (λ)) ≤ (2 − 1

n−1
)b|T (λ)| (for

λ = λlo, λhi), property 2 will hold with β = 1
δ (2 − 1

n−1
). For instance, δ = 1 − 1

4n−1

is sufficient to yield β = 2 − 1
2n .

We begin by explaining where the lower bound comes from in the PCST algorithm
and why it extends to give lower bounds on OPTw for all values of w. We model the
w-MST problem as the following integer program:

Min
∑

e∈E

cexe

subject to:

∑

e∈δ(S)

xe +
∑

T :T⊇S

zT ≥ 1 ∀S ⊆ V \ {r},
∑

S:S⊆V \{r}
w(S)zS ≤ W − w,

xe ∈ {0, 1} ∀e ∈ E,
zS ∈ {0, 1} ∀S ⊆ V \ {r},

where δ(S) is the set of edges with exactly one end point in S and w(S) =
∑

v∈S wv.
The variable xe = 1 indicates that the edge e is in the tree, while zS = 1 indicates
that the set of nodes S is not spanned. The first set of constraints says that, for any
set S of nodes not containing the root, either they are contained in the unspanned
set or some edge in δ(S) is selected. The second constraint says that the total weight
of unspanned nodes is at most W − w.
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Following [13], we can convert this to something close to a PCST problem by
applying Lagrangian relaxation to the second constraint:

Min
∑

e∈E

cexe + λ

⎛
⎝

∑

S:S⊆V \{r}
w(S)zS − (W − w)

⎞
⎠

subject to: ∑

e∈δ(S)

xe +
∑

T :T⊇S

zT ≥ 1 ∀S ⊆ V \ {r},

xe ∈ {0, 1} ∀e ∈ E,

zS ∈ {0, 1} ∀S ⊆ V \ {r}.
Note that any solution feasible for the previous integer program will be feasible for
this one, and if λ ≥ 0, it will have no greater cost in the new integer program. Recall
the definition of the PCST problem: We are given an undirected graph (V,E), a root
node r ∈ V , nonnegative costs on the edges ce ≥ 0 for all e ∈ E, and nonnegative
penalties pi for i ∈ V, i �= r. The goal is to find a tree spanning the root node so as
to minimize the cost of the edges in the tree plus the penalties of the nodes not in
the tree. Here we set all penalties pi = λwi. Observe that the integer program above
exactly models this problem for pi = λwi, except that the objective function has an
additional constant term of −(W − w)λ.

Goemans and Williamson [21] give a primal-dual 2-approximation algorithm for
the PCST problem. Their algorithm returns a tree spanning the root node and a so-
lution to the dual of a linear programming relaxation of the PCST problem. The dual
solution is feasible for the dual of the linear programming relaxation of the integer
program above; in particular, this dual is

Max
∑

S⊆V \{r}
yS − λ(W − w)

subject to: ∑

S:e∈δ(S)

yS ≤ ce ∀e ∈ E,

(D)
∑

T :T⊆S

yT ≤ w(S)λ ∀S ⊆ V \ {r},

yS ≥ 0 ∀S ⊆ V \ {r}.
We will abbreviate their algorithm as PCST. In particular, they show the following.

Theorem 9.1 (see [21]). PCST returns a tree T and a dual solution y feasible
for (D) such that if X is the set of nodes not spanned by T , then

∑

e∈T

ce +

(
2 − 1

n− 1

)
λw(X) ≤

(
2 − 1

n− 1

) ∑

S⊆V \{r}
yS .

From this theorem we obtain the following lemma.
Lemma 9.2. Letting T and y be the tree and dual solution returned by PCST,

respectively, define

b̃w :=
∑

S⊆V \{r}
yS − λ(W − w).
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Then b̃w ≤ OPTw for each w = 1, . . . ,W , and the cost of T is no more than (2 −
1

n−1
)b̃w(T ), where w(T ) is the total weight of the nodes spanned by T .
Proof. Note that if y is a feasible dual solution to (D), then since

∑
S⊆V \{r} yS −

λ(W − w) is the dual objective function of (D), it is a lower bound on the cost of an
optimal w-MST. By Theorem 9.1, if PCST returns tree T and X is the set of nodes
not spanned by T , then w(X) = W − w(T ). Thus

∑

e∈T

ce +

(
2 − 1

n− 1

)
λ(W − w(T )) ≤

(
2 − 1

n− 1

) ∑

S⊆V \{r}
yS ,

which implies that

∑

e∈T

ce ≤
(

2 − 1

n− 1

)⎛
⎝

∑

S⊆V \{r}
yS − λ(W − w(T ))

⎞
⎠ =

(
2 − 1

n− 1

)
b̃w(T ).

Notice that running the PCST algorithm for a single value of λ yields lower bounds
on OPTw for every value of w simultaneously.

We further need the following observation, which relies on the workings of the
PCST algorithm.

Observation 9.3. If we call PCST with λ = 0, it will return a tree containing
only the root node. If we call PCST with λ = cmax

wmin
, where cmax is the maximum edge

cost and wmin is the minimum node weight, it will return a tree spanning all nodes.
We are now ready to prove our crucial lemma.
Lemma 9.4. Let Tlo, Thi be the trees and b̃lo, b̃hi the lower bounds returned by

PCST when the penalty parameter λ is set to λlo and λhi, respectively, with λlo ≤
λhi and λhi − λlo ≤ 1−δ

δ
cmin

W . Let w ∈ (w(Tlo), w(Thi)), and express w as a convex

combination w = αlow(Tlo)+αhiw(Thi), where αlo+αhi = 1. If we set blo = δb̃lo, bhi =
δb̃hi, and bw = αloblo + αhibhi, then bw ≤ OPTw.

Proof. Let wlo = w(Tlo) and whi = w(Thi). Let ylo and yhi be the dual solutions
returned by PCST for penalty value λlo and λhi, respectively. Letting y = αloy

lo +
αhiy

hi, observe that (y, λhi) is feasible for (D) by the convexity of the feasible region,
and thus both

∑
S⊆V \{r} yS − (W − w)λhi and cmin are lower bounds on the cost of

an optimal w-MST. Then

bw = αloblo + αhibhi

= δ
(
αlob̃lo + αhib̃hi

)

= δ

⎛
⎝αlo

⎛
⎝

∑

S⊆V \{r}
ylo
S − (W − wlo)λlo

⎞
⎠ + αhi

⎛
⎝

∑

S⊆V \{r}
yhi
S − (W − whi)λhi

⎞
⎠
⎞
⎠

= δ

⎛
⎝

∑

S⊆V \{r}
yS − αlo(W − wlo)(λhi + λlo − λhi) − αhi(W − whi)λhi

⎞
⎠

≤ δ

⎛
⎝

∑

S⊆V \{r}
yS − (W − w)λhi + αlo(W − wlo)

1 − δ

δ

cmin

W

⎞
⎠

≤ δ

(
OPTw +

1 − δ

δ
OPTw

)

≤ OPTw.
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Corollary 9.5. Given δ < 1 and β ≥ 1
δ (2 − 1

n−1
), a single critical search can

be performed using O(log δcmaxW
(1−δ)cminwmin

) PCST calls.

Proof. Start the binary search with the interval [0, cmax

wmin
]. Each PCST call halves

the interval, and by Lemma 9.4, we can stop once we shrink the interval to width
(1−δ)cmin

δW .
In particular, if we set δ = 1 − 1

4n−1
in order to achieve β = 2 − 1

2n , then each

critical search takes O(log ncmaxW
cminwmin

) PCST calls.

10. Experimental results. The approximation ratio of our algorithm for real
instances is much better then one could expect by the worst-case analysis. We tested
our deterministic algorithm of section 6 on some 2-dimensional Euclidean instances
available from the TSPLIB [33]. In Table 2 we show the experimental factor between
the obtained tour latency and the lower bound. The average ratio on the tested
instances is 3.01, and its maximum is 3.66. We note that these numbers are much
less than 2γ ≈ 7.18, which is the theoretical worst case.

11. Concluding remarks. We showed how to use the tree concatenation tech-
nique of Blum et al. as refined by Goemans and Kleinberg to construct a 2γ ≈ 7.18-
approximation algorithm for the MLP, while having access to 2-approximate k-MSTs
for only a few values of k that we cannot specify in advance. The 2γ guarantee
comes from two sources. The 2 comes from our k-MSTs being 2-approximate, while
the γ comes from the tree concatenation procedure. Both of these pieces represent
significant barriers to further improvement.

The factor of γ ≈ 3.59 from the tree concatenation is inherent in any analysis
that blindly concatenates trees and upper bounds the latency by the sum of modified
latencies. This is because Goemans and Kleinberg prove that Theorem 4.3 is tight;
that is, the costs d2, . . . , dn can be selected such that the ratio of shortest path length
in the graph G to d2 + · · · + dn is arbitrarily close to γ. Thus, in order to attain a
provably better latency, one would need to either have some knowledge of the costs
di or pay attention to the actual structure of the trees being concatenated.

All known constant factor approximation algorithms for the k-MST problem rely
explicitly or implicitly on the LP relaxation we used for the PCST problem. Since
this relaxation has an integrality gap of essentially 2, it seems that achieving a β-
approximation algorithm for k-MST for a constant β < 2 will require a significantly
different approach.

As we mentioned in section 1, Chaudhuri et al. [12] get around this difficulty by
using the optimal k-stroll rather than the optimal k-MST as their lower bound on the
latency of the kth node visited in the tour. Our work paved the way for theirs, since
they use our technique of bluffing the GK algorithm with phantom trees, in order to
make up for the fact that the Lagrangian relaxation will typically fail to yield trees of
some sizes. Their algorithm requires them to guess the end point of the k-stroll, which
incurs an extra factor of n in their running time. Their improvement comes because
this allows them to raise the coefficient of nearly all of their dual variables from 1 to 2
in the objective function of the dual LP, which is a slight variant of (D). They use the
analogous variant of the PCST algorithm to find their tree and dual solution. This is
essentially the same trick used by Goemans and Williamson in [21] to transform their
PCST algorithm into a 2-approximation for the prize-collecting TSP.

One direction for future work would be to consider LP relaxations that address the
MLP objective function directly rather than using k-MSTs or k-strolls for our lower
bounds. Perhaps the most attractive special case to look at is where the underlying
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Table 2

Experimental results of our deterministic algorithm from section 6. Running times are in CPU
seconds on an IBM RS/6000 43P Model 140.

Instance name Tour latency Lower bound Factor Running time
berlin52 197137 58644 3.36 0.983
bier127 5929120 1886700 3.14 4.033
ch130 455849 148344 3.07 11.033
ch150 571369 209537 2.72 13.833
d198 1380470 556278 2.48 21.983
d493 10441397 3305791 3.15 144.150
d657 20831492 6487270 3.21 288.000
eil101 38582 12157 3.17 2.900
eil51 14683 4390 3.34 0.383
eil76 26128 8046 3.24 1.017
fl417 2531146 825513 3.06 258.867
gil262 393641 126697 3.10 34.183
kroA100 1307340 432542 3.02 3.683
kroA150 2494782 811515 3.07 8.967
kroA200 3387616 1173404 2.88 40.667
kroB100 1274207 442308 2.88 2.083
kroB150 2376125 820770 2.89 6.883
kroB200 3731218 1174833 3.17 44.083
kroC100 1207746 432224 2.79 4.700
kroD100 1297932 412501 3.14 4.450
kroE100 1345314 446334 3.01 1.800
lin105 780662 274250 2.84 4.767
lin318 7475822 2532401 2.95 128.750
p654 10251922 3545177 2.89 408.000
pcb442 14683399 4844532 3.03 79.133
pr1002 164844296 50583204 3.25 1479.983
pr107 2205490 915582 2.40 124.350
pr124 4778217 1454570 3.28 7.817
pr136 8720053 2891809 3.01 30.967
pr144 4844537 1674418 2.89 30.700
pr152 6075505 2334659 2.60 49.333
pr226 10421449 3283953 3.17 15.750
pr264 7674241 2628452 2.91 26.517
pr299 8553790 2938150 2.91 109.250
pr439 24126010 7900826 3.05 143.083
pr76 4359810 1467212 2.97 1.350
rat195 280900 102741 2.73 25.850
rat575 2511713 847350 2.96 418.833
rat783 4410164 1527124 2.88 449.983
rat99 75048 25964 2.89 5.033
rd100 458419 153887 2.97 5.250
rd400 3930767 1230238 3.19 93.517
st70 26384 9033 2.92 0.800
ts225 17953213 6271875 2.86 2815.500
tsp225 537080 181263 2.96 88.733
u1060 146511585 46213643 3.17 753.283
u159 3837650 1301475 2.94 9.433
u574 12906940 4159616 3.10 195.233
u724 19821239 6222958 3.18 517.433
vm1084 153128900 41816544 3.66 1041.333

metric is given by a tree. Since the k-MST problem can be solved optimally on trees,
Goemans and Kleinberg [22] used their algorithm to obtain a 3.59-approximation for
this special case, without resorting to the k-stroll approach of [12]. This is still the
best result known for tree metrics.
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OPTIMAL POWER-DOWN STRATEGIES∗
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Abstract. We consider the problem of selecting threshold times to transition a device to low-
power sleep states during an idle period. The two-state case, in which there is a single active and
a single sleep state, is a continuous version of the ski-rental problem. We consider a generalized
version in which there is more than one sleep state, each with its own power-consumption rate and
transition costs. We give an algorithm that, given a system, produces a deterministic strategy whose
competitive ratio is arbitrarily close to optimal. We also give an algorithm to produce the optimal
online strategy given a system and a probability distribution that generates the length of the idle
period. We also give a simple algorithm that achieves a competitive ratio of 3+2

√
2 ≈ 5.828 for any

system.
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1. Introduction. Suppose you are about to go skiing for the first time in your
life. Naturally, you ask yourself whether to rent skis or to buy them. Renting skis
costs, say, $30, whereas buying skis costs $300. If you knew how many times you
would go skiing in the future (ignoring complicating factors such as inflation and
changing models of skis), then your choice would be clear. If you knew you would go
at least 10 times, you would be financially better off by buying skis right from the
beginning, whereas if you knew you would go less than 10 times, you would be better
off renting skis every time. Alas, the future is unclear, and you must make a decision
nonetheless.

Although the ski-rental problem is a very simple abstraction, this basic paradigm
arises in many applications in computer systems. In these situations, there is a system
that can reside in either a low-cost or a high-cost state. Occasionally, it is forced to
be in the high-cost state (usually to perform some task). A period between any two
such points in time is called an idle period.

The system pays a per time unit cost to reside in the high-cost state. Alternatively,
it can transition to the low-cost state at a fixed one-time cost. If the idle period is
long, it is advantageous to transition to the low-cost state immediately; if the idle
period is short, it is better to stay in the high-cost state. An online algorithm which
does not know the length of the idle period must balance these two possibilities.
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This problem has been studied in the context of shared memory multiprocessors
in which a thread is waiting for a locked piece of data and must decide whether to
spin or block [8, 10]. Researchers investigating the interface between IP networks
and connection-oriented networks have discovered this same underlying problem in
deciding whether to keep a connection open between bursts of packets that must be
sent along the connection [11]. Karlin, Kenyon, and Randall study the transmission
control protocol (TCP) acknowledgment problem and the related Bahncard problem,
both of which are at heart ski-rental problems [9]. The problem also arises in cache
coherency in deciding whether to update or invalidate data that has been changed in
a processor’s local cache [5, 1].

An important application of the ski-rental problem is in minimizing the power
consumed by devices that can transition to a low-power sleep state when idle. The
sleep state consumes less power; however, one incurs a fixed start-up cost in making
the transition to the high-power active state in order to begin work when a new job
arrives. At the architectural level, the technique of eliminating power to a functional
component is called clock/power gating. At a higher level, the powered-down compo-
nent might be a disk drive or even the whole system (e.g., a laptop that hibernates).
The embedded systems community has invested a great deal of effort in devising poli-
cies governing the selection of power states during idle periods (termed dynamic power
management in their literature); see, for example, [3] for a survey. These techniques
have been critical to maximizing battery use in mobile systems. While power is al-
ready a first-class parameter in system design, it will become increasingly important
in the future since battery capacities are increasing at a much slower rate than power
requirements.

Most of the previous work on this problem has been concerned with two-state
systems, which have an active state and a single sleep state. This paper focuses on
finding power-down thresholds for systems that have more than one low-power state.

2. Previous work and new results. For the two-state problem, an online
algorithm consists of a single threshold T after which time the algorithm will transition
from the active to the sleep state. The input to the problem is the length of the
idle period, and the cost of an algorithm is the total amount of energy it consumes
over a single idle period. Typically, an online algorithm is evaluated in terms of its
competitive ratio—the ratio of the cost of the online algorithm to the cost of the
optimal offline algorithm, maximized over all inputs. When randomized algorithms
are considered where the threshold T is chosen at random, we look at the ratio of the
expected cost of the online algorithm to the cost of the offline algorithm. Previous
work has also addressed the two-state problem when the idle period is generated
by a known probability distribution. In this case, the online algorithm will choose
a threshold which minimizes its expected cost, where the expectation here is taken
over the random choice of the idle period. We call such algorithms probability-based
algorithms.

The best deterministic online algorithm will stay in the high-power state until
the total energy spent is equal to the cost to power up from the low-power state. It
is known that this algorithm achieves the optimal (deterministic) competitive ratio
of 2 [8]. When one considers randomized online algorithms, the best competitive
ratio achievable improves to e/(e− 1) [8]. If the idle period is generated by a known
probability distribution, then the algorithm that chooses T so as to minimize the
expected cost is always within a factor of e/(e − 1) of optimal. Furthermore, this
bound is tight since there is a distribution over the idle period lengths which will
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force any online algorithm to incur an expected cost that is a factor e/(e − 1) times
larger than that incurred by the optimal offline algorithm [8].

Note that in the context of power-down systems, it may not be the case that the
power usage in the sleep state is zero or even that the start-up cost in the active state
is zero. In these cases, both the online and the offline algorithms will incur an identical
additional cost. Thus, the ratio of the online to the offline costs will decrease, and
the optimal competitive ratio will be strictly less than two. However, these additional
costs do not change the optimal online or offline strategy in either the deterministic
or the probability-based case, and the optimal competitive ratio that can be achieved
for such systems can easily be determined as a function of all the parameters of the
system.

We denote the problem that involves powering down through k sleep states PD(k).
A formal description of the problem is as follows: we are given a sequence of k+1 states
S = 〈s0, . . . , sk〉. There is also a vector of power-consumption rates K = 〈κ0, . . . , κk〉,
where κi is the power-consumption rate of the system in state si. We assume as a
convention that the states are ordered so that κi > κj for 0 ≤ i < j ≤ k. So s0 is
the active state, and the system must transition to s0 (i.e., power up) at the end of
the idle period. There is an associated transition cost di,j to move from state si to
sj . A system is described by a pair (K, d). Note that there can be costs to move from
high-power states to low-power states and vice versa. However, the only power-up
costs that are of interest are the costs to transition from a particular state si to the
active state s0 since the only reason to transition to a higher-power state is when a
new task arrives. A schedule or strategy A = (SA, TA) consists of a sequence of nA+1
states SA, which is a subsequence of S, and a sequence of transition times TA. Where
obvious, we will omit the subscript A. We require that S(0) = s0 and T (0) = 0.
We use A(t) to denote the cost of the schedule produced by strategy A for an idle
period of length t. We also consider a generalization of PD(k) that we call PD(k,m)
wherein we require that nA ≤ m, where 0 < m ≤ k is some limiting integer constant.
This generalization would be especially useful for engineers who have a large number
of sleep state options available in the design phase but are required to implement at
most a fixed number of states in the product that rolls out into the market.

The only previous work that examines the multiple-state problem PD(k) (from
the perspective of worst-case guarantees) is [6], which considers the special case where
the cost to power down is zero and the algorithm pays only to move from low-power
states to higher-power states. Note that this also includes the case where the transi-
tion costs are additive (di,j + dj,k = di,k for i < j < k) since the costs to power down
can then be folded into the costs to power up. [6] gives natural generalizations of the
algorithms for the two-state case, both for the case when the idle period length is
unknown and the case when it is generated by a known probability distribution. It is
shown that when the transition costs are additive, the generalized deterministic algo-
rithm is 2-competitive and the probability-based algorithm is e/(e − 1)-competitive,
thus matching the guarantees in the two-state case.

There are two important directions left open by this work. The first is based
on the observation that systems, in general, do not have additive transition costs.
In many scenarios, additional energy is spent in transitioning to lower-power states.
Furthermore, there could be overhead in stopping at intermediate states, resulting in
nonadditive transition costs (see [3] for an example). The second point is that the
known upper bounds are typically not optimal for the system under consideration.
That is, while it is true that there exist systems for which the optimal competitive
ratio that can be achieved by any deterministic algorithm is 2 (and e/(e− 1) by any
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randomized algorithm), it is possible to achieve a better competitive ratio for many
systems. For multistate systems, the optimal competitive ratio that can be achieved
will, in general, be a complicated function of all the parameters of the system (the
power-consumption rates as well as transition costs). For probability-based algo-
rithms, the optimal competitive ratio will also depend on the probability distribution
generating the length of the idle period. While it may not be feasible to express the
optimal competitive ratio as a function of all these parameters, a system designer
would, in general, like to design a power-down strategy that obtains the best possible
competitive ratio given the constraints of his or her particular system.

This paper establishes the following results.
• We give an algorithm that takes as input an instance of PD(k) that is de-

scribed by (K, d), and an error parameter ε, and produces a power-down
strategy A = (SA, TA) whose competitive ratio is within an additive ε of the
best competitive ratio that can be achieved for that system. The algorithm
runs in time O(k2(log k) log(1/ε)), where k + 1 is the number of states in the
system, and also outputs the competitive ratio of A. The algorithm works via
a decision procedure which determines for a system and a constant ρ if there is
a ρ-competitive strategy for that system. This decision procedure also allows
us to obtain lower bounds on the competitive ratio achievable by determin-
istic algorithms for specific systems, which in turn provides a lower bound
on the competitive ratio achievable by deterministic algorithms in general.
In particular, we obtain a lower bound of 2.45 on the competitive ratio for
deterministic algorithms. This is the first lower bound known that is greater
than 2. Independently, Damaschke has given a lower bound of 3.618 [4].

• The above approach can be modified to solve the more general version where
a bound of m is specified on the number of states allowed in final strategy.
We show how to extend the decision procedure to answer if there is a ρ-
competitive strategy for the system that uses at most m power states.

• Experimental results show that there are significant performance gains to be
made by estimating the distribution governing the length of an idle period
based on recent history and using this estimate to drive a probability-based
strategy [7]. We give an algorithm that takes as input a description of a
system and a probability distribution generating the idle period length and
produces the optimal power-down strategy. Naturally, the running time of the
algorithm will depend on the representation of the distribution. In practice,
this is most likely to be a histogram. Our algorithm runs in time O(k2(log k+
B)), where B is the number of bins in the histogram and k+1 is the number
of states. One outcome of the proof is that it also establishes the optimality
of the strategy given in [6] for additive systems. We then generalize this to
find the best online algorithm subject to the restriction that at most m states
are used, at the expense of an extra factor of m in the running time.

• We give a simple deterministic strategy that achieves a competitive ratio of
3+2

√
2 ≈ 5.8284 for all systems. This result gives a bound on the competitive

ratio achieved by the optimal strategies generated by our algorithms. Note
that 3 + 2

√
2 also serves as a bound on the ratio of the expected costs of the

online and offline algorithms when the input is probabilistically generated.
In the remainder of this paper, we use the terms schedule or strategy interchange-

ably to refer to the choices of states and threshold times for powering down. The
term algorithm will refer to a procedure that produces a schedule or strategy based
on a particular system.
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Azar et al. in [2] consider a related problem which they refer to as capital in-
vestment. This problem is a different generalization of the ski-rental problem than
the power-down problem considered here. However, a special case of their problem
coincides with a special case of our problem. Specifically, they give a (4 + 2

√
2)-

competitive deterministic algorithm for the special case of the power-down problem
in which the cost to transition to each state is the same, regardless of the state from
which one is transitioning. Later, Damaschke in [4] improves the upper bound on the
competitive ratio for this special case (also in the context of capital investment) to
4 for deterministic algorithms and 2.88 for ranomized algorithms. In addition, Dam-
aschke gives a 3.618 lower bound for any deterministic algorithm which subsumes the
lower bound of 2.45 given here.

3. Preliminaries. First we will establish that we can assume without loss of
generality that the power-up transition costs are zero. If this is not the case for
some system (K, d), we can define a new system such that for any i < j, the cost to
transition from si to sj is di,j + dj,0 − di,0 and the cost to go from sj to si is 0. Since
there is never any reason to transition to a higher-power state unless the system is
transitioning to the active state at the arrival of a new task, any set of actions in the
original system will incur the same cost in the new system. Thus, in what follows we
assume that di,0 = 0 for all i.

We also need to establish that we can assume that for all i < j, di,j < d0,j .
Recall that we are really using di,j to denote di,j + dj,0 − di,0 and d0,j to denote
d0,j + dj,0. Thus, the assumption that di,j < d0,j really amounts to assuming that
di,j < di,0 + d0,j . If this were not the case, we could just transition from state si to
state sj by first going to s0 and then going down to sj .

Let D(i) denote d0,i. Then OPT (t) = mini(D(i)+κit). Let S(t) denote the state
which attains the minimum—the optimal state. The optimal strategy is to transition
to state S(t) at time 0 and stay there through time t. We assume that, for every
state, there is some idle period length for which the optimal strategy will use that
state, i.e., range(S(t)) = {s0, . . . , sk}. None of the online strategies we present will
make use of a state that is never used by the optimal offline strategy for any time t.

Note that OPT (t) is piecewise-linear and S(t) is nondecreasing with t—as the
idle period length gets longer, it becomes more worthwhile to pay the extra cost to
transition to a lower-power state. Let bi denote the first time instant at which state
si becomes the optimal state, so b(0) = 0 and D(i − 1) + κi−1bi = D(i) + κibi ⇒
bi = D(i)−D(i−1)

κi−1−κi
. We have b(0) < b(1) < . . . b(k). Figure 1 shows the total energy

consumed by OPT as a function of the length of the idle period. There is a line
for each state. The y-intercept is the transition cost to move to that state from the
active state and the slope is the power-consumption rate. The energy consumed by
the optimal strategy is the lower envelope of these lines since it will pick the single
state which minimizes the cost for a given idle period length. Thus for t ∈ [bi, bi+1],

(1) OPT (t) = D(i) + κit =

i−1∑

j=0

κj(bj+1 − bj) + κi(t− bi).

We compare our online strategy with OPT (t) and want to get a strategy A which

minimizes the competitive ratio, cA = supt
A(t)

OPT(t) , where A(t) denotes the total

power consumption of A by time t.
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b1 b2

Energy

State 0 State 1 State 2

State 3

b3 Time

Fig. 1. Energy consumed by the optimal strategy as a function of idle period length.

4. A simple (3+2
√

2)-competitive strategy. Let us for the moment assume
that for some γ > 1, D(i) ≥ γD(i−1) for all i = 1, . . . , k. This is a nontrivial assump-
tion that we will have to handle later. Consider the strategy, A, which always stays
in state S(t), the same state as OPT , at every time t. The optimal strategy which
knows the length of the idle period in advance will just transition to the optimal state.
Strategy A, however, must “follow” the optimal strategy, making each transition to
a new state as the idle period gets longer. This is the strategy proposed in [6] and
shown to be 2-competitive for additive systems. Note that this strategy is the same
as the 2-competitive balance strategy for the two-state case.

For t ∈ [bi, bi+1] the online cost is A(t) =
∑i−1

j=0

(
κj(bj+1−bj)+dj,j+1

)
+κi(t−bi).

In comparing this cost to the optimal cost in (1), observe that both terms have an

additive κi(t − bi), which means that the ratio A(t)
OPT(t) will be maximized at t = bi.

To bound the cost of A in terms of OPT , we use the fact that OPT (bi) ≥ D(i) and

OPT (bi) =
∑i−1

j=0 κj(bj+1 − bj), both of which come from (1). This last equation is
used in line three of the equations below as is the fact that D(i) ≥ γD(i − 1) for all
i = 1, . . . , k:

A(bi) =

i−1∑

j=0

(
κj(bj+1 − bj) + dj,j+1

)

≤
i−1∑

j=0

κj(bj+1 − bj) +

i∑

j=1

D(j)

≤ OPT (bi) + D(i)

i∑

j=1

γ−(i−j)

≤
(

1 +
γ

γ − 1

)
OPT (bi) =

2γ − 1

γ − 1
· OPT (bi).(2)

This holds for any t, implying a competitive ratio of 2γ−1

γ−1
.

Now suppose the assumption D(i) ≥ γD(i−1) does not hold. We consider a new
offline strategy OPT ′ that uses only a subset of states S′ for which the property does
hold and is a γ-approximation of OPT ; i.e., OPT ′(t) ≤ γ · OPT (t). We now view
our problem as specified by just the states in S′, and we execute strategy A as spec-
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ified above, emulating OPT ′ instead of OPT . We get that A′(t) ≤ 2γ−1

γ−1
OPT ′(t) ≤

γ(2γ−1)

γ−1
OPT (t). Setting γ = 1 + 1√

2
, we get a competitive ratio of 3 + 2

√
2 ≈ 5.8284.

We determine OPT ′ as follows. Let S′ = {sk} initially. Consider the states in S
in reverse order. Let si be the last state added to S′. We find the largest j, 0 ≤ j < i,
such that D(j) ≤ D(i)/γ. We add sj to S′ and continue until no such j exists. Note
that s0 ∈ S′ since D(0) = 0. OPT ′ will execute the optimal offline strategy assuming
that only the states in S′ are available. Consider i, j such that si, sj ∈ S′ and no s�
is in S′ for i < � < j. We have OPT ′(t) = OPT (t) for t ∈ [bi, bi+1) and t ∈ [bj , bj+1).
For � such that i < � < j and time t ∈ [b�, b�+1), OPT ′(t) = min(D(i)+κit,D(j)+κjt)
and OPT (t) = D(�) + κ�t. j was chosen to be the largest value less than i such that
D(j) ≤ D(i)/γ, which means that D(�) > D(i)/γ. Furthermore, since κi ≤ κ�, we
have that

OPT ′(t) ≤ D(i) + κit ≤ γ
(
D(�) + κ�t

)
= γOPT (t),

and OPT ′ is a γ-approximation to OPT .
Theorem 1. There is a (3 + 2

√
2)-competitive strategy for any system.

5. A near-optimal deterministic algorithm. In this section, we turn our
attention to obtaining a near-optimal schedule for a particular system. More precisely,
given a system (K, d) with state sequence S for which the optimal online schedule has
competitive ratio ρ∗, we give an algorithm that returns a (ρ∗ + ε)-competitive online
schedule in time O(k2 log k log(1/ε)). The algorithm is based on a decision procedure
which determines whether a ρ-competitive schedule exists for a given value of ρ.
Theorem 1 establishes an upper bound of 3 + 2

√
2 on the optimal competitive ratio,

so we perform a bisection search in the range [1, 3 + 2
√

2] to find the smallest ρ such
that there exists a ρ-competitive schedule. We also output the resulting schedule.

The following lemma shows that the online strategy must eventually get to a
sufficiently low-power state. Lemma 3 allows us to limit our concern to just the
transition points in any online schedule.

Lemma 2. If A = (S, T ) is a ρ-competitive strategy and s� is the last state in S,
then κ� ≤ ρ · κk.

Proof. For the sake of contradiction, assume that κ� > ρ · κk. For A to be ρ-
competitive, the function A(t) must lie entirely below ρ · OPT (t). However, the last
line of ρ · OPT (t) has slope ρ · κk and will therefore intersect the last line of A(t),
which has a larger slope κ�, after which time A(t) will exceed ρOPT (t). This is a
contradiction.

Lemma 3. If a schedule A has finite competitive ratio, then the earliest time

t̄ > 0 at which A(t)
OPT(t) is maximized is a transition point in the strategy A.

Proof. Let ρ = maxt>0
A(t)

OPT(t) . Consider the functions A(t) and ρOPT (t). The

function A(t) never exceeds ρOPT (t), and t̄ is the earliest point at which these two
functions have the same value, not considering the origin. For the sake of contradic-
tion, assume that t̄ is not a transition point in A. So we can find some small ε > 0
such that A(t) is linear in (t̄− ε, t̄+ ε). Since A(t) is strictly less than ρOPT (t) in the
interval (t̄ − ε, t̄) and A(t̄) = ρOPT (t̄), it must be the case that the slope of A(t) is
larger than the slope of ρOPT (t) in this interval. This results in a contradiction, be-
cause A(t) has constant slope over (t̄− ε, t̄+ ε), and ρOPT (t) is a continuous function
with decreasing slope, which means that A(t) > ρOPT (t) for t > t̄.

We now explore ways to restrict the space of schedules we need to consider in
searching for a ρ-competitive schedule. For a strategy A = (S, T ), we say that a
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t t′ TimeTime

Energy Energy

Fig. 2. Energy consumed by the online and optimal strategies as a function of idle period
length. The solid line is ρ ·OPT (t). The dashed line is the online cost. t is the first transition time
that is not eager. t′ shows the transformed strategy which now has an eager transition.

transition at time t ∈ T is ρ-eager (or just eager if ρ is clear from the context) if
A(t) = ρOPT (t). We say that A is a ρ-eager strategy if A(t) = ρOPT (t) for every
t ∈ T . Note that by Lemmas 2 and 3, a ρ-eager strategy that ends at state s such
that κs ≤ ρ · κk is ρ-competitive.

Lemma 4. If A = (S, T ) is a ρ-competitive strategy, then there exists an eager
strategy A′ = (S, T ′) that is also ρ-competitive.

Proof. Figure 2 shows a schematic of the proof. The jumps in the online cost
(the dashed line) are transition costs. The solid line is ρOPT (t). The figure shows a
transition time t at which the online cost is less than ρOPT (t). The idea is that we
can slide such a transition time earlier until it hits the function ρOPT (t) .

Consider the earliest transition time T which is not eager. Suppose that A tran-
sitions from state si to state sj at time T . Let T ′ < T be the time of the immediately
preceding transition; if there is no such transition time, then set T ′ = 0. The func-
tion ρOPT (t) −A(t) is continuous in the interval (T ′, T ) since A does not have any
transitions in this open interval, and ρOPT (t) − A(t) is 0 at time T ′ and is strictly
greater than di,j at time T − ε for a small enough ε. Let T be the earliest time after
T ′ such that ρOPT (t) −A(t) = di,j , so T < T .

Consider the strategy A′ that is identical to A except that the transition from
si to sj is moved earlier from T to T . We need to argue that A′ is ρ-competitive.
Clearly A′(t) = A(t) for t ∈ [T, T ) and A(T ) = ρOPT (T ). Also A′(T ) < A(T ) since
A′ transitions earlier to the low-power state sj and hence uses less total energy, and
since the strategies behave the same after time T , A′ will continue to have a lower
cost at all times t > T . To see that A′(t) ≤ ρOPT (t) over the interval (T , T ), note
that A′(t) is linear over this interval since A′ remains in state sj . Also ρOPT (t) is
a piecewise-linear concave function since its slope is nonincreasing over time. Thus,
since the points (T ,A′(T )) and (T,A′(T )) both lie on or below this curve, the straight
line connecting them lies under the curve ρOPT (t).

The procedure above can be repeated until all the transitions are eager.
Lemma 5. Suppose a strategy makes a ρ-eager transition to state si at time ti and

next makes a transition to state sj. Using the function ρOPT (t), one can compute
the earliest ρ-eager transition time t̄ to state sj in time O(log k).

Proof. Define the line l(t) = κit + ρOPT (ti) − κiti + di,j . t̄ is the smallest t > ti
such that ρOPT (t) = l(t). If there is no such t, then a ρ-eager transition from si
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to sj does not exist. Since ρOPT (t) is concave, we have that if l(t) < ρOPT (t), or
if l(t) ≥ ρOPT (t) and the slope of ρOPT (t) is less than or equal to κi, then t̄ ≤ t;
otherwise t̄ ≥ t. These inequalities allow one to do a binary search using the line
segments of ρOPT (t) to determine t̄ if it exists. Let s� be the optimal state (i.e.,
state of OPT (t)) at time ti. Consider the line segments of ρOPT (t) corresponding
to states s� and sk. Recall that b� and bk are, respectively, the left endpoints of these
segments—these are the first time instants at which s� and sk become the optimal
states, respectively. Using the above inequalities, if we determine that t̄ ≥ bk, then t̄
is simply the point of intersection (if it exists) of l(t) with the segment (of ρOPT (t))
corresponding to sk. Otherwise we have a “low” segment with endpoint b� and a
“high” segment with endpoint bk. Now we repeatedly consider the left endpoint of
the segment that is in the middle of the low and high segments, and we use the
above inequalities to update the low or high segment and the corresponding endpoint
accordingly, until the endpoints of the low and high segments correspond, respectively,
to the left and right endpoints of a segment of ρOPT (t). When this happens we can
compute t̄ by finding the intersection point (if it exists) of l(t) and this segment. The
binary search can be implemented in time log k, where k is the number of segments
(i.e., number of states).

Lemma 4 immediately gives an algorithm that is exponential in k, the number
of states, and determines whether a ρ-competitive strategy exists for the system.
This algorithm enumerates all subsequences of states and determines the ρ-eager
strategy for that subsequence by finding the eager transition to each state based on
the eager transitions to the previous states as described in the proof of Lemma 5.
A ρ-competitive strategy for the system exists if and only if one of these ρ-eager
strategies is ρ-competitive (i.e., ends at a state s with κs ≤ ρ · κk). The remainder of
this section presents a way to remove the exponential dependence on k.

Let S = 〈s0, s1, . . . , sk〉 be a sequence of states that form a system. Define Ssi→sj

to be the contiguous subsequence 〈si, . . . , sj〉, where si and sj are elements of S such
that i < j. Let Ψs be the set of subsequences of Ss0→s that include s0 and s such that
for each ψ ∈ Ψs, one can find transition times for the state sequence ψ so that in the
resulting schedule, each transition up to and including the transition to state s is a
ρ-eager transition. For a state q ∈ ψ, we will use tψ,q to denote this ρ-eager transition
time to q for the sequence ψ. (Note that ψ uniquely determines the transition times
tψ,q.)

We define the earliest transition time E(s, ρ) of state s for the given system as
E(s, ρ) = minψ∈Ψs tψ,s; that is, E(s, ρ) is the earliest time at which any online strategy
can transition to state s while remaining ρ-eager over all its transitions up to (and
including) the transition to state s. Observe that if there is ρ-competitive strategy
that uses state s, then by Lemma 4, there is such a ρ-eager strategy, so Ψs �= φ and
E(s, ρ) is well defined. We call a transition to state s ρ-early (or simply early) if it
happens at time E(s, ρ). A strategy that consists entirely of early transitions is called
a ρ-early strategy.

Lemma 6. If there is a ρ-competitive strategy A = (S, T ), then there is an eager
and early ρ-competitive strategy.

Proof. Let s be the last state in S. Consider the sequence ψ ∈ Ψs such that
tψ,s = E(s, ρ) and the strategy π uses only the states in ψ, transitioning to state
q ∈ ψ at time tψ,q, i.e., π =

(
ψ, {tψ,q}q∈ψ

)
. Since A is ρ-competitive, it must be that

κs ≤ ρκk and since π by definition has all ρ-eager transitions and ends in state s, it
is also ρ-competitive. We now argue that π is an early strategy. Note that π was
chosen so that the transition to state s is ρ-early. We have to show that the remaining
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transitions of π are also ρ-early.

Suppose not. Consider the latest transition that is not ρ-early. Suppose this
happens for state r (�= s), so T = tψ,r > E(r, ρ). Let r′ be the state just after r
in sequence ψ. Let ψ′ ∈ Ψr be the sequence for which tψ′,r = E(r, ρ) = T ′. T ′ is
the earliest time that a ρ-eager schedule can transition to state r and the sequence of
states in this schedule is given by ψ′. Consider the hybrid strategy π′ that uses the
states in ψ′ followed by the states in ψ that appear after r, with the transition times
being tψ′,q for q ∈ ψ′ and tψ,q for q ∈ ψr′→s. Strategy π transitions to state r at time
T and strategy π′ transitions to state r at time T ′ < T . Both of these transitions are
eager transitions. Both strategies are in state r at time T and make the same state
transitions thereafter. Thus, for any t ≥ T , π(t)−π(T ) = π′(t)−π′(T ). In particular,
both strategies transition to r′ (the state after r) at time tψ,r′ = E(r′, ρ) = T ′′. Using
the equation above we have that π′(T ′′) = π(T ′′) − (

π(T ) − π′(T )
)
. We will show

that π′(T ) < π(T ), which implies, in particular, that π′(T ′′) < π(T ′′). So in π′ the
transition to r′ is no longer ρ-eager. Arguing as in Lemma 4 this means that we
can shift the transition to r′ to get an eager transition at an earlier time. But this
contradicts the assumption that the transition to state r′ at time T ′′ was an early
transition.

We now prove that π′(T ) < π(T ). This proof is illustrated in Figure 3. The
transitions to state r in schedules π and π′ are eager transitions, so both the points
(T ′, π′(T ′)) and (T, π(T )) lie on the ρOPT (t) curve. Since π(t) < ρOPT (t) for all
t, the the slope of ρOPT (t) at time T is at least κr, the slope of π(t) at time T ,
and strictly greater since the gap between ρOPT (t) and π(t) must accommodate the
transition cost from state r to r′ at time T ′′. The concavity of ρOPT (t) implies
that its slope is greater than κr over the interval [T ′, T ]. So π(T ) = ρOPT (T ) >
ρOPT (T ′) + κr(T − T ′) = π′(T ), where the last inequality follows since π′ stays in
state r in the interval [T ′, T ].

p′

p

T

T ′

Fig. 3. The solid line is ρ · OPT . The dashed line is the schedule π′ from Lemma 6, and the
dashed/dotted line is π. The point labeled p is (T, π(T )), and p′ is (T ′, π′(T ′)). The idea is to show
that at time T , π′ has a lower cost than π.

From Lemma 6 we can deduce that we need only to consider a specific early and
eager schedule, the one that is determined by the E(., ρ) values, to determine if a
ρ-competitive strategy exists. We can now define a decision procedure EXISTS that
takes a system and a constant ρ and outputs YES if a ρ-competitive strategy exists
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for the system, and NO otherwise. The procedure can be modified to also output a
ρ-competitive strategy (if it exists). We employ a dynamic programming approach
to calculate E(si, ρ) for 0 < i ≤ k. We always start with the high-power state, and
hence E(s0, ρ) = 0. Suppose we have computed E(sj , ρ) for all j = 0, . . . , i−1. Let tj
be the earliest time at which the system ρ-eagerly transitions from sj to si given that
the transition to sj is ρ-eager and occurs at time E(sj , ρ). If such a transition is not
possible, then we assign tj = ∞. We can compute tj in O(log k) time as described in
Lemma 5. Then, E(si, ρ) = minj<i tj . Determining each E(si, ρ) requires examining
j different possibilities, so finding all the early transition times for all states takes
time O(k2 log k). By Lemma 2, we know that if E(si, ρ) is finite for some state si,
where κi ≤ ρ · κk, we know that a ρ-competitive strategy exists. One can quickly
elicit the schedule by starting from state k and retracing the states that minimized
the earliest transition time. We use the procedure EXISTS to do a bisection search
in the interval [1, 3 + 2

√
2] and find a ρ-competitive strategy where ρ ≤ ρ∗ + ε. The

total time taken is O(k2 log k log(1/ε)).
We now turn our attention to adapting this dynamic programming technique to

solve PD(k,m), where a bound of m is specified on the number of states that can
be used by the online algorithm. We introduce a new parameter b, modifying our
function to E(si, ρ, b), where 0 ≤ b ≤ min(i,m). The intuition is that function E is
now required to return the earliest time when the system can transition to state si
while staying entirely below ρOPT (t) and using at most b+1 states from 〈s0, . . . , si〉.
The base case is E(s0, ρ, b) = 0 for all b ≥ 0. Intuitively, E(si, ρ, b) is determined by
the “best” state sj prior to si such that at most b − 1 states were used to reach sj .
Notice that for any given state si and fixed ρ, E(sj , ρ, b) is nonincreasing as b increases.
Therefore, as above we can write E(si, ρ, b) = minj<i t

′
j , where t′j is the earliest time

when the system ρ-eagerly transitions from sj to si given that the transition to sj
was ρ-eager and occurred at E(sj , ρ, b− 1). The running time increases by a factor of
m now and is O(k2m(log k) log(1/ε)).

6. A probability-based algorithm. Karlin et al. study the two-state case
when the length of the idle period is generated by a known probability distribution
p [8]. (Although they examined the problem in the context of the spin-block problem,
their problem is identical to our two-state case.) They observed that the expected
cost of the online strategy that makes the transition to the sleep state at time T is

(3)

∫ T

0

p(t)(κ0t)dt +

∫ ∞

T

p(t)
(
κ0T + κ1(t− T ) + β

)
dt,

where κ0 is the power-consumption rate in the active state, κ1 is the power-consump-
tion rate in the sleep state, and β is the transition cost between the two states. The
online strategy then should select the transition time T that minimizes this cost.

The multistate case presents two distinct challenges. The first is to determine
the optimal sequence of states through which an online strategy should transition
throughout the course of the idle period. Then, once this sequence has been deter-
mined, the optimal transition times need to be determined. Our proof proceeds by
establishing that the only transition times that need to be considered are the optimal
transition times for two-state systems. Suppose, for example, that we are considering
a sequence of state transitions in which state si is followed by state sj . Let Ti,j denote
the optimal transition time from state si to sj if these were the only two states in
the system (that is, if si were the active state and sj were the only sleep state). Note
that Ti,j can be determined by the expression above. We establish that regardless of
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the rest of the sequence, the optimal transition point from state si to sj is Ti,j . We
call the Ti,j ’s the pairwise-optimal transition times.

Lemmas 7 and 8 establish that the pairwise-optimal transition times happen in
the right order. That is, for i < k < j, Ti,k ≤ Tk,j . If this is not the case, then any
subsequence that has si followed by sk followed by sj cannot possibly be the best
sequence of states. Note that the Ti,j ’s may not necessarily be unique. In general,
we will select the earliest transition time that minimizes the cost for the two-state
system.

Lemma 9 then shows that as long as the pairwise-optimal transition times are
in the right order, they give the globally optimal set of transition times for that
subsequence. Our algorithm then uses this fact to find the optimal sequence of states
by dynamic programming. Note that it is not necessary to exhaustively consider all
possible subsequences.

6.1. Optimal transition times. Consider a particular subsequence of l + 1
states sa0 , . . . sal

. In order to avoid the double subscripts, throughout this subsection
we will rename our subsequence q0, q1, . . . , ql. Since the strategy must start in state
s0, we can assume that q0 = s0. For i < j, define βi,j to be the cost to transition
from state qi to state qj , that is, βi,j = dai,aj . Furthermore, we will refer to the
power-consumption rate of state qi as αi, that is, αi = κai .

We will consider the strategy that transitions through the states in the subse-
quence q0, q1, . . . , ql. Suppose that we use transition time Ti to transition from state
qi−1 to state qi. It will be convenient for notation to define Tl+1 = ∞ and T0 = 0.
The cost of the strategy that uses these transition times is

cost(T1, . . . , Tl) =

l+1∑

j=1

∫ Tj

Tj−1

p(t)αj−1(t− Tj−1)dt(4)

+

l∑

j=1

∫ ∞

Tj

p(t)
(
αj−1(Tj − Tj−1) + βj−1,j

)
dt.

The goal is to pick the T1, . . . , Tl so as to minimize the above cost. This is the optimal
cost for the subsequence q0, . . . , ql.

For each i ∈ {1, . . . , l}, let γi = αi−1−αi

βi−1,i
.

Lemma 7. Suppose that there is an i < j such that γi < γj; then there is a strict
subsequence of q0, . . . , ql whose optimal cost is no greater than the optimal cost for
q0, . . . , ql.

Proof. Consider the first j such that γj−1 < γj . Let (t̄1, . . . t̄j−1, t̄j , . . . , t̄l) be the
sequence of thresholds that minimizes the cost of this sequence of states. Define the
following quantities:

Fj−1,j = cost(t̄1, . . . t̄j−2, t̄j−1, t̄j , t̄j+1 . . . , t̄l),

Fj−1,j−1 = cost(t̄1, . . . t̄j−2, t̄j−1, t̄j−1, t̄j+1 . . . , t̄l),

Fj,j = cost(t̄1, . . . t̄j−2, t̄j , t̄j , t̄j+1 . . . , t̄l).

We will show that Fj−1,j is greater than or equal to a weighted average of Fj−1,j−1

and Fj,j , which means that it must be greater than or equal to at least one of these
values. This means that the strategy that transitions from state qj−2 to state qj−1

and then immediately transitions to state qj at time either t̄j−1 or t̄j is at least as
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good as the original strategy. Since βj−2,j ≤ βj−2,j−1 + βj−1,j , skipping state j − 1
altogether can only improve the strategy.

Below we have an expression for Fj,j − Fj−1,j which can be derived from the
definition for the cost in (4). Under Fj,j the transition from state qj−2 to state qj−1

is moved forward from time t̄j−1 to time t̄j . Any time spent in the interval [t̄j−1, t̄j ]
happens at the higher-power rate of αj−2 instead of αj−1. This is accounted for in
the first two terms of the sum. However, idle times ending in the interval [t̄j−1, t̄j ]
save on the transition cost, which is accounted for in the last term below:

Fj,j−Fj−1,j =

∫ t̄j

t̄j−1

p(t)(t−t̄j−1)(αj−2−αj−1)dt+

∫ ∞

t̄j

p(t)(t̄j−t̄j−1)(αj−2−αj−1)dt

−
∫ t̄j

t̄j−1

βj−2,j−1p(t)dt.

Dividing by (αj−2 − αj−1), this becomes

(5)
Fj,j − Fj−1,j

αj−2 − αj−1

=

∫ t̄j

t̄j−1

p(t)(t− t̄j−1)dt+

∫ ∞

t̄j

p(t)(t̄j − t̄j−1)dt−
∫ t̄j

t̄j−1

1

γj−1

p(t)dt.

Below, we use the definition of cost in (4) to get an expression for Fj−1,j − Fj−1,j−1.
Note that in Fj−1,j−1, the transition from state qj−1 to state q is moved back from
time t̄j to time t̄j−1. Thus, Fj−1,j will spend αj−1−αj more power than Fj−1,j−1 for
any time spent in the interval [t̄j−1, t̄j ]. Furthermore, Fj−1,j−1 will have an additional
transition cost of βj−1,j for those intervals that end in the period [t̄j−1, t̄j ]:

Fj−1,j−Fj−1,j−1 =

∫ t̄j

t̄j−1

p(t)(t−t̄j−1)(αj−1−αj)dt+

∫ ∞

t̄j

p(t)(t̄j−t̄j−1)(αj−1−αj)dt

−
∫ t̄j

t̄j−1

βj−1,jp(t)dt.

Dividing by (αj−1 − αj), this becomes

(6)
Fj−1,j − Fj−1,j−1

αj−1 − αj
=

∫ t̄j

t̄j−1

p(t)(t−t̄j−1)dt+

∫ ∞

t̄j

p(t)(t̄j−t̄j−1)dt−
∫ t̄j

t̄j−1

1

γj
p(t)dt.

Comparing, (5) and (6), the expressions are almost identical except for the γ in

the last term. Since γj−1 < γj and
∫ t̄j
t̄j−1

p(t)dt ≥ 0, we have that

Fj,j − Fj−1,j

αj−2 − αj−1

≤ Fj−1,j − Fj−1,j−1

αj−1 − αj
.

Let ω1 = 1/(αj−2 − αj−1) and ω2 = 1/(αj−1 − αj). Note that both ω1 and ω2 are at
least 0. Rearranging, we get that

(
ω1

ω1 + ω2

)
Fj,j +

(
ω2

ω1 + ω2

)
Fj−1,j−1 ≤ Fj−1,j .

Now suppose that we consider only the two-state system consisting of state qi−1

and state qi. We will let τi denote the optimal threshold time if these are the only
two states in the system. We have that τi is the time T that minimizes

∫ T

0

p(t)αi−1tdt +

∫ ∞

T

p(t)
(
αi−1T + αi(t− T ) + βi−1,i

)
dt.
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Note that the value of T that results in the minimum above may not be unique. In
this case, we take τ to be the smallest value which achieves the minimum. Also note
that, by subtracting the term

∫∞
0

p(t)αitdt (which is independent of T ) and dividing
by βi−1,i in the above definition, it can be seen that τi = arg minT f(γi, T ), where

f(γ, T ) =

∫ T

0

p(t)γtdt +

∫ ∞

T

p(t)(γT + 1)dt.

Note that for a two-state system whose active state and sleep states have power-
consumption rates of γ and 0, respectively, and whose transition cost is 1, f(γ, T )
denotes the expected power consumed by an online strategy that transitions to the
sleep state at time T . We will show that for a particular subsequence of states, if
we minimize the cost over all choices for the thresholds, the resulting thresholds are
those obtained by the pairwise optimization above. First, however, we must establish
that the τi values have the correct ordering.

Lemma 8. If γi > γi+1, then τi ≤ τi+1.

Proof. Intuitively, γi is the ratio of the additional power cost of being in state
qi instead of state qi−1 over the transition costs between the two states. It stands to
reason that the larger this cost is, the sooner one would want to transition from state
qi−1 to state qi.

We will formalize this argument using a proof by contradiction. Suppose that we
have τi > τi+1 and γi > γi+1. The proof will make use of the definition of f(γ, T )
given above. τi is the smallest value for T which attains the minimum of f(γi, T ).
Since τi+1 < τi, we know that f(γi, τi+1) > f(γi, τi). By the definition of τi+1, we
have that f(γi+1, τi) ≥ f(γi+1, τi+1). Thus, it should be the case that

(7) f(γi+1, τi) − f(γi+1, τi+1) ≥ 0 > f(γi, τi) − f(γi, τi+1).

Using the definition of f(γ, T ) above, for any T1 < T2,

f(γ, T2) − f(γ, T1) = γ

[∫ T2

T1

p(t)(t− T1)dt +

∫ ∞

T2

p(t)(T2 − T1)dt

]
−
∫ T2

T1

p(t)dt.

The quantity inside the square braces above is nonnegative. This implies that the
quantity f(γ, T2)−f(γ, T1) is nondecreasing in γ. This, however, contradicts inequal-
ity (7) and the fact that γi > γi+1.

Finally, we prove the main lemma which states that the transition times are
simultaneously optimized at the pairwise-optimal transition points.

Lemma 9. For a given subsequence of states q0, . . . , ql, if τi−1 < τi for all i ∈
{1, . . . , l}, then the minimum total cost is achieved for cost(τ1, . . . , τl).

Proof. The basic idea is that we can interpret cost(T1, . . . , Tl) −
∫∞
0

p(t)αltdt as
the sum of the power consumed in l two-state systems, where the ith system (for
i = 1, . . . , l) has states whose power-consumption rates are (αi−1 − αi) and 0, and
the cost to transition between the two is βi−1,i. Note that

∫∞
0

p(t)αltdt is a constant,
independent of the choice of Ti’s. After rescaling, one can write this expression as
a linear combination of the f(γi, Ti) terms. Since τi minimizes f(γi, T ), and the
τi values have the right ordering, this implies that cost(T1, . . . , Tl) is minimized by
setting Ti = τi for i = 1, . . . , l.
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We will establish below that we can rewrite (4) as follows:

(8) cost(T1, . . . , Tl) =

∫ ∞

0

p(t)αltdt

+
l∑

i=1

[∫ Ti

0

p(t)(αi−1 − αi)tdt +

∫ ∞

Ti

p(t)
(
(αi−1 − αi)Ti + βi−1,i

)
dt

]
.

So, by rescaling, we get that

cost(T1, . . . , Tl) −
∫ ∞

0

p(t)αltdt =

l∑

i=1

βi−1,if(γi, Ti).

We want to choose T1 ≤ · · · ≤ Tl to minimize this expression. Since τ1 ≤ · · · ≤ τl and
each τi = arg minT f(γi, T ) it follows that the minimum is attained by setting Ti = τi
for each i.

To complete the proof we show the equivalence of (4) and (8). It suffices to
show that (4) and (8) integrate the same expression over each interval [Ti−1, Ti) for
i = 1, . . . , l + 1. The integrand in (4) over the interval [Ti−1, Ti) is

p(t)

[
αi−1(t− Ti−1) +

i−1∑

j=1

(
αj−1(Tj − Tj−1) + βj−1,j

)]
,

and the integrand in (8) is

(9) p(t)

[i−1∑

j=1

(
(αj−1 − αj)Tj + βj−1,j

)
+
( l∑

j=i

(αj−1 − αj) + αl

)
t

]
.

The summations over the j indices in (9) telescope to show that the two expressions
are identical.

6.2. The optimal state sequence. We now present a simple polynomial time
algorithm to obtain the optimal state sequence for a given system. First, for each
pair (i, j), 0 ≤ i < j ≤ k, let Ti,j denote the optimal transition point if si and sj
were the only two states in the system. The time complexity of determining a single
Ti,j depends on the representation of the probability distribution. In practice, this is
most likely to be estimated by a finite histogram with B bins starting at time 0 and
sampled at a uniform discrete interval of δ. It follows that bin i corresponds to time
δi. It is not difficult to generalize this for variable-sized bins. We will also assume
that all transition times occur at some δi. The height of bin i is H(i), and this implies

that the probability that the idle time t equals δi is given by H(i)∑
i H(i) . In Algorithm 1,

we calculate ACC [i] and ACCT [i] values, which are
∫ iδ

0
p(t)dt, and

∫ iδ

0
tp(t)dt and we

then use them to evaluate Ti,j values. We can rewrite the expression for the cost of a
two-state system in (3) as

κi

∫ T

0

p(t)tdt + κj

∫ ∞

T

p(t)tdt +
(
(κi − κj)T + βi,j

)∫ ∞

T

p(t)dt.

We also denote
∫ Bδ

0
p(t)dt and

∫ Bδ

0
tp(t)dt as TOTAL and TOTALT , respectively.

Using the precalculated values above, the cost of transitioning from state si to state
sj at time δl is

κi · ACCT [l] + (κilδ − κj lδ + βi,j)(TOTAL − ACC [l]) + κj(TOTALT − ACCT [l]).
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Algorithm 1. Evaluating Ti,j values.

ACC [0] ← H[0]
ACCT [0] ← 0
for k = 1 to B do

ACC [k] ← ACC [k − 1] + H[k]
ACCT [k] ← ACC [k − 1] + H[k] × k · δ

end for
TOTAL ← ACC [B]
TOTALT ← ACCT [B]
for all (i, j) pairs such that 0 ≤ i < j ≤ k do

min← ∞, argmin ← −1
for l = 0 to B − 1 do
val = κi · ACCT [l] + (κilδ − κj lδ + βi,j)(TOTAL − ACC [l])

+κj(TOTALT − ACCT [l])
if val < min then

min ← val
argmin ← l

end if
end for
Ti,j ← argmin · δ

end for

Once the Ti,j ’s are found, we sweep through them in nondecreasing order, keeping
a running tab of the best subschedules that we can achieve ending in each state si at
each point in time. When we encounter a Ti,j , we check to see if transitioning from si
to sj can improve the current best subschedule ending in sj , and if it does, we update
our data structure to reflect it.

A given strategy divides time into intervals, where each interval is the period
of time spent in a particular state. The expected cost for a strategy given in (4) is
obtained by summing over the expected cost incurred in each interval. The cost for
each interval is divided into two parts, which results in two separate summations in
(4). We define the function Q for the first term, which is

Q(ts, j, tf ) =

∫ tf

ts

p(t)κi(t− ts)dt.

This is the expected cost of staying in state si in the interval [ts, tf ) for those idle
periods whose length is also in the interval [ts, tf ). Define

R(i, ts, j, tf ) =

∫ ∞

tf

p(t)
(
αi(tf − ts) + βi,j

)
dt.

This is the expected cost for those intervals longer than tf of staying in state si over
the time period [ts, tf ) and then transitioning to state sj . Note that Q(δli, j, δlj)
and R(i, δli, j, δlj) can both be evaluated in constant time given ACC [li], ACC [lj ],
ACCT [li], and ACCT [lj ] defined above.

At each transition Ti,j , we check to see if the current best schedule that ends in
state sj can be improved by transitioning to j from the current best schedule that
ends in state si. For this purpose, we maintain two arrays of size k+1: t[i] is the time
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at which the current best schedule that ends at state si transitions to si, and h[i] is
the cost at t[i] of that schedule. Initially, h[0] ← 0 and all other h[i] ← ∞. t[i] for all
i can be initialized to 0. In Procedure 2, we provide the pseudocode for processing at
each transition point Ti,j .

Procedure 2. Processing Ti,j in the line sweep algorithm.

Current Status: Ti,j is the transition point that is being processed
{The cost up to time Ti,j if transitioning from i to j at Ti,j}
h1 ← h[i] + Q(t[i], j, Ti,j) + R(i, t[i], j, Ti,j)
{The cost up to time Ti,j if transitioning to j at the current best time of t[j]}
h2 ← h[j] + Q(t[j], j, Ti,j) + R(j, t[j], j, Ti,j)
if h1 < h2 then
h[j] ← h1
t[j] ← Ti,j

end if

It is easy to see that each transition point takes a constant amount of processing.
The sorting takes an overhead of O(k2 log k). The initial preprocessing to calculate
the transition points takes O(k2B). Hence, the total running time is O(k2(log k+B)).

The algorithm can be easily extended to find the algorithm that minimizes the
expected cost subject to the constraint that only m states are ever reached. We
maintain t[i, b] and h[i, b] for all states si and b < min{m, i}. These are the best time
and energy required to reach state i subject to at most b states being reached. The
algorithm is given below in Procedure 3.

Procedure 3. Processing Ti,j in the line sweep algorithm with the number of states
constrained.

Current Status: Ti,j is the transition point that is being processed
for b = 1 . . . j − 1 do
h1 ← h[i, b− 1] + Q(t[i, b− 1], j, Ti,j) + R(i, t[i, b− 1], j, Ti,j)
h2 ← h[j, b] + Q(t[j, b], j, Ti,j) + R(j, t[j, b], j, Ti,j)
if h1 < h2 then
h[j, b] ← h1
t[j, b] ← Ti,j

end if
end for
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Abstract. We show that a set is m-autoreducible if and only if it is m-mitotic. This solves
a long-standing open question in a surprising way. As a consequence of this unconditional result
and recent work by Glaßer et al., complete sets for all of the following complexity classes are m-
mitotic: NP, coNP, ⊕P, PSPACE, and NEXP, as well as all levels of PH, MODPH, and the Boolean
hierarchy over NP. In the cases of NP, PSPACE, NEXP, and PH, this at once answers several
well-studied open questions. These results tell us that complete sets share a redundancy that was
not known before. In particular, every NP-complete set A splits into two NP-complete sets A1 and
A2. We disprove the equivalence between autoreducibility and mitoticity for all polynomial-time-
bounded reducibilities between 3-tt-reducibility and Turing-reducibility: There exists a sparse set
in EXP that is polynomial-time 3-tt-autoreducible, but not weakly polynomial-time T-mitotic. In
particular, polynomial-time T-autoreducibility does not imply polynomial-time weak T-mitoticity,
which solves an open question by Buhrman and Torenvliet.

Key words. computational and structural complexity, NP-complete sets, autoreducibility, mi-
toticity
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1. Introduction. We show in this paper that NP-complete sets split into two
equivalent parts. Let L be an NP-complete set containing an infinite number of
strings. Then there is a set S ∈ P such that the sets L1 = S ∩ L and L2 = S ∩ L are
both NP-complete, and L = L1 ∪L2. Since L1 and L2 are both many-one-equivalent
to L, we may say that they contain the same information as L. For this reason, sets
L with this property are called mitotic.1 Briefly, we prove that all NP-complete sets
are mitotic.

Our story begins with the notion of autoreducibility. Trakhtenbrot [19] defined a
set A to be autoreducible if there is an oracle Turing machine M such that A = L(MA)
and M on input x never queries x. For complexity classes like NP and PSPACE,
refined measures are needed. In this spirit, Ambos-Spies [1] defined the notion of
polynomial-time autoreducibility and the more restricted form m-autoreducibility. A
set A is polynomial-time autoreducible if it is autoreducible via an oracle Turing ma-
chine that runs in polynomial time. A is m-autoreducible if A is polynomial-time
many-one reducible to A via a function f such that f(x) �= x for every x. Autore-
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ducible sets contain redundant information just as do mitotic sets. For example, if
a set A is m-autoreducible, then x and f(x) contain the same information about
membership in A.

A recent paper of Glaßer et al. [11] showed that the complete sets for many in-
teresting classes such as NP, PSPACE, NEXP, and levels of PH are m-autoreducible.
The main technical result of the present paper is that m-autoreducible implies m-
mitotic. As a consequence, complete sets for interesting complexity classes such as
NP, PSPACE, NEXP, and levels of PH are m-mitotic. This result resolves several
long-standing open questions raised by Ambos-Spies [1], Buhrman, Hoene, and Toren-
vliet [5], and Buhrman and Torenvliet [6].

The notion of mitoticity was originally introduced by Lachlan [14] for recursively
enumerable sets. Mitoticity was studied comprehensively by Ladner [16, 15]. Ambos-
Spies [1] formulated two related notions in the polynomial-time setting, mitoticity
and weak mitoticity. A set A is m-mitotic if there is a set S ∈ P such that A, A ∩ S,
and A ∩ S are polynomial-time many-one equivalent. If the latter holds without the
assumption S ∈ P, then A is weakly m-mitotic.

Ambos-Spies [1] showed that if a set is m-mitotic, then it is m-autoreducible, and
he raised the question of whether the converse holds. As stated above, we resolve
this question and show that every m-autoreducible set is m-mitotic. Since its proof is
technically involved, we illustrate parts of the main combinatorial idea with the help
of a simplified graph problem that will be described in section 3. We remark that
this example is a strong simplification of the general case that we have to solve. Our
main result is all the more surprising, because it is known [1] that polynomial-time
T-autoreducibility does not imply polynomial-time T-mitoticity. We improve this and
disprove the equivalence between autoreducibility and mitoticity for all polynomial-
time-bounded reducibilities between 3-tt-reducibility and Turing-reducibility: There
exists a sparse set in EXP that is polynomial-time 3-tt-autoreducible but not weakly
polynomial-time T-mitotic. In particular, polynomial-time T-autoreducible does not
imply polynomial-time weakly T-mitotic. This result settles another open question
raised by Buhrman and Torenvliet [6].

Our main result relates local redundancy of information to global redundancy of
information in the following sense. If a set A is m-autoreducible, then x and f(x)
contain the same information about A. This can be viewed as local redundancy.
Whereas if A is m-mitotic, then A can be split into two sets B and C such that A,
B, and C are polynomial-time many-one equivalent. Thus the sets B and C have
exactly the same information as the original set A. This can be viewed as global
redundancy in A. Our main result states that local redundancy is the same as global
redundancy.

Our result can also be viewed as a step towards understanding the isomorphism
conjecture [3]. This conjecture states that all NP-complete sets are isomorphic to
each other. In spite of several years of research, we do not have any concrete evidence
either in support or against the isomorphism conjecture.2 It is easy to see that
if the isomorphism conjecture holds for classes such as NP, PSPACE, and EXP,
then complete sets for these classes are m-autoreducible as well as m-mitotic. Given
our current inability to make progress about the isomorphism conjecture, the next
best thing we can hope for is to make progress on statements that the isomorphism
conjecture implies. We note that this is not an entirely new approach. For example,

2It is currently believed that if one-way functions exist, then the isomorphism conjecture is false.
However, we do not have a proof of this.
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if the isomorphism conjecture is true, then NP-complete sets cannot be sparse. This
motivated researchers to consider the question of whether complete sets for NP can
be sparse. This line of research led to beautiful results: Mahaney [17] showed that
many-one-hard sets for NP are not sparse unless P = NP. Karp and Lipton [13]
proved that if sparse Turing-hard sets for NP exist, then PH collapses to the second
level. Ogiwara and Watanabe [18] showed that bounded-truth-table-hard sets for
NP cannot be sparse unless P = NP. Our results show that another consequence of
isomorphism, namely “NP-complete sets are m-mitotic,” holds. Note that this is an
unconditional result.

Buhrman et al. [4] and Buhrman and Torenvliet [7, 8] argue that it is critical
to study the notions of autoreducibility and mitoticity. They showed that resolving
questions regarding autoreducibility of complete sets leads to unconditional separation
results. For example, consider the question of whether truth-table complete sets for
PSPACE are nonadaptive autoreducible. An affirmative answer separates NP from
NL, while a negative answer separates the polynomial-time hierarchy from PSPACE.
They argue that this approach does not have the curse of relativization and is worth
pursuing. We refer the reader to the recent survey by Buhrman and Torenvliet [8] for
more details.

1.1. Previous work. The question of whether complete sets for various classes
are autoreducible has been studied extensively [20, 2, 4]. Beigel and Feigenbaum [2]
showed that Turing complete sets for the classes that form the polynomial hierarchy,
ΣP

i , ΠP
i , and ΔP

i , are Turing autoreducible. Thus, all Turing complete sets for NP are
Turing autoreducible. Buhrman et al. [4] showed that Turing complete sets for EXP
and ΔEXP

i are autoreducible, whereas there exists a Turing complete set for EESPACE
that is not Turing autoreducible. Regarding NP, Buhrman et al. [4] showed that
truth-table complete sets for NP are probabilistic truth-table autoreducible. Recently,
Glaßer et al. [11] showed that complete sets for classes such as NP, PSPACE, and ΣP

i

are m-autoreducible.
Buhrman, Hoene, and Torenvliet [5] showed that EXP complete sets are weakly

many-one mitotic. This result was recently improved independently by Kurtz [8]
and Glaßer et al. [12, 11]. Buhrman and Torenvliet [8] observed that Kurtz’s proof
can be extended to show that 2-tt complete sets for EXP are 2-tt mitotic. This
cannot be extended to 3-tt reductions: There exist 3-tt complete sets for EXP that
are not btt-autoreducible and hence not btt-mitotic [4]. Glaßer et al. also showed
that NEXP complete sets are weakly m-mitotic and that PSPACE-complete sets are
weakly Turing-mitotic.

2. Preliminaries. We use standard notation and assume familiarity with stan-
dard resource-bounded reductions. We consider words in lexicographic order. All used
reductions are polynomial-time computable. PF denotes the class of polynomial-time
computable functions.

Definition 2.1 (see [1]). A set A is polynomially T-autoreducible (T-autore-
ducible, for short) if there exists a polynomial-time-bounded oracle Turing machine
M such that A = L(MA) and for all x, M on input x never queries x. A set A is
polynomially m-autoreducible (m-autoreducible, for short) if A ≤p

m A via a reduction
function f such that for all x, f(x) �= x.

Definition 2.2 (see [1]). A recursive set A is polynomial-time T-mitotic (T-
mitotic, for short) if there exists a set B ∈ P such that A ≡p

T A ∩ B ≡p
T A ∩ B. A

is polynomial-time m-mitotic (m-mitotic, for short) if there exists a set B ∈ P such
that A ≡p

m A ∩B ≡p
m A ∩B.
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Definition 2.3 (see [1]). A recursive set A is polynomial-time weakly T-
mitotic (weakly T-mitotic, for short) if there exist disjoint sets A0 and A1 such that
A0 ∪ A1 = A and A ≡p

T A0 ≡p
T A1. A is polynomial-time weakly m-mitotic (weakly

m-mitotic, for short) if there exist disjoint sets A0 and A1 such that A0∪A1 = A and
A ≡p

m A0 ≡p
m A1.

3. m-autoreducibility equals m-mitoticity. It is easy to see that if a non-
trivial language L is m-mitotic, then it is m-autoreducible. If L is m-mitotic, then
there is a set S ∈ P such that L ∩ S ≤p

m L ∩ S via some f and L ∩ S ≤p
m L ∩ S

via some g. On input x, the m-autoreduction for L works as follows: If x ∈ S and
f(x) /∈ S, then output f(x). If x /∈ S and g(x) ∈ S, then output g(x). Otherwise,
output a fixed element from L− {x}.

So m-mitoticity implies m-autoreducibility. The main result of this paper shows
that surprisingly the converse holds true as well; i.e., m-mitoticity and m-autoreduc-
ibility are equivalent notions.

Theorem 3.1. Let L be any set such that |L| ≥ 2. L is m-autoreducible if and
only if L is m-mitotic.

Before proceeding to the proof we first discuss parts of the main ideas and the
intuition behind the proof. To give an example of the difficulties in the proof, we
strongly simplify the general case so that we end at a much easier problem for finite
graphs. Later, we have to solve this problem for infinite graphs.

Assume that L is m-autoreducible via reduction function f . Given x, the repeated
application of f yields a sequence of words x, f(x), f(f(x)), . . . , which we call the
trajectory of x. These trajectories either are infinite or end in a cycle of length at
least 2. Note that as f is an autoreduction, x �= f(x).

At first glance it seems that m-mitoticity can be easily established by the following
idea: In every trajectory, label the words at even positions with + and all other words
with −, i.e., f(x), f(f(f(x))), . . . obtain + and x, f(f(x)), . . . obtain −. Define S to
be the set of strings whose label is +. With this “definition” of S it seems that f
reduces L ∩ S to L ∩ S and L ∩ S to L ∩ S.

However, this labeling strategy has at least two problems. First, it is not clear that
S ∈ P, because, given a string y, we have to compute the parity of the position of y in
a trajectory. As trajectories can be of exponential length, this might take exponential
time. The second and more fundamental problem is the following: The labeling
generated above is inconsistent and not well defined. For example, let f(x) = y. To
label y which trajectory should we use? The trajectory of x or the trajectory of y?
If we use trajectory of x, y gets a label of +, whereas if we use the trajectory of y,
then it gets a label of −. Thus S is not well defined, and so this idea does not work.
It fails because the labeling strategy is a global strategy. To label a string we have to
consider all the trajectories in which x occurs. Every single x gives rise to a labeling
of possibly infinitely many words, and these labelings may overlap in an inconsistent
way.

We resolve this by using a local labeling strategy. More precisely, we compute a
label for a given x just by looking at the neighboring values x, f(x), and f(f(x)). The
strategy is well defined and therefore defines a consistent labeling. We also should
guarantee that this local strategy strictly alternates labels; i.e., x gets + if and only if
f(x) gets −. Such an alternation of labels would help us to establish the m-mitoticity
of L.

Thus our goal will be to find a local labeling strategy that has a nice alternation
behavior. However, we settle for something less. Instead of requiring that the labels
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strictly alternate, we require only that, given x, at least one of f(x), f(f(x)), . . . ,
fm(x) gets a label that is different from the label of x, where m is polynomially
bounded in the length of x. Speaking in terms of graphs, we will solve the following
problem.

Infinite graph labeling problem. Let G be an infinite, loop-free, directed graph
whose set of nodes is N such that all nodes have outdegree 1. Moreover, let s be a
polynomial-time computable function that on input of a node u computes its successor;
i.e., s(u) is the uniquely determined node such that (u, s(u)) is an edge. Find a
strategy that labels each node of G with either + or − such that

(i) the label of a given node can be computed in polynomial time;
(ii) there is a polynomial p such that for a given node u we can compute in

polynomial time a node v ∈ {s(u), s(s(u)), . . . , sp(n)(u)} that has a different
label than u. In particular, at least one of the nodes s(u), s(s(u)), . . . , sp(n)(u)
has a different label than u.

If we can solve this problem, then this shows that m-autoreducibility implies m-
mitoticity. This is seen as follows. Let L be m-autoreducible via autoreduction s, and
let G be the graph whose set of nodes is N and whose set of edges is {(u, s(u)) | u ∈ N}.
Observe that G and s have the properties mentioned in the infinite graph labeling
problem. By solving this problem we obtain a labeling strategy S = {u ∈ N |
u has label +} that satisfies (i) and (ii). By (i), S ∈ P. By (ii), there exists a
polynomial-time computable function g that for a given node u computes the node v
described in (ii). In particular,

(3.1) u ∈ S ⇔ g(u) /∈ S.

Moreover, from g(u) ∈ {s(u), s(s(u)), . . . , sp(n)(u)} and from the fact that s is an
autoreduction for L it follows that

(3.2) u ∈ L ⇔ g(u) ∈ L.

The equivalences (3.1) and (3.2) yield the m-mitoticity of L (formally proved in Propo-
sition 3.2).

To keep this proof sketch simpler, we now restrict our analysis to finite graphs,
make several assumptions, and ignore several technical but important details. If we
assume (for simplicity) that on strings x /∈ 1∗ the autoreduction is length preserving
such that f(x) > x, then we arrive at the following labeling problem for finite graphs.

Simplified problem. Let Gn be a directed graph with 2n vertices such that every
string of length n is a vertex of Gn. Assume that 1n is a sink, that nodes u �= 1n have
outdegree 1, and that u < v for edges (u, v). For u �= 1n let s(u) denote u’s unique
successor, i.e., s(u) = v if (u, v) is an edge. Find a strategy that labels each node with
either + or − such that

(i) given a node u, its label can be computed in polynomial time in n;
(ii) there exists a polynomial p such that for every node u at least one of the

nodes s(u), s(s(u)), . . . , sp(n)(u) has a different label than u.
Cole and Vishkin [9] solve the r-ruling set problem which corresponds to the

following restriction of the above simplified problem for finite graphs: First, the graph
must be connected and it must have indegree 1. This means that the graph has to
be a simple ring. Second, the predecessor of a node must be computable efficiently
(i.e., in polynomial time in n). In contrast, the general problem we have to solve here
comprises graphs that are infinite, that are not necessarily connected, and that have
an unbounded indegree.
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We now exhibit a labeling strategy for the simplified problem. To define this

labeling, we use the following distance function: d(x, y)
df
= 
log |y − x|�. (Our formal

proof uses a variant of this function.)
0 // Strategy for labeling node x

1 let y = s(x) and z = s(y).
2 if d(x, y) > d(y, z), then output −
3 if d(x, y) < d(y, z), then output +
4 r := d(x, y)
5 if 
x/2r+1� is even, then output +; else output −

Clearly, this labeling strategy satisfies condition (i). We give a sketch of the proof
that also satisfies condition (ii). Define m = 5n and let u1, u2, . . . , um be a path in
the graph. It suffices to show that not all the nodes u1, u2, . . . , um obtain the same
label. Assume that this does not hold; say all these nodes get label +. So no output
is made in line 2, and therefore the distances d(ui, ui+1) do not decrease. Note that
the distance function maps to natural numbers. If the distance increases more than n
times, then d(um−1, um) > n. Therefore, um − um−1 > 2n+1, which is impossible for
words of length n. Hence we have seen that the distances do not decrease and that
they increase at most n times. So along the path u1, u2, . . . , um there exist at least
m−n = 4n positions where the distance stays the same. By a pigeon hole argument,
there exist four consecutive such positions, i.e., nodes v = ui, w = ui+1, x = ui+2,
y = ui+3, z = ui+4 such that d(v, w) = d(w, x) = d(x, y) = d(y, z). So for the inputs
v, w, and x, we reach line 4 where the algorithm will assign r = d(v, w). Observe
that for all words w1 and w2, the value d(w1, w2) allows an approximation of w2 −w1

up to a factor of 2. More precisely, w − v, x − w, and y − x belong to the interval
[2r, 2r+1). It is an easy observation that this implies that not all of the following
values can have the same parity: 
v/2r+1�, 
w/2r+1�, and 
x/2r+1�. According to
line 5, not all words v, w, and x obtain the same label. This is a contradiction which
shows that not all the nodes u1, u2, . . . , um obtain the same label. This proves (ii)
and solves the simplified problem.

A generalization of this strategy allows us to solve the infinite graph labeling
problem, which in turn establishes m-mitoticity for the m-autoreducible set L.

Now we give a formal proof of Theorem 3.1.
The dyadic representation of natural numbers provides a one-one correspondence

between words over Σ = {0, 1} and natural numbers. This correspondence translates
operations and relations over natural numbers to operations and relations over words.
We denote the absolute value of an integer by abs(x). This avoids a conflict between
the notation of the length of a word w and the notation of the absolute value of the
integer represented by w. Moreover, log(x) denotes x’s logarithm to base 2. We use
the following proposition.

Proposition 3.2. Let L be any set such that |L| ≥ 2. L is m-mitotic if and only
if there exist a total g ∈ PF and a set S ∈ P such that, for all x,

1. x ∈ L ⇔ g(x) ∈ L, and
2. x ∈ S ⇔ g(x) /∈ S.

Proof. Choose distinct words w1, w2 ∈ L. If L is m-mitotic, then there exists
S ∈ P such that L ∩ S ≤p

m L ∩ S via some g1 ∈ PF and L ∩ S ≤p
m L ∩ S via some

g2 ∈ PF. We may assume that w1 ∈ S and w2 ∈ S; otherwise the set S∪{w1}−{w2}
can be used instead of S. A simple proof shows that the following function g satisfies
the statements 1 and 2 from the proposition:
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g(x)
df
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

g1(x) if x ∈ S and g1(x) ∈ S,

w2 if x ∈ S and g1(x) ∈ S,

g2(x) if x ∈ S and g2(x) ∈ S,

w1 if x ∈ S and g2(x) ∈ S.

Now assume there exist a total g ∈ PF and an S ∈ P that satisfy statements 1
and 2. It follows that L∩S ≤p

m L∩S and L∩S ≤p
m L∩S, both via g. The following

function reduces L to L ∩ S:

g′(x)
df
=

{
x if x ∈ S,

g(x) if x ∈ S.

The following function reduces L ∩ S to L:

g′′(x)
df
=

{
x if x ∈ S,

w1 if x ∈ S.

This shows L ≡p
m L ∩ S ≡p

m L ∩ S, and hence L is m-mitotic.
Proof of Theorem 3.1. If L is m-mitotic, then there exist S ∈ P and f1, f2 ∈ PF

such that L ∩ S ≤p
m L ∩ S via f1 and L ∩ S ≤p

m L ∩ S via f2. By assumption, there
exist different words v, w ∈ L. The following function is an m-autoreduction for L:

f ′(x)
df
=

⎧
⎪⎨
⎪⎩

f1(x) if x ∈ S and f1(x) /∈ S,

f2(x) if x /∈ S and f2(x) ∈ S,

min({v, w} − {x}) otherwise.

For the other direction, let us assume that L is m-autoreducible, and let f ∈ PF
be an m-autoreduction for L. Choose k ≥ 1 such that f is computable in time nk +k.
Using Proposition 3.2, we show L’s m-mitoticity as follows: We construct a total
g ∈ PF and an S ∈ P such that (x ∈ L ⇔ g(x) ∈ L) and (x ∈ S ⇔ g(x) /∈ S).

Let t be a tower function defined by t(0) = 0 and t(i + 1) = t(i)k + k for i ≥ 0.
Define the inverse tower function as t−1(n) = min{i | t(i) ≥ n}. Note that t−1 ∈ PF.
We partition the set of all words according to the parity of the inverse tower function
of their lengths:

S0
df
= {x | t−1(|x|) ≡ 0(mod 2)},

S1
df
= {x | t−1(|x|) ≡ 1(mod 2)}.

Note that S0, S1 ∈ P.
The following distance function for natural numbers x and y plays a crucial role

in our proof:

d(x, y)
df
= sgn(y − x) · 
log(abs(y − x))�.

This function is computable in polynomial time. We define a set S (which will be
used as separator for L) by the following algorithm which works on input x.

0 // Algorithm for set S

1 y := f(x), z := f(f(x))
2 if |y| > |x|, then (if x ∈ S0 then accept else reject)
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3 if |z| > |y|, then (if y ∈ S1 then accept else reject)

4 if x = z, then (if x > f(x) then accept else reject)

5 // here x, y, and z are pairwise different

6 if d(x, y) > d(y, z), then reject

7 if d(x, y) < d(y, z), then accept

8 r := d(x, y)
9 if 
y/2abs(r)+1� is even, then accept else reject

Observe that S ∈ P. We will show L ≡p
m L ∩ S ≡p

m L ∩ S, which implies that L
is m-mitotic.

Claim 3.3. Let y be any word, and let m = |y|. If for all i ∈ [0, 6m + 3],
|f i(y)| ≥ |f i+1(y)|, then there exists j ∈ [0, 6m + 3] such that

f j(y) ∈ S ⇔ f j+1(y) /∈ S.

Proof. Assume that the claim does not hold. Moreover, assume that for all
j ∈ [0, 6m + 4], f j(y) ∈ S. For the other case (i.e., for all j ∈ [0, 6m + 4], f j(y) /∈ S)
one can argue analogously. Consider the algorithm for S.

Fact 1. For j ∈ [0, 6m+ 2], the algorithm on input f j(y) stops either in line 7 or
in line 9.

This fact is proved as follows. Assume there exists j ∈ [0, 6m + 2] such that the
algorithm on input f j(y) stops in lines 2 or 3. In this case, |f j(y)| < |f j+1(y)| or
|f j+1(y)| < |f j+2(y)|, which contradicts our assumption.

Assume there exists j ∈ [0, 6m + 2] such that the algorithm on input f j(y) stops
in line 4. By assumption of the claim, |f j(y)| ≥ |f j+1(y)| ≥ |f j+2(y)|. Moreover,
f j(y) = f j+2(y), since we stop in line 4. So |f j(y)| = |f j+1(y)|. Therefore, on both
inputs, f j(y) and f j+1(y), the algorithm stops in line 4. Note that f j(y) �= f j+1(y),
since f is an m-autoreduction. Hence by line 4, f j(y) ∈ S ⇔ f j+1(y) /∈ S, which
contradicts our assumption.

Assume there exists j ∈ [0, 6m + 2] such that the algorithm on input f j(y) stops
in line 6. So f j(y) /∈ S, which contradicts the assumption. This proves Fact 1:

J
df
= {j ∈ [0, 6m + 2] | on input f j(y) the algorithm for S stops in line 7},

K
df
= {j ∈ [0, 6m + 2] | on input f j(y) the algorithm for S stops in line 9}.

By Fact 1, J ∪K = {0, . . . , 6m + 2}. From the algorithm we see the following:

∀j ∈ J, d(f j(y), f j+1(y)) < d(f j+1(y), f j+2(y)),(3.3)

∀j ∈ K, d(f j(y), f j+1(y)) = d(f j+1(y), f j+2(y)).(3.4)

Case 1: ‖J‖ > 2m. Together with (3.3) and (3.4) this shows

(3.5) d(f6m+3(y), f6m+4(y)) − d(f0(y), f1(y)) > 2m.

It follows that

(3.6) d(f6m+3(y), f6m+4(y)) > m

or

(3.7) d(f0(y), f1(y)) < −m.
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Assume that (3.6) holds. By the assumption of the claim, f6m+3(y) and f6m+4(y)
are words of length ≤ m. So the length of abs(f6m+4(y) − f6m+3(y)) is ≤ m. From
the dyadic representation of numbers it follows that log(abs(f6m+4(y)−f6m+3(y))) <
m + 1 and therefore d(f6m+3(y), f6m+4(y)) ≤ m. This is a contradiction, since we
assumed that (3.6) holds.

Assume now that (3.7) holds. Again, f0(y) and f1(y) are words of length ≤ m. So
1 ≤ abs(f0(y)−f1(y)) ≤ 2m+1−2. It follows that 0 ≤ log(abs(f1(y)−f0(y))) < m+1,
and therefore d(f0(y), f1(y)) ≥ −m. This is a contradiction, since we assumed that
(3.7) holds.

Case 2: ‖J‖ ≤ 2m. Note that [0, 6m + 2] contains 6m + 3 elements, while J
contains at most 2m elements. So there exists j ∈ [0, 6m] such that j, j+1, j+2 ∈ K.
A look at the algorithm tells us the following:
(3.8)
d(f j(y), f j+1(y)) = d(f j+1(y), f j+2(y)) = d(f j+2(y), f j+3(y)) = d(f j+3(y), f j+4(y)).

Define r as the number shown in (3.8), and let z1
df
= f j(y), z2

df
= f j+1(y), z3

df
= f j+2(y),

and z4
df
= f j+3(y). Recall that z1, z2, z3 ∈ S and that, on input of these words, the

algorithm stops in line 9. Therefore, the following must hold:

a1
df
= 
z2/2

abs(r)+1� is even,(3.9)

a2
df
= 
z3/2

abs(r)+1� is even,(3.10)

a3
df
= 
z4/2

abs(r)+1� is even.(3.11)

Case 2a: r = 0. Here z2 �= z4, since otherwise on input z2 the algorithm stops
in line 4, which contradicts Fact 1. Also, z2 �= z3 and z3 �= z4, since f is an m-
autoreduction. From (3.8) and from the definition of the distance function d we
obtain either z2 = z3 − 1 = z4 − 2 or z4 = z3 − 1 = z2 − 2. So z4 − z2 equals 2 or −2,
and hence a3 − a1 equals 1 or −1. This contradicts the observations (3.9) and (3.11).

Case 2b: r > 0. Here we have z1 < z2 < z3 < z4 and therefore a1 ≤ a2 ≤ a3.
Assume a1 = a3. Since d(z2, z3) = r, it holds that log(abs(z3−z2)) ≥ r and hence

z3−z2 ≥ 2r. The same argument shows z4−z3 ≥ 2r. So z4 ≥ z2+2r+1 = z2+2abs(r)+1

and hence a3 ≥ a1 + 1. The latter contradicts the assumption a1 = a3.
So assume a1 < a3 which implies a3−a1 ≥ 2, since both values are even. Since a2

is even as well, we obtain a2−a1 ≥ 2 or a3−a2 ≥ 2. If a2−a1 ≥ 2, then z3−z2 > 2r+1

and so d(z2, z3) > r. If a3 − a2 ≥ 2, then z4 − z3 > 2r+1 and so d(z3, z4) > r. Both
conclusions contradict (3.8).

Case 2c: r < 0. Here we have z1 > z2 > z3 > z4 and therefore, a1 ≥ a2 ≥ a3.
Assume a1 = a3. Since d(z2, z3) = r, it holds that log(abs(z3 − z2)) ≥ abs(r)

and hence z2 − z3 ≥ 2abs(r). The same argument shows z3 − z4 ≥ 2abs(r). So
z2 ≥ z4 + 2abs(r)+1 and hence a1 ≥ a3 + 1. The latter contradicts the assumption
a1 = a3.

So assume a1 > a3 which implies a1 − a3 ≥ 2, since both values are even. Since
a2 is even as well, we obtain a1 −a2 ≥ 2 or a2 −a3 ≥ 2. If a1 −a2 ≥ 2, then z2 − z3 >
2abs(r)+1 and so d(z2, z3) < − abs(r) = r. If a2 − a3 ≥ 2, then z3 − z4 > 2abs(r)+1 and
so d(z3, z4) < − abs(r) = r. Both conclusions contradict (3.8). This completes the
proof of Claim 3.3.

Claim 3.4. There exists a total r ∈ PF such that L ≤p
m L via r and, for every x,

1. |f(r(x))| ≤ |r(x)| or
2. x ∈ S ⇔ r(x) /∈ S.



1526 C. GLAßER, A. PAVAN, A. L. SELMAN, AND L. ZHANG

Proof. For every x, let

r(x)
df
= f i(x),

where i is the smallest number such that |f i+1(x)| ≤ |f i(x)| or (x ∈ S ⇔ f i(x) /∈ S).
We will prove that such an i exists. Consider the following algorithm which works on
input x.

0 // Algorithm for function r

1 z := x

2 while (|f(z)| > |z| and (x ∈ S ⇔ z ∈ S))
3 // here |z| < |x|k + k

4 z := f(z)
5 end

6 output z

Observe that this algorithm computes the function r.
We prove the invariant in line 3, which will guarantee that the loop in the algo-

rithm halts within polynomial steps in |x|. Assume that at some point this invariant
does not hold. We consider the first time when this happens. In this case, we must
have reached line 3 before, since otherwise |x| ≥ |x|k +k, which is not possible. Let z′

denote the value of variable z when line 3 was reached last time. So z = f(z′). Note
that the following inequalities hold, since otherwise the algorithm stops earlier:

|x| < |f(x)|,(3.12)

|z′| < |f(z′)|,(3.13)

|z| < |f(z)|,(3.14)

|x| < |z′|.(3.15)

Moreover,

(3.16) |z′| < |x|k + k,

since otherwise already z′ violates the invariant, which contradicts the fact that with
z we chose the earliest violation of the invariant. From (3.15) and (3.16) we obtain

(3.17) t−1(|x|) ≤ t−1(|z′|) ≤ t−1(|x|k + k) = t−1(|x|) + 1.

From (3.12) it follows that, on input x, the algorithm for S stops in line 2. We see
the same for z′ and z using (3.13) and (3.14). This implies the following:

x ∈ S ⇔ x ∈ S0,(3.18)

z′ ∈ S ⇔ z′ ∈ S0,(3.19)

z ∈ S ⇔ z ∈ S0.(3.20)

Note that

(3.21) x ∈ S ⇔ z′ ∈ S ⇔ z ∈ S,

since otherwise the algorithm for r stops earlier. Together with (3.18), (3.19), and
(3.20) this shows

(3.22) x ∈ S0 ⇔ z′ ∈ S0 ⇔ z ∈ S0
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and therefore,

(3.23) t−1(|x|) ≡ t−1(|z′|) ≡ t−1(|z|) (mod 2).

Now (3.17) implies t−1(|x|) = t−1(|z′|), and we obtain

(3.24) t−1(|z′|) = t−1(|x|) < t−1(|x|k + k) ≤ t−1(|z|).
From (3.23) and (3.24) it follows that t−1(|z|) − t−1(|z′|) ≥ 2. Therefore, |f(z′)| >
|z′|k + k. This contradicts f ’s computation time and proves the invariant in line 3.

From the invariant we immediately obtain that every single step of the algorithm
can be carried out in time polynomial in |x|. Each execution of line 4 increases the
length of z. By our invariant, the algorithm must terminate within |x|k + k iterations
of the loop. This shows that r is total and polynomial-time computable. Since r is
defined by repeated applications of f , and since f is an autoreduction of L, we obtain
L ≤p

m L via r. The statements 1 and 2 of the claim follow immediately from line 2 of
the algorithm, and the proof is complete.

We continue the proof of Theorem 3.1. Choose a function r according to Claim 3.4.
Define a function g by the following algorithm, which works on input x. Below we
will show that g satisfies the conditions in Proposition 3.2.

0 // Algorithm for function g

1 y := r(x), m := |y|
2 if |y| < |f(y)|, then return y

3 // here |y| ≥ |f(y)|
4 z := y

5 for i := 0 to 6m + 3

6 // here z = fi(y), |z| ≤ m, and for all 0 ≤ j ≤ i, |fj(y)| ≥ |fj+1(y)|
7 if |f(z)| < |f(f(z))|, then

8 if (f(z) ∈ S ⇔ x ∈ S) then return z else return f(z)
9 endif

10 z := f(z)
11 next i

12 // here for all 0 ≤ j ≤ 6m + 3, |fj(y)| ≥ |fj+1(y)|
13 z := y

14 for i := 0 to 6m + 3

15 // here z = fi(y) and |z| ≤ m

16 if z ∈ S ⇔ f(z) /∈ S, then

17 if (z ∈ S ⇔ x ∈ S) then return f(z) else return z

18 endif

19 z := f(z)
20 next i

21 // this line is never reached

Claim 3.5. The statements claimed in the comments of the algorithm for g hold
true.

Proof. Clearly, the condition in line 3 holds. Observe that whenever we reach
line 6, then z = f i(y) and |z| ≥ |f(z)|. Therefore, the condition in line 6 holds. It
follows that if we reach line 12, then we must have passed line 6 for i = 6m+ 3. This
shows the condition in line 12. Whenever we reach line 15 it holds that z = f i(y).
From the condition in line 12 it follows that |z| ≤ m in line 15.

Finally we argue that we do not reach line 21. Assume that we reach line 12.
By the condition in line 12, we satisfy the assumption of Claim 3.3. Therefore, there
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exists j ∈ [0, 6m + 3] such that f j(y) ∈ S ⇔ f j+1(y) /∈ S. So for i = j the condition
in line 16 is true, and therefore the algorithm stops before reaching line 21. This
completes the proof of Claim 3.5.

Claim 3.6. g is a total function in PF and L ≤p
m L via g.

Proof. We immediately see that g is total, since line 21 is never reached.
We argue that g ∈ PF. Recall that f and r are total functions in PF, and recall

that S ∈ P. So steps 1–4 are computable in polynomial time in |x|. Note that m
is polynomially bounded in |x|. By the remark in line 6, the loop 5–11 needs only
polynomial time in |x|. The remark in line 15 implies the same for the loop 14–20.
This shows g ∈ PF.

We show L ≤p
m L via g. Observe that in any case the algorithm returns f j(y) for

a suitable j ≥ 0. By Claim 3.4, x ∈ L ⇔ y = r(x) ∈ L. Since f is an autoreduction
of L, we obtain x ∈ L ⇔ g(x) = f j(y) ∈ L, and the proof is complete.

Claim 3.7. For every x, x ∈ S ⇔ g(x) /∈ S.
Proof. Consider the computation of the algorithm for g on input x.
Case 1: The output is made in line 2. So we have |f(r(x))| > |r(x)|. From

Claim 3.4 it follows that x ∈ S ⇔ g(x) = r(x) /∈ S.
Case 2: The output is made in line 8. By lines 6 and 7,

|f i(y)| ≥ |f i+1(y)| and |f i+1(y)| < |f i+2(y)|.

(Here i refers to the value of the variable i in the algorithm for g at the time when
the algorithm stops in line 8.) Therefore, if we look at the algorithm for S (earlier in
this section), then we see that on input f i(y) the algorithm stops in step 3, while on
input f i+1(y) the algorithm stops in step 2. It follows that

f i(y) ∈ S ⇔ f i+1(y) ∈ S1 and

f i+1(y) ∈ S ⇔ f i+1(y) ∈ S0.

So z = f i(y) ∈ S ⇔ f(z) /∈ S, and therefore, by line 8 of the algorithm for g,

x ∈ S ⇔ g(x) /∈ S.

Case 3: The output is made in line 17. From line 16 it follows that x ∈ S ⇔
g(x) /∈ S. This completes the proof of Claim 3.7.

Claims 3.6 and 3.7 allow the application of Proposition 3.2. Hence L is m-mitotic.
This finishes the proof of Theorem 3.1.

Call a set L nontrivial if ‖L‖ ≥ 2 and ‖L‖ ≥ 2.
Corollary 3.8. Every nontrivial set that is many-one complete for one of the

following complexity classes is m-mitotic:
• NP, coNP, ⊕P, PSPACE, EXP, NEXP,
• any level of PH, MODPH, or the Boolean hierarchy over NP.

Proof. Glaßer et al. [11] showed that all many-one complete sets of the above
classes are m-autoreducible. By Theorem 3.1, these sets are m-mitotic.

Corollary 3.9. A nontrivial set L is NP-complete if and only if L is the union
of two disjoint P-separable NP-complete sets.

So unions of disjoint P-separable NP-complete sets form exactly the class of NP-
complete sets. What class is obtained when we drop P-separability? Does this class
contain a set that is not NP-complete? In other words, is the union of disjoint NP-
complete sets always NP-complete? We leave this as an open question.
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Ambos-Spies [1] defined a set A to be ω-m-mitotic if for every n ≥ 2 there exists
a partition (Q1, . . . , Qn) of Σ∗ such that each Qi is polynomial-time decidable and
the following sets are polynomial-time many-one equivalent: A,A ∩Q1, . . . , A ∩Qn.

Corollary 3.10. Every nontrivial infinite set that is many-one complete for a
class mentioned in Corollary 3.8 is ω-m-mitotic.

Proof. Fix a class mentioned in Corollary 3.8, and let A be a nontrivial, in-
finite, many-one complete set. We need to prove that for every n ≥ 2 there ex-
ists a partition (Q1, . . . , Qn) of Σ∗ such that each Qi belongs to P and the sets
A,A∩Q1, . . . , A∩Qn are all polynomial-time many-one equivalent. We prove this by
induction on n. The base n = 2 is an immediate consequence of Corollary 3.8. Now
assume n ≥ 3. By the induction hypothesis, there exists a partition (Q1, . . . , Qn−1)
of Σ∗ such that each Qi belongs to P and the sets A,A ∩ Q1, . . . , A ∩ Qn−1 are all
polynomial-time many-one equivalent. Since A is infinite and (Q1, . . . , Qn−1) is a
partition of Σ∗, there exists some j such that A ∩ Qj is infinite as well. Moreover,
A ∩ Qj is nontrivial and polynomial-time many-one complete. By Corollary 3.8,
A ∩ Qj is m-mitotic. So there exists S ∈ P such that A ∩ Qj , A ∩ Qj ∩ S, and
A ∩ Qj ∩ S are polynomial-time many-one equivalent. Define Q′

j = Qj ∩ S and

Q′′
j = Qj ∩S. The following polynomial-time decidable partition of Σ∗ completes the

proof: (Q1, . . . , Qj−1, Q
′
j , Q

′′
j , Qj+1, . . . , Qn−1).

Next, we note that the proof the main theorem also yields the following result.
Theorem 3.11. Every 1-tt-autoreducible set is 1-tt-mitotic.
The proof of Theorem 3.1 provides a strategy that solves the infinite graph labeling

problem defined at the beginning of this section. In particular, for every graph that
satisfies certain prerequisites there exists a polynomial-time algorithm that labels
given nodes with either + or − such that each node has a polynomial-bounded path
that leads to a node with a different label. This is made precise as follows.

Corollary 3.12. Let G = (N, E) be an infinite, loop-free, directed graph with
outdegree 1 such that there exists an f ∈ PF that computes the successor of a given
node u, i.e., (u, f(u)) ∈ E. Then there exist a polynomial p, S ∈ P, and g ∈ PF such
that for all x,

(∃i ∈ [1, p(|x|)], g(x) = f i(x)) and (x ∈ S ⇔ g(x) /∈ S).

Proof. Note that f is an m-autoreduction for L
df
= Σ∗. Choose k ≥ 1 such that f

is computable in time nk + k. Now consider the implication from left to right in the
proof of Theorem 3.1. There the assumption |L| ≥ 2 is needed only at the end of the
proof when Proposition 3.2 is applied. So for L = Σ∗ the proof goes through until
Proposition 3.2 is applied. In particular, we obtain a total g ∈ PF and an S ∈ P such
that, for all x,

(3.25) x ∈ S ⇔ g(x) /∈ S.

Consider the function r which is defined in the proof of Claim 3.4. From the
claim it follows that r is a total, polynomial-time computable function such that
r(x) = f i(x) for some i ≥ 0. Moreover, in the proof of the claim we show that the
algorithm for r on input x terminates within |x|k + k iterations of the loop. From the
algorithm it follows that, for all x,

(3.26) ∃i ∈ [0, |x|k + k] such that r(x) = f i(x).

Let q be a polynomial bounding the computation time for r. Now consider the
algorithm for g in the proof of Theorem 3.1. By Claim 3.5, the statements in the
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comments of this algorithm hold true. In particular, at any time it holds that z = f i(y)
for some i ∈ [0, 6m + 4], where y = r(x) and m = |y| ≤ q(|x|). If the algorithm for
g stops, then it returns either z or f(z). So g(x) = f i(y) for some i ∈ [0, 6m + 5] ⊆
[0, 6q(|x|) + 5]. Together with (3.26) this shows

∃i ∈ [0, p(|x|)] such that g(x) = f i(x),

where p(n)
df
= 6q(n) + 5 + nk + k. By (3.25), g(x) �= x, which implies

(3.27) ∃i ∈ [1, p(|x|)] such that g(x) = f i(x).

The corollary follows from (3.25) and (3.27).

4. 3-tt-autoreducibility does not imply weak T-mitoticity. In this section
we prove a theorem that shows in a strong way that T-autoreducible does not imply
weakly T-mitotic. Hence, our main theorem cannot be generalized.

Lemma 4.1. Let l,m ≥ 0, and let k ≥ (l + 2)2
m

. If Q1, . . . , Qk are sets of
cardinality ≤ l and if n1, . . . , nk are pairwise different numbers, then there exist pair-
wise different indices i1, . . . , im such that for all s, t ∈ [1,m],

s �= t ⇒ nis /∈ Qit .

Proof. The proof is by induction on n = l + m such that the induction base
covers all cases where l = 0 or m = 0. For these cases the lemma holds trivially. In
particular, this covers the case n = 1.

Assume there exists n ≥ 1 such that the lemma holds for all l and m such that
l = 0 or m = 0 or l + m ≤ n. Now we prove it for l and m such that l ≥ 1, m ≥ 1,
and l + m = n + 1.

Case 1: There exist at least k −√
k − l − 1 indices j > 1 such that n1 ∈ Qj . Let

k′ = �k − √
k − l − 1� and choose pairwise different indices j1, . . . , jk′ such that for

all i, ji �= 1 and n1 ∈ Qji . Let l′ = l − 1 and let Ri = Qji − {n1} and ri = nji for
1 ≤ i ≤ k′. Observe l′ ≥ 0 and m ≥ 1. We estimate k′ as follows:

k′ ≥ k −
√
k − l − 1

≥ (l + 2)2
m −

√
(l + 2)2m − l − 1 (since (a ≥ b ⇒ a−√

a ≥ b−
√
b) for a, b ≥ 1)

≥ (l′ + 2)2
m

(follows from (4.2) in the estimation below).

(4.1)

For (4.1) the following estimation is needed:

l + 1 ≥ l + 1,

(l + 2)2
m−1−1 · (l + 2 − 1) ≥ (l + 1)2

m−1−1 · (l + 1),

(l + 2)2
m−1 − 1 ≥ (l + 1)2

m−1

(since (l + 2)2
m−1−1 ≥ 1),

(l + 2)2
m−1 · [(l + 2)2

m−1 − 1
] ≥ (l + 2)2

m−1 · [(l + 1)2
m−1]

,

(l + 2)2
m − (l + 2)2

m−1 ≥ (l + 1 + 1) · (l + 1)2
m−1−1 · [(l + 1)2

m−1]
,

(l + 2)2
m −

√
(l + 2)2m ≥ (l + 1)2

m

+ (l + 1)2
m−1,

(l + 2)2
m −

√
(l + 2)2m − l − 1 ≥ (l′ + 2)2

m

(since (l + 1)2
m−1 ≥ l + 1).

(4.2)
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Note that l′ +m = n. Also, R1, . . . , Rk′ are sets of cardinality ≤ l′ and r1, . . . , rk′ are
pairwise different numbers. By the induction hypothesis there exist pairwise different
indices i1, . . . , im such that for all s, t ∈ [1,m], (s �= t ⇒ ris /∈ Rit). For all s ∈ [1,m],
ris �= n1. Therefore, for all s, t ∈ [1,m],

(s �= t ⇒ ris /∈ Rit ∪ {n1})
and hence

(s �= t ⇒ njis /∈ Qjit
).

Thus the lemma is satisfied by the indices ji1 , ji2 , . . . , jim .
Case 2: There exist less than k−√

k− l− 1 indices j > 1 such that n1 ∈ Qj . So

there exist more than
√
k + l indices j > 1 such that n1 /∈ Qj . Since ‖Q1‖ ≤ l, there

exist more than
√
k indices j > 1 such that n1 /∈ Qj and nj /∈ Q1. Hence there exist

at least k′ df
= �√k� such indices. So we can choose pairwise different indices j1, . . . , jk′

such that, for all i,

(4.3) ji �= 1 ∧ n1 /∈ Qji ∧ nji /∈ Q1.

Let m′ = m − 1 and let Ri = Qji and ri = nji for 1 ≤ i ≤ k′. Note that l ≥ 1 and
m′ ≥ 0. Observe that

k′ ≥
√
k ≥

√
(l + 2)2m = (l + 2)2

m′

and l +m′ = n. Also, R1, . . . , Rk′ are sets of cardinality ≤ l, and r1, . . . , rk′ are pair-
wise different numbers. So by the induction hypothesis there exist pairwise different
indices i1, . . . , im′ such that for all s, t ∈ [1,m′],

s �= t ⇒ ris /∈ Rit

and hence

s �= t ⇒ njis
/∈ Qjit

.

From (4.3) it follows that the lemma is satisfied by the indices 1, ji1 , ji2 , . . . , jim′ .
Theorem 4.2. There exists L ∈ SPARSE ∩ EXP such that
• L is 3-tt-autoreducible, but
• L is not weakly T-mitotic.

Proof. Define a tower function by t(0) = 4 and

t(n + 1) = 2222
2t(n)

.

For any word s, let W (s) = {s00, s01, s10, s11}. We will define L such that it satisfies
the following:

(i) If w ∈ L, then there exists n such that |w| = t(n).
(ii) For all n and all s ∈ Σt(n)−2, the set W (s) ∩ L either is empty or contains

exactly two elements.
It is easy to see that such an L is 3-tt-autoreducible: On input w, determine n such
that |w| = t(n). If such n does not exist, then reject. Otherwise, let s be w’s prefix
of length |w| − 2. Accept if and only if the set L ∩ (W (s) − {w}) contains an odd
number of elements. This is a 3-tt-autoreduction.
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We turn to the construction of L. Let M1,M2, . . . be an enumeration of deter-
ministic, polynomial-time-bounded Turing machines such that the running time of
Mi is ni + i. Let 〈·, ·〉 be a pairing function such that 〈x, y〉 > x+ y. We construct L
stagewise such that in stage n we determine which of the words of length t(n) belong
to L. In other words, at stage n we define a set Wn ⊆ Σt(n), and finally we define L
to be the union of all Wn.

We start by defining W0 = ∅. Suppose we are at stage n > 0. Let m = t(n), and
determine i and j such that n = 〈i, j〉. If such i and j do not exist, then let Wn = ∅
and go to stage n + 1. Otherwise, i and j exist. In particular, i + j < log logm.

Let O
df
= W0 ∪ · · · ∪ Wn−1 be the part of L that has been constructed so far. Let

O1, O2, . . . , Ol be the list of all subsets of O (lexicographically ordered according to
their characteristic sequences). Since O ⊆ Σ≤t(n−1) we obtain ‖O‖ ≤ 2t(n−1)+1.
Therefore,

(4.4) l ≤ 22t(n−1)+1 ≤ 222t(n−1)

= log log t(n) = log logm.

We give some intuition for the claim below. If L is weakly T-mitotic, then in
particular, there exists a partition L = L1∪L2 such that L2 ≤p

T L1 via some machine
Mi. Hence O ∩L1 must appear (say, as Ok) in our list of subsets of O. The following
claim makes sure that we can find a list of words s1, . . . , sl of length m− 2 such that
for all k ∈ [1, l] it holds that if the partition of L is such that O ∩ L1 = Ok, then Mi

on input of a string from {sk00, sk01, sk10, sk11} does not query the oracle for words
from W (sr) if r �= k. Hence, if Mi queries a word of length m that does not belong
to {sk00, sk01, sk10, sk11}, then it always gets a no answer. So the following is the
only information about the partition of L that can be exploited by Mi:

• the partition of O = Σ<t(n) ∩ L,
• the partition of W (sk) ∩ L.

In particular, Mi cannot exploit information about the partition of W (sr) ∩ L for
r �= k. This independence of Mi makes our diagonalization possible.

Claim 4.3. There exist pairwise different words s1, . . . , sl ∈ Σm−2 such that for
all k, r ∈ [1, l], k �= r, and all y ∈ W (sk), neither MO−Ok

i (y) nor MOk
j (y) query the

oracle for words in W (sr).
Proof. For s ∈ Σm−2, let

Qs
df
= {s′ ∈ Σm−2 | ∃k ∈ [1, l], ∃y ∈ W (s), ∃q ∈ W (s′) such that q is

queried by MO−Ok
i (y) or MOk

j (y)}.
Observe that, for every s ∈ Σm−2,

‖Qs‖ ≤ 4l[(mi + i) + (mj + j)]

≤ 4(log logm)[mlog logm + log logm]

≤ 8(log logm)mlog logm

≤ m2 log logm

≤ 2log2 m − 2.(4.5)

We identify numbers in [1, 2m−2] with strings in Σm−2. Considered in this way, each
Qs is a subset of [1, 2m−2]. By (4.5), Q1, Q2, . . . , Q2m−2 are sets of cardinality ≤
2log2 m − 2. Clearly, 1, 2, . . . , 2m−2 are pairwise different numbers. By (4.4),

2m−2 ≥ (2log2 m)logm ≥ (2log2 m)2
l

.
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Therefore, we can apply Lemma 4.1. We obtain indices s1, . . . , sl such that for all
k, r ∈ [1, l],

(4.6) r �= k ⇒ sr /∈ Qsk .

Assume there exist k, r ∈ [1, l], k �= r, and y ∈ W (sk) such that some q ∈ W (sr)
is queried by MO−Ok

i (y) or MOk
j (y). Hence sr ∈ Qsk . This contradicts (4.6) and

finishes the proof of Claim 4.3.
Let s1, . . . , sl ∈ Σm−2 be the words assured by Claim 4.3. We define Wn such

that for every k ∈ [1, l] we define a set Vk ⊆ W (sk), and finally we define Wn to be
the union of all Vk. The cardinality of each Vk is either 0 or 2.

Fix some k ∈ [1, l] and let Qk
df
= O −Ok.

Case 1: MQk

i (sk00) accepts or MOk
j (sk00) accepts. Define Vk

df
= ∅.

Case 2: MQk

i (sk00) and MOk
j (sk00) reject.

Case 2a: For all y ∈ {sk01, sk10, sk11}, MQk∪{sk00}
i (y) rejects. Define Vk as a

subset of W (sk) such that |Vk| = 2, sk00 ∈ Vk, and

sk01 ∈ Vk ⇔ M
Ok∪{sk00}
j (sk01) rejects.

Case 2b: For all y ∈ {sk01, sk10, sk11}, MOk∪{sk00}
j (y) rejects. Define Vk as a

subset of W (sk) such that |Vk| = 2, sk00 ∈ Vk, and

sk01 ∈ Vk ⇔ M
Qk∪{sk00}
i (sk01) rejects.

Case 2c: There exist y ∈ {sk01, sk10, sk11} and z ∈ {sk01, sk10, sk11} such that

both M
Qk∪{sk00}
i (y) and M

Ok∪{sk00}
j (z) accept. Choose v ∈ W (sk)−{sk00, y, z} and

define Vk
df
= {sk00, v}.

This finishes the construction of Vk. We define Wn
df
=

⋃
k∈[1,l] Vk. Finally, L is

defined as the union of all Wn.
Note that, by the construction, Wn ⊆ Σt(n), which shows (i). Observe that the

construction also ensures (ii). We argue for L ∈ EXP: Since l ≤ log logm, there are
not more than 2m log logm possibilities for choosing the strings s1, . . . , sl. For each
such possibility we have to simulate O(l2) computations Mi(y) and Mj(y). This
can be done in exponential time in m. For the definition of each Vk we have to
simulate a constant number of computations Mi(y) and Mj(y). This shows that L is
printable in exponential time. Hence L ∈ EXP. From the construction it follows that
L ∩ Σm ≤ 2l ≤ 2 log logm. In particular, L ∈ SPARSE. It remains to show that L is
not weakly T-mitotic.

Assume that L is weakly T-mitotic. So L can be partitioned into L = L1 ∪L2 (a
disjoint union) such that

(iii) L1 ≤p
T L2 via machine Mi and

(iv) L2 ≤p
T L1 via machine Mj .

Let n = 〈i, j〉, m = t(n), and O = W0 ∪ · · · ∪ Wn−1, i.e., O = L ∩ Σ<t(n). Let
O1, O2, . . . , Ol be the list of all subsets of O (again lexicographically ordered according
to their characteristic sequences). Let s1, . . . , sl and V1, . . . , Vl be as in the definition
of Wn. Choose k ∈ [1, l] such that L1 ∩ Σ<t(n) = Ok. Let Qk = O − Ok. So
L2 ∩ Σ<t(n) = Qk. Clearly, Vk must be defined according to one of the cases above.

Assume that Vk was defined according to Case 1: So Vk = ∅ and, in particular,
sk00 /∈ L1. Without loss of generality assume that MQk

i (sk00) accepts. ML2
i (sk00)
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has running time mi + i < mm + m < t(n + 1). Hence ML2
i (sk00) behaves like

ML2∩Σ≤t(n)

i (sk00). Since sk was chosen according to Claim 4.3, for all r ∈ [1, l]−{k},
MQk

i (sk00) does not query the oracle for words in W (sr). Note that W (sk) ∩ L =

Vk = ∅. Therefore, ML2
i (sk00) behaves like ML2∩Σ<t(n)

i (sk00), which is the same as

MQk

i (sk00). The latter accepts, but sk00 /∈ L1. This contradicts (iii).
Assume that Vk was defined according to Case 2: So Vk = {sk00, u}, where

u ∈ {sk01, sk10, sk11}. Assume Vk ⊆ L1. Then as above, Mi(sk00) with oracle L2

behaves the same way as Mi(sk00) with oracle Qk. The latter rejects, because we
are in Case 2. So sk00 /∈ L1, which contradicts our assumption. Analogously the
assumption Vk ⊆ L2 implies a contradiction. Therefore,

(4.7) either (sk00 ∈ L1 ∧ u ∈ L2) or (u ∈ L1 ∧ sk00 ∈ L2).

Assume that Vk was defined according to Case 2a: So for all y ∈ {sk01, sk10, sk11},
M

Qk∪{sk00}
i (y) rejects. In particular, M

Qk∪{sk00}
i (u) rejects. Assume u ∈ L1 and

sk00 ∈ L2. So ML2
i (u) rejects, since it behaves the same way as M

Qk∪{sk00}
i (u).

By (iii) this contradicts u ∈ L1. Therefore, by (4.7) we must have sk00 ∈ L1 and
u ∈ L2. In Case 2a, Vk is defined such that

sk01 ∈ Vk ⇔ M
Ok∪{sk00}
j (sk01) rejects.

Note that M
Ok∪{sk00}
j (sk01) and ML1

j (sk01) behave the same way. Hence,

sk01 ∈ Vk ⇔ ML1
j (sk01) rejects.

If sk01 ∈ Vk, then u = sk01, and hence ML1
j (u) rejects. This contradicts (iv).

Otherwise, if sk01 /∈ Vk, then ML1
j (sk01) accepts, and hence u = sk01 /∈ Vk. This

contradicts the assumption u ∈ Vk.
Assume that Vk was defined according to Case 2b: Here we obtain contradictions

analogously to Case 2a.
Assume that Vk was defined according to Case 2c: Choose y and z such that

both M
Qk∪{sk00}
i (y) and M

Ok∪{sk00}
j (z) accept. So u ∈ {sk01, sk10, sk11} − {y, z}.

Assume sk00 ∈ L2. Hence ML2
i (y) and M

Qk∪{sk00}
i (y) behave the same way, showing

that ML2
i (y) accepts. So y ∈ L1, which contradicts the definition of Vk. Assume

sk00 ∈ L1. Hence ML1
j (z) and M

Ok∪{sk00}
j (z) behave the same way, showing that

ML1
j (z) accepts. So z ∈ L2, which contradicts the definition of Vk.

This finishes Case 2. From the fact that all possible cases led to contradictions, we
obtain that the initial assumption was false. Hence, L is not weakly T-mitotic.

Thus there exist 3-tt-autoreducible sets that are not even weakly T-mitotic.3 By
Theorem 3.11, every 1-tt-autoreducible set is 1-tt-mitotic.

5. Remarks. One might wonder whether Theorem 3.1 still holds if one re-
places polynomial-time many-one reductions by logarithmic-space many-one reduc-
tions. However, in this logspace setting, the proof of Theorem 3.1 does not go through,
since the logspace analogue of Claim 3.6 fails. More precisely, we cannot argue that
the function g is computable in logspace. Roughly speaking, g is defined as a polyno-
mial superposition of f . This means that in order to compute g, we have to iterate

3In a forthcoming paper we improve this result to 2-tt-autoreducible sets.
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f a polynomial number of times. If f is polynomial-time computable and not length-
increasing (recall that the length-increasing case is already treated by the function r),
then g is computable in polynomial time. In contrast, for a logspace computable f ,
we cannot iterate f for more than a constant number of times. So in this case, g is
not logspace computable. The logspace analogue of Theorem 3.1 is indeed false in a
relativized world [10].
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Abstract. We consider the problem of learning mixtures of product distributions over discrete
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pp. 273–282]. We give a poly(n/ε)-time algorithm for learning a mixture of k arbitrary product
distributions over the n-dimensional Boolean cube {0, 1}n to accuracy ε, for any constant k. Previous
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1. Introduction.

1.1. Framework and motivation. In this paper we study mixture distribu-
tions. Given distributions X1, . . . ,Xk over Rn and mixing weights π1, . . . , πk that
sum to 1, a draw from the mixture distribution Z is obtained by first selecting i with
probability πi and then making a draw from Xi. Mixture distributions arise in many
practical scientific situations as diverse as medicine, geology, and artificial intelligence;
indeed, there are several textbooks devoted to the subject [23, 19].

Assuming that data arises as a mixture of some distributions from a class of
distributions C, it is natural to try to learn the parameters of the mixture components.
Our work addresses the learning problem in the PAC-style (probably approximately
correct) model introduced by Kearns et al. [18]. In this framework we are given a

∗Received by the editors September 26, 2006; accepted for publication (in revised form) October
19, 2007; published electronically February 1, 2008. An extended abstract of this work appeared in
the Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
Pittsburgh, PA, 2005, pp. 501–510. This version contains proofs that were omitted from the extended
abstract because of space limitations.

http://www.siam.org/journals/sicomp/37-5/67070.html
†Google, New York Office, 76 Ninth Avenue, 4th floor, New York, NY 10011 (jonfeld@ieor.

columbia.edu). Some of this author’s work was done while at the Department of Industrial Engineer-
ing and Operations Research, Columbia University, supported by an NSF Mathematical Sciences
Postdoctoral Research Fellowship.

‡School of Computer Science, Carnegie Mellon University, 7121 Wean Hall, Pittsburgh, PA 15213
(odonnell@cs.cmu.edu). Some of this author’s work was done while at the Institute for Advanced
Study, supported in part by the National Science Foundation under agreement CCR-0324906. Any
opinions, findings and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation.

§Department of Computer Science, Columbia University, 1214 Amsterdam Ave., Mailcode 0401,
New York, NY 10027 (rocco@cs.columbia.edu). This author’s research was supported in part by NSF
CAREER award CCF-0347282.

1536



LEARNING MIXTURES OF PRODUCT DISTRIBUTIONS 1537

class C of probability distributions over Rn and access to random data sampled from
an unknown mixture Z of k unknown distributions from C. The goal is to output a
hypothesis mixture Z′ of k distributions from C, which (with high confidence) is ε-close
to the unknown mixture. The learning algorithm should run in time poly(n/ε). The
standard notion of “closeness” between distributions Z and Z′, proposed by Kearns
et al. and used in this work, is the Kullback–Leibler (KL) divergence (or relative
entropy), defined as KL(Z||Z′) :=

∫
x
Z(x) ln(Z(x)/Z′(x)).1

In this paper we learn mixtures of product distributions over the Boolean cube
{0, 1}n, and more generally over the b-ary cube {0, . . . , b − 1}n; i.e., the classes C
will consist of distributions Xi whose n coordinates are independent distributions
over {0, 1} and {0, . . . , b − 1}, respectively.2 Such learning problems have been well
studied in the past, as we now describe.

1.2. Related work. In [18], Kearns et al. gave efficient algorithms for learning
mixtures of Hamming balls; these are product distributions over {0, 1}n in which all
the coordinate means E[Xi

j ] must be either p or 1 − p for some unknown p which is
fixed over all mixture components. Although these algorithms can handle mixtures
with k = O(1) many components, the fact that the components are Hamming balls
rather than general product distributions is a very strong restriction. (The algorithms
also have some additional restrictions: p has to be bounded away from 1/2, and a
more generous learning scenario is assumed in which the learner is in addition given
oracle access to the target distribution Z—i.e., it can submit an input x and get back
the probability mass that Z assigns to x.)

More recently, Freund and Mansour [14] gave an efficient algorithm for learning
a mixture of two general product distributions over {0, 1}n. Very roughly speaking,
their algorithm uses a “hold-out” set of attributes to approximately reconstruct the
line passing through the two means E[X1], E[X2] of the product distributions X1

and X2; the algorithm then performs a one-dimensional search on this line for the
optimal pair of centers to maximize the likelihood of the data. Around the same
time Cryan [8] and Cryan, Goldberg, and Goldberg [9] gave an efficient algorithm for
learning phylogenetic trees in the two-state general Markov model. Their algorithm
has several stages including estimating covariances between different pairs of leaves,
partitioning the leaves into “related sets,” constructing a tree for each related set, and
then generating an overall tree topology. For the special case in which the tree topol-
ogy is a star, this gives an algorithm for learning an arbitrary mixture of two product
distributions over {0, 1}n. Both [14] and [8] stated as an open question the problem of
obtaining a polynomial-time algorithm for learning a mixture of k > 2 product distri-
butions. Indeed, recent work of Mossel and Roch [20] on learning phylogenetic trees
argues that the rank-deficiency of transition matrices is a major source of difficulty,
and this may indicate why k = 2 has historically been a barrier—a two-row matrix
can be rank-deficient only if one row is a multiple of the other, whereas the general
case of k > 2 is much more complex.

In other related work, there is a vast literature in statistics on the general prob-
lem of analyzing mixture data—see [19, 21, 23] for surveys. To a large degree this

1The KL divergence is often defined in terms of log2. It is more convenient for us to use ln, and
it is easy to see that this choice does not affect our results. We remind the reader (see, e.g., [7]) that
‖Z−Z′‖1 ≤ √

2
√

KL(Z||Z′), where ‖·‖1 denotes total variation distance; hence if the KL divergence
is small, then the total variation distance is also small.

2Of course, the algorithm works for product distributions over Σn for any alphabet Σ with
|Σ| = b; i.e., the names of the characters in the alphabet do not matter.
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work centers on trying to find the exact best mixture model (in terms of likelihood)
which explains a given data sample; this is computationally intractable in general.
In contrast, our main goal (and the goal of [18, 14, 9, 8, 20]) is to obtain efficient
algorithms that produce ε-close hypotheses.

We also note that there has been recent interest in learning mixtures of n-
dimensional Gaussians from the point of view of clustering [10, 11, 2, 24]. In this
framework one is given samples from a mixture of “well-separated” Gaussians, and
the goal is to classify each point in the sample according to which Gaussian it came
from. We discuss the relationship between our scenario and this recent literature on
Gaussians in section 11; here we emphasize that throughout this paper we make no
“separation” assumptions (indeed, no assumptions at all) on the component product
distributions in the mixture.

Finally, the problem of learning discrete mixture distributions may have applica-
tions to other areas of theoretical computer science, such as database privacy [22, 6]
and quantum complexity [1].

1.3. Our results. In this paper we give an efficient algorithm for learning a
mixture of k = O(1) many product distributions over {0, 1}n. Our main theorem is
the following.

Theorem 1. Fix any k = O(1), and let Z be any unknown mixture of k product
distributions over {0, 1}n. Then there is an algorithm that, given samples from Z and
any ε, δ > 0 as inputs, runs in time poly(n/ε) · log(1/δ) and with probability 1 − δ
outputs a mixture Z′ of k product distributions over {0, 1}n satisfying KL(Z||Z′) ≤ ε.

We emphasize that our algorithm requires none of the additional assumptions—
such as minimum mixing weights or coordinate means being bounded away from 0,
1/2, or 1—that appear in some work on learning mixture distributions.

Our algorithm runs in time (n/ε)O(k3), which is polynomial only if k is constant;
however, this dependence may be unavoidable. In Theorem 18 we give a reduction
from a difficult open question in computational learning theory (the problem of learn-
ing decision trees of superconstant size) to the problem of learning a mixture of any
superconstant number of product distributions over {0, 1}n. This implies that solving
the mixture learning problem for any k = ω(1) would require a major breakthrough
in learning theory, and suggests that the dependence on k in the exponent of the
running time may be unavoidable.

We also generalize our result to learn a mixture of product distributions over
{0, . . . , b− 1}n for any constant b, as follows.

Theorem 2. Fix any k = O(1) and b = O(1), and let Z be any unknown mixture
of k product distributions over {0, . . . , b−1}n. Then there is an algorithm that, given
samples from Z and any ε, δ > 0 as inputs, runs in time poly(n/ε) · log(1/δ) and with
probability 1 − δ outputs a mixture Z′ of k product distributions over {0, . . . , b− 1}n
satisfying KL(Z||Z′) ≤ ε.

Taking b = k, this gives a polynomial-time algorithm for learning k-state Markov
evolutionary trees (METs) with a star topology. (Note that the main result of [9, 8]
is an algorithm for learning two-state METs with an arbitrary topology; hence our
result is not comparable to theirs.)

2. Overview of our approach.

2.1. The WAM algorithm. The cornerstone of our overall learning algorithms
is an algorithm we call WAM (for weights and means). WAM is an algorithm that
takes as input a parameter ε > 0 and has access to samples from an unknown mixture



LEARNING MIXTURES OF PRODUCT DISTRIBUTIONS 1539

Z of k product distributions X1, . . . ,Xk. Here each Xi = (Xi
1, . . . ,X

i
n) is an Rn-

valued random vector with independent coordinates. The goal of WAM is to output
accurate estimates for all of the mixing weights πi and coordinate means μi

j := E[Xi
j ].

Note that a product distribution over {0, 1}n is completely specified by its coordinate
means.

More precisely, WAM outputs a list of poly(n/ε) many candidates (〈π̂1, . . . , π̂k〉,
〈μ̂1

1, μ̂
1
2, . . . , μ̂

k
n〉); each candidate may be viewed as a possible estimate for the correct

mixing weights and coordinate means. We will show that with high probability at least
one of the candidates output by WAM is parametrically accurate; roughly speaking,
this means that the candidate is a good estimate in the sense that |π̂i − πi| ≤ ε for
each i and that |μ̂i

j − μi
j | ≤ ε for each i and j. However, there is a slight twist: if a

mixing weight πi is very low, then WAM may not receive any samples from Xi, and
thus it is not reasonable to require that WAM get an accurate estimate for μi

1, . . . , μ
i
n.

On the other hand, if πi is so low, then it is not very important to get an accurate
estimate for μi

1, . . . , μ
i
n because Xi has only a tiny effect on Z. We thus make the

following formal definition.

Definition 3. A candidate (〈π̂1, . . . , π̂k〉, 〈μ̂1
1, μ̂

1
2, . . . , μ̂

k
n〉) is said to be paramet-

rically ε-accurate if

1. |π̂i − πi| ≤ ε for all 1 ≤ i ≤ k;
2. |μ̂i

j − μi
j | ≤ ε for all 1 ≤ i ≤ k and 1 ≤ j ≤ n such that πi ≥ ε.

The main technical theorem in this paper, Theorem 4, shows that so long as the
Xi’s take values in a bounded range, WAM will with high probability output at least
one candidate that is parametrically accurate. The proof of this theorem uses tools
from linear algebra (singular value theory) along with a very careful error analysis.

Remark 1. As will be clear from the proof of Theorem 4, WAM will succeed even
if the mixture distributions Xi are only pairwise independent, not fully independent.
This may be of independent interest.

2.2. From WAM to PAC learning (binary case). As we noted already, in
the binary case a product distribution on {0, 1}n is completely specified by its n coor-
dinate means; thus a candidate can essentially be viewed as a hypothesis mixture of
product distributions. (This is not precisely correct, as the candidate mixing weights
may not precisely sum to 1 and the candidate means might be outside the range [0, 1]
by as much as ε.) To complete the learning algorithm described in Theorem 1 we
must give an efficient procedure that takes the list output by WAM and identifies a
candidate distribution that is close to Z in KL divergence, as required by Theorem 1.
We do this in two steps:

1. We first give an efficient procedure that converts a parametrically accurate
candidate into a proper hypothesis distribution that is close to Z in KL di-
vergence. We apply this procedure to each candidate in the list output by
WAM, and thus obtain a list of mixtures (hypotheses), at least one of which
is close to Z in KL divergence.

2. We then show that a maximum-likelihood procedure can take a list of hy-
potheses, at least one of which is good (close to Z in KL divergence), and
identify a single hypothesis which is good.

2.3. Larger alphabets. In the larger alphabet setting, Z is a mixture of k
product distributions X1, . . . ,Xk over {0, . . . , b− 1}n. Now each mixture component
Xi is defined by bn parameters pij,� (with j = 1, . . . , n and � = 0, . . . , b−1), where pij,�
is the probability that a draw from Xi

j yields �. The simple but useful observation
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that underlies our extension to {0, . . . , b−1}n is the following: just as any distribution
over {0, 1} is completely specified by its mean, any distribution Xi

j over {0, . . . , b−1}
is completely specified by its first b − 1 moments E[Xi

j ], E[(Xi
j)

2], . . . , E[(Xi
j)

b−1].3

Our approach is thus to run WAM b − 1 times; for � = 1, . . . , b − 1 the �th run will
sample from the given mixture distribution and convert each sample (z1, . . . , zn) to
the sample (z�1, . . . , z

�
n). We then carefully combine the lists output by the runs of

WAM, and follow steps similar to 1 and 2 above to find a good hypothesis in the
combined list.

2.4. Outline. Section 3 is dedicated to explaining the ideas behind the WAM

algorithm and its proof of correctness. The detailed algorithm and proof are then
presented in section 4. We discuss the application of WAM to the b-ary case in
section 5. The two steps outlined in section 2.2 are conceptually straightforward, but
the details are quite technical; they are given in sections 6 through 8. The pieces are
all put together to prove Theorem 2 in section 9 (note that Theorem 1 is a special
case of Theorem 2).

In section 10 we detail our reduction from a difficult open question in computa-
tional learning theory. We conclude in section 11 with a discussion of applications
and future work.

3. The WAM algorithm. In this section we describe our main algorithm,
WAM. We assume a general mixture setting: WAM has access to samples from
Z, a mixture of k product distributions X1, . . . ,Xk with mixing weights π1, . . . , πk.
Each Xi = (Xi

1, . . . ,X
i
n) is an n-dimensional random variable. We will further assume

that all components’ coordinates are bounded in the range [−1, 1]; i.e., Xi ∈ [−1, 1]n

with probability 1. We have chosen [−1, 1] for mathematical convenience; by scaling
and translating samples we can get a theorem about any interval such as [0, 1] or
[0, (b − 1)b−1], with an appropriate scaling of ε. We write μi

j := E[Xi
j ] ∈ [−1, 1] for

the mean of the jth coordinate of Xi.
Our main theorem is the following.
Theorem 4. There is an algorithm WAM with the following property: for any

k = O(1) and any ε, δ > 0, WAM runs in time poly(n/ε) · log(1/δ) and outputs a list
of poly(n/ε) many candidates, at least one of which (with probability at least 1 − δ)
is parametrically ε-accurate.

We give the full proof of correctness in section 4.2. The remainder of this section
is devoted to explaining the main ideas behind the algorithm and its analysis.

3.1. Overview of WAM. There is of course a brute-force way to come up with
a list of candidates (〈π̂1, . . . , π̂k〉, 〈μ̂1

1, μ̂
1
2, . . . , μ̂

k
n〉), at least one of which is paramet-

rically ε-accurate: simply “try all possible values” for the parameters up to additive
accuracy ε. In other words, try all values 0, ε, 2ε, 3ε, . . . , 1 for the mixing weights and
all values −1,−1+ε, . . . , 1−ε, 1 for the means. We call this approach “gridding.” Un-
fortunately there are Θ(n) parameters in a candidate, so this naive gridding strategy
requires time (and produces a list of length) (1/ε)Θ(n), i.e., exponential in n, which is
clearly unacceptable.

The basic idea behind WAM is as follows: given all pairwise correlations between
the coordinates of Z, it can be shown that there are a constant number of “key”
parameters that suffice to determine all others. Hence in polynomial time we can

3This is the case since the distribution can be recovered from the moments by solving a system
of linear equations based on a Vandermonde matrix, which has full rank.
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empirically estimate all the correlations, try all possibilities for the constantly many
key parameters, and then determine the remaining Θ(n) parameters.

The main challenge in implementing this idea is that it is not at all a priori clear
that the error incurred from gridding the key parameters does not “blow up” when
these are used to determine the remaining parameters. The heart of our analysis
involves showing that it suffices to grid the key parameters to granularity poly(ε/n)
in order to get final error ε.

3.2. The algorithm, and intuition for the analysis. We will now go over the
steps of the algorithm WAM and at the same time provide an “intuitive” discussion
of the analysis. A concise description of the steps of WAM is given at the start of
section 4 for the reader’s convenience. Throughout this section we will assume for the
sake of discussion that the steps we take incur no error; a sketch of the actual error
analysis appears in section 3.3.

The first step of WAM is to “grid” the values of the mixing weights {πi} to
granularity εwts := ε3. Since there are only constantly many mixing weights, this
costs just a multiplicative factor of poly(1/ε) in the running time. The remainder of
the algorithm then assumes that the mixing weights are known. These mixing weights
are of course approximate, but for the purposes of this intuitive description of WAM,
we will simply assume that we have exactly correct values for {πi}.

The next step is simple: suppose that some s of the k mixing weights we have
are smaller than ε. By the definition of being “ε-parametrically accurate,” we are not
obliged to worry about coordinates with such small mixing weights; hence we will
simply forget about these mixture components completely and treat k as k − s in
what follows. (We assign arbitrary values for the candidate means of the forgotten
components.) We may henceforth assume that πi ≥ ε > 0 for all i.

The next step of algorithm WAM is to use samples from Z to estimate the pairwise
correlations between the coordinates of Z. Specifically, for all pairs of coordinates
1 ≤ j < j′ ≤ n, the algorithm WAM empirically estimates

corr(j, j′) = E[ZjZj′ ].

The estimation will be done to within additive accuracy εmatrix = poly(ε/n); specif-
ically, εmatrix := τk+1, where τ := ε2/n2. With high (i.e., 1 − δ) confidence we will
get good such estimates in time poly(n/ε) · log(1/δ). Again, for the purposes of this
intuitive description of WAM we will henceforth assume that we have exactly correct
values for each value corr(j, j′). (As an aside, this is the only part of the algorithm
that uses samples from Z; as we will shortly see, this justifies Remark 1.)

Observe that since Xi
j and Xi

j′ are (pairwise) independent we have

corr(j, j′) = E[ZjZj′ ] =

k∑

i=1

πiE[Xi
jX

i
j′ ] =

k∑

i=1

πiE[Xi
j ]E[Xi

j′ ] =

k∑

i=1

πiμi
jμ

i
j′ .

Let us define

μ̃i
j =

√
πiμi

j

and write μ̃j = (μ̃1
j , μ̃

2
j , . . . , μ̃

k
j ) ∈ [−1, 1]k for 1 ≤ j ≤ n. We thus have

corr(j, j′) = μ̃j · μ̃j′ ,
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k

k kk

n

MJ̄ MJ

MJ

Matrix M of μ̃i
j ’s

M �̄
J

n− k

= B

solved for

gridded

estimated

Fig. 1. The full rank case. We solve for the unknown μ̃i
j ’s in MJ̄ using the gridded values in

MJ and the values in B estimated directly from the samples.

where · denotes the dot product in Rk. The remaining task for WAM is to determine
all the values μi

j . Since WAM already has values for each πi and each πi ≥ ε > 0, it

suffices for WAM to determine all the values μ̃i
j and then divide by

√
πi.

At this point WAM has empirically estimated values for all the pairwise dot
products μ̃j · μ̃j′ , j �= j′, and as mentioned, for intuitive purposes we are assuming
that all of these estimates are exactly correct. Let M denote the k× n matrix whose
(i, j) entry is the unknown μ̃i

j ; i.e., the jth column of M is μ̃j . The statement that
WAM has all the dot products μ̃j · μ̃j′ for j �= j′ is equivalent to saying that WAM

has all the off-diagonal entries of the Gram matrix M�M . We are thus led to what
is essentially the central problem WAM solves:

Central task. Given (estimates) for the off-diagonal entries of the n × n Gram
matrix M�M , generate (estimates of) all possible candidates for the entries of the
k × n matrix M .

(Note: The diagonal entries of M�M are the quantities μ̃j · μ̃j =
∑k

i=1 π
i(μi

j)
2,

and there is no obvious way to estimate these quantities using samples from Z. Also
there are n such quantities, which is too many to “grid over.” Nevertheless, the fact
that we are missing the diagonal entries of M�M will not play an important role for
WAM.)

In general, a complete n×n Gram matrix determines the original k×n matrix up
to isometries on Rk. Such isometries can be described by k×k orthonormal matrices,
and these k2 “degrees of freedom” roughly correspond to the constantly many key
parameters that we grid over in the end. A geometric intuition for the central task
is the following: there are n unknown vectors in Rk and we have all the “angles”
(more precisely, the dot products) between them. Thus fixing k of the vectors (hence
k2 unknown coordinates) is enough to completely determine the remainder of the
vectors.

The full rank case. We proceed with our intuitive description of WAM and show
how to solve the central task when M has full rank. Having done this, we will give the
actual steps of the algorithm that show how the full rank assumption can be removed.

So suppose for now that M has full rank. Then there exists some set of k columns
of M that are linearly independent, say J = {j1, . . . , jk} ⊂ [n]. Algorithm WAM

tries all
(
n
k

)
= poly(n) possibilities for the set J and then grids over the vectors

μ̃j1 , . . . , μ̃jk with granularity εmatrix = poly(ε/n) in each coordinate. As usual for the
purposes of intuition, we assume that we now have μ̃j1 , . . . , μ̃jk exactly correct.

Let MJ be the k × k matrix given by the J -columns of M , and let MJ̄ be the
k× (n− k) matrix given by deleting the J -columns of M . WAM now has the entries
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of MJ and must compute the remaining unknowns, MJ̄ . Since WAM has all of the
off-diagonal entries of M�M , it has all of the values of B = M �̄

J MJ . (See Figure 1.)
However, the columns of MJ are linearly independent, so MJ is invertible, and hence
WAM can compute M �̄

J = BM−1
J in poly(n) time. Having done this, WAM has all

the entries of M , and so the central task is complete, as is the algorithm.
The general case. Of course, in general, M does not have full rank. This represents

the main conceptual problem we faced in rigorously solving the central task. Indeed,
we believe that handling rank-deficiency is the chief conceptual problem for the whole
learning mixtures question, and that our linear algebraic methods for overcoming it
(the description of which occupies the remainder of section 3) are the main technical
contribution of this paper.

Suppose rank(M) = r < k. By trying all possible values (only constantly many),
algorithm WAM can be assumed to know r. Now by definition of rank(M) = r there
must exist k − r orthonormal vectors ur+1, . . . , uk ∈ [−1, 1]k which are orthogonal to
all columns of M . WAM grids over these vectors with granularity εmatrix, incurring
another multiplicative poly(n/ε) factor in the running time. As usual, assume for the
intuitive discussion that we now have the uj ’s exactly. Let these vectors be adjoined as
columns to M , forming M ′. But now the matrix M ′ has full rank; furthermore, WAM

knows all the off-diagonal elements of (M ′)�M ′, i.e., all the pairwise dot products of
M ′’s columns, since all of the new dot products which involve the uj ’s are simply 0!
Thus we now have an instance of the central task with a full rank matrix, a case we
already solved. (Technically, n may now be as large as n + (k − 1), but this is still
O(n), and hence no time bound is affected.) Solving the central task on M ′ (which
contains all the entries of M) completes the algorithm WAM in the rank-deficient
case.

3.3. Sketch of the actual analysis of WAM. The preceding intuitive dis-
cussion of algorithm WAM neglected all error analysis. Correctly handling the error
analysis is the somewhat subtle issue we discuss in this section. As mentioned, the
full proof is given in section 4.2.

The main issue in the error analysis comes in understanding the right notion of
the rank of M—since all of our gridding inevitably yields only approximations of the
entries of M , the actual notion of rank is far too fragile to be of use. Recall the outline
of the algorithm in our idealized intuition (rank-deficient case):

r = dimension of subspace in which μ̃j ’s lie

⇒ augment M by k − r orthogonal ui’s, forming M ′ ⇒ M ′ now full rank

⇒ find nonsingular k × k submatrix M ′
J ⇒ solve linear system M ′�

J̄M ′
J = B.

For the purposes of the error analysis, we reinterpret the operation of WAM as follows:

(1) r∗ = dimension of subspace in which the μ̃j ’s “essentially” lie

⇒ augment M by k − r “essentially” orthogonal ui’s, forming M ′

⇒ M ′ now “strongly” full rank

⇒ find “strongly” nonsingular k × k submatrix M ′
J ⇒ solve linear system M ′�

J̄M ′
J = B.

The real difficulty of the error analysis comes in the last step: controlling the error
incurred from solving the linear system. Since we will have only approximately correct
values for the entries of M ′

J and B, we need to analyze the additive error arising from
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solving a perturbed linear system. Standard results from numerical analysis (see
Proposition 9 in section 4.1) allow us to bound this error by a function of (i) the error
in M ′

J and B, and (ii) the smallest singular value of M ′
J , denoted by σk(M

′). More
precisely, as we describe in Proposition 9, the error is bounded by the errors in MJ
and B normalized by σk(M

′).
Let us briefly recall some notions related to singular values. Given any k × n

matrix M , the first (largest) singular value of M is σ1(M) = max‖u1‖2=1 ‖u�
1 M‖2,

and a u1 achieving this maximum is taken as the first (left) singular vector of M .
The second singular value of M is σ2(M) = max‖u2‖2=1, u2⊥u1

‖u�
2 M‖2, and u2 is

the second left singular vector of M . In general, the ith singular value and vector
are given by maximizing over all ‖ui‖2 = 1 orthogonal to all u1, . . . , ui−1. In a well-
defined sense (the Frobenius norm), the smallest singular value σk(M) measures the
distance of M from being singular.

WAM’s final error bounds arise from dividing the error in its estimates for M ′
J

and B by the smallest singular value of M ′
J . The error in the estimates for the

entries of M ′
J come from gridding, and thus can essentially be made as small as

desired; WAM makes them smaller than εmatrix. The errors in B come from two
sources: some of the entries of B are estimates of quantities μ̃j · μ̃j′ = corr(j, j′), and
again these errors can be made essentially as small as desired, smaller than εmatrix.
However, the other errors in B come from approximating the quantities μ̃j · ui by 0,
i.e., assuming that the augmenting vectors are orthogonal to the columns of M .

As the reader may by now have guessed, the vectors with which WAM attempts
to augment M will be the last k− r∗ singular vectors of M , ur∗+1, . . . , uk. The hope
is that for an appropriate choice of r∗ these singular vectors will be “essentially”
orthogonal to the columns of M , and that the resulting M ′ will be “strongly” full
rank, in the sense that σk(M

′) will be somewhat large (cf. (1)). One can show (see
Proposition 8 of section 4.1) that the extent to which the ui’s are orthogonal to the
columns of M is controlled by the (r∗ + 1)th singular value of M ; i.e., |μ̃j · ui| ≤
σr∗+1(M) for all i ≥ r∗ + 1; this is precisely the error we incur for the zero entries
in B. On the other hand, one can also show that the augmented M ′ has smallest
singular value at least σr∗(M). Thus we are motivated to choose r∗ so as to get a
large multiplicative gap between σr∗(M) and σr∗+1(M), as follows.

Definition 5. Given τ > 0, the τ -essential rank of M is

r∗(M) = r∗τ (M) = min{0 ≤ r ≤ k : σr+1(M)/σr(M) ≤ τ},
where we take σ0(M) = 1 and σk+1(M) = 0.

One might think that if the additive error incurred from solving the linear system
were to be roughly σr∗(M)/σr∗+1(M), then it should suffice to select τ on the order of
poly(ε). However, there is still a missing piece of the analysis: although the smallest
singular value of M ′ becomes at least σr∗(M) after adjoining the uj ’s, we use only a
k × k submatrix M ′

J to solve the linear system. Is it the case that if M ′ has a large
smallest singular value then its “best” k × k submatrix also has a somewhat large
smallest singular value? We need a quantitative version of the fact that a nonsingular
k × n matrix has a k × k nonsingular submatrix (again, cf. (1)).

This does not seem to be a well-studied problem, and indeed there are some open
questions in linear algebra surrounding the issue. It is possible to derive an extremely
weak quantitative result of the required nature using the Cauchy–Binet formula. We
instead give the following quantitatively strong version.

Corollary 6. Let A be a k × n real matrix with σk(A) ≥ ε. Then there exists
a subset of columns J ⊆ [n] with |J | = k such that σk(AJ ) ≥ ε/

√
k(n− k) + 1.
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(We call the result a corollary because our proof in section 4.1 is derived from
a 1997 linear algebraic result of Goreinov, Tyrtyshnikov, and Zamarashkin [15]. In-
cidentally, it is conjectured in their paper that

√
k(n− k) + 1 can be replaced by√

n.)
With this result in hand it becomes sufficient to take τ = ε2/n2, as described in

the previous section. Now the error analysis can be completed:
• If M has a singular value gap of τ and so has essential rank r∗ < k, then when

WAM tries out the appropriate r∗ and singular vectors, the error it incurs
from solving the linear system is roughly at most O(

√
nτ) = O(ε2/n3/2), and

as we show at the end of section 4.2, having this level of control over errors
in solving the linear system for the unknown μ̃i

j ’s lets us obtain the final μi
j

values to the required ε-accuracy.
• On the other hand, if M has no singular value gap smaller than τ , then its

smallest singular value is at least τk; thus it suffices to take εmatrix = τk+1 =
poly(ε/n) to control the errors in the full rank case.

See section 4.2 for the detailed proof of correctness.

4. Algorithm WAM. Algorithm WAM has access to samples from the mixture
Z and takes as input parameters ε, δ > 0.

Algorithm WAM.

1. Let εwts = ε3, τ = ε2/n2, and εmatrix = τk+1.

2. Grid over the mixing weights, producing values π̂1, . . . , π̂k ∈ [0, 1]
accurate to within ±εwts. If s of these weights are smaller

than ε− εwts, eliminate them and treat k as k − s in what

follows.

3. Make empirical estimates ĉorr(j, j′) for all correlations

corr(j, j′) = E[ZjZj′ ] = μ̃j · μ̃j′ for j �= j′ to within ±εmatrix, with

confidence 1 − δ.
4. Let M be the k × n matrix of unknowns (Mij) = (μ̃i

j), and try all

possible integers 0 ≤ r∗ ≤ k for the essential rank of M.

5. Grid over k − r∗ vectors ûr∗+1, . . . , ûk ∈ [−1, 1]k to within ±εmatrix

in each coordinate and augment M with these as columns,

forming M̂ ′.
6. Try all possible subsets of exactly k column indices of M̂ ′;

write these indices as J = J ∪ J ′, where J corresponds to

columns from the original matrix M and J ′ corresponds to

augmented columns. Grid over [−1, 1] for the entries of M in

columns J to within ±εmatrix, yielding { ˆ̃μi
j : i ∈ [k], j ∈ J}. Let

M̂ ′
J denote the matrix of estimates for all the columns in J .

(See Figure 2.)
7. Let J̄ denote the columns of M other than J, and let MJ̄

denote the matrix of remaining unknowns formed by these

columns. Let B̂ be the matrix with rows indexed by J̄ and

columns indexed by J whose (j, j′) entry is the estimate ĉorr(j, j′)
of μ̃j · μ̃j′ if j′ ∈ J, or is 0 if j′ ∈ J ′. Using the entries of B̂

and M̂ ′
J (all of which are known), solve the system M �̄

J M̂ ′
J = B̂

to obtain estimates ˆ̃μi
j for the entries of MJ̄ (which are the

unknown μ̃i
j’s), thus producing estimates ˆ̃μi

j for all entries of

M. (If the matrix M̂ ′
J is singular, simply abandon the current
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︷ ︸︸ ︷J ︷ ︸︸ ︷J ′

︸ ︷︷ ︸
k columns of J

︷ ︸︸ ︷

t columns
ûr∗+1, . . . , ûk

which augment M
︷ ︸︸ ︷

n columns of M

︸ ︷︷ ︸
columns of J̄

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

k rows
of M

μ̃1
1 · · · · · ·

...

...

...

...

μ̃1
k · · · · · ·

· · · · · · μ̃1
n

...

...

...

...

︸ ︷︷ ︸
n + (k − r∗) columns of M̂ ′

Fig. 2. A depiction of the matrix used by WAM. For ease of illustration the columns J of M
are depicted as being the rightmost columns of M , and the columns J ′ from the augmenting columns
ûk−t+1, . . . , ûk are depicted as being the leftmost of those augmenting columns.

gridding.)

8. From the estimated values ˆ̃μi
j, compute the estimates μ̂i

j = ˆ̃μi
j/
√
π̂i

for all i, j. (Note that π̂i is never 0, since each is at least

ε− εwts > 0.)
9. Output the candidate (〈π̂1, . . . , π̂k〉, 〈μ̂1

1, μ̂
1
2, . . . , μ̂

k
n〉).

4.1. Linear algebra necessities. In this section we give the results from linear
algebra and numerical analysis necessary for the analysis of WAM.

Let A = (aij) be any k×n real matrix, and write its singular value decomposition
as A = UΣV . Here U is a k × k matrix with orthonormal columns u1, . . . , uk, Σ is
a k × k diagonal matrix with σ1(A) ≥ · · · ≥ σk(A) ≥ 0 on the diagonal, and V is a
k × n matrix with orthonormal rows. We let σ1(A) ≥ · · · ≥ σk(A) ≥ 0 denote the
singular values of A, and let u1, . . . , uk denote the corresponding left singular vectors
of A, i.e., the columns of U . If it is clear from context, we simply write σi for σi(A).
Recall that

• the vectors u1, . . . , uk form an orthonormal basis for Rk;
• σ1 = max‖x‖2=1 ‖x�A‖2 and σk = min‖x‖2=1 ‖x�A‖2.

The Frobenius norm ‖A‖F of a k × n matrix A is defined as ‖A‖F =
√∑

i,j(Ai,j)
2.

We recall the well-known fact that σk(A) equals the Frobenius norm distance from
the k × n matrix A to the nearest rank-deficient matrix Ã, i.e.,

σk(A) = min
rank(Ã)<k

‖A− Ã‖F .

The spectral norm ‖A‖2 of a k × n matrix A is ‖A‖2 = max‖x‖2=1 ‖Ax‖. It is

well known that ‖A‖2 = σ1 and ‖A‖F =
√

σ2
1 + · · · + σ2

k; note that this implies
‖A‖2 ≤ ‖A‖F .

Our first necessary result is a quantitative version of the elementary fact that a
full rank k × n matrix has a full rank k × k submatrix. We will use the following
theorem of Goreinov, Tyrtyshnikov, and Zamarashkin [15].

Theorem 7 (see [15]). Let V be a k × n real matrix with orthonormal rows.
Then there is a k × k submatrix VJ which has σk(VJ) ≥ 1/

√
k(n− k) + 1.
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The result we need is an easy corollary, Corollary 6 given above.
Proof of Corollary 6. Recall that by the singular value decomposition we have

A = UΣV , where U is a k×k matrix with orthonormal columns, Σ is a k×k diagonal
matrix with diagonal entries σ1, . . . , σk, and V is a k × n matrix with orthonormal
rows. Let VJ be the k × k submatrix of V whose existence is asserted by Theorem 7,
so σk(VJ) ≥ 1/

√
k(n− k) + 1. We have σk(U) = 1 (since U is an orthogonal matrix)

and σk(Σ) ≥ ε, so

σk(UΣVJ) ≥ σk(U)σk(Σ)σk(VJ) ≥ ε/
√
k(n− k) + 1,

where the inequality holds since σk(PQ) ≥ σk(P )σk(Q) for any k × k matrices P,Q.
(This is easily seen from the variational characterization σk(P ) = min‖x‖2=1 ‖x�P‖2.)
The corollary follows by observing that UΣVJ is the k × k submatrix of A whose
columns are in J .

The next result we will need is the characterization of what happens when the
last k − r∗ left singular vectors of a matrix are adjoined to it.

Proposition 8. Let A be a k × n matrix with columns a1, . . . , an. Fix any r∗,
and let ur∗+1, . . . , uk be the left singular vectors corresponding to the smallest singular
values σr∗+1, . . . , σk of A. Let A′ be A with the vectors ur∗+1, . . . , uk adjoined as
columns. Then

σk(A
′) ≥ min{1, σr∗(A)},

and for all r∗ + 1 ≤ � ≤ k and for all columns aj of A we have

|aj · u�| ≤ σr∗+1(A).

Proof. Write the singular value decomposition A = UΣV , where U is a k × k
matrix with orthonormal columns u1, . . . , uk, Σ is a k× k diagonal matrix with σ1 ≥
· · · ≥ σk ≥ 0 on the diagonal, and V is a k × n matrix with orthonormal rows. It
follows that for any vector x ∈ Rk we have

‖x�A‖2
2 = σ2

1(x�u1)
2 + · · · + σ2

k(x
�uk)

2.

Let R denote the k×(k−r∗) matrix whose columns are ur∗+1, . . . , uk, so we have A′ =
[A R]. It is easily verified that the left singular vectors of R are simply ur∗+1, . . . , uk,
while the singular values of R are all 1. Consequently we have

‖x�R‖2
2 = (x�ur∗+1)

2 + · · · + (x�uk)
2

for any x ∈ Rk.
Now recall the variational characterization of σk(A

′), namely σk(A
′) =

min‖x‖2=1 ‖x�A′‖2. Since ‖x�A′‖2 =
√
‖x�A‖2

2 + ‖x�R‖2
2, we have

(2) σk(A
′) = min

‖x‖2=1

√
σ2

1(x�u1)2 + · · · + σ2
k(x

�uk)2 + (x�ur∗+1)2 + · · · + (x�uk)2.

Since u1, . . . , uk form an orthonormal basis for Rk we have that (x�u1)
2 + · · · +

(x�uk)
2 = 1 for all ‖x‖2 = 1. If we let αx = (x�ur∗+1)

2 + · · · + (x�uk)
2, then the

quantity inside the square root of (2) is at least σ2
r∗(1−αx)+αx ≥ min{σ2

r∗ , 1}. This
proves the first inequality of the proposition.
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For the second inequality, we observe that aj · u� = u�
� UΣvj , where vj is the jth

column of V . Since U is orthonormal and Σ�,� = σ� we thus have

|u�
� UΣvj | = |σ�v�,j | ≤ σ� ≤ σr∗+1,

where the first inequality holds since the rows of V are orthonormal, and hence each
entry of V must be at most 1 in magnitude.

The final result we will need involves controlling the error in a perturbed linear
system in terms of the smallest singular value. Although we could not find the fol-
lowing statement in the literature, it should be considered a very basic result from
numerical analysis.

Proposition 9. Let A be a nonsingular k × k matrix, b be a k-dimensional
vector, and x be the solution to Ax = b. Assume that ‖x‖∞ ≤ 1. Suppose A′ is a
k×k matrix such that each entry of A−A′ is at most εmatrix in magnitude, and assume
that εmatrix < σk(A)/2k. Let b′ be a k-dimensional vector satisfying ‖b− b′‖∞ ≤ εrhs.
Let x′ be the solution to A′x′ = b′. Then we have

‖x− x′‖∞ ≤ O(k3/2)
εmatrix + εrhs

σk(A)
.

Proof. Write E = A − A′ and η = b − b′. By our assumption on A′ we have
‖E‖F = ‖A−A′‖F ≤ kεmatrix. By our assumption on εmatrix this is at most σk(A)/2.
It follows that σk(A

′) ≥ σk(A)/2, and in particular A′ is nonsingular. Thus x′ is
indeed well defined, and we may write

Ax−Ax′ = Ex′ + η ⇒ x− x′ = A−1(Ex′ + η)

⇒ ‖x− x′‖2 ≤ ‖A−1‖2(‖E‖2‖x′‖2 + ‖η‖2)

≤ 1

σk(A)

(
(kεmatrix)(‖x− x′‖2 + ‖x‖2) + (

√
kεrhs)

)

⇒ (σk(A) − kεmatrix)‖x− x′‖2 ≤ kεmatrix‖x‖2 +
√
kεrhs.

We now use σk(A) − kεmatrix ≥ σk(A)/2 to conclude

‖x− x′‖2 ≤ 2(kεmatrix‖x‖2 +
√
kεrhs)

σk(A)
.

Finally, ‖x− x′‖∞ ≤ ‖x− x′‖2 and ‖x‖2 ≤ √
k complete the proof.

4.2. Proof of Theorem 4. We go through the algorithm step by step, as it
appears at the start of section 4. In step 1 of WAM, we define constants εwts = ε3,
τ = ε2/n2, and εmatrix = τk+1, which we use throughout the proof.

In step 2 of WAM, the algorithm will grid over estimates π̂i that satisfy |π̂i−πi| ≤
εwts for all i. In this case, any mixing component Xi whose mixing weight πi is at
least ε will not be eliminated. Since we need not be concerned with accuracy for the
means of the other mixing components, we can ignore them and assume for the rest
of the proof that πi ≥ ε for all i.

Now we come to the main work in the proof of correctness of Theorem 4: namely,
showing that in steps 3–7 of Algorithm WAM, accurate estimates for the μ̃i

j ’s are
produced. Our goal for most of the remainder of the proof will be to show that we
obtain estimates ˆ̃μi

j satisfying

| ˆ̃μi
j − μ̃i

j | ≤ ε̃ := ε2
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for all i.
To that end, let r∗ = r∗τ (M), the τ -essential rank of M . We will quickly dismiss

the two easy cases, r∗ = 0 and r∗ = k; we then treat the general case 0 < r∗ < k.
r∗ = 0 case. By definition, in this case σ1(M) ≤ τ ≤ ε̃. Since σ1(M) is at least

as large as the magnitude of M ’s largest entry, we must therefore have |μ̃i
j | ≤ ε̃ for

all i, j. Now when WAM tries r∗ = 0 in step 4, tries the k standard basis vectors for
û1, . . . , ûk in step 5, and chooses all of these vectors for J in step 6, it will set B̂ = 0
in step 7 and get ˆ̃μi

j = 0 for all i, j when it solves the linear system. But this is indeed
within an additive τ ≤ ε̃ of the true values, as desired.

r∗ = k case. By definition, it’s not hard to see that in this case we must have
σk(M) ≥ τk. Now consider when WAM tries r∗ = k in step 4. Step 5 becomes
vacuous. By Corollary 6 there is some set of k columns J = J such that σk(MJ ) ≥
σk(M)/

√
k(n− k) + 1 ≥ τk/n. In step 6, WAM will try out this J and grid the

associated entries to within ±εmatrix. In step 7 the algorithm will use only ĉorr’s in
forming B̂, and these will also be correct to within an additive ±εmatrix. We can now
use Proposition 9—note that εmatrix = τk+1 ≤ (τk/n)/2k ≤ σk(MJ )/2k, as necessary.
This gives estimates in step 7 satisfying

| ˆ̃μi
j − μ̃i

j | ≤ O(k3/2)
2εmatrix

τk/n
= O(k3/2nτ) ≤ ε̃,

as desired.
0 < r∗ < k case. In this case, by definition of the essential rank, we have

(3) τσr∗(M) ≥ σr∗+1(M) ≥ τk.

In step 4 WAM will try out the correct value for r∗, and in step 5 WAM will grid
over vectors ûr∗+1, . . . , ûk that are within ±εmatrix in each coordinate of the actual
last left singular vectors of M , ur∗+1, . . . , uk. Let M ′ denote the matrix M with these
true singular vectors adjoined. By Proposition 8 we have

(4) σk(M
′) ≥ min{1, σr∗(M)}.

From the crude upper bound σr∗(M) ≤ ‖M‖F =
√∑

i,j(μ̃
i
j)

2 ≤ √
kn, we can re-

state (4) as simply σk(M
′) ≥ σr∗(M)/

√
kn. Now applying Corollary 6, we conclude

there is a subset J of M ′’s columns with |J | = k such that

(5) σk(M
′
J ) ≥ σk(M

′)/
√
k(n− k) + 1 ≥ σr∗(M)/kn.

In step 6, WAM will try this set of columns J = J ∪ J ′; it will also grid estimates
for the entries in this column that are correct up to an additive ±εmatrix. Note that

WAM now has an M̂ ′
J that has all entries correct up to an additive ±εmatrix. Now

consider the matrix B̂ WAM forms in step 7. For the columns corresponding to J
the entries are given by ĉorr’s, which are correct to within ±εmatrix. For the columns
corresponding to J ′ the entries are 0’s; by the second part of Proposition 8 these
are correct up to an additive σr∗+1(M). We now use Corollary 6 to bound the error

resulting from solving the system M �̄
J M̂ ′J = B̂ in step 7. To check that the necessary

hypothesis is satisfied we combine (3) and (5):

σk(M
′
J )/2k ≥ σr∗(M)/2k2n ≥ τk−1/2k2n ≥ τk+1 = εmatrix.
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Now Proposition 9 tells us that the ˆ̃μi
j produced satisfy

| ˆ̃μi
j−μ̃i

j | ≤ O(k3/2)
εmatrix + max{εmatrix, σr∗+1(M)}

σk(M ′
J )

≤ O(k5/2n)
εmatrix + σr∗+1(M)

σr∗(M)
,

where in the last step we used (5). But by (3) we have εmatrix/σr∗(M) ≤ εmatrix/τ
k−1 =

τ2 and also σr∗+1(M)/σr∗(M) ≤ τ . Thus we have

| ˆ̃μi
j − μ̃i

j | ≤ O(k5/2n)τ ≤ ε̃,

as desired.
It remains to bound the error blowup in step 8. By this point we have values

for the πi’s that are accurate to within ±εwts, and further, all πi’s are at least ε.
We also have values for all μ̃i

j ’s that are accurate to within ±ε̃. Since the function
g(x, y) = y/

√
x satisfies

sup
x∈[ε,1]
y∈[−1,1]

∣∣∣∣
∂

∂x
g(x, y)

∣∣∣∣ =
1

2
ε−3/2 and sup

x∈[ε,1]
y∈[−1,1]

∣∣∣∣
∂

∂y
g(x, y)

∣∣∣∣ = ε−1/2,

the mean value theorem implies that in step 8 our resulting estimates μ̂i
j are accurate

to within additive error

εwts · 1

2
ε−3/2 + ε̃ · ε−1/2 ≤ ε,

as necessary.
This completes the proof of WAM’s correctness. As for the running time, it is

easy to see that the dominating factor comes from gridding over the entries of MJ and
ur∗+1, . . . , uk. Since there are k2 entries and we grid to granularity εmatrix = τk+1 =

poly(n/ε)k, the overall running time is poly(n/ε)k
3

; i.e., poly(n/ε) for constant k.

5. Estimating higher moments. In this section we explain our remarks from
section 2.3 more thoroughly; specifically, how to use WAM to learn a mixture Z of
k product distributions X1, . . . ,Xk over {0, . . . , b − 1}n. Such a distribution can be
“parametrically” described by mixing weights {πi}i∈[k] and probabilities {pij,�}, where

pij,� = Pr[Xi
j = �].

Running WAM on samples from Z gives a list of estimates of mixing weights and
coordinate means E[Xi

j ], but these coordinate means are insufficient to completely

describe the distributions Xi
j . However, suppose that we run WAM on samples from

Z� (i.e., each time we obtain a draw (z1, . . . , zn) from Z, we actually give (z�1, . . . , z
�
n)

to WAM). It is easy to see that, by doing this, we are running WAM on the π-
weighted mixture of distributions (X1)�, . . . , (Xk)�; we will thus get as output a list
of candidates for the mixing weights and the coordinate �th moments E[(Xi

j)
�] for Z.

Our algorithm for distributions over {0, . . . , b− 1}n uses this approach to obtain
a list of candidate descriptions of each of the first b − 1 coordinate moments of Z.
The algorithm then essentially takes the cross-product of these b− 1 lists to obtain a
list of overall candidates, each of which is an estimate of the mixing weights and all
b− 1 moments. Since WAM guarantees that each list contains an accurate estimate,
the overall list will also contain an accurate estimate of the mixing weights and of all
moments. For each candidate the estimate of the moments is then easily converted
to “parametric form” {pij,�}, and as we show, any candidate with accurate estimates

of the moments yields an accurate estimate of the probabilities pij,�.



LEARNING MIXTURES OF PRODUCT DISTRIBUTIONS 1551

We now give the main theorem of the section, the proof of which contains the
details of the algorithm.

Theorem 10. Fix k = O(1), b = O(1). Let Z be a mixture of k product
distributions X1, . . . ,Xk over {0, . . . , b − 1}n, so Z is described by mixing weights
π1, . . . , πk and probabilities {pij,�}i∈[k], j∈[n], �∈{0,...,b−1}.

There is an algorithm with the following property: for any ε, δ > 0, the algorithm
runs in poly(n/ε) · log 1

δ time, and with probability 1 − δ outputs a list of candidates
〈{π̂i}, {p̂ij,�}〉 such that for at least one candidate in the list, the following hold:

1. |π̂i − πi| ≤ ε for all i ∈ [k]; and
2. |p̂ij,� − pij,�| ≤ ε for all i, j, � such that πi ≥ ε.

Proof. For each � = 1, . . . , b−1, the algorithm runs WAM on the random variable
Z�. In each such run, the “ε” parameter of WAM is set to ε′ := εσb/(O(b3/2) ·
(b − 1)b−1), where σb is a constant we define later, and the “δ” parameter is set to
δ′ := δ/(b − 1). From these runs we obtain (b − 1) lists L1, . . . , Lb−1 of candidates
〈{π̂i}, {μ̂i

j,�}i,j〉, where μ̂i
j,� is an estimate of μi

j,� = E[(Xi
j)

�]. The algorithm then

uses these (b − 1) lists to construct one larger list L of candidates 〈{π̂i}, {μi
j,�}i,j,�〉,

where each candidate estimates the mixing weights and all b − 1 moments. This is
done by taking all possible combinations of one candidate from each of the b− 1 lists
L1, . . . , Lb−1 and combining them as follows: take the mixing weights {π̂i} from the
candidate from list L1, and for � = 1, . . . , b−1, take {μi

j,�}i,j from the candidate from

list L�. The list L will have size |L| =
∏b−1

�=1 |L�| = poly(n, 1/ε).

Theorem 4 on the WAM algorithm guarantees that with probability at least
1 − (b − 1)δ′ = 1 − δ, each list L� contains a candidate whose {μ̂i

j,�} are accurate
estimates of the �th moments. When we choose the accurate candidate from each
list, we will obtain an overall candidate in L that is accurate on all b − 1 moments.
Define ε′′ := ε′(b−1)b−1/2 = εσb/O(b3/2). Formally, the list L will contain a candidate
〈{π̂i}, {μ̂i

j,�}i,j,�〉 such that (i) |π̂i − πi| ≤ ε′′ for all i ∈ [k], and (ii) |μ̂i
j,� − μi

j,�| ≤ ε′′

for all i, j, � such that πi ≥ ε′′. (The extra factor of (b− 1)b−1/2 comes from the need
to scale the distributions for WAM so that the means fall into the range [−1, 1].)

To complete the proof of the theorem, we must show how the algorithm converts
each candidate 〈{π̂i}, {μ̂i

j,�}〉 in the list L into “parametric” form 〈{π̂i}, {p̂ij,�}〉 so that
the “good” candidate satisfying (i) and (ii) above does not incur much error. It is easy
to see that for a given i ∈ [k], j ∈ [n], we have (μi

j,0, . . . , μ
i
j,b−1) = (pij,0, . . . , p

i
j,b−1)V ,

where V is a b × b Vandermonde matrix (more precisely, Vα,β = (α − 1)β−1, with
V1,1 = 1). Following this characterization, the algorithm computes (p̂ij,0, . . . , p̂

i
j,b−1) =

(μ̂i
j,0, . . . , μ̂

i
j,b−1)V

−1 for each i, j to obtain parametric estimates {p̂ij,�} for the prob-

abilities {pij,�}.
Now applying Proposition 9, we have that for all i, j, � we have |p̂ij,� − pij,�| ≤

ε′′ · O(b3/2)/σb = ε, where σb is set equal to σb(V ), the smallest singular value of V .
(Since the Vandermonde matrix is nonsingular, even without specifying σb we have
that it is a positive constant that depends only on b; it can be shown to be at least
b−poly(b).) The running time is dominated by the time to take the cross-product of
the lists. This concludes the proof of Theorem 10.

We remark that the running time dependence on b is of the form (n/ε)poly(b); since
a b in the exponent is inevitable in our cross-product approach, we have refrained from
excessive optimization of the dependence on b (by doing things such as representing
the alphabet by bth roots of unity rather than equally spaced reals, which would have
given a better Vandermonde singular value bound).
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6. The road ahead. Since the binary domain {0, 1}n corresponds to the b = 2
case of the general {0, . . . , b− 1}n domain, here we shall deal only with the latter.

Recall that pij,� is the probability that under the ith product distribution over
{0, . . . , b − 1}n in the target mixture Z, the jth coordinate takes value �. From
Theorem 10, we have a list L of M candidates 〈{π̂i}, {p̂ij,�}〉 such that at least one
candidate is parametrically accurate—i.e., satisfies the following:

1. |π̂i − πi| ≤ ε for all i = 1 . . . k; and
2. |p̂ij,� − pij,�| ≤ ε for all i ∈ [k], j ∈ [n] and � ∈ {0, . . . , b− 1} such that πi ≥ ε.

In section 7, we show how to convert a candidate into a true mixture of product
distributions, in such a way that any parametrically accurate candidate becomes a
mixture distribution with small KL divergence from the target distribution (see The-
orem 11). Applying this conversion procedure to the list from Theorem 10, we get
a list of M hypothesis mixture distributions such that at least one hypothesis in the
list has small KL divergence from the target Z (see Theorem 15).

Then in section 8 we show how a maximum likelihood procedure can find a KL-
accurate hypothesis (one with small KL divergence from Z) from among a list of
hypotheses, one of which is guaranteed to have good KL divergence (see Theorem 16).

In section 9 we combine Theorem 16 with Theorem 15 to obtain Theorem 2.

7. From candidates to hypothesis mixture distributions. The following
theorem defines a process that converts a single candidate for the πi’s and pij,�’s of Z
to a true mixture of product distributions over {0, . . . , b− 1}n that has at least some
minimum mass on every point in {0, . . . , b − 1}n. (As we will see in section 8, this
minimum mass condition is required by the maximum likelihood procedure.) More
importantly, the theorem guarantees that if the candidate is parametrically accurate,
then the process outputs a mixture distribution with small KL divergence relative
to Z.

Theorem 11.

1. There is an efficient procedure A which takes values εbprobs, εwts > 0 and

π̂i, p̂ij,� as inputs and outputs a mixture Ż of k product distributions over

{0, . . . , b−1}n with mixing weights π̇i > 0 and probabilities ṗij,� > 0 satisfying

(a)
∑k

i=1 π̇
i = 1, and for each i ∈ [k] and j ∈ [n],

∑b−1

�=0 p
i
j,� = 1;

(b) Ż(x) ≥ (εbprobs)
n for all x ∈ {0, . . . , b− 1}n.

2. Furthermore, suppose that Z is a mixture of k product distributions on
{0, . . . , b− 1}n with mixing weights π1, . . . , πk and probabilities pij,�, and that
the following are satisfied:
(a) for i = 1, . . . , k we have |πi − π̂i| ≤ εwts, and
(b) for all i, j, � such that πi ≥ εminwt we have |pij,� − p̂ij,�| ≤ εbprobs.

Then for sufficiently small εbprobs and εwts the mixture Ż will satisfy

(6) KL(Z||Ż) ≤ η(εbprobs, εwts, εminwt),

where

η(εbprobs, εwts, εminwt) := n · (12b3ε
1/2
bprobs) + kεminwtn ln(b/εbprobs) + ε

1/3
wts.

We prove Theorem 11 in section 7.2 after setting up the required machinery in
section 7.1.
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7.1. Some tools. Here we give some propositions which will be used in the proof
of Theorem 11.

The following simple proposition bounds the KL divergence between two product
distributions in terms of the KL divergences between their coordinates.

Proposition 12. Suppose that P1, . . . ,Pn and Q1, . . . ,Qn are distributions
satisfying KL(Pi||Qi) ≤ εi for all i. Then KL(P1×· · ·×Pn||Q1×· · ·×Qn) ≤ ∑n

i=1 εi.
Proof. We prove the case n = 2:

KL(P1 × P2||Q1 × Q2) =
∑

x

∑

y

P1(x)P2(y) ln
P1(x)P2(y)

Q1(x)Q2(y)

=
∑

x

∑

y

P1(x)P2(y) ln
P1(x)

Q1(x)
+
∑

x

∑

y

P1(x)P2(y) ln
P2(y)

Q2(y)

=
∑

y

P2(y) KL(P1||Q1) +
∑

x

P1(x) KL(P2||Q2)

≤ ε1 + ε2.

The general case follows by induction.
Very roughly speaking, the following proposition states that if P is a π-weighted

mixture of distributions P1, . . . ,Pk and Q is a γ-weighted mixture of distributions
Q1, . . . ,Qk, then if each Qi is “close” to the corresponding Pi and the π-weighting
is “close” to the γ-weighting, then Q is “close” to P. To make this precise we need
several technical conditions as stated in the proposition.

Proposition 13. Let π1, . . . , πk, γ1, . . . , γk ≥ 0 be mixing weights satisfying∑
πi =

∑
γi = 1. Let ε1, ε2, ε3, εI , εall be positive constants. Let I = {i : πi ≥ ε3}.

Let P1, . . . ,Pk and Q1, . . . ,Qk be distributions. Suppose that
1. |πi − γi| ≤ ε1 for all i ∈ [k];
2. γi ≥ ε2 for all i ∈ [k];
3. KL(Pi||Qi) ≤ εI for all i ∈ I;
4. KL(Pi||Qi) ≤ εall for all i ∈ [k].

Then, letting P denote the π-mixture of the Pi’s and Q the γ-mixture of the Qi’s,
for any ε4 > ε1 we have

KL(P||Q) ≤ εI + kε3εall + kε4 ln
ε4
ε2

+
ε1

ε4 − ε1
.

Proof.

KL(P||Q) =
∑

x

(
∑

i

πiPi(x)

)
ln

∑
i π

iPi(x)∑
i γ

iQi(x)

≤
∑

x

∑

i

πiPi(x) ln
πiPi(x)

γiQi(x)
(by the log-sum inequality [7])

=
∑

i

πi
∑

x

(
Pi(x) ln

Pi(x)

Qi(x)
+ Pi(x) ln

πi

γi

)

=
∑

i

πi KL(Pi||Qi) +
∑

i

πi ln
πi

γi

=

(
∑

i∈I
πi KL(Pi||Qi)

)
+

(
∑

i/∈I
πi KL(Pi||Qi)

)
+
∑

i

πi ln
πi

γi
.(7)
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For the first term of (7), we have

∑

i∈I
πi KL(Pi||Qi) ≤ εI .

For the second term of (7), we have

∑

i/∈I
πi KL(Pi||Qi) ≤ kε3 · max

i∈[k]
{KL(Pi||Qi)} ≤ kε3εall.

For the third term of (7), letting I ′ = {i ∈ I : πi ≥ ε4}, we have

(8)
∑

i

πi ln
πi

γi
=
∑

i/∈I′

πi ln
πi

γi
+
∑

i∈I′

πi ln
πi

γi
.

For the first sum in (8) we have

∑

i/∈I′

πi ln
πi

γi
≤ kε4 ln

ε4
ε2
.

For the second sum in (8), note first that for any i such that πi < γi, the contribution
to the second sum is negative. For any other i, we have πi ≥ γi and therefore

γi ≥ πi − ε1. Consequently we have πi

γi ≤ πi

πi−ε1
= 1 + ε1

πi−ε1
≤ 1 + ε1

ε4−ε1
. Hence the

second sum in (8) is at most

∑

i∈I′

πi ln
πi

γi
≤
∑

i∈I′

πi ln

(
1 +

ε1
ε4 − ε1

)
≤ ε1

ε4 − ε1
.

Putting all the bounds together, the proof is done.

Finally, we will also need the following elementary proposition.

Proposition 14. Let P and Q denote distributions over {0, . . . , b − 1}, where
P has probabilities p0, . . . , pb−1 and Q has probabilities q0, . . . , qb−1. Suppose that
|p�−q�| < ξ ≤ 1

4
for all � ∈ {0, . . . , b−1}, and that also q� ≥ τ for all � ∈ {0, . . . , b−1},

where τ < ξ. Then KL(P||Q) ≤ 2ξ1/2 + bξ3/2/τ .

Proof. Let Lsmall = {� ∈ {0, . . . , b − 1} : p� ≤ ξ1/2} and Lbig = {0, . . . , b − 1} \
Lsmall. We bound the contribution to KL(P||Q) from Lsmall and Lbig separately.

Now for the Lsmall case. For all �, it is easy to see that ln p�

q�
≤ ln ξ+τ

τ = ln(1+ ξ
τ ) ≤

ξ
τ . Thus each � ∈ Lsmall contributes at most p� ln p�

q�
≤ ξ3/2

τ . Since |Lsmall| ≤ b, the

total contribution to KL(P||Q) from Lsmall is at most b ξ
3/2

τ .

If � ∈ Lbig, then we have

p�
q�

≤ p�
p� − ξ

= 1 +
ξ

p� − ξ
≤ 1 +

ξ

ξ1/2 − ξ
≤ 1 + 2ξ1/2,

where the last inequality holds since ξ1/2 ≤ ξ1/2/2 (since ξ ≤ 1
4
). We thus have that

the total contribution to KL(P||Q) from � ∈ Lbig is at most ln(1 + 2ξ1/2) ≤ 2ξ1/2.
This proves the proposition.
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7.2. Proof of Theorem 11. We construct a mixture Ż of product distributions
Ż1, . . . , Żk by defining new mixing weights π̇i and probabilities ṗij,�. The procedure
A is defined as follows:

1. For all i = 1, . . . , k let

π̈i =

{
π̂i if π̂i ≥ εwts,
εwts if π̂i < εwts.

Now let s be such that s
∑k

i=1 π̈
i = 1, and take π̇i = sπ̈i.

2. For all i ∈ [k] and j ∈ [n], let

p̈ij,� =

{
p̂ij,� if p̂ij,� ≥ εbprobs,

εbprobs if p̂ij,� < εbprobs.

Now let t be such that t
∑

�∈{0,...,b−1} p̈
i
j,� = 1, and take ṗij,� = tp̈ij,�.

It is clear from construction that this yields π̇i, ṗij,� that satisfy condition 1(a) of the

theorem. It is also clear that for each i ∈ [k] we have that the distribution Żi satisfies
Żi(x) ≥ εnbprobs for all x ∈ {0, . . . , b − 1}n, and thus the mixture Ż must satisfy

Ż(x) ≥ εnbprobs for all these x. This gives part 1(b) of the theorem.

We now turn to part 2, and henceforth assume that the conditions on πi, π̂i, pij,�,

p̂ij,� from part 2 are indeed all satisfied. Roughly speaking, these conditions tell us

that π̂i, p̂ij,� are “good” (in the sense that they are parametrically accurate); we will

show that the resulting π̇i, ṗij,� are “good” (in the sense of giving rise to a mixture Ż
that satisfies (6)).

Our goal is to apply Proposition 13 with parameter settings

ε1 = 3kεwts, ε2 =
εwts

2
, ε3 = εminwt,

ε4 = ε
1/2
wts, εI = 12nb3ε

1/2
bprobs, εall = n ln(b/εbprobs)(9)

to bound KL(Z||Ż). To satisfy the conditions of Proposition 13 we must (1) upper
bound |πi − π̇i| for all i, (2) lower bound π̇i for all i, (3) upper bound KL(Zi||Żi) for
all i such that πi ≥ εminwt, and (4) upper bound KL(Zi||Żi) for all i ∈ [k]. We now
do this.

(1) Upper bounding |πi − π̇i|. Fix any i ∈ [k]. If π̂i ≥ εwts, then we have π̈i = π̂i,
so |πi − π̈i| ≤ εwts. On the other hand, if π̂i < εwts, then it must be the case that

πi ≤ 2εwts, so we again have |πi − π̈i| ≤ εwts. Since
∑k

i=1 π
i = 1 it follows that

(10)

∣∣∣∣∣

k∑

i=1

π̈i − 1

∣∣∣∣∣ ≤ kεwts

and thus

k∑

i=1

π̈i ∈ [1 − kεwts, 1 + kεwts].

By definition of s this gives

(11) s ∈
[

1

1 + kεwts

,
1

1 − kεwts

]
.
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Multiplying inequality (10) by s, recalling that s
∑k

i=1 π̈
i = 1, and assuming εwts ≤

1/(2k), we obtain

|1 − s| ≤ skεwts ≤ kεwts

1 − kεwts

≤ 2kεwts.

Thus, we have

|πi − π̇i| ≤ |πi − π̈i| + |π̈i − π̇i|
≤ εwts + |π̈i − π̇i|
= εwts + |(1 − s)π̈i|
≤ εwts + 2kεwts|π̈i|
≤ εwts + 2kεwts;

certainly, this gives |πi − π̇i| ≤ 3kεwts.
(2) Lower bounding π̇i. To lower bound π̇i, we note that since π̈i ≥ εwts for all i,

under the assumption εwts ≤ 1/(2k), we have

π̇i = sπ̈i ≥ 1

1 + kεwts

π̈i ≥ εwts

1 + kεwts

≥ 2εwts

3
,

where the first inequality follows from (11).
(3) Upper bounding KL(Zi||Żi) for all i such that πi ≥ εminwt. Fix an i such that

πi ≥ εminwt, and fix any j ∈ [n]. Let P denote the distribution over {0, . . . , b − 1}
with probabilities pij,0, . . . , p

i
j,b−1, and let Q denote the distribution over {0, . . . , b−1}

with probabilities ṗij,0, . . . , ṗ
i
j,b−1.

We first show that each ṗij,� is close to p̂ij,� and thus also to pij,�. This is done very

much as in (1) above. If p̂ij,� ≥ εbprobs, then we have p̈ij,� = p̂ij,�, and so |pij,� − p̈ij,�| ≤
εbprobs (by condition 2(b) in the theorem statement). On the other hand, if p̂ij,� <

εbprobs, then it must be the case that pij,� ≤ 2εbprobs, so we again have |pij,� − p̈ij,�| ≤
εbprobs. Since

∑b−1

�=0 p
i
j,� = 1 it follows that

(12)

∣∣∣∣∣

b−1∑

�=0

p̈ij,� − 1

∣∣∣∣∣ ≤ bεbprobs

and thus

b−1∑

�=0

p̈ij,� ∈ [1 − bεbprobs, 1 + bεbprobs].

By definition of t this gives

(13) t ∈
[

1

1 + bεbprobs

,
1

1 − bεbprobs

]
.

Multiplying inequality (12) by t, recalling that t
∑b−1

�=0 p̈
i
j,� = 1, and assuming εbprobs ≤

1/(2b), we obtain

|1 − t| ≤ tbεbprobs ≤ bεbprobs

1 − bεbprobs

≤ 2bεbprobs.
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Thus, we have

|pij,� − ṗij,�| ≤ |pij,� − p̈ij,�| + |p̈ij,� − ṗij,�|
≤ εbprobs + |p̈ij,� − ṗij,�|
= εbprobs + |(1 − t)p̈ij,�|
≤ εbprobs + 2bεbprobs|p̈ij,�|
≤ εbprobs + 2bεbprobs;

certainly, this gives |pij,� − ṗij,�| ≤ 3bεbprobs.

Moreover, since p̈ij,� ≥ εbprobs for all � and ṗij,� = tp̈ij,�, where t > 1
2

(by (13) and

εbprobs ≤ 1/b), we also have ṗij,� ≥ εbprobs/2. We may thus apply Proposition 14
to P and Q (taking τ = εbprobs/2 and ξ = 3bεbprobs), and we obtain KL(P||Q) ≤
2(3bεbprobs)

1/2 + b(3bεbprobs)
3/2/(εbprobs/2). A rough estimation gives that this is at

most 12b3ε
1/2
bprobs. Each Zi (Żi, respectively) is the product of n such distributions P

(distributions Q, respectively) over {0, . . . , b − 1}. Therefore, by Proposition 12, we

have KL(Zi||Żi) ≤ n · (12b3ε
1/2
bprobs) for all i with πi ≥ εminwt.

(4) Upper bounding KL(Zi||Żi) for all i ∈ [k]. This is simple: fix any i ∈ [k].
Since we know that Żi(x) ≥ εnbprobs for all x ∈ {0, . . . , b− 1}n, we immediately have

KL(Zi||Żi) ≤ −H(Zi) + ln(1/(εbprobs)
n) ≤ n ln(b/εbprobs),

where H(X) :=
∑

x X(x) ln(1/X(x)) denotes the“entropy in nats” of the random
variable X.

We can now apply Proposition 13 with the parameter settings given by (9). Propo-
sition 13 implies

KL(Z||Ż) ≤ n · (12b3ε
1/2
bprobs) + kεminwtn ln(b/εbprobs)

+

[
kε

1/2
wts ln

ε
1/2
wts

εwts/2
+

3kεwts

ε
1/2
wts − 3kεwts

]
.

Considering the terms of the expression in brackets above, if we set εwts = c
k7 for

some appropriately chosen small constant c, then we have that

kε
1/2
wts ln

ε
1/2
wts

εwts/2
= kε

1/2
wts ln

2

ε
1/2
wts

≤ 1

2
ε
1/3
wts

and

3kεwts

ε
1/2
wts − 3kεwts

≤ 6kε
1/2
wts ≤

1

2
ε
1/3
wts.

Hence

KL(Z||Ż) ≤ n · (12b3ε
1/2
bprobs) + kεminwtn ln(b/εbprobs) + ε

1/3
wts.

This concludes the proof of Theorem 11.
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7.3. Some candidate distribution is good. Here we establish the following.

Theorem 15. Let b = O(1), and let Z be any unknown mixture of k product dis-
tributions over {0, . . . , b−1}n. There is a poly(n/ε)·log 1

δ time algorithm which, given
samples from Z, outputs a list of poly(n/ε) many mixtures of product distributions
over {0, . . . , b− 1}n with the properties that

1. every distribution Z′ in the list satisfies ( ε
36nb3 )2n ≤ Z′(x) ≤ 1 for all x ∈

{0, . . . , b− 1}n; and
2. with probability 1−δ, some distribution Z� in the list satisfies KL(Z||Z�) ≤ ε.

Proof. We will use a specialization of Theorem 10 in which we have different
parameters for the different roles that ε plays, as follows.

Theorem 10
′
. Fix k = O(1), b = O(1). Let Z be a mixture of k product

distributions X1, . . . ,Xk over {0, . . . , b−1}n, so that Z is described by mixing weights
π1, . . . , πk and probabilities {pij,�}i∈[k], j∈[n], �∈{0,...,b−1}.

There is an algorithm with the following property: for any εwts, εbprobs, εminwt, δ >
0, with probability 1 − δ the algorithm outputs a list of candidates 〈{π̂i}, {p̂ij,�}〉 such
that for at least one candidate in the list, the following hold:

1. |π̂i − πi| ≤ εwts for all i ∈ [k]; and
2. |p̂ij,� − pij,�| ≤ εbprobs for all i, j, � such that πi ≥ εminwt.

The algorithm runs in time poly(n/ε′) · log(1/δ), where ε′ = min{εwts, εbprobs, εminwt}.
Let ε, δ > 0 be given. We run the algorithm of Theorem 10′ with parameters

εbprobs = ( ε
36nb3 )2, εminwt = ε

3kn ln(1296b7n2/ε2) , and εwts = ε3

27
. With these parameters

the algorithm runs in time poly(n/ε) · log 1
δ . By Theorem 10′, we get as output a list

of poly(n/ε) many candidate parameter settings 〈{π̂i}, {μ̂i
j}〉 with the guarantee that

with probability 1 − δ at least one of the settings satisfies

• |πi − π̂i| ≤ εwts for all i ∈ [k], and
• |p̂ij,� − pij,�| ≤ εbprobs for all i, j, � such that πi ≥ εminwt.

We now pass each of these candidate parameter settings through Theorem 11. It
follows that the resulting distributions each satisfy εnbprobs = ( ε

36nb3 )2n ≤ Z′(x) ≤ 1
for all x ∈ {0, 1}n. A routine verification shows that with our choice of εbprobs, εminwt,
and εwts we have

n · (12b3ε
1/2
bprobs) ≤

ε

3
, kεminwtn ln

b

εbprobs

≤ ε

3
, and ε

1/3
wts ≤

ε

3
.

Thus η(εbprobs, εwts, εminwt) ≤ ε, and we have that at least one of the resulting distri-
butions Z� satisfies KL(Z||Z�) ≤ ε.

8. Finding a good hypothesis using maximum likelihood. Theorem 15
gives us a list of distributions, at least one of which is close to the target mixture
distribution Z that we are trying to learn. Now we must identify some distribution
in the list which is close to the target. In this section we give a simple maximum
likelihood algorithm which helps us accomplish this. This is a standard situation
(see, e.g., section 4.6 of [14]), and we emphasize that the ideas behind Theorem 16
below are not new. However, we were unable to find in the literature a clear statement
of the exact result which we need, so for completeness we give our own statement and
proof below.

Let P be a target distribution over some space X. Let Q be a set of hypothesis
distributions such that at least one Q∗ ∈ Q has KL(P||Q∗) ≤ ε. The following
algorithm will be used to find a distribution QML ∈ Q which is close to P. Draw a set
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S of samples from the distribution P. For each Q ∈ Q, compute the log-likelihood

Λ(Q) =
∑

x∈S
(− lnQ(x)).

Now output the distribution QML ∈ Q such that Λ(Q) is minimum. This is known as
the maximum likelihood (ML) algorithm since it outputs the distribution in Q which
maximizes arg maxQ∈Q

∏
x∈S Q(x).

Theorem 16. Let β, α, ε > 0 be such that α < β. Let Q be a set of hypothesis
distributions for some distribution P over the space X such that at least one Q∗ ∈ Q
has KL(P||Q∗) ≤ ε. Suppose also that α ≤ Q(x) ≤ β for all Q ∈ Q and all x such
that P(x) > 0.

Run the ML algorithm on Q using a set S of independent samples from P, where
|S| = m. Then, with probability 1 − δ, where

δ ≤ (|Q| + 1) · exp

(
−2m

ε2

log2 (β/α)

)
,

the algorithm outputs some distribution QML ∈ Q which has KL(P||QML) ≤ 4ε.
Before proving Theorem 16 we give some preliminaries. Let P and Q be arbitrary

distributions over some space X. We can rewrite the KL divergence between P and
Q as

(14) KL(P||Q) = −H(P) −
∑

x∈X

P(x) lnQ(x),

where H(P) = −∑
x∈X P(x) lnP(x) is the “entropy in nats” of P.

Consider the random variable − lnQ(x), where x is a sample from the distribution
P. Using (14), we can express the expectation of this variable in terms of the KL
divergence:

(15) Ex∈P[− lnQ(x)] = KL(P||Q) + H(P).

Recall that when the ML algorithm runs on a list Q of distributions, it uses a set
S of independent samples from P, where m = |S|. For each distribution Q ∈ Q, the
algorithm computes

Λ(Q) =
∑

x∈S
(− lnQ(x)).

So, by (15), we have that the expected “score” of distribution Q is the following:

(16) ES [Λ(Q)] = m(H(P) + KL(P||Q)).

We recall the theorem of Hoeffding [16], as follows.
Theorem 17 (Hoeffding). Let x1, . . . , xn be independent bounded random vari-

ables such that each xi falls into the interval [a, b] with probability one. Let X =∑n
i=1 xi. Then for any t > 0 we have

Pr[X − E[X] ≥ t] ≤ e−2t2/n(b−a)2 and Pr[X − E[X] ≤ −t] ≤ e−2t2/n(b−a)2 .

Now we can prove Theorem 16.
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Proof of Theorem 16. Call a distribution Q ∈ Q good if KL(P||QML) ≤ 4ε, and
bad otherwise. Note that, by assumption, we have at least one good distribution in Q.

The probability δ that the algorithm fails to output some good distribution is at
most the probability that either some bad distribution Q has Λ(Q) ≤ m(H(P) + 3ε)
or the good distribution Q∗ has Λ(Q∗) ≥ m(H(P) + 2ε). Thus, by a union bound,
we have

δ ≤ |Q| · Pr
[
Λ(Q) ≤ m(H(P) + 3ε) | KL(P||Q) ≥ 4ε

]

+ Pr
[
Λ(Q∗) ≥ m(H(P) + 2ε)

]
.

(17)

For each bad Q ∈ Q which has KL(P||Q) > 4ε we have

Pr[Λ(Q) ≤ m(H(P) + 3ε)] = Pr[Λ(Q) ≤ m(H(P) + 4ε) − εm)]

≤ Pr[Λ(Q) ≤ m(H(P) + KL(P||Q)) − εm)](18)

= Pr[Λ(Q) ≤ ES [Λ(Q)] − εm](19)

≤ exp

(
−2m

ε2

log2 (β/α)

)
.(20)

Equation (18) follows from the bound on the KL divergence, (19) follows from (16),
and (20) follows from the Hoeffding bound (Theorem 17).

Following the same logic for Q∗ where KL(P||Q∗) ≤ ε, we get

Pr[Λ(Q∗) ≥ m(H(P) + 2ε)] = Pr[Λ(Q∗) ≥ m(H(P) + ε) + mε]

≤ Pr[Λ(Q∗) ≥ m(H(P) + KL(P||Q∗)) + mε]

= Pr[Λ(Q∗) ≥ ES [Λ(Q∗)] + mε]

≤ exp

(
−2m

ε2

log2 (β/α)

)
.(21)

Theorem 16 follows from plugging (20) and (21) into (17).

9. Putting it all together. All the pieces are now in place for us to prove our
main learning result, Theorem 2, for learning mixtures of product distributions over
{0, . . . , b− 1}n.

Proof of Theorem 2. Run the algorithm described in Theorem 15. With prob-
ability 1 − δ this produces a list of T = poly(n/ε) many hypothesis distributions,
one of which has KL divergence at most ε from Z and each of which puts weight at
least ( ε

36nb3 )2n on every point in {0, . . . , b − 1}n. Now run the ML algorithm with
α = ( ε

36nb3 )2n, β = 1, and m = poly(n, 1/ε) ln(T/δ). By Theorem 16, with probability
at least 1 − δ the ML algorithm outputs a hypothesis with KL divergence at most 4ε
from Z. Thus with overall probability 1− 2δ we get a hypothesis with KL divergence
at most 4ε from Z, and the total running time is poly(n/ε) · log(1/δ). Replacing ε by
ε/4 and δ by δ/2, we are done.

Tracing through the proofs, it is easy to check that the running time dependence
on k is (n/ε)O(k3) · log 1

δ .

10. Hardness of learning mixtures of product distributions. In this sec-
tion we give evidence that the class of mixtures of k(n) product distributions over the
Boolean cube may be hard to learn in polynomial time for any k(n) = ω(1).

Before describing our results, we recall some standard terminology about Boolean
decision trees. A decision tree is a rooted binary tree in which each internal node has
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two children and is labeled with a variable and each leaf is labeled with a bit b ∈ {0, 1}.
A decision tree T computes a Boolean function f : {0, 1}n → {0, 1} in the obvious
way: on input x ∈ {0, 1}n, if variable xi is at the root of T , we go to either the left
or right subtree, depending on whether xi is 0 or 1. Continue in this fashion until
reaching a bit leaf; the value of this bit is f(x).

Our main result in this section is the following theorem.
Theorem 18. For any function k(n), if there is a poly(n/ε)-time algorithm

which learns a mixture of k(n) many product distributions over {0, 1}n, then there is
a poly(n/ε) time uniform distribution PAC learning algorithm which learns the class
of all k(n)-leaf decision trees.

We note that after years of intensive research, no poly(n)-time uniform distribu-
tion PAC learning algorithm is known which can learn k(n)-leaf decision trees for any
k(n) = ω(1); indeed, such an algorithm would be a major breakthrough in compu-
tational learning theory.4 The fastest algorithms to date [12, 3] can learn k(n)-leaf
decision trees under the uniform distribution in time nlog k(n). This suggests that it
may be impossible to learn mixtures of a superconstant number of product distribu-
tions over {0, 1}n in polynomial time.

The basic idea behind this theorem is quite simple. Given any k(n)-leaf decision
tree T , the set of all positive examples for T is a union of at most k(n) many disjoint
subcubes of {0, 1}n, and thus the uniform distribution over the positive examples
is a mixture of at most k(n) product distributions over {0, 1}n. If we can obtain a
high-accuracy hypothesis mixture D for this mixture of product distributions, then
roughly speaking D must put “large” weight on the positive examples and “small”
weight on the negative examples. We can thus use D to make accurate predictions of
T ’s value on new examples very simply as follows: given a new example x to classify,
we simply compute the probability weight that the hypothesis mixture D puts on x,
and output 1 or 0 depending on whether this weight is large or small.

We now give the formal proof of Theorem 18. The following claim is used in the
proof.

Claim 1. Let T be a k-leaf decision tree, let b ∈ {−1, 1} be a bit, let S =
{x ∈ {0, 1}n : T (x) = b}, and let US denote the uniform distribution over S. Then
US is a mixture of k product distributions.

Proof. We show that US is a mixture of � product distributions, where � is the
number of leaves in T which are labeled with bit b. To see this, observe that the k
leaves of T partition {0, 1}n into k disjoint subsets, each consisting of those x ∈ {0, 1}n
which reach the corresponding leaf. For a leaf at depth d the corresponding subset is
of size 2n−d and consists of those x ∈ {0, 1}n which satisfy the length-d conjunction
defined by the path from the root to that leaf. Thus, choosing a uniform element
of S can be performed by the following process: (i) choose a leaf whose label is
b, where each leaf at depth d is chosen with probability proportional to 1/2d; and
then (ii) choose a uniform random example from the set of examples which satisfy
the conjunction corresponding to that leaf. The uniform distribution over examples
which satisfy a given conjunction is easily seen to be a product distribution X over
{0, 1}n in which E[Xi] ∈ {0, 1

2
, 1} for all i = 1, . . . , n. It follows that the uniform

distribution over S is a mixture of � product distributions of this sort.
Proof of Theorem 18. We suppose that we are given access to an oracle EX(T,U)

which, at each invocation, supplies a labeled example (x, T (x)) ∈ {0, 1}n × {0, 1},
4Avrim Blum has offered a $1000 prize for solving a subproblem of the k(n) = n case and a $500

prize for a subproblem of the k(n) = logn case; see [4].
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where x is chosen from the uniform distribution U over {0, 1}n and T is the un-
known k(n)-leaf decision tree to be learned. We describe an efficient algorithm A′

which with probability 1− δ outputs a hypothesis h : {0, 1}n → {0, 1} which satisfies
PrU [h(x) �= T (x)] ≤ ε. The algorithm A′ uses as a subroutine an algorithm A which
learns a mixture of k(n) product distributions. Let M be the number of examples
required by algorithm A to learn an unknown mixture of k(n) product distributions
to L1-norm accuracy 1− ε

2
and confidence 1− δ

3
. Recall from section 1.1 that to learn

to L1-norm error ε it suffices to learn to KL divergence ε2, and thus we have that
M = poly(n/ε) by our assumption on the running time of A.

Algorithm A′ works as follows:

1. Determine b ∈ {−1, 1} such that with probability 1 − δ
3

tree T outputs b on
at least 1/3 of the inputs in {0, 1}n. Let S denote {x ∈ {0, 1}n : T (x) = b},
and let US denote the uniform distribution over S.

2. Run algorithm A using samples from the uniform distribution US ; simulate
US by invoking EX(T,U), and using the only examples with labels T (x) = b.
To be confident that algorithm A receives at least M examples from US ,
we draw Θ(M log(1/δ)) examples from EX(T,U). Let D′ be the hypothesis
distribution which is the output of A.

3. Output the hypothesis h : {0, 1}n → {−1, 1}, which is defined as follows:
given x, if D′(x) ≤ 1

2·2n , then h(x) = −b; else h(x) = b.

We now verify the algorithm’s correctness. Note first that step 1 can easily be
performed by making O(log 1

δ ) draws from EX(T,U) to obtain an empirical estimate
of PrU [T (x) = b]. Assuming that |S| is indeed at least 2n/3, a simple Chernoff bound
shows that O(M log 1

δ ) draws from EX(T,U) suffice to obtain M examples with label

b in step 2 with probability 1− δ
3
. We run A on examples generated by US , which by

Claim 1 is a mixture of k product distributions. Consequently, with overall probability
at least 1 − δ the hypothesis D′ generated in step 2 satisfies ‖D′ − US‖1 ≤ ε

2
.

Now observe that the hypothesis h in step 3 disagrees with T on precisely those
x which either (i) belong to S but have D′(x) < 1

2·2n , or (ii) do not belong to S but
have D′(x) ≥ 1

2·2n . Each x of type (i) contributes at least 1
2·2n toward ‖D′ − US‖1

since US(x) ≥ 1
2n for each x ∈ S. Each x of type (ii) also incurs at least 1

2·2n toward
‖D′ − US‖1. Consequently, since ‖D′ − US‖1 ≤ ε

2
, there are at most ε2n points

x ∈ {0, 1}n on which h is wrong. Thus, we have shown that, with probability at least
1 − δ, the hypothesis h is an ε-accurate hypothesis for T with respect to the uniform
distribution, as desired.

Remark 2. We note that our reduction to decision tree learning in fact uses only
quite restricted mixtures of product distributions in which (i) the mixture coefficients
are proportional to powers of 2, (ii) the supports of the product distributions in
the mixture are mutually disjoint, and (iii) each product distribution is a uniform
distribution over some subcube of {0, 1}n (equivalently, each product distribution has
each E[Xi] ∈ {−1, 0, 1}). Thus, even this restricted class of mixtures of k(n) product
distributions is as hard to learn as k(n)-leaf decision trees.

Remark 3. The known results of Blum et al. [5] imply the following unconditional
hardness result: the class of k(n)-leaf decision trees cannot be learned under the
uniform distribution in time less than nlog k(n) in the model of learning from statistical
queries.

A “statistical query” learning algorithm is allowed to obtain only statistical esti-
mates (accurate to within some specified error tolerance) of properties of the distribu-
tion over pairs (x, T (x)), and does not have access to actual labeled examples (x, T (x)).
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The algorithm is “charged” more time for estimates with a higher precision guarantee;
this is motivated by the fact that such high-precision estimates would normally be
obtained, given access to random examples, by drawing a large sample and making an
empirical estimate. (See [17] for a detailed description of the statistical query model.)

Note that our algorithm for learning mixtures of product distributions interacts
with the data solely by constructing empirical estimates of probabilities; thus, when
this algorithm is used in the reduction of Theorem 18, the resulting algorithm for
learning decision trees is easily seen to have an equivalent statistical query algorithm.
Thus the results of Blum et al. unconditionally imply that no algorithm with the same
basic approach as our algorithm can learn mixtures of k(n) product distributions in
time less than nlog k(n).

11. Conclusions and future work. We have shown how to learn mixtures of
any constant number of product distributions over {0, 1}n, and more generally over
{0, . . . , b− 1}n, in polynomial time.

The methods we use are quite general and can be adapted to learn mixtures of
other types of multivariate product distributions which are definable in terms of their
moments. Along these lines, we have used the approach in this paper to give a PAC-
style algorithm for learning mixtures of k = O(1) axis-aligned Gaussians in polynomial
time [13]. (We note that while some previous work on learning mixtures of Gaussians
from a clustering perspective can handle k = ω(1) many component Gaussians, all
such work assumes that there is some minimum separation between the centers of the
component Gaussians, since otherwise clustering is clearly impossible. In contrast,
our result in [13]—in which we do not attempt to do clustering but instead find a
hypothesis distribution with small KL divergence from the target mixture—does not
require us to assume that the component Gaussians are separated.) We expect that
our techniques can also be adapted to learn mixtures of other distributions such as
products of exponential distributions or beta distributions.

It is natural to ask whether our approach can be extended to learn mixtures of
distributions which are not necessarily product distributions; this is an interesting di-
rection for future work. Note that our main algorithmic ingredient, algorithm WAM,
requires only that the coordinate distributions be pairwise independent.

Finally, one may also ask if it is possible to improve the efficiency of our learning
algorithms—can the running times be reduced to nO(k2), to nO(k), or even nO(log k)?
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1. Introduction. Efficient reduction is perhaps the most fundamental notion
on which the theory of computational complexity is built. The purpose of this paper
is to introduce a new notion of efficient reduction, called a holographic reduction. In
a classical reduction an instance of one problem is mapped to an instance of another
by replacing its parts by certain gadgets. Solution fragments of the first problem
will correspond in the gadgets to solution fragments of the second problem. For
example, when mapping a Boolean satisfiability problem to a graph theory problem,
each way of satisfying a part of the formula will correspond to a way of realizing
a solution to the graph theory problem in the gadget. In classical reductions the
correspondence between the solution fragments of the two problems is essentially one-
to-one, or possibly many-to-one or one-to-many. In a holographic reduction the sum
of the solution fragments of one problem maps to the sum of the solution fragments
of the other problem for any one gadget and does so in such a way that the sum of
all the overall solutions of the one will map to the sum of all the overall solutions of
the other. The gadgets therefore map solution fragments many-to-many. The main
innovation this allows is that it permits reductions in which correspondences between
the solution fragments of the two problems need no longer be identifiable at all. Their
effect can be viewed as that of producing interference patterns among the solution
fragments, and they are called holographic gadgets for that reason.
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A holographic reduction from a problem A to a problem B is of particular in-
terest when for problem B the sum of the solutions is efficiently computable, since
then a polynomial time algorithm for summing the solutions of A is implied. We
call algorithms so derived holographic algorithms. In this paper we give holographic
alogrithms for a number of problems for which no polynomial time algorithms were
known before. We obtain these algorithms by reduction to the algorithm for finding
perfect matchings in planar graphs due to Fisher [17], Kasteleyn [31], and Temperley
and Fisher [50].

We consider holographic reductions and algorithms to be novel notions in algo-
rithmic theory that do not appear to have been explored before, even in disguise,
and that potentially open up new approaches to the central questions of complexity
theory.

The most intriguing question, clearly, is whether polynomial time holographic
algorithms exist for NP- or #P-complete problems. For such a result a holographic
reduction would have to be exhibited from, say, a #P-complete problem, such as
planar matchings, to a known polynomial time computable problem, such as planar
perfect matchings. We shall show that the existence of such a reduction would be
implied by the solvability of a finite system of polynomial equations that defines the
holographic gadgets used in the reduction. In this sense the search for fast algorithms
can be semimechanized if computer algebra systems are invoked for solving the sys-
tems. It suffices to find a fixed set of such gadgets. We note that the search process
itself is NP-hard in the size of the tested system. On the other hand, one can expect
that any fast algorithms so discovered would rely on algebraic relationships, possibly
exotic, which have not been explored before even implicitly.

What is the role of holographic reductions in complexity theory if it is the case
that there exist no polynomial algorithms to be discovered for NP- or #P-complete
problems? In that eventuality we suggest that any proof of P �= NP may need to
explain, and not only to imply, the unsolvability of our polynomial systems. Fur-
thermore, explanations of such unsolvabilities may then stand equally in the way of
any proofs of P �= P#P, P �= BPP, P �= QBP, P �= NC2, and P = PSPACE. Since
the solvability of a polynomial system for an explicit combinatorial constraint is a
very natural mathematical problem, our approach may be viewed as one offering a
restricted model of computation in which one expects mathematical questions to be
resolvable, and one that we suggest may be difficult to evade.

Holographic algorithms are inspired by the quantum computational model [16, 6].
However, they are executable on classical computers and do not need quantum com-
puters. They can be understood best, perhaps, in terms of cancellations in classical
computation. Strassen’s algorithm for matrix multiplication [48] offers an early strik-
ing example of the power of computations that compute extraneous terms only to
cancel them later. It is known that cancellations can provide exponential speedups
in computations, and in the several cases that have been analyzed, linear algebra
algorithms for computing the determinant play a major role [54, 29, 49]. Further, the
actual cancellations that are performed by certain of these determinant algorithms can
be made explicit [55, 43]. Holographic algorithms offer a new source of cancellation
that is not provided by linear algebra alone. Most importantly the cancellations re-
quired for the particular problem at hand can be custom designed into the holographic
gadgets.

The substance of the holographic method as pursued here involves devising an
appropriate basis for the reduction and then designing matchgates to realize the gad-
gets. Matchgates have been used previously [56] but only in the context of classical
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rather than holographic reductions. We note that the sum of solutions in matchgate
constructions corresponds to the Pfaffian, which is polynomial time computable. The
examples in this paper all refer to planar structures, because in that case we can use
the elegant Fisher–Kasteleyn–Temperley (FKT) route to the Pfaffian that makes the
design of the gadgets easier. In principle, the FKT technique can be applied to non-
planar structures by having matchgates to simulate crossovers. We note also that the
holographic technique may be used, in principle, to reduce problems to any problem
in which a quantity is known to be polynomial time computable. For example, in [58]
it is used in reductions to the general Pfaffian.

2. List of problems. We first note that the range of natural graph-theoretic
problems for which the number of solutions has been known to be countable in poly-
nomial time for arbitrary inputs is very small [28, 62, 52, 53]. The prime examples
have been the Kirchhoff matrix tree algorithm for spanning trees in arbitrary graphs
and the FKT perfect matching algorithm for planar graphs. For planar graphs there
is a positive result known for a further important case, intimately related to the Ising
problem in physics, that is known to be obtainable from the perfect matchings prob-
lem. This is #PL-CUT—given a planar graph G and a number k the problem is to
compute the number of 2-colorings of the nodes of G such that exactly k edges have
ends of opposite color [32, 42]. The maximum k for which this number is nonzero is
the well-known PL-MAXCUT problem [44, 22].

We now list some problems for which we can provide polynomial time solutions
where none apparently were known. They are motivated by their apparent proximity
to known NP-, ⊕P-, and #P-complete problems. They all have a counting, or #P,
aspect, but for some we specify a decision or parity version when that is appropriate.
We note that in a graph G = (V,E) a subset E′ ⊆ E saturates a vertex v ∈ V if v is
the endpoint of some edge in E′.

First we consider a matching problem. Jerrum [26, 27] showed that counting
the number of (not necessarily perfect) matchings in a planar graph is #P-complete,
and Vadhan [51] subsequently proved that this was true even for planar bipartite
graphs of degree 6. For degree 2 the problem can be solved easily and one might
have conjectured that all other nontrivial cases are #P-complete. However, we have
a polynomial time algorithm for the following.

#X-MATCHINGS. Input. A planar weighted bipartite graph G = (V,E,W ),
where V has bipartition V 1, V 2 and the nodes in V 1 have degree 2.

Output. The sum of the masses of all matchings of all sizes where the mass of a
matching is the product of (i) the weights of all the edges present in the matching,
as well as of the quantity (ii) “−(w1 + · · · + wk)” for all the V 2 nodes that are not
saturated, where w1, . . . , wk are the weights of the edges incident to that (unsaturated)
node.

One instance of this is where every V 2 node has degree 4 and every edge has
weight one. Then computing #X-MATCHINGS gives the number of matchings, but
each weighted by (−4)k, where k is the number of unsaturated V 2 nodes. Computing
this mod 5, for example, gives the number of matchings mod 5. Another instance is
where every V 2 node has degree 3 and every edge weight one. Then #X-MATCHINGS
is the sum of the matchings, each weighted by (−3)k, where k is the number of V 2
nodes not saturated by that matching.

Now we consider a coloring problem. A functional orientation of an undirected
multigraph G is an assignment of directions to a set of edges so that there is exactly
one edge directed away from each node of G. (Note that if two nodes are connected by
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two edges, then these can both have (opposite) directions. Also any single edge may
be assigned two opposite directions. The edges of G that are not assigned a direction
remain undirected.)

PL-FO-2-COLOR. Input. A planar multigraph graph G = (V,E) of maximum
degree 3.

Output. 1 iff there is some coloring of the nodes with two colors and a functional
orientation of G such that every edge that joins two nodes of the same color is directed
in at least one direction by the functional orientation.

Comment. The problem of (2,1)-coloring with defects is that of 2-coloring a graph
so that no node is adjacent to more than one other node of the same color. This is
NP-complete for planar graphs of degree 5 [15]. It can be deduced that PL-FO-2-
COLOR is NP-complete for degree 10 by means of the following reduction. For an
instance of (2,1)-coloring one replaces each edge by a pair of edges between the same
pair of nodes. Then if these nodes are given the same color the rules of PL-FO-2-
COLOR ensure that the two edges are both oriented and in opposite directions. But
then no other neighbor of either of the nodes can have the same color because the
corresponding statement for those would imply that there are two edges directed away
from that common node.

Our next two problems can be viewed as planar formula problems in the sense
of Lichtenstein [35]: A planar formula is a planar graph where a node can represent
a clause or a variable, and an edge links a node representing a variable with a node
representing a clause in which it occurs, either negated or not negated.

⊕PL-EVEN-LIN-2. Input. A planar formula where each clause is a linear
equation over GF [2] with an even number of occurrences of variables, a subset of the
clauses that are considered compulsory to satisfy, a setting to a subset of the variables
on the outer face to constants, and an integer k.

Output. The parity of the number of solutions that satisfy exactly k of the
equations, including all of the compulsory ones, and the boundary conditions.

Comment. This generalizes ⊕PL-CUT, which is the same problem restricted to
equations with just two variables and no compulsory equations and can be solved
by classical reduction to FKT. The nonplanar version with two variables is NP- and
⊕P-complete via known parsimonious reductions, and strong hardness of approxima-
tion results are also known [23]. For odd length equations the corresponding planar
problem is ⊕P-complete since the corresponding nonplanar problem can be reduced
to it using the construction of crossovers from Jerrum [26, 27]. This construction re-
quires the equations in the crossovers to be compulsory, and without such compulsory
equations the completeness of the problem is apparently unresolved.

# PL-3-NAE-SAT. Input. A planar formula F consisting of NOT-ALL-EQUAL
gates of size 3.

Output. The number satisfying assignments of F .

Comment. For connectives other than NOT-ALL-EQUAL (e.g., OR, EXACTLY
ONE) for which the unrestricted decision problem is NP-complete, the corresponding
planar decision and counting problems are, in general, NP- and #P-complete, respec-
tively [24]. The existence problem for monotone PL-3-NAE-SAT is reducible to the
four color theorem and, therefore, always has a solution [1]. Note, however, that the
counting problem for the 4-colorings of planar graphs is #P-complete [61]

PL-NODE-BIPARTITION. Input. A planar graph G = (V,E) of maximum
degree 3.

Output. The cardinality of a smallest subset V ′ ⊆ V such that the deletion of V ′
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and its incident edges results in a bipartite graph.

Comment. This problem is known to be NP-complete for maximum degree 6
[33]. See Lewis and Yannakakis [34] for a general approach to such “node deletion”
problems. We note that numerous other planar NP-complete problems, such as Hamil-
tonian cycles and minimum vertex covers, are NP-complete already for degree 3 (see,
e.g., Garey, Johnson, and Stockmeyer [20] and Garey and Johnson [18]).

We now consider “ice” problems that have been widely investigated by statistical
physicists. An orientation of an undirected graph G is an assignment of a direction to
each of its edges. An “ice problem” involves counting the number of orientations such
that certain local constraints are satisfied. Pauling [47] originally proposed such a
model for planar square lattices, where the constraint was that an orientation had to
have two incoming and two outgoing edges at every node. The question of determining
how the number of such orientations grows for various such planar repeating structures
has been analyzed [36, 37, 38, 39, 3]; see also [62].

#PL-3-NAE-ICE. Input. A planar graph G = (V,E) of maximum degree 3.

Output. The number of orientations such that no node has all the edges directed
toward it or away from it.

We next turn to a covering problem. For a graph G = (V,E) a cycle is a sequence
of edges through distinct nodes that starts and ends at the same node. A chain is a
sequence of edges through distinct nodes that starts and ends at distinct nodes. A
cycle-chain cover in G is a set of cycles and chains that saturates every node of G.
For real numbers x, y the (x, y) cycle-chain sum of G is the sum over all cycle-chain
covers C of xiyj , where i is the number of cycles in C and j is the number of chains.
For example, the (2, k) cycle-chain sum for k = 0 or k = 4 is complete for ⊕P for
general graphs since the parity of the number of Hamiltonian cycles is reducible to
it. In the planar case it is known that counting the number of Hamiltonian cycles
for planar cubic graphs is #P-complete [41]. Their proof can be adapted to show
that if nodes of both degrees 2 and 3 are allowed, then planar Hamiltonian cycles is
⊕P-complete [59].

#PL-3-(1,1)-CYCLECHAIN. Input. A planar regular graph G = (V,E) of
maximum degree 3.

Output. The (1, 1) cycle-chain sum.

As we shall further elaborate in section 9, the proofs given there of the last four of
these results imply that they can be derived also by classical reduction to #PL-CUT.
However, some of these problems also have degree 4 variants for which such classical
reductions are not apparent.

3. Evaluating planar matching polynomials. We shall first describe the
basic graph-theoretic notions that we shall use. A (weighted undirected) graph G is a
triple (V,E,W ), where V is the set of n nodes, labeled {1, . . . , n}, E is the set of edges
where an edge is a pair (i, j) of distinct nodes i, j ∈ V , and W is an assignment of a
weight W (i, j) from a field F to each edge (i, j). An edge e is incident to or saturates
a node j if j is one of the pair of nodes of e. A matching in G is a set E′ ⊆ E of
edges such that if e1 and e2 are distinct edges in E′, then e1 and e2 saturate disjoint
pairs of nodes. A matching E′ saturates the union of the node pairs saturated by the
member edges of E′. The set of nodes saturated by E′ we call satu(E′). A matching
is perfect if it saturates all of V .

With a graph G we associate the perfect matching polynomial PerfMatch(G) over
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n(n− 1)/2 variables {xi,j |1 ≤ i < j ≤ n} as follows:

PerfMatch(G) =
∑

E′

∏

(i,j)∈E′

xi,j ,

where the summation is over all perfect matchings E′ of G. We shall also discuss the
more general matching sum polynomial for graphs G = (V,E,W,Λ), where Λ further
specifies a labeling of each node i by a weight λi ∈ F . It is defined as

MatchSum(G) =
∑

E′

∏

i �∈satu(E′)

λi

∏

i,j∈E′

xi,j ,

where summation is over all, not necessarily perfect, matchings in G. Clearly in the
case that every λi = 0, PerfMatch(G) = MatchSum(G). We shall call nodes with
λi �= 0 omittable since matchings that omit them can contribute to the MatchSum.

For all polynomials we shall assume, where not otherwise specified, that the co-
efficients are taken from an arbitrary field F .

A remarkable fact, expressed by the following theorem, is that for planar graphs
PerfMatch(G) can be expressed as a determinant of an easily computed matrix [17,
31, 32, 50, 28]. It follows that PerfMatch(G) can be computed using standard linear
algebra algorithms for the determinant.

Theorem 3.1. There is a polynomial time computable function f that given a
planar embedding of a planar graph G = (V,E,W ) defines f :E → {−1, 1} such that
for the antisymmetric matrix M defined so that for all i < j

(i) if (i, j) �∈ E then Mi,j = Mj,i = 0, and
(ii) if (i, j) ∈ E then Mi,j = f(i, j)W (i, j) and Mj,i = −f(i, j)W (i, j),

it is the case that PerfMatch(G) = Pfaffian(M) =
√

Det(M).
In our applications we shall form graphs from fixed sets of standard components

called matchgates that simulate particular combinatorial constraints, such as equality.
The weights to be used in such matchgates will be elements of F obtained potentially
by computationally solving systems of polynomial equations. It is therefore useful to
observe that in this general setting the Det(M) and hence also PerfMatch(G) can be
solved in polynomial time if the field is that of the complex numbers C. The proof is
given in section 12.

Theorem 3.2. Let Y be any finite subset of C. Suppose that each element
of Y can be computed to n decimal places, i.e., absolute error less than 2−n, in time
polynomial in n. Let {Mn | n ≥ 1} be a family of matrices where, for each n,Mn is n×
n, has every entry from Y , and has an integer valued determinant. Further, suppose
that there is a polynomial time algorithm that given input {1n, i, j} will identify the
element from Y that is the (i, j)th entry of Mn. Then there is a polynomial time
deterministic algorithm that, given 1n, will compute the determinant of Mn.

Computing MatchSum for planar graphs is known to be #P-complete [26, 27].
Since matchings with omittable nodes are more expressive than those without, we
might endeavor to use them wherever we can still maintain polynomial time com-
putability. The following generalization of the above two results, which is also proved
in section 12, enables us to use omittable nodes on the outer face of a planar graph.

Theorem 3.3. Let Y be any finite subset of C. Suppose that each element of
Y can be computed to n decimal places, i.e., absolute error less than 2−n, in time
polynomial in n. Let {Gn | n ≥ 1} be a family of planar embeddings of planar graphs
on n nodes with all omittable nodes on the outer face, with polynomial time identifiable
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weights from Y, and having an integer value of MatchSum(Gn). Then MatchSum(Gn)
can be computed in polynomial time, and, in fact, in NC2.

We note that while we emphasize the case of the field F = C, the whole de-
velopment applies equally, and without the need for these numerical considerations,
if F is a finite field. In that case the consequences are for #kP the counting class
corresponding to #P, but modulo k [52].

We also note that for planar structures there exist algorithms that can perform
elimination on n× n matrices in O(n1.5) rather than O(n3) steps [40].

4. Matchgrids and planar matchgates. Our overall strategy is the following.
We transform an instance I of a counting problem, such as #X-MATCHINGS, to an
instance Ω of what we call a matchgrid, such that the weighted sum of the perfect
matchings of Ω will equal the number of solutions of I. The structure of I is reflected
in the structure of Ω, with the individual components of I, nodes and edges in the
case of #X-MATCHINGS, each replaced by gadgets that we call matchgates. The
weight of the perfect matchings in each matchgate will equal the number of solution
fragments of the #X-MATCHING problem.

We now introduce the basic concepts of the theory. We note that while our start-
ing point is the notion of a matchgate, exactly as in [56], that earlier work employed
classical rather than holographic reductions. This paper can be read independently
of that earlier one. However, we have attempted to keep our notation consistent with
it and reference it occasionally.

A planar matchgate Γ is a triple (G,X, Y ), where G is a planar embedding of a
planar graph (V,E,W ), X ⊆ V is a set of input nodes, Y ⊆ V is a set of output nodes,
and X, Y are disjoint. Further, as one proceeds counterclockwise around the outer
face, starting from one point one encounters first the input nodes labeled 1, 2, . . . , | X |
and then the output nodes | Y |, . . . , 2, 1, in that order. The arity of the matchgate
is |X| + |Y |. For Z ⊆ X ∪ Y we define the standard signature of Γ with respect to
Z to be PerfMatch(G− Z), where G− Z is the graph obtained by removing from G
the node set Z and all edges that are incident to Z. Further, we define the standard
signature of Γ to be the 2|X| × 2|Y | matrix u(Γ) whose elements are the standard
signatures of Γ with respect to Z for the 2|X|2|Y | choices of Z. The labeling of the
matrix is as follows: Suppose that X and Y have the labeling described; i.e., the
nodes are labeled 1, 2, . . . , |X| and |Y |, . . . , 2, 1 in counterclockwise order. Then each
choice of Z corresponds to a subset from each of these labeled sets. If each node
present in Z is regarded as a 1 and each node absent as a 0, then we have two binary
strings of length |X|, |Y |, respectively, where the nodes labeled 1 correspond to the
leftmost binary bit. Suppose that i, j are the numbers represented by these strings in
binary. Then the entry corresponding to Z will be the one in row i and column j in
the signature matrix u(Γ).

We note that in [56] matchgates were defined in a general, not necessarily planar,
setting. In that more general case, when we compose matchgates into matchcircuits
we need to keep track of sign influences explicitly, since we cannot rely on the FKT
method. For that reason we use there the more complex notion of character, while the
simpler notion of signature suffices in this paper since we restrict ourselves to planar
graphs.

The treatment in [56] is more general also in the second respect that omitted nodes
are allowed in matchgates and character is defined in terms of MatchSum rather than
PerfMatch. We accommodate this generalization in two limited ways in the current
paper. We use them in a thought experiment in the proof of Theorem 4.1. We also
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1 2
-1

Fig. 1. A generator matchgate for basis b1 with output nodes {1, 2} and one edge of weight
−1. It generates n⊗ n + n⊗ p + p⊗ n.

use them explicitly in circuits, as in Theorem 9.6, as allowed by Theorem 3.3 and
Corollary 4.2, noting that the omittable nodes have to be on the outer face of the
final circuit.

A basis of size k is a set of distinct nonzero vectors each of length 2k with entries
from a field F . Often we will have just two basis vectors that represent 0 and 1,
respectively, and in that case we shall call them n and p. In this paper all bases will
be of size k = 1, so that n = (n0, n1) and p = (p0, p1). The basis b0 = [n, p] =
[(1, 0), (0, 1)] we call the standard basis. In general, the vectors in a basis do not need
to be independent.

In this section we shall use as an illustrative example the basis b1 = [n, p] =
[(−1, 1), (1, 0)]. The gates we describe will be used in section 8 to implement our
first holographic algorithm, one for the #X-MATCHINGS problem. We believe that
this basis, though apparently somewhat specialized, is an instructive example. In
later sections we shall describe bases, such as b2, which appear to be more broadly
applicable.

In general if we have two vectors q, r, of length l, m, respectively, then we
shall denote the tensor product s = q ⊗ r to be the vector s of length lm in which
sim+j = qirj for 0 ≤ i < l and 0 ≤ j < m. Thus, for example, for the basis b1,
n⊗ p = (−1, 0, 1, 0). Clearly ⊗ is associative.

We say that a matchgate is a generator if it has zero input nodes and nonzero
output nodes and a recognizer if it has zero output nodes and nonzero input nodes.
One can define equally naturally a transducer gate that has both nonzero inputs and
nonzero outputs, but we do not use these for our examples. From the definition of
signature it follows that for generators and recognizers the signature is a vector.

Here we shall introduce generators and recognizers by example. A more formal
treatment can be found at the beginning of section 5. Intuitively, a generator can be
viewed as emitting n and p particles along its outputs in all possible combinations,
each combination with a certain value. A recognizer will absorb combinations of these
particles entering via its inputs, again attaching a certain value to each combination.
The overall goal is that the sum over all patterns of particles that can be generated of
the product of the values of all the generators and recognizers be equal to the value
of the function being computed.

We first consider generators. Suppose that a generator has graph G and m output
nodes. Then, by definition, its standard signature will be a 2m-vector. Recall that
element j in this vector is the value of PerfMatch(G′), where G′ is G but with those
output nodes removed that correspond to the index j in the manner described in
the definition of standard signature. Consider the generator matchgate Γ shown in
Figure 1.

It has V = {1, 2}, E = {(1, 2)}, W (1, 2) = −1, the input node set X = ∅, and
the output node set Y = {1, 2}. Then the standard signature u(Γ) of Γ is the vector
(−1, 0, 0, 1) since if both output nodes are removed then PerfMatch(G′) = 1, if neither
is removed then PerfMatch(G′) = −1, and if exactly one is removed then there is no
perfect matching and PerfMatch(G′) = 0. Now for the basis b1 defined above it is
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w3

v1

w1

w2

v0

Fig. 2. A recognizer matchgate for basis b1 with input nodes v1, v2, . . . , v5, and edge weights
w1, w2, . . . , w5.

easy to see that n⊗ n = (1,−1,−1, 1), n⊗ p = (−1, 0, 1, 0), and p⊗ n = (−1, 1, 0, 0).
The sum of these is (−1, 0, 0, 1), which happens to equal the above stated standard
signature of the matchgate. (Note that here we used the convention that PerfMatch
of a graph with no nodes is 1. This can be avoided by using as the generator a chain
of four nodes, rather than two, and again having the end nodes as output nodes.)
Hence we conclude that for this gate and basis b1 the following holds.

Proposition 4.1. There exists a generator matchgate Γ with u(Γ ) = n ⊗ n +
n⊗ p + p⊗ n, where (n, p) is the basis b1.

In other words, this gate generates the linear sum of the three bit combinations
00, 01, and 10 when interpreted in the basis b1 representation. The signature of this
generator with respect to the basis b1 (a notion further elaborated in section 5, as
relation (5.1)) will then be (1, 1, 1, 0) since these are the coefficients of the contribu-
tions for the four bit patterns 00, 01, 10, 11, respectively. For x ∈ {n, p}2 we shall
denote by valG(Γ , x) the signature element corresponding to x. Thus, for the current
example, valG(Γ, n⊗p) = 1 and valG(Γ, p⊗p) = 0. (We note that since a basis b can
be an arbitrary set the signature of a generator with respect to b may not be unique.
When we discuss a signature any valid signature will do.)

We shall now go on to discuss recognizers. Let us suppose that these have m
inputs. The purpose of such recognizers is to have PerfMatch take on appropriate
values as the inputs range over the 2m possible tensor product values x = x1⊗· · ·⊗xm,
where each xi ranges independently over {n, p}. Note that x can be viewed as a 2m-
vector in the standard basis. The value of PerfMatch for the recognizer matchgate
Γ “evaluated at input” x will by denoted by valR(Γ , x). More precisely, if vector u
is the standard signature of Γ, and x is the 2m-vector representing x in the standard
basis, then valR(Γ, x) is the inner product u x. Consider the family of recognizers
Γk shown in Figure 2. They are defined by the star graph Gk = (Vk, Ek,Wk), where
Vk = {v0, v1, . . . , vk}, Ek = {(v0, vi)|1 ≤ i ≤ k}, the input nodes are {vi|1 ≤ i ≤ k},
and the weight of edge (v0, vi) is wi.

Proposition 4.2. For all k > 0 and for all w1, . . . , wk ∈ F there exists a k-input
recognizer matchgate Γ such that on input x = x1 ⊗ · · · ⊗ xk ∈ {n, p}k over basis b1
valR(Γ , x) equals

(i) −(w1 + · · · + wk) if x1 = · · · = xk = n,
(ii) wi if xi = p, and xj = n for every j �= i,
(iii) 0 for the remaining 2k − k − 1 values of x1, . . . , xk.
Proof. We shall prove that the gate of Figure 2, where the weight of edge (v0, vi)
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is set to wi, is such a recognizer. To see this note that the only subsets Z of the input
nodes {vi|1 ≤ i ≤ k} that can be removed that allow the PerfMatch of the remaining
graph to be nonzero are those that contain exactly k − 1 elements, and for these
PerfMatch = wi if vi is the node omitted from Z. Hence if two or more of the inputs
are p = (1, 0), then PerfMatch is zero. If exactly one input is p, and this is applied
at node vi, and all the others are n, then the only nonzero contribution comes from
the node vi being omitted from Z, and this gives a contribution of p0n

k−1
1 wi = wi. If

all the inputs are n, then there is a nonzero contribution n0n
k−1
1 wi = −wi for each

possible vi, and then the total value of PerfMatch is −(w1 + · · · + wk).
We note that the basic properties of a basis are unchanged if the first and second

components of all of its elements are interchanged together, or if they are multiplied by
arbitrary constants x and y, respectively. The former transformation can be realized
by appending to every input or output node an edge of weight 1. The latter can
be realized by appending to such nodes chains of length two weighted by x and y,
respectively. Hence any basis [(−x, y), (x, 0)] or [(x,−y), (0, y)] with nonzero x and y
is essentially equivalent to b1.

Proposition 4.3. If there is a generator (recognizer) with certain valG(valR) val-
ues for size one basis {(a1, b1), . . . , (ar, br)}, then there is a generator (recognizer) with
the same valG(valR) values for any basis {(xa1, yb1), . . . , (xar, ybr)} or {(xb1, ya1), . . .
(xbr, yar)} for any x, y ∈ F .

We define a matchgrid over a basis b to be a weighted undirected planar graph
G that consists of the disjoint union of a set of g generator matchgates B1, . . . , Bg,
r recognizer matchgates A1, . . . , Ar, and f connecting edges C1, . . . , Cf , where each
Ci edge has weight 1 and joins an output node in a generator matchgate with an
input node of a recognizer matchgate, such that every input and output node in every
constituent matchgate has exactly one such incident connecting edge.

Consider such a matchgrid Ω = (A,B,C) and assume, for simplicity, that the basis
is of size two. We denote by X = bf = (n, p)f the set of 2f possible combinations of
the basis elements n, p that can be transmitted simultaneously along the f connecting
edges in the matchgrid. We can break X into X1 ⊗ · · · ⊗Xg, where Xj = (n, p)k(j)

and k(j) is the arity of generator Bj and refers to the connecting edges that are
incident to that generator. Also if x ∈ X then we can mirror this decomposition as
x = x1 ⊗ · · · ⊗ xg, where xj is the particular set of basis elements that is transmitted
from the outputs of Bj . We can also break the same X into X̄1 ⊗ · · · ⊗ X̄r, where
X̄j = (n, p)l(j) and l(j) is the arity of the recognizer Aj and refers to the connecting
edges incident to that recognizer. If x ∈ X then this decomposition can be mirrored
as x = x̄1 ⊗ · · · ⊗ x̄r, where x̄j is the set of basis elements transmitted into the inputs
of Aj .

Now for each x ∈ X each recognizer Ai will evaluate a value valR(Ai, x) =
valR(Ai, x̄i), and each generator Bj will generate the value valG(Bj , x) = valG(Bj , xj).
The product of these values for all the generators and all the recognizers is the value
of the matchgrid at x. The value of the matchgrid will be the sum of these products
for the various x. This quantity we call the Holant :

Holant(Ω) =
∑

x∈bf

⎡
⎣

∏

1≤j≤g

valG(Bj , xj)

⎤
⎦
⎡
⎣

∏

1≤i≤r

valR(Ai, x)

⎤
⎦ .

There are two views of a matchgrid, one as a directed weighted graph G and the
other as a composition Ω = (A,B,C) of matchgates and connecting edges. For the
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former we have already defined various matching polynomials such as PerfMatch and
it is these that we shall evaluate in polynomial time. For the latter it is the Holant
that expresses the basic intention of the matchgrid, that of performing a weighted
sum of potentially exponentially many solutions, indexed by the set X, that obey the
local constraints expressed in the matchgates.

The central relationship that is necessary for a holographic algorithm is that the
potentially exponential summation that the Holant defines be computable in polyno-
mial time. The following is a paradigmatic expression of this. The reader should note
that for the standard basis valG = valR, and the theorem follows immediately. More
surprising, and at the heart of our holographic technique, is the fact is that the result
holds for all bases.

Theorem 4.1. For any matchgrid Ω over any basis b, if Ω has weighted graph
G, then

Holant(Ω) = PerfMatch(G).

Proof. The result is a consequence of linearity. The following is a mechanistic
way of presenting the argument.

Suppose for the sake of this proof that we allow a certain subset of the nodes of
a matchgate to be “omittable with weight 1” in the sense that its signature will be
defined by not just perfect matchings but also by all other matchings that saturate
all the nonomittable nodes, but any omittable node may or may not be saturated. In
other words we are using the polynomial MatchSum with λi = 1 for the omittable
nodes, and λi = 0 for the unomittable nodes. Once we allow omittable nodes we have
matchgates for any single basis elements such as p and n: Figure 3 shows a matchgate
with omittable node 1 and output node 3. The standard signature is clearly (w0, w1)
since if node 3 is not in Z then the only allowed matching is the edge (2,3) with weight
w0 and if node 3 is in Z then the only allowed matching is edge (1,2) with weight
w1. Hence we get a matchgate with standard signature p = (p0, p1) by fixing w0 = p0

and w1 = p1, and one with standard signature n = (n0, n1) by fixing w0 = n0 and
w1 = n1.

1 2 3

w0w1

Fig. 3. A generator matchgate having node 1 as an omittable node and node 3 as the output
node. It has standard signature (w0, w1).

Suppose we pick a fixed element x ∈ X from among the |b|f that are potentially
generated, and regard it as the tensor product x1 ⊗ · · · ⊗ xg, where xi corresponds
to the basis elements that are involved in generator Bi, and equivalently as a tensor
product x̄1 ⊗ · · · ⊗ x̄r, where x̄j corresponds to the basis elements that are involved
in recognizer Aj . Then we can construct from Ω a matchgrid G(x) that replaces each
generator Bi having k outputs by k generators of the single basis elements specified
by xi for those k outputs. Further, for each such Bi the parameters in one of these
single basis element generators will be set so as to multiply its value by valG(Bi, xi)
so that these generators for Bi generate xi with that multiplier valG(Bi, xi). Then it
follows from the definitions of generators, recognizers, and the way they are assembled
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according to the definition of matchgrids that

MatchSum(G(x)) =

⎡
⎣

∏

1≤i≤g

valG(Bi, xi)

⎤
⎦
⎡
⎣

∏

1≤i≤r

valR(Ai, x)

⎤
⎦ .

The reason for this equality is that a fixed vector x ∈ X is being generated with
weight ΠvalG(Bi, x), where the multiplication is over all the generators Bi. The inner
product of this x with the standard signature u of each of the recognizers gives the
contribution to MatchSum of the recognizers. But, by definition, the inner product
ux equals valR(Ai, x) for each recognizer Ai.

Now partition X into equivalence classes of |X1| elements each so that all members
of each equivalence class have identical X2, . . . , Xg components. For each of these
equivalence classes, say, the one defined by x2 ∈ X2, . . . , xg ∈ Xg, define the matchgrid
G(x2, . . . , xg) as follows: Set x to have components x2, . . . , xg and any x1 ∈ X1, and
let G(x2, . . . , xg) be G(x) but with the single element generators for x1 replaced by
the generator B1, which generates the sum of all members of X1, each with the
appropriate weight. Then clearly, summing over all the values of x1 gives

MatchSum(G(x2, . . . , xg))

=
∑

x1∈X1

valG(B1, x1)

⎡
⎣

∏

2≤i≤g

valG(Bi, xi)

⎤
⎦
⎡
⎣

∏

1≤i≤r

valR(Ai, x)

⎤
⎦ ,

where x in the last term denotes x1 ⊗ x2 ⊗ · · · ⊗ xg.
We iterate this process for B2, . . . , Bg in turn. For example, for B2 we partition

X2⊗X3⊗· · ·⊗Xg into equivalence classes of |X2| elements each so that each class has
identical x3, . . . , xg components. For each of these equivalence classes, say, that de-
fined by x3 ∈ X3, . . . , xg ∈ Xg, we define matchgrid G(x3, . . . , xg) to be G(x2, . . . , xg)
for some x2, but with the single element generators for x2 replaced by the generator
B2. This will sum all the members of X2 with the appropriate weights. It then follows
that

MatchSum(G(x3, . . . , xg))

=
∑

x1∈X1

∑

x2∈X2

valG(B1, x1)valG(B2, x2)

⎡
⎣

∏

3≤i≤g

valG(Bi, xi)

⎤
⎦
⎡
⎣

∏

1≤i≤r

valR(Ai, x)

⎤
⎦ .

After the last stage we have replaced all the generators of single basis elements
and have just one matchgrid left, which is G() = Ω. It follows then from the definition
of the Holant that MatchSum(G) equals Holant(G). Note that at that point all the
single element generators with omittable nodes have been replaced by the original
generators with no omittable nodes, and hence the result also holds for PerfMatch(G)
as claimed.

We use the Holant theorem to express the intention of holographic reductions. A
counting problem #F has a simple holographic reduction to planar PerfMatch if there
is a transformation that (i) produces all edge weights from a fixed set Y in which each
element can be computed to absolute error less than 2−n in time polynomial in n,
(ii) produces a weighted graph with the Holant and therefore also PerfMatch equal
to #F , and (iii) is computable in NC2.
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Corollary 4.1. If #F has a simple holographic reduction to planar PerfMatch
then #F ∈ NC2.

Proof. The instance of #F is first transformed to an instance of planar PerfMatch.
By Theorem 3.1 the required solution is given by the square root of the determinant
of a matrix that satisfies the conditions of Theorem 3.2. It then follows from Corol-
lary 3.2.1 given in section 12 that this determinant and the required solution can be
computed in NC2.

All the reductions we exhibit in this paper are simple holographic reductions, in
which every element of Y is either rational or an algebraic number with an explicitly
given polynomial equation. Hence, a solution can be found accurate to 2−n in time
polynomial in n, as required (e.g., [45]).

A direct application of the above result that uses the matchgates already described
for the nonstandard basis b1 is Theorem 8.1. The reader may choose to look at
section 8 next before proceeding to other sections.

The previous theorem also supports the following generalization.
Corollary 4.2. For any matchgrid Ω with omittable nodes and having weighted

graph G, if in the definition of signature of a matchgate PerfMatch is replaced by
MatchSum, and this is inherited in the definitions of valG and valR, then

Holant(Ω) = MatchSum(G).

Note, however, that the only case we know in which this can be exploited for
polynomial time algorithms is when all the omittable nodes are on the outer face and
we can invoke Theorem 3.3, as we do in Theorem 9.6.

5. Signatures of planar matchgates. In this section we shall give a more
systematic treatment of generators and recognizers.

Consider a graph G with three external nodes numbered 1, 2, 3. For each choice
of i, j, k ∈ {0, 1} let uijk equal the PerfMatch polynomial of G when nodes 1, 2, 3 are
deleted, respectively, according to whether i, j, k equal 1 or not. Thus u111 denotes
PerfMatch(G′), where G′ is G with all three external nodes removed. Note that for
a generator or recognizer the definition of the standard signature u given in section 4
implies that u equals the 8-vector (u000, u001, u010, u011, u100, u101, u110, u111).

For a given basis b we denote by {bijk|i, j, k ∈ {0, 1}} the eight possible external
8-vectors x1 ⊗ x2 ⊗ x3, where x1, x2, x3 range over {n, p}, respectively. Thus b010 =
n ⊗ p ⊗ n will denote the basis vector n at inputs 1 and 3 and the basis vector p at
input 2. The (r, s, t)-element of the 8-vector bijk will be denoted by (bijk)rst and will
represent in x1⊗x2⊗x3 the product of the rth component of x1, the sth component of
x2, and the tth component of x3 for r, s, t ∈ {0, 1}. Thus (b010)110 will equal n1p1n0,
for example.

For the special case of the standard basis n = (1, 0), p = (0, 1) clearly the (r, s, t)-
element of vector bijk will equal 0 unless r = i, s = j, and t = k, in which case it will
equal 1.

Let us first consider generators. Suppose that G has standard signature u, and
for all {i, j, k} ∈ {0, 1}3

(5.1) uijk =
∑

qrst(brst)ijk

for some vector of numbers q where summation is over all {r, s, t} ∈ {0, 1}3. Then
we say that G generates signature q with respect to basis b. Note that if G has no
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omittable nodes then it is either even or odd and hence either the even or the odd
four elements of {0, 1}3 have zero values for uijk.

Let us now consider recognizers. Suppose that G has standard signature û, and
that when the 8-vector bijk for some {i, j, k} ∈ {0, 1}3 is input to G then G evaluates
to q̂ijk. Then

(5.2) q̂ijk =
∑

ûrst(bijk)rst

must hold, where summation is over {r, s, t} ∈ {0, 1}3. We then say that G recognizes
signature q̂ over basis b. Again, if G has no omittable nodes then it is either even or
odd and hence either the even or the odd four elements of {0, 1}3 have zero values for
ûrst.

Proposition 5.1. A gate G with standard signature equal to u will generate and
recognize u with respect to the standard basis.

Proof. This is immediate from the definition of generators and recognizers, and
the fact observed above that for the standard basis (bijk)rst = δirδjsδkt where δ is
the Dirac delta function.

For any basis b and matchgate, whether a generator or recognizer, one can define
the signature of the matchgate with respect to the basis to be the vector q that it
generates according to relation (5.1), or the vector q that it recognizes according to
relation (5.2) above. Thus if the matchgate has arity m, then its signature with respect
to b is a vector of length 2m. We will denote it, for the m = 3 case, typically by
(q000, q001, . . . , q111). The standard signature defined in section 3 is just the signature
with respect to the standard basis. When we discuss a basis we need to be clear
about which basis is involved. However, signatures that differ from each other by
a nonzero constant factor can be treated as equivalent since their contribution to
the PerfMatch or MatchSum polynomials of any overall matchgrid differ by just that
constant multiple.

If the arity m gate is symmetric in its inputs and outputs, then we can define its
symmetric signature with respect to basis b to be the vector [S0, S1, . . . , Sm], where
Si is equal to all the elements of the ordinary signature that are indexed by {0, 1}m
patterns with i occurrences of 1. For example, the gate in Figure 1 is symmetric.
With respect to basis b1 it has ordinary signature (q00, q01, q10, q11) = (1, 1, 1, 0) and
symmetric signature [S0, S1, S2] = [1, 1, 0]. The gate in Figure 2 has symmetric in-
stances, such as those where all the weights wi = 1 and m = 3, say, in which case the
symmetric signature is [−3, 1, 0, 0] with respect to the same basis. We shall use round
parentheses for signatures and square parentheses for the abbreviated symmetric ver-
sion.

6. Realizable signatures for the standard basis. With respect to the stan-
dard basis we can characterize the standard signatures that are realizable with planar
matchgates of arity up to four. We first note that in any such signature either the
odd or the even components must be zero depending on the parity of the number of
nodes in the matchgate. Propositions 6.1 and 6.2 therefore show that for arities 2 and
3 all signatures are realizable up to this basic constraint.

Proposition 6.1. For all F and all x, y ∈ F there exist matchgates with arity 2
and standard signatures (u00, u01, u10, u11) = (x, 0, 0, y) and (0, x, y, 0).

Proof. The matchgates of Figure 4, with external nodes {1, 2}, suffice.
Proposition 6.2. For all F and all x, y, z, t ∈ F there exist matchgates

with arity 3 and standard signatures (u000, u001, u010, u011, u100, u101, u110, u111) =
(t, 0, 0, z, 0, y, x, 0) and (0, x, y, 0, z, 0, 0, t).
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1 2
x y 1

1 2
x y

Fig. 4. Two arity two gates with input/output gates {1, 2}.

Proof. For the odd case (0, x, y, 0, z, 0, 0, t) consider Figure 5. Clearly if t �= 0 the
left-hand figure has standard signature (0, x, y, 0, z, 0, 0, t) and solves the problem. If
t = 0 we use the right-hand diagram.

For the even case (t, 0, 0, z, 0, y, x, 0) the signature of the left part of Figure 6 is
(ax+by+cz, 0, 0, z, 0, y, x, 0) and therefore solves the problem for all values of x, y, z, t
by appropriate choice of a, b, c, unless x = y = z = 0 and t �= 0. In that exceptional
case we use the right-hand diagram.

12 x /t

y / ttz / t

1

x

y z

2

33

Fig. 5. Arity three gates for nonzero odd components.

x
c

12

3

y z

b

a
12

3

t

1 1

Fig. 6. Arity three gates for nonzero even components.

In general we shall refer to the elements of a signature being even or odd according
to whether their index has an even or odd number of 1’s. Thus, for example, u1010

and u0000 are even while u0100 and u0111 are odd.

Proposition 6.3. Suppose the elements of the standard signature are represented
by uijkl for i, j, k, l ∈ {0, 1}. For any F it is possible to realize by matchgates with
arity 4 any standard signature such that

(i) u0000u1111 − u0011u1100 + u0101u1010 − u0110u1001 = 0, u1111 �= 0, and all the
odd elements are zero, or
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tu0011

tu1001

tu0110

tu0101 tu1010

tu1100

1

2 3

4
u1111

Fig. 7. An arity four matchgate, where t = 1/u1111.

(ii) u1000u0111 − u1011u0100 + u1101u0010 − u1110u0001 = 0, u0111 �= 0, and all the
even elements are zero.

Proof. We consider (i) first. The algebraic relationship is the first matchgate
identity from [56] and we follow the construction from there shown in Figure 7. First,
ignoring the central square we have a nonplanar matchgate. It is easy to see that this
matchgate does have the desired values for the seven components u1111, u0110, u1001,
u0011, u1100, u0101, and u1010 of the signature. Now if we could somehow simulate the
crossing edges (1, 3) and (2, 4) by a planar graph so as to create a change in sign, the
value of the eighth component u0000 for this matchgate would be the following:

tu0110u1001 + tu0011u1100 − tu0101u1010.

If we substitute t = 1/u1111, then we would have the claimed relationship (i). Now
to make the graph planar and to simulate the −1 factor, we replace the crossing
edges by the planar graph shown in Figure 8. In Figure 8 if we substitute a = 1,
b = i, c = d = −1/2, and e =

√
i, where i2 = −1, then nonzero contributions

from PerfMatch occur for just the four combinations of each of (1, 3) and (2, 4) being
present or not in Figure 7. Each combination comes with a factor of +1, except the
one that has both crossing edges present in Figure 7, which contributes a factor of −1
as required. This concludes the construction for the field of complex numbers. (It can
also be verified that the same graph with appropriate ± 1 weights will have factors
−1, 2, 2, and 4, which can be normalized to −1, 1, 1, and 1, respectively, by appending
appropriate graphs at the external nodes. Hence the construction applies for all fields
F . Note that the signature of any planar matchgate has to satisfy algebraic identities
similar to those of the character [57].)

In order to obtain part (ii) we simply append an extra edge weighted 1 at input 1
and call the other endpoint of the new edge the new input node 1. This transformation
leaves the elements of the signature unchanged, except that they are renamed by the
process of flipping the first bit of the index in each term e.g., u0000 becomes u1000.

We note that the constraints u1111 �= 0 and u0111 �= 0 can be eliminated in the
following sense. If any of the sixteen components is nonzero, then, by the method of
the last paragraph, one can flip bits so that the nonzero entry is moved to the 1111
or 0111 position, and the relation (i) or (ii) holds for the corresponding renaming of
the elements.

Proposition 6.4. For all F and any arity m and any S0 ∈ F there is a matchgate
with standard symmetric signature [S0, . . . , Sm], where S1 = · · · = Sm = 0.
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1
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a

a

ab

b

b

b

c

c

d

d
e

e

e

e

Fig. 8. An arity four planar matchgate that is used to simulate the crossover in Figure 7. The
substitution a = 1, b = i, c = d = −1/2, e =

√
i suffices where i2 = −1.

Proof. The gate consists of 2m nodes v1, . . . , vm, u1, . . . , um and m edges (vi, ui),
where u1, . . . , um are the output nodes. All the edges have weight one, except for one
which has weight S0.

7. Realizable signatures for arity two matchgates. Relations (5.1) and
(5.2) in section 5 relate the signatures realizable by an arbitrary basis to those real-
izable by the standard basis. In section 6 we characterized the signatures that are
realizable by the standard basis for gates of arity up to four. In this section we shall
spell out some consequences for signatures with respect to arbitrary bases that are
realizable by gates of arity 2. These gates will be invoked in several places in the
various algorithms described in later sections.

For ease of notation we shall consider the basis to be b = [(a, b), (c, d)] so that
b00 = (a, b)⊗ (a, b), b01 = (a, b)⊗ (c, d), b10 = (c, d)⊗ (a, b), and b11 = (c, d)⊗ (c, d).

Relation (5.1) then describes the following requirements on a generator to have
signature (q00, q01, q10, q11) with respect to b:

u00 = a2q00 + acq01 + acq10 + c2q11,
u01 = abq00 + adq01 + bcq10 + cdq11,
u10 = abq00 + bcq01 + adq10 + cdq11, and
u11 = b2q00 + bdq01 + bdq10 + d2q11.

By Proposition 6.1 any standard signature is possible as long as either u00 = u11 =
0 or u01 = u10 = 0. Hence there exist generators with signature (q00, q01, q10, q11) with
respect to basis b if either

a2q00 + acq01 + acq10 + c2q11 = 0 and b2q00 + bdq01 + bdq10 + d2q11 = 0

or

abq00 + adq01 + bcq10 + cdq11 = 0 and abq00 + bcq01 + adq10 + cdq11 = 0.

Proposition 7.1. For the basis b2 = [(1, 1), (1,−1)] for any x, y ∈ F there is a
generator for (x, y, y, x) = [x, y, x].

Proof. The second of the two cases above gives q00 − q01 + q10 − q11 = 0 and
q00+q01−q10−q11 = 0. Clearly these will be satisfied if q00 = q11 and q01 = q10.

Proposition 7.2. For the basis b2 = [(1, 1), (1,−1)] for any x, y ∈ F there is a
generator for (x, y,−y,−x).
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Proof. The first of the two cases above gives q00 + q01 + q10 + q11 = 0 and
q00−q01−q10 +q11 = 0. Clearly these will be satisfied if q00 +q11 = 0, and q01 +q10 =
0.

Moving on to recognizers, we note that the requirements for a recognizer to have
signature (q00, q01, q10, q11) are given by relation (5.2):

q00 = a2u00 + abu01 + abu10 + b2u11,
q01 = acu00 + adu01 + bcu10 + bdu11,
q10 = acu00 + bcu01 + adu10 + bdu11, and
q11 = c2u00 + cdu01 + cdu10 + d2u11.

By Proposition 6.1 any standard signature is possible as long as either u00 = u11 = 0
or u01 = u10 = 0. Hence there exist recognizers with signature (q00, q01, q10, q11) with
respect to basis b of the two forms

(abu01 + abu10, adu01 + bcu10, bcu01 + adu10, cdu01 + cdu10)

and

(a2u00 + b2u11, acu00 + bdu11, acu00 + bdu11, c2u00 + d2u11).

Proposition 7.3. If b2 = [(1, 1), (1,−1)] is a basis for field F then for any
x, y ∈ F , there is a recognizer for (x, y, y, x) = [x, y, x].

Proof. The second case above gives signature (u00 +u11, u00−u11, u00−u11, u00 +
u11).

Proposition 7.4. If [(a, b), (c, d)] is a basis, then there is a recognizer for (0, ad−
bc, bc− ad, 0).

Proof. The proof follows from the first case above if u01 = 1 and u10 = −1.
Proposition 7.5. If [(a, b), (c, d)] is a basis, then there is a recognizer for (a2 +

b2, ac + bd, ac + bd, c2 + d2).
Proof. The proof follows from the second case with u00 = 1 and u11 = 1.
Proposition 7.6. If [(a, b), (c, d)] is a basis, then there is a recognizer for (a2 −

b2, ac− bd, ac− bd, c2 − d2).
Proof. The proof ollows from the second case with u00 = 1 and u11 = −1.

8. The basis b1 = [(1,−1), (1, 0)]. We shall now apply our method to the
problem of matchings—not necessarily perfect—in planar graphs. This is also known
as the monomer-dimer problem. Considerable efforts had been expended in attempts
to reduce it to the planar perfect matching problem. The lack of success achieved
was explained by the work of Jerrum [26, 27] who showed that this counting problem
was #P-complete. Subsequently Vadhan [51] showed that it remained #P-complete
even when the planar graph was bipartite, and its degree was restricted to 6. If the
degree is restricted to 2, then the graph consists of a set of cycles and the problem is
easily solvable. Any class that allows higher degrees is a natural candidate for #P-
compleness. However, we can show that the following such problem is computable in
polynomial time.

Theorem 8.1. There is a polynomial time algorithm for #X-MATCHINGS.
Proof. Consider a given planar weighted graph H = (V,E,W ), where V has

bipartition V 1, V 2, where every node v ∈ V 1 has degree 2 and every node v ∈ V 2 has
some arbitrary degree deg(v). We construct a matchgrid ΩH over b1 by replacing
each V 1 node with the generator matchgate of Proposition 4.1, replacing each V 2
node with the recognizer matchgate of Proposition 4.2, and, for each edge (u, v) in
H by having a connecting edge joining an output of the generator for u to an input
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of the recognizer for v so as to preserve planarity. The edge in the recognizer that is
adjacent to this connecting edge will have the same weight wi as the edge (u, v) has
in H.

Now the Holant was defined as

Holant(ΩH) =
∑

x∈X

⎡
⎣

∏

1≤j≤g

valG(Bj , x)

⎤
⎦
⎡
⎣

∏

1≤i≤r

valR(Ai, x)

⎤
⎦ ,

where j ranges over all the generators, i over all the recognizers, and x over all possible
tensor products of the basis elements. But each generator has arity two and generates
n ⊗ n, n ⊗ p, p ⊗ n, and p ⊗ p with weights 1, 1, 1, and 0, respectively. Hence the
nonzero contributions to the Holant will come from edge sets of H such that at most
one edge from the set is adjacent to each V 1 node. But the matchgates at the V 2
nodes are defined so that valR(Ai, x) is

(i) 0 if there is more than one edge incident,
(ii) wi if there is exactly one, and its weight is wi, and
(iii) −(w1 + · · · + wk) if there are no incident edges.

Hence the value of the Holant is the sum over all matchings E′ of H of the mass
of E′ defined as follows. The mass of E′ is the product of the weights of all the edges
that are present in it and also of the value of −(w1 + · · ·+wk) for every V 2 node that
is not saturated by the matching. Hence, by virtue of Theorem 4.1 and Corollary 4.1,
this mass can be computed in polynomial time, and, in fact, in NC2.

9. The basis b2 = [(1, 1), (1,−1)]. In this section we study the basis b2 =
[(1, 1), (1,−1)], which has a remarkable range of capabilities. We shall assume that
field F does not have characteristic two, since then b2 would have just one distinct
element. We first note that by Propositions 7.1 and 7.3, the arity 2 symmetric sig-
nature [x, y, x] can be realized for any x, y, both as a generator and as a recognizer.
Thus equality has weight x and inequality has weight y. The case x = 0 gives in-
equality gates and the case y = 0 equality gates. The arity one signature [x, x] is
also realizable, by 2-node matchgates, but the arity one constants [1, 0] and [0, 1] are
not—they would require omittable nodes.

If we have a generator over this basis and join to its outputs equality recognizers,
then we get a recognizer gate with the same signature as the original generator.
Similarly we can convert arbitrary recognizers to generators with the same signature
by appending generator equality gates. Hence for this basis b2 the signatures that
can be realized by generators are exactly the same as those that can be realized by
recognizers.

For arity three we shall now enumerate the eight possible combinations of ba-
sis elements for the inputs, namely, b2000, . . . ,b2111, rewrite each as an 8-vector of
coefficients with respect to the standard basis, and group them according to some
semantics:
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THREE POSITIVES
(1,−1) ⊗ (1,−1) ⊗ (1,−1): (1 –1 –1 1 –1 1 1 –1)

ZERO POSITIVES
(1, 1) ⊗ (1, 1) ⊗ (1, 1): (1 1 1 1 1 1 1 1)

ONE POSITIVE
(1,−1) ⊗ (1, 1) ⊗ (1, 1): (1 1 1 1 –1 –1 –1 –1)
(1, 1) ⊗ (1,−1) ⊗ 1, 1): (1 1 –1 –1 1 1 –1 –1)
(1, 1) ⊗ (1, 1) ⊗ (1,−1): (1 -1 1 –1 1 –1 1 –1)

TWO POSITIVE
(1,−1) ⊗ (1, 1) ⊗ (1,−1): (1 –1 1 –1 –1 1 –1 1)
(1, 1) ⊗ (1,−1) ⊗ (1,−1): (1 –1 –1 1 1 –1 –1 1)
(1,−1) ⊗ (1,−1) ⊗ (1, 1): (1 1 –1 –1 –1 –1 1 1)

SUMS:
0 OR 3 POSITIVES: (2 0 0 2 0 2 2 0)
1 OR 2 POSITIVES: (6 0 0 –2 0 –2 –2 0)

By taking linear combinations of the rows as specified by relation (5.1) we can
determine which combinations are realizable standard signatures. By Proposition 6.2
it is sufficient in the arity three case for a standard signature that either all the odd
elements, or all the even elements, be zero.

It is clear that if we add the THREE POSITIVES and the ZERO POSITIVES
vectors we get an all-even signature (2, 0, 0, 2, 0, 2, 2, 0). It follows that the symmetric
signature [1, 0, 0, 1] is realizable for the basis b2. Similarly adding the remaining six
vectors also gives an all-even vector, and hence the symmetric signature [0, 1, 1, 0]
is also realizable. Further, if we add x times the first two vectors to y times the last
six we still get an all-even vector. Hence for all x, y ∈ F , the symmetric signature
[x, y, y, x] is realizable.

Theorem 9.1. There is a polynomial time algorithm for #PL-3-NAE-ICE.

Proof. We represent each degree 3 node of the given graph G by a recognizer
matchgate with symmetric signature [0, 1, 1, 0] over b2, i.e., the NOT-ALL-EQUAL
or NAE gate. For degree 2 nodes we have a recognizer for [0, 1, 0] from Proposition 7.3.
For each edge we will have a generator matchgate with symmetric signature [0, 1,
0] from Proposition 7.1. We will have connecting edges between the outputs of the
generators and inputs of the recognizers as specified by G. If p on a connecting edge of
a recognizer gate represents the orientation toward that gate, and an n an orientation
away from it, then clearly each edge of G will be given a consistent orientation by
virtue of the binary inequality generator gate [0, 1, 0], which ensures that its two
outputs carry opposite basis elements. Further, the recognizer gates will ensure that
either one or two of the edges are directed toward it. It follows that the Holant of the
given matchgrid will equal the desired value of #PL-3-NAE-ICE.

Theorem 9.2. There is a polynomial time algorithm for #PL-3-(1,1)-CYCLE-
CHAIN.

Proof. Suppose we are given graph G as input to the (1,1) cycle-chain problem.
We shall represent each node by a recognizer for [0, 1, 1, 0]. We represent each edge
of G by a generator for [1, 0, 1]. Now if a p generated by a generator signifies that
the corresponding edge of G is in the cycle-chain cover, then clearly the edges of
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G will have a consistent such association by virtue of the [1, 0, 1] generators. But
the recognizers will ensure that either one or two edges of G incident to any one
vertex are labeled p. It follows that there is a one-to-one correspondence between
labelings of the edges of G by {n, p} such that the edges labeled by p form a cycle-
chain cover and contributions of 1 to the Holant of the constructed matchgrid. The
result follows.

Theorem 9.3. There is a polynomial time algorithm for PL-NODE-BIPARTI-
TION.

Proof. Suppose we are given graph G as input to the PL-NODE-BIPARTITION
problem. We shall represent each node by a recognizer for [x, y, y, x] or [x, y, x],
depending on whether the degree is 3 or 2, where x, y are variables to be given
various values. (Any node of degree 1 can be simply deleted.) Each edge we represent
by a generator for [0, 1, 0]. Then as in the proof of Theorem 9.1 we can interpret
nonzero contributions to the Holant as orientations of G. Nodes that have all edges
directed toward them (sinks) or all edges directed away from them (sources) will give
a contribution of x to the Holant, and those that are neither sources nor sinks will
have a contribution of y. Now if we fix y = 1 then the Holant will be a polynomial
SS(x), where the coefficient of xi will be the number of orientations of the edges of
G that have exactly i nodes as either sources or sinks.

Now it is easy to verify that the largest i for which the coefficient of xi in SS(x)
is nonzero is the maximum number of nodes that a bipartite graph can have that is
obtained by deleting nodes and incident edges from G. In one direction, if there is
an orientation with i sources and sinks, then the graph induced by the nodes that
are sources and sinks in G must be bipartite. In the reverse direction, if we have a
bipartite subgraph in G where the nodes have bipartition V 1′ and V 2′, then we can
define an orientation of G where all the nodes V 1′ are sources and all the nodes V 2′

sinks, and the orientation of any edge not incident to V 1′ or V 2′ can be arbitrary.

Now by giving x any fixed value we can compute the Holant for that value and
hence obtain the value of SS(x). By doing this for |V | + 1 distinct values of x and
performing polynomial interpolation on the |V |+ 1 values obtained, we can compute
all the coefficients of SS(x). The largest i such that the coefficient of xi in SS(x)
is nonzero will give the minimum number |V | − i of nodes whose removal leads to a
bipartite graph.

The following folds in the results for gates with 1, 2, and 3 inputs described above,
with some result for gates with 4 inputs detailed below, and the equality gate for any
number of inputs.

Theorem 9.4. For matchgrids where each matchgate is one of [x, x], [x, y, x],
[x, y, y, x], [1, 0, 0, 0, 1], [1, 0,−1, 0, 1], [0, 1, 0,−1, 0], [0, 1,±√

2, 1, 0] , in the case 2x2 =
yw + y2 [w, x, y, x, w], and [1, 0, . . . 0, 1] for any arity, the Holant can be computed in
polynomial time. Here different matchgates may have different values of x, y, w ∈ F .

Proof. For arities one, two, and three, we have already established that [x, x],
[x, y, x], and [x, y, y, x] are realizable.

For arity four we shall enumerate the sixteen possible combinations of basis ele-
ments for the inputs, namely, b20000, . . . ,b21111, rewrite each as a 16-vector of coeffi-
cients with respect to the standard basis, and group them according to some semantics,
as we did for arity three. By taking linear combinations of the rows as specified by
relation (5.1), we can again determine which combinations are realizable standard
signatures. By Proposition 6.3 it is sufficient in the arity four case for a standard
signature that all the odd elements, or all the even elements, be zero, provided in
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addition that the polynomial relation stated there holds among the eight remaining
elements.

ZERO POSITIVES

(1,1)⊗(1,1)⊗(1,1)⊗(1,1): (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)

FOUR POSITIVES

(1,-1)⊗(1,-1)⊗(1,-1)⊗(1,-1): (1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1)

CROSSINGS

(1,-1)⊗(1,1)⊗(1,-1)⊗(1,1): (1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1)

(1,1)⊗(1,-1)⊗(1,1)⊗(1,-1): (1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1)

THE OTHER FOUR

TWO POSITIVES CASES

(1,1)⊗(1,1)⊗(1,-1)⊗(1,-1): (1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1)

(1,-1)⊗(1,-1)⊗(1,1)⊗(1,1): (1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1)

(1,1)⊗(1,-1)⊗(1,-1)⊗(1, 1): (1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1)

(1,-1)⊗(1,1)⊗(1,1)⊗(1,-1): (1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1)

ONE POSITIVE

(1,1)⊗(1,1)⊗(1,-1)⊗(1,1): (1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1)

(1,-1)⊗(1,1)⊗(1,1)⊗(1,1): (1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1)

(1,1)⊗(1,1)⊗(1,1)⊗(1,-1): (1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1)

(1,1)⊗(1,-1)⊗(1,1)⊗(1,1): (1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1)

THREE POSITIVES

(1,1)⊗(1,-1)⊗(1,-1)⊗(1,-1): (1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1)

(1,-1)⊗(1,-1)⊗(1,1)⊗(1,-1): (1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1)

(1,-1)⊗(1,-1)⊗(1,-1)⊗(1,1): (1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1)

(1,-1)⊗(1,1)⊗(1,-1)⊗(1,-1): (1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1)

SUMS:

0 OR 4 POSITIVES (2 0 0 2 0 2 2 0 0 2 2 0 2 0 0 2)

TWO POSITIVES (6 0 0 -2 0 -2 -2 0 0 -2 -2 0 -2 0 0 6)

ONE POSITIVE (4 2 2 0 2 0 0 -2 2 0 0 -2 0 -2 -2 -4)

THREE POSITIVES (4 -2 -2 0 -2 0 0 2 -2 0 0 2 0 2 2 -4)

Each 4-output matchgate will have standard signature (u0000, . . . , u1111). Each
gate will be either even or odd and will have at most eight of the elements of their sig-
nature nonzero. For convenience we shall here represent the signature of an even gate
by the 8-vector (u0000, u0011, u0101, u0110, u1001, u1010, u1100, u1111) and the signature
of an odd gate by the 8-vector (u0001, u0010, u0100, u0111, u1000, u1011, u1101, u1110).

(i) Signature [1, 0, 0, 0, 1]: Adding the signatures for the two cases (0 positives)
+ (4 positives) gives for the even case the 8-vector (2, 2, 2, 2, 2, 2, 2, 2) which
is feasible by Proposition 6.3(i).

(ii) Signature [1, 0,−1, 0, 1]: Forming the linear combination for the eight cases
z(2 positives) + (0 or 4 positives) gives for the even case the 8-vector
(6z+2, 2−2z, 2−2z, 2−2z, 2−2z, 2−2z, 2−2z, 6z+2). By Proposition 6.3(i)
this is realizable if (6z + 2) ∗ (6z + 2) = (2− 2z)(2− 2z), or 36z2 + 24z + 4 =
4z2 − 8z + 4, or 32z2 + 32z = 0, or z = −1.

(iii) Signature [0, 1, 0,−1, 0]: Forming the linear combination for the eight cases
(1 positive) − (3 positives) gives for the odd case the 8-vector (4, 4, 4,−4,
4,−4,−4,−4). By Proposition 6.3(ii) this is realizable since −16 + 16 + 16−
16 = 0.

(iv) Signature [0, 1,±√
2, 1, 0]: Forming the linear combination for the fourteen

cases (1 positive) + (3 positives) + y(2 positives) gives for the even
case the 8-vector (8 + 6y,−2y,−2y,−2y,−2y, −2y,−2y,−8 + 6y). Therefore
it is sufficient that (8 + 6y)(−8 + 6y) = 4y2, or −64 + 36y2 = 4y2, or y =

√
2

or y = −√
2.

(v) Signature [w, x, y, x, w]: Forming the linear combination for the sixteen cases
w(0 positives) + w(4 positives) + x(1 positive) + x(3 positives)
+ y(2 positives) gives for the even case the 8-vector (2w + 6y + 8x, 2w −
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2y, 2w− 2y, 2w− 2y, 2w− 2y, 2w− 2y, 2w− 2y, 2w + 6y− 8x), for which any
y, x, and w with 2x2 = yw + y2 will suffice.

Note that relation (v) generalizes relations (i), (ii), and (iv).

Finally, we note that equality gates of any arity m can be obtained by chain-
ing together m − 2 ternary equality gates [1, 0, 0, 1] using the equality recognizers of
Proposition 7.3.

Theorem 9.5. There is a polynomial time algorithm for#PL-3-NAE-SAT.

Proof. The construction follows that for Theorem 9.1 except that for NAE nodes
we have recognizers with symmetric signatures [0, 1, 1, 0], and for variable nodes we
have recognizers for [1, 0, . . . , 0, 1] gates of the same arity as the number of clauses
in which the variable appears. Further, if a variable occurrence is negated we have
a [0, 1, 0] generator along the edge that joins the variable recognizer and the NAE
recognizer, and if the variable occurrence is not negated then we have [1, 0, 1].

Theorem 9.6. There is a polynomial time algorithm for ⊕PL-EVEN-LIN2.

Proof. The construction follows that for Theorem 9.1 with some exceptions.
First we note that any equation of even length more than four can be reduced to a
set of equations all of length four by the introduction of new variables. For example,
z1+· · ·+z6 = 1 becomes the two equations z1+z2+z3+y = 0 and y+z4+z5+z6 = 1.
Now each equation of length four is simulated by a [1, 0,−1, 0, 1] or a [0, 1, 0,−1, 0]
gate depending on whether the constant term of the equation being simulated is 0
or 1. For length 2 we use [1, 0, 1] and [0, 1, 0], respectively. The boundary conditions
that fix the values of variables can be realized by using 2-node matchgates with one
omittable node as shown in Figure 3. We then invoke Corollary 4.2 and Theorem 3.3.

For each original noncompulsory equation we pick an arbitrary variable occur-
rence in it and simulate it “possibly being faulty” by having as the corresponding link
between its variable and equation recognizers a generator for [1, x, 1] if the variable
occurs positively and [x, 1, x] if it occurs negated. For all other occurrences of vari-
ables the corresponding link is a generator for [1, 0, 1] or [0, 1, 0] as appropriate. The
Holant will then be a polynomial in x. The coefficient of xi will arise from “solutions”
of the equations where exactly i variable occurrences, all in distinct noncompulsory
equations, have their bits inverted. In other words they arise from solutions that sat-
isfy all but exactly i of the noncompulsory equations. Since each solution contributes
±1 to the Holant, the result follows.

We note that the generating function of the Ising problem, or #PL-CUT, is noth-
ing other than the Holant when edges are replaced by [1, y, 1] gates and nodes by
[1, 0, . . . , 0, 1] gates over b2. Hence this offers yet another treatment of the Ising prob-
lem for planar structures. In the reverse direction this implies that algorithms based
on just these gates can be derived also from #PL-CUT through classical reductions,
essentially following our proofs here. The reader can verify that Theorems 9.1, 9.2,
9.3, and 9.5 are all in this category since [1, y, y, 1] can be simulated by three [1, y, 1]
gates. However, if the problems solved in these theorems are generalized to allow the
degree 4 gates permitted by Theorem 9.4, then polynomial time algorithms follow for
some, perhaps less natural, problems for which no classical reduction to #PL-CUT is
apparent.

To conclude this section we now summarize more explicitly what the holographic
treatment of an instance G of #PL-CUT involves. The basis used will be b2. Each
node of G of degree d will be replaced by a recognizer for [1, 0, . . . , 0, 1] which enforces
equality on its d inputs. Clearly (Theorem 9.4) such a recognizer can be constructed
by chaining together d-2 recognizers for [1, 0, 0, 1] with generators for [1, 0, 1]. Each
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edge of G will be simulated by a generator for [1, y, 1]. The simulation consists of
replacing the nodes and edges by these gates and joining up the corresponding pairs of
input/output nodes of these gates by single edges. The coefficient of yk in PerfMatch
of the resulting weighted graph will give the answer to the #PL-CUT problem by
virtue of the Holant theorem. The only technical facts that need to be verified are
that for the basis b2 generators for [1, y, 1] and [1, 0, 1], and recognizers for [1, 0, 0,
1] exist. Proposition 7.1 guarantees the former. Proposition 6.2 guarantees the latter
in conjunction with the observation made at the start of the current section that the
sum of “0 or 3 positives” over b2 corresponds to an all even standard signature.

10. The basis b3 = [(1, 1), (1, −1), (1, 0)]. We now consider the problem
PL-FO-2-COLOR and shall employ this basis b3.

Theorem 10.1. There is a polynomial time algorithm for PL-FO-2-COLOR.
Proof. Given a graph G we assume that all its nodes have degree 2 or 3. At nodes

of degree 3 we place matchgates that generate

(1, 0) ⊗ (1, 1) ⊗ (1, 1) + (1, 1) ⊗ (1, 0) ⊗ (1, 1) + (1, 1) ⊗ (1, 1) ⊗ (1, 0)

+ (1, 0) ⊗ (1,−1) ⊗ (1,−1) + (1,−1) ⊗ (1, 0) ⊗ (1,−1) + (1,−1) ⊗ (1,−1) ⊗ (1, 0),

and at nodes of degree 2 those that generate

(1, 0) ⊗ (1, 1) + (1, 1) ⊗ (1, 0)

+ (1, 0) ⊗ (1,−1) + (1,−1) ⊗ (1, 0).

We note that all the nonzero terms are even and hence by Proposition 6.2 there
are matchgates to generate them. In place of the edges of G we place recognizers that
on input (a, b), (c, d) at their respective inputs have value ac− bd. The recognizer of
Proposition 7.6 suffices.

We say that a node of G represents 0 if it generates (1, 1) in some direction and
1 if it generates (1,−1) in some direction. In either case it directs its arrow along the
edge on which it sends (1, 0) and away from itself.

Clearly the recognizer between two nodes that both represent 0 or both 1 will
have value zero unless at least one of the nodes sends an arrow, i.e., (1, 0), to the
recognizer, in which case its value will be 1. A recognizer between two nodes that
represent 0 and 1, respectively, will have value 2 if there are no arrows toward the
recognizer, and 1 otherwise.

The Holant of this matchgrid will be nonzero iff PL-FO-2-COLOR has a solution.
Each solution will be counted 2k times where k is the number of edges in G that have
no arrows and whose endpoints represent opposite values.

11. General complexity-theoretic questions. We regard the most impor-
tant among the currently widely held conjectures of complexity theory to be (1) P �=
NP, (2) P �= P#P, (3) P �= BPP, (4) P �= QBP, (5) P ⊂/ PolyLogSPACE, (6) P �= NC,
(7) P �= PSPACE. We observe that a positive solution to the question P#P =?NC
would resolve all the above seven questions (the first six would be contradicted). (N.B.
Regarding question (3) P = BPP is also widely conjectured.)

Now consider polynomial systems of the form

S(x) = {E1(x), E2(x), . . . , Em(x)},
where x stands for a set of variables {x1, . . . , xn} and Ei(x) stands for a polynomial
equation with coefficients from the integers. We shall say that such a system is
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solvable if it is satisfied by a set of complex numbers. In order that we may invoke
Theorem 3.2, which is needed to ensure that the linear algebra computations be in
polynomial time, we need such a system to be efficiently solvable. We say that a
system is efficiently solvable if for that one fixed system there exists an algorithm that
for some polynomial p(n) and any n > 1 computes some solution to the system to n
decimal places of accuracy within p(n) Boolean operations. This is a weak requirement
in that the size of the polynomial system can be regarded as a fixed constant. The
requirement is only that the cost of computing the solutions to higher and higher
accuracy is polynomial time bounded in the number of digits of the accuracy for that
one fixed system. (It need not be polynomial time in the size of the system.)

In fact, it can be seen that solvable systems are always also efficiently solvable in
our sense: Systems with finite numbers of solutions are efficiently solvable since they
can be reduced by elimination to univariate polynomial solving. Further, systems
with infinitely many solutions are also efficiently solvable by means of univariate rep-
resentations [7, Theorem 4.12], [2, Algorithm 11.60]. It is well known that univariate
polynomials are efficiently solvable (e.g., [45]).

We now observe that holographic methods can be viewed as providing construc-
tions of natural systems S such that

(11.1) S(x) is solvable ⇒ P#P = NC2.

More particularly, for any one formulation F (specifiable by appropriate local
constraints) of a combinatorial problem for which the counting problem #F is #P-
complete, and any basis size k, and gate size g, we shall construct a polynomial system
SF,k,g such that SF,k,g is solvable iff there is a simple holographic reduction from #F
to planar PerfMatch using basis size k and gate size g.

We can then define SF to be the family of polynomial systems {SF,k,g | k =
1, 2, . . . ; g = 1, 2, . . .} and make the final claim:

(11.2) Some member of SF is solvable ⇒ P#P = NC2.

We shall explain the above claims, in the first instance, in the context of gates of
arity up to three and basis size 1, as developed earlier in the paper. In section 5 we
have already stated the polynomial constraints (5.1) on generators

(11.3) uijk =
∑

qrst(brst)ijk

and (5.2) on recognizers

(11.4) q̂ijk =
∑

ûrst(bijk)rst,

where summation is over {r, s, t} ∈ {0, 1}3. Note that here q and q̂ describe the
formulation of the combinatorial problem, b is the basis, and u and û are the standard
signatures. Also, from the definition of standard signatures in section 4, the various
components of u, û equal PerfMatch(G−Z), PerfMatch(Ĝ−Z) for various choices of
Z, assuming, for simplicity, that there is just one kind of generator and one kind of
recognizer. Hence the components uijk of u each equal a polynomial expression, say,
Ug
ijk(W ), over the weights W of the generic gate G of size g, and similarly for ûijk.

Hence the third set of constraints we need is

(11.5) uijk = Ug
ijk(W ), ûijk = Û ĝ

ijk(Ŵ ).
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It follows from what we have said that (11.3)–(11.5) are solvable iff there is a
holographic reduction from the given formulation of #F to planar PerfMatch using
basis size 1 and gate size g. We note that in section 6 we characterized the polynomial
equations that can be realized for arities up to four for gates of any size—not just for
fixed values of g.

For example, in section 4 we found a solution in the case that q = (1, 1, 1, 0)
and q̂ = (−3, 1, 1, 0, 1, 0, 0, 0). (N.B. We had an arity 2 gate for the generators, but
arbitrary arity for the recognizers, the q̂ here being the instance for arity three.) That
gave us a polynomial time algorithm for #X-MATCHINGS. Planar matchings are
known to be #P-complete [26, 27], even in the planar bipartite case of maximum
degree 6 [51]. Hence the solvability of such a #P-complete case would imply P#P =
NC2. We note that the nonsolvability of such systems can be proved mechanically,
in principle, using computer algebra systems. With such a system we have verified,
for example, that the basis given for #X-MATCHINGS is essentially unique among
those of size one.

Now (11.3)–(11.5) as stated are limited to bases that have size 1 and two com-
ponents, and gates of arity up to three. To allow for h rather than two compo-
nents the only change needed in (11.3)–(11.5) is that {r, s, t} should be summed over
{1, 2, . . . , h}. It is easy to see that these polynomials can be generalized also to allow
for arbitrary basis size and arbitrary arity.

By a formulation of a problem we mean a mapping of “the parts” of the problem
to generator and recognizer gates in the manner of the reductions we have given for our
various specific problems. Given a #P-complete problem such as planar matchings,
there are many possible formulations, and it is not clear which, if any, are the most
useful for searching for positive solutions of P#P. The formulation given in section 8
mapped the nodes to one of two kinds of matchgates. Another would be to map a
group of nodes to one kind of matchgate and the edges to another. Also, as illustrated
in some reductions in section 9, the original problem may be mapped to a number
of matchgrids and the final answer recovered by polynomial interpolation. Clearly
there are numerous such formulations that one might try. Thus for any combinatorial
problem such as those we have described one can ask whether some formulation of
some variant is both #P-complete and has a solvable equation system.

Our treatment here emphasizes solutions from C only because these seem the
easiest to find mechanically. Clearly, solutions over finite fields would be even better
for computational purposes if these can be found, though the positive consequences
would be only for the corresponding fields in the first instance [52].

Also, we have defined signatures as matrices whose rows correspond to input
configurations of matchgates and whose columns correspond to output configurations.
In this paper the matchgates we used were all generators or recognizers, corresponding
to column and row vectors, respectively. The treatment can be adapted, clearly, to
matchgates that have both inputs and outputs.

Throughout this paper we have emphasized planar structures. However, within
the same framework we can deal with nonplanar structures as long as in their for-
mulation we also allow for “crossover” nodes (and simulate them effectively with
matchgates).

An entirely orthogonal issue is that in this paper we have used the PerfMatch
polynomial at the matchgate level and the FKT method for planar graphs as the
combining mechanism. An alternative approach for the whole development is to use
the Pfaffian at the matchgate level and the Pfaffian combining approach described in
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[56, 58] instead.
We have considered only matchgrids that use the same basis throughout. We

could equally use a different basis for each connection in the matchgrid.
In conclusion, we observe that if any polynomial system generated in the manner

described above for a #P-complete problem is solvable, then it would follow that
P#P = NC2 and that the seven conjectures enumerated at the beginning of this
section would be resolved. In the apparent absence of alternative general approaches
to these complexity issues, we suggest that as long as the solvability of even one
such polynomial system remains unresolved, it is rational to regard these complexity
questions as being truly open.

12. Numerical considerations.
Proof of Theorem 3.2. We shall use Berkowitz’s algorithm for computing the

determinant [5] and exploit the fact that, unlike Gaussian elimination, it uses no
division. Inspection of Berkowitz’s algorithm shows that it uses 3 log2 n+O(1) levels
of multiplications of pairs of matrices of sizes at most n×n, where the matrix entries
initially are either −1 or members of Y , and at subsequent steps are the entries,
sometimes multiplied by −1, of matrix products previously obtained.

For x ∈ C let |x| be the modulus of x. Let D = max{1,max{|x| : x ∈ Y }}.
Our algorithm will depend on Y only through the value of D. For all matrices it
will execute the same sequence of arithmetic operations defined by Berkowitz’s algo-
rithm except that the arithmetic will be performed in arithmetic with g = g(n, Y ) =
O(n3)(log2 D + log2 n) decimal places of accuracy in fixed precision arithmetic both
to the left and to the right of the decimal point. The roundoff error introduced in
each operation is at most 2−g in absolute value.

We want Fi to be an upper bound on the modulus of any value computed at the
ith level of the exact algorithm. Clearly F0 = D and Fi > (Fi−1)

2nk suffice if each
level is a matrix multiplication of matrices of size at most nk × nk. It follows that if
exp(i) = 2i, then Fi = (nkD)exp(i) suffices.

We now want εi to be an upper bound on the maximum absolute error on an
output of level i that can occur through the accumulation of roundoff errors. We
take ε0 = 2−g and will maintain 2−g ≤ εi ≤ 1/2 and Fi ≥ 1 by induction. Now the
maximum value that can be taken by a product of true absolute values U and V is

(U + εi−1)(V + εi−1) + 2−g = UV + (U + V )εi−1 + ε2i−1 + 2−g

≤ UV + 2εi−1Fi−1 + ε2i−1 + 2−g = UV + ε′i,

say. The maximum error of a subsequent nk-fold sum, as required by a matrix multi-
plication, performed as nk − 1 pairwise operations is (nk(ε′i + 2−g). Combining these
gives that

εi ≤ nk(2εi−1Fi−1 + ε2i−i + 2.2−g) ≤ 6nkFi−1εi−1 ≤ (6nk)iFi−1Fi−2 . . . F0ε0,

where for the second inequality we have used ε2i−1 ≤ 2Fi−1εi−1 (since Fi−1 > 1 and

εi−1 ≤ ε), and also 2−g ≤ Fi−1εi−1. Since Fi = (nkD)exp(i) we deduce that

(*) εi ≤ (6nk)i(nkD)exp(i+1)2−g.

Now if we want to ensure that the integer value of the determinant is computed
correctly for i = 3 log2 n + O(1) and k = 1, then εi < 1/2 is needed for these pa-
rameters. From inequality (*) it follows that g = O(n3)(log2 D + log2 n) + O(log n)2
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decimal places of accuracy to the right of the decimal point are enough. Since no
term is larger than Fi = (nkD)exp(i), it follows that O(n3)(log2 D + log2 n) decimal
places to the left of the decimal point are sufficient, and hence O(n3)(log2 D+ log2 n)
bit arithmetic overall will suffice.

Corollary 3.2.1. The algorithm in the above theorem can be implemented in
NC2.

Proof. Each of the O(log n) stages of the algorithm can be implemented by
Boolean circuits of polynomial size and O(log n) depth, since it requires multipli-
cations and n-fold additions [4].

Corollary 3.2.2. Theorem 3.2 and Corollary 3.2.1 also hold if Y is infinite,
Mn contains elements from some Yn ⊆ Y , there is a polynomial p(n) such that 2p(n)

upper bounds the absolute value of the elements of Yn, and there is an algorithm that
given n and the index of an element in Yn computes that element to absolute error
less than 2−n in time polynomial in n.

Proof. The proofs above support this stronger statement.
Proof of Theorem 3.3. Proposition 6.2 implies that there is a 3-input gate for

the even parity standard signature [1, 0, 1, 0]. By chaining n − 2 of these together
we get a gate for the even parity n input signature [1, 0, 1, 0, · · · ]. By deleting one
of the external nodes of such a chain we obtain an n − 1 input odd parity signature
[0, 1, 0, 1, · · · ].

Given a matchgrid Γ with m nonomittable nodes and r omittable nodes on the
boundary we shall create a new matchgrid by adding an r-input parity gate in the
outside face of Γ with its external nodes identified with the omittable nodes of Γ. The
parity of this parity gate will be chosen odd or even according to whether m is odd or
even. Clearly PerfMatch for the augmented matchgrid will equal MatchSum for the
original matchgrid, as required.

13. Note added in July 2007. Since the first appearance of this paper several
results have been obtained that shed further light on holographic algorithms. Cai and
Choudhary [9] gave a tensor-based treatment and an alternate proof of the Holant
theorem. Cai and Choudhary [10] also showed that any standard signature of arity n
can be realized by a planar matchgate with O(n4) nodes, thus generalizing the corre-
sponding result for n ≤ 4 of our section 6. Further, Cai and Choudhary [11] showed
that the planar matchgrid approach taken here is essentially equivalent to the Pfaffian
matchcircuit approach of [58]. In Valiant [60] it was shown that the Cai–Choudhary
[10] result could be used to show that a certain elementary class of holographic al-
gorithms is insufficient to compute Boolean satisfiability or the permanent. It leaves
open whether more general holographic algorithms can compute these functions, or
whether this elementary class is sufficient for other #P-complete problems. Cai and
Lu [12] gave explicit characterizations of certain classes of signatures that are realiz-
able. Cai and Lu [13] further showed that any matchgrid that is realizable in some
basis is also realizable in a basis of size one. Holographic reductions have also been
used to prove some new ⊕P-completeness [60] and #P-completeness [63] results.

Acknowledgments. I am grateful to Matthew Cook, Oded Goldreich, and Mark
Jerrum for their helpful comments on an earlier draft of this paper.

REFERENCES

[1] R. Barbanchon, On unique graph 3-colorability and parsimonious reductions in the plane,
Theoret. Comput. Sci., 319 (2004), pp. 455–482.



HOLOGRAPHIC ALGORITHMS 1593

[2] S. Basu, R. Pollack, and M.-F. Roy, Algorithms in Real Algebraic Geometry, Springer-
Verlag, Berlin, 2003.

[3] R. J. Baxter, Exactly Solved Models in Statistical Physics, Academic Press, London, 1982.
[4] P. W. Beame, S. A. Cook, and H. J. Hoover, Log depth circuits for division and related

problems, SIAM J. Comput., 15 (1986), pp. 994–1003.
[5] S. J. Berkowitz, On computing the determinant in small parallel time using a small number

of processors, Inform. Process. Lett., 18 (1984), pp. 147–150.
[6] E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM J. Comput., 26 (1997),

pp. 1411–1473.
[7] P. Bürgisser, Completeness and Reduction in Algebraic Complexity, Springer-Verlag, Berlin,

2000.
[8] P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic Complexity Theory, Springer-

Verlag, Berlin, 1996.
[9] J.-Y. Cai and V. Choudhary, Valiant’s Holant theorem and matchgate tensors, in Theory

and Applications of Models of Computation, Lecture Notes in Comput. Sci. 3959, Springer-
Verlag, Berlin, 2006, pp. 248–261.

[10] J.-Y. Cai and V. Choudhary, On the Theory of Matchgate Computations, in Electronic
Colloquium on Computational Complexity, ECC-018, 2006.

[11] J.-Y. Cai and V. Choudhary, Some results on matchgates and holographic algorithms, in
Automata, Languages, and Programming, Part I, Lecture Notes in Comput. Sci. 4051,
Springer-Verlag, Berlin, 2006, pp. 703–714.

[12] J.-Y. Cai and P. Lu, Holographic algorithms: From art to science, in Proceedings of the 39th
ACM Symposium on Theory of Computing, ACM, New York, 2007, pp. 401–410.

[13] J.-Y. Cai and P. Lu, Holographic algorithms: The power of dimensionality resolved, in Inter-
national Colloquium on Automata, Languages, and Programming, 2007, pp. 631–642.

[14] S. A. Cook, The complexity of theorem proving procedures, in Proceedings of the 3rd ACM
Symposium on Theory of Computing, ACM, New York, 1971, pp. 151–158.

[15] L. J. Cowen, W. Goddard, and C. E. Jesurum, Defective coloring revisited, J. Graph Theory,
(1997), pp. 205–219.

[16] D. Deutsch, Quantum theory, the Church-Turing principle, and the universal quantum com-
puter, Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 97–117.

[17] M. E. Fisher, Statistical mechanics of dimers on a plane lattice, Phys. Rev., 124 (1961),
pp. 1664–1672.

[18] M. R. Garey and D. S. Johnson, The rectilinear Steiner tree problem is NP-complete, SIAM
J. Appl. Math., 32 (1977), pp. 826–834.

[19] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, 1979.

[20] M. R. Garey, D. S. Johnson, and L. Stockmeyer, Some simplified NP-complete graph
problems, Theoret. Comput. Sci., 1 (1976), pp. 237–267.

[21] M. R. Garey, D. S. Johnson, and R. E. Tarjan, The planar Hamiltonian circuit problem is
NP-complete, SIAM J. Comput., 5 (1976), pp. 704–714.

[22] F. Hadlock, Finding a maximum cut of a planar graph in polynomial time, SIAM J. Comput.,
4 (1975), pp. 221–225.

[23] J. Hastad, Some optimal inapproximability results, J. ACM, 48 (2001), pp. 798–859.
[24] H. B. Hunt, M. V. Marathe, V. Radhakrishnan, and R. E. Stearns, The complexity of

planar counting problems, SIAM J. Comput., 27 (1998), pp. 1142–1167.
[25] F. Jaeger, D. L. Vertigan, and D. J. A. Welsh, On the computational complexity of the

Jones and Tutte polynomials, Math. Proc. Cambridge Philos. Soc., 108 (1990), pp. 35–53.
[26] M. R. Jerrum, Two-dimensional monomer-dimer systems are computationally intractable, J.

Statist. Phys., 48 (1987), pp. 121–134.
[27] M. R. Jerrum, Erratum: “Two-dimensional monomer-dimer systems are computationally

intractable,” J. Statist. Phys., 59 (1990), pp. 1087–1088.
[28] M. R. Jerrum, Counting, Sampling and Integrating: Algorithms and Complexity, Birkhäuser,
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EXTRA UNIT-SPEED MACHINES ARE ALMOST AS POWERFUL
AS SPEEDY MACHINES FOR FLOW TIME SCHEDULING∗
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Abstract. We study online scheduling of jobs to minimize the flow time and stretch on parallel
machines. We consider algorithms that are given extra resources so as to compensate for the lack
of future information. Recent results show that a modest increase in machine speed can provide
very competitive performance; in particular, using O(1) times faster machines, the algorithm SRPT
(shortest remaining processing time) is 1-competitive for both flow time [C. A. Phillips et al., in
Proceedings of STOC, ACM, New York, 1997, pp. 140–149] and stretch [W. T. Chan et al., in
Proceedings of MFCS, Springer-Verlag, Berlin, 2005, pp. 236–247] and HDF (highest density first) is
O(1)-competitive for weighted flow time [L. Becchetti et al., in Proceedings of RANDOM-APPROX,
Springer-Verlag, Berlin, 2001, pp. 36–47]. Using extra unit-speed machines instead of faster machines
to achieve competitive performance is more challenging, as a faster machine can speed up a job but
extra unit-speed machines cannot. This paper gives a nontrivial relationship between the extra-speed
and extra-machine analyses. It shows that competitive results via faster machines can be transformed
to similar results via extra machines, hence giving the first algorithms that, using O(1) times unit-
speed machines, are 1-competitive for flow time and stretch and O(1)-competitive for weighted flow
time.

Key words. online scheduling, flow time, stretch, competitive analysis, extra-resource augmen-
tation
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1. Introduction. In this paper we revisit the problem of online scheduling of
jobs to minimize the flow time and stretch on m ≥ 2 parallel machines (see [24] for a
survey). Each job is released at an unpredictable time and is sequential in nature (i.e.,
it cannot be executed by more than one machine at a time). We consider the case
where the processing time (work) of a job is known when it is released. Preemption
is allowed at no cost, i.e., a preempted job can be resumed at the point of preemption
on any machine. SRPT (shortest remaining processing time first) is a typical example
for scheduling in this setting.

Given a schedule, the flow time of a job is the amount of time between its release
time and its completion time, and the stretch is the ratio of the flow time to the
processing time. In some applications, each job is given a weight, and the concern
is the weighted flow time. Common objectives for job scheduling are to minimize
the total (or, equivalently, average) flow time (e.g., [19, 20, 2, 1, 21]), stretch (e.g.,
[7, 9, 22]), or weighted flow time (e.g., [4, 14, 3]) of all jobs. Minimizing stretch is
actually a special case of minimizing weighted flow time if we assign the weight of
each job to be the reciprocal of its processing time. An online scheduler is said to be
c-competitive for flow time (resp., stretch, weighted flow time) if for any job sequence
it guarantees the total flow time (resp., stretch, weighted flow time) to be at most c
times that of the optimal offline schedule.
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Related work. SRPT is perhaps the most well-studied online algorithm for
minimizing flow time. For scheduling a single machine (m = 1), SRPT is 1-competitive
[19]. For m ≥ 2 machines, Leonardi and Raz [20] showed that SRPT achieves the best
possible competitive ratio, which is Θ(min(logn/m, log Δ)), where n is the number
of jobs and Δ is the maximum to minimum ratio of processing times. In the offline
context, minimizing total flow time on parallel machines is NP-hard [15], and no
algorithm is known to have a constant approximation ratio.

Resource augmentation, pioneered by Kalyanasundaram and Pruhs [17], is a pop-
ular approach to studying better performance guarantee for improving the competi-
tiveness of online scheduling (e.g., [23, 21, 13, 11, 16, 6]). Specifically, this approach
allows the online scheduler to have extra resources so as to compensate for the lack
of future knowledge. The key concerns include (i) whether extra resources can lead
to 1-competitive (or even better) performance against the optimal offline algorithm
using no extra resources, and (ii) how competitive an arbitrarily small amount of
extra resources can be. Extra resources can be in the form of faster machines or
extra (unit-speed) machines. Below we denote a machine that can complete s ≥ 1
units of work in one unit of time as an s-speed machine. For minimizing flow time
on parallel machines, Phillips et al. [23] were the first to show that SRPT when given
(2−1/m)-speed machines is 1-competitive or, in short, (2−1/m)-speed 1-competitive.
McCullough and Torng [21] later showed that SRPT is indeed α-speed 1

α -competitive
for any α ≥ 2 − 1/m.

Let us switch to the results on minimizing stretch and weighted flow time on par-
allel machines (one can refer to [22, 5, 4, 23] for results on a single machine). For the
case of stretch, Muthukrishnan et al. [22] have showed that SRPT is 14-competitive
and no online algorithm can be 1-competitive. Chekuri, Khanna, and Zhu [14] pro-
posed a different algorithm that is 9.81-competitive. They also gave a lower bound on
the competitive ratio for weighted flow time of Ω(min(

√
Δ,

√
W, (n/m)1/4)), where

W is the maximum to minimum ratio of the weights. With resource augmenta-
tion, Becchetti et al. [6] showed that HDF (highest density first) is (2 + 2ε)-speed
(1 + 1

ε )-competitive for weighted flow time. This implies that SJF (shortest job first)
is (2 + 2ε)-speed (1 + 1

ε )-competitive for stretch. Recently, more results on stretch
have become known. Chekuri et al. [13] proved that the nonmigratory algorithm IMD
(proposed in [1]) is (1 + ε)-speed O(1 + 1

ε )-competitive, and Chan et al. [12] showed
that SRPT is indeed 5-speed 1-competitive.

Improving the competitiveness via extra unit-speed machines is more challenging.
While a faster machine can speed up a job, multiple unit-speed machines cannot. In
other words, we cannot use x unit-speed machines to simulate an x-speed machine,
yet the reverse is possible (using time-sharing). The literature contains only a few
results on exploiting extra machines to obtain competitive scheduling (see [17, 23,
18, 13]). For flow time scheduling on parallel machines, Chekuri et al. [13] have
shown that the algorithm IMD when given (1+ ε)m unit-speed machines is O(1+ 1

ε )-
competitive for both flow time and stretch. Whether O(m) unit-speed machines can
make an algorithm 1-competitive for flow time or stretch has been an open problem.
There are also results on exploiting extra machines in other problem settings of flow
time scheduling [17, 23]. In particular, Kalyanasundaram and Pruhs [17] studied the
nonclairvoyant setting on a single machine, and Phillips et al. [23] considered the
nonpreemptive setting for parallel machines. The power of extra machines has also
been studied in the context of deadline scheduling by Koo et al. [18] and Phillips et
al. [23].

To ease our discussion, we adopt the following notation. Let α and τ be any
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Table 1

Results on flow time scheduling. Results that are given in this paper are marked with †. Note
that ε > 0 and s are any real numbers and h ≥ 1 is any integer.

Extra speed Extra machines
Competitive Competitive

Speed ratio Machines ratio
Flow time (1 + ε) O(1 + 1/ε) [13] �(1 + ε)m� O(1 + 1/ε) [13]

2 1 [23] �(2 + ε)m� 1 + 1/ε †
s ≥ 2 1/s [21] 34m 1 †

Stretch (1 + ε) O(1 + 1/ε) [13] �(1 + ε)m� O(1 + 1/ε) [13]
5 1 [12] 533m 1 †

Weighted 2 + 2ε 1 + 1/ε [6] �(4 + 24ε)m� 8 + 1/ε †
flow time 16s, s ≥ 1 1/s †
Waiting s ≥ 2 1/s [21] (36h− 2)m, 1/h †

time h ≥ 1

positive real constants. An algorithm A is said to be α-speed c-competitive (resp.,
τ -machine c-competitive) for a certain objective function if, for any job sequence, A
using m α-speed machines (resp., �τm� unit-speed machines) has a performance at
most c times of any optimal offline algorithm using m unit-speed machines. When
we consider an algorithm A running on m α-speed machines (resp., �τm� unit-speed
machines), we refer it as A(α) (resp., A 〈τ〉).

Our results. This paper shows a nontrivial relationship between the extra-
machine analysis and the extra-speed analysis of flow time scheduling. In particular,
two methods are given to transform results on competitiveness via faster machines
into similar results via extra unit-speed machines. These transformations give the first
algorithms that are O(1)-machine 1-competitive for flow time and stretch and O(1)-
competitive for weighted flow time. See Table 1 for a summary of results. Details are
as follows.

Flow time transformation. The first transformation is relatively simple, serv-
ing as a warm-up. It aims to preserve the flow time of each individual job. Specif-
ically, given an α-speed algorithm A(α) for some α > 1, we want to transform A
to an algorithm A′ that uses extra unit-speed machines to match the flow time of
each job as closely as possible. Specifically, our transformation guarantees that A′

when given O(α)m (unit-speed) machines increases the flow time of each job at most
α(1 + o(1)) times. Since SRPT is α-speed 1

α -competitive for flow time, the trans-
formation gives an algorithm that is O(α)-machine (1 + o(1))-competitive (and more
precisely, (2 + ε)-machine (1 + 1

ε )-competitive for any ε > 0). Note that A′ also
preserves the competitiveness on weighted flow time and stretch. Thus, based on
HDF [6], the transformation gives an O(1)-machine O(1)-competitive algorithm for
weighted flow time.

Waiting time transformation. The waiting time of a job is the amount of time
the job is waiting for processing before it is completed. To obtain an O(1)-machine
1-competitive algorithm for flow time and stretch, we need a more complicated trans-
formation based on the total waiting time of jobs. By definition, an algorithm A
is O(1)-machine 1-competitive for waiting time if and only if A is O(1)-machine 1-
competitive for on flow time. Note that using extra unit-speed machines can possibly
improve the competitive ratio on waiting time to be smaller than one, but it is im-
possible for flow time.

Consider any algorithm A using α-speed machines. Denote LA(α)(I) the total
waiting time incurred for a job sequence I by A(α). The work of McCullough and
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Torng [21] implies that SRPT is α-speed 1
α -competitive for waiting time, where α ≥

2 − 1/m. That is, for any I, LSRPT (α)(I) ≤ 1
αLOPT (I), where OPT denotes the

optimal offline algorithm using m unit-speed machines. Using unit-speed machines to
simulate SRPT(α) or any A(α) does not necessarily blow up the total waiting time α
times. Ideally we want to transform A(α) to an algorithm A′ using τm = O(α)m unit-
speed machines such that LA′〈τ〉(I) ≤ cLA(α)(I), where c is a constant independent
of α. Then, substituting A(α) with SRPT(c), we have LA′〈τ〉(I) ≤ LOPT (I). Such a
constant c, however, does not exist.1

To obtain an O(1)-machine 1-competitive algorithm for waiting time, we aim at
a less demanding requirement, namely, LA′〈τ〉(I) ≤ cLA(α)(I) + o(LOPT (I)). In fact,
we find that c = 2 is already feasible. Then, substituting A with SRPT and α with
O(c), we have LA′〈τ〉(I) ≤ LOPT (I), and thus A′ is O(1)-machine 1-competitive for
waiting time, as well as for flow time.

The second transformation can be extended to give a guarantee for normalized
waiting time (i.e., the waiting time divided by the processing time). This leads to an
algorithm that is O(1)-machine 1-competitive for stretch.

Technically speaking, the transformations are based on two concepts called rate
control and waiting time allowance. Roughly speaking, we need rate control when jobs
are released in a bulk; the idea is to partially process and spread these jobs in a certain
way without blowing up the flow time. The other concept is about estimating the
maximum waiting time of each job that would not exceed that of the offline optimal
algorithm. Both concepts make scheduling easy. To make these two concepts viable,
we exploit a simulation of an α-speed competitive algorithm.

This paper also contributes to the extra-speed analysis of SJF and HDF. In par-
ticular, we improve the result in [6] to show that HDF can be 16-speed 1-competitive
for weighted flow time.

2. Transformation that preserves flow time. Throughout this paper, we
use I to denote a sequence of jobs, and denote the release time and the processing
time (i.e., the required work) of a job J as r(J) and p(J), respectively. Note that
both r(J) and p(J) are real numbers. Let A(α) be an algorithm using m α-speed
machines, where α ≥ 1 is any real number. This section shows how to transform
A(α) to an algorithm, called Scatter(A(α), τ), that uses �τm� unit-speed machines
for any τ > α and incurs a flow time comparable to A(α) as follows.

Lemma 1. Consider any job sequence I. For each job J ∈ I, the flow time of J
in the schedule of Scatter(A(α), τ) is at most α(1 + α−1

τ−α ) times in the schedule of
A(α).

Details of Scatter(A(α), τ) are as follows. Scatter(A(α), τ) divides the �τm�
machines into two bands. Band 1 uses m machines and Band 2 �(τ − 1)m� machines.
A newly released job J always goes to Band 1 where it is partially processed. Then J
is transferred to Band 2 for completion. Consider any sequence I of jobs. We denote
the flow time of a job J in the schedule of A(α) as FA(α)(J). We aim to bound the

1We consider a simple example where α = 2. Let I be a job sequence such that the ith job is
released at time 1 − (1/2)i and the required work is (1/2)i. An algorithm with m 2-speed machines
can complete each job before the next one is released, thus incurring zero waiting time. On the other
hand, any algorithm using τm unit-speed machines must have some job wait after the (τm+1)th job
is released, thus incurring nonzero waiting time. Note that even one 2-speed machine can complete
all jobs with zero waiting time.
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flow time of J in Band 1 and Band 2, denoted as F1(J) and F2(J), as follows:

(i) F1(J) = FA(α)(J); and (ii) F2(J) ≤ (α− 1)τ

τ − α
F1(J).

Then it follows that the flow time of J in the schedule of Scatter(A(α), τ) is F1(J)+

F2(J) ≤ (1+ (α−1)τ
τ−α )FA(α)(J) = α(1+ α−1

τ−α )FA(α)(J), which is as stated in Lemma 1.
Simulation. Requirement (i) can be achieved easily by simulating the execution

of A(α). Precisely, Band 1 uses m machines and schedules the jobs according to a
simulated copy of A(α), which uses m α-speed machines. That is, Band 1 runs a job
J if and only if A(α) runs the job J . When A(α) completes J , Band 1 transfers J to
Band 2. Thus, F1(J) = FA(α)(J), and J is processed in Band 1 for exactly p(J)/α
units of work.

Rate control. Let rem(J) be the amount of remaining work of a job J when
it is transferred to Band 2. Jobs may be released in bulk to Band 1, yet they will
each be partially processed before being transferred to Band 2 and will thus spread
out eventually. Band 1 controls the rate of work transferred to Band 2 in the sense
that jobs released and transferred within any time interval have bounded remaining
work (see Lemma 2 for technical details). With rate control, Requirement (ii) can be
satisfied easily using a simple strategy, namely, the latest release time first algorithm
(LRT), which at any time t processes jobs with latest release time (to Band 1). Ties
are broken arbitrarily.

The above discussion of Scatter is summarized in Algorithm 1, followed by two
lemmas on the work transferred to Band 2 and the flow time in Band 2.

Algorithm 1. Scatter(A(α), τ), which uses �τm� unit-speed machines.

Job Release: A newly released job goes to Band 1.
Band 1: It uses m machines. Jobs are scheduled according to a simulated copy of

A(α). When a job J is completed in the simulated A(α), it is transferred to Band
2.

Band 2: It uses �(τ − 1)m� machines and it completes all jobs using LRT.

Lemma 2 (rate control). Consider any time interval [t, t′], let H be the set of jobs
released within [t, t′] and transferred to Band 2 within [t, t′]. Then

∑
J∈H rem(J) ≤

(α− 1)(t′ − t)m.
Proof. Each job J ∈ H has been processed by Band 1 for 1

αp(J) units of work
during the time interval [t, t′]. Band 1 can perform at most m(t′ − t) units of work
during [t, t′]. Thus,

∑
J∈H

1
αp(J) ≤ m(t′ − t), and

∑
J∈H rem(J) =

∑
J∈H(1 −

1
α )p(J) ≤ (α− 1)(t′ − t)m.

Lemma 3 (LRT). For any job J , F2(J) ≤ (α− 1) × τ
τ−αF1(J).

Proof. For any job J , let t0 = r(J), let t1 be the time J is transferred from
Band 1 to Band 2, and let t2 be the time J is completed by Band 2. Note that
F1(J) = t1 − t0 ≥ p(J)/α, and F2(J) = t2 − t1.

Assume that J waits for a number of time periods in Band 2 before it is completed.
Let S be the set of jobs that have ever received processing in Band 2 while J is waiting.
For each job J ′ ∈ S, J ′ is released no earlier than t0 (i.e., r(J ′) ≥ r(J)), and J ′ is
transferred to Band 2 no later than t2. Applying Lemma 2 to the interval [t0, t2], we
have

∑
J′∈S rem(J ′) ≤ (α− 1)(t2 − t0)m.

Whenever J waits in Band 2, all the �(τ − 1)m� machines are processing jobs in
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S. The waiting time of J in Band 2 is at most

1

�(τ − 1)m�
∑

J′∈S

rem(J ′) ≤ 1

�(τ − 1)m� (α− 1)(t2 − t0)m.

Therefore,

F2(J) = t2 − t1

≤ α− 1

α
p(J) +

α− 1

�(τ − 1)m� (t2 − t0)m

≤ (α− 1)F1(J) +
α− 1

τ − 1
(F1(J) + F2(J)).

Rearranging the last inequality, we have F2(J) ≤ (α−1)τ
τ−α F1(J).

Based on the results that SRPT is 2-speed 1
2
-competitive for flow time [21], and

HDF is 4-speed 2-competitive for weighted flow time [6], we can apply Lemma 1 to
obtain the following extra-machine competitive results.

Corollary 4. Consider any ε > 0. (i) The algorithm Scatter(SRPT(2), 2+ε) is
(2+ε)-machine (1+1/ε)-competitive for flow time. (ii) The algorithm Scatter(HDF(4),
4 + 24ε) is (4 + 24ε)-machine (8 + 1/ε)-competitive for weighted flow time.

3. Transformation that preserves waiting time. The waiting time of a job
is the amount of time the job is waiting for processing before it is completed. Recall
that SRPT is α-speed (1/α)-competitive for flow time, where α ≥ 2 − 1/m [21]. In
the schedule of SRPT(α), the flow time of a job J is exactly p(J)/α plus the waiting
time. Thus, SRPT is also α-speed (1/α)-competitive for waiting time.

In this section we show how to transform an algorithm A that uses m α-speed ma-
chines, where α ≥ 1 is any real number, to an algorithm Scatter & Squash(A(α), τ)
that uses �τm� unit-speed machines and incurs a total waiting time comparable to
that of A(α). Details are as follows.

Lemma 5. Let τ = 7α+5k−2 for any integer k ≥ 1. Then, for any job sequence I,
the total waiting time incurred by Scatter & Squash(A(α), τ) is at most 2LA(α)(I)+
1
kLOPT (I), where LA(α)(I) and LOPT (I) denote the total waiting time incurred by
A(α) and the optimal algorithm OPT using m unit-speed machines, respectively.

We will prove Lemma 5 in section 3.1. Let us consider its implication first.
Suppose that A is α-speed (1/x)-competitive for waiting time for some x ≥ 1. Let k =
�x� and τ = 7α+5 �x�−2. By Lemma 5, Scatter & Squash gives an O(α+x)-machine
(3/x)-competitive algorithm for waiting time. In other words, based on the result that
SRPT is 3-speed (1/3)-competitive for waiting time [21], we immediately obtain a 34-
machine 1-competitive algorithm for waiting time. Notice that an algorithm using
unit-speed machines is 1-competitive for waiting time if and only if it is 1-competitive
for flow time. The competitive ratio of Scatter & Squash for waiting time can be
further reduced to less than one using a more competitive result of SRPT. However,
for flow time, the competitive ratio of an algorithm using unit-speed machines is lower
bounded by one. The following corollary summarizes these results.

Corollary 6. (i) Scatter & Squash gives an algorithm that is 34-machine 1-
competitive for flow time. (ii) For any integer h ≥ 1, Scatter & Squash (based on
SRPT(3h)) gives an algorithm that is (36h−2)-machine (1/h)-competitive for waiting
time.
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Algorithm 2. Scatter & Squash(A(α), τ), where τ = 7α + 5k − 2 for any integer
k ≥ 1.

Job Release: A newly released job goes to Band 1a.
Band 1a: It uses m machines. Jobs are scheduled according to a simulated copy

of A(α). At any time t, if a job J is completed in the simulated A(α), J is
transferred to Band 1b if t ≤ r(J) + p(J); otherwise, J is transferred to Band 2
(with AWT (J) = L1a(J)).

Band 1b: It uses (2k+1)m machines. It runs the algorithm EPPBUSY〈2k + 1〉; i.e.,
at any time, it arbitrarily selects up to (2k + 1)m jobs that are still within their
earliest processing periods for execution. At the end of the earliest processing
period of a job J , if J is not completed, then J is transferred to Band 2 (with
AWT (J) = L1a(J) + L1b(J)).

Band 2: It uses �(7α + 3k − 4)m� machines. It runs the MIN-AWT algorithm; i.e.,
at any time, it greedily schedules the jobs with smallest AWT. A job remains in
Band 2 until it is completed.

3.1. The algorithm. As shown in Algorithm 2, Scatter & Squash divides the
machines into 3 bands called Band 1a, Band 1b, and Band 2, using, respectively, m,
(2k + 1)m, and �(7α + 3k − 4)m� machines, where k is any integer ≥ 1. Similar to
the algorithm Scatter, Band 1 (comprising Band 1a and Band 1b) only partially
processes the jobs, and Band 2 ensures that all jobs get completed. For i = 1a, 1b,
1, or 2, we denote Li(J) the waiting time of a job J in Band i, and let Li(I) =∑

J∈I Li(J). Note that L1(J) = L1a(J) + L1b(J). Consider any job sequence I and
any job J in I. Given an algorithm A(α), Scatter & Squash aims to guarantee
that L1a(J) = LA(α)(J); L1b(I) ≤ 1

2kLOPT (I); and L2(J) ≤ L1(J). Then Lemma 5
follows. To achieve L2(J) ≤ L1(J), we ensure that jobs transferred from Band 1 to
Band 2 are easy to schedule in the following sense. Let rem(J) be the remaining work
of a job J when J is transferred to Band 2.

(a) Rate control. For any time interval T , the sum of rem(J) over all jobs released
during T and transferred from Band 1 to Band 2 during T is at most (α −
1)m|T |.

(b) Bounded remaining work. rem(J) ≤ L1(J).

Band 1a uses the simulation technique presented in the last section. It uses m
machines and schedules jobs according to a simulated copy of A(α). When a job
J is transferred out of Band 1a, p(J)/α units of its work have been processed, and
Band 1a incurs exactly the same waiting time as A(α); i.e., L1a(J) = LA(α)(J). By
Lemma 2, Band 1a provides the rate control property.

Define the earliest processing period of a job J to be the time interval [r(J), r(J)+
p(J)]. To achieve the bounded remaining work property, we simply ensure that each
job is transferred to Band 2 after its earliest processing period. That is, a job trans-
ferred out of Band 1a within its earliest processing period is retained in Band 1b until
the end of its earliest processing period.

Lemma 7. If a job J is transferred from Band 1 to Band 2 at the end of or after
J ’s earliest processing period, then rem(J) ≤ L1(J).

Proof. Let w(J) ≥ 0 be the amount of work done on J in Band 1. J is transferred
to Band 2 at r(J) + w(J) + L1(J), which is at least r(J) + p(J). Thus, L1(J) ≥
p(J) − w(J) = rem(J).
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Band 1 as a whole still satisfies the rate control property because jobs released and
transferred to Band 2 within an interval T are a subset of jobs released and transferred
out of Band 1a within an interval T . The nontrivial part is how to ensure that the
waiting time incurred in Band 1b is comparable to A(α) or OPT . To our surprise,
we find that Band 1b, using an arbitrary algorithm with (2k + 1)m machines to
process jobs during their earliest processing periods, would incur a total waiting time
of at most 1

2k times of OPT . We denote such an algorithm by EPPBUSY〈2k + 1〉.
Formally speaking, at any time, EPPBUSY considers only jobs that are still in their
earliest processing periods, and it arbitrarily selects one such job for each machine.
Notice that EPPBUSY may not complete a job J and does not incur waiting time
beyond the earliest processing period of J , yet OPT does both. In section 3.2, we will
give a careful charging scheme to relate the waiting times of EPPBUSY and OPT .
In summary, Band 1 has the following upper bound on waiting time:

L1(I) = L1a(I) + L1b(I) ≤ LA(α)(I) + 1
2kLOPT (I).

For Band 2, we want to complete the remaining work of each job J such that
L2(J) is at most L1(J). In other words, J is allowed to wait in Band 2 up to L1(J)
units of time. To ease our discussion, we assume that each job transferred to Band 2 is
associated with an extra parameter AWT (J) representing the allowed waiting time of
J , and AWT (J) is set to L1(J). Based on the properties of rate control and bounded
remaining work, we find that MIN-AWT, a greedy strategy that schedules jobs with
smallest AWT (ties are broken arbitrarily), can complete each job within its allowed
waiting time if Band 2 is given �(7α + 3k − 4)m� machines. The above description
of Scatter & Squash is summarized in Algorithm 2. The rest of this subsection is
devoted to proving that for each job J in I, MIN-AWT incurs a waiting time at most
L1(J).

MIN-AWT. Consider a job J that is transferred from Band 1 to Band 2, say,
at time tsf (J). Recall that AWT (J) is set to L1(J), and the remaining work of J at
tsf (J), denoted rem(J), is at most AWT (J). We want to show that if Band 2 uses
MIN-AWT on O(α+ k) machines, then J waits no more than AWT (J) units of time
in Band 2, or, equivalently, J is completed by the time d(J) = tsf (J) + rem(J) +
AWT (J). We call d(J) the deadline of J in Band 2.

We use induction to show that every job is completed by its deadline. Consider
jobs in increasing order of deadlines. Let J be a job. Assume that all jobs with
deadline earlier than J are completed by their deadlines. We focus on the total waiting
time of J up to d(J). During [tsf (J), d(J)], whenever J is waiting, all machines in
Band 2 are processing jobs J ′ with the following properties:

1. AWT (J ′) ≤ AWT (J);
2. J ′ is transferred to Band 2 no earlier than tsf (J) − 2AWT (J) (otherwise,

d(J ′) = tsf (J ′) + rem(J ′) + AWT (J ′) < tsf (J) < d(J) and J ′ is completed
before tsf (J)); and

3. J ′ is transferred to Band 2 no later than d(J).
Let S be the set of all jobs J ′ satisfying the above properties. Below we upper bound
the sum of rem(J ′) over all J ′ in S.

Lemma 8.

∑
J′∈S rem(J ′) ≤ δmAWT (J), where δ = 7α + 3k − 4.

Proof. Let t1 = tsf (J) − 2AWT (J). By definition, jobs in S are transferred to
Band 2 within [t1, d(J)]. Let t0 = t1 − xAWT (J) for some x > 1. We divide the jobs
in S according to their release time (to Band 1a). Let S1 = {J ′ ∈ S | r(J ′) ≥ t0} and
S2 = S − S1.
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Jobs in S1. We use the rate control property to bound the sum of rem(J ′) over
all J ′ in S1. For each job J ′ in S1, J

′ is released during the time interval [t0, d(J)]
and is transferred to Band 2 during [t1, d(J)]. Recall that t0 < t1. By the rate control
property,

∑
J′∈S1

rem(J ′) is at most (α− 1)m(d(J)− t0) ≤ (α− 1)m(x+4)AWT (J).

Jobs in S2. In this case, we exploit the bounded remaining work property and
the fact that AWT (J) is set to L1(J). Each job J ′ in S2 is released before t0 and
transferred to Band 2 on or after t1. Thus, J ′ is kept in Band 1 for a period of length
at least t1− t0 ≥ xAWT (J). Note that L1(J

′) (i.e., the waiting time of J ′ in Band 1)
= AWT (J ′) ≤ AWT (J). Thus, J ′ is processed by Band 1 for at least (x−1)AWT (J)
units of work from t0 to t1. Band 1 has only (2k + 2)m machines and it performs at
most (2k + 2)m(xAWT (J)) units of work from t0 to t1. Thus,

(2k + 2)mxAWT (J) ≥
∑

J′∈S2

(x− 1)AWT (J)

≥
∑

J′∈S2

(x− 1)AWT (J ′)

≥
∑

J′∈S2

(x− 1)rem(J ′).

So,
∑

J′∈S2
rem(J ′) is at most (2k+2)m x

x−1
AWT (J). In conclusion,

∑
J′∈S rem(J ′) ≤

[(α− 1)(x + 4) + (2k + 2) x
x−1

]mAWT (J). Putting x = 3, we obtain Lemma 8.

We are ready to prove that J can be completed by d(J). Whenever J is waiting
in Band 2 during [tsf (J), d(J)], all machines of Band 2 are processing jobs belonging
to the set S, and the sum of rem(J ′) over all jobs J ′ ∈ S is at most (7α + 3k −
4)mAWT (J). Band 2 uses �(7α + 3k − 4)m� machines, and the work due to S can
keep J waiting in Band 2 for at most AWT (J) units of time. Thus, J is completed
by d(J).

3.2. Analysis of EPPBUSY. Scatter & Squash uses the algorithm EPP-
BUSY in Band 1b. To upper bound the waiting time incurred in Band 1b, we
first study in this section the waiting time incurred by EPPBUSY when it is used
to process a sequence of jobs. This result may be of independent interest.

EPPBUSY〈h〉 uses hm machines for any integer h ≥ 2. It schedules a job only
within its earliest processing period and it may not be able to finish each job. Let OPT
be the optimal scheduler, which uses m machines to process all jobs to completion
and minimizes the total waiting time.

For any job sequence I, let P (I) be the schedule produced by EPPBUSY〈h〉 on
I, and, similarly, OPT (I) for OPT . Note that a job remains in P (I) only during its
earliest processing period, while a job remains in OPT (I) until it is completed. We
want to show that the total waiting time of jobs in P (I) is at most 1

h−1
of that of

OPT (I).

We first focus on the schedule P (I). P (I) may contain one or more waiting
periods (a waiting period is a period in which at least one job is waiting at any time).
Denote these waiting periods as λ1 = [t1, t

′
1], λ2 = [t2, t

′
2], λ3 = [t3, t

′
3], . . ., where

t1 < t′1 < t2 < t′2 < t3 < t′3 < · · · . Let |λi| = t′i − ti. Note that P (I) accumulates
waiting time only during the waiting periods.

Definition 9. Let S = {λu, λu+1, . . . , λv} be a collection of consecutive waiting
periods. Recall that h is the parameter required by EPPBUSY〈h〉. S is said to be h-

close if tu+1 ≤ tu+h|λu|, tu+2 ≤ tu+h(|λu|+ |λu+1|), . . ., and tv ≤ tu+h
∑v−1

i=u |λi|.
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λ1 λ2 λ3 λ4 λ5 λ6

t1 t5

t1 + h|λ1|

t1 + h
∑2

i=1 |λi|

t1 + h
∑3

i=1 |λi| t5 + h|λ5|

TS1
= t1 + h

∑4
i=1 |λi| TS2

= t5 + h
∑6

i=5 |λi|

λ(S1) λ(S2)

time

Fig. 1. Two h-close collections of waiting periods (h = 2 in this example).

Furthermore, define tS to be the time (tu + h
∑v

i=u |λj |), and define λ(S) to be
the interval [tu, tS ]. Note that |λ(S)| = h

∑v
j=u |λj |. See Figure 1 for an example.

Fact 10. For any u ≤ i ≤ v, tS − ti ≥ h(|λi| + |λi+1| + · · · + |λv|).
We partition the waiting periods in P (I) into maximal h-close collections S1 =

{λ1, λ2, . . . , λk1
}, S2 = {λk1+1, λk1+2, . . . , λk2

}, . . .. That is, the next waiting period
beyond each Si has a starting time greater than tSi . The notion of a maximal h-close
collection of waiting periods defines a framework for our analysis. In the following,
we show that for each maximal h-close collection S of waiting periods, the waiting
time incurred by P (I) within the interval λ(S) is at most a factor of 1/(h− 1) of the
waiting time incurred by OPT (I) within λ(S).

The following notion further provides a tool for lower bounding the waiting time
of OPT (I).

Definition 11. Consider any interval λ = [t, t′]. Let J be a job with required
work p(J). If λ is enclosed in the earliest processing period of J , the work required by
J can be partitioned into three chunks of size t− r(J), t′ − t, and p(J) − (t′ − r(J)),
respectively. The middle chunk is referred to as the λ-work of J . In general, when λ
is not enclosed in the earliest processing period of J , we let λ′ = λ∩ [r(J), r(J)+p(J)]
and define the λ-work of J to be its λ′-work.

We denote the size of the λ-work of J as W (J, λ), i.e., W (J, λ) = |λ∩ [r(J), r(J)+
p(J)]|. A fact useful to our analysis is that if W (J, λ) > 0, the earliest time OPT (I)
(or any schedule using unit-speed machines) can start processing the λ-work of J is
max{t, r(J)}.

Let S = {λu, λu+1, . . . , λv} be a maximal h-close collection of waiting periods.
Let J be any job. Consider the λi-work of J for all λi ∈ S. Below, we give a way to
mark the earliest possible schedule of the λi-work of J in OPT (I). Let λi = [ti, t

′
i]

be the first waiting period of S that overlaps with the earliest processing period of J
(i.e., W (J, λi) > 0). Note that OPT cannot process the λi-work of J earlier than ti or
r(J). We mark the first W (J, λi) units of work starting from the time max{ti, r(J)}
in the schedule of J in OPT (I). For each subsequent j > i, if the λj-work of J is
nonnull, we identify, in the schedule of J in OPT (I), the first time t ≥ tj when no
work has been marked, and we mark another W (J, λj) units of work starting from t.
We have the following lemma on the work marked on the schedule of J in OPT (I).

Within the time interval λ(S), we denote the waiting time of J incurred by P (I)
as LP (J)|λ(S), and similarly LOPT (J)|λ(S) for OPT (I).

Lemma 12. Suppose that in the course of marking all the λi-work of a job J in
OPT (I), a total of y units of work are marked beyond tS. Then LOPT (J)|λ(S) is at
least (h− 1)y.
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Proof. Assume that λi = [ti, t
′
i] is the first waiting period in S such that part

of the λi-work of J is marked beyond tS . Then, y ≤ |λi| + |λi+1| + · · · + |λv|. In
OPT (I), the λi-work of J is not completed by time tS . Thus, within λ(S), the
waiting time of J is at least tS − t′i = tS − ti − |λi|. By Fact 10, we conclude that
LOPT (J)|λ(S) ≥ h(|λi| + |λi+1| + · · · + |λv|) − |λi| ≥ (h− 1)y.

Lemma 13.

∑
J∈I LP (J)|λ(S) ≤ 1

h−1

∑
J∈I LOPT (J)|λ(S).

Proof. With respect to P (I), the total waiting time of all jobs during a waiting
period λi is exactly the total length of the λi-work of all jobs minus the amount of work
that EPPBUSY〈h〉 processes during λi. That is,

∑
J∈I LP (J)|λi

=
∑

J∈I W (J, λi) −
hm|λi|. Summing over all waiting periods in S, we have

∑

J∈I

LP (J)|λ(S) =

v∑

i=u

∑

J∈I

W (J, λi) −
v∑

i=u

hm|λi|

=

v∑

i=u

∑

J∈I

W (J, λi) −m|λ(S)|.

Note that
∑

J∈I LP (J)|λ(S) ≥ 0, and hence
∑v

i=u

∑
J∈I W (J, λi) ≥ m|λ(S)|.

Since OPT has only m machines, during λ(S), OPT can process at most m|λ(S)|
units of work. Consider the λi-work of all jobs over all λi in S. Their total size is∑v

i=u

∑
J∈I W (J, λi), which exceeds m|λ(S)|. Thus, not all λi-work can be marked

within λ(S) in OPT (I). The total amount of work marked beyond tS in OPT (I) is at
least

∑v
i=u

∑
J∈I W (J, λi)−m|λ(S)| =

∑
J∈I LP (J)|λ(S). By Lemma 12, LOPT (J)|λ(S)

is at least the total amount of λi-work marked beyond tS for J . Thus,
∑

J∈I LOPT (J)|λ(S)

is at least (h− 1)
∑

J∈I LP (J)|λ(S).

Corollary 14. For any job sequence I, let LP (I) be the total waiting time in-
curred by EPPBUSY〈h〉 and LOPT (I) be that for OPT . Then, LP (I) ≤ 1

h−1
LOPT (I).

EPPBUSY in Scatter & Squash. We are now ready to analyze the wait-
ing time incurred by Band 1b of Scatter & Squash. Recall that Band 1b uses
(2k + 1)m machines to run EPPBUSY〈2k + 1〉. We want to prove that for any job
sequence I, the total waiting time incurred in Band 1b of Scatter & Squash is at
most 1/(2k)LOPT (I).

By definition of Scatter & Squash, a job J in I is transferred to Band 1b only
after it is partially scheduled in Band 1a. Thus, J remains in Band 1b only during a
subinterval of its earliest processing period.

Let us compare the schedule of Band 1b with the schedule of I when using a
stand-alone copy of EPPBUSY〈2k + 1〉. Denote the latter schedule Φ. At any time
t, if a job J remains in Band 1b, then t is within J ’s earliest processing period, and
J remains in Φ for possible processing. Thus, jobs remaining in Band 1b are a subset
of jobs remaining in Φ. As both Band 1b and the stand-alone EPPBUSY〈2k + 1〉 are
using (2k + 1)m machines, the number of jobs waiting in Band 1b, denoted #1b(I, t),
is at most the number of jobs waiting in Φ, denoted #Φ(I, t).

Let L1b(J) and LΦ(J) be the waiting times of J in the schedules of Band 1b and
Φ, respectively. We have

∑

J∈I

L1b(J) =

∫
#1b(I, t)dt ≤

∫
#Φ(I, t)dt =

∑

J∈I

LΦ(J) ≤ 1

2k

∑

J∈I

LOPT (J).
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4. Extension to weighted waiting time and stretch. The normalized wait-
ing time of a job refers to the waiting time divided by the processing time. An
algorithm is O(1)-machine 1-competitive for stretch if and only if it is O(1)-machine
1-competitive for normalized waiting time. To derive an O(1)-machine 1-competitive
algorithm for stretch, we want Scatter & Squash to transform a given α-speed al-
gorithm A(α) to an O(α)-machine algorithm that preserves the normalized waiting
time. In fact, Scatter & Squash can even be extended to preserve the weighted wait-
ing time when every job is given an arbitrary weight. The idea is quite simple. By the
definition of Scatter & Squash (in section 3.1), the performance guarantee for Band
1a and Band 2 is based on the (unweighted) waiting time of each job, and it remains
the same when weighted waiting time is concerned. As a whole, Band 1a still incurs
the same amount as A(α) does, and Band 2 incurs no more than Band 1 does. Only
Band 1b requires modification to cater to the weighted setting.

Before looking at the details of Band 1b, we prove a lemma that can transform a
special relationship of the unweighted waiting times of two schedules into a relation-
ship of their total weighted waiting times. Below, xi and yi denote the waiting time
of a job in two schedules, and wi is the weight of the job.

Lemma 15. Let x1, x2, . . . , xr and y1, y2, . . . , yr be two sequences of nonnegative
reals. Let γ be any positive real. Suppose that

∑q
i=1 xi ≤ γ

∑q
i=1 yi for all q = 1, . . . , r.

Then for any nondecreasing sequence of positive reals w1 ≥ w2 ≥ · · · ≥ wr, we have∑r
i=1 wixi ≤ γ

∑r
i=1 wiyi.

Proof. We prove the lemma by induction on r. The case for r = 1 is obvious.
Assume that the lemma is true when r = z, for some integer z ≥ 1. When r = z + 1
we consider the following two cases.

Case 1. If xz+1 ≤ γyz+1, then
∑z+1

i=1 wixi =
∑z

i=1 wixi+wz+1xz+1 ≤ γ
∑z

i=1 wiyi
+γwz+1yz+1 = γ

∑z+1

i=1 wiyi.
Case 2. Otherwise, xz+1 > γyk+1. Let δ = xz+1 − γyz+1.

∑

1≤i≤z+1

wixi =
∑

1≤i<z

wixi + wzxz + wz+1(γ × yz+1 + δ)

=
∑

1≤i<z

wixi + wzxz + wz+1δ + wz+1γyz+1

≤
∑

1≤i<z

wixi + wz(xz + δ) + γwz+1yz+1.

Define the sequence (d1, d2, . . . , dz) such that di = xi for i = 1, . . . , z − 1 and
dz = xz + δ. For any q = 1, . . . , z − 1,

∑q
i=1 di =

∑q
i=1 xi ≤ γ

∑q
i=1 yi. For q = z,

∑

1≤i≤z

di =
∑

1≤i≤z

xi + δ =
∑

1≤i≤z+1

xi − γyz+1 ≤ γ
∑

1≤i≤z+1

yi − γyz+1 = γ
∑

1≤i≤z

yi.

Applying the induction hypothesis to di and yi, we have
∑z

i=1 widi ≤ γ
∑z

i=1 wiyi.

Thus, we have
∑z+1

i=1 wixi ≤ γ
∑z

i=1 wiyi + γwz+1yz+1 = γ
∑z+1

i=1 wiyi. The induction
is complete.

In Scatter & Squash, Band 1b uses an arbitrary algorithm with (2k + 1)m ma-
chines to process jobs during their earliest processing periods. We enhance Band 1b
by selecting jobs with largest weights. We call this new algorithm EPPHWF (earli-
est processing period, highest weight first), and denote it as EPPHWF〈h〉 when it is
equipped with hm processors, where h is an integer at least 2. Intuitively, jobs with
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large weights will wait less. Let OPT be the optimal algorithm (using m unit-speed
machines) for minimizing weighted flow time. Our key observation is that for any
job weight w, we can bound the total waiting time of all jobs with weight at least w
in EPPHWF〈2k + 1〉 to be at most 1/(2k) times that of OPT . Then, we can make
use of Lemma 15 inductively to show that EPPHWF〈2k + 1〉 incurs a total weighted
waiting time at most 1/(2k) times that of OPT . Details are as follows.

Lemma 16. Let h ≥ 2 be an integer. For any job sequence I, the total weighted
waiting time incurred by EPPHWF〈h〉 is at most 1

h−1
times that of OPT.

Proof. Consider any job sequence I. We compare the schedules of EPPHWF〈h〉
and OPT. Let w1 > w2 · · · > wr be the distinct weights of the jobs in I. Con-
sider any integer q ∈ {1, 2, . . . , r}. With respect to the schedule of EPPHWF〈h〉, let
L(I)|wq

be the total unweighted waiting time incurred on jobs with weight exactly
wq. LOPT (I)|wq is defined similarly for the schedule of OPT. Note that for jobs with
weight at least wq, the total weighted waiting time incurred by EPPHWF〈h〉 and
OPT is

∑q
i=1 wiL(I)|wi

and
∑q

i=1 wiLOPT (I)|wi
, respectively.

We first focus on the unweighted waiting time. Let Iq ⊆ I be the set of jobs
having weight at least wk, where q ∈ {1, . . . , r}. EPPHWF〈h〉 does not change the
schedule of the jobs in Iq when jobs with less weight are removed, so EPPHWF〈h〉,
when scheduling Iq alone, incurs a total (unweighted) waiting time of

∑q
i=1 L(I)|wi .

EPPHWF is a special case of EPPBUSY, so by Corollary 3.2, we have
∑q

i=1 L(I)|wi
≤

1
h−1

LOPT (Iq), where LOPT (Iq) is the total waiting time in the optimal (unweighted)
schedule for Iq. When scheduling I, the waiting time incurred by OPT on the jobs in
Iq is

∑q
i=1 LOPT (I)|wi

, which is at least LOPT (Iq). Therefore, for each q = 1, . . . , r,

q∑

i=1

L(I)|wi ≤
1

h− 1

q∑

i=1

LOPT (I)|wi .

By Lemma 15, we transform the above relation of unweighted waiting times to a
weighted version:

r∑

i=1

wiL(I)|wi ≤
1

h− 1

r∑

i=1

wiLOPT (I)|wi .

Note that the former is the weighted waiting time of EPPHWF〈h〉, and
∑r

i=1 wiLOPT

·(I)|wi is the weighted waiting time of OPT. The lemma follows.
Transformation that preserves weighted waiting time. Let weighted SS

be the algorithm Scatter & Squash with Band 1b using EPPHWF instead of EPP-
BUSY. Given an α-speed algorithm A(α), weighted SS transforms A(α) to a τ -
machine algorithm (recall that τ = 7α + 5k − 2, where k ≥ 1). Band 1a and Band 2
have the same performance as before. Specifically, for each job, Band 1a still incurs
a waiting time (and weighted waiting time) the same as A(α), and Band 2 incurs a
waiting time (and weighted waiting time) no more than Band 1 does. By Lemma 16,
the total weighted waiting time incurred by Band 1b, which uses (2k + 1) machines,
is at most 1

2k times that of OPT. Thus, the total weighted waiting time has the same
bound as before.

Lemma 17. Let τ = 7α + 5k − 2 for any integer k ≥ 1. The weighted waiting
time incurred by weighted SS(A(α), τ) is at most 2 times that of A(α) plus 1/k times
that of OPT .

Suppose there is an algorithm A that is O(s)-speed 1
s -competitive for weighted

waiting time, for any s ≥ 1. Then by Lemma 17, we can derive an algorithm that is
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O(1)-machine 1-competitive for weighted waiting time or, equivalently, for weighted
flow time. However, such an algorithm A is not known to exist. Even if we restrict
our attention to normalized waiting time, we do not know any algorithm that is O(s)-
speed 1

s -competitive and that can be used to derive an O(1)-machine 1-competitive
algorithm for stretch.

Alternative transformation that preserves weighted waiting time. The
rest of this paper shows another way to obtain an algorithm that is O(1)-machine
1-competitive for stretch. In the next section, we will show a weaker result on using
a faster processor to improve the normalized waiting time; specifically, we prove that
an algorithm based on SJF is (1/s)-competitive when using 4m machines that are
8s-speed, where s ≥ 1. To ease our discussion, we say this algorithm is (4-machine,
8s-speed) 1

s -competitive. (Note that this result does not imply an algorithm that is
32s-speed 1

s -competitive for normalized waiting time.2) Furthermore, we can extend
the transformation result in Lemma 17 so that the input algorithm to weighted SS,
denoted A[�, α], uses �m machines that are α-speed, where � ≥ 1 is an integer. In
this case, Band 1a uses �m machines, Band 1b uses (2k + 1)m machines, and Band 2
uses

⌈
7�(α− 1)m + 3

2
(� + 2k + 1)m

⌉
machines. The proof of Lemma 5 can be easily

generalized to show that
• for each job, Band 1a still incurs a weighted waiting time the same as A[�, α]

does, and Band 2 incurs a weighted waiting time no more than Band 1 does;
and

• the total weighted waiting time incurred by Band 1b is at most 1
2k times that

of OPT.
Thus, we have the following result.

Lemma 18. Let τ = 7α� + 5k − 9
2
� + 5

2
, where k is any positive integer. The

weighted waiting time incurred by weighted SS(A[�, α], τ) is at most 2 times that of
A[�, α] plus 1/k times that of OPT .

In the next section, we show that, for the special case of normalized waiting time,
SJF is (4-machine, 8s-speed) 1

s -competitive for any s ≥ 1. Choosing s to be 2.2 and
applying Lemma 18 with k = 11, � = 4, and α = 8× 2.2, we obtain an algorithm that
is 533-machine 1-competitive for normalized waiting time, as well as the following
result on stretch.

Corollary 19. Based on SJF, weighted SS gives a 533-machine 1-competitive
algorithm for stretch.

Remark. We conjecture that HDF is (O(1)-machine, O(s)-speed) 1
s -competitive

for weighted waiting time, for any s ≥ 1. If this can be proven, then Lemma 18
can transform HDF to an algorithm that is O(1)-machine 1-competitive for weighted
waiting time, as well as for weighted flow time.

5. Improved analysis of SJF with faster machines. This section proves
that SJF is (4-machine, 8s-speed) 1

s -competitive for normalized waiting time, where
s ≥ 1. The proof is divided into two parts. First, we show how to make use of a
result by Becchetti et al. [6] to show that SJF is (2-machine, 4-speed) 2-competitive
for normalized waiting time. Next, we show a scaling lemma for SJF by which the
waiting time of each job can be reduced by s times if a double number of s times
faster machines are used. That is, for any s ≥ 1, SJF[2�, sα], when compared with
SJF[�, α], reduces the waiting time of every job by at least s times, where s ≥ 1.

2Roughly speaking, if we use a four-times faster machine to simulate four unit-speed machines by
time sharing, the flow time of each job is preserved, but the actual time to process a job is shortened
by four times. Thus, the waiting time is longer than before.
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Then, the fact that SJF is (2-machine, 4-speed) 2-competitive for normalized waiting
time would imply that SJF is also (4-machine, 8s-speed) 1

s -competitive for normalized
waiting time, for any s ≥ 1.

5.1. SJF and normalized waiting time. First, we observe the following result
by Becchetti et al. [6] on using HDF(4) (i.e., HDF with m 4-speed machines) to
schedule jobs with arbitrary weights. Below the notation HDF (or any algorithm) is
overloaded to mean the algorithm itself as well as the schedule defined by HDF.

Lemma 20 (see [6]). Let I be a job sequence with arbitrary weights. Let A be
any schedule of I using m unit-speed machines. Consider the two schedule A and
the schedule of I in accordance with HDF(4). At any time t, the total weight of the
remaining jobs in HDF(4) is at most two times that of A.

The above lemma implies that in the unweighted setting, at any time, the number
of remaining jobs in SJF(4) is at most two times that of A. Furthermore, we have the
following result.

Lemma 21. SJF is (2-machine, 4-speed) 2-competitive for (unweighted) waiting
time.

Proof. Consider any job sequence I. Let A be any schedule of I using m unit-speed
machines. At any time t, let Ut(SJF[2, 4]) be the number of jobs remaining in SJF[2, 4],
and define Ut(SJF(4)) and Ut(A) similarly. Then, Ut(SJF[2, 4]) ≤ Ut(SJF(4)) ≤
2 × Ut(A). Note that SJF[2, 4] is using 2m machines. At time t, if there is a job
waiting in SJF[2, 4], then Ut(SJF[2, 4]) > 2m, and the number of jobs waiting is
Ut(SJF[2, 4]) − 2m ≤ 2(Ut(A) −m). Thus, at any time, the number of jobs waiting
in SJF[2, 4] at most two times of that of A, and the lemma follows.

Intuitively, SJF gives priority to smaller jobs, and it is competitive not only for
the total waiting time, but also for the waiting time of small jobs only. This allows
us to derive inductively a bound of the waiting time. Then, using Lemma 15, we
transform this bound to a bound on the total normalized waiting time. Details are as
follows.

Lemma 22. SJF is (2-machine, 4-speed) 2-competitive for normalized waiting
time.

Proof. Let I be any job sequence, and let w1 < w2 · · · < wr be the distinct job sizes
in I. Consider the schedule of I in accordance with SJF[2, 4], and let L(I)|wi be the
total waiting time of jobs with size exactly wi. Denote OPT be the optimal algorithm
using m unit-speed machines, and define L′(I)|wi similarly for OPT . Consider any
q ∈ {1, 2, . . . , r}. Let Iq be the job sequence including only jobs in I with size w1, w2,
. . . , or wq. Since SJF does not change the schedule of a job due to other jobs with
larger size,

∑q
i=1 L(Iq)|wi

(i.e., the total waiting time incurred by SJF[2, 4] on Iq)
is exactly equal to

∑q
i=1 L(I)|wi

. By Lemma 21, the total waiting time incurred by
SJF[2, 4] is at most two times the total waiting time incurred by any schedule of Iq on
m unit-speed machines. Thus,

∑q
i=1 L(I)|wi =

∑q
i=1 L(Iq)|wi ≤ 2 × ∑q

i=1 L
′(I)|wi ,

where q = 1, 2, . . . , r.
Again, we make use of Lemma 15 to turn the above result into a weighted one:∑r

i=1
1
wi

Ls(I)|wi
≤ 2

∑r
i=1

1
wi

Lo(I)|wi
, or, equivalently, the normalized waiting time

of SJF(2, 4) is at most two times that of OPT .

5.2. The scaling lemma. This section shows that the waiting time incurred
by SJF can be scaled down with increasing speed. Precisely, we compare SJF[�, α]
and SJF[2�, cα], where c ≥ 1 is a real, and we show that the waiting time of each job
decreases by c times (note that this result is much stronger than bounding the total
waiting time). More interestingly, this result is true for the more general algorithm



1610 HO-LEUNG CHAN, TAK-WAN LAM, AND KIN-SHING LIU

HDF (see the lemma below). Note that the density of a job, defined as the ratio
of its weight to its processing time, is fixed throughout the life span of a job. HDF
schedules jobs with highest densities (we assume that ties are broken by job IDs).
SJF is identical to HDF when all jobs are assumed to have a unit weight.

Lemma 23. Consider any job sequence I with arbitrary weights. For each job J
in I, denote the waiting time of J incurred by HDF[2�, cα] and HDF[�, α] as L(2,c)(J)

and L(1,1)(J), respectively. Then L(2,c)(J) ≤ 1
cL(1,1)(J).

Proof. Denote S1(I) and S2(I) as the schedule of a job sequence I in accordance
with HDF[�, α] and HDF[2�, cα], respectively. By definition of HDF, at any time,
every job has less remaining work in HDF[2�, cα] than in HDF[�, α], and if a job is
waiting in HDF[2�, cα], then the job must also be waiting in HDF[�, α].

Consider a job J in I. Assume that J is completed at time z(J) in S1(I), and
hence no later than z(J) in S2(I). We call jobs in I that have higher densities than J
the higher-priority jobs. At any time, S1(I) (as well as S2(I)) is said to be busy if all
available machines are running some higher-priority jobs. Note that at any time t in
[r(J), z(J)], J is waiting in S1(I) if and only if S1(I) is busy. So the waiting time of
J in S1(I) is the total length of the busy periods of S1(I) during [r(J), z(J)]. Denote
these busy periods λ1, λ2, . . . , λh.

Next, we consider the schedule S2(I). Suppose that J is waiting in S2(I) during
a time interval ρ. Note that ρ is a busy period in S2(I); furthermore, J is also waiting
in S1(I) during ρ, and ρ is a subinterval of some busy period λ of S1(I). Therefore, to
upper bound the waiting time of J in S2(I), it suffices to consider each busy period λ
of S1(I) separately. Below we show that the busy period of S2(I) within λ has a total
length at most a fraction 1

c of λ (see the lemma below). Then we can conclude that
the waiting time of J in S2(I), which is the total length of the busy periods within
λ1, λ2, . . . , λh, is at most 1

c (|λ1|+ |λ2|+ · · ·+ |λh|) or, equivalently, 1
c times the waiting

time of J in S1(I). Lemma 23 follows.

It remains to prove the following lemma.

Lemma 24. Let λ = [t1, t2] be a busy period in S1(I). Denote the busy periods
of S2(I) that are within [t1, t2] as ρ1, ρ2, . . . , ρg, and let y =

∑
1≤i≤g |ρi| be their total

length. Then y ≤ 1
c |λ|.

Proof. Let λ = [t1, t2]. The work scheduled by S1(I) during λ, denoted by W ,
has a total size exactly �mα|λ|. Let R be the high-priority jobs remaining in S1(I)
immediately after t2. Note that R contains at most �m− 1 jobs as S1(I) is not busy
immediately after t2.

During the busy periods ρ1, ρ2, . . . , ρg, the total amount of work processed in S2(I)
is 2�mcαy; on the other hand, the high-priority work available to S2(I) is limited. In
particular, S2(I) can process at most all the work W and some of the work of R (that
are processed beyond t2 in S1(I)). The former has a total amount of �mα|λ|, and the
latter is bounded by cαy|R| < cαy�m. Thus, we have

2�mcαy < �mα|λ| + cαy�m

or, equivalently, y ≤ |λ|/c.
Lemma 23 implies that when comparing HDF[2�, cα] against HDF[�, α], the weighted

waiting time, flow time, and weighted flow time of each job decrease by c times. In
particular, together with Lemma 22, Lemma 23 gives the main result of this section.

Corollary 25. SJF is (4-machine, 8s-speed) 1
s -competitive for normalized wait-

ing time, where s ≥ 1 is any real.
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Proof. By Lemma 22, SJF is (2-machine, 4-speed) 2-competitive for normalized
waiting time. By Lemma 23, if we double the number of machines and increase the
speed 2s times, then the competitive ratio is reduced to 1/s, where s ≥ 1.

Lemma 23 has another implication. It is known that HDF is 4-speed 2-competitive
for weighted flow time [6]. Again, if we double the number of machines and increase
the speed 2s times for any s ≥ 1, then the competitive ratio is reduced to 1/s.

Lemma 26. Let s ≥ 1 be any real number. HDF is (2, 8s)-machine-speed (1/s)-
competitive for weighted flow time.

The above result also implies an algorithm that is 16s-speed (1/s)-competitive
for weighted flow time (by simulating HDF(2, 8s) using time-sharing).

6. Conclusion. This paper serves as the first step in understanding how extra-
machine analysis is related to extra-speed analysis, and how extra machines can pro-
vide 1-competitive scheduling for minimizing flow time and stretch. There are several
interesting problems to be addressed. We do not have a similar result for weighted
flow time. Unlike the algorithm IMD [13], our new algorithms incorporate SRPT
or HDF, and they are migratory in nature and do not allow immediate dispatch.
It is interesting to investigate nonmigratory algorithms with similar performances.
Another important direction is to minimize the Lp norm of flow time and stretch
[5, 13]. Note that Chekuri et al. [13] have extended (1+ ε)-speed (or (1+ ε)-machine)
O(1 + 1/ε)-competitive results for flow time and stretch to the Lp norm.
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AVERAGE DELAY IN PARALLEL PACKET SWITCHES∗

HAGIT ATTIYA† AND DAVID HAY†

Abstract. Switching cells in parallel is a common approach to building switches with very
high external line rates and a large number of ports. A prime example is the parallel packet switch
(PPS) in which a demultiplexing algorithm sends cells, arriving at rate R on N input-ports, through
one of K intermediate slower switches, operating at rate r < R. In order to utilize the parallelism
of the PPS, a key issue is to balance the load among the planes; since randomization is known
as a successful paradigm to solve load balancing problems, it is tempting to design randomized
demultiplexing algorithms that balance the load on the average. This paper presents lower bounds
on the average queuing delay introduced by the PPS relative to an optimal work-conserving first-
come first-serve (FCFS) switch for randomized demultiplexing algorithms that do not have full and
immediate information about the switch status. These lower bounds are shown to be asymptotically
optimal through a methodology for analyzing the maximal relative queuing delay by measuring the
imbalance between the middle stage switches; clearly, this also bounds (from above) the average
relative queuing delay. The methodology is used to devise new algorithms that rely on slightly
outdated global information on the switch status. It is also used to provide, for the first time, a
complete proof of the maximum relative queuing delay provided by the fractional traffic dispatch
algorithm [S. Iyer and N. McKeown, in Proceedings of IEEE INFOCOM, IEEE Communications
Society, New York, NY, 2001, pp. 1680–1687; D. Khotimsky and S. Krishnan, in Proceedings of
the IEEE International Conference on Communications, IEEE Communications Society, New York,
NY, 2001, pp. 100–106]. These optimal algorithms are deterministic, proving that randomization
does not reduce the relative queuing delay of the PPS.
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1. Introduction. Parallelism often increases the throughput of a system by
distributing tasks among several processing entities. Careful load balancing is required
to ensure even distribution and guarantee small delay for each task. Randomization
is an attractive paradigm for balancing the load on the average [4, 29]: even a very
simple strategy ensures (with high probability) maximum load close to the optimal
distribution [17].

Load balancing has recently been employed in packet switching architectures with
high line-rates and large numbers of ports [6, 35, 34, 33, 22]. A successful example
of such a switch is the parallel packet switch (PPS) [19], which is the core of several
contemporary switches (e.g., [1, 11, 28, 31]). Like inverse multiplexing systems [2,
9, 14, 15], an N × N PPS demultiplexes cells, arriving at rate R, through K slower
switches (planes) operating at rate r < R (see Figure 1).

A PPS is evaluated by the queuing delay it introduces relative to an optimal
work-conserving shadow switch that receives the same incoming traffic. A work-
conserving switch guarantees that an output-port is never idle unnecessarily and, by
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Fig. 1. A 5 × 5 PPS with two planes in its center stage, without buffers in the input-ports.

that, maximizes the switch throughput and minimizes its average cell delay [10, 26, 27].
This generalizes the common practice of comparing with an output-queued switch [8,
19, 20, 25, 27, 32, 36, 37]. This comparison is not burdened by unsubstantiated
probabilistic assumptions on the incoming traffic [13] and reveals inherent strengths
and weaknesses of the PPS architecture.

As we shall prove, the relative queuing delay is determined by the balancing of cells
among the planes. Given the successful application of randomization in traditional
load balancing settings [4, 17, 29] and in other high-bandwidth switches [16, 38], it is
tempting to employ randomization to reduce the average imbalance between planes
and by that reduce the average relative queuing delay.

This paper shows that randomization does not help to decrease the average rel-
ative queuing delay. This result holds due to the requirement that switches should
not mis-sequence cells [23]. This property allows an adversary to exploit a transient
increase of the relative queuing delay and perpetuate it sufficiently to increase the
average relative queuing delay.

Specifically, we show that an adversary can devise traffic that exhibits with high
probability a large average relative queuing delay. The exact bounds depend on the
locality of information used for cell demultiplexing, the type of the adversary, and
the exact restriction on the order of cells the switch should respect. The bounds are
equal to the lower bounds known for maximum relative queuing delay [3]: If a PPS
respects the arrival order of cells with the same input-port and the same output-port
and the adversary is adaptive [30], the lower bound is Ω(min{u, R

r } ·N) time-slots for
algorithms that use global information older than u time-slots (namely, u real-time
distributed algorithms [3]) and Ω(Rr N) time-slots for algorithms that use only local
information. The latter lower bound also holds with an oblivious adversary [5] if a
PPS obeys a global first-come first-serve (FCFS) policy (that is, all cells to the same
destination should leave the switch according to their arrival order).

To prove that these bounds are tight, we devise a methodology for evaluating
the relative queuing delay under global FCFS policies. We show a general upper
bound that depends on the difference between the number of cells with the same
destination that are sent through a specific plane and the total number of cells with
this destination.

Our methodology is employed to prove that the maximal relative queuing delay
of the fractional traffic dispatch (FTD) algorithm [20] is O(N R

r ) time-slots. This
matches the lower bound on the average relative queuing delay introduced by fully
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distributed demultiplexing algorithms (even when randomization can be used). This
is the first formal and complete correctness proof for this algorithm. Iyer and
McKeown [21, 20] outline an approach for bounding the relative queuing delay of
FTD but leave a number of details missing [18]; a previous attempt [25] to complete
the formal proof and precisely bound the relative queuing delay of FTD turned out
to be flawed [24].

By precisely capturing the crucial factors affecting the relative queuing delay,
our methodology leads to new algorithms that use global information that is u time-
slot old. Their maximum relative queuing delay is O(N) time-slots, asymptotically
matching the lower bound on the average relative queuing delay for this class of
demultiplexing algorithms (even when randomization can be used).

2. The bufferless PPS model. A switch handles fixed-size cells that arrive
and leave at rate R in discrete time-slots: Each cell c arrives at time ta(c) to input-
port orig(c), and it is destined for output-port dest(c). We assume the switch does
not drop cells.

A traffic T is a finite collection of cells, such that no two cells arrive at the same
input-port at the same time-slot. A flow (i, j) is the collection of cells sent from
input-port i to output-port j. The projection of a traffic T on a set of input-ports
I, denoted by T |I , is {c ∈ T | orig(c) ∈ I}. Since for any input-port i and traffic T ,
there are no two cells c1, c2 ∈ T |i such that ta(c1) = ta(c2), the arrival times of cells
in T |i induce a total order on them.

For any cell c, shift(c, t) is a cell with the same origin and destination such that
ta(shift(c, t)) = ta(c) + t. The shift operation is used for concatenating two finite
traffics, T1 and T2, so that T2 starts after the last cell of traffic T1. Formally, T1 ◦ T2

is the traffic T1 ∪ {shift(c, t) | c ∈ T2}, where t = 1 + max{ta(c) | c ∈ T1|I1}.
An N × N PPS is a three-stage Clos network [12] with K < N planes. Each

plane is an N ×N switch operating at rate r < R and is connected to all input-ports
on one side and to all output-ports on the other side (see Figure 1). The speedup
S = Kr

R captures the switch over-capacity.
A bufferless PPS has no buffers at its input-ports but can store pending cells in

its planes and in its output-ports. Each cell arriving at input-port i is immediately
sent to one of the planes; the plane through which the cell is sent is determined by a
randomized state machine with state set Si, following some algorithm.

Definition 2.1. The demultiplexing algorithm of a bufferless input-port i is a
function

ALGi : {1, . . . , N} × Si × COINSPACE → {1, . . . ,K} × Si

which gives a plane number and the next state, according to the incoming cell desti-
nation, the current state, and the result of a coin-toss that is taken out of a finite and
uniform coin-space COINSPACE. (For a deterministic algorithm, |COINSPACE| = 1.)

EPPS(ALG, σ, T ) is the execution of a PPS using demultiplexing algorithm ALG

in response to incoming traffic T and coin-toss sequence σ; for all cells in T , the
execution indicates the planes the cells are sent through: {〈c, plane(c, T )〉 | c ∈ T}.

A state s ∈ Si is reachable if there is a sequence of coin tosses σ and a traffic T ,
such that the state-machine reaches state s in execution EPPS(ALG, σ, T ). A switch
configuration consists of the states of all state-machines and the contents of all the
buffers in the switch at a given time. A configuration is reachable if it is reached in
an execution of the switch. Since the switch does not have a predetermined initial
configuration, we assume that, for every pair of reachable configurations C1, C2, there
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Fig. 2. Time-points associated with a cell c ∈ T .

is a finite incoming traffic that causes the switch a transition from C1 to C2.
The internal lines of the switch operate at rate r < R. For simplicity, we as-

sume that r′ � R
r =

⌈
R
r

⌉
. This lower rate r imposes an input constraint on the

demultiplexing algorithm [19].
For any two cells c1, c2 in traffic T such that orig(c1) = orig(c2) and plane(c1, T ) =

plane(c2, T ), |ta(c1) − ta(c2)| > r′.
Since a PPS has no buffers in its input-ports, cells are immediately sent to one of

the planes; that is, a cell c traverses the internal link between orig(c) and plane(c, T )
at time ta(c) (see Figure 2).

We assume that both the planes and the output buffers are FCFS and work-
conserving. Let tp(c, T ) be the time-slot in which a cell c ∈ T leaves plane(c, T ), and
denote tlPPS(c, T ) the time-slot it leaves the PPS. The lower rate of the internal links
between the planes to the output-ports imposes an output-constraint [19].

For every two cells c1, c2 ∈ T , if dest(c1)=dest(c2) and plane(c1, T )=plane(c2, T )
then |tp(c1, T ) − tp(c2, T )| > r′.

To neglect delays caused by the additional stage of the PPS, a cell can leave
the PPS at the same time-slot it arrives at the output-port, provided that no other
cell is leaving at this time-slot, i.e., tlPPS(c, T ) ≥ tp(c, T ). Note, however, that
tp(c, T ) ≥ ta(c) + 1.

A PPS is compared to a work-conserving shadow switch that receives the same
traffic T and obeys the per-flow FCFS discipline; that is, cells with the same origin
and the same destination should leave the switch in their arrival order. We denote
the execution of the shadow switch in response to traffic T by ES(T ) and the time a
cell c ∈ T leaves the shadow switch by tlS(c, T ). Note that tlS(c, T ) ≥ ta(c) + 1.

The relative queuing delay of a cell c ∈ T under a demultiplexing algorithm ALG

and a coin-toss sequence σ is R(ALG, σ, c, T ) = tlPPS(c, T ) − tlS(c, T ).
Definition 2.2. For traffic T , demultiplexing algorithm ALG and coin-toss se-

quence σ, the maximum relative queuing delay Rmax(ALG, σ, T ) is maxc∈T {R(ALG, σ, c,
T )}, and the average relative queuing delay Ravg(ALG, σ, T ) is 1

|T |
∑

c∈T R(ALG, σ, c, T ).

The maximum and the average relative queuing delays of an algorithm ALG against
an adversary A are denoted RA

max(ALG) and RA
avg(ALG), respectively.

When it is clear from the context, we omit the traffic T from the notation
plane(c, T ), tp(c, T ), tlPPS(c, T ), tlS(c, T ), and R(ALG, σ, c, T ).

3. Lower bounds on the average relative queuing delay. In this section,
we prove lower bounds on the average relative queuing delay even when randomization
is used. Our first lower bounds use an adaptive adversary that sends cells to the switch
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at each time-slot based on the algorithm actions at previous slots. Then, we show
that, under reasonable assumptions, the lower bounds can be extended to hold with
an oblivious adversary [5] that chooses the entire traffic in advance, knowing only the
demultiplexing algorithm.

We prove yet stronger results and show that the lower bounds hold even when the
traffic is restricted by the (R,B)-leaky-bucket model [7, 13]. This model restricts the
traffic from flooding the switches by requiring that the combined rate of flows sharing
the same input-port or the same output-port does not exceed the external rate R of
that port by more than a fixed bound B, called the burstiness factor of the traffic,
which is independent of time. Specifically, a traffic T is (R,B)-leaky-bucket if, for any
two time-slots t1 ≤ t2 and any output-port j, |{c ∈ T | t1 ≤ ta(c) ≤ t2 and dest(c) =
j}| ≤ (t2 − t1) + B.

3.1. General techniques and observations. A key observation is that if the
last cell of a traffic attains relative queuing delay R, then this traffic can be continued
so that every added cell attains at least relative queuing delay R, regardless of the
random choices made by the demultiplexing algorithm.

We first define how a traffic is continued. A cell c2 ∈ T is the immediate suc-
cessor of cell c1 ∈ T in demultiplexing algorithm ALG, denoted c2 = succ(c1, T ),
if tlS(c2, T ) = tlS(c1, T ) + 1, and for every coin tosses sequence σ, tlPPS(c2, T ) >
tlPPS(c1, T ) in the execution EPPS(ALG, σ, T ). Namely, a PPS cannot change the or-
der in which c1 and c2 are delivered; this happens, for example, when a PPS follows a
per-flow FCFS policy and c1, c2 share the same input-port and the same output-port.

Let c be the last cell in a traffic T ; i.e., tlS(c, T ) = maxc′∈T {tlS(c′, T )}. A traffic
T ′ = {c0, . . . , cn} is a proper continuation of T if, in the execution of the shadow
switch in response to traffic T ◦ T ′, all the cells of T ′ are delivered one time-slot
after the other without any stalls, and the delivery times of the cells of T remain
unchanged. Formally, T ′ is a proper continuation of T if, in execution ES(T ◦ T ′),
c0 = succ(c, T ◦T ′), ci = succ(ci−1, T ◦T ′) for every i, and for every c′ ∈ T , tlS(c′, T ) =
tlS(c′, T ◦ T ′) and tlPPS(c′, T ) = tlPPS(c′, T ◦ T ′).

We first examine proper continuations by a single cell.
Lemma 3.1. For any demultiplexing algorithm ALG, coin-toss sequence σ, and

finite traffic T , if c1 is the last cell of T , and T ′ = {c2} is a proper continuation of
T , then R(ALG, σθ, c2, T ◦ T ′) ≥ R(ALG, σ, c1, T ) for any coin-toss θ.

Proof. Since T ′ is a proper continuation of T , cell c2 leaves the shadow switch
exactly at time-slot tlS(c1, T ◦T ′)+1, and in addition tlPPS(c2, T ◦T ′) ≥ tlPPS(c1, T ◦
T ′) + 1. Hence,

R(ALG, σθ, c2, T ◦ T ′) ≥ tlPPS(c2, T ◦ T ′) − tlS(c2, T ◦ T ′)
≥ (tlPPS(c1, T ◦ T ′) + 1) − (tlS(c1, T ◦ T ′) + 1)

= tlPPS(c1, T ) − tlS(c1, T ) = R(ALG, σ, c1, T ).

If the adversary can construct, for every traffic, a proper continuation that is
arbitrarily long, then it can construct a traffic that exhibits an average relative queuing
delay that matches the maximum relative queuing delay. Intuitively, the adversary
waits for a cell c that attains Rmax and then sends many cells, which form a proper
continuation (whose length depends on the number of cells that arrived before c).

Lemma 3.2. Fix an adversary A, demultiplexing algorithm ALG, a coin-toss se-
quence σ, and a finite traffic T whose last cell c has R(ALG, σ, c, T ) = x. If the
adversary A can construct a proper continuation of traffic T , whose size is at least⌈|T |x−ε

ε

⌉
(ε is an arbitrarily small constant), then RA

avg(ALG) ≥ x− ε.



1618 HAGIT ATTIYA AND DAVID HAY

Proof. Let � be the number of cells in traffic T , and let T ′ be a proper continuation
of T such that |T ′| =

⌈
�x−ε

ε

⌉
. Applying Lemma 3.1 |T ′| times implies that for every

cell b in T ′ and any coin-toss sequence σb, R(ALG, σσb, b) ≥ R(ALG, σ, c) ≥ x. Hence,

RA
avg(ALG) ≥ 1

� +
⌈
�x−ε

ε

⌉
⌈
�
x− ε

ε

⌉
x ≥ x− ε.

The specific construction of the proper continuation depends on the type of the
adversary. Lemma 3.4 and Step 2 of Theorem 3.9 show such constructions.

High relative queuing delay is exhibited when cells that are supposed to leave the
shadow switch one after the other are concentrated in a single plane. An execution
EPPS(ALG, σ, T ) is (f, s)-concentrating for output-port j and plane k if there is a time-
slot t such that

1. output-port j’s buffer of the shadow switch is empty at time-slot t;
2. at least f cells destined for output-port j arrive to the switch during time-

interval [t, t + s), and f out of these cells are sent through the plane k; and
3. traffic T ends at time-slot t + s.

We call an execution an (f, s)-concentrating execution when the plane k and the
output-port j are clear from the context.

The following lemma bounds the relative queuing delay exhibited in (f, s)-concen-
trating executions, extending [3, Lemma 4] for randomized demultiplexing algorithms.

Lemma 3.3. For any (R,B)-leaky-bucket traffic T , coin-toss sequence σ, and
(f, s)-concentrating execution EPPS(ALG, σ, T ) for output-port j and plane k, the last
cell c that is sent from plane k to output-port j in EPPS(ALG, σ, T ) attains R(ALG, σ,
c, T ) ≥ f · r′ − (s + B).

Proof. We compare the queuing delay of the cells in the PPS and in the shadow
switch. Since the shadow switch is work-conserving, all f cells leave the switch exactly
f time-slots after the first cell is dispatched. On the other hand, a PPS completes this
execution after at least fr′ time-slots, because f cells are sent to the same plane, and
only one cell can be sent from this plane to the output-port every r′ time-slots. Let c
be the last of these cells sent from the plane to the output-port. Hence, the relative
queuing delay that c attains is at least fr′−f time-slots. Since the incoming traffic is
(R,B)-leaky-bucket, f ≤ s+B, and therefore R(ALG, σ, c, T ) ≥ fr′−f ≥ fr′−(s+B)
time-slots.

We concentrate now on an adaptive adversary, denoted adp, which sends cells to
the switch based on the algorithm actions.

For every traffic T , we examine the probability Prσ [EPPS(ALG, σ, T ) is (f, s)-con-
centrating], taken over all coin-toss sequences σ, that the execution of ALG given T
and σ is (f, s)-concentrating.

Another key observation is that if there is traffic T such that its execution is
(f, s)-concentrating with small but nonnegligible probability, an adaptive adversary
can construct another execution that is almost always (f, s)-concentrating.

Lemma 3.4. If from every configuration C there is an (R,B)-leaky-bucket traf-
fic T such that Prσ [EPPS(ALG, σ, T ) is (f, s)-concentrating ] ≥ p̃ > 0, then an adaptive
adversary can construct an (R,B)-leaky-bucket traffic T ′ from C such that
Pr σ [EPPS(ALG, σ, T ′) is (f, s)-concentrating] ≥ 1− δ, where δ can be made arbitrarily
small.

Proof. Fix a configuration C; the adaptive adversary constructs the execu-
tions from C iteratively: Denote C0 � C. Let Ci be the configuration just be-
fore iteration i ≥ 0, and denote by T i the traffic such that from configuration Ci,
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Prσ
[EPPS(ALG, σ, T i) is (f, s)-concentrating

] ≥ p̃. The adversary stops if the last ex-
ecution is indeed (f, s)-concentrating. Otherwise, it concatenates an empty traffic of
B time-slots (denoted Te) and continues to the next iteration.

Since in each iteration the adversary stops with probability at least p̃ indepen-
dently of previous iterations, it stops with an (f, s)-concentrating execution at it-
eration � ≤ ⌈

log1−p̃ δ
⌉

with probability 1 − δ. Since there are B empty time-slots

between the arrival of the last cell of traffic T i and the arrival of the first cell in T i+1,
T ′ = T 0 ◦ Te ◦ · · · ◦ Te ◦ T � has burstiness factor B, and its corresponding execution
starting from C is (f, s)-concentrating with probability 1 − δ.

Since both the shadow switch and the PPS are per-flow FCFS, an adaptive ad-
versary can always construct an arbitrarily long proper continuation of some traffic
T . Therefore, we have the following lemma.

Lemma 3.5. If from every configuration C there is an (R,B)-leaky-bucket traffic
T such that Prσ [EPPS(ALG, σ, T ) is (f, s)-concentrating] > 0, then with probability
1− δ, Radp

avg(ALG) ≥ f · r′ − (s+B)− ε, where ε > 0 and δ > 0 can be made arbitrarily
small.

Proof. By Lemma 3.4, an adaptive adversary can construct a traffic T ′ from
configuration C, such that Prσ [EPPS(ALG, σ, T ′) is (f, s)-concentrating] ≥ 1 − δ.

Let c be the last cell of T ′. Lemma 3.3 implies that with probability 1 − δ, the
relative queuing delay of c is at least f · r′ − (s + B).

The adaptive adversary continues with traffic T ′′, which consists of


|T ′| f ·r′−(s+B)−ε
ε � cells from orig(c) to dest(c), one cell at each time-slot. T ′′ is a

proper continuation of traffic T ′, because both the PPS and the shadow switch obey
a per-flow FCFS policy and all cells in T ′′ share the same input-port and the same
output-port.

Hence, Lemma 3.2 implies that Radp
avg(ALG) ≥ f · r′ − (s+B)− ε, with probability

1 − δ.

3.2. Lower bound for fully distributed algorithms with an adaptive
adversary. A fully distributed demultiplexing algorithm [3] demultiplexes a cell,
arriving at time-slot t, according to the input-port’s local information in time in-
terval [0, t]. Since no information is shared between input-ports, we assume that the
state si ∈ Si of demultiplexor i does not change, unless a cell arrives at input-port i.
Note that demultiplexing algorithms that change their state even without receiving a
cell are not considered fully distributed, because a common clock-tick is shared among
all input-ports. (Such algorithms are covered in section 3.3.)

The relative queuing delay of a PPS with a fully distributed demultiplexing algo-
rithm strongly depends on the number of input-ports that can send a cell, destined
for the same output-port, through the same plane. The following definition captures
this switch characteristic.

Definition 3.6. A demultiplexing algorithm is d-partitioned if there is a plane
k, an output-port j, and a set of input-ports I, such that |I| ≥ d and the following
property holds: For every input-port i ∈ I and state si ∈ Si, if at least ni cells destined
for output-port j arrive at input-port i after it is in state si, then with probability
pi > 0, i sends at least one cell destined for output-port j through plane k.

We later show that a static partition of the planes among the demultiplexors
may reduce the relative queuing delay. However, since such partitioning is failure-
prone, most existing fully distributed algorithms are N -partitioned, meaning that
each demultiplexor may use each plane in order to send cells to each output-port. All
our results hold for this class of algorithms by substituting d = N .
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i2

i1

id
Cells ci1, . . . , cid

Fig. 3. Illustration of traffic T in the proof of Theorem 3.7.

We next prove a lower bound for d-partitioned fully distributed demultiplexing
algorithms by showing that it is possible to construct a traffic with no bursts that
causes, with nonnegligible probability, the algorithm to concentrate d cells in a single
plane during a time interval of d time-slots; the proof follows the lower bound for the
deterministic case [3, Theorem 6].

Theorem 3.7. Any randomized d-partitioned fully distributed demultiplexing
algorithm ALG has, with probability 1 − δ, Radp

max(ALG) ≥ d(r′ − 1) time-slots and
Radp

avg(ALG) ≥ d(r′ − 1) − ε time-slots, where ε > 0 and δ > 0 can be made arbitrarily
small.

Proof. Given ALG, the adversary computes the set I = {i1, . . . , id} of d input-
ports, the output-port j, and the plane k, and for each input-port i ∈ I the values ni

and pi > 0, for which the conditions presented in Definition 3.6 hold.
Fix a configuration C, and for every i ∈ I, let T ′

i be a traffic consisting of
ni cells destined for output-port j that arrive one after the other to input-port
i. By the definition of ni, with probability at least pi, there is at least one cell
in T ′

i that is sent through plane k. Let ci be the first such cell; it follows that
Prσ [in EPPS(ALG, σ, T ′

i ) cell ci is sent through plane k] ≥ pi. Let Ti be the pre-
fix of T ′

i that ends with cell ci; that is, Ti = {c ∈ T ′
i |ta(c) ≤ ta(ci)}. Since

the probability to send ci through plane k in execution EPPS(ALG, σ, T ′
i ) depends

only on cells that arrive at the switch before cell ci, it follows that for prefix Ti,
Prσ [in EPPS(ALG, σ, Ti) cell ci is sent through plane k] ≥ pi.

Traffic T is defined as follows: T = (Ti1 \{ci1})◦ · · · ◦ (Tid \{cid})◦{ci1} · · · ◦{cid}
(see Figure 3). We next show that, with nonnegligible probability, taken over all
coin-toss sequences σ, all cells ci1 . . . cid are sent through plane k in the execution of
ALG on traffic T .

In traffic T , for each input-port i ∈ I, no cells arrive to input-port i between Ti \
{ci} and ci. Thus, for each input-port i ∈ I and coin-toss sequence σ, plane(ci, T ) =
plane(ci, Ti1 ◦ · · · ◦ Tid}. Since the demultiplexors are independent, the probability,
taken over all coin-toss sequences σ that the last d cells are sent through plane k in
execution EPPS(ALG, σ, T ) is at least

∏d
a=1 pia > 0.

This implies that execution EPPS(ALG, σ, T ) is (d, d)-concentrating with non-
negligible probability. Since T has no bursts, the claim follows immediately from
Lemma 3.5.

3.3. Lower bound for u-RT algorithms with an adaptive adversary.
Another interesting class includes u real-time distributed (u-RT) demultiplexing al-
gorithms [3], which demultiplex a cell arriving at time-slot t, according to the input-
port’s local information in time interval [0, t], and to the switch’s global information
in time interval [0, t− u]. In this manner, an input-port state transition may depend
on other input-ports’ state transitions, and on incoming flows to other input-ports, as
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long as they occurred more than u time-slots earlier. A prominent example of 1-RT
demultiplexing algorithms (that is, with u = 1) are demultiplexing algorithms that
share only a common clock-tick among input-ports. Note that a 1-RT demultiplexing
algorithm may change its state even if no cell arrives at its input-port.

Let u = min{u, r′

2
}, that is, the minimum between the lag in gathering global

information and half the external rate relative to the rate of the planes. The next
theorem, which is based on Lemma 3.5 and some observations from [3], gives a lower
bound on the average relative queuing delay of u-RT demultiplexing algorithms.

Theorem 3.8. Any randomized u-RT demultiplexing algorithm ALG has, with
probability 1− δ, Radp

max(ALG) ≥ uN
S (1− u

r′ ) time-slots and Radp
avg(ALG) ≥ uN

S (1− u
r′ )−ε

time-slots, where ε > 0 and δ > 0 can be made arbitrarily small.
Proof. Consider an arbitrary configuration C. Denote by t0 the time-slot in which

the PPS is in configuration C, by x0 the number of cells that arrived at the PPS until
time-slot t0, and by n0 the number of cells stored in one of the PPS’s buffers at
time-slot t0.

Consider now the empty traffic Te, in which no cells arrive at the switch at all.
We first argue that if Te is long enough, all the buffers of the switch become empty.
Specifically, denote by C1 the switch configuration at time-slot t1 = t0+n0+ uNx0

S +1.
If there are still cells stored in one of the buffers at time-slot t1, then these cells have
relative queuing delay of at least uNx0

S + 1 time-slots; therefore, the average relative

queuing delay is more than uN
S time-slots, and the theorem follows.

Assume now that all the buffers are empty in configuration C1. Fix an output-
port j, and consider the traffic T in which cells destined for j arrive simultaneously
to all input-ports at each time-slot in the interval [t1, t1 + u). Note that T is an
(R, uN − u)-leaky-bucket traffic, since for any τ ≥ 1 and time interval [t, t + τ), the
total number of cells arriving at the switch is bounded by τ + (uN − u).

Since u ≤ 1
2
R
r < R

r , the input constraint implies that two cells arriving at the same
input-port are not sent through the same plane. Hence, for every coin-toss sequence
σ, there is a plane k used by a set I of at least u

KN input-ports in the execution

EPPS(ALG, σ, T ); note that since a PPS speedup is at least 1, u
KN < R

rKN ≤ N .

For every input-port i ∈ I, let ci ∈ T |i be a cell such that plane(ci, T |i) = k.
Consider the traffic T |i = {c|c ∈ T |i and ta(c) ≤ ta(ci)}; that is, T |i consists of the
cells in T |i that arrive at the switch before cell ci.

Consider the parallel composition of traffics T |i, T |I =
⋃

i∈I T |i (see Figure 4).

Note that both T |I and Te ◦ T |I are (R, u2 N
K − u)-leaky-bucket traffics.

For every input-port i ∈ I, ta(ci) < t1 +u ≤ t1 +u, which implies that input-port
i does not have global information on the switch status after time-slot t1. Hence,

time−slot

i|I|

t1 + ut1t0

i1

i2

Fig. 4. Illustration of traffic Te ◦ T |I in the proof of Theorem 3.8.
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the executions EPPS(ALG, σ, T ) and EPPS(ALG, σ, T |I) are equivalent. Therefore, with
probability of at least

∏

i∈I

(
1

|COINSPACE|
|T |i|

)
≥

(
1

|COINSPACE|
u)|I|

≥
(

1

|COINSPACE|
u)uN

K

> 0,

taken over the coin-toss sequences σ, all the input-ports i ∈ I send their last cell to
plane k in EPPS(ALG, σ, Te ◦T |I), starting at configuration C. Hence, configuration C
satisfies the conditions of Lemma 3.5, and the claim follows.

3.4. Lower bound for fully distributed algorithms with an oblivious
adversary. We now consider oblivious adversaries, obl, that choose the entire traf-
fic in advance, knowing only the demultiplexing algorithm ALG [5]. Robl

max(ALG) and
Robl

avg(ALG) denote the maximum and average queuing delay of algorithm ALG against
such an adversary. We assume that the PPS and the shadow switch obey a global
FCFS policy; i.e., cells that share the same output-port should leave the switch in
the order of their arrival (with ties broken arbitrarily). Unlike per-flow FCFS policy,
global FCFS policy requires cells to leave in order even if they do not share the same
origin.

We next extend Theorem 3.7 to hold with an oblivious adversary, under a global
FCFS discipline.

Theorem 3.9. Any randomized d-partitioned fully distributed demultiplexing
algorithm ALG has Robl

max(ALG) ≥ d(r′ − 1) time-slots and Robl
avg(ALG) ≥ d(r′ − 1) − ε

time-slots, with probability 1−δ, where ε > 0 and δ > 0 can be made arbitrarily small.
Proof. Given ALG, the adversary precomputes the set I = {i1, . . . , id} of d input-

ports, the output-port j, the plane k, and for each input-port i ∈ I the values ni and
pi, for which the conditions of Definition 3.6 hold. Let p̃ �

∏d
a=1

pia

nia
> 0.

For any input-port i ∈ I, let xi be a value chosen uniformly at random from
{1, . . . , ni}. Let Ti be a traffic consisting of xi cells from input-port i to output-port
j, and let ci be the last cell of Ti. Traffic T ′ is defined as follows: T ′ = (Ti1 \ {ci1}) ◦
· · · ◦ (Tid \ {cid}) ◦ {ci1} · · · ◦ {cid}. Note that traffic T ′ is similar to traffic T in the
proof of Theorem 3.7 (illustrated in Figure 3).

Using traffic T ′, the adversary constructs a traffic T (illustrated in Figure 5) whose
average relative queuing delay is at least d(r′−1)−ε time-slots with probability 1− δ
(the constants δ, ε > 0 can be made arbitrarily small). The construction has two
steps.

i2

i1

id

Step 1 Step 2

i

Traffic T ′ Traffic T ′ • • •
Cell c′

Fig. 5. Illustration of traffic T in the proof of Theorem 3.9.
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Step 1. Concatenate
⌈
log1−p̃ δ

⌉
instances of traffic T ′. For each instance, choose

independently and uniformly at random the values for xim , 1 ≤ m ≤ d, from
{1, . . . nim}. Let � be the total size of these instances.

Step 2. Concatenate a traffic of size �
d(r′−1)−ε
ε � cells, such that each cell is sent

from an arbitrary input-port i to output-port j.
We first prove that with nonnegligible probability, taken over all coin-toss se-

quences σ, the execution of ALG on any instance of traffic T ′ = (Ti1 \{ci1})◦· · ·◦(Tid \
{cid}) ◦ {ci1} · · · ◦ {cid} is (d, d)-concentrating, regardless of the initial configuration.

Claim 3.10. Prσ [EPPS(ALG, σ, T ′) sends the last d cells through plane k] ≥∏d
a=1

pia

nia
� p̃ > 0.

Proof of claim. For any input-port i, denote by T̃i the traffic consisting of ni cells
from input-port i to output-port j. By the definition of ni, with probability pi, at least
one cell in T̃i is sent through plane k. Since xi is chosen uniformly at random from
the values {1, . . . , ni}, this cell is the xith cell (that is, the cell ci) with probability

at least 1
ni

. Note that traffic Ti is a prefix of traffic T̃i; since the demultiplexor is
bufferless, the decision of through which plane to send the cell ci is based only on
cells arriving at the switch prior to ci, which implies that cell ci is sent through k
with probability of at least 1

ni
· pi.

In traffic T ′, for each input-port i ∈ I, no cells arrive at input-port i between Ti \
{ci} and ci. Thus, for each input-port i ∈ I and coin-toss sequence σ, plane(ci, T

′) =
plane(ci, Ti1 ◦ · · · ◦ Tid) Since the demultiplexors are independent, the probability,
taken over all coin-toss sequences σ, that execution EPPS(ALG, σ, T ′) sends the last d

cells through plane k is at least
∏d

a=1

pia

nia
� p̃ > 0.

In Step 1, the random choices of the T ′ instances are independent. Therefore,
(d, d)-concentration occurs at least once in Step 1 with probability at least 1 − δ.
Let c′ be last cell of the first instance in which (d, d)-concentration occurs and T1 be
the traffic {c ∈ T | ta(c) ≤ ta(c′)}. Since EPPS(ALG, σ, T1) is (d, d)-concentrating,
Lemma 3.3 implies that R(ALG, σ, c′, T1) ≥ d(r′ − 1).

Let T2 = T \T1. We next show that T2 is a proper continuation of T1. Intuitively,
this is due to the fact that the switches are work-conserving with FCFS policy and
during each interval of size τ , exactly τ cells arrive at the switch and are destined for
the same output-port j (i.e., there are no stalls between cells in traffic T = T1 ◦ T2).

Formally, consider two cells c1, c2 ∈ T such that ta(c2) = ta(c1) + 1. The
FCFS policy implies that tlS(c2, T ) > tlS(c1, T ) and tlPPS(c2, T ) > tlPPS(c1, T ).
In addition, by the construction of traffic T , there is no cell c3 ∈ T such that
ta(c1) ≤ ta(c3) ≤ ta(c2). Therefore, the FCFS policy and the work-conservation
of the shadow switch imply that tlS(c2, T ) = tlS(c1, T )+1. Hence, for every two cells
c1, c2 ∈ T , if ta(c2) = ta(c1) + 1, then c2 = succ(c1, T ); in particular, the first cell of
T2 is the successor of cell c′. Moreover, since the switches follow an FCFS policy, cells
of traffic T2 do not prohibit cells of traffic T1 from being delivered on time; namely,
for any cell c ∈ T1, tlS(c, T1) = tlS(c, T1 ◦ T2) and tlPPS(c, T1) = tlPPS(c, T2).

Since R(ALG, σ, c′, T1) ≥ d(r′ − 1) and |T2| ≥ 
|T1|d(r
′−1)−ε
ε �, Lemma 3.2 implies

that Robl
avg(ALG) ≥ d(r′−1)−ε and Robl

max(ALG) ≥ d(r′−1), with probability 1−δ.
The question of whether the lower bound for the u-RT demultiplexing algorithm

(described in Theorem 3.8) can be extended to hold with an oblivious adversary is
left open. The proof technique described in this section will most likely fail to provide
such an extension, since the worst-case traffics that are used in order to prove lower
bounds for u-RT algorithms have bursts. Unfortunately, the burstiness accumulates
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when concatenating bursty traffics, unless there is a gap of a certain number of time-
slots in which no cells arrive at the overloaded output-port. Large bursts may justify
a high queuing delay of cells and hence result in low relative queuing delay. On the
other hand, a gap in which no cells arrive at the overloaded output reduces the relative
queuing delay of cells that arrive immediately after it. This implies that the adversary
should identify the concentration and then choose to continue the traffic without a
gap (as in Lemma 3.2).

4. Bounding the relative queuing delay. This section presents a methodol-
ogy for bounding Rmax(ALG, σ, T ) for an arbitrary traffic T and coin-toss sequence σ.
We fix some traffic T and omit the notation ALG, σ, and T . For simplicity assume the
execution begins after time-slot 0, and that at time-slot 0 (i.e., at “the beginning of
time”), no cells arrive at the switch, and therefore all the queues are empty. Our anal-
ysis depends on the realistic assumption that the PPS obeys the global FCFS policy.

Cells are queued in a bufferless PPS either within the planes or within the mul-
tiplexors residing at the output-ports. A simple situation in which queuing in a
multiplexor happens is when the output-port is flooded, but in this case, cells also
suffer from high queuing delay in the shadow switch, and the relative queuing delay
is small. A more complicated situation is when a cell arrives at the multiplexor out
of order and should wait for previous cells to arrive from their planes. In this case,
the relative queuing delay is an indirect result of queuing within the other planes
(of some preceding cell)—the relative queuing delay of the waiting cell is at most the
relative queuing delay of some preceding cell that was queued only in the planes. This
observation is captured in the following lemma.

Lemma 4.1. There is a cell c such that tlPPS(c) = tp(c) and R(c) = Rmax.
Proof. Let c be the first cell to leave the PPS such that R(c) = Rmax. As-

sume that tlPPS(c) > tp(c); since the multiplexor buffer is work-conserving, in time-
slot tlPPS(c) − 1 another cell c′ leaves the PPS from output-port dest(c). Hence
tlPPS(c′) = tlPPS(c) − 1, and therefore R(c′) = tlPPS(c′) − tlS(c′) = tlPPS(c) − 1 −
tlS(c′). Since c′ leaves the PPS before c and the shadow switch is FCFS, tlS(c′) ≤
tlS(c)−1. Hence the relative queuing delay of c′ is R(c′) ≥ tlPPS(c)−tlS(c) = R(c) =
Rmax, contradicting the minimality of c.

Consider a single cell c, and focus on the queuing within plane(c), caused by
the lower rate on the link from plane(c) to dest(c). Since both the PPS and the
shadow switch are FCFS, cells arriving at the switch after cell c cannot prohibit c
from being transmitted on time. We present an upper bound that depends only on
the disproportion of the number of cells sent through plane(c) to dest(c). Relating
this quantity and the queue lengths at time-slot ta(c) is not immediate, since it is
possible that the shadow switch is busy when the plane is idle, and vice versa.

Let Aj(t1, t2) be the number of cells destined for output-port j that arrive at the
switch during time interval [t1, t2], and let Ak

j (t1, t2) be the number of these cells that
are sent through plane k. The following definition captures the imbalance between
planes.

Definition 4.2. For a plane k, output-port j and time-slots 0 ≤ t1 ≤ t2 the
following are defined.

1. The imbalance of time interval [t1, t2] is Δk
j (t1, t2) = Ak

j (t1, t2)− 1
r′Aj(t1, t2).

2. The imbalance by time-slot t2 is Δk
j (t2) = maxt1≤t2{Δk

j (t1, t2)}.
3. The maximum imbalance is Δk

j=maxt2{Δk
j (t2)}.

Clearly, Δk
j ≥ Δk

j (t2) ≥ Δk
j (t1, t2) for every output-port j, plane k, and time-slots

t1 > t2. In addition, the imbalance is superadditive.
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Property 4.3. For every output-port j, plane k, and time-slots t1 > t2,

Δk
j (t2) ≥ Δk

j (t1 − 1) + Δk
j (t1, t2).

Proof. By Definition 4.2, there is a time-slot t′1 ≤ t1 such that Δk
j (t1 − 1) =

Δk
j (t

′
1, t1 − 1) = Ak

j (t
′
1, t1 − 1) − 1

r′Aj(t
′
1, t1 − 1). Since Δk

j (t1, t2) = Ak
j (t1, t2) −

1
r′Aj(t1, t2), we have

Δk
j (t1, t2)+Δk

j (t1−1) = Ak
j (t

′
1, t1−1)+Ak

j (t1, t2)− 1
r′ (Aj(t

′
1, t1−1)+Aj(t1, t2))

= Δk
j (t

′
1, t2) ≤ Δk

j (t2).

Let Qj(t) be the size of the jth buffer in the shadow switch after time-slot t;
similarly, Qk

j (t) is the size of jth buffer of plane k of the PPS after time-slot t. Let

Lk
j (t1, t2) be the number of cells destined for output-port j that leave plane k during

time interval [t1, t2]. Note that Qk
j (t) = Ak

j (0, t) − Lk
j (0, t).

Time-slot t1 is the beginning of a (k, j) busy period for time-slot t2 ≥ t1 if it is the
last time-slot before t2, such that Qk

j (t1 − 1) = 0. Note that this expression is well

defined because in time-slot 0 all the queues are empty. Since Qk
j (t1) > Qk

j (t1 − 1),
a cell c arrives at the switch at time-slot t1, and therefore exactly one cell destined
for j leaves plane k in time interval (t1 + 1 − r′, t1 + 1]. This is either cell c itself
or another cell that prohibits c from using the link and therefore is sent at most r′

time-slots before time-slot t1 + 1. Since the queue is never empty until time-slot t2,
one cell is sent to j exactly every r′ time-slots after the first cell. This implies that

the number of cells sent from k, Lk
j (t1, t2) ≥ � (t2−t1)+1

r′ .
Remark 4.1. Khotimsky and Krishnan [25] defined busy periods only with respect

to an output-port j. This points to a flaw in their proof, which ignores situations when
the optimal shadow switch is busy sending cells to output-port j, while a specific
plane in the PPS is idle part of the time [24]. These situations are the main source
of difficulty in our proof.

The following lemma, which is illustrated in Figure 6, bounds how badly a plane
can perform relative to the shadow switch, by comparing their busy periods.

Lemma 4.4. If Qj(t − 1) = 0, then for every plane k and for every
δ ∈ {0, . . . ,Δk

j (t− 1)r′},

Lk
j (0, (t− 1) + δ) ≥ Ak

j (0, t− 1) −
⌈

Δk
j (t− 1)r′ − δ

r′

⌉
.

Proof. If there is a time-slot t1 ∈ [t− 1, t− 1 + δ] such that Qk
j (t1) = 0, then by

time-slot t1 no cells destined for j are waiting in plane k. That is, Lk
j (0, (t− 1)+ δ) ≥

Lk
j (0, t1) = Ak

j (0, t1) ≥ Ak
j (0, t− 1), and the lemma follows.

Otherwise, let t2 be the beginning of a (k, j) busy period for time-slot (t− 1)+ δ.
During time interval [t2, (t−1)+δ] plane k sends a cell to output j every r′ time-slots;
therefore,

Lk
j (t2, (t− 1) + δ) ≥

⌊
t + δ − t2

r′

⌋
.(1)

On the other hand, Qj(t − 1) = 0 implies that for every time-slot t3 ≤ t − 1,
Aj(t3, t−1) ≤ t− t3; otherwise, the jth buffer of the shadow switch is not empty after
time-slot t− 1. In particular,

Aj(t2, t− 1) ≤ t− t2.(2)
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t2 t t + δ

Ak
j (0,min{τ, t− 1})

−Lk
j (0, τ)

τ (time-slots)t + Δk
j (t− 1)r′

Fig. 6. Number of cells arriving until time-slot t− 1 and still queued in plane k by time-slot τ .

Using these inequalities, we bound Lk
j (0, (t− 1) + δ):

Lk
j (0, (t−1)+δ) =Lk

j (0, t2 − 1) + Lk
j (t2, (t− 1) + δ)

≥Lk
j (0, t2 − 1) +

⌊
t+δ−t2

r′

⌋
by (1)

≥Ak
j (0, t2−1)+

⌊
t+δ−t2

r′

⌋
since Qk

j (t2−1)=0

≥Ak
j (0, t2 − 1)+

⌊
δ
r′ +

Aj(t2,t−1)

r′

⌋
by (2)

=Ak
j (0, t2 − 1) + Ak

j (t2, t− 1) +
⌊

δ
r′ − Δk

j (t2, t− 1)
⌋

by Definition 4.2

≥Ak
j (0, t− 1) −

⌈
r′Δk

j (t−1)+δ

r′

⌉
.

By substituting δ = 0 in Lemma 4.4, we get the following corollary, demonstrating
the relation between the imbalance and the queue size in the beginning of a busy
period.

Corollary 4.5. If Qj(t− 1) = 0, then for every plane k,

Qk
j (t− 1) ≤ max

{
0,
⌈
Δk

j (t− 1)
⌉}

.

We complete the proof by bounding the lag between the time a cell leaves the
plane it is sent through and the time it should leave the shadow switch.

Theorem 4.6. The maximum relative queuing delay of cells destined for output-
port j and sent through plane k is bounded by max{0, r′(Δk

j + 1) + Bj}, where Bj is
the maximum number of cells destined for output-port j that arrive at the switch in
the same time-slot.

Proof. By Lemma 4.1, it suffices to bound tp(c) − tlS(c) for every cell c. Since
tp(c)−tlS(c) = (tp(c) − ta(c))−(tlS(c) − ta(c)), it suffices to bound only the difference
between the time a cell spends in the plane, tp(c) − ta(c), and the time it spends in
the shadow switch, tlS(c)−ta(c). Since both switches operate under the FCFS policy,
these values depend solely on the corresponding queues’ lengths when cell c arrives.

Let t1 be the earliest time-slot, such that the buffer of output-port j in the shadow
switch is never empty during time interval [t1, ta(c)]; if no such time-slot exists, let
t1 = ta(c).

First, we bound tlS(c) − ta(c) from below. The buffer in the shadow switch is
empty at time-slot t1−1, and then the switch is continuously busy during time interval
[t1, ta(c)−1], transmitting exactly one cell at each time-slot to output-port j. This
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t (time-slots)

⌈
Δk

j (α− 1)
⌉

−Lk
j (0, t)

Ak
j (0,min{t, t1 − 1})

α + Δk
j (t1 − 1)r′

after time-slot
Case 2: cell c arrive

t1 + Δk
j (t1 − 1)r′t1

t1 + Δk
j (t1 − 1)r′

before time-slot
Case 1: cell c arrive

Fig. 7. Illustration for the different cases in the proof of Theorem 4.6.

implies that Qj(ta(c)−1) = Aj(t1, ta(c)−1) − (ta(c) − t1). All the cells in the queue
should leave the switch after time-slot ta(c) and before tlS(c); therefore,

tlS(c) − ta(c) > Aj(t1, ta(c) − 1) − (ta(c) − t1).

Since Aj(ta(c), ta(c)) ≤ Bj , and tlS(c) − ta(c) is an integer, it follows that

tlS(c) − ta(c) ≥ Aj(t1, ta(c)) −Bj + t1 − ta(c) + 1.(3)

Recall that by Corollary 4.5, Qk
j (t1−1) ≤ max{0, ⌈Δk

j (t1−1)
⌉}. There are two

cases to consider, depending on whether all the cells that were queued in plane k at
time-slot t1 left the plane before the arrival of cell c (see Figure 7).

Case 1. ta(c) ≤ t1 + Δk
j (t1 − 1)r′. Since plane k is FCFS and work-conserving,

it transfers every cell in its queue in exactly r′ time-slots, except cell c, which is
considered as transferred in the first time-slot of its transmission:

tp(c) − ta(c) ≤ r′Qk
j (ta(c)) + 1

= r′(Ak
j (0, ta(c)) − Lk

j (0, ta(c))) + 1 by the definition of Qk
j (ta(c))

≤ r′
(
Ak

j (0, ta(c)) −Ak
j (0, t1 − 1) +

⌈
r′Δk

j (t1 − 1) + t1 − ta(c)

r′

⌉)
+ 1

by Lemma 4.4, since ta(c) ∈ [t1, t1 + Δk
j (t1 − 1)r′]

and Lk
j (0, ta(c)) ≥ Lk

j (0, ta(c) − 1)

≤ r′
(
Ak

j (0, ta(c)) −Ak
j (0, t1 − 1) +

r′Δk
j (t1 − 1) + t1 − ta(c)

r′
+ 1

)
+ 1

≤ r′Ak
j (t1, ta(c)) + r′Δk

j (t1 − 1) + t1 − ta(c) + r′ + 1

= Aj(t1, ta(c)) + r′Δk
j (t1, ta(c)) + r′Δk

j (t1 − 1) − ta(c) + t1 + r′ + 1

by Definition 4.2

≤ Aj(t1, ta(c)) + r′(Δk
j (ta(c)) + 1) − ta(c) + t1 + 1 by Property 4.3.

Together with (3), this implies that tp(c) − tlS(c) ≤ r′(Δk
j (ta(c)) + 1) + Bj .

Case 2. ta(c) > t1 + Δk
j (t1 − 1)r′. If Qk

j (ta(c)) = 0, then cell c is immediately
delivered to the output-port, i.e., tp(c) = ta(c)+1 ≤ tlS(c), and the claim holds since
tp(c) − tlS(c) ≤ 0.
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If Qk
j (ta(c)) > 0, let t2 be the beginning of a (k, j) busy period for ta(c). Note

that by the choice of t2, L
k
j (t2, ta(c)) ≥ � ta(c)−t2+1

r′ . Hence, we have

tp(c) − ta(c) ≤ r′Qk
j (ta(c)) + 1

= r′
(
Ak

j (t2, ta(c)) − Lk
j (t2, ta(c))

)
+ 1 since Qk

j (t2 − 1) = 0

≤ r′
(
Ak

j (t2, ta(c))−
⌈
ta(c)−(t2−1)

r′

⌉)
+1

since plane k is continuously busy

≤ Aj(t2, ta(c)) + r′Δk
j (t2, ta(c)) − r′

⌈
ta(c) − (t2 − 1)

r′

⌉
+ 1

≤ Aj(t1, ta(c)) + r′
(
Δk

j (t2, ta(c))+1
)
+t1−ta(c)+(t2 − t1)

−Aj(t1, t2−1)+1.

By the choice of t1, the output-buffer of the shadow switch is empty at time-slot
t1 − 1 and not empty during time interval [t1, t2 − 1]. This implies that (t2 − t1) ≤
Aj(t1, t2 − 1), and therefore

tp(c) − ta(c) ≤ Aj(t1, ta(c)) + r′(Δk
j (ta(c)) + 1) + t1 − ta(c) + 1.

Together with (3), this implies that tp(c) − tlS(c) ≤ r′(Δk
j (ta(c)) + 1) + Bj .

5. Demultiplexing algorithms with optimal relative queuing delay. This
section presents several demultiplexing algorithms and uses the methodology de-
scribed in section 4 in order to bound their relative queuing delay.

First, we revisit the fractional traffic dispatch (FTD) algorithm [20] and show
that its relative queuing delay is (N +1)r′ time-slots. For a PPS with speedup S > 2,
we introduce a variant of the FTD algorithm that is 2N/S-partitioned; its relative
queuing delay is at most (2N/S + 1) r′ + N(1 − 2/S) time-slots, matching the lower
bound for fully distributed demultiplexing algorithms (Theorem 3.7).

Then, we present novel 1-RT and u-RT demultiplexing algorithms with relative
queuing delays of 3N + r′ time-slots (sections 5.2 and 5.3). Both algorithms have
optimal relative queuing delays when the speedup of the PPS is constant.

5.1. Optimal fully distributed demultiplexing algorithm. The fractional
traffic dispatch (FTD) algorithm [20] is the best-known example of a fully distributed
demultiplexing algorithm. In the FTD algorithm, there is a window of size r′ time-
slots that slides over the sequence of cells in each flow (i, j). The algorithm maintains
a window constraint that ensures that two cells in the same window are not sent
through the same plane. An equivalent variation of the algorithm statically divides
each flow to blocks of size r′ [20, 25].

The demultiplexing algorithm chooses the plane through which a cell is sent arbi-
trarily from the set of planes that do not violate the window constraint and the input
constraint described at section 2. A speedup of S ≥ 2 suffices for the algorithm to
work correctly [20].

A simple application of Theorem 4.6 and the fact that Bj ≤ N shows the following.
Theorem 5.1. Ravg(FTD) ≤ Rmax(FTD) ≤ (N + 1)r′.
Proof. Let Ai→j(t1, t2) be the number of cells in flow (i, j) that arrive at the

switch during time interval [t1, t2], and let Ak
i→j(t1, t2) be the number of these cells
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that are sent through plane k.

Δk
j (t1, t2) = Ak

j (t1, t2) −
Aj(t1, t2)

r′
by Definition 4.2

=

N∑

i=1

Ak
i→j(t1, t2) −

Aj(t1, t2)

r′

≤
N∑

i=1

⌈
Ai→j(t1, t2)

r′

⌉
− Aj(t1, t2)

r′
due to the window constraint

≤
N∑

i=1

(
Ai→j(t1, t2)

r′
+

r′ − 1

r′

)
− Aj(t1, t2)

r′
since Ai→j , r

′ are integers

= N
r′ − 1

r′
.

By Theorem 4.6, Rmax(FTD) ≤ (N + 1)r′, since Bj ≤ N .
For a PPS with speedup S > 2, a 2N

S -partitioned variant of the FTD algorithm
yields a better relative queuing delay, matching the lower bounds described in Theo-
rems 3.7 and 3.9. In this algorithm, denoted PART-FTD, demultiplexor i uses only
planes from the set {2r′� i

2N/S , . . . , 2r′(� i
2N/S  + 1) − 1}. This implies that each

demultiplexor uses exactly 2r′ planes, as required for the correctness of the FTD
algorithm, but each plane is used only by at most 2N

S demultiplexors.

Theorem 5.2. Ravg(PART-FTD) ≤ Rmax(PART-FTD) ≤ (
2N
S + 1

)
r′ +

N
(
1 − 2

S

)
.

Proof. We use the same notation as in the proof of Theorem 5.1. The only
difference is that

Δk
j (t1, t2) = Ak

j (t1, t2) −
Aj(t1, t2)

r′
≤

N∑

i=1

⌈
Ai→j(t1, t2)

r′

⌉
− Aj(t1, t2)

r′
≤ 2N

S

r′ − 1

r′

since at most 2N
S demultiplexors can send cells through plane k. Therefore, by

Theorem 4.6, Rmax(PART-FTD) ≤ (
2N
S + 1

)
r′ + N

(
1 − 2

S

)
.

5.2. Optimal 1-RT demultiplexing algorithm. We describe a 1-RT demul-
tiplexing algorithm that matches the lower bound presented in Theorem 3.8. Infor-
mally, Algorithm 1 divides the set of planes into two equal-size sets, V0 and V1, and
its operations with respect to cells destined for a specific output-port into two phases.
In each phase, the algorithm sends cells destined for a specific output-port through
different set of planes (i.e., V0 or V1). After every time-slot, each input-port collects
global information about the switch and uses it to calculate the imbalance for each
plane k and each output-port j. In the next time-slot, each input-port sends a cell
to output-port j only through planes with low (or zero) imbalance. Intuitively, a
phase i ends when there are no balanced planes in Vi to use. In the next phase, the
demultiplexors use the planes of the set V1−i.

To avoid situations in which all the input-ports send cells through the same plane,
we divide the input-ports into N

r′ sets of size r′ and ensure that under no circumstances
can two input-ports in the same set send a cell destined for the same output-port
through the same plane. This is done by calculating the actions of other input-ports
in the same set as if they indeed get a cell destined for the same output-port.
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Algorithm 1 1-RT Algorithm
Constants:

V0={1, . . . , K
2
}; V1={K

2
+ 1, . . . ,K}

Shared:
F [N ]: N sets of planes, initially all V0 � cells for j can be sent only through F [j]
R[N ][r′]: matrix of values in {1, . . . ,K,⊥}, initially all ⊥ � holding input-constraints
t: value in {0, . . . , r′ − 1}, initially 0 � cyclic pointer to matrix R
Q[N ], L[N ]: N sets of planes, initially all ∅
M [N ]: N sets of planes, initially all {1, . . . ,K}
phase[N]: vector of values in {0, 1}, initially all 0

1: void procedure advance-clock( ) � invoked at the beginning of each time-slot
2: For every j ∈ {1, . . . , N}: calculate(j)
3: For every j ∈ {1, . . . , N}: F [j] ← update(j)
4: Update the matrix R[N ][r′] according to global information
5: t ← (t + 1) mod r′
6: end procedure

1: int procedure dispatch(cell c) at demultiplexor i
2: j ← dest(c)
3: p ← ⌊

i
r′
⌋

4: set B ← ∅
5: for x ← r′p to i do
6: E←{k∈{1, . . .,K} | ∃a∈{0, . . ., r′−1},R[x][a]=k}
7: k ← min (F [j] \ (B ∪ E))
8: B ← B ∪ {k}
9: end for

10: R[i][t] ← k � can be read by other input-ports only in the next time-slot
11: return k
12: end procedure

1: set procedure update(int j)
2: set S ← F [j]
3: Q[j] ← Q[j] \M [j]
4: if Q[j] = ∅ then � change phase
5: Q[j] ← {1, . . . ,K} \M [j]
6: phase[j] ← (1 − phase[j])
7: S ← Vphase[j]

8: else
9: S ← S \ (L[j])

10: end if
11: return S
12: end procedure

1: void procedure calculate(int j)
2: set A ← {k|Δk

j (t) > N
r′ } � using global information

3: M [j] ← {k|Δk
j (t) ≤ 0} � using global information

4: L[j] ← (L[j] ∪A) \M [j]
5: end procedure

With respect to each output-port j, planes are divided into three levels according
to their imbalance (see Definition 4.2): balanced planes with imbalance Δk

j (t) ≤
0, extremely imbalanced planes with imbalance Δk

j (t) ≥ N
r′ , and slightly imbalanced

planes whose imbalance satisfies 0 < Δk
j (t) <

N
r′ . At the beginning of each time-slot,

a set of eligible planes, denoted by F [j], is calculated for every destination j: A plane
is eligible for output-port j if it is balanced with respect to output-port j or if it
was never extremely imbalanced with respect to output-port j since the last phase
change. Phase i is changed to phase 1− i when all planes k ∈ V1−i become balanced,
as maintained by the set Q[j].
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Table 5.1

Illustration of Example 5.1. The plane number through which each demultiplexor would have
sent a cell destined for output-port 0, if such a cell arrived at the switch. Actual arrivals are marked
in framed boxes. No cells arrive at different output-ports in this time interval.

Time-slot
0 1 2 3 4 5 6 7 8

Demultiplexor 0 1 2 1 2 3 9 10 1

Demultiplexor 1 2 1 2 3 2 10 9 2

Demultiplexor 2 1 2 1 2 2 9 10 1

Demultiplexor 3 2 1 2 3 3 10 9 2

Demultiplexor 4 1 2 1 2 2 9 9 1

Demultiplexor 5 2 1 2 3 3 10 10 2

Demultiplexor 6 1 1 2 2 2 9 9 1

Demultiplexor 7 2 2 1 3 3 10 10 2

Δ1
0(t) 1.5 3.5 4 3 2.5 0.5 0 0

Δ9
0(t) 6.5 5 3 1.5 0.5 0 0 0.5 0.5

We demonstrate the operations of the algorithm with the following example for
an 8 × 8 PPS with speedup S = 8 and r′ = R

r = 2.
Example 5.1. Suppose that at time-slot t = 0, phase[0] changed from 1 to 0,

Δ9
0(0) = 6.5, and all other planes in V1 have imbalance at most 6.5. In addition, we

assume that planes 1 and 2 did not receive any cells before time-slot 0.
The demultiplexors are divided into 4 sets: {0, 1}, {2, 3}, {4, 5}, {6, 7}. Upon

receiving a cell, each demultiplexor calculates the behavior of all demultiplexors in its
set that have smaller index and ensures that it will not send the cell through the same
plane as them. Table 5.1 shows the plane number through which each demultiplexor
would have sent a cell destined for output-port 0 if such a cell arrives at the switch.

The actual arrivals are marked in framed boxes and are taken into account in the
following time-slots.

At time-slot 1, demultiplexor 0 will send a cell through the first plane in V0 (that
is, plane 1). On the other hand, demultiplexor 1 must avoid sending its cell through
plane 1, and therefore it will use plane 2. Similarly, demultiplexors 2, 4, and 6 will
use plane 1, and demultiplexors 3, 5, and 7 will use plane 2.

At time-slot 2, demultiplexor 0 cannot use plane 1 due to the input-constraint.
Therefore, it will use plane 2 and demultiplexor 1 will use plane 1. Plane 1 becomes
extremely imbalanced after time-slot 2, and therefore it is not eligible to receive
cells for output-port 0 in the following time-slots. Although plane 1 becomes slightly
imbalanced after time-slot 3, Algorithm 1 dictates that it is still not eligible for output-
port 0, since the phase has not changed yet.

The phase changes after time-slot 5 because, for every plane k ∈ V1, Δk
0(5) ≤ 0.

This implies that planes from the set V1 are used for sending cells destined for output-
port 0 in the following time-slots. At this time, Q[0] = {1, 2} since Δ1

0(5) = 2.5 and
Δ2

0(5) = 0.5. The phase changes again after time-slot 7, since both Δ1
0(7) and Δ2

0(7)
are not positive.

To prove the correctness of Algorithm 1, we start with two lemmas.
The first lemma shows that the imbalance between each plane and each output-

port is bounded under this algorithm.
Lemma 5.3. In Algorithm 1, for every plane k ∈ V0 ∪ V1 and output-port j,

Δk
j < 2N

r′ .
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Proof. Clearly, if Δk
j (t3) >

N
r′ , then k ∈ L[j] in the beginning of time-slot t3 + 1

(procedure calculate, line 4). Therefore, k �∈ F [j] in the beginning of time-slot
t3 + 1 (procedure update, line 9), and cells are not sent through plane k until a
time-slot t3

′ > t3 + 1 in which Δk
j (t3

′ − 1) ≤ 0. This observation also holds if the
phase changes in the beginning of time-slot t3 + 1, since the condition Q[j] = ∅ in
line 4 of procedure update implies that Vphase ⊆ M [j] in line 7.

For every two input-ports i1 and i2, if
⌊
i1
r′

⌋
=

⌊
i2
r′

⌋
, then i1 and i2 do not send

cells destined for the same output-port through the same plane in the same time-slot
(procedure dispatch). This implies that the maximum number of cells destined for
the same output-port and sent through the same plane in a single time-slot is N

r′ .
By Definition 4.2, if a plane does not receive cells destined for output-port j in

time-slot t1, then Δk
j (t1) ≤ Δk

j (t1 − 1). This implies that there is a time-slot t1,

in which plane k receives cells destined for j, and Δk
j (t1) = Δk

j . In the worst case,

Δk
j (t1 − 1) = N

r′ and k receives N
r′ cells destined for j.

Assume, toward a contradiction, that Δk
j (t1) ≥ 2N

r′ . Then there is a time-slot

t2 such that Δk
j (t2, t1) ≥ 2N

r′ . Note that Δk
j (t1, t1) < N

r′ , since Ak
j (t1, t1) ≤ N

r′ and

Aj(t1, t1) ≥ Ak
j (t1, t1). This implies that t2 < t1, and therefore by Definition 4.2

Δk
j (t2, t1) = Ak

j (t2, t1) −
1

r′
Aj(t2, t1)

= Ak
j (t2, t1 − 1) + Ak

j (t1, t1) −
1

r′
Aj(t2, t1 − 1) − 1

r′
Aj(t1, t1)

= Δk
j (t2, t1 − 1) + Δk

j (t1, t1) <
2N

r′
.

This contradicts the choice of t2, and the claim follows.
The second property is a simple conclusion from Lemma 5.3.
Lemma 5.4. If 2N cells destined for output j arrive at a PPS operating under

Algorithm 1 during time interval [t1, t2] and none of them is sent through plane k,
then Δk

j (t2) ≤ 0.

Proof. By Definition 4.2, there is a time-slot t3 such that Δk
j (t2) = Δk

j (t3, t2).

If t3 ≥ t1, then Δk
j (t3, t2) ≤ 0, since Ak

j (t3, t2) = 0. Otherwise,

Δk
j (t3, t2) = Δk

j (t3, t1 − 1) + Δk
j (t1, t2)

= Δk
j (t3, t1 − 1) + Ak

j (t1, t2) −
1

r′
Aj(t1, t2).

By Lemma 5.3 and Definition 4.2, Δk
j (t3, t1 − 1) ≤ Δk

j ≤ 2N
r′ . Since Ak

j (t1, t2) = 0

and Aj(t1, t2) ≥ 2N , it follows that Δk
j (t3, t2) ≤ 0 also in this case.

The final theorem shows that a speedup of 8 suffices for this demultiplexing al-
gorithm to achieve optimal relative queuing delay. Note that such a high speedup is
considered impractical for real switches; nevertheless, Algorithm 1 demonstrates that
the lower bound presented in Theorem 3.8 is tight for u = 1.

Theorem 5.5. Algorithm 1 works correctly with speedup S = 8 and maximum
relative queuing delay of 3N + r′ time-slots.

Proof. It suffices to show that every time line 7 of procedure dispatch is executed,
F [j] \ (B ∪ E) �= ∅, and a plane can be chosen. Clearly, at each step, |B| ≤ r′ and
|E| < r′; therefore, the claim follows if |F [j]| > 2r′. Since F [j] is changed only by
procedure update(j), it suffices to show that |F [j]| > 2r′ after any execution of
update(j).
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Assume, without loss of generality, that phase = 0 after an execution of procedure
update(j) at time-slot t1. Assume, by way of contradiction, that |F [j]| ≤ 2r′ at time-

slot t1. Clearly, from line 7 and the fact that |V0| = |V1| = K
2

= Sr′

2
= 4r′ > 2r′, it

follows that phase = 0 after time-slot t1 − 1. This implies that |V0 ∩ L[j]| ≥ 2r′.
Denote by t2 the last time-slot in which phase was changed from 1 to 0 (t2 = 0

if no such time-slot exists). At time-slot t2, when executing line 4, Q[j] is empty, and
therefore all planes k ∈ V0 are at M [j] at time-slot t2. This implies that for every
k ∈ V0, Δk

j (t2) ≤ 0.
Let k be a plane in V0 ∩ L[j]. By the definition of L[j], there is a time-slot

t3 ∈ [t2, t1] such that Δk
j (t3) > N

r′ . Let t4 be the last time-slot such that Δk
j (t3) =

Δk
j (t4, t3). If t4 < t2, then

Δk
j (t4, t3) = Δk

j (t4, t2) + Δk
j (t2 + 1, t3)

≤ Δk
j (t2) + Δk

j (t2 + 1, t3) ≤ Δk
j (t2 + 1, t3),

and therefore t4 is not minimal. Hence t4 ≥ t2 and [t4, t3] ⊆ [t2, t1]. Since Δk
j (t4, t3) =

Ak
j (t4, t3) − 1

r′Aj(t4, t3) >
N
r′ , and Aj(t4, t3) ≥ Ak

j (t4, t3), it follows that Ak
j (t4, t3) >

N
r′−1

.
Because |V0 ∩ L[j]| ≥ 2r′, the number of cells arriving at the switch, destined for

output-port j, during time interval [t2, t1], is at least (2r′) N
r′−1

> 2N . During time
interval [t2, t1], no cells are sent to any plane in V1, and Lemma 5.4 implies that for
every plane k ∈ V1, Δk

j (t1) ≤ 0; in particular, this holds for all planes in Q[j]. This
implies that Q[j] becomes empty, and the phase changes at least once during time
interval [t2, t1], contradicting the choice of t1 and t2.

By Lemma 5.3 and Theorem 4.6, the relative queuing delay of the algorithm is
at most 3N + r′.

5.3. Optimal u-RT demultiplexing algorithm. Algorithm 1 can be used as
a building block for u-RT algorithms with u > 1. Algorithm 2 runs u instances of
Algorithm 1 in cycles, such that in each time-slot only one instance is active (that
is, the ith instance is active on time-slots i, i + u, i + 2u, i + 3u etc.). Since there
are u time-slots between two consecutive times in which the same instance is active,
global information on the previous time the instance was active can be shared among
the demultiplexors. In addition, each instance of Algorithm 1 has its own set of 8r′

planes; hence Algorithm 2 needs a speedup S = 8u.

Algorithm 2 u-RT Algorithm

Shared:
ALG[u]: u instances of Algorithm 1 � Each instance with its own planes and shared

variables
x: value in {0, . . . , u− 1}, initially u− 1 � cyclic pointer to array ALG

1: void procedure advance-clock( ) � invoked at the beginning of each time-slot
2: x ← (x + 1) mod u
3: ALG[x].advance-clock() � invoke procedure advance-clock on the xth instance
4: end procedure

1: int procedure dispatch(cell c) at demultiplexor i
2: return ALG[x].dispatch(c) � invoke procedure dispatch on the xth instance
3: end procedure
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We next bound the imbalance under Algorithm 2.
Lemma 5.6. In Algorithm 2, for every plane k and output-port j, Δk

j < 2N
r′ .

Proof. Assume, toward a contradiction, that there is a traffic T , a plane k, and an
output-port j such that Δk

j ≥ 2N
r′ . Let t be the first time-slot in which Δk

j (t) ≥ 2N
r′ ,

and let x = t mod u. The choice of t and Algorithm 2 imply that a cell is sent through
plane k at time-slot t by instance x.

Let T ′ be the traffic consisting of the cells of traffic T handled by the instance x;

that is, T ′ = {c | c ∈ T, ta(c)− x mod u = 0}. Let round(c) = ta(c)−x
u be the number

of times instance x was active until cell c arrived to the switch.
Consider traffic T̃ in which each cell c of traffic T ′ arrives at the switch at time-

slot round(c); that is, T̃ = {shift(c, round(c) − ta(c)) | c ∈ T ′}. Let Ãj(t1, t2) be

the number of cells in traffic T̃ destined for output-port j that arrive at the switch
during time interval [t1, t2], and let Ãk

j (t1, t2) be the number of these cells that are

sent through plane k by Algorithm 1. Similarly, following Definition 4.2, Δ̃k
j (t1, t2) =

Ãk
j (t1, t2) − 1

r′ Ãj(t1, t2), and Δ̃k
j (t2) = maxt1≤t2 Δ̃k

j (t2).
Since only instance x sends cells to plane k, and the dispatching decisions of

instance x in response to traffic T are the same as the decisions of Algorithm 1 in
response to traffic T̃ , it follows that for every time t′ < t, Ak

j (t
′, t) = Ãk

j (
 t′−x
u �, t−x

u ).

On the other hand, in T̃ there is a subset of T ’s cells destined for output-port j,
and therefore Aj(t

′, t) ≥ Ãj(
 t′−x
u �, t−x

u ). This implies that Δ̃k
j (

t−x
u ) ≥ Δk

j (t) ≥ 2N
r′ ,

contradicting Lemma 5.3.
Lemma 5.6, Theorem 5.5, and Theorem 4.6 immediately imply the following the-

orem.
Theorem 5.7. For any u ≥ 1 and a PPS with speedup S = 8u, there is a u-RT

demultiplexing algorithm ALG such that Rmax(ALG) ≤ 3N + r′.

6. Discussion. This paper presents lower bounds on the average relative queu-
ing delay which hold with high probability even if randomization is used. This gen-
erally implies that, unlike other load balancing problems, randomization does not
reduce the relative queuing delay. Our lower bounds use the fact that switches are
FCFS but can be generalized to rely on other priority-based policies.

We also present a methodology for bounding the relative queuing delay and use
it to show that the lower bounds are tight. In particular, we prove that the relative
queuing delay of the FTD algorithm [20] is (N +1)r′ time-slots, exactly matching the
lower bound for fully distributed algorithms. We also design u-RT demultiplexing al-
gorithms with relative queuing delay of 3N +r′ < 4N time-slots; for the common case
of constant speedup—independent of the size of the switch and its rates—this asymp-
totically matches the lower bound of uN

S

(
1 − u

r′

)
time-slots for u-RT algorithms, when

1 ≤ u ≤ r′

2
.

A natural design choice is to transmit global control information on the internal
links of the PPS, at rate r. Substituting u ≈ r′ in our lower bounds for u-RT
algorithms yields a relative queuing delay approximately equal to the delay when
no information is gathered at all. This implies that without dedicated control links
working at a rate much larger than r, it is probably unprofitable to share information
between the input-ports.

Acknowledgments. We would like to thank Ilan Newman and Fabian Kuhn for
helpful discussions about randomized demultiplexing algorithms. We would also like
to thank the anonymous referees for their comments and suggestions.



RANDOMIZATION DOES NOT REDUCE AVERAGE DELAY IN PPS 1635

REFERENCES

[1] 3Com Corporation, Inverse Multiplexing over ATM (IMA): A Breakthrough WAN Technol-
ogy for Corporate Networks, Marlborough, MA, 1997.

[2] The ATM Forum, Inverse Multiplexing for ATM (IMA) Specification, Version 1.1, 1999, AF-
PHY-0086.001; available online from http://www.ipmplsforum.org/tech/atm specs.shtml.

[3] H. Attiya and D. Hay, The inherent queuing delay of parallel packet switches, IEEE Trans.
Parallel Distrib. Systems, 17 (2006), pp. 1048–1056.

[4] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, SIAM J. Comput.,
29 (1999), pp. 180–200.

[5] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson, On the power of
randomization in online algorithms, Algorithmica, 11 (1994), pp. 2–14.

[6] C.S. Chang, D.S. Lee, and Y.S. Jou, Load balanced Birkhoff-von Neumann switches, part I:
One-stage buffering, Computer Communications, 25 (2002), pp. 611–622.

[7] A. Charny, Providing QoS Guarantees in Input Buffered Crossbar Switches with Speedup,
Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, 1998.

[8] A. Charny, P. Krishna, N.S. Patel, and R.J. Simcoe, Algorithms for providing bandwidth
and delay guarantees in input-buffered crossbars with speedup, in Proceedings of the 6th
IEEE/IFIP International Workshop on Quality of Service, IEEE Communications Society,
New York, NY, 1998, pp. 235–244.

[9] F.M. Chiussi, D.A. Khotimsky, and S. Krishnan, Generalized inverse multiplexing of
switched ATM connections, in Proceedings of IEEE Globecom, IEEE Communications
Society, New York, NY, 1998, pp. 3134–3140.

[10] S. Chuang, A. Goel, N. McKeown, and B. Prabhakar, Matching output queueing with a
combined input output queued switch, in Proceedings of IEEE INFOCOM, IEEE Commu-
nications Society, New York, NY, 1999, pp. 1169–1178.

[11] Cisco Systems, Inc., ATM Switch Router Software Configuration Guide, San Jose, CA, 2001,
12.1(6)EY.

[12] C. Clos, A study of non-blocking switching networks, Bell System Tech. J., 32 (1953), pp. 406–
424.

[13] R.L. Cruz, A calculus for network delay, part I: Network elements in isolation, IEEE Trans.
Inform. Theory, 37 (1991), pp. 114–131.

[14] J. Duncanson, Inverse multiplexing, IEEE Communications Magazine, 32 (1994), pp. 34–41.
[15] P. Fredette, The past, present, and future of inverse multiplexing, IEEE Communications

Magazine, 32 (1994), pp. 42–46.
[16] P. Giaccone, B. Prabhakar, and D. Shah, Randomized scheduling algorithms for high-

aggregate bandwidth switches, IEEE J. Selected Areas in Communications, 21 (2003),
pp. 546–559.

[17] G. Gonnet, Expected length of the longest probe sequence in hash coding searching, J. ACM,
28 (1981), pp. 289–304.

[18] S. Iyer, Personal communication, 2006.
[19] S. Iyer, A.A. Awadallah, and N. McKeown, Analysis of a packet switch with memories run-

ning slower than the line rate, in Proceedings of IEEE INFOCOM, IEEE Communications
Society, New York, NY, 2000, pp. 529–537.

[20] S. Iyer and N. McKeown, Making parallel packet switches practical, in Proceedings of IEEE
INFOCOM, IEEE Communications Society, New York, NY, 2001, pp. 1680–1687.

[21] S. Iyer and N. McKeown, Analysis of the parallel packet switch architecture, IEEE/ACM
Trans. Networking, 11 (2003), pp. 314–324.

[22] I. Keslassy, Load Balanced Router, Ph.D. thesis, Stanford University, Palo Alto, CA, 2004.
[23] I. Keslassy and N. McKeown, Maintaining packet order in two-stage switches, in Proceedings

of IEEE INFOCOM, IEEE Communications Society, New York, NY, 2002.
[24] D. Khotimsky, Personal communication, 2004.
[25] D. Khotimsky and S. Krishnan, Stability analysis of a parallel packet switch with bufferless

input demultiplexors, in Proceedings of the IEEE International Conference on Communi-
cations (ICC), IEEE Communications Society, New York, NY, 2001, pp. 100–106.

[26] L. Kleinrock, Queuing Systems, Volume II, John Wiley & Sons, New York, 1975.
[27] P. Krishna, N.S. Patel, A. Charny, and R.J. Simcoe, On the speedup required for work-

conserving crossbar switches, IEEE J. Selected Areas in Communications, 17 (1999),
pp. 1057–1066.

[28] Lucent Technologies, Inverse Multiplexing for ATM, Expanding the Revenue Opportunities
for Converged Services over ATM, Murray Hill, NJ, 2001.



1636 HAGIT ATTIYA AND DAVID HAY

[29] M.D. Mitzenmacher, On the analysis of randomized load balancing schemes, Theory Comput.
Syst., 32 (1999), pp. 361–386.

[30] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, Cam-
bridge, UK, 1995.

[31] PMC-Sierra, Inc., Inverse Multiplexing Over ATM Works Today, available online at
http://www.electronicstalk.com/news/pmc/pmc121.html, 2002.

[32] B. Prabhakar and N. McKeown, On the speedup required for combined input and output
queued switching, Automatica J. IFAC, 35 (1999), pp. 1909–1920.

[33] A. Prakash, A. Aziz, and V. Ramachandran, A near optimal schedule for switch-memory-
switch routers, in Proceedings of the ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), ACM, New York, 2003, pp. 343–352.

[34] A. Prakash, A. Aziz, and V. Ramachandran, Randomized parallel schedulers for switch-
memory-switch routers: Analysis and numerical studies, in Proceedings of IEEE INFO-
COM, IEEE Communications Society, New York, NY, 2004.

[35] S. Sharif, A. Aziz, and A. Prakash, An O(log2 N) parallel algorithm for output queuing, in
Proceedings of IEEE INFOCOM, IEEE Communications Society, New York, NY, 2002.

[36] D.C. Sthephens and H. Zhang, Implementing distributed packet fair queueing in a scalable
architecture, in Proceedings of IEEE INFOCOM, IEEE Communications Society, New
York, NY, 1998, pp. 282–290.

[37] I. Stoica and H. Zhang, Exact emulation of an output queueing switch by a combined input
output queueing switch, in Proceedings of the 6th IEEE/IFIP International Workshop on
Quality of Service, IEEE Communications Society, New York, NY, 1998, pp. 218–224.

[38] L. Tassiulas, Linear complexity algorithms for maximum throughput in radio networks and
input queued switches, in Proceedings of IEEE INFOCOM, IEEE Communications Society,
New York, NY, 1998, pp. 533–539.



SIAM J. COMPUT. c© 2008 Society for Industrial and Applied Mathematics
Vol. 37, No. 5, pp. 1637–1655

A PRACTICAL SHORTEST PATH ALGORITHM
WITH LINEAR EXPECTED TIME∗
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Abstract. We present an improvement of the multilevel bucket shortest path algorithm of
Denardo and Fox [Oper. Res., 27 (1979), pp. 161–186] and justify this improvement both theoret-
ically and experimentally. We prove that if the input arc lengths come from a natural probability
distribution, the new algorithm runs in linear average time while the original algorithm does not. We
also describe an implementation of the new algorithm. Our experimental data suggests that the new
algorithm is preferable to the original one in practice. Furthermore, for integral arc lengths that fit
into a word of today’s computers, the performance is close to that of breadth-first search, suggesting
limitations on further practical improvements.
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1. Introduction. The shortest path problem with nonnegative arc lengths (the
NSP problem) is very common in practice, and algorithms for this problem have been
extensively studied both from theoretical, e.g., [2, 6, 9, 10, 12, 13, 17, 25, 29, 30, 34,
37, 38, 39, 40, 42, 43, 44, 45], and computational, e.g., [4, 5, 11, 19, 20, 24, 27, 28,
31, 35, 36, 46], viewpoints. Efficient implementations of Dijkstra’s algorithm [12], in
particular, have received a lot of attention.

Suppose that the input graph has n vertices and m arcs. To state some of the
previous results, we assume that the input arc lengths are integral. Let U denote the
biggest arc length. We define C to be the ratio between U and the smallest nonzero
arc length, δ. Note that if the lengths are integral, then C ≤ U . Modulo precision
problems and arithmetic operation complexity, our results apply to real-valued arc
lengths as well. To simplify comparing time bounds with and without U (or C), one
can make the following similarity assumption [18]: logU = O(log n).

Several algorithms for the problem have near-linear worst-case running times,
although no algorithm has a linear running time if the graph is directed and the
computational model is well established. In the pointer model of computation, the
Fibonacci heap data structure of Fredman and Tarjan [16] leads to an O(m+n log n)
implementation of Dijkstra’s algorithm. In a RAM model with unit-time word oper-
ations, the fastest currently known algorithms achieve the following bounds: O(m +
n(logU log logU)1/3) [39], O(m + n(

√
log n)) [38], O(m log logU) [25], and O(m log

log n) [43].
For undirected graphs, Thorup’s algorithm [42] has a linear running time in a word

RAM model. A constant-time priority queue of [3] yields a linear-time algorithm for
directed graphs, but only in a nonstandard computation model that is not supported
by any existing computer.

Our work has been motivated by a recent paper of Meyer [30]. The paper gives an
NSP algorithm with a linear average time for input arc lengths drawn independently

∗Received by the editors November 21, 2001; accepted for publication (in revised form) July 29,
2007; published electronically February 14, 2008. Preliminary versions of theoretical and experimen-
tal results presented in this paper appeared in [21, 22] and [23], respectively.
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1637



1638 ANDREW V. GOLDBERG

from a uniform distribution on [1, . . . ,M ]. It also proves that, under the same assump-
tions, the running time is linear with high probability (w.h.p.). Meyer’s algorithm
may scan some vertices more than once, and its worst-case time bound, O(nm log n),
is far from linear. Both the algorithm and its analysis are complicated.

In this paper we show that a natural improvement of the multilevel bucket (MLB)
shortest path algorithm of [9] has an average running time that is linear and a worst-
case time of O(m+n logC). Our average-time bound holds for arc lengths distributed
uniformly on [1, . . . ,M ]; the lengths do not need to be independent. We also show
that if the lengths are independent, the algorithm running time is linear w.h.p. We
refer to the new algorithm as the smart queue algorithm. Unlike the MLB algorithm,
our algorithm is not an implementation of Dijkstra’s algorithm: a vertex selected for
scanning is not necessarily a minimum labeled vertex. However, the selected vertex
distance label is equal to the correct distance, and each vertex is scanned at most
once. A similar relaxation of Dijkstra’s algorithm was originally introduced by Dinic
[13] and used in its full strength by Thorup [42].

A recent paper of Hagerup [26] gives a different NSP algorithm with linear ex-
pected time. This algorithm uses the power of word operations to a greater extent
than our algorithm, which allows the use of a simpler bucket structure.

The practical importance of the NSP problem motivated extensive computational
work. Implementations of Dijkstra’s algorithm based on the classical binary heap
data structure [45] were often used as a benchmark to compare other work against.
This algorithm is easy to code and has reasonably constant factors.1 In practice
binary heaps usually outperform Fibonacci heaps [16] and often outperform pairing
heaps [40]. However, the running time of the algorithm based on binary heaps grows
superlinearly with the number of elements on the heap, and the algorithm is not hard
to beat on bigger problems.

In many practical problems, label-correcting algorithms of Pape [36], Pallottino
[35], and Glover and Klingman [20] perform extremely well. However, these algorithms
have bad worst-case time bounds and sometimes perform poorly. Furthermore, unlike
implementations of Dijkstra’s algorithm and the smart queue algorithm, these algo-
rithms cannot be terminated early if one desires a shortest path between a pair of
vertices.

Dail’s bucket-based algorithm [10] works well if U is small. Cherkassky, Goldberg,
and Radzik [5] show that the two-level bucket algorithm has a reasonable performance
for moderately large U . Further theoretical and experimental work [6, 24] produced
more robust two- and three-level implementations. Although they have much better
worst-case performance than the label-correcting algorithms mentioned above, these
MLB implementations are somewhat slower on many practical problems. For exam-
ple, based on real-life road networks, Zhan and Noon [46] recommend Pallottino’s
algorithm for the NSP problem and bucket-based algorithms for the single pair prob-
lem.

We describe a practical implementation of the smart queue algorithm. As a step
toward this implementation, we develop a new implementation of the MLB algorithm
that is more efficient than the previous implementations if the number of bucket levels
is large. A simple modification of this implementation yields an efficient implemen-
tation of the smart queue algorithm. Our experimental results show that the smart
queue algorithm with a large number of levels is practical. In particular, an implemen-
tation with the number of levels optimized for the worst-case theoretical performance

1Implementations based on 4-heaps have better constants.
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works well on both typical and bad-case inputs. For 32-bit arc lengths, the code runs
in time less than 2.5 times that of breadth-first search for all inputs we tried. These
inputs included ones designed to be hard for our implementation. Our results lead to
a better understanding of NSP algorithm implementations and show how close their
performance is to the lower bound provided by breadth-first search.

Our algorithm has been motivated by a theoretical average-case analysis. The
fact that the algorithm is also practical is an interesting example of a situation where
probabilistic analysis leads to improved practical performance.

2. Preliminaries. The input to the NSP problem is a directed graph G = (V,A)
with n vertices, m arcs, a source vertex s, and nonnegative arc lengths �(a). The goal
is to find shortest paths from the source to all vertices of the graph. Unless mentioned
otherwise, we assume that arc lengths are integers in the interval [1, . . . , U ], where U
denotes the biggest arc length. Let δ be the smallest nonzero arc length, and let C
be the ratio of the biggest arc length to δ. If all arc lengths are zero or if C < 2, then
the problem can be solved in linear time [13] (for arc lengths in the range [L,U ] with
U < 2L, the linear-time algorithm uses width L single-level buckets). Without loss of
generality, we assume that C ≥ 2 and logC ≥ 1, which is the only technical reason
for making the assumption, as it simplifies the bounds. This implies that logU ≥ 1.
We say that a statement holds with high probability (w.h.p.) if the probability that
the statement is true approaches one as m → ∞.

We assume the word RAM model of computation (see, e.g., [1]). To efficiently
implement the MLB data structure [9], we need array addressing and the following
unit-time word operations: addition, subtraction, comparison, and arbitrary shifts.
To allow a higher-level description of our algorithm, we use a strong RAM computation
model that also allows word operations including bitwise logical operations and the
operation of finding the index of the most significant bit in which two words differ.
The latter operation is in AC0; see [8] for a discussion of a closely related operation.
The use of this more powerful model does not improve the amortized operation bounds
but simplifies the description.

3. Labeling method and related results. The labeling method for the short-
est path problem [14, 15] works as follows (see, e.g., [41]). The method maintains for
every vertex v its distance label d(v), parent p(v), and status S(v) ∈ {unreached,
labeled, scanned}. Initially d(v) = ∞, p(v) = nil, and S(v) = unreached. The
method starts by setting d(s) = 0 and S(s) = labeled. While there are labeled
vertices, the method picks such a vertex v, scans all arcs out of v, and sets S(v) =
scanned. To scan an arc (v, w), one checks if d(w) > d(v) + �(v, w) and, if true, sets
d(w) = d(v) + �(v, w), p(w) = v, and S(w) = labeled.

If the length function is nonnegative, the labeling method always terminates with
correct shortest path distances and a shortest path tree. The efficiency of the method
depends on the rule to choose a vertex to scan next. We say that d(v) is exact if the
distance from s to v is equal to d(v). It is easy to see that if the method always selects
a vertex v such that, at the selection time, d(v) is exact, then each vertex is scanned
at most once.

Dijkstra [12] observed that if � is nonnegative and v is a labeled vertex with the
smallest distance label, than d(v) is exact. However, a linear-time implementation
of Dijkstra’s algorithm in the strong RAM model is at least as hard as linear-time
sorting. Dinic [13] and Thorup [42] use a relaxation of Dijkstra’s selection rule to get
linear-time algorithms for special cases of the NSP problem. To describe a related
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relaxation that we use, define the caliber of a vertex v, c(v), to be the minimum length
of an arc entering v, or infinity if no arc enters v.

Lemma 3.1 (caliber lemma). Suppose � is nonnegative, and let μ be a lower bound
on distance labels of labeled vertices. Let v be a vertex such that μ+c(v) ≥ d(v). Then
d(v) is exact.

The lemma follows from the observation that for any labeled vertex u, such that
(u, v) ∈ A, d(u) + �(u, v) ≥ μ + c(v) ≥ d(v).

4. Algorithm description and correctness. Our algorithm is based on the
MLB implementation of Dijkstra’s algorithm modified to use Lemma 3.1 to detect and
scan vertices with exact (but not necessarily minimum) distance labels. Our algorithm
is a labeling algorithm. During the initialization, the algorithm also computes c(v) for
every vertex v. The algorithm keeps labeled vertices in one of two places: a set F and
a priority queue B. The former is implemented to allow constant time additions and
deletions, for example, as a doubly linked list. The latter is implemented using multi-
level buckets as described below. The priority queue supports operations insert,
delete, decrease-key, and extract-min. However, the insert operation inserts
vertices into either B or F , and the decrease-key operation may move vertices from
B to F .

At a high level, the algorithm works as follows. Vertices in F have exact distance
labels and if F is nonempty, we remove and scan a vertex from F . If F is empty,
we remove and scan a vertex from B with the minimum distance label. Suppose a
distance label of a vertex u decreases. Note that u cannot belong to F . If u belongs to
B, then we apply the decrease-key operation to u. This operation either relocates
u within B or discovers that u’s distance label is exact and moves u to F . If u is in
neither B nor F , we apply the insert operation to u, and u is inserted either into B
or, if d(u) is determined to be exact, into F .

Next we describe the bucket structure B. For a given integer parameter Δ ≥ 2,
B contains k + 1 levels of buckets, where k = �logΔ U	. Except for the top level, a
level contains Δ buckets. Conceptually, the top level contains infinitely many buckets.
However, at any given time all buckets on that level are empty except at most three
consecutive ones (see Lemma 4.1 below), and one can maintain only these buckets by
wrapping around modulo three at the top level.2 We denote bucket j at level i by
B(i, j); i ranges from 0 (bottom level) to k (top), and j ranges from 0 to Δ−1, except
at the top level discussed above. A bucket contains a set of vertices maintained in a
way that allows constant-time insertion and deletion, e.g., in a doubly linked list. At
each level i, we maintain the number of vertices at this level.

We maintain μ such that μ is a lower bound on the distance labels of labeled
vertices. Initially μ = 0. Every time an extract-min operation removes a vertex v
from B, we set μ = d(v). Consider the base Δ representation of the distance labels
and number digit positions starting from 0 for the least significant digit. Let μi,j

denote the ith through jth least significant digit of μ, and let μi denote the ith least
significant digit. Similarly, di(u) denotes the ith least significant digit of d(u), and
likewise for the other definitions. Note that μ and the k + 1 least significant digits of
the base Δ representation of d(u) uniquely determine d(u): d(u) = μ + (d0,k − μ0,k)
if d0,k > μ0,k and d(u) = μ + Δk + (d0,k − μ0,k) otherwise.

For a given μ, let μi and μi be μ with the i least significant digits replaced by 0 or
Δ − 1, respectively. Each level i < k corresponds to the range of values [μi+1, μi+1].

2For low-level efficiency, one may want Δ to be a power of two and wrap around modulo four.
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Each bucket B(i, j) corresponds to the subrange containing all integers in the range
with the ith digit equal to j. At the top level, a bucket B(k, j) corresponds to the
range [j ·Δk, (j + 1) ·Δk). The width of a bucket at level i is equal to Δi: the bucket
contains Δi distinct values. We say that a vertex u is in the range of B(i, j) if d(u)
belongs to the range corresponding to the bucket.

The position of a vertex u in B depends on μ: u belongs to the lowest-level bucket
containing d(u). More formally, let i be the index of the most significant digit in which
d(u) and μ0,k differ, or 0 if they match. Note that μi ≤ d(u) ≤ μi. Given μ and u with

d(u) ≥ μ, we define the position of u by (i, di(u)) if i < k and B(k, 
(d(u) − μ)/Δk�)
otherwise. If u is inserted into B, it is inserted into B(i, j), where (i, j) is the position
of u. For each vertex in B, we store its position.

Figure 1 gives an example of the bucket structure. In this example, Δ = 2, k = 3,
and μ = 10. For instance, to find the position of a vertex v with d(v) = 14, we note
that the binary representations of 10 and 14 differ in bit 2 (remember that we start
counting from 0) and the bit value is 1. Thus v belongs to bucket 1 at level 2.

Our modification of the MLB algorithm uses Lemma 3.1 during the insert oper-
ation to put vertices into F whenever the lemma allows it. The details are as follows.

insert. Insert a vertex u into B ∪ F as follows. If μ + c(u) ≥ d(u), put u into
F . Otherwise compute u’s position (i, j) in B and add u to B(i, j).

decrease-key. Decrease the key of an element u in position (i, j) as follows.
Remove u from B(i, j). Set d(u) to the new value and insert u as described above.

extract-min. Find the lowest nonempty level i. Find j, the first nonempty
bucket at level i, by setting j to the index of the bucket at level i that contains μ,
and increment j until the bucket B(i, j) is nonempty. If i = 0, delete a vertex u from
B(i, j). (In this case μ = d(u).) Return u. If i > 0, examine all elements of B(i, j)
and delete a minimum element u from B(i, j). Note that in this case μ < d(u); set
μ = d(u). Since μ increased, some vertex positions in B may have changed. We do
bucket expansion of B(i, j) and return u.

To understand bucket expansion, note that the vertices with changed positions
are exactly those in B(i, j). To see this, let μ′ be the old value of μ and consider a
vertex v in B. Let (i′, j′) be v’s position with respect to μ′. By the choice of B(i, j),
if (i, j) = (i′, j′), then either i < i′ or i = i′ and j < j′. In both cases, the common
prefix of μ′ and d(v) is the same as the common prefix of d(u) and d(v), and the
position of v does not change.

On the other hand, vertices in B(i, j) have a longer common prefix with d(u) than
they have with μ′ and these vertices need to move to a lower level. Bucket expansion
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Fig. 1. MLB example. Δ = 2, k = 3, μ = 10. Values on the bottom are in decimal. Values
on top are in binary, with the least significant bit on the bottom. Shaded bits determine positions of
the corresponding elements.
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deletes these vertices from B(i) and uses the insert operation to add the vertices
back into B or into F , as appropriate. The vertex u in B(i, j) with the minimum
distance label is not inserted into B but is returned and scanned. Note that we do
bucket expansions only when F is empty and the expanded bucket contains a labeled
vertex with the minimum distance. Thus μ is updated correctly.

Although the formal description of the algorithm is nontrivial, the algorithm itself
is simple: At each step, remove a vertex from F or, if F is empty, then remove the
minimum-labeled vertex from B. In the latter case, expand the bucket from which
the vertex has been removed, if necessary. Scan the vertex and update its neighbors
if necessary. Terminate when both F and B are empty.

The width of a top-level bucket is at least U . In the original MLB algorithm, at
any point of the execution all labeled vertices are contained in at most two consecutive
top-level buckets. A slightly weaker result holds for our algorithm.

Lemma 4.1. At any point of the execution, all labeled vertices are in the range
of at most three consecutive top-level buckets.

Proof. Let μ′ be the current value of μ and let B(k, j) be the top-level bucket
containing μ′. Except for s (for which the result holds trivially), a vertex v becomes
labeled during a scan of another vertex u removed from either B or F . In the former
case, at the time of the scan d(u) = μ ≤ μ′, d(v) = μ+ �(u, v) ≤ μ′ +U , and therefore
v is contained in either B(k, j) or B(k, j + 1). In the latter case, when u has been
added to F , the difference between d(u) and μ was at most c(u) ≤ U , and thus
d(u) ≤ μ′ +U , d(v) ≤ d(u)+U ≤ μ′ +2 ·U , and thus v belongs to B(k, j), B(k, j+1),
or B(k, j + 2).

Algorithm correctness follows from Lemmas 3.1 and 4.1 and the observations that
μ is always set to the minimum distance label of a labeled vertex, μ remains a lower
bound on the labeled vertex labels (and therefore is monotonically nondecreasing),
and F always contains vertices with exact distance labels.

Remark. An alternative interpretation of the algorithm is as follows. For each
vertex v added to F , we apply a potential transformation as follows. Let δ = d(v)−μ,
where the value of μ is taken at the time v is added to F . We reduce the length of
all arcs into v by δ and increase the length of all arcs out of v by δ. Note that
the transformed lengths are nonnegative as d(v) − μ ≤ c(v). With respect to the
transformed lengths, our algorithm follows Dijkstra’s rule of always scanning a vertex
with the minimum distance label. This interpretation gives an alternative proof of
correctness of the algorithm.

5. Worst-case analysis. In this section we prove a worst-case bound on the
running time of the algorithm. Our analysis is similar to that for the MLB algorithm
given in [6], except the resulting bound has a C instead of a U . Some definitions and
lemmas introduced in this section will also be used in the next section.

We start the analysis with the following lemmas.
Lemma 5.1 (see [6]).
• Given μ and u, we can compute the position of u with respect to μ in constant

time.
• We can find the lowest nonempty level of B in constant time.

Lemma 5.2. The algorithm runs in O(m + n + Φ1 + Φ2) time, where Φ1 is the
total number of times a vertex moves from a bucket of B to a lower-level bucket and
Φ2 is the number of empty buckets examined by the algorithm.

Proof. Since each vertex is scanned at most once, the total scan time is O(m+n).
A vertex is added to and deleted from F at most once, so the total time devoted
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to maintaining F is O(n). An insert operation takes constant time, and these
operations are caused by inserting vertices into B for the first time by decrease-key

operations and by extract-min operations. The former take O(n) time; we account
for the remaining ones jointly with the other operations. A decrease-key operation
takes constant time and is caused by a decrease of d(v) due to a scan of an arc (u, v).
Since an arc is scanned at most once, these operations take O(m) total time. The
work we accounted for so far is linear.

Next we consider the extract-min operations. Consider an extract-min oper-
ation that returns u. The operation takes O(1) time, plus the time proportional to
the number of empty buckets examined, plus the time proportional to the number of
vertices in the expanded bucket, excluding u. Each of these vertices moves to a lower
level in B. Thus we get the desired time bound.

Note that Φ1 = O(nk) and Φ2 = O(nΔ) since after examining less than Δ empty
buckets we discover a nonempty one and scan a vertex from it. Setting Δ to � logU

log logU 	
balances Φ1 and Φ2 and yields the O(m + n logU

log logU ) worst-case time bound. To get

a better bound, we define k′ = 
logΔ δ�.
Lemma 5.3. Buckets at level k′ and below are never used.
Proof. Let (i, j) be the position of a vertex v of caliber c(v) ≥ δ. If i ≤ k′, then

d(v) − μ < Δi ≤ Δk′ ≤ δ ≤ c(v) and the algorithm adds v to F , not B.
The lemma implies that the algorithm uses O(logΔ U − logΔ δ) = O(logΔ C)

bucket levels.
Setting Δ to � logC

log logC 	 and applying Lemma 5.3, we get the following result.

Theorem 5.4. The worst-case running time of the algorithm is O(m+n logC
log logC ).

Note that setting Δ = 2 yields an O(m + n logC) bound.
Our optimization can also be used to improve other data structures based on mul-

tilevel buckets, such as radix heaps [2] and hot queues [6]. For these data structures,
the equivalent of Lemma 5.3 allows one to replace time bound parameter U by C.
In particular, the bound of the hot queue implementation of Raman [39] improves to
O(m + n(logC log logC)1/3). The modification of Raman’s algorithm to obtain this
bound is straightforward given the results of this section.

6. Average-case analysis. In this section we prove that for Δ = 2 (or any
other constant), the smart queue algorithm runs in linear average time under the
assumption that the input arc lengths are uniformly distributed on [1, . . . ,M ].3 We
also show that the running time is linear w.h.p. with the additional assumption that
the lengths are independent.

Since Δ = 2, Φ2 = O(n); it remains to bound Φ1.
A key lemma for our analysis is as follows.
Lemma 6.1. The algorithm never inserts a vertex v into a bucket at a level less

than or equal to log c(v) − 1.
Proof. Suppose during an insert operation, v’s position in B is (i, j) with i ≤

log c(v) − 1. Then the most significant digit in which d(v) and μ differ is digit i and
d(v) − μ < Δi+1 ≤ c(v). Therefore insert puts v into F , not B.

The above lemma motivates the following definitions. The weight of an arc a,
w(a), is defined by w(a) = k − 
log �(a)�. The weight of a vertex v, w(v), is defined
to be the maximum weight of an incoming arc or zero if v has no incoming arcs.

3As we shall see, if M is large enough, then the result also applies to the range [0, . . . ,M ].
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Lemma 6.1 implies that the number of times v can move to a lower level of B is at
most w(v) + 1, and therefore Φ1 ≤ m+

∑
V w(v). Note that k depends on the input,

and thus the weights are defined with respect to a given input.
For the probability distribution of arc weights defined above, we have Pr[
log

�(a)� = i] = 2i/M for i = 0, . . . , k − 1. The definition of w yields

Pr[w(a) = t] = 2k−t/M for t = 1, . . . , k.(1)

Since M ≥ U , we have M ≥ 2k−1, and therefore

Pr[w(a) = t] ≤ 2−t+1 for t = 1, . . . , k.(2)

Theorem 6.2. If arc lengths are uniformly distributed on [1, . . . ,M ], then the
average running time of the algorithm is linear.

Proof. Since Φ ≤ m +
∑

V w(v), it is enough to show that E[
∑

V w(v)] = O(m).
By the linearity of expectation and the definition of w(v), we have E[

∑
V w(v)] ≤∑

A E[w(a)]. The expected value of w(a) is

E[w(a)] =

k∑

i=1

iPr[w(a) = i] ≤
∞∑

i=1

i2−i+1 = 2

∞∑

i=1

i2−i = O(1).

Note that this bound holds for any k. Thus
∑

A E[w(a)] = O(m).
Remark. Note that Theorem 6.2 does not require arc lengths to be independent.

Our proof of its high-probability variant, Theorem 6.7, requires this independence.
Remark. The proof of the theorem works for any arc length distribution such that

E[w(a)] = O(1). In particular, the theorem holds for real-valued arc lengths selected
uniformly from (0, 1]. (We exclude zero so that w is well defined.) In fact, for this
distribution the high-probability analysis below is simpler (given the independence
assumption). However, the integer distribution is somewhat more interesting, because
some test problem generators use this distribution and most practical problems have
integral lengths.

Next we show that the algorithm running time is linear w.h.p. by showing that∑
A w(a) = O(m) w.h.p. First, we show that w.h.p. U is not much smaller than M

and δ is close to Mm−1 (Lemmas 6.3 and 6.4). Let St be the set of all arcs of weight
t and note that

∑
A w(a) =

∑
t t|St|. We show that as t increases, the expected value

of |St| goes down exponentially. For small values of t, the value of |St| is also bounded
by an exponentially decreasing function w.h.p. To deal with large values of t, we show
that the total number of arcs with large weights is small, and so is the contribution
of these arcs to the sum of arc weights.

Proofs of the following two lemmas are fairly standard; we include them to make
the paper self-contained.

Lemma 6.3. W.h.p., U ≥ M/2.
Proof. For an arc a, Pr[�(a) < M/2] < 1/2, and by the independence of arc

lengths,

Pr[U < M/2] ≤ 2−m → 0 as m → ∞.

Thus Pr[U ≥ M/2] → 1 as m → ∞.
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Lemma 6.4. W.h.p., δ ≥ Mm−4/3. If M ≥ m2/3, then w.h.p. δ ≤ Mm−2/3.
Proof. For an arc a, we have

Pr
[
�(a) ≥ Mm−4/3

]
= (M −Mm−4/3)/M ≥ 1 −m−4/3.

Since the arc lengths are independent, we have

Pr
[
δ ≥ Mm−4/3

]
≥ (1 −m−4/3)m → 1 as m → ∞.

Similarly,

Pr
[
�(a) > Mm−2/3

]
= (M − 
Mm−2/3�)/M ≤ 1 − m−2/3

2
,

and by the independence

Pr
[
δ > Mm−2/3

]
≥

(
1 − 1

2m2/3

)m

→ 0 as m → ∞.

From (1), we have E[|St|] = m2k−t/M . Since the weights are independent, we can
apply the Chernoff bound (see, e.g., [7, 33]) to conclude that Pr

[|St| ≥ 2m2k−t/M
]
<

( e
4
)m2k−t/M . Since M ≥ 2k−1, we have

Pr
[|St| ≥ 4m2−t

]
<

(e
4

)2m2−t

.

As mentioned above, we bound the contributions of arcs with large and small
weights to

∑
A w(a) differently. We define β = log(m2/3) and partition A into two

sets—A1, containing the arcs with w(a) ≤ β, and A2, containing the arcs with w(a) >
β.

Lemma 6.5.

∑
A1

w(a) = O(m) w.h.p.

Proof. Assume that δ ≥ Mm−4/3 and U ≥ M/2; by Lemmas 6.3 and 6.4 this
happens w.h.p. This assumption implies C ≤ m4/3. The probability that for some t,
1 ≤ t ≤ β, |St| ≥ 4m2−t is, by the union bound and the fact that the probability is
maximized for t = β, less than

β
(e

4

)m2−β

≤ log(m2/3)
(e

4

)mm−2/3

≤ logm
(e

4

)m1/3

→ 0 as m → ∞.

Thus w.h.p., for all t, 1 ≤ t ≤ β, we have |St| < 4m2−t and

∑

A1

w(a) =

t≤β∑

t=1

t|St| ≤ 4m

∞∑

t=1

t2−t = O(m).

Lemma 6.6.

∑
A2

w(a) = O(m) w.h.p.

Proof. If M < m2/3, then k ≤ β and A2 is empty, so the lemma holds trivially.
Now consider the case M ≥ m2/3. By Lemmas 6.3 and 6.4, w.h.p. Mm−4/3 ≤

δ ≤ Mm−2/3 and U ≥ M/2; assume that this is the case. The assumption implies
m2/3/2 ≤ C ≤ m4/3. Under this assumption, we also have 2k−1 ≤ M ≤ 2k+1.
Combining this with (1) we get 2−2−t ≤ Pr[w(a) = t] ≤ 21−t. This implies that

2−2−β ≤ Pr[w(a) > β] ≤ 22−β ;
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therefore,

m−2/3

8
≤ Pr[w(a) > β] ≤ 4m−1/3

and

m1/3

8
≤ E[|A2|] ≤ 4m2/3.

Using the independence and applying the Chernoff bound, we get

Pr[|A2| > 2E[|A2|]] <
(e

4

)E[|A2|]
.

Replacing the first occurrence of E[|A2|] by the upper bound on its value and the
second occurrence by the lower bound (since e/4 < 1), we get

Pr
[
|A2| > 8m2/3

]
<

(e
4

)m1/3/8

→ 0 as m → ∞.

For all arcs a, �(a) ≥ δ, and thus

w(a) = k − 
�(a)� ≤ 1 + logU + 1 − log δ = 2 + logC ≤ 2 + (4/3) logm.

Therefore, w.h.p.,

∑

A2

w(a) ≤ 8m2/3(2 + (4/3) logm) = o(m).

Thus we have the following theorem.
Theorem 6.7. If arc lengths are independent and uniformly distributed on

[1, . . . ,M ], then w.h.p., the algorithm runs in linear time.
Remark. The expected and high-probability bounds also apply if the arc lengths

come from [0, . . . , U ] and U = ω(m), as in this case w.h.p. no arc has zero length.

7. Algorithm implementation. In this section we describe efficient imple-
mentations of the MLB algorithm and smart queue algorithms, including algorithm
engineering considerations involved in their development. We also discuss how the
MLB implementation differs from the previous implementations [6, 24]. The mb code
implements the algorithm MLB algorithm, and the sq code implements the smart
queue algorithm.

Previous implementations of the MLB algorithm, as well as those described below,
use the following wide bucket heuristic. Pick w such that 0 < w ≤ δ. Then the MLB
algorithm remains correct if one multiplies the bucket width on every level by w. Both
mb and sq codes use the wide bucket heuristic. We refer to the modifications needed
to convert the MLB algorithm to the smart queue algorithm as the caliber heuristic.
This heuristic is the only difference between mb and sq.

Our implementation of mb is very similar to that of [24], except in the details of
the insert operation. The previous implementation maintained a range of distance
values for each level, updating the ranges when the value of μ changed. To insert a
vertex, one looks for the lowest level to which the vertex belongs and then computes
the offset of the bucket to which the vertex belongs. In contrast, mb and sq compute
the vertex position with respect to μ as described in section 4. This is slightly more
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efficient when the number of levels is large. The efficiency gain is bigger for sq

because it does not necessarily examine all levels for a given value of μ. The new
implementation is also simpler than the old one.

We always set Δ to a power of two. This allows us to use bit shifts instead of
divisions. Our codes set w to the biggest power of two not exceeding δ, or to one if
δ ≤ 1. We use an array to represent each level of buckets.

One can give mb either k or Δ as a parameter. Then mb sets the other parameter
based on the input arc lengths. We refer to the code with the number of levels k set to
two by mb2l, and to the code with Δ set to two by mb2d. These are the two extreme
cases that we study. (We do not study the single-level case because it often would
have needed too much memory and time.) Alternatively, one can let mb choose the
values of both k and Δ based on the input. We refer to this adaptive variant as mb-a.
The adaptive variant of the algorithm uses the relationship Δ = Θ(k) suggested by
the worst-case analysis. To choose the constant hidden by the Θ location, we observe
the following. Examining empty buckets involves looking at a single pointer and has
good locality properties as we access the buckets sequentially. Moving vertices to lower
levels, on the other hand, requires changing several pointers, and has poor locality.
This suggests that Δ should be substantially greater than k, and experiments confirm
this.

In more detail, mb-a sets k and Δ as follows. First we find the smallest value of k
such that k is a power of two and (16k)k ≥ U/w. Then we set Δ to 16k. At this point,
however, both Δ and k may be larger than they need to be. While (Δ/2)k ≥ U/w
we reduce Δ. Finally, while (Δ)k−1 ≥ U/w we reduce k. This typically leads to
16k ≤ Δ ≤ 128k and works well in our tests.

We obtain our sq code by adding the caliber heuristic to mb. The modification
of mb is relatively straightforward. We use a stack to implement the set F needed by
the caliber heuristic. The adaptive variant of the code, sq-a, uses the same procedure
to set k and Δ as mb-a does.

8. Experimental methodology and setup. Following Moret and Shapiro
[32], we use a baseline code—breadth-first search (bfs) in our case—and measure
running times of our shortest path codes on an input relative to the bfs running
time on this input. Our bfs code computes distances and a shortest path tree for
the unit length function. The breadth-first search problem is a special case of NSP
and, modulo low-level details, the bfs running time is a lower bound on the NSP
codes. Baseline running times give a good indication of how close to optimal the run-
ning times are and reduces dependency on low-level implementation and architecture
details.

However, some of the dependencies, in particular, cache dependencies, remain.
Our codes put arc and vertex records in consecutive locations. Input IDs of the vertices
determine their ordering in memory. In general, breadth-first search examines vertices
in a different order than an NSP algorithm. This may—and in some cases does—lead
to very different caching behavior of the two codes for certain vertex orderings. To
deal with this dependency on input IDs, our generators permute the IDs at random.
Thus all our problem generators are randomized.

For every input problem type and any set of parameter values, we run the cor-
responding generator five times and report the averages. We report the baseline bfs

time in seconds and all other times in units of the bfs time. In addition, we count
operations that determine Φ1 and Φ2 in Lemma 5.2. For each of these operations,
we give the number of the operations divided by the number of vertices so that the
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amortized operation cost is immediate. The two kinds of operations we count are
examinations of empty buckets and the number of vertices processed during bucket
expansion operations.

We use 64-bit integers for internal representation of arc lengths and distances. If
the graph contains simple paths longer than 264, our codes may get overflows. Note
that for 32-bit input arc lengths, no overflow can happen unless the number of vertices
exceeds 232, which is too many to fit into the memory of a modern computer.

Our experiments have been conducted on a 933 MHz Pentium III machine with
512M of memory, 256K cache, and running RedHat Linux 7.1. All our shortest path
codes and the baseline code are written in C++, in the same style, and compiled with
the gcc compiler using the -O6 optimization option. Our bfs code uses the same data
structures as the mb code.

9. Problem families. We report data on seven problem families produced by
three problem generators. These problem families have been selected as the most
interesting from many more families we experimented with. Since we are interested
in the efficiency of the data structures, we restrict our study to sparse graphs, for
which the data structure manipulation time is most apparent.

Our first generator, SPRAND, builds a Hamiltonian cycle and then adds arcs at
random. The generator may produce parallel arcs but not self-loops. Arc lengths are
chosen independently and uniformly from [�, u]. Vertex 1 is the source. If the number
of arcs is large enough, SPRAND graphs are expanders and the average number of
vertices in the priority queue during a shortest path computation is large.

We use SPRAND to generate two problem families, RAND-I and RAND-C. For
both families, � = 1 and m = 4n. For RAND-I, u = n, and n increases by a factor
of two from one set of parameter values to the next one. We chose the initial value
of n large enough so that the running time is nonnegligable and the final value is as
large as possible subject to the constraint that all our codes run without paging. For
RAND-C, n = 220 and u = 2i; i starts at 1 and then takes on integer multiples of
four from 4 to 32. Up to i = 20, the minimal arc length δ in all test inputs is one. For
i = 24, δ is greater than one for some inputs. For i = 28 and 32, δ is always greater
than one. Note that the expected value of C does not change for i ≥ 28, and therefore
the results for i > 32 would have been very similar to those for i = 28 and 32.

Our second generator, SPGRID, produces grid-like graphs. An x, y grid graph
contains x · y vertices, [i, j], for 0 ≤ i < x and 0 ≤ j < y. A vertex [i, j] is connected
to the adjacent vertices in the same layer, [i, j + 1 mod y] and [i, j − 1 mod y]. In
addition, for i < x−1, each vertex [i, j] is connected to the vertex [i+1, j]. Arc lengths
are chosen independently and uniformly from [�, u]. Vertex [0, 0] is the source. We
use SPGRID to generate two problem families, LONG-I and LONG-C. Both families
contain long grid graphs with y = 8 and x a parameter. For these graphs, the average
number of vertices in the priority queue is small.

The LONG-I and LONG-C problem families are similar to the RAND-I and
RAND-C families. For LONG-I, u = n, and n increases by a factor of two from
the value that yields a reasonable running time to the maximum value that does not
cause paging. The LONG-C problem family uses the same values of u as the RAND-C
problem family.

Our last problem generator is SPHARD. This generator produces problems aimed
to be hard for MLB algorithms for certain values of k and Δ. Graphs produced by
this generator consist of 2k + 1 vertex-disjoint paths, with the source connecting to
the beginning of each path. (See Figure 2 for an example.) These paths have the same
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Fig. 2. An example of a hard problem instance; k = 3 and Δ = 16. Arc lengths are given in
hexadecimal. We omit the extra vertex with arcs designed to manipulate vertex calibers.

number of arcs, which can be adjusted to get a graph of the desired size. Path arcs
have a length of Δ. The lengths of the source arcs are as follows. One arc has zero
length. Out of the remaining arcs, k arcs have the following base-Δ representation.
For 1 ≤ i ≤ k, the first i digits are Δ − 1 and the remaining digits are 0. The last k
arcs, for 1 ≤ j ≤ k, have the first j−1 digits Δ−1, the jth digit 1, and the remaining
digits 0. The graph also contains an extra vertex with no incoming arcs connected to
every other vertex of the graph. The length of the arc connecting the vertex to the
source is zero to make sure that the minimum arc length is zero. The lengths of the
other arcs are all the same. These lengths can be zero (to force every vertex caliber
to zero) or large (so that the calibers are determined by the other arcs).

Note that if the SPHARD generator with parameters k and Δ produces an input,
our adaptive codes may select different parameter values. For D = log Δ, a problem
produced by SPRAND has (k · D)-bit lengths. These lengths determine parameter
values selected by the adaptive codes.

The three SPHARD problem families we study are HARD1, HARD0, and HARD-
EST-SQ. The first two problem families differ only in the length of the arcs which
determine vertex calibers: the length is large for the first family and zero for the
second. All problems in this family have approximately 220 vertices, and the number
of arcs is approximately the same in all problems. To create a problem in this family,
we choose k and D such that k · D = 36 and generate a problem which is hard for
mb with k levels and Δ = 2D. Each HARDEST-SQ problem also has approximately
220 vertices. Problems in this family differ by the k and Δ values. These values are
selected so that both the generator and the adaptive codes use the same k and Δ
parameters.

10. Experimental results. This section discusses our experimental results.
Caliber heuristic effectiveness. Our analysis shows that work of the caliber heuris-

tic is amortized over other work performed by the algorithm and therefore the heuris-
tic cannot hurt the performance by much. The heuristic can, however, significantly
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improve performance. Experimental data confirms this fact. In particular, data for
the HARD1 family in Table 1 shows how drastic performance improvement can be.
The HARD0 family data in Table 1 shows that if all vertex calibers are forced to zero
and the caliber heuristic never helps, its cost is just a few percent of the running time.

Making more levels practical. Our previous work [5, 6] showed that 2- and 3-
level MLB implementations and their variants perform well except on certain types of
graphs with very large lengths. Increasing the number of levels improved performance
on bad examples but hurt performance on “typical” problems somewhat. Comparing
mb and sq code performance on graphs with random arc weights (Tables 2 and 3),
we observe that, as the theory would suggest, the caliber heuristic helps more if
the number of bucket levels is higher. This is especially apparent if one compares
data for mb2d and sq2d on RAND-C problems (Table 2). This makes the bucket
structures with the higher number of levels, in particular, the adaptively selected
number of levels, practical. While the random arc length data illustrates how the
caliber heuristic helps in “typical” cases, Table 1 shows the effectiveness of adaptive
parameter selection on hard problems: Note that for problems with 36-bit lengths,
our adaptive codes set k = 6.

Operation counts and code tuning. As the analysis suggests, poor performance of
the MLB codes is caused by either a large number of the empty bucket examinations
or a high cost of bucket expansion operations. See, for example, Tables 3 and 1. The
data shows that if the number of empty bucket examinations per vertex is moderate
(e.g., ten), they are well amortized by other operations on vertices and do not have a
noticeable effect on the running time. When the number of these operations reaches
one hundred per vertex, they do have an effect. See, e.g., Table 2. Table 1 shows that
processing vertices during bucket expansion is more expensive. Processing one vertex

Table 1

HARD1 (left) and HARD0 (right) family data.

k bfs mb sq

2 time 0.63 1189.20 1.38
emp. sec. 52428.94 0.40
exp. 0.60 0.30

3 time 0.63 10.66 1.39
emp. sec. 1170.14 0.15
exp. 1.14 0.57

4 time 0.62 2.68 1.44
emp. sec. 170.44 0.11
exp. 1.56 0.67

6 time 0.63 2.25 1.53
emp. sec. 24.31 0.08
exp. 2.46 0.77

9 time 0.62 2.87 1.60
emp. sec. 6.37 0.05
exp. 3.89 0.85

12 time 0.63 3.70 1.66
emp. sec. 3.12 0.04
exp. 5.36 0.88

18 time 0.63 5.86 1.82
emp. sec. 1.41 0.03
exp. 8.32 0.93

36 time 0.62 16.32 2.32
emp. sec. 0.49 0.01
exp. 17.75 0.97

k bfs mb sq

2 time 0.62 1199.67 1201.13
emp. sec. 52428.94 52428.94
exp. 0.60 0.60

3 time 0.62 9.48 9.39
emp. sec. 1170.14 1170.14
exp. 1.14 1.14

4 time 0.63 2.67 2.82
emp. sec. 170.44 170.44
exp. 1.56 1.56

6 time 0.62 2.25 2.45
emp. sec. 24.31 24.31
exp. 2.46 2.46

9 time 0.62 2.87 3.08
emp. sec. 6.37 6.37
exp. 3.89 3.89

12 time 0.62 3.72 3.93
emp. sec. 3.12 3.12
exp. 5.36 5.36

18 time 0.63 5.86 6.05
emp. sec. 1.41 1.41
exp. 8.32 8.32

36 time 0.63 16.24 16.43
emp. sec. 0.49 0.49
exp. 17.75 17.75
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Table 2

RAND-C (top) and RAND-I (bottom) family data.

u bfs mb2l sq2l mb2d sq2d mb-a sq-a

1 time 2.97 1.39 1.35 1.39 1.36 1.38 1.35
emp. sec. 0.00 0.00 0.00 0.00 0.00 0.00
exp. 0.48 0.48 0.48 0.48 0.48 0.48

4 time 2.99 1.74 1.59 1.99 1.73 1.47 1.42
emp. sec. 0.00 0.00 0.00 0.00 0.00 0.00
exp. 1.04 0.88 1.64 1.15 0.42 0.39

8 time 3.03 1.81 1.69 2.80 1.96 1.79 1.70
emp. sec. 0.00 0.00 0.00 0.00 0.00 0.00
exp. 1.26 1.05 3.51 1.49 1.26 1.05

12 time 3.00 1.86 1.73 3.41 2.07 1.85 1.74
emp. sec. 0.01 0.01 0.01 0.00 0.01 0.01
exp. 1.35 1.13 5.49 1.56 1.35 1.13

16 time 3.00 1.84 1.74 3.91 2.16 1.95 1.71
emp. sec. 0.14 0.07 0.08 0.00 0.12 0.04
exp. 1.37 1.16 7.44 1.56 2.04 1.08

20 time 2.99 1.82 1.75 4.52 2.27 1.89 1.71
emp. sec. 1.84 0.56 0.57 0.00 1.35 0.02
exp. 1.37 1.16 8.97 1.56 2.11 1.04

24 time 2.99 2.08 1.80 4.95 2.30 2.11 1.76
emp. sec. 18.43 1.32 0.93 0.00 6.12 0.03
exp. 1.33 1.13 9.23 1.56 2.99 1.12

28 time 2.92 2.59 1.85 5.22 2.37 2.13 1.75
emp. sec. 55.33 1.35 0.95 0.00 11.72 0.04
exp. 1.33 1.13 9.23 1.56 2.79 1.06

32 time 2.98 2.49 1.85 5.11 2.36 2.13 1.74
emp. sec. 55.33 1.36 0.95 0.00 11.72 0.04
exp. 1.33 1.13 9.23 1.56 2.79 1.06

n bfs mb2l sq2l mb2d sq2d mb-a sq-a

217 time 0.15 1.55 1.56 3.86 2.26 1.88 1.63
emp./n sec. 3.01 1.09 0.74 0.01 2.05 0.06
exp./n 1.09 1.04 7.14 1.56 2.00 1.05

218 time 0.30 1.73 1.64 4.15 2.26 1.93 1.73
emp./n sec. 3.03 0.79 0.74 0.01 2.04 0.04
exp./n 1.45 1.19 7.65 1.56 2.36 1.19

219 time 0.62 1.68 1.63 4.41 2.31 1.89 1.71
emp./n sec. 3.34 1.12 0.74 0.00 2.36 0.05
exp./n 1.06 1.01 8.15 1.58 1.96 1.01

220 time 1.30 1.83 1.79 4.64 2.35 1.94 1.79
emp./n sec. 3.34 0.79 0.74 0.00 2.37 0.03
exp./n 1.41 1.20 8.65 1.58 2.09 1.06

221 time 2.90 1.83 1.77 4.73 2.29 2.00 1.78
emp./n sec. 3.67 1.13 0.74 0.00 2.36 0.03
exp./n 1.16 1.03 9.13 1.56 2.33 1.16

influences the running time roughly as much as scanning a hundred empty buckets.
These observations justify the choice of k and Δ in our adaptive algorithms.

Most robust code. Our data also suggests that sq-a is a very robust code. Often it
is the fastest code, and its running time is always within 10% the fastest code. When
designing the HARDEST-SQ problem family, our goal was to produce problems which
are hard for the sq-a code. If one believes that these problems are close to the worst
case, then Table 4 shows that even for large lengths, sq-a performs very well. For
example, for 49-bit lengths, its running time exceeds that of bfs by less than a factor



1652 ANDREW V. GOLDBERG

Table 3

LONG-C (top) and LONG-I (bottom) family data.

u bfs mb2l sq2l mb2d sq2d mb-a sq-a

1 time 1.62 1.35 1.35 1.34 1.34 1.34 1.34
emp. sec. 0.13 0.06 0.13 0.06 0.13 0.06
exp. 0.44 0.44 0.44 0.44 0.44 0.44

4 time 1.63 1.54 1.54 1.72 1.60 1.42 1.49
emp. sec. 0.61 0.34 0.55 0.23 0.69 0.66
exp. 0.88 0.71 1.29 0.80 0.39 0.38

8 time 1.63 1.60 1.56 2.06 1.76 1.60 1.56
emp. sec. 2.64 0.77 0.96 0.29 2.64 0.77
exp. 0.77 0.54 1.51 0.83 0.77 0.54

12 time 1.63 1.56 1.55 2.28 1.87 1.56 1.55
emp. sec. 5.82 2.44 1.00 0.29 5.82 2.44
exp. 0.52 0.42 1.51 0.83 0.52 0.42

16 time 1.63 1.56 1.57 2.52 1.99 1.61 1.54
emp. sec. 13.68 9.45 1.00 0.29 8.87 1.40
exp. 0.42 0.38 1.51 0.83 0.52 0.34

20 time 1.63 1.67 1.69 2.75 2.10 1.57 1.54
emp. sec. 43.27 37.60 1.00 0.29 9.30 2.64
exp. 0.39 0.37 1.51 0.83 0.34 0.25

24 time 1.62 2.22 2.15 2.99 2.23 1.64 1.61
emp. sec. 146.96 136.51 1.00 0.30 6.10 2.30
exp. 0.35 0.33 1.51 0.84 0.51 0.40

28 time 1.62 3.08 3.02 3.05 2.33 1.65 1.64
emp. sec. 212.05 205.08 1.00 0.35 10.96 2.72
exp. 0.31 0.30 1.51 0.91 0.43 0.38

32 time 1.63 3.18 3.08 3.06 2.38 1.66 1.67
emp. sec. 212.00 206.77 1.00 0.36 10.96 2.91
exp. 0.31 0.31 1.51 0.92 0.43 0.40

n bfs mb2l sq2l mb2d sq2d mb-a sq-a

217 time 0.08 1.71 1.71 2.71 2.14 1.86 1.71
emp./n sec. 8.59 4.77 1.00 0.29 4.88 1.00
exp./n 0.46 0.39 1.51 0.83 0.61 0.41

218 time 0.17 1.66 1.61 2.80 2.13 1.81 1.68
emp./n sec. 12.45 5.10 1.00 0.29 4.17 1.31
exp./n 0.27 0.22 1.51 0.83 0.63 0.46

219 time 0.35 1.65 1.65 2.74 2.17 1.73 1.61
emp./n sec. 13.65 9.43 1.00 0.29 8.89 1.40
exp./n 0.42 0.38 1.51 0.83 0.52 0.34

220 time 0.75 1.59 1.60 2.72 2.10 1.64 1.60
emp./n sec. 17.89 10.09 1.00 0.29 6.98 1.47
exp./n 0.23 0.21 1.51 0.83 0.45 0.31

221 time 1.61 1.60 1.63 2.65 2.06 1.62 1.59
emp./n sec. 23.59 18.84 1.00 0.29 5.88 2.44
exp./n 0.40 0.37 1.51 0.83 0.52 0.42

of three. We estimate that for 32-bit lengths, sq-a running time is always within a
factor of 2.5 of the bfs time.

11. Concluding remarks. The worst-case bound for the smart queue algorithm
is achieved for Δ = θ( logC

log logC ), when the work of moving vertices to lower levels
balances the work of scanning empty buckets during bucket expansion. Our average-
case analysis reduces the former but not the latter. We get a linear running time when
Δ is constant and the empty bucket scans can be charged to vertices in nonempty
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Table 4

HARDEST-SQ family data.

bits log Δ k bfs sq-a

4 4 1 time 0.62 1.37
emp. sec. 0.33
exp. 0.04

6 3 2 time 0.63 1.50
emp. sec. 1.60
exp. 0.80

8 4 2 time 0.62 1.51
emp. sec. 3.20
exp. 0.80

15 5 3 time 0.62 1.73
emp. sec. 9.00
exp. 1.14

18 6 3 time 0.62 1.78
emp. sec. 18.14
exp. 1.14

24 6 4 time 0.62 1.98
emp. sec. 21.11
exp. 1.56

30 6 5 time 0.62 2.18
emp. sec. 23.00
exp. 2.00

35 7 5 time 0.62 2.32
emp. sec. 46.27
exp. 2.00

42 7 6 time 0.62 2.55
emp. sec. 48.92
exp. 2.46

49 7 7 time 0.62 2.80
emp. sec. 50.87
exp. 2.93

buckets. An interesting open question is if one can get a linear average running time
and a better worst-case running time, for example, using techniques from [2, 6, 9],
without running several algorithms “in parallel.”

Our optimization is to detect vertices with exact distance labels before these
vertices reach the bottom level of buckets and place them into F . This technique can
be used not only in the context of multilevel buckets but also in the context of radix
heaps [2] and hot queues [6].

The fact that sq-a performance is close to that of bfs limits potential improve-
ments one would consider. For example, a search of a graph to determine better pa-
rameter values would not pay for itself, unless it can be amortized over many shortest
path computations, e.g., in the context of the all-pairs shortest path problem.

We would like to note that on the machine used in the experiments, fetching a
value from the main memory takes on the order of a hundred processor clock cycles.
Our experimental results imply that data structure manipulation times are compa-
rable to the data fetch times. As the gap between the processor and memory speeds
widens every year, the relative time spent on data structure operation will decrease,
and our shortest path algorithm performance will be getting even closer to that of bfs.

An alternative to comparing a shortest path algorithm to bfs is as follows. Run
the algorithm and save the sequence of vertices it scanned. Then rerun the algorithm
using the saved sequence instead of the data structures to select the next vertex to
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scan. The difference between running times of the latter and the former algorithms
is a measure of the data structure overhead. It can be compared to the running time
of the original algorithm.

Informal experiments show that for problems that are easy for the label-correcting
algorithms, the smart queue algorithm works almost as well. It would be interesting
to have a more formal comparison of these implementations on real-life problems, such
as those in [46]. We also implemented an algorithm that combines the ideas behind
smart queues and hot queues [6]. Informal experiments show that the resulting code
performs a little better on the hard instances but slightly worse on “typical” instances.

Our results suggest that the smart queue algorithm should be considered in prac-
tice when arc lengths are nonnegative integers. The shortest path codes and generators
used in this study are available via http://www.avglab.com/andrew/soft.html.

Acknowledgments. Part of this work was done at STAR Lab., InterTrust Tech-
nologies Corp., 4750 Patrick Henry Dr., Santa Clara, CA 95054. The author would
like to thank Jim Horning, Rajeev Raman, Bob Tarjan, and Eva Tardos for useful dis-
cussion and comments on a draft of this paper. We are also grateful to an anonymous
referee of a conference version of the paper [22] for pointing out that Theorem 6.2
does not need arc lengths to be independent.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms. Addison–Wesley, Reading, MA, 1974.

[2] R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan, Faster algorithms for the
shortest path problem, J. ACM, 37 (1990), pp. 213–223.

[3] A. Brodnik, S. Carlsson, J. Karlsson, and J. I. Munro, Worst case constant time priority
queues, in Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms, ACM,
New York, SIAM, Philadelphia, 2001, pp. 523–528.

[4] B. V. Cherkassky and A. V. Goldberg, Negative-cycle detection algorithms, Math. Pro-
gram., 85 (1999), pp. 277–311.

[5] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, Shortest paths algorithms: Theory and
experimental evaluation, Math. Programming, 73 (1996), pp. 129–174.

[6] B. V. Cherkassky, A. V. Goldberg, and C. Silverstein, Buckets, heaps, lists, and mono-
tone priority queues, SIAM J. Comput., 28 (1999), pp. 1326–1346.

[7] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum
of observations, Ann. Math. Statistics, 23 (1952), pp. 493–507.

[8] R. Cole and U. Vishkin, Deterministic coin tossing with applications to optimal parallel list
ranking, Inform. and Control, 70 (1986), pp. 32–53.

[9] E. V. Denardo and B. L. Fox, Shortest–route methods: 1. Reaching, pruning, and buckets,
Oper. Res., 27 (1979), pp. 161–186.

[10] R. B. Dial, Algorithm 360: Shortest path forest with topological ordering, Comm. ACM, 12
(1969), pp. 632–633.

[11] R. B. Dial, F. Glover, D. Karney, and D. Klingman, A computational analysis of alterna-
tive algorithms and labeling techniques for finding shortest path trees, Networks, 9 (1979),
pp. 215–248.

[12] E. W. Dijkstra, A note on two problems in connection with graphs, Numer. Math., 1 (1959),
pp. 269–271.

[13] E. A. Dinic, Economical algorithms for finding shortest paths in a network, in Transportation
Modeling Systems, Yu. S. Popkov and B. L. Shmulyian, eds., Institute for System Studies,
Moscow, 1978, pp. 36–44 (in Russian).

[14] L. R. Ford, Jr., Network Flow Theory, Technical report P-932, Rand Corporation, Santa
Monica, CA, 1956.

[15] L. R. Ford, Jr., and D. R. Fulkerson, Flows in Networks. Princeton University Press,
Princeton, NJ, 1962.

[16] M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network
optimization algorithms, J. ACM, 34 (1987), pp. 596–615.



A PRACTICAL SHORTEST PATH ALGORITHM 1655

[17] M. L. Fredman and D. E. Willard, Trans-dichotomous algorithms for minimum spanning
trees and shortest paths, J. Comput. System Sci., 48 (1994), pp. 533–551.

[18] H. N. Gabow, Scaling algorithms for network problems, J. Comput. System Sci., 31 (1985),
pp. 148–168.

[19] G. Gallo and S. Pallottino, Shortest paths algorithms, Ann. Oper. Res., 13 (1988), pp. 3–79.
[20] F. Glover, R. Glover, and D. Klingman, Computational study of an improved shortest path

algorithm, Networks, 14 (1984), pp. 25–37.
[21] A. V. Goldberg, A Simple Shortest Path Algorithm with Linear Average Time, Technical

report STAR-TR-01-03, STAR Lab., InterTrust Tech., Inc., Santa Clara, CA, 2001.
[22] A. V. Goldberg, A simple shortest path algorithm with linear average time, in Proceedings of

the 9th ESA, Lecture Notes in Comput. Sci. 2161, Springer-Verlag, Berlin, 2001, pp. 230–
241.

[23] A. V. Goldberg, Shortest path algorithms: Engineering aspects, in Proceedings of the ISAAC
’01, Lecture Notes in Comput. Sci., Springer-Verlag, Berlin, 2001, pp. 502–513.

[24] A. V. Goldberg and C. Silverstein, Implementations of Dijkstra’s algorithm based on multi-
level buckets, in Lecture Notes in Econom. and Math. Systems 450 (Refereed Proceedings),
P. M. Pardalos, D. W. Hearn, and W. W. Hages, eds., Springer-Verlag, Berlin, 1997,
pp. 292–327.

[25] T. Hagerup, Improved shortest paths in the word RAM, in 27th International Colloq. on
Automata, Languages and Programming, Geneva, Switzerland, 2000, pp. 61–72.

[26] T. Hagerup, Simpler computation of single-source shortest paths in linear average time, in
Proceedings of STACS 2004, ACM, New York, 2004, pp. 362–369.

[27] M. S. Hung and J. J. Divoky, A computational study of efficient shortest path algorithms,
Comput. Oper. Res., 15 (1988), pp. 567–576.

[28] H. Imai and M. Iri, Practical efficiencies of existing shortest-path algorithms and a new bucket
algorithm, J. Oper. Res. Soc. Japan, 27 (1984), pp. 43–58.

[29] D. B. Johnson, Efficient algorithms for shortest paths in sparse networks, J. ACM, 24 (1977),
pp. 1–13.

[30] U. Meyer, Single-source shortest paths on arbitrary directed graphs in linear average time,
in Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms, ACM, New
York, SIAM, Philadelphia, 2001, pp. 797–806.

[31] J.-F. Mondou, T. G. Crainic, and S. Nguyen, Shortest path algorithms: A computational
study with the C progremming language, Comput. Oper. Res., 18 (1991), pp. 767–786.

[32] B. M. E. Moret and H. D. Shapiro, An empirical analysis of algorithms for constructing
a minimum spanning tree, in Proceedings of the 2nd Workshop on Algorithms and Data
Structures, Springer-Verlag, Berlin, 1991, pp. 99–117.

[33] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, Cam-
bridge, UK, 1995.

[34] K. Noshita, A theorem on the expected complexity of Dijkstra’s shortest path algorithm, J.
Algorithms, 6 (1985), pp. 400–408.

[35] S. Pallottino, Shortest-path methods: Complexity, interrelations and new propositions, Net-
works, 14 (1984), pp. 257–267.

[36] U. Pape, Implementation and efficiency of Moore-algorithms for the shortest route problem,
Math. Programming, 7 (1974), pp. 212–222.

[37] R. Raman, Fast Algorithms for Shortest Paths and Sorting, Technical report TR 96-06, King’s
Colledge, London, 1996.

[38] R. Raman, Priority queues: Small, monotone and trans-dichotomous, in Proceedings of the
4th Annual European Symposium on Algorithms, Lecture Notes in Comput. Sci. 1136,
Springer-Verlag, Berlin, 1996, pp. 121–137.

[39] R. Raman, Recent results on single-source shortest paths problem, SIGACT News, 28 (1997),
pp. 81–87.

[40] J. T. Stasko and J. S. Vitter, Pairing heaps: Experiments and analysis, Comm. ACM, 30
(1987), pp. 234–249.

[41] R. E. Tarjan, Data Structures and Network Algorithms, CBMS-NSF Regional Conf. Ser. in
Appl. Math. 44, SIAM, Philadelphia, 1983.

[42] M. Thorup, Undirected single-source shortest paths with positive integer weights in linear time,
J. ACM, 46 (1999), pp. 362–394.

[43] M. Thorup, On RAM priority queues, SIAM J. Comput., 30 (2000), pp. 86–109.
[44] R. A. Wagner, A shortest path algorithm for edge-sparse graphs, J. ACM, 23 (1976), pp. 50–57.
[45] J. W. J. Williams, Algorithm 232 (Heapsort), Comm. ACM, 7 (1964), pp. 347–348.
[46] F. B. Zhan and C. E. Noon, Shortest path algorithms: An evaluation using real road networks,

Transp. Sci., 32 (1998), pp. 65–73.



SIAM J. COMPUT. c© 2008 Society for Industrial and Applied Mathematics
Vol. 37, No. 5, pp. 1656–1673

STABILITY OF LOAD BALANCING ALGORITHMS IN
DYNAMIC ADVERSARIAL SYSTEMS∗
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Abstract. In the dynamic load balancing problem, we seek to keep the job load roughly evenly
distributed among the processors of a given network. The arrival and departure of jobs is modeled
by an adversary restricted in its power. Muthukrishnan and Rajaraman [An adversarial model
for distributed dynamic load balancing, in Proceedings of the 10th ACM Symposium on Parallel
Algorithms and Architectures, ACM, New York, 1998] gave a clean characterization of a restriction
on the adversary that can be considered the natural analogue of a cut condition. They proved that a
simple local balancing algorithm proposed by Aiello et al. [Approximate load balancing on dynamic
and asynchronous networks, in Proceedings of the 25th ACM Symposium on Theory of Computing,
ACM, New York, 1993] is stable against such an adversary if the insertion rate is restricted to a
(1 − ε) fraction of the cut size. They left as an open question whether the algorithm is stable at
rate 1. In this paper, we resolve this question positively, by proving stability of the local algorithm at
rate 1. Our proof techniques are very different from the ones used by Muthukrishnan and Rajaraman
and yield a simpler proof and tighter bounds on the difference in loads. In addition, we introduce
a multicommodity version of this load balancing model and show how to extend the result to the
case of balancing two different kinds of loads at once (obtaining as a corollary a new proof of the
2-commodity Max-Flow Min-Cut Theorem). We also show how to apply the proof techniques to
the problem of routing packets in adversarial systems. Awerbuch et al. [Simple routing strategies
for adversarial systems, in Proceedings of the 42nd IEEE Symposium on Foundations of Computer
Science, IEEE Computer Society, Los Alamitos, CA, 2001] showed that the same load balancing
algorithm is stable against an adversary, inserting packets at rate 1 with a single destination in
dynamically changing networks. Our techniques give a much simpler proof for a different model of
adversarially changing networks.
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1. Introduction.

Load balancing. In a distributed network of computing hosts, the performance
of the system can depend crucially on dividing up work effectively across the partici-
pating nodes. This type of load balancing problem has been studied in many different
models, centered around the idea that an algorithm should avoid creating “hot spots”
that degrade system performance [26].

We consider a basic model of load balancing in a distributed network, which has
formed the basis of a number of earlier studies [1, 18, 6, 23, 24]. A network of identical
processors is represented by an undirected graph G = (V,E). There are a number of
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jobs to be processed in the system, abstractly represented by unit-size tokens. Time
progresses in discrete steps called rounds; in a given round, each token is held by one
of the nodes, which is viewed as processing the associated job, and the load on a node
is defined to be the number of tokens it holds. The goal is to balance the loads, so that
no single node has too many tokens; this can be accomplished by transmitting tokens
between neighboring nodes of the graph, at a rate of one token per edge per round.
We are particularly interested in local algorithms for this problem: rather than using
a centralized approach to coordinate the movement of tokens, each node will simply
compare its load to those of its neighbors, and decide whether to move a token across
an edge based on this information.

This model is clearly very simple in a number of respects, particularly in the
uniformity of the processors (nodes) and jobs (tokens), and the fact that any job
can be executed on any processor. More subtly, it is not even clear in all settings
that balancing the load evenly is the optimal strategy in a distributed network of
processors (see, e.g., [13]). At the same time, however, the model cleanly captures the
basic constraints imposed by an underlying interconnection topology in the process of
distributing jobs through a network, as evidenced by the results of previous analysis
[1, 18, 6, 23, 24]; the simplicity of the model allows one to reason very clearly about
the effect of these constraints.

Early work on the model focused on the static version of the problem: each node
is given a set of tokens initially, and nodes must exchange tokens as rapidly as possible
so that they all end up with approximately the same number [1, 18, 6, 24]. However,
load balancing is a natural setting in which to study algorithms designed to run
indefinitely; jobs (tokens) may arrive and depart from the network, and at all times,
the algorithm must maintain an approximately uniform load across nodes. This is
a type of stability condition: no load should diverge arbitrarily from the average as
time progresses. For a number of different models, such dynamic algorithms have been
studied in a probabilistic framework, where one assumes an underlying randomized
process that generates job arrivals and departures; see, e.g., [15, 22] and the references
therein.

An adversarial model. Motivated by work in the related area of packet rout-
ing [8, 9, 12, 4], Muthukrishnan and Rajaraman proposed an adversarial framework
for studying dynamic load balancing in the token-based model we have been dis-
cussing [23]. Rather than considering a probabilistic process that generates tokens,
they posit an adversary that is allowed at the beginning of each round to introduce
tokens at some nodes (corresponding to new jobs) and remove tokens from others
(corresponding to jobs that have finished). Subsequently, an algorithm is allowed to
move tokens across edges, as described above, so as to try to maintain balanced loads.
This alternation of moves by the adversary and algorithm continues for an arbitrary
number of rounds. Note that by allowing the adversary to control the removal of
tokens as well as their arrival, one is modeling a worst-case assumption that jobs may
have arbitrary duration, and the algorithm does not know how much processing time
a job has remaining until the moment it ends.

If we let at denote the average number of tokens per node in the system at the
beginning of round t and ht(v) denote the number of tokens at node v (the height of
v) at round t, then the goal of a dynamic load balancing algorithm in this model is to
keep ht(v) close to at for all nodes v and rounds t. Formally, we say that an algorithm
is stable against a given adversary if there is a constant B such that |ht(v)− at| ≤ B
for all nodes v and rounds t. Note that stability in this context imposes a bound on
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deviation from the average; it is not required that the actual number of tokens in the
system remain bounded.

As in the case of packet routing [12, 4], one needs to find a suitable restriction
on the adversary: an arbitrarily powerful adversary could flood a particular set of
nodes S ⊆ V with tokens much faster than these nodes can spread the tokens out to
the rest of the graph, and thereby prevent any algorithm from maintaining stability.
This consideration motivates the following natural definition of an adversary [23] with
rate r. For a set S ⊆ V , let e(S) denote the set of edges with exactly one end in S,
and δt(S) the net increase in tokens in set S due to the addition and removal of jobs
in round t (note that δt(S) could be negative). If the heights of nodes in S were to
change precisely according to the average, then the net change in tokens in S would
be |S| · (at+1 − at). One wants the difference between these two quantities to be
“accounted for” by the edges in e(S). We say that the adversary has rate r if for all
S ⊆ V , one has

(1.1) |δt(S) − |S|(at+1 − at)| ≤ r · |e(S)|.
For rate r > 1, there are adversaries against which no algorithm (whether online or
offline) can be stable. Muthukrishnan and Rajaraman gave a local-control algorithm
that is stable against all adversaries of rate r, for every r < 1. As an open question,
they asked whether there exists a local-control algorithm that is stable against all
adversaries of rate 1.

The present work. We begin by providing a local-control load balancing al-
gorithm that is stable against every adversary of rate 1, thereby resolving the open
question of Muthukrishnan and Rajaraman. In fact, we show that the following simple
rule has this stability property for every value of the parameter θ:

At any round t, if the number of tokens on node u exceeds the number
of tokens on its neighbor v by at least θ, then u moves a token to v.

This type of algorithm was considered in earlier work on the static model by Aiello
et al. [1] as well as in many subsequent papers. Setting θ = 2Δ + 1, where Δ is the
maximum node degree in G, yields the specific algorithm studied by Muthukrishnan
and Rajaraman.

Beyond simply showing the stability of local algorithms at the critical rate r = 1,
our analysis is based on a new proof technique in which a potential function bound is
maintained not only for the entire node set V but for every subset of V . Compared
to [23], we obtain significantly improved bounds on the deviation from the average,
and a simpler proof. Specifically, we show that the maximum possible deviation from
the average is O(Δn), where n is the number of nodes of G, and this is asymp-
totically optimal in the worst case; the analysis in [23] had established a bound of
O(Δ2n2.5(1 − r)−1) when r < 1. Our analysis also shows stability in a more general
model where edges of G can appear and disappear over time.

Following this, we introduce a multicommodity version of this load balancing
model. We consider a system in which there are k distinct types of jobs. The jobs
of one given type induce the same load on each processor; but the different types of
jobs place different resource requirements on the nodes, and so we require the load
balancing condition to apply to each type separately. Formally, we have the same
adversarial model as before with a network G and a collection of tokens; but now the
tokens are partitioned into k commodities and the stability requirement must hold
when the tokens of each commodity are considered separately. In a single round, at
most one token in total can be sent across any one edge. (This is in keeping with
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the standard multicommodity notion that constraints at nodes must be satisfied by
each commodity separately, while shared edge capacities must be respected by the
commodities cumulatively.)

We show that the natural rate condition on adversaries—essentially obtained by
summing (1.1) over the commodities—can be related in a precise sense to the cut
condition for standard multicommodity network flow. As a result, applying well-
known results on the cut condition [19, 20, 21], we find that for every k > 2, there is
a k-commodity adversary of rate rk ≤ 1 against which no load balancing algorithm
can be stable.

For k = 2, however, the cut condition does not pose an obstacle to having al-
gorithms that are stable all the way up to rate 1. Indeed, we are able to generalize
our first result to show that for 2-commodity load balancing, there is a simple local-
control algorithm that is stable against every adversary of rate 1. We also use the
relationship between adversaries and cut conditions to provide a new proof of Hu’s
Max-Flow Min-Cut Theorem for 2-commodity flow [19]. While our proof is not neces-
sarily shorter than other proofs discovered subsequent to Hu’s [21, 25], it is arguably
more elementary: it does not require linear programming duality (as in [21]) or even
the traditional Max-Flow Min-Cut Theorem for single-commodity flow (as in [25]).

Finally, we further develop the connection between dynamic load balancing and
network flows by extending our analysis to packet routing in the adversarial model
considered by Aiello et al. [2] and Gamarnik [17]. We give an adaptive routing al-
gorithm that is stable against adversaries of rate 1 in the case where packets can be
injected at multiple sources but are destined for a single sink; our algorithm is stable in
a dynamic network model where edges can appear and disappear. A stable algorithm
for this version of the problem was previously given in a recent paper of Awerbuch
et al. [7], using a different, but essentially more general, notion of a dynamic network;
our proof, a direct adaptation of the analysis of our single-commodity load balancing
algorithm, is considerably shorter and simpler.

Recent progress. Since the original publication of this work, several papers
have studied a model wherein nodes can exchange arbitrarily many jobs in one step,
and each node with a nonempty load executes one job in each time step. This type
of load balancing algorithm (often called the diffusion algorithm [14]) has been very
well studied and is known to have many nice properties, although its behavior in the
presence of an adversary was unknown until recently. In this model, the cut condition
becomes trivial; instead, the adversary is allowed to insert at most n jobs in each time
step, and stability is defined in terms of an upper bound on the load of all nodes.

Berenbrink, Friedetzky, and Goldberg [10] show that the work-stealing algorithm,
in which only processors with empty queues request jobs from others, is stable against
adversaries of rate strictly below 1. They assume that processors can request jobs from
any other processor. Anagnostopoulos, Kirsch, and Upfal [3] show the same type of
stability for a local protocol that makes nodes equalize load with their neighbors.
Most recently, Berenbrink, Friedetzky, and Martin [11] proved stability against rate-1
adversaries for a protocol in which nodes exchange load with all their neighbors. Both
the protocol and the analysis are very similar to those in the present work.

2. Single-commodity load balancing. In this section, we will study the load
balancing problem for a single commodity and, in particular, prove that the natural
balancing algorithm is stable at rate 1, thus settling an open question from [23].
We first precisely define the model and the algorithm and introduce the necessary
notation.
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2.1. Model and algorithm. The network is represented by a connected undi-
rected graph G = (V,E) with n = |V | nodes. In each round, the adversary first adds
or removes tokens (this is called the Adversary step). Subsequently, in the Redistri-
bution step, up to one token can be moved along each edge e ∈ E by the algorithm
(or up to ce tokens in the case of networks with edge capacities).

The adversary is limited by the following cut condition: For a subset S ⊆ V of
nodes, let δt(S), at, and e(S) be defined as above. Then, the insertion and removal
of tokens by the adversary during round t has to satisfy

(2.1) |δt(S) − |S|(at+1 − at)| ≤ |e(S)|.
Nodes have queues associated with them, in which they store their tokens. The

height ht(v) of a node v is the number of tokens in v’s queue at the beginning of round
t. The imbalance is bt(v) = ht(v) − at, i.e., the number of excess (or missing) tokens
at node v with respect to the average over the entire network. ht(v) and bt(v) denote
the same quantities after the Adversary step of round t.

It is the decision of the algorithm along which edges to send tokens. The goal
of any balancing algorithm is to keep the imbalance bounded for all nodes. If an
algorithm ensures that there is an absolute bound B such that |bt(v)| ≤ B for all
nodes v and all times t, we call the algorithm stable. We will show that the follow-
ing very simple family of local-control algorithms is stable against every adversary
respecting the cut condition. It has a threshold parameter θ ≥ 1, which determines
how aggressively the algorithm balances.
Algorithm SCLBθ
At each time t, for each edge e = (u, v):

If ht(u) ≥ ht(v) + θ, then send a token from u to v.
If ht(v) ≥ ht(u) + θ, then send a token from v to u.

This algorithm does not specify whether tokens are sent along an edge (u, v) when
|ht(u) − ht(v)| < θ. All of our subsequent statements will remain true independently
of what the algorithm does in this case. (Notice that this algorithm requires only local
information and can therefore be executed in a distributed fashion in a network.)

2.2. Stability of the algorithm. Our main theorem in this section is that
the algorithm SCLBθ is stable against any adversary respecting the cut condition of
inequality (2.1). We allow for tokens to be in the system at time 1 and let H :=
maxv∈V h1(v).

Theorem 2.1. For any adversary respecting the cut condition, and any θ ≥ 1,
the algorithm SCLBθ is stable; i.e., there is a constant B (depending on H, θ, and G)
such that |bt(v)| ≤ B for all nodes v at all times t.

The intuition behind our proof is based on the (incorrect) observation that the
algorithm seems to ensure that the height difference between adjacent nodes cannot
grow beyond θ. Hence, the largest difference between the heights of any two nodes
should be achieved when G is a simple path, and the two nodes are the endpoints of
the path—having a height difference of about nθ.

It is, however, easy to see that the height difference between two adjacent nodes
can become more than θ, because the adversary can “rearrange” the heights within
sets to a certain extent. Imagine, for instance, a long path with the adversary adding
tokens to the first node of the path, until the first node has height nθ, and the height
of each successive node decreases by θ. Then it is possible to rearrange the tokens on
the nodes previously having heights nθ, (n− 1)θ, and (n− 2)θ so that they each have
(n − 1)θ tokens, which would result in the height difference of 2θ between the third
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and fourth nodes of the path, since the height of the fourth node remains (n − 3)θ.
The adversary can do this by adding two tokens to the node with height (n− 2)θ and
subtracting one from the node with height nθ for θ successive rounds. During each
Redistribution step of this process, a token will move from the third to the fourth
node, but these tokens will continue traveling downhill along the path, so that the
height of the fourth node will never grow to be much larger than (n−3)θ. This process
obeys the cut condition, but afterward, there are two adjacent nodes with almost 2θ
height difference. Fortunately, although there are now more nodes with large heights,
the adversary had to pay for this rearrangement by making the highest queue smaller.
In an amortized sense, the situation has not become worse.

These observations suggest maintaining height bounds for each subset of the nodes
and showing that these bounds form an invariant. For convenience, we will write
bt(S) =

∑
v∈S bt(v) for any set S ⊆ V of vertices (and similarly for other quantities

like ht(S) and δt(S)). With Δ denoting the maximum degree of any vertex, we write
γ = 2Δ + θ. The key invariant is the following:

(2.2) |bt(S)| ≤
n∑

j=n−|S|+1

(H + γ · j) for all S ⊆ V.

Figure 2.1 pictorially illustrates the upper bound of this invariant as the sum of
the column heights of the rightmost |S| columns.

Below, we prove Lemma 2.2, showing that inequality (2.2) is indeed an invariant
over time for the algorithm SCLBθ, against any adversary respecting the cut condition.

Lemma 2.2. If the adversary respects the cut condition and the invariant (2.2)
holds at the beginning of round t, then it holds at the beginning of round t + 1.

Using this lemma, the proof of Theorem 2.1 is straightforward.

. . . . .

|S|

H

γ

1 2 n

Fig. 2.1. An illustration of invariant (2.2).
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Proof of Theorem 2.1. We prove by induction that (2.2) holds at every time t.
At time 1, h1(v) ≤ H for all v by definition, so

|b1(S)| ≤
∑

v∈S

H ≤
n∑

j=n−|S|+1

(H + γ · j)

for all sets S ⊆ V . The induction step from t to t + 1 follows from Lemma 2.2, and
we can apply the resulting guarantee to the singleton sets {v}, yielding a bound of
B = H + γ · n.

Proof of Lemma 2.2. The proof is by contradiction. Assume that the invariant
(2.2) holds at the beginning of round t but not at the beginning of round t + 1. Let
S be a set maximizing

Φ(S) := |bt+1(S)| −
n∑

j=n−|S|+1

(H + γ · j).

If several sets achieve the maximum value, let S have minimal size among all these
sets. First, notice that the choice of S guarantees that either all u ∈ S have positive
bt+1(u), or they all have negative bt+1(u), and hence |bt+1(S)| =

∑
u∈S |bt+1(u)|.

Since (2.2) was assumed to hold at the beginning of round t and fails at the
beginning of round t+ 1, we know that |bt+1(S)| > |bt(S)|. How can the values ht(u)
for nodes u ∈ S change?

Adversary step. Substituting the definitions of b and b, we obtain that for any
set S,

|bt(S)| = |ht(S) − |S| · at+1|
= |ht(S) + δt(S) − |S| · at+1|
= |bt(S) + δt(S) − |S| · (at+1 − at)|
≤ |bt(S)| + |δt(S) − |S| · (at+1 − at)|
≤ |bt(S)| + |e(S)|.

The two inequalities hold because of the triangle inequality and the cut condition
on the adversary.

Redistribution step. Fix an edge e = (u, v) with u ∈ S and v /∈ S. Because S
maximizes Φ and has minimal size, u has imbalance |bt+1(u)| > H + γ · (n− |S|+ 1),
since otherwise Φ(S − u) ≥ Φ(S). In particular, |bt+1(u)| > γ.

Because v was not included in S, its imbalance bt+1(v) must either have sign
opposite to the sign of bt+1(S) or have absolute value |bt+1(v)| ≤ H + γ · (n − |S|).
In either case, |bt+1(u)− bt+1(v)| > γ, and simply substituting the definition of γ, we
also obtain |ht+1(u) − ht+1(v)| > 2Δ + θ. During the Redistribution step of round t,
at most Δ tokens can have moved to or from nodes u and v, so their heights can have
changed by at most Δ each, and therefore their previous height difference is at least
|ht(u) − ht(v)| > θ. Figure 2.2 illustrates the gap of at least γ between the queue
heights of nodes in S and outside S.

If bt+1(u) ≥ 0, then ht(u) − ht(v) > θ, so the algorithm SCLBθ moves a token
from u to v along e, and no tokens from v to u, thereby decreasing bt(u) by 1.
On the other hand, if bt+1(u) < 0, then ht(v) − ht(u) > θ, and a token must be
moved from v to u along e, increasing the (negative) imbalance bt(u) by 1. Because
|bt+1(u)| > γ = θ + 2Δ, and therefore |bt(u)| > θ + Δ, the sign of the imbalance does
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S

γ

b    (u)t+1

H+γ(n-|S|)

H+γ(n-|S|+1)

Fig. 2.2. The gap of γ between the queue heights of nodes in S and outside S in the case that
bt+1(S) is positive.

not change during the Redistribution step, even if Δ tokens were moved to or from
u, and hence, |bt(u)| decreased by 1 as a result of edge e.

This holds for every edge e ∈ e(S), and using the fact that the average a does not
change during the Redistribution step, we obtain that

|bt+1(S)| =
∑

u∈S

|bt+1(u)|

≤
(
∑

u∈S

|bt(u)|
)

− |e(S)|

= |bt(S)| − |e(S)|.

Putting the arguments for the two steps together, we obtain that |bt+1(S)| ≤
|bt(S)| − |e(S)| ≤ |bt(S)|. This contradicts our assumption that |bt+1(S)| > |bt(S)|
and thus completes the proof.

Notice that our bound B = H +γ ·n is asymptotically tight. To see this, consider
a simple path of length n. It is certainly legal for the adversary to insert one token

at node n in every round, and never remove tokens. After about θ · n2

2
rounds, each

node k will contain about kθ tokens, and hence the imbalance of node n is about θ · n
2
.

2.3. Capacities, dynamic networks, and time windows. The result of The-
orem 2.1 can be easily extended to the case that the edges have (integer) capacities
ce associated with them, and up to ce tokens can be sent along e in every round. We
assume that whenever the algorithm decides to send tokens from u to v along e, it
sends as many as possible, i.e., bounded only by the capacity ce and the number of
tokens at u. The cut condition now requires that the imbalance created by the adver-
sary be restricted by the total capacity of the cut. Showing that the above algorithm
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is still stable in this capacitated version is easy given Theorem 2.1.

Corollary 2.3. In the above capacitated scenario, for any adversary respecting
the cut condition and any θ ≥ 1, the algorithm SCLBθ is stable; i.e., there is a constant
B (depending on H, θ, G, and the maximum edge capacity maxe ce) such that |bt(v)| ≤
B for all nodes v at all times t.

Proof. Replace each edge with capacity ce by ce parallel edges of capacity 1. By
Theorem 2.1, the algorithm is stable on this new graph, and therefore, it is also stable
on the capacitated graph. Notice that the constant γ and hence the bound B now
depend on the maximum capacity, and so instead of B = H + 2Δn + θn, the new
bound becomes B = H + 2Δn ·maxe ce + θn, where Δ is the maximum degree of the
graph.

Dynamic networks. Another easy extension concerns dynamically changing net-
works. That is, the set of available edges may change over time, and we assume that
it is also controlled by the adversary. For each time t, we have a set Et of available
edges. The cut condition on the adversary must be satisfied at the specific time when
the imbalance is created, i.e., |δt(S) − |S|(at+1 − at)| ≤ |et(S)|. Here, et(S) are the
edges from Et that have exactly one endpoint in S.

Corollary 2.4. In the above dynamically changing network, for any adversary
respecting the cut condition, and any θ ≥ 1, the algorithm SCLBθ is stable, i.e., there
is a constant B (depending on H, θ, and G) such that |bt(v)| ≤ B for all nodes v at
all times t.

Proof. By syntactically replacing all terms e(S) with et(S) in the proof of
Lemma 2.2, we obtain a proof for the model of dynamically changing networks, with
exactly the same bound B.

Time windows. An extension often considered in the contexts of load balancing or
packet routing is to relax the restriction on the adversary by allowing it to violate the
cut condition for a certain time, provided that it hold “in the long run.” Specifically, a
window size W is specified, and it is required that for any set S and any time window
[t, t + W ), the imbalance created on set S over that time window be bounded by the

total capacity, i.e., |(∑t+W−1

r=t δr(S)) − |S|(at+W − at)| ≤ W · |e(S)|.
Corollary 2.5. For any adversary respecting the cut condition on average over

a window size W , and any θ ≥ 1, the algorithm SCLBθ is stable, i.e., there is a
constant B (depending on H, θ, W , and G), such that |bt(v)| ≤ B for all nodes v at
all times t.

Proof. It is not difficult to see that by allowing B to depend on W , we can also
extend the stability result to this model—once the imbalance grows too large on a set
S, all edges e ∈ e(S) will be moving tokens so as to reduce the imbalance for every
single round of an entire window, so that the imbalance cannot grow further.

3. Multicommodity load balancing. In the previous section, we considered
the problem of balancing loads on processors where the loads were interchangeable.
However, we are also interested in the case of different kinds of loads that are to
be balanced simultaneously. For instance, think of jobs that have an emphasis on
different resources of the machine they are running on. Balancing the different classes
of jobs independently could be desirable in order to avoid processing time becoming
a bottleneck on one machine and memory size an issue on another.

In the general multicommodity load balancing problem, we have k different kinds
of jobs (or tokens), which are stored in separate queues at the nodes. Our goal is
to ensure an absolute bound on the deviation of any queue height from the average
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queue height for that commodity. Each round t is divided into the same two steps as
before, the Adversary step and the Redistribution step.

In analogy to the single-commodity case, we use the following notation: For a

node v and commodity i, let h
(i)
t (v) be the number of tokens of commodity i on node

v at the beginning of round t. Similarly, a
(i)
t , b

(i)
t (v), δ

(i)
t (v), h

(i)

t (v), and b
(i)

t (v) are
all defined for commodity i exactly as their single-commodity equivalents.

The algorithm will now have to choose not only when to send a token across
an edge but also which of several available (and conflicting) kinds of tokens to send.
Our class of algorithms is practically identical to the one from [2] and [7] and can be
formalized as follows:
Algorithm MCLBθ
At each time t, for each edge e = (u, v):

Choose i to maximize |h(i)
t (u) − h

(i)
t (v)|.

If h
(i)
t (u) ≥ h

(i)
t (v) + θ, then send a token of commodity i from u to v.

If h
(i)
t (v) ≥ h

(i)
t (u) + θ, then send a token of commodity i from v to u.

In the case of a single commodity, this algorithm specializes to SCLBθ.

The natural analogue of the cut condition for a single commodity is to require
that the adversary satisfy

(3.1)
∑

i

|δ(i)
t (S) − |S|(a(i)

t+1 − a
(i)
t )| ≤ |e(S)|

for all node sets S ⊆ V and times t. This would require that the total imbalance for
set S created by the adversary could be “balanced” along edges leaving S.

Unfortunately, inequality (3.1) is too weak a restriction—it allows the adversary
to create patterns of addition and removal that cannot be balanced by any algorithm,
whether offline or online. At the end of this section, we show how to use a reduc-
tion from the multicommodity flow problem to create such an adversary with k ≥ 3
commodities.

For the special case k = 2, however, the Max-Flow Min-Cut Theorem still holds,
and, in fact, we can show that the cut condition is sufficient to ensure that algorithm
MCLBθ is stable.

3.1. Stability for k = 2. We let H = maxv∈V {h(1)

1 (v) + h
(2)

1 (v)} be the max-
imum height of the queues at any node at the start of the execution, and Δ the
maximum degree of any vertex. This time, we define γ′ slightly differently, namely,
γ′ = 2Δ + 2θ.

Theorem 3.1. There is a constant B (depending on H, θ, and G), such that for

any adversary respecting the cut condition, MCLBθ ensures |b(i)t (v)| ≤ B at all times t,
for all vertices v, and for commodities i = 1, 2.

Proof. At the start of the execution, |b(1)1 (S)|+ |b(2)1 (S)| ≤ ∑
v∈S H, by definition

of H. The key lemma, Lemma 3.2, establishes that for all S ⊆ V , times t, and
commodities i = 1, 2,

(3.2) |b(1)t (S)| + |b(2)t (S)| ≤
n∑

j=n−|S|+1

(H + γ′ · j).

We can then apply the result to all singleton sets {v}, proving the theorem.
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Lemma 3.2. If (3.2) holds at the beginning of round t, it holds at the beginning
of round t + 1.

Proof. The proof is by contradiction. Let S be a set (of minimum size in case of
ties) maximizing

Φ(S) := |b(1)t (S)| + |b(2)t (S)| −
n∑

j=n−|S|+1

(H + γ′ · j).

In the case of two commodities, a node might be included in S because it contributes a
lot to the imbalance in one of the commodities, although its contribution to the other
commodity might actually be negative. To capture the imbalance contribution of a

node to each commodity, we define the signed imbalance as β
(i)
t′ (v) := sgn(b

(i)
t+1(S)) ·

b
(i)
t′ (v), β

(i)

t′ (v) := sgn(b
(i)
t+1(S)) · b(i)t′ (v) for every node v ∈ V and every time step t′.

Here, sgn denotes the sign of a term. Notice that we use the sign of b
(i)
t+1(S) at all

time steps t′ in the definition of β
(i)
t′ (v) (not the sign of b

(i)
t′ (S) or of b

(i)
t′+1(S)). We

can now rewrite the total imbalance over the set S at time t + 1 as

(3.3) |b(1)t+1(S)| + |b(2)t+1(S)| =
∑

u∈S

(β
(1)

t+1(u) + β
(2)

t+1(u)).

Again, we show that the change in the imbalance for set S cannot be positive,
by comparing the increase in the imbalance of S during the Adversary step with the
decrease during the Redistribution step, and thus obtain a contradiction.

Adversary step. We know that for each commodity i = 1, 2, the imbalance on set

S after the Adversary step is at most |b(i)t (S)| ≤ |b(i)t (S)|+ |δ(i)
t (S)−|S| · (a(i)

t+1−a
(i)
t )|

by the triangle inequality. Now, summing over i = 1, 2 and applying the cut condition
on the adversary yield that

|b(1)t (S)| + |b(2)t (S)| ≤ |b(1)t (S)| + |b(2)t (S)| + |e(S)|.

Redistribution step. Fix a node u ∈ S, and an edge e = (u, v) of G with v /∈ S.
As in the proof of Lemma 2.2, we can use the definition of S (as maximizing Φ and
being of minimal size) to obtain that the signed imbalances at nodes u and v satisfy

β
(1)

t+1(u) + β
(2)

t+1(u) > β
(1)

t+1(v) + β
(2)

t+1(v) + γ′. As u and v can lose and gain at most Δ
tokens each during the Redistribution step,

(3.4) β
(1)

t (u) + β
(2)

t (u) > β
(1)

t (v) + β
(2)

t (v) + 2θ.

In particular, there must be a commodity i such that β
(i)

t (u) > β
(i)

t (v) + θ, and

thus also |h(i)

t (u)− h
(i)

t (v)| > θ. Hence, MCLBθ moved a token along edge e during the
Redistribution step (w.l.o.g., it was a token of commodity 1). We want to show that
this token actually decreased the signed imbalance of node u. Assume that it did not.

This means that if the token moved from u to v, then sgn(b
(1)

t+1(S)) is negative, and if

the token moved from v to u, then sgn(b
(1)

t+1(S)) is positive. In either case, the signed
imbalance for commodity 1 at node v must be higher than at node u, and so

β
(1)

t (v) − β
(1)

t (u) = |b(1)t (v) − b
(1)

t (u)| = |h(1)

t (v) − h
(1)

t (u)|.
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Because MCLBθ maximizes the difference in its choice of commodity, we obtain that

β
(1)

t (v) − β
(1)

t (u) = |h(1)

t (v) − h
(1)

t (u)|
≥ |h(2)

t (v) − h
(2)

t (u)|
= |β(2)

t (v) − β
(2)

t (u)|
≥ β

(2)

t (u) − β
(2)

t (v).

Rearranging this inequality yields that

β
(1)

t (v) + β
(2)

t (v) ≥ β
(1)

t (u) + β
(2)

t (u)

and thus results in a contradiction with inequality (3.4). Therefore, every edge (u, v)
with v /∈ S decreases the signed imbalance of u by 1. Summing over all edges and all

nodes u ∈ S gives us β
(1)

t+1(S) + β
(2)

t+1(S) ≤ β
(1)

t (S) + β
(2)

t (S)− |e(S)|. Using (3.3) and

the fact that β
(1)

t (S)+β
(2)

t (S) ≤ |b(1)t (S)|+ |b(2)t (S)|, we obtain |b(1)t+1(S)|+ |b(2)t+1(S)| ≤
|b(1)t (S)| + |b(2)t (S)| − |e(S)|.

Combining the arguments for the two steps |b(1)t (S)| + |b(2)t (S)| increases by at
most |e(S)| during the Adversary step and decreases by at least |e(S)| during the

Redistribution step. Therefore, in total |b(1)t+1(S)| + |b(2)t+1(S)| ≤ |b(1)t (S)| + |b(2)t (S)|,
which is a contradiction.

The result for two commodities can be extended to networks with edge capacities,
adversarially changing edge sets, and adversaries with restrictions only for larger
window sizes, just like for the single-commodity case.

3.2. Load balancing and flows. By omitting the adversarial and dynamic
nature in the load balancing problem, and forcing the adversary to repeat the same
pattern of token additions in every round, we can infer from the stability of the
load balancing algorithm the existence of a multicommodity flow. Suppose that we
are given a multicommodity flow instance with edge capacities ce, source-sink pairs
(si, ti), and demands di. Let D = maxi di, and let A be the adversary inserting, in
every round and for each commodity i, D + di tokens at node si, D − di tokens at
node ti, and D tokens everywhere else.

Lemma 3.3. If there is a load balancing algorithm that is stable against the
adversary A, then there is a (fractional) multicommodity flow f with source-sink pairs
(si, ti) and demands di.

Proof. Because we assumed the algorithm to be stable, all imbalances b
(i)
t (v) are

always bounded in absolute value by some constant B. Therefore, there are at most
(2B + 1)kn different combinations of imbalances for the entire network, and so there

must exist two time steps t and t′ such that t < t′ and b
(i)
t (v) = b

(i)
t′ (v) for all nodes

v and commodities i.
For each edge e = (u, v), let σ

(i)
r (u, v) denote the number of tokens of commodity

i sent from u to v in round r, and define a flow f by

f
(i)
(u,v)

:=
1

t′ − t
·
t′−1∑

r=t

(σ(i)
r (u, v) − σ(i)

r (v, u)).

Notice that we define negative flows, but only for symmetry and ease of notation. We
want to verify that f is indeed a feasible multicommodity flow for demands (si, ti, di).
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Capacity constraints. The total flow along any edge (u, v) is

∑

i

|f (i)
(u,v)

| ≤ 1

t′ − t
·
∑

i

t′−1∑

r=t

|σ(i)
r (u, v) − σ(i)

r (v, u)|

=
1

t′ − t
·
t′−1∑

r=t

∑

i

|σ(i)
r (u, v) − σ(i)

r (v, u)|

≤ 1

t′ − t
·
t′−1∑

r=t

c(u,v)

= c(u,v).

The first inequality is simply the triangle inequality, and the second inequality holds
because the balancing algorithm never exceeds the capacity of any edge with any of

its token moves, and therefore both σ
(i)
r (u, v) and σ

(i)
r (v, u) lie between 0 and c(u,v).

Flow conservation. For any node v and commodity i, we can write

(t′ − t)
∑

(u,v)∈E

f
(i)
(u,v)

=
∑

(u,v)∈E

t′−1∑

r=t

(σ(i)
r (u, v) − σ(i)

r (v, u))

=
t′−1∑

r=t

∑

(u,v)∈E

σ(i)
r (u, v) −

t′−1∑

r=t

∑

(u,v)∈E

σ(i)
r (v, u)

= h
(i)
t′ (v) − h

(i)
t (v) −

t′−1∑

r=t

δ(i)
r (v)

= b
(i)
t′ (v) + a

(i)
t′ − b

(i)
t (v) − a

(i)
t − (t′ − t) · δ(i)

t (v)

= (t′ − t)(D − δ
(i)
t (v)).

The third equality is true because h
(i)
t′ (v) − h

(i)
t (v) is exactly the number of tokens

that entered v during the time period [t, t′ − 1], minus the number of tokens that left

v during this period. In the last equality, we used that b
(i)
t′ (v) = b

(i)
t (v) for all i and v,

and that a
(i)
r = r·D for all times r. Now, if node v is neither the source nor the sink for

commodity i, then δ
(i)
t (v) = D, so flow is conserved. If v is the source of commodity

i, then δ
(i)
t (v) = D + di, so the total flow entering node si is −di. If v is the sink for

commodity i, then the total flow entering node ti is di, because δ
(i)
t (v) = D − di by

definition. Hence, f satisfies flow conservation and all demands.
f conserves flow, satisfies all demands, and does not exceed any edge capacities,

so it is a feasible multicommodity flow for the given demands.
By combining Lemma 3.3 with the stability of MCLBθ proved in Theorem 3.1,

we obtain as a corollary an alternate proof of the 2-commodity Max-Flow Min-Cut
Theorem. It remains only to verify that the adversary A as defined in Lemma 3.3
indeed respects the cut condition.

Corollary 3.4 (2-commodity Max-Flow Min-Cut). Let G = (V,E) be a graph
with edge capacities ce and two demand pairs (s1, t1), (s2, t2) with demands d1, d2
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such that for any vertex set S ⊆ V , the total demand of commodities i ∈ {1, 2}
with exactly one of {si, ti} in S is at most

∑
e∈e(S) ce. Then, there exists a feasible

2-commodity flow sending di units of flow from si to ti for i = 1, 2.

Proof. Define the adversary A as in Lemma 3.3. To show that the algorithm
MCLBθ is stable against A, we merely have to verify that A satisfies the cut condition.
Let S ⊆ V be arbitrary. For convenience, we write [u ∈ S] := 1 if u ∈ S, and
0 otherwise. Then, for any time t

∑

i=1,2

|δ(i)
t (S) − |S| · (a(i)

t+1 − a
(i)
t )|

=
∑

i=1,2

||S| ·D + [si ∈ S] · di − [ti ∈ S] · di − |S| ·D|

=
∑

i=1,2

di · |[si ∈ S] − [ti ∈ S]|.

In the first equality, we used the definition of the insertion pattern for A. The con-
tribution of commodity i to this sum is di if and only if exactly one of si, ti lies in
S—otherwise, it is 0. Hence, the value of the sum is the total demand of commodities
i with exactly one of {si, ti} in S, which by assumption is bounded by

∑
e∈e(S) ce.

Hence, A satisfies the cut condition.

We can therefore apply Theorem 3.1 to obtain that MCLBθ is stable against A,
which in turn implies the existence of a feasible multicommodity flow f for the given
instance via Lemma 3.3.

The 2-commodity Max-Flow Min-Cut Theorem was first proved by Hu [19], es-
sentially repeating Ford and Fulkerson’s original [16] augmenting paths argument for
two commodities. Seymour [25] showed a short and simple explicit reduction to the
single-commodity case. Subsequently, Linial, London, and Rabinovich [21] gave a
novel proof using geometric embeddings and linear programming duality. Our proof
uses yet different (and much more elementary) techniques and does not rely on the
single-commodity Max-Flow Min-Cut Theorem.

Another corollary we obtain from Lemma 3.3 is the existence of an adversary
respecting the cut condition for k = 3 commodities, such that no algorithm (offline
or online) can balance the insertion pattern. This is not surprising, since load bal-
ancing algorithms (and our algorithm, in particular) attempt to generate a flow from
overloaded nodes to underloaded nodes, and we know that the best flows can be
significantly worse than the best cuts for more than two commodities (i.e., the Max-
Flow Min-Cut Theorem does not hold for k ≥ 3). This means that the constraint on
the adversary is not powerful enough to guarantee the existence of a good flow and
therefore a good algorithm. We make the above discussion precise in the following
corollary.

Corollary 3.5. There exists an adversary respecting the cut condition for k = 3
commodities, such that no algorithm (offline or online) is stable against this adver-
sary.

Proof. To prove this, we simply take a 3-commodity instance with a graph G =
(V,E) and demand pairs (si, ti), i ∈ {1, 2, 3} (with demands di), such that for all cuts
(S, V \S), the total demand across the cut is at most the capacity of the edges crossing
the cut, yet there is no (fractional) multicommodity flow satisfying all demands. The
first such example for k = 3 was given in [19]. (A simpler well-known example for
k = 4 is the complete bipartite graph K2,3 with a unit demand between every pair of
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nodes that are at a distance of 2 from each other.) Let A be the adversary defined
from this instance as in Lemma 3.3. If any load balancing algorithm were stable
against A, Lemma 3.3 would guarantee a feasible multicommodity flow, which is a
contradiction.

The above corollary and Lemma 3.3 illustrate the relation of multicommodity
flows to load balancing algorithms and tell us that the cut condition is not enough to
guarantee the existence of a stable algorithm for k ≥ 3. In section 5, we will discuss
an alternative approach for a restriction on a multicommodity adversary.

4. Packet routing. There is a natural connection between the load balancing
problem studied in the previous sections and the problem of routing packets in an
adversarial network. It has been observed previously [2, 7] that the natural balancing
algorithm SCLBθ is also stable for packet routing.

The model for packet routing differs from the load balancing one in that after
the Redistribution step, there is an additional Removal step, during which all packets
which have reached their destination are removed from the network. Stability of an
algorithm is now defined as meaning that there is an absolute bound on all queue

heights at all times, i.e., h
(i)
t (v) ≤ B for some constant B.

In the single-commodity packet routing problem, we can again restrict the adver-
sary by a cut condition: the total number δt(S) of packets inserted into a set S must
be at most |e(S)| for any set S not containing the sink of the packets. If S does con-
tain the sink, then there is no restriction. In the multicommodity case, the adversary
specifies a source si and a sink ti for each packet inserted and must guarantee that
there is a set of edge-disjoint paths connecting all (si, ti) pairs.

In [7], it was shown that for the single-commodity case, the algorithm SCLBθ
is stable against an adversary guaranteeing the existence of a path for all packets
inserted, even when edges dynamically appear and disappear. Aiello et al. [2] proved
that an algorithm essentially equivalent to MCLBθ is stable for the multicommodity
packet routing problem if the paths specified by the adversary not only are disjoint
but also leave an ε fraction of capacity for every edge unused over a given window
length W . Recently, [5] extended this result to dynamically changing networks.

Our techniques from section 2 can be used to obtain an alternate (and simpler)
proof for the stability of algorithm SCLBθ in the packet routing model. Our proof also
works for the case of adversarially appearing and disappearing edges, although the
restriction on the adversary is different from (and essentially less general than) the
one in [7].

We define Δ and H as before and let γ = 2Δ + θ. Then, the stability of SCLBθ
against an adversary respecting the cut condition is guaranteed by the following the-
orem.

Theorem 4.1. For any time t and set S ⊆ V ,

(4.1) ht(S) ≤
n∑

j=n−|S|+1

(H + γ · j).

Proof. By definition of H, invariant (4.1) certainly holds at time 1. Assume
that the theorem is wrong, and let t be the earliest time such that there is a set
S violating (4.1) at time t + 1. Among all such sets, let S be the one maximizing
ht+1(S)−∑n

j=n−|S|+1(H + γ · j), and break ties for minimal size. Then, we can show

as in the proof of Lemma 2.2 that for all nodes u ∈ S, v /∈ S, ht+1(u) > ht+1(v) + γ,
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and ht+1(u) > H. In particular, the set S cannot contain the sink (because the sink
contains no tokens after the Removal step).

Therefore, the adversary can have inserted at most |e(S)| tokens into S in the
Adversary step. During the Redistribution step of round t, a token leaves the set S
along each edge e = (u, v) ∈ e(S), because even if u had lost Δ tokens and v had
gained Δ tokens during the Redistribution step, ht(u) would still exceed ht(v) by
at least θ. Taken together, this shows that the number of tokens in S cannot have
increased, contradicting the choice of t and S.

Extensions. Like the proofs in the previous sections, the proof of Theorem 4.1
can be easily extended to deal with dynamically changing networks, edge capacities,
and time windows in the cut condition. In addition, this proof extends to directed
graphs G if we redefine e(S) in the cut condition to be the edges coming out of S. We
can also show stability for a wider class of single-commodity balancing algorithms.
Specifically, let g : N → N be a function with g(x) ≥ x for all x. The balancing
algorithm SCLBg always sends a token from u to v (and never sends a token from v to
u) if there is an edge e = (u, v) ∈ E and ht(u) > g(ht(v)). It does not matter what
the algorithm does if neither ht(u) > g(ht(v)) nor ht(v) > g(ht(u)). Extending the
above proof only slightly, we obtain that SCLBg is stable for all such functions g. Of
course, the bound B now depends on the rate of growth of g.

Our packet routing results also imply the stability of an interesting load balancing
scenario, which is very similar to the one in [11]. Suppose that each node processes
one job per round so that one token is removed in every round from each node with
positive queue height. If the adversary A satisfies the constraint that the number of
tokens it adds to S be at most e(S) + |S|, then we can use Theorem 4.1 to show that
the queue heights are bounded. Consider adding a sink node v to our graph, and add
an edge from every node to v. We can now think of A as adding packets to the new
graph, with v being the packets’ destination. The number of edges coming out of a set
S in the new graph is exactly e′(S) = e(S) + |S|, so A satisfies the condition needed
for Theorem 4.1. It is easy to see that if the queue heights are bounded in this new
packet routing scenario, then they are also bounded in the original load balancing
one.

The proofs for Theorems 4.1 and 2.1 (and the proofs in [2] and [23]) are so similar
in nature that one suspects a formal reduction from the packet routing problem to
the load balancing problem (which seems more general). However, we have not yet
been able to determine such a reduction. It would certainly be interesting, since it
would allow us to focus on the load balancing problem in the future.

As with the load balancing problem, we can obtain a multicommodity flow if MCLBθ
is stable against a suitably defined adversary A. The proof is practically identical to
the one for Lemma 3.3, and we therefore omit it.

Lemma 4.2. Let A be an adversary inserting di tokens of commodity i (whose
destination is ti) into node si in every round. If there is a routing algorithm that is
stable against this adversary, then there is a (fractional) multicommodity flow f with
source-sink pairs (si, ti) and demands di.

5. Conclusions. In this paper, we have shown that a simple local load balanc-
ing algorithm is stable against dynamic adversarial addition and removal of jobs in a
network, so long as the adversary is bounded by a natural extension of the cut con-
dition in the sense defined in [23]. This settles an open question from [23]. Our proof
techniques extend to the cases of balancing two commodities at once and to routing
packets injected by an adversary. They yield easier proofs and essentially tight bounds
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for the general case. In addition, the stability of the load balancing algorithm for two
commodities gives a new proof of the 2-commodity Max-Flow Min-Cut Theorem.

This work leaves open a number of interesting questions. Most importantly, we
would like to be able to show stability of the multicommodity load balancing algorithm
for an arbitrary number of commodities, both for the problem of routing packets and
balancing loads. If we want to prove the stability of load balancing algorithms for
more commodities, we will have to use a different condition on the adversary. As a
consequence of Lemma 3.3, any reasonable restriction on the adversary will have to
guarantee the existence of multicommodity flows for all instances where we hope to
prove stability. We therefore suggest the following restriction:

First, define demands d
(i)
t (v) for commodity i, node v, and time t by

d
(i)
t (v) := δ

(i)
t (v)− (a

(i)
t+1 − a

(i)
t ). Then, the adversary is restricted to

moves that guarantee the existence of a (fractional) multicommodity
flow in G satisfying all these demands.

The disadvantage of this condition is that it bears no direct relation to the load
balancing problem—it arises from observing the insufficiency of the more natural cut
condition rather than from having an actual meaning for the problem of balancing
loads. Nevertheless, this condition should be considered the right restriction on the
adversary to measure the quality of MCLBθ or other load balancing algorithms.

Alternatively, we might investigate whether the cut condition is sufficient for
balancing multiple loads if we restrict our attention to specific networks. For example,
it is well known that for trees or cycles, the cut condition implies the existence of
multicommodity flows, and we might hope that it would hence be sufficient to prove
stability.
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1. Introduction.

1.1. Background. The constraint satisfaction problem (CSP) is a general frame-
work in which many combinatorial search problems can be naturally formulated. An
instance of the CSP consists of a set of variables, a domain, and a set of constraints
on the variables, where a constraint is a pair consisting of a tuple (v1, . . . , vk) of vari-
ables and a relation R ⊆ Dk over the domain D that specifies allowed values for the
variable tuple. The question is to decide whether or not there exists an assignment
to the variables satisfying all of the constraints. Examples of problems that fall into
this framework include boolean satisfiability problems [30, 11], graph homomorphism
problems [19, 18], and the problem of solving a system of equations over an algebraic
structure [27]. The CSP can be equivalently formulated as the problem of deciding
if there is a homomorphism between two relational structures [17], as well as the
database problems of conjunctive-query containment and evaluation [26].

In its general formulation, the CSP is NP-complete; this intractability, coupled
with the ubiquity of the CSP, has given rise to a far-reaching research program that
aims to identify restricted cases of the CSP that are polynomial-time tractable. One
of the principal directions within this program is the study of the CSP where the set
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of relations permitted in constraints, called the constraint language, is restricted. This
direction has its origins in a 1978 paper of Schaefer [30], who gave a classification theo-
rem showing that all constraint languages over a two-element domain give rise to a case
of the CSP that is either polynomial-time tractable or NP-complete. The nontrivial
tractable cases given by this result all readily reduce to one of the following three prob-
lems: 2-SAT, where each constraint is equivalent to a clause of length 2; Horn-SAT,
where each constraint is equivalent to a propositional Horn clause; or Affine-SAT,
where each constraint is an equation over the two-element field. In the 1990s, an ap-
proach to studying the complexity of constraint languages based on concepts and tools
from universal algebra was introduced [22]. A key idea underlying this approach is to
associate, to each constraint language, an algebra whose operations are the polymor-
phisms of the constraint language; roughly speaking, an operation is a polymorphism
of a constraint language Γ if each relation of Γ is closed under the operation. This alge-
bra is then used to derive information about the constraint language. One celebrated
achievement of this algebraic viewpoint is the CSP complexity classification of con-
straint languages over a three-element domain, which is due to Bulatov [9]. See [13, 8,
5, 7, 15, 6, 24] and the references therein for more examples of work along these lines.

The present work is concerned with the quantified constraint satisfaction problem
(QCSP). Viewing CSP as the problem of deciding a logical sentence consisting of a
conjunction of constraints and a quantifier prefix in which all variables are existentially
quantified, the QCSP can be defined as the generalization of the CSP where universal
quantification is permitted in addition to existential quantification. As is well known,
the extra expressiveness of the QCSP comes at the cost of complexity: the QCSP is in
general PSPACE-complete. Indeed, the Quantified Boolean Formula (QBF)

problem, of which the QCSP is a generalization, was historically one of the first
problems recognized to be PSPACE-complete [31], and is now a prototypical example
of a PSPACE-complete problem.

A classification theorem describing the QCSP complexity of constraint languages
over a two-element domain has been established [30, 12, 11]. The polynomial-time
tractable cases of the QCSP given by this classification correspond to the prob-
lems Quantified 2-SAT, Quantified Horn-SAT, and Quantified Affine-SAT.
These are precisely the quantified generalizations of the discussed tractable cases of
Schaefer’s CSP theorem. Although the tractability of all three of these problems was
claimed without proof by Schaefer [30], the first published proofs we are aware of
for these problems were given in different decades, and were proved using disparate
proof techniques: Aspvall, Plass, and Tarjan [1] proved the tractability of Quanti-

fied 2-SAT in 1979 by giving an algorithm which analyzes a directed graph, called
the implication graph, induced by a problem instance; Karpinski, Kleine Büning, and
Schmitt [23] proved the tractability of Quantified Horn-SAT in 1987 by studying
a generalized form of unit resolution (see [25] for subsequent work on this prob-
lem); and Creignou, Khanna, and Sudan [11] proved the tractability of Quantified

Affine-SAT in 2001 by giving an algorithm that iteratively eliminates the innermost
quantified variable.

1.2. Contributions. In this article, we introduce collapsibility, a technique for
deriving positive complexity results on the QCSP, which is based on the algebraic
approach to studying constraint languages. This technique allows one to show, for
certain constraint languages, that the QCSP over the constraint language polynomial-
time reduces to the CSP over the constraint language, via a simple reduction. Thus,
this technique, when applied to a constraint language under which the CSP is known
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to be tractable, implies the tractability of the QCSP under the constraint language.
We show that this technique applies to all three of the aforementioned tractable cases of
the QCSP over a two-element domain. This reconciles and reveals common structure
among these three cases, which, as discussed, were originally studied using strikingly
disparate techniques.

In addition to unifying known QCSP tractability results, the technique of collapsi-
bility allows us to make significant progress towards understanding the complexity of
the QCSP in domains of arbitrary size. For example, we are able to demonstrate the
QCSP tractability of the large classes of constraint languages studied, in the CSP
setting, by Jeavons, Cohen, and Cooper [21] and Bulatov and Dalmau [6]. We are
also able to classify the conservative constraint languages giving rise to a tractable
QCSP; a conservative constraint language is a constraint language containing all unary
relations, and such constraint languages were studied by Bulatov [5] in the CSP.

Based on the notion of collapsibility, we identify a class of algebras that we call
sink algebras, and show that any constraint language whose algebra “excludes” sink
algebras (in a manner made precise) and does not obey a known sufficient condition
for CSP intractability is amenable to our collapsibility technique. We analyze three-
element sink algebras and show that they all contain a particular semilattice operation.
This in turn allows us to give a classification for the three-element case up to a
“forbidden polymorphism”: for the constraint languages over a three-element domain
not having the semilattice operation as a polymorphism, we provide a description of
exactly which give rise to a tractable QCSP.

Overall, the techniques of this article involve an interplay among the areas of
complexity theory, algebra, and logic.

1.3. Other related work. The other papers on the QCSP and constraint lan-
guages on domains of arbitrary size that we are aware of are Börner et al. [3] and
Martin and Madelaine [28]. The results of Börner et al. [3] include the identification
of a Galois connection relevant to the QCSP and two tractable cases of the QCSP.
Our collapsibility technique applies to the tractable cases they give, which are defined
in terms of Mal’tsev polymorphisms and dual discriminator polymorphisms. Martin
and Madelaine [28] study constraint languages consisting of a single binary relation
that is symmetric and antireflexive, that is, an undirected graph; they obtain both
tractability and intractability results for such constraint languages.

1.4. Organization. This article is organized as follows. In section 2, we present
the terminology, notation, and background concepts to be used throughout the paper.
In section 3, we give the basic definitions and results that underlie our collapsibility
technique. In particular, we define what it means for a constraint language to be
collapsible, and show that the QCSP over a collapsible constraint language reduces to
the CSP over the same constraint language. Section 4 presents a theorem that can
be used to prove the collapsibility of constraint languages and gives example applica-
tions of the theorem. In section 5, we develop algebraic machinery for demonstrating
collapsibility results and illustrate our ideas using examples. Section 6 defines and
studies sink algebras. In section 7, we analyze three-element sink algebras, showing
that any such algebra must have a particular structure; this permits us to give our
classification of constraint languages over a three-element domain.

2. Preliminaries. We use [n] to denote the set containing the first n positive
integers, {1, . . . , n}. When f : Ak → A is an operation on a set A and B1, . . . , Bk ⊆
A are subsets of A, we use f(B1, . . . , Bk) to denote the set {f(b1, . . . , bk) : b1 ∈
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B1, . . . , bk ∈ Bk}. When f : Ak → A is an operation on a set A and B ⊆ A, we use
f |B to denote the restriction of f to Bk, and when F is a set of functions f : Ak → A,
we use F |B to denote {f |B : f ∈ F}.

2.1. Quantified constraint satisfaction. We now describe the basic termi-
nology of quantified constraint satisfaction to be used throughout the paper.

Definition 2.1. Let A be a set. A relation over the set A is a subset of Ak for
some integer k ≥ 1, called the arity of the relation. A constraint over the set A is a
formula of the form R(w1, . . . , wk), where R is a relation over A of arity k (viewed
as a predicate) and each wi is either a variable or a constant (an element of A). A
constraint language is a set of relations, all of which are over the same domain.

Note that, in this paper, we always permit constants to appear in constraints.
Clearly, our positive complexity results will apply to constraints not containing any
constants, since such constraints are a subclass of the constraints we allow here.

Definition 2.2. A quantified constraint formula is a formula of the form

Q1v1 . . . QmvmC
having an associated set A called the domain, where

• for all i ∈ [m], Qi is a quantifier from the set {∀,∃} and vi is a variable,
• the variables {v1, . . . , vm} are assumed to be pairwise distinct, and
• C is a finite conjunction of constraints over A having variables from the set
{v1, . . . , vm}.

A quantified constraint formula is said to be over a constraint language Γ if each of
its constraints has relation from Γ.

Truth of a quantified constraint formula is defined as in first-order logic. Note
that the quantification of the variables is understood to be over the domain A of the
formula. We will generally use A to denote the domain of a quantified constraint
formula. We assume that all domains of quantified constraint formulas are finite.

The QCSP can now be defined as the problem of deciding, given a quantified
constraint formula, whether or not it is true. We are interested in the following
parameterized version of the QCSP.

Definition 2.3. Let Γ be a constraint language. The decision problem QCSPc(Γ)
is to decide, given as input a quantified constraint formula over Γ, whether or not it
is true.

We will also discuss and use the following parameterized version of the CSP.
Definition 2.4. The decision problem CSPc(Γ) is the restriction of QCSPc(Γ)

to quantified constraint formulas having only existential quantifiers.
In the previous two definitions, we use the subscript c to emphasize that constants

are permitted in constraints.
We now review a characterization of truth for quantified constraint formulas which

will be used throughout this paper. This characterization comes from the concept of
Skolemization [16] and conceives of a quantified constraint formula as a game between
two players: a universal player that sets the universally quantified variables and an
existential player that sets the existentially quantified variables. Variables are set in
the order dictated by the quantifier prefix, and the existential player is said to win if,
after the variables have been set, the conjunction of constraints is true. The formula
is true if and only if the existential player can always win, no matter how the universal
player sets the universally quantified variables.

We now formalize this viewpoint. When Φ is a quantified constraint formula, let
V Φ denote the variables of Φ, let EΦ denote the existentially quantified variables of
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Φ, let UΦ denote the universally quantified variables of Φ, and for each x ∈ EΦ, let
UΦ
x denote the variables in UΦ that come before x in the quantifier prefix of Φ. Let

[B → A] denote the set of functions mapping from B to A.
Definition 2.5. A strategy for a quantified constraint formula Φ is a sequence

of partial functions

σ = {σx : [UΦ
x → A] → A}x∈EΦ .

That is, a strategy has a mapping σx for each existentially quantified variable
x ∈ EΦ, which tells how to set the variable x in response to an assignment to the
universal variables coming before x. Let τ : UΦ → A be an assignment to the
universal variables. We define 〈σ, τ〉 to be the mapping from V Φ to A such that
〈σ, τ〉(v) = τ(v) for all v ∈ UΦ, and 〈σ, τ〉(x) = σx(τ |UΦ

x
) for all x ∈ EΦ. The

mapping 〈σ, τ〉 is undefined if σx(τ |UΦ
x
) is not defined for all x ∈ EΦ. The intuitive

point here is that a strategy σ along with an assignment τ to the universally quantified
variables naturally yields an assignment 〈σ, τ〉 to all of the variables, so long as the
mappings σx are defined at the relevant points.

We have the following characterization of truth for quantified constraint formulas.
Fact 2.6. A quantified constraint formula Φ is true if and only if there exists

a strategy σ for Φ such that for all mappings τ : UΦ → A, the assignment 〈σ, τ〉 is
defined and satisfies the constraints of Φ.

Note that a strategy satisfying the condition of Fact 2.6 must consist only of total
functions. We have defined a strategy to be a sequence of partial functions as we will
be interested in strategies σ that need not yield an assignment 〈σ, τ〉 for all τ .

2.2. Algebra. This subsection presents the algebraic background used in this
paper; for more information, we refer the reader to the books [29, 32]. We begin by
defining the notion of polymorphism. This notion will be used in this subsection to
define further algebraic notions, and, as explained in the next subsection, will also be
used throughout the paper to study the complexity of constraint languages.

Definition 2.7. An operation f : Ak → A is a polymorphism of a relation
R ⊆ Am if for any choice of k tuples (t11, . . . , t1m), . . . , (tk1, . . . , tkm) ∈ R, the tuple
(f(t11, . . . , tk1), . . . , f(t1m, . . . , tkm)) is in R. That is, applying f coordinatewise to
any k tuples in R yields another tuple in R. An operation f is a polymorphism of
a constraint language Γ if f is a polymorphism of all relations R ∈ Γ. When f is a
polymorphism of a relation R (respectively, a constraint language Γ), we also say that
R (respectively, Γ) is invariant under f .

We now introduce the notion of a clone.
Definition 2.8. An operation f : Ak → A is a projection if there exists i ∈ [k]

such that f(a1, . . . , ak) = ai for all a1, . . . , ak ∈ A. When f : An → A is an arity n
operation and f1, . . . , fn : Am → A are arity m operations, the composition of f with
f1, . . . , fn is defined to be the arity m operation g : Am → A such that g(a1, . . . , am) =
f(f1(a1, . . . , am), . . . , fn(a1, . . . , am)) for all a1, . . . , am ∈ A.

Definition 2.9. A clone on a set A is a set of finitary operations that contains
all projections and is closed under composition.

It is known that the set of polymorphisms of a constraint language is always a
clone.

Next, we define the basic notion of an algebra.
Definition 2.10. An algebra is a pair A = (A,F ) where A is a nonempty set

called the universe and F is a set of finitary operations on A.
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We say that an algebra is nontrivial if its universe does not have size one. An
algebra is finite if its universe is of finite size.

Definition 2.11. An operation f on the set A is idempotent if f(a, . . . , a) = a
for all a ∈ A. An algebra (A,F ) is idempotent if all operations in F are idempotent.

Note that, in this paper, we are concerned almost exclusively with finite idempo-
tent algebras.

Definition 2.12. The term operations of an algebra (A,F ) are the operations
in the clone generated by F .

We now present two standard means of constructing new algebras from an existing
algebra. The first is the construction of a subalgebra from an algebra.

Definition 2.13. Let A = (A,F ) be an algebra. An algebra of the form (B,F |B),
where B ⊆ A is invariant under all operations f ∈ F , is called a subalgebra of A.

As a subalgebra (B,F |B) of an algebra (A,F ) is determined by its universe B,
we will at times use the universe B to denote the subalgebra (B,F |B). We say that a
subalgebra (B,F |B) of (A,F ) is a proper subalgebra if B is a proper subset of A, and
that it is a maximal proper subalgebra if it is proper and the only subalgebra whose
universe properly contains B is (A,F ) itself.

Next, we give another construction of a new algebra from an existing algebra,
namely, the construction of a homomorphic image.

Definition 2.14. Let A = (A,F ) be an algebra. A congruence of A is an
equivalence relation θ ⊆ A×A that is invariant under all operations f ∈ F . When θ
is a congruence of A, the equivalence class of θ containing a ∈ A is denoted aθ, and,
for each operation f ∈ F , the operation fθ given by fθ(aθ1, . . . , a

θ
k) = (f(a1, . . . , ak))

θ,
where k denotes the arity of f , is well defined. The set Aθ is defined as {aθ : a ∈ A},
and the set F θ is defined as {fθ : f ∈ F}.

Definition 2.15. Let A = (A,F ) be an algebra. An algebra of the form (Aθ, F θ),
where θ is a congruence of A, is called a homomorphic image of A.

The following fact is known.
Fact 2.16. If A is an idempotent algebra and θ is a congruence of A, then each

equivalence class of θ is a subalgebra of A.
We give a proof of Fact 2.16 for completeness.
Proof. Let f : Ak → A be an operation of A, let B be an equivalence class of θ,

and let b1, . . . , bk be elements of B. We want to show that f(b1, . . . , bk) ∈ B. Fix b
to be any element of B. We have (b, b1), . . . , (b, bk) ∈ θ. Since θ is a congruence of A,
the operation f is a polymorphism of θ, and (f(b, . . . , b), f(b1, . . . , bk)) is an element
of θ. By idempotence of f , we have f(b, . . . , b) = b, from which it follows that b and
f(b1, . . . , bk) are in the same θ-equivalence class and f(b1, . . . , bk) ∈ B.

We now combine the subalgebra and homomorphic image constructions to define
the notion of a factor.

Definition 2.17. A factor of an algebra A is a homomorphic image of a subal-
gebra of A.

A known fact that we will make use of is that a factor of a factor of an algebra is
a factor of the algebra.

2.3. Complexity. In this subsection, we discuss known results concerning the
complexity of the problems QCSPc(Γ) and CSPc(Γ). We call a problem tractable if it
is decidable in polynomial time, that is, it is in P, and the only notion of reduction
we will use is many-one polynomial-time reduction.

The set of polymorphisms of a constraint language Γ has been used to study the
complexity of the problems CSPc(Γ) and QCSPc(Γ) [22, 20, 3, 7]. For instance, the
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following is known.
Theorem 2.18 (follows from [20, 3]). Let Γ1,Γ2 be finite constraint languages

having the same idempotent polymorphisms. Then the problems CSPc(Γ1), CSPc(Γ2)
reduce to each other, and likewise, the problems QCSPc(Γ1), QCSPc(Γ2) reduce to
each other.

Intuitively, Theorem 2.18 might be taken as saying that the polymorphisms of a
constraint language Γ contain all of the information needed to determine the com-
plexity of Γ. In fact, it has been shown that when one considers the algebra having
these polymorphisms as its operations, algebraic concepts such as those in the pre-
vious subsection can be employed to study complexity [7]. We will make use of this
algebra and this approach.

Definition 2.19. When Γ is a constraint language over set A, the algebra AΓ

is defined to be the algebra (A,F ), where F is the set of idempotent polymorphisms
of Γ.

We will use the presence of idempotent polymorphisms to prove positive results
concerning QCSPc(Γ) complexity. In particular, we will make use of the following
fact.

Fact 2.20. Let C be a finite conjunction of constraints over the variable set
{v1, . . . , vm}, assume that f : Ak → A is an idempotent polymorphism of all relations
in C, and let g1, . . . , gk : {v1, . . . , vm} → A be assignments satisfying C. Then the
assignment g : {v1, . . . , vm} → A defined by g(vi) = f(g1(vi), . . . , gk(vi)) for all vi
satisfies C.

This fact is known; it is implicit, for instance, in [7]. We give a proof for com-
pleteness.

Proof. Let R(w1, . . . , wn) be a constraint where f is a polymorphism of R and let
it be satisfied by the assignments g1, . . . , gk. It suffices to show that the assignment
g also satisfies R. For each i ∈ [k], let g′i : A ∪ {v1, . . . , vm} → A be the extension
of gi that acts as the identity on A; likewise, let g′ : A ∪ {v1, . . . , vm} → A be the
extension of g that acts as the identity on A. Since each gi satisfies the constraint, we
have (g′i(w1), . . . , g

′
i(wn)) ∈ R for all i ∈ [k]. Since f is a polymorphism of R, we have

that (f(g′1(w1), . . . , g
′
k(w1)), . . . , f(g′1(wn), . . . , g′k(wn))) is contained in R. We claim

that this tuple is equal to (g′(w1), . . . , g
′(wn)), which would give the proof. Suppose

that wi is a variable. Then we have f(g′1(wi), . . . , g
′
k(wi)) = f(g1(wi), . . . , gk(wi)) =

g(wi) = g′(wi). Suppose that wi is a constant. Then we have f(g′1(wi), . . . , g
′
k(wi)) =

f(wi, . . . , wi) = wi = g′(wi), as f is idempotent.
To derive negative complexity results, we will make use of the following known

result.
Definition 2.21. An algebra (A,F ) is a G-set if its universe is not one-element

and every operation f ∈ F is of the form f(x1, . . . , xk) = π(xi), where i ∈ [k] and π
is a permutation on A.

We would like to emphasize that, in this paper, we require a G-set to be
nontrivial.

Theorem 2.22 (see [7]). Let Γ be a constraint language. If AΓ has a G-set as a
factor, then the problem CSPc(Γ) is NP-complete, and hence the problem QCSPc(Γ)
is NP-hard.1

Theorem 2.22 shows that the absence of a G-set as a factor of AΓ is necessary for
the problem CSPc(Γ) to be tractable. It has been conjectured that this absence is also

1Note that, since QCSPc(Γ) is a more general problem than CSPc(Γ), the NP-hardness of CSPc(Γ)
immediately implies the NP-hardness of QCSPc(Γ).
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sufficient for CSPc(Γ) tractability [7]. The following classification results of Bulatov
confirm this conjecture for two broad classes of constraint languages.

Theorem 2.23 (Bulatov [9]). Let Γ be a constraint language on a three-element
domain. If AΓ does not contain a G-set as factor, then CSPc(Γ) is in P.

Theorem 2.24 (Bulatov [5]). Let Γ be a constraint language on a finite domain
A containing all subsets of A. If AΓ does not contain a G-set as factor, then CSPc(Γ)
is in P.

In the case of a two-element algebra, there is a nice description of idempotent
algebras stating that either an algebra must contain one of four particular operations
or be a G-set. This description can be obtained from a classification theorem due to
Post; see [2] for a presentation of this theorem. To give the description, we require a
couple of definitions. When A is a two-element set, we define the majority operation
on A, denoted by majorityA : A3 → A, to be the ternary operation satisfying the
identities majorityA(x, x, y) = majorityA(x, y, x) = majorityA(y, x, x) = x. That is, the
operation majorityA returns the element of A that occurs two or three times. Also,
we define the minority operation on A, denoted by minorityA : A3 → A, to be the
ternary operation satisfying the identities minorityA(x, x, y) = minorityA(x, y, x) =
minorityA(y, x, x) = y. That is, the operation minorityA is idempotent, and if both
elements of A occur as arguments, it returns the element that occurs once.

Theorem 2.25 (see [2]). Let A be an idempotent algebra with universe {0, 1}. Ei-
ther A is a G-set or it contains as term operation one of the following four operations:

• the binary AND operation ∧,
• the binary OR operation ∨,
• the operation majority{0,1},
• the operation minority{0,1}.

We can now readily state the classification theorem for problems QCSPc(Γ) over
a two-element domain.

Theorem 2.26 (follows from [11] and Theorem 2.25). Let Γ be a constraint
language on the two-element domain {0, 1}. If Γ has as polymorphism one of the four
operations given in the statement of Theorem 2.25, then QCSPc(Γ) is in P. Otherwise,
AΓ is a G-set and QCSPc(Γ) is PSPACE-complete.

3. Collapsings. In this section, we introduce the definitions and ideas that lie
at the base of our methodology for proving QCSP complexity results. Our method-
ology allows one to demonstrate that for certain constraint languages Γ, the problem
QCSPc(Γ) can be reduced to the problem CSPc(Γ). More specifically, we will show
that for certain constraint languages Γ, an instance of QCSPc(Γ) is true if and only if
all instances in an ensemble of simpler instances of QCSPc(Γ) are true. The simpler
instances are derived from the original instance by instantiating all but a bounded
number of the universally quantified variables with a constant; we will show that
these simpler instances can be formulated as an instance of CSPc(Γ). Their precise
definition is as follows.

Definition 3.1. Let Φ be a quantified constraint formula with domain A. A
quantified constraint formula Φ′ is a (j, a)-collapsing of Φ if it can be obtained from
Φ by choosing a subset U ′ of the universally quantified variables UΦ with size |U ′| ≤ j
and instantiating the variables in UΦ \ U ′ with the constant a ∈ A. A quantified
constraint formula Φ′ is a j-collapsing of Φ if for some a ∈ A, the formula Φ′ is a
(j, a)-collapsing of Φ. (Throughout this section, we assume j ≥ 0.)

By instantiating a variable v of a quantified constraint formula with a con-
stant, we mean that the variable and its quantifier are removed from the quanti-
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fier prefix and that all instances of the variable in constraints are replaced with the
constant.

Example 3.2. Consider the quantified constraint formula

Φ = ∀y1∃x1∀y2∀y3∃x2(R1(y1, x1) ∧R2(y2, x2) ∧R3(y2, x2, y3)).

Suppose that its domain is A = {a, b}. There are four (1, b)-collapsings of Φ, corre-
sponding to the choices U ′ = {y1}, U ′ = {y2}, U ′ = {y3}, and U ′ = ∅, respectively:

∀y1∃x1∃x2(R1(y1, x1) ∧R2(b, x2) ∧R3(b, x2, b)),

∃x1∀y2∃x2(R1(b, x1) ∧R2(y2, x2) ∧R3(y2, x2, b)),

∃x1∀y3∃x2(R1(b, x1) ∧R2(b, x2) ∧R3(b, x2, y3)),

∃x1∃x2(R1(b, x1) ∧R2(b, x2) ∧R3(b, x2, b)).

Example 3.3. An example of the type of result we will prove is the following.
Suppose Γ is a constraint language over the domain {0, 1} having the boolean AND
function ∧ as polymorphism. Then an instance Φ of QCSPc(Γ) is true if and only if
all (1, 1)-collapsings of Φ are true; this is proved below in Theorem 4.3.

As discussed in section 2.1, each quantified constraint formula can be viewed as
a two-player game. Recall that in this game view, a universal player sets the univer-
sally quantified variables, and an existential player sets the existentially quantified
variables. The existential player attempts to satisfy the constraints of the formula,
while the universal player attempts to falsify a constraint. In order for us to prove
results on the (j, a)-collapsings of a formula, it will be useful for us to consider a
modified version of this game where the universal player has less power: each uni-
versally quantified variable y has a subset of A associated with it, and the universal
player must set each universally quantified variable to a value falling within the sub-
set associated to y. To formalize the idea of associating subsets of A with universally
quantified variables, we define the notion of adversary.

Definition 3.4. An adversary A of length n is a tuple A ∈ (℘(A) \ {∅})n. We
use Ai to denote the ith coordinate of the adversary A, that is, A = (A1, . . . ,An).

Let us say that an adversary A is an adversary for a quantified constraint formula
Φ if the length of A matches the number of universally quantified variables in Φ.
When this is the case, the adversary A naturally induces the set of assignments
A[Φ] = {τ : UΦ → A : τ(yi) ∈ Ai for all i ∈ [n]}. Here, we assume that y1, . . . , yn are
the universally quantified variables of Φ, ordered according to quantifier prefix, from
outside to inside.

We say that an adversary is Φ-winnable if in the modified game, the existential
player can win, that is, if there is a strategy that can handle all assignments that the
adversary gives rise to, as formalized in the following definition.

Definition 3.5. Let Φ be a quantified constraint formula, and let A be an
adversary for Φ. We say that A is Φ-winnable if there exists a strategy σ for Φ such
that for all assignments τ ∈ A[Φ], the assignment 〈σ, τ〉 is defined and satisfies the
constraints of Φ.

We have previously given a characterization of truth for quantified constraint
formulas (Fact 2.6). This characterization can be formulated in the terminology just
introduced. Let An denote the adversary (A, . . . , A) of length n that is equal to A at
all coordinates.

Fact 3.6. The adversary An is Φ-winnable if and only if Φ is true.
Proof. The claim is immediate from Fact 2.6 and Definition 3.5.
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In general, when B is a nonempty subset of A, we will use Bn to denote the
adversary (B, . . . , B) of length n that is equal to B at all coordinates.

Fact 3.6 shows that the truth of a quantified constraint formula can be character-
ized in terms of an adversary. The truth of the j-collapsings of a quantified constraint
formula also have an adversary-based characterization. To give this characterization,
we introduce the following notation, which will be useful throughout the paper.

Definition 3.7. Let n ≥ 1, S ⊆ [n], and C,D ⊆ A. We use A(n,C, S,D) to
denote the length n adversary equal to D at the coordinates in S, and equal to C at
all other coordinates. That is,

• A(n,C, S,D)i = C for i ∈ [n] \ S, and
• A(n,C, S,D)i = D for i ∈ S.

For w ≥ 1, we define Adv(n,C,w,D) = {A(n,C, S,D) : S ⊆ [n], |S| ≤ w}. That is,
Adv(n,C,w,D) is the set of all length n adversaries that are equal to D in at most w
coordinates and equal to C at all other coordinates.

Note that when using the Adv(n,C,w,D) notation, we will typically have w ≤ n
and C ⊆ D.

Example 3.8. Suppose that A = {0, 1}. The set Adv(4, {1}, 1, A) is equal to

{ (A, {1}, {1}, {1}),
({1}, A, {1}, {1}),
({1}, {1}, A, {1}),
({1}, {1}, {1}, A),

({1}, {1}, {1}, {1})}.

The following is our adversary-based characterization of the j-collapsings of a
quantified constraint formula.

Proposition 3.9. Let Φ be a quantified constraint formula. The (j, a)-collapsings
of Φ are true if and only if the adversaries Adv(n, {a}, j, A) are Φ-winnable. And, the
j-collapsings of Φ are true if and only if the adversaries ∪a∈AAdv(n, {a}, j, A) are
Φ-winnable.

Proposition 3.9 can be proved in a straightforward fashion by using Fact 3.6. We
omit the proof.

Remark 3.10. Let us say that an adversary A of length n is dominated by a
second adversary B of length n if Ai ⊆ Bi for all i ∈ [n]. For example, the adver-
sary ({1}, {1}, {1}, {1}) in Example 3.8 is dominated by all other adversaries in that
example. It is readily seen that if A is dominated by B, then A is easier than B in
the sense that the Φ-winnability of B implies the Φ-winnability of A. Thus, the ad-
versary ({1}, {1}, {1}, {1}) in Example 3.8 is in a sense superfluous as a member of
Adv(4, {1}, 1, A): omitting it from this set of adversaries would not change the class
of quantified constraint formulas Φ such that Adv(4, {1}, 1, A) is Φ-winnable. In gen-
eral, if we defined Adv(n,C,w,D) as {A(n,C, S,D) : S ⊆ [n], |S| = w}, demanding
exactly w coordinates of each adversary to be equal to D, then Proposition 3.9 would
still hold (assuming j ≤ n). We elected the given definition of Adv(n,C,w,D) because
it will facilitate the presentation of certain proofs.

To review, our goal is to show that for certain constraint languages Γ, the problem
QCSPc(Γ) is reducible to CSPc(Γ). We will achieve this, for a constraint language, by
showing that the constraint language satisfies a property that we call collapsibility.

Definition 3.11. A constraint language Γ is (j, a)-collapsible when the following
holds: if all (j, a)-collapsings of an instance Φ of QCSPc(Γ) are true, then the instance
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Φ is true. Similarly, a constraint language Γ is j-collapsible when the following holds:
if all j-collapsings of an instance Φ of QCSPc(Γ) are true, then the instance Φ is true.

When a quantified constraint formula Φ is true, then all j-collapsings of Φ are
true; one way to see this is that all adversaries, and hence in particular those identified
in Proposition 3.9, are dominated (in the sense of Remark 3.10) by the adversary An.
Thus, if a constraint language Γ is j-collapsible, an instance of QCSPc(Γ) is true if and
only if all of its j-collapsings are true. The following proposition shows that, starting
from an instance Φ of QCSPc(Γ), the truth of the j-collapsings of Φ can be efficiently
translated into an instance of CSPc(Γ), and so the property of j-collapsibility implies
a reduction from QCSPc(Γ) to CSPc(Γ).

Proposition 3.12. If there exists j ≥ 0 such that the constraint language Γ is
j-collapsible (or, there exists j ≥ 0 and a ∈ A such that the constraint language is
(j, a)-collapsible), then the problem QCSPc(Γ) reduces to (and is hence equivalent to)
CSPc(Γ).

In order to prove Proposition 3.12, we will make use of the following lemma.
Lemma 3.13. For each fixed j ≥ 0 and constraint language Γ, there is a

polynomial-time algorithm that computes, given an instance Φ of QCSPc(Γ) and a
j-collapsing Φ′ of Φ, an instance Φ′′ of CSPc(Γ) that is true if and only if Φ′ is true.

Proof. The idea of the proof is to create an instance Φ′′ of CSPc(Γ) where the
variables are the possible output values of a strategy for Φ′. The instance Φ′′ will be
true if and only if there is a winning strategy for Φ′.

The variables of Φ′′ are all pairs of the form (x, α), where x ∈ EΦ′
is an ex-

istentially quantified variable of Φ′ and α is a mapping from UΦ′

x to A. For every
constraint R(v1, . . . , vm) and every mapping τ : UΦ′ → A, we place the constraint
R(w1, . . . , wm) in Φ′′, where for each i ∈ [m] we define wi = τ(vi) if vi is universally
quantified in Φ′, and wi = (vi, τ |UΦ′

vi

) if vi is existentially quantified in Φ′.

Suppose that f : V Φ′′ → A is an assignment to the variables of Φ′′. It is straight-
forward to verify that f satisfies the constraints of Φ′′ if and only if the strategy σ
defined by σx(α) = f((x, α)) for all x ∈ EΦ′

and mappings α : UΦ′

x → A is a winning
strategy.

As Φ′ has j or fewer universally quantified variables and A is fixed, the number
of mappings from UΦ′

to A (and from UΦ′

x to A for any x ∈ EΦ′
) is bounded above

by a constant. Having observed this, it is clear that Φ′′ can be computed from Φ′ in
polynomial time.

Proof of Proposition 3.12. We prove the proposition for a j-collapsible constraint
language Γ; the proof is similar for a (j, a)-collapsible constraint language.

Let Φ be an instance of QCSPc(Γ). As discussed prior to the statement of this
proposition, the formula Φ is true if and only if all j-collapsings of Φ are true. We
can compute all j-collapsings of Φ in polynomial time. By Lemma 3.13, each of these
collapsings can be converted to an instance of CSPc(Γ) in polynomial time. It remains
to show that all of the resulting CSPc(Γ) instances {Φ1, . . . ,Φm} can be formulated
as a single CSPc(Γ) instance. This can be done by renaming variables so that no two
instances among {Φ1, . . . ,Φm} have a variable with the same name, and then creating
a single instance whose constraints are all of the constraints appearing in one of the
instances Φi.

It is readily verified from the definitions in this section that if a constraint language
is j-collapsible, then it is j′-collapsible for all j′ > j. In addition, it is clear that the
reduction from QCSPc(Γ) to CSPc(Γ) given by the proofs of Proposition 3.12 and
Lemma 3.13 is more efficient for lower values of j than for higher values of j. Thus, j-
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collapsibility results for lower values of j are preferable to such results for higher values
of j, although establishing the j-collapsibility of a constraint language Γ for any value
of j implies that there is a reduction from QCSPc(Γ) to CSPc(Γ) (Proposition 3.12).

4. Composing adversaries. In the previous section, we identified the prop-
erties of j-collapsibility and (j, a)-collapsibility; we showed that when a constraint
language Γ has one of these properties, QCSPc(Γ) can be reduced to CSPc(Γ). Our
goal now is to develop and deploy machinery that allows one to prove collapsibility
results—results showing that a constraint language is either j- or (j, a)-collapsible.
To prove a collapsibility result, by definition (see Definition 3.11), we need to prove
the truth of a formula based on the truth of its collapsings. We will accomplish this
in the language of adversaries. In particular, we know that the truth of collapsings
can be characterized by the winnability of certain adversaries (Proposition 3.9), while
the truth of a quantified constraint formula can be characterized by the winnability
of the “full adversary” An (Fact 3.6). Thinking of the adversaries corresponding to
collapsings as simple adversaries, our method will be to assume the winnability of
these simple adversaries, and then derive the winnability of more and more complex
adversaries, until the winnability of the full adversary is derived.

In this section, we present a notion of composition that will allow us to derive
the winnability of more complex adversaries from simpler ones. After this, we give
examples of how this notion of composition can be used to prove collapsibility results
and hence derive positive QCSPc(Γ) complexity results. We begin by describing our
notion of composition.

Let f : Ak → A be an operation and let A,B1, . . . ,Bk be adversaries of length n.
We say that A is f-composable from B1, . . . ,Bk, denoted A � f(B1, . . . ,Bk), if for all
i ∈ [n], it holds that Ai ⊆ f(B1i, . . . ,Bki). The following key theorem allows us to
derive the winnability of an adversary based on the winnability of adversaries from
which it can be composed.

Theorem 4.1. Let Φ be a quantified constraint formula, assume that f : Ak → A
is an idempotent polymorphism of all relations of Φ, and let A,B1, . . . ,Bk be adver-
saries for Φ. If each of the adversaries B1, . . . ,Bk is Φ-winnable and A�f(B1, . . . ,Bk),
then the adversary A is Φ-winnable.

Proof. For all j ∈ [k], let σj be a strategy witnessing the Φ-winnability of Bj .

Since A � f(B1, . . . ,Bk), there exist functions gji : Ai → Bji (with i ∈ [n], j ∈ [k])
such that for all i ∈ [n] and a ∈ Ai, it holds that a = f(g1

i (a), . . . , g
k
i (a)). Let us

denote the universal variables of Φ by y1, . . . , yn, and assume that they are ordered
according to the quantifier prefix, as in the discussion before Definition 3.5.

The idea of the proof is this. We would like to construct a strategy σ for the
adversary A based on the strategies σj for the adversaries Bj . The strategy σ simulates
the strategies σj . Upon being given a value a ∈ Ai for the universally quantified
variable yi, the strategy σ passes the values g1

i (a), . . . , g
k
i (a), which form an “inverse”

of a under f , to the strategies σ1, . . . , σk. When the strategy σ needs to set an
existentially quantified variable x, it takes the assignments given to x by σ1, . . . , σk

and applies f to them to obtain its setting. The assignment produced by σ will be
equal to the assignments produced by σ1, . . . , σk mapped under f (applied pointwise).
We now make this idea precise.

When τ is a function in A[Φ], or the restriction of a function in A[Φ], for all
j ∈ [k], we define gj(τ) to be the function with the same domain as τ and where
gj(τ)(yi) = gji (τ(yi)) for all elements yi of this domain. Observe that for all τ ∈ A[Φ]
and j ∈ [k], it holds that gj(τ) ∈ Bj [Φ].
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We define the strategy σ for A as follows. For all x ∈ EΦ, define σx by

σx(τ) = f(σ1
x(g1(τ)), . . . , σk

x(gk(τ)))

for all functions τ : UΦ
x → A that arise as the restriction of a function in A[Φ] to UΦ

x .
We claim that for all τ ∈ A[Φ] and for all variables v ∈ V Φ,

〈σ, τ〉(v) = f(〈σ1, g1(τ)〉(v), . . . , 〈σk, gk(τ)〉(v)).

Showing this claim suffices to give the theorem by Fact 2.20 and the assumption that
the σj are winning strategies for the Bj .

For universal variables yi ∈ UΦ, we have

〈σ, τ〉(yi) = τ(yi)

= f(g1
i (τ(yi)), . . . , g

k
i (τ(yi)))

= f(g1(τ)(yi), . . . , g
k(τ)(yi))

= f(〈σ1, g1(τ)〉(yi), . . . , 〈σk, gk(τ)〉(yi)).

For existential variables x ∈ EΦ, we have

〈σ, τ〉(x) = σx(τ |UΦ
x
)

= f(σ1
x(g1(τ |UΦ

x
)), . . . , σk

x(gk(τ |UΦ
x
)))

= f(σ1
x(g1(τ)|UΦ

x
), . . . , σk

x(gk(τ)|UΦ
x
))

= f(〈σ1, g1(τ)〉(x), . . . , 〈σk, gk(τ)〉(x)).

Remark 4.2. The hypothesis of Theorem 4.1 that f is an idempotent polymor-
phism can be removed if we are concerned with quantified constraint formulas where
constants do not appear in relations. Indeed, the only place in the proof of Theo-
rem 4.1 where the idempotence of f is used is in the appeal to Fact 2.20, and this
fact holds for nonidempotent polymorphisms when the constraints do not contain
constants.

Armed with Theorem 4.1, we now present three examples of collapsibility results.
The first concerns the boolean AND function as a polymorphism.

Theorem 4.3. Let Γ be a constraint language over the domain A = {0, 1} having
the boolean AND function ∧ as polymorphism. The constraint language Γ is (1, 1)-
collapsible.

Proof. Let Φ be an instance of QCSPc(Γ), and assume that the (1, 1)-collapsings
of Φ are true. By Proposition 3.9, the adversaries Adv(n, {1}, 1, A) are Φ-winnable.
We want to prove that the instance Φ is true; by Fact 3.6, it suffices to prove that the
adversary An is Φ-winnable.

We prove by induction that for all i ∈ [n], the adversary A(n, {1}, [i], A) is Φ-
winnable.

For i = 1, this holds by hypothesis as A(n, {1}, [1], A) ∈ Adv(n, {1}, 1, A).
For the induction, let us assume that the adversary A(n, {1}, [i], A) is Φ-winnable

for a value i < n. Observe that the adversary A(n, {1}, {i+1}, A)) ∈ Adv(n, {1}, 1, A)
is Φ-winnable by hypothesis. We claim that

A(n, {1}, [i + 1], A) � ∧(A(n, {1}, [i], A),A(n, {1}, {i + 1}, A)),
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which, by appeal to Theorem 4.1, gives the induction. We verify that

A(n, {1}, [i + 1], A)j ⊆ ∧(A(n, {1}, [i], A)j ,A(n, {1}, {i + 1}, A)j)

for all j ∈ [n] as follows:
• For j ∈ [i], we have A ⊆ ∧(A, {1}), since a = ∧(a, 1) for all a ∈ A.
• For j = i + 1, we have A ⊆ ∧({1}, A), since a = ∧(1, a) for all a ∈ A.
• For j ∈ [n] \ [i + 1], we have {1} ⊆ ∧({1}, {1}).

The next two examples both have a similar proof structure. We assume the
winnability of the “simple” adversaries corresponding to the relevant collapsings and
derive the winnability of more and more complex adversaries in an inductive manner,
ultimately deriving the winnability of the “full” adversary An.

Definition 4.4. A Mal’tsev operation is a ternary operation m : A3 → A
satisfying m(x, x, y) = m(y, x, x) = y for all x, y ∈ A.

Example 4.5. Let A be a two-element set. The operation minorityA, defined in
section 2.3, is an example of a Mal’tsev operation.

Theorem 4.6. Let Γ be a constraint language having a Mal’tsev operation m :
A3 → A as polymorphism. The constraint language Γ is (1, a)-collapsible for any
a ∈ A.

Proof. Let Φ be an instance of QCSPc(Γ), fix a ∈ A, and assume that the (1, a)-
collapsings of Φ are true. Then by Proposition 3.9, we have that the adversaries
Adv(n, {a}, 1, A) are Φ-winnable, and by Fact 3.6, it suffices to prove that the adver-
sary An is Φ-winnable.

We prove by induction that for all i ∈ [n], the adversary A(n, {a}, [i], A) is Φ-
winnable.

For i = 1, this holds by hypothesis as A(n, {a}, [1], A) ∈ Adv(n, {a}, 1, A).
For the induction, let us assume that the adversary A(n, {a}, [i], A) is Φ-winnable

for a value i < n. Observe that the adversary A(n, {a}, {i+1}, A) ∈ Adv(n, {a}, 1, A)
is Φ-winnable by hypothesis. We claim that

A(n, {a}, [i + 1], A) � m(A(n, {a}, [i], A),A(n, {a}, ∅, A),A(n, {a}, {i + 1}, A)),

which, by appeal to Theorem 4.1, gives the induction. We verify that

A(n, {a}, [i + 1], A)j ⊆ m(A(n, {a}, [i], A)j ,A(n, {a}, ∅, A)j ,A(n, {a}, {i + 1}, A)j)

for all j ∈ [n] as follows:
• For j ∈ [i], we have A ⊆ m(A, {a}, {a}), since b = m(b, a, a) for all b ∈ A.
• For j = i + 1, we have A ⊆ m({a}, {a}, A), since b = m(a, a, b) for all b ∈ A.
• For j ∈ [n] \ [i + 1], we have {a} ⊆ m({a}, {a}, {a}).

Definition 4.7. The dual discriminator operation on a set A is the ternary
operation d : A3 → A defined by

d(x, y, z) =

{
x if x = y,
z otherwise.

Example 4.8. Let A be a two-element set. The operation majorityA, defined in
section 2.3, is the dual discriminator operation on A.

Theorem 4.9. Let Γ be a constraint language having the dual discriminator
operation d : A3 → A as polymorphism. The constraint language Γ is 1-collapsible.

Proof. Let Φ be an instance of QCSPc(Γ), and assume that the 1-collapsings of Φ
are true. By Proposition 3.9, we have that the adversaries ∪a∈AAdv(n, {a}, 1, A) are
Φ-winnable, and by Fact 3.6, it suffices to prove that the adversary An is Φ-winnable.
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Fix two distinct elements b, c ∈ A. We prove by induction that for all i ∈ [n], the
adversaries A(n, {b}, [i], A) and A(n, {c}, [i], A) are Φ-winnable.

For i = 1, this holds by hypothesis as

A(n, {b}, [1], A),A(n, {c}, [1], A) ∈ ∪a∈AAdv(n, {a}, 1, A).

For the induction, let us assume that the adversaries A(n, {b}, [i], A) and
A(n, {c}, [i], A) are Φ-winnable for a value i < n. Observe that the adversaries

A(n, {b}, {i + 1}, A),A(n, {c}, {i + 1}, A) ∈ ∪a∈AAdv(n, {a}, 1, A)

are Φ-winnable by hypothesis. We claim that

A(n, {b}, [i + 1], A) � d(A(n, {b}, [i], A),A(n, {c}, [i], A),A(n, {b}, {i + 1}, A))

and

A(n, {c}, [i + 1], A) � d(A(n, {c}, [i], A),A(n, {b}, [i], A),A(n, {c}, {i + 1}, A)),

which, by appeal to Theorem 4.1, gives the induction. We explicitly verify the first
of the two claims; the second is identical, but with the roles of b and c swapped. We
verify that

A(n, {b}, [i + 1], A)j ⊆ d(A(n, {b}, [i], A)j ,A(n, {c}, [i], A)j ,A(n, {b}, {i + 1}, A)j)

for all j ∈ [n] as follows:
• For j ∈ [i], we have A ⊆ d(A,A, {b}), since a = d(a, a, b) for all a ∈ A.
• For j = i + 1, we have A ⊆ d({b}, {c}, A), since a = d(b, c, a) for all a ∈ A.
• For j ∈ [n] \ [i + 1], we have {b} ⊆ d({b}, {c}, {b}).

The polymorphisms addressed by the preceding three theorems are all known to
imply CSPc(Γ) tractability. For instance, the following theorem is known.

Theorem 4.10 (see [4, 14]). Let Γ be a constraint language having a Mal’tsev
operation m : A3 → A as polymorphism. The problem CSPc(Γ) is polynomial-time
tractable.

Similarly, the CSPc(Γ) tractability of the binary AND operation is implied by [22,
Theorem 5.13], and the tractability of the dual discriminator operation is implied
by [22, Theorem 5.7]. Using these tractability results in conjunction with our col-
lapsibility theorems, we obtain QCSPc(Γ) tractability results. For instance, we have
the following theorem.

Theorem 4.11. Let Γ be a constraint language having a Mal’tsev operation
m : A3 → A as polymorphism. The problem QCSPc(Γ) is polynomial-time tractable.

Proof. By Theorem 4.6 and Proposition 3.12, the problem QCSPc(Γ) reduces to
the problem CSPc(Γ). By Theorem 4.10, the problem CSPc(Γ) is polynomial-time
tractable. The theorem follows.

The collapsibility theorems that we have just given also have a consequence for the
problems QCSPc(Γ) over a two-element domain. Namely, if such a problem QCSPc(Γ)
is tractable at all, then it is 1-collapsible. The property of collapsibility thus exposes
uniform structure among such tractable problems QCSPc(Γ).

Corollary 4.12. Let Γ be a constraint language over a two-element domain. If
QCSPc(Γ) is polynomial-time tractable, then Γ is 1-collapsible (assuming that P does
not equal PSPACE).
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Proof. Without loss of generality, we may assume that the domain of Γ is A =
{0, 1}. By Theorem 2.26, if QCSPc(Γ) is polynomial-time tractable, then Γ has as
polymorphism one of the operations {∧,∨,majority{0,1},minority{0,1}}. If Γ has the

operation ∧ as polymorphism, it is 1-collapsible by Theorem 4.3. The operation ∨
is equivalent to ∧ with the roles of 0 and 1 reversed, so if Γ has the operation ∨
as polymorphism, it is 1-collapsible by an identical proof. If Γ has the operation
majority{0,1} as polymorphism, it is 1-collapsible by Theorem 4.9, and if Γ has the
operation minority{0,1} as polymorphism, it is 1-collapsible by Theorem 4.6.

5. Collapsibility. In the previous section, we justified our definition of col-
lapsibility for constraint languages by giving examples of collapsibility results. In
section 5.1, we translate this definition into the language of algebras. We give a
definition of what it means for an algebra to be collapsible and then demonstrate
that the collapsibility results on constraint languages Γ given in the previous section
can in fact be interpreted as collapsibility results on their associated algebras AΓ.
The advantage of having this algebraic formulation is that we are able to establish
powerful and general tools for deriving collapsibility results. In each of sections 5.2,
5.3, and 5.4, we present a technique for deriving algebraic collapsibility results and
illustrate its use.

Throughout this section, A = (A,F ) denotes a finite idempotent algebra.

5.1. Collapsibility for algebras. Let us first define what it means for an al-
gebra to be collapsible. Say that an adversary A is A-composable from a set of
adversaries S if there exists a term operation f : Ak → A of A and adversaries
B1, . . . ,Bk ∈ S such that A is f -composable from B1, . . . ,Bk, that is, A�f(B1, . . . ,Bk).

Definition 5.1. An algebra A = (A,F ) is collapsible with source S ⊆ A and
width w ≥ 0 if for all n ≥ 1, the adversary An is A-composable from the set of
adversaries ∪a∈SAdv(n, {a}, w,A).

When an algebra is collapsible, we will sometimes not state the source or width.
For instance, we will say that “an algebra A is collapsible with source S ⊆ A” if there
exists a width w ≥ 0 such that A is collapsible with source S and width w.

We now relate this definition of collapsibility for algebras to the definition of
collapsibility for constraint languages, showing that the collapsibility of the algebra
AΓ associated to a constraint language Γ implies the collapsibility of Γ itself.

Proposition 5.2. Let Γ be a constraint language. If AΓ is collapsible with width
w ≥ 0, then Γ is w-collapsible, and hence the problem QCSPc(Γ) reduces to CSPc(Γ).
Also, if AΓ is collapsible with width w ≥ 0 and source {a}, for some a ∈ A, then Γ is
(w, a)-collapsible, and hence the problem QCSPc(Γ) reduces to CSPc(Γ).

Proof. We prove the first part; proof of the second part is similar. Suppose
that all j-collapsings of an instance Φ of QCSPc(Γ) are true. We want to show that
the instance Φ is true. By Proposition 3.9, the adversaries ∪a∈AAdv(n, {a}, j, A) are
Φ-winnable. By hypothesis, the adversary An is A-composable from the adversaries
∪a∈AAdv(n, {a}, j, A). Thus, by Theorem 4.1, the adversary An is Φ-winnable. By
Fact 3.6, the formula Φ is true.

We now show that the notion of A-composability, on which the definition of
collapsibility for algebras is based, is robust in that it satisfies a certain type of
transitivity.

Proposition 5.3. Let S and S ′ be sets of adversaries, all of the same length. If
an adversary A is A-composable from S ′, and all adversaries in S ′ are A-composable
from S, then A is A-composable from S.
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Proof. By hypothesis, we have A � f(B′
1, . . . ,B′

k) for a term operation f of arity k
and adversaries B′

1, . . . ,B′
k ∈ S ′. And for all i ∈ [k] we have B′

i � gi(B(i,1), . . . ,B(i,mi))
for a term operation gi of arity mi and adversaries B(i,1), . . . ,B(i,mi) ∈ S. De-

fine h to be the term operation of arity m =
∑k

i=1 mi such that h(x1, . . . , xm) =
f(g1(x1, . . . , xm1), g2(xm1+1, . . . , xm1+m2), . . .). We claim that

A � h(B(1,1), . . . ,B(1,m1),B(2,1), . . . ,B(2,m2), . . .).

For all i ∈ [n], where n denotes the length of the adversaries under discussion, we
have

Ai ⊆ f(B′
1i, . . . ,B′

ki)

⊆ f(g1(B(1,1)i, . . . ,B(1,m1)i), g2(B(2,1)i, . . . ,B(2,m2)i), . . .)

= h(B(1,1)i, . . . ,B(1,m1)i,B(2,1)i, . . . ,B(2,m2)i, . . .).

The first inclusion follows from A � f(B′
1, . . . ,B′

k), the second inclusion follows from
B′
i � gi(B(i,1), . . . ,B(i,mi)) for all i ∈ [k], and the equality follows from the definition of

h.
We can now show that the collapsibility results on constraint languages obtained

in the previous section can in fact be interpreted as collapsibility results on algebras.
For example, let us consider the proof of Theorem 4.3, which concerned constraint
languages over domain {0, 1} having the boolean AND ∧ as polymorphism. In that
proof, we started by assuming the adversaries Adv(n, {1}, 1, A) to be Φ-winnable and
repeatedly used ∧-composability to derive the winnability of larger adversary sets,
eventually deriving the winnability of An. By Proposition 5.3, that proof establishes
that for any algebra A with universe {0, 1} having ∧ as term operation, the adversary
An is A-composable from the set of adversaries Adv(n, {1}, 1, A). Glancing back at
Definition 5.1, we can see that the following is implied by that proof.

Theorem 5.4. An algebra with universe {0, 1} and having the boolean AND ∧
as term operation is collapsible with source {1} and width 1.

In a similar manner, the following theorems can be derived from the proofs of
Theorems 4.6 and 4.9.

Theorem 5.5. An algebra with universe A having a Mal’tsev term operation is
collapsible with source {a} and width 1 for any a ∈ A.

Theorem 5.6. An algebra with universe A having the dual discriminator opera-
tion (over A) as term operation is collapsible with width 1.

The notion of collapsibility for an algebra concerns the A-composability of the
adversary An. It will be useful to consider, more generally, the A-composability of
adversaries Bn for B a subset of A.

Definition 5.7. A subset B of A is A-collapsible with source S ⊆ A and width
w ≥ 0 if for all n ≥ 1, the adversary Bn is A-composable from the set of adversaries
∪a∈SAdv(n, {a}, w,A).

Note that, in the language of this definition, an algebra A is collapsible if and
only if its universe A is A-collapsible.

We end this subsection with two observations.
Observation 5.8. Every one-element subset B of A is A-collapsible with source

B and width 0.
Observation 5.9. If a subalgebra B = (B,F |B) of A = (A,F ) is collapsible,

then B is A-collapsible.
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5.2. Extending subsets. We now present a technique for establishing collapsi-
bility results based on the notion of an operation extending a subset to a larger subset.

Definition 5.10. Let B and B′ be subsets of A with B ⊆ B′. We say that an
operation f : Ak → A (of arity k ≥ 2) extends B to B′ if for every i ∈ [k], it holds
that B′ ⊆ {f(b1, . . . , bk) : bi ∈ B, bj ∈ B′ for j ∈ [k] \ {i}}.

The following is the main theorem we have concerning this notion.
Theorem 5.11. Let B and B′ be subsets of A with B ⊆ B′. Suppose that B is

A-collapsible with source S and width w, and there exists an arity k term operation of
A extending B to B′. Then B′ is A-collapsible with source S and width w + (k− 1).

Before proving this theorem, we establish a lemma that will be helpful.
Lemma 5.12. If B is A-collapsible with source S and width w, then for all n ≥ 1,

all adversaries in Adv(n,B, k−1, A) are A-composable from ∪a∈SAdv(n, {a}, w+(k−
1), A).

Proof. Let A(n,B, I, A) be an arbitrary adversary from Adv(n,B, k − 1, A). By
hypothesis, there exist a term operation g : Am → A and adversaries B1, . . . ,Bm ∈
∪a∈SAdv(n, {a}, w,A) such that Bn � g(B1, . . . ,Bm). For all i ∈ [m], let B′

i be the
adversary such that B′

ij = A for all j ∈ I, and B′
ij = Bij for all j ∈ [n] \ I. That

is, the adversary B′
i is equal to the adversary Bi, except that at the coordinates in

I it is equal to A. Notice that B′
1, . . . ,B′

m ∈ ∪a∈SAdv(n, {a}, w + (k − 1), A). It is
straightforward to verify that A(n,B, I, A) � g(B′

1, . . . ,B′
m).

Proof of Theorem 5.11. Let f : Ak → A be an operation extending B to B′, and
fix an n ≥ 1. We show that B′n is composable from ∪a∈SAdv(n, {a}, w + (k − 1), A)
in a sequence of compositions, which is justified by Proposition 5.3. By Lemma 5.12,
it suffices to show that B′n is A-composable from Adv(n,B, k − 1, A). Since B′ ⊆ A,
it suffices to show that B′n is A-composable from Adv(n,B, k − 1, B′).

We show by induction that for all i such that k − 1 < i ≤ n, it holds that
all adversaries in Adv(n,B, i, B′) are A-composable from Adv(n,B, i − 1, B′). This
suffices, since B′n ∈ Adv(n,B, n,B′). Let A(n,B, I,B′) be an arbitrary adversary
from Adv(n,B, i, B′). If |I| < i, then A(n,B, I,B′) ∈ Adv(n,B, i − 1, B′) and the
claim is obvious. So suppose that |I| = i. Let d1, . . . , dk be k distinct elements from
I, and for all j ∈ [k], define Bj to be the adversary A(n,B, I \{dj}, A). We claim that
A(n,B, I,B′)�f(B1, . . . ,Bk). For all j /∈ I, we have A(n,B, I,B′)j ⊆ f(B1j , . . . ,Bkj)
because B ⊆ f(B, . . . , B), and for j ∈ I, we have A(n,B, I,B′)j ⊆ f(B1j , . . . ,Bkj)
because f extends B to B′.

A tool that will help us apply Theorem 5.11 is the following lemma.
Lemma 5.13. Let f : Ak → A be an operation and a ∈ A an element. Suppose

that the operation f extends {a} to A. Then, an algebra with universe A having f as
term operation is collapsible with source {a} and width k − 1.

Proof. By Observation 5.8, the subset {a} is A-collapsible with source {a} and
width 0; by Theorem 5.11, the subset A is A-collapsible with source {a} and width
k − 1.

We now derive two collapsibility results which illustrate the use of Lemma 5.13.
When f : A×A → A is a binary operation, let us say that u ∈ A is a unit element

of f if for all a ∈ A, it holds that f(u, a) = f(a, u) = a.
Theorem 5.14. An algebra with universe A having an idempotent binary term

operation f with unit element u is collapsible with source {u} and width 1.
Proof. It is straightforward to verify that f extends {u} to A; the theorem follows

from Lemma 5.13.
Definition 5.15. A near-unanimity operation is an operation f : Ak → A of

arity k ≥ 3 satisfying x = f(y, x, x, . . . , x) = f(x, y, x, . . . , x) = · · · = f(x, . . . , x, x, y)
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for all x, y ∈ A. In words, if all but at most one of the arguments of f are equal to x,
then x is the result of the operation.

Theorem 5.16. An algebra with universe A having a k-ary near-unanimity term
operation is collapsible with source {a} and width k − 1, for any a ∈ A.

Proof. It is straightforward to verify that f extends {a} to A for any a ∈ A; the
theorem follows from Lemma 5.13.

There is overlap between the results that we just gave and the collapsibility results
of the previous section.

• Theorem 5.14 implies Theorem 4.3, since the boolean AND ∧ has 1 as unit
element.

• Theorems 5.16 and 4.9 overlap: a dual discriminator operation is an example
of a near-unanimity operation, so Theorem 5.16 shows the collapsibility of a
larger class of algebras. On the other hand, while applying Theorem 5.16 to
a dual discriminator operation would give collapsibility with width 2, Theo-
rem 4.9 shows collapsibility with width 1.

• Lemma 5.13 can also be used to derive the collapsibility of an algebra having
a Mal’tsev term operation, but with a width of 2—in contrast to the width 1
obtained by Theorem 4.6.

We believe that it is worth highlighting that Lemma 5.13 permits us to derive in a
uniform manner all of the collapsibility results discussed thus far, although specialized
arguments such as those given in the previous section may give tighter width bounds.

We now collect together the collapsibility results that can be stated for the two-
element case and present them as a theorem; this will be useful in our study of the
three-element case. Define a binary operation f : A × A → A to be a semilattice
operation if it is associative, commutative, and idempotent. Note that every semi-
lattice operation over a two-element domain A = {a, b} has a unit element, namely,
the single element contained in A \ {f(a, b), f(b, a)}. As examples, the boolean AND
operation ∧ and boolean OR operation ∨ are the two semilattice operations over the
two-element domain {0, 1}, having unit elements 1 and 0, respectively.

Theorem 5.17. Suppose that A is a two-element idempotent algebra that is not
a G-set. Then A is collapsible with a one-element source. In particular, at least one
of the following holds.

• The algebra A contains a semilattice term operation f , and the unit element
of f serves as a source.

• The algebra A contains a near-unanimity term operation, and either element
of A serves as a source.

• The algebra A contains the operation minorityA as a term operation, and either
element of A serves as a source.

Proof. That the algebra A contains one of the named operations follows from
Theorem 2.25. The collapsibility results with the claimed sources follow from Theo-
rems 5.14, 5.16, and 4.6, respectively.

5.3. From subsets to subalgebras. Here, we demonstrate that subsets ap-
pearing in an adversary can be enlarged to subalgebras. This is made precise in the
following proposition.

Proposition 5.18. Suppose that an adversary (A1, . . . , An) is A-composable
from a set of adversaries S, and let Bi denote the subalgebra of A generated by Ai for
all i ∈ [n]. The adversary (B1, . . . , Bn) is A-composable from S.

Proof. Assume that the adversary (A1, . . . , An) is A-composable from S, and
that Ak is not a subalgebra of A, where k ∈ [n]. It suffices to show that an adversary
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(A′
1, . . . , A

′
n), with A′

i ⊇ Ai for all i ∈ [n] and A′
k � Ak, is A-composable from S;

iteratively applying this result gives the proposition.
Since Ak is not a subalgebra of A, there exists an operation f of A such that

f(Ak, . . . , Ak) contains an element outside of Ak. Define A′
i by f(Ai, . . . , Ai) for all

i ∈ [n]. We have

(A′
1, . . . , A

′
n) � f((A1, . . . , An), . . . , (A1, . . . , An)),

and so (A′
1, . . . , A

′
n) is A-composable from {(A1, . . . , An)}. By Proposition 5.3, the

adversary (A′
1, . . . , A

′
n) is A-composable from S. The adversary (A′

1, . . . , A
′
n) has the

desired properties: we have A′
i ⊇ Ai for all i ∈ [n] by the idempotence of f , and

A′
k = f(Ak, . . . , Ak) contains an element outside of Ak.

Proposition 5.18 has the following consequence.
Proposition 5.19. Let B be a subset of A that is A-collapsible with source S.

The subalgebra generated by B is also A-collapsible with source S.
Proof. Suppose that B is A-collapsible with source S and width w ≥ 0. For

each n ≥ 1, we have that Bn is A-composable from ∪a∈SAdv(n, {a}, w,A). Let B′

denote the subalgebra of A generated by B. By Proposition 5.18, the adversary B′n

is A-composable from ∪a∈SAdv(n, {a}, w,A), and so B′ is A-collapsible with source
S.

As an application of Proposition 5.19, we can observe the collapsibility of a certain
class of “basic” algebras. A finite algebra A is simple if any homomorphic image of A

smaller than A is one-element and is strictly simple if it is simple and all of its proper
subalgebras are one-element.

Theorem 5.20. Let A be a strictly simple finite idempotent algebra. Either A is
a G-set or it is collapsible with a one-element source.

Strictly simple algebras were studied in the context of CSP complexity by Bulatov,
Jeavons, and Krokhin [7]. To establish Theorem 5.20, we make use of a result from
that work.

Theorem 5.21 (follows from [7, proof of Theorem 6.2]). Let A be a strictly
simple finite idempotent algebra. Either A is a G-set or it contains a term operation
of one of the following types:

• a dual discriminator,
• a Mal’tsev operation,
• a semilattice operation f : A×A → A of the form

f(x, y) =

{
x if x = y,
m otherwise

for an element m ∈ A.
Proof of Theorem 5.20. Suppose that A is not a G-set. Then it must contain a

term operation of one of the three types given in the statement of Theorem 5.21. If A

contains a dual discriminator operation or a Mal’tsev operation, it is collapsible with
a one-element source by Theorem 4.9 or 4.6, respectively. So suppose that A contains
a semilattice operation f of the described form. Fix a ∈ A to be an element distinct
from m. By Observation 5.8, the set {a} is A-collapsible with source {a}. Now observe
that f extends {a} to {a,m}; hence, by Theorem 5.11, the set {a,m} is A-collapsible
with source {a}. Since A is strictly simple, the smallest subalgebra of A containing
{a,m} is A itself, and so A is collapsible with source {a} by Proposition 5.19.

5.4. Combining subsets. We now demonstrate that the collapsibility of the
union B1∪B2 of two subsets can be inferred from the collapsibility of the two subsets
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individually, along with an assumption stating that the source of one subset must fall
into the other.

Theorem 5.22. Let B1, B2 be subsets of A such that
• B1 is A-collapsible with source S1 and width w1, and
• B2 is A-collapsible with source S2, where S2 ⊆ B1, and width w2.

Then B1 ∪B2 is A-collapsible with source S1 and width w1 + w2.
Proof. Let n ≥ 1. By hypothesis, we have

Bn
1 � f(A(n, {s1}, I1, A), . . . ,A(n, {sk}, Ik, A))

for f a term operation of A, elements s1, . . . , sk ∈ S1, and subsets I1, . . . , Ik ⊆ [n]
with |I1|, . . . , |Ik| ≤ w1.

We claim that every adversary contained in Adv(n,B1, w2, A) is A-composable
from ∪s∈S1

Adv(n, {s}, w1 + w2, A). Consider an adversary A(n,B1, I, A) with I ⊆
[n], |I| ≤ w2, that is, an arbitrary adversary from Adv(n,B1, w2, A). Observe that
each of the adversaries A(n, {s1}, I1 ∪ I, A), . . . ,A(n, {sk}, Ik ∪ I, A) is in the set
∪s∈S1

Adv(n, {s}, w1 + w2, A). We show that

A(n,B1, I, A) � f(A(n, {s1}, I1 ∪ I, A), . . . ,A(n, {sk}, Ik ∪ I, A)).

We verify

A(n,B1, I, A)j ⊆ f(A(n, {s1}, I1 ∪ I, A)j , . . . ,A(n, {sk}, Ik ∪ I, A)j)

for all j ∈ [n] as follows:
• For j ∈ I, we have A ⊆ f(A, . . . , A) by the idempotence of f .
• For j ∈ [n] \ I, it holds that A(n, {si}, Ii, A)j = A(n, {si}, Ii ∪ I, A), and the

containment follows from Bn
1 � f(A(n, {s1}, I1, A), . . . ,A(n, {sk}, Ik, A)).

We have shown that every adversary in Adv(n,B1, w2, A) is A-composable from
∪s∈S1Adv(n, {s}, w1 + w2, A). By appeal to Proposition 5.3, it suffices to show
that (B1 ∪ B2)

n is A-composable from Adv(n,B1, w2, A). By hypothesis, we have
Bn

2 �g(A(n, {t1}, J1, A), . . . ,A(n, {tm}, Jm, A)) for g, a term operation of A; elements
t1, . . . , tm ∈ S2; and subsets J1, . . . , Jm ⊆ [n] with |J1|, . . . , |Jm| ≤ w2. We claim that
(B1 ∪ B2)

n � g(A(n,B1, J1, A), . . . ,A(n,B1, Jm, A)). We verify this as follows. For
each j ∈ [n], we have B1 ⊆ g(B1, . . . , B1) ⊆ g(A(n,B1, J1, A)j , . . . ,A(n,B1, Jm, A)j);
the first containment follows from the idempotence of g, and the second containment
follows from the fact that B1 ⊆ A(n,B1, Ji, A)j for all i ∈ [m]. Also, for each j ∈ [n],
we have that B2 is contained in

g(A(n, {t1}, J1, A)j , . . . ,A(n, {tm}, Jm, A)j),

which in turn is contained in

g(A(n,B1, J1, A)j , . . . ,A(n,B1, Jm, A)j);

the first containment was given above, and the second containment follows from the
fact that A(n, {ti}, Ji, A)j ⊆ A(n,B1, Ji, A)j for all i ∈ [m], as {ti} ⊆ B1 for all
i ∈ [m].

Now we give an application of Theorem 5.22. Let us say that an algebra A

having two or more elements is pair minimal if for every two-element subset B of A,
the smallest subalgebra of A containing B is minimal in that it does not properly
contain any nontrivial subalgebras.
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Theorem 5.23. If A is a pair minimal algebra that does not have a G-set as
factor, then A is collapsible.

Proof. We show that every subset B ⊆ A is A-collapsible with a one-element
source, by induction on |B|. For subsets B with |B| = 1, this is immediate from
Observation 5.8.

Suppose that B ⊆ A is A-collapsible with source {s} and suppose a ∈ A. We show
that there is a subset of A containing B∪{a} that is A-collapsible with a one-element
source. Let B′ be the smallest subalgebra of A containing {s, a}. Because A is pair
minimal, B′ does not properly contain any nontrivial subalgebras. By Fact 2.16, it
follows that any homomorphic image of B′ smaller than B′ is one-element, and thus
B′ is a strictly simple algebra. By Theorem 5.20, and Observation 5.9, the set B′

is A-collapsible with a one-element source {s′}. By Theorem 5.22 with B1 = B′,
S1 = {s′}, B2 = B, and S2 = {s}, we have that B ∪ B′ is A-collapsible with source
{s′}.

Any algebra A = (A,F ) where every two-element subset B of A is a subalgebra
can immediately be seen to be pair minimal. We can therefore derive the following
corollary from Theorem 5.23.

Corollary 5.24. If A is an algebra that does not have a G-set as factor where
every two-element subset B of A is a subalgebra of A, then A is collapsible.

From this corollary and Bulatov’s theorem (Theorem 2.24), we can derive the
following result.

Corollary 5.25. Let Γ be a constraint language over A containing all subsets
of A. Then QCSPc(Γ) is in P if the algebra AΓ does not have a G-set as factor and
is NP-hard otherwise.

Proof. If the algebra AΓ has a G-set as factor, then QCSPc(Γ) is NP-hard by
Theorem 2.22. If the algebra AΓ does not have a G-set as factor, then AΓ is col-
lapsible by Corollary 5.24; note that, since all subsets of A are in Γ, all subsets of
A are subalgebras of AΓ. By Proposition 5.2, QCSPc(Γ) reduces to CSPc(Γ), and by
Theorem 2.24, the problem CSPc(Γ) is in P.

6. Sink algebras. In this section, we identify a class of algebras that we call
sinks. We prove a theorem which shows that any algebra must either (1) have as
factor a sink or a G-set, or (2) have the desirable property of being collapsible. Now,
any constraint language whose algebra has a G-set as factor is known to be hard (The-
orem 2.22), and, for any constraint language Γ whose algebra AΓ is collapsible, the
problem QCSPc(Γ) has the same complexity as CSPc(Γ) (Proposition 5.2). Therefore,
this theorem effectively reduces the classification of tractable problems QCSPc(Γ) to
(1) the study of sinks and (2) the classification of the problems CSPc(Γ). In the
next section, we will demonstrate the utility of both the definition of sink and the
accompanying theorem, where they will be used to study the three-element case.

We need to introduce two properties of algebras before defining the notion of a
sink.

Definition 6.1. A finite idempotent algebra A is enclosed if for every term
operation f : Ak → A of A and maximal proper subalgebras B1, . . . , Bk of A, there
exists a maximal proper subalgebra B such that f(B1, . . . , Bk) ⊆ B.

Let A be a finite idempotent algebra. When B,B′ are two maximal proper sub-
algebras of A, we say that B overlaps B′ (or, that B and B′ overlap) if B ∩ B′ �= ∅,
and we say that B and B′ are connected if there exists a sequence of maximal proper
subalgebras B1, . . . , Bk such that B = B1, B′ = Bk, and Bi overlaps Bi+1 for all
i ∈ [k − 1].
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Definition 6.2. A finite idempotent algebra A is fully connected if all pairs of
maximal proper subalgebras of A are connected.

We can now give the definition of a sink algebra.
Definition 6.3. A finite idempotent algebra A = (A,F ) is a sink if it is enclosed,

is fully connected, does not contain a G-set as factor, and is not collapsible.
We now prove the promised theorem concerning sinks. This theorem shows that

an algebra is collapsible so long as it excludes two types of “forbidden” algebras: sinks
and G-sets.

Theorem 6.4. If A = (A,F ) is a finite idempotent algebra that does not contain
a sink or a G-set as factor, then A is collapsible.

Proof. We prove this theorem by induction on |A|, the size of the universe of the
algebra A. It is trivial for |A| = 1, by Observation 5.8. If A has no nontrivial proper
subalgebra, then any homomorphic image of A smaller than A must be one-element
by Fact 2.16, and hence A is strictly simple; in this case, the theorem follows from
Theorem 5.20. We therefore assume that A has a nontrivial proper subalgebra.

If the algebra A is not enclosed, then, by definition, there exists a term opera-
tion f : Ak → A of A and maximal proper subalgebras B1, . . . , Bk of A such that
the smallest subalgebra of A containing f(B1, . . . , Bk) is A itself. By induction and
Observation 5.9, we may assume that each of the sets B1, . . . , Bk is A-collapsible.
Because f(B1, . . . , Bk)

n � f(Bn
1 , . . . , B

n
k ) for all n ≥ 1, we have that f(B1, . . . , Bk)

is A-collapsible; by Proposition 5.19 with B = f(B1, . . . , Bk), we have that A is A-
collapsible. Let us therefore assume for the rest of the proof that the algebra A is
enclosed.

The following lemma provides some structural information concerning A.
Lemma 6.5. Suppose that A is a finite idempotent algebra that is enclosed. Then,

A is either fully connected or its maximal proper subalgebras are disjoint.
Proof. Let B = {Bi}i∈I be a collection of maximal proper subalgebras that is

closed in the sense that if a maximal proper subalgebra B is connected to a Bi in
the collection, then B is in the collection. It suffices to show that ∪i∈IBi is in fact a
subalgebra of A. We will establish the following claim.

Claim. Let f : Ak → A be a term operation of A, let B1, . . . , Bk be subalgebras
from B, and let B′

1, . . . , B
′
k be subalgebras from B such that Bi overlaps B′

i for all
i ∈ [k]. If B is a maximal proper subalgebra such that f(B1, . . . , Bk) ⊆ B, then there
exists a maximal proper subalgebra B′ overlapping B such that f(B′

1, . . . , B
′
k) ⊆ B′.

We can use the claim to show that ∪i∈IBi is a subalgebra, as follows. Let
f : Ak → A be an arbitrary term operation of A. Let i1, . . . , ik ∈ I be arbitrary.
Fix B0 to be any member of B. We have f(B0, . . . , B0) ⊆ B0. Since B0 is connected
to each of Bi1 , . . . , Bik , by repeated application of the claim, we can establish that
f(Bi1 , . . . , Bik) is contained in a maximal proper subalgebra connected to B0, imply-
ing that f(Bi1 , . . . , Bik) is contained in a member of B. Since the indices i1, . . . , ik
were arbitrary, this implies that ∪i∈IBi is a subalgebra of A.

We now prove the claim. We have f(B1, . . . , Bk) ⊆ B. It follows that f(B1 ∩
B′

1, . . . , Bk ∩ B′
k) ⊆ B. Since f(B1 ∩ B′

1, . . . , Bk ∩ B′
k) ⊆ f(B′

1, . . . , B
′
k), we have

that B overlaps f(B′
1, . . . , B

′
k). Since A is enclosed, f(B′

1, . . . , B
′
k) is contained in a

maximal proper subalgebra B′. From the facts that B overlaps f(B′
1, . . . , B

′
k) and

that f(B′
1, . . . , B

′
k) ⊆ B′, we have that B overlaps B′, giving the claim.

By Lemma 6.5, we have that A is either fully connected, or that its maximal
proper subalgebras are disjoint.

Suppose that A is fully connected. Then we have that A is fully connected, is
enclosed, and (by hypothesis) does not contain a G-set as factor; also by hypothesis,



COMPLEXITY OF QUANTIFIED CONSTRAINT SATISFACTION 1697

A is not a sink, so by definition of a sink, we have that A is collapsible.
Suppose that the maximal proper subalgebras of A are disjoint. In this case, the

following lemma shows the collapsibility of A.
Lemma 6.6. Suppose that A is a finite idempotent algebra that is enclosed and

such that the maximal proper subalgebras of A are disjoint. Then the equivalence
relation θ ⊆ A × A having the maximal proper subalgebras of A as its equivalence
classes is a congruence. And if the homomorphic image of A given by θ is collapsible
with source S, then A is collapsible with any source T such that S ⊆ {aθ : a ∈ T}.

Proof. Let θ be the equivalence relation having the maximal proper subalgebras
of A as its equivalence classes. We first verify that θ is a congruence. We need
to show that each operation f ∈ F is a polymorphism of θ. Let f be an arity k
operation from F , and suppose (b1, b

′
1), . . . , (bk, b

′
k) ∈ θ. We have to demonstrate

that (f(b1, . . . , bk), f(b′1, . . . , b
′
k)) ∈ θ. By definition of θ, for all i ∈ [k], there ex-

ists a maximal proper subalgebra Bi such that bi, b
′
i ∈ Bi. Since A is enclosed,

there exists a maximal proper subalgebra B such that f(B1, . . . , Bk) ⊆ B. Thus
f(b1, . . . , bk), f(b′1, . . . , b

′
k) ∈ B, and (f(b1, . . . , bk), f(b′1, . . . , b

′
k)) ∈ θ.

Now assume that the homomorphic image (Aθ, F θ) of A is collapsible with source
S and width w ≥ 0. Assume also that T is a subset of A such that S ⊆ {aθ : a ∈ T}.
We claim that A is collapsible with source T and width w.

Let n ≥ 1. There exists an operation f ∈ F such that (Aθ)n � fθ(B1, . . . ,Bk),
where B1, . . . ,Bk ∈ ∪s∈SAdv(n, {s}, w,Aθ). For all i ∈ [k], define the element si to
be an element of S such that Bi ∈ Adv(n, {si}, w,Aθ). Let ti be an element in T such
that si = tθi . For all i ∈ [k], define B′

i ∈ Adv(n, {ti}, w,A) to be the adversary such
that

B′
ij =

{
A if Bij = Aθ,
{ti} if Bij = {si}.

We have that Aθ ⊆ fθ(B1j , . . . ,Bkj) for all j ∈ [n]. Observe that Bij = (B′
ij)

θ for

all i ∈ [k] and j ∈ [n]. Thus Aθ ⊆ fθ(B1j , . . . ,Bkj) ⊆ fθ((B′
1j)

θ, . . . , (B′
kj)

θ) ⊆
(f(B′

1j , . . . ,B′
kj))

θ. Letting Aj denote f(B′
1j , . . . ,B′

kj), we have Aθ ⊆ (Aj)
θ and

(A1, . . . , An) � f(B′
1, . . . ,B′

k). Since for each j ∈ [n] we have the containment Aθ ⊆
(Aj)

θ, the set Aj contains one element from each equivalence class of θ, and hence
the subalgebra generated by Aj is A itself. By Proposition 5.18, we conclude that An

is A-composable from ∪t∈TAdv(n, {t}, w,A).
Note that the homomorphic image of A given by θ is smaller than A, as A has a

nontrivial proper subalgebra. This homomorphic image is thus collapsible by induc-
tion, and we can apply Lemma 6.6 to derive the collapsibility of A.

7. The three-element case. This section uses the ideas developed throughout
this paper to investigate the complexity of QCSPc(Γ) for constraint languages over a
three-element domain. In particular, we analyze three-element sink algebras, showing
that any such algebra must have a particular semilattice operation as term operation.
This result will allow us to establish a classification of QCSPc(Γ) for all constraint
languages Γ that do not have the identified semilattice operation as polymorphism.

We begin by observing that there are no one- or two-element sinks.
Observation 7.1. There are no one- or two-element sinks.
Proof. By definition, a sink does not contain a G-set as factor and is not col-

lapsible. Observation 5.8 implies that any one-element algebra is collapsible, and
Theorem 5.17 shows that any two-element algebra not containing a G-set as factor is
collapsible.
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We will show, however, that there are three-element sinks. We begin our investi-
gation of three-element sinks by showing that any such sink must contain a particular
semilattice operation.

Theorem 7.2. Let A = (A,F ) be a three-element idempotent algebra that is
a sink. Then, A has exactly two subalgebras of size two. Let c denote the common
element of these two subalgebras, let a, b denote the other two elements, and let sabc :
A × A → A denote the semilattice operation defined by sabc(x, y) = c if x �= y, and
sabc(x, y) = x if x = y. The algebra A has sabc as a term operation.

Proof. Suppose that A is a sink having three elements. Since a sink is fully
connected by definition, each element of A must be contained in a proper subalgebra
of size strictly greater than one. Hence, each element of A is contained in a subalgebra
of size two, from which it follows that there are either two or three subalgebras of size
two. If there are three subalgebras of size two, then by Corollary 5.24, the algebra A

is collapsible, contradicting that A is a sink. We now have that A contains exactly
two subalgebras. Let us denote these two subalgebras by α = {a, c} and β = {b, c}.

By Theorem 5.17, each of the subalgebras α and β are collapsible with a one-
element source. If either one of them is collapsible with source {c}, then by Theo-
rem 5.22, we have that α ∪ β = A is A-collapsible (that is, A is collapsible), con-
tradicting that A is a sink. Hence, neither of α, β is collapsible with source {c}; by
Theorem 5.17, we have that

• the subalgebra α contains a semilattice term operation sα with a as unit
element,

• the subalgebra β contains a semilattice term operation sβ with b as unit
element, and

• neither of the subalgebras α, β contains a semilattice term operation with c
as the unit element.

It follows that A contains a term operation sa whose restriction to {a, c} is sα, and a
term operation sb whose restriction to {b, c} is sβ .

Observe that, for every binary term operation f of A, we cannot have f(a, c) =
f(c, a) = a; otherwise the subalgebra α would contain a semilattice term operation
with c as the unit element. Therefore, the restriction of f to {a, c} is either a projection
(when f(a, c) �= f(c, a)) or the semilattice operation sa (when f(a, c) = f(c, a) = c).
Likewise, the restriction of f to {b, c} is either a projection or the semilattice operation
sb. From these observations, it is straightforward to verify that the binary term
operation s′ : A × A → A defined by s′(x, y) = sb(sa(x, y), sa(y, x)) is equal to sabc,
except possibly at the points (a, b), (b, a). Because {a, b} is not a subalgebra of A,
there exists a binary term operation r : A× A → A of A with r(a, b) = c. Using the
observations again for r, it is straightforward to verify that the binary term operation
s′′ : A×A → A defined by s′′(x, y) = s′(r(x, y), r(y, x)) is equal to sabc.

By combining this result with the previous section’s theorem on sinks and Bu-
latov’s theorem (Theorem 2.23), we can state a QCSPc(Γ) tractability classification
of all constraint languages Γ, over a three-element domain, that do not have the
identified semilattice polymorphism.

Theorem 7.3. Let Γ be a constraint language over a three-element domain D.
Suppose that there is no way to label the elements of D as a, b, c such that sabc (the
operation defined in the statement of Theorem 7.2) is a polymorphism of Γ. Then,
the problem QCSPc(Γ) is in P if the algebra AΓ does not have a G-set as factor, and
NP-hard otherwise.

Proof. If the algebra AΓ has a G-set as factor, then it is NP-hard, by Theorem 2.22.
So suppose that the algebra AΓ does not have a G-set as factor. Because s is not
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a polymorphism of Γ, by Theorem 7.2, AΓ is not a sink. Moreover, it does not
contain a sink as factor, by Observation 7.1. By Theorem 6.4, the algebra AΓ is
collapsible. By Proposition 5.2 QCSPc(Γ) reduces to CSPc(Γ), and, by Bulatov’s
theorem (Theorem 2.23), CSPc(Γ) is in P.

We have shown that any three-element sink must have sabc as a polymorphism,
but we have not yet demonstrated that any three-element sinks exist! We now give a
family of examples of three-element sinks, which includes the algebra ({a, b, c}, {sabc})
as a member.

Let us introduce some concepts and terminology. Suppose that A is a three-
element sink. We have seen (Theorem 7.2) that A must have two subalgebras of size
two. Let us denote these two subalgebras by α = {a, c} and β = {b, c}. Let us say that
a term operation f : Ak → A of A can be realized as an operation g : {α, β}k → {α, β}
if for all S1, . . . , Sk ∈ {α, β}, it holds that f(S1, . . . , Sk) ⊆ g(S1, . . . , Sk). Notice that
because A is fully enclosed, every term operation f : Ak → A of A can be realized
as some operation g : {α, β}k → {α, β}. However, it is certainly possible that a
term operation of A can be realized as more than one operation. For example, let us
consider the operation sabc. The following containments hold:

sabc(α, α) ⊆ α,

sabc(α, β) ⊆ {c},

sabc(β, α) ⊆ {c},

sabc(β, β) ⊆ β.

Since {c} is contained in both α and β, the operation sabc can be realized as any
operation g : {α, β}×{α, β} → {α, β} such that g(α, α) = α and g(β, β) = β, that is,
any idempotent binary operation on {α, β}. Let us say that a term operation f of A

is αβ-projective if it can be realized by an operation g on {α, β} that is a projection.
As an example, sabc can be realized as either of the two binary projections over {α, β}
and hence is αβ-projective.

The following theorem gives a family of examples of three-element sinks.
Theorem 7.4. Let A = (A,F ) be a three-element idempotent algebra with A =

{a, b, c} and sabc ∈ F . If all operations in F are αβ-projective, then A is a sink.
As just discussed, the operation sabc is αβ-projective, and hence this theorem

implies that the algebra ({a, b, c}, {sabc}) is a sink.
Proof. Let A be an algebra of the described form. Observe that {a, b} is not a two-

element subalgebra of A, since it is not preserved by sabc. We show that α = {a, c} and
β = {b, c} are two-element subalgebras of A, which implies that A is fully connected.
Let f : Ak → A be an operation from F . Since f is αβ-projective, it can be realized
as a projection g : {α, β}k → {α, β}. Observe that f(α, . . . , α) ⊆ g(α, . . . , α) = α and
f(β, . . . , β) ⊆ g(β, . . . , β) = β, implying that α and β are both preserved by f . We
have shown that α and β are subalgebras of A.

We now prove that every term operation of A is αβ-projective. This implies that
every term operation of A can be realized as an operation on {α, β}, which in turn
implies that A is enclosed, as α and β are exactly the maximal proper subalgebras of
A. First, observe that any projection f : Ak → A can be realized by the projection
g : {α, β}k → {α, β} that projects onto the same coordinate as f . Second, let f :
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An → A and f1, . . . , fn : Am → A be operations that are αβ-projective, and let
g : {α, β}n → {α, β} and g1, . . . , gn : {α, β}m → {α, β} be projections realizing
them, respectively. Then, the composition of f with f1, . . . , fn, namely, the operation
f(f1(x1, . . . , xm), . . . , fn(x1, . . . , xm)), is realized by the corresponding composition
g(g1(y1, . . . , ym), . . . , gn(y1, . . . , ym)) which is a projection.

We now show that A does not contain a G-set as factor. First, observe that A

itself is not a G-set, because sabc is not essentially unary. Also, observe that the
subalgebra α is not a G-set, because sabc|α is not essentially unary; likewise, the
subalgebra β is not a G-set, because sabc|β is not essentially unary. Any other factor
of A of nontrivial size not isomorphic to A, the subalgebra α, or the subalgebra β must
be a homomorphic image of A having size two. By Fact 2.16, such a homomorphic
image must arise from a congruence θ having α and {b} as its equivalence classes, or a
congruence θ having β and {a} as its equivalence classes. In either case, the operation
sθabc is not essentially unary.

We have shown that A is fully connected, enclosed, and does not contain a G-set
as factor. To establish that A is a sink, it remains to show that A is not collapsible.
To achieve this, it suffices to demonstrate that A is not collapsible with source A; that
is, for any w ≥ 1, there exists n ≥ 1 such that the adversary An is not A-composable
from ∪a∈AAdv(n, {a}, w,A). Fix w ≥ 1, let n = w + 1, and consider an adversary
(A1, . . . , An) such that (A1, . . . , An) is A-composable from ∪a∈AAdv(n, {a}, w,A). We
have (A1, . . . , An) � f(B1, . . . ,Bk) for B1, . . . ,Bk ∈ Adv(n, {a}, w,A) and f a term
operation of A. We have shown that every term operation of A is αβ-projective,
so let us assume that f is realized by the projection g : {α, β}k → {α, β} which
projects onto its ith coordinate, where i ∈ [k]. Since n > w, there exists a coordinate
j ∈ [n] such that |Bij | = 1. Thus Bij ⊆ α or Bij ⊆ β. From this and the fact
that f is realized by g, which is the projection onto the ith coordinate, we have
f(B1j , . . . ,Bkj) ⊆ α or f(B1j , . . . ,Bkj) ⊆ β. From (A1, . . . , An) � f(B1, . . . ,Bk), we
have Aj ⊆ f(B1j , . . . ,Bkj) and thus either Aj ⊆ α or Aj ⊆ β, implying that Aj �= A
and hence (A1, . . . , An) �= An.

If it could be shown that the problem QCSPc(Γ) is polynomial-time tractable for
any constraint language Γ having sabc as a polymorphism, then this result along with
Theorem 7.3 would imply a classification of those problems QCSPc(Γ) over a three-
element domain that are polynomial-time tractable. Unfortunately, this is not the
case: it is known that there exists a finite constraint language Γ over domain {a, b, c}
having sabc as polymorphism such that QCSPc(Γ) is coNP-hard [10]. We leave further
investigation of the properties and complexity of three-element sinks as an issue for
future research.
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[25] H. Kleine Büning, M. Karpinski, and A. Flögel, Resolution for quantified Boolean formu-
las, Inform. Comput., 117 (1995), pp. 12–18.

[26] Ph. G. Kolaitis and M. Y. Vardi, Conjunctive-query containment and constraint satisfaction,
J. Comput. System Sci., 61 (2000), pp. 302–332.

[27] B. Larose and L. Zádori, Taylor terms, constraint satisfaction and the complexity of polyno-
mial equations over finite algebras, Internat. J. Algebra Comput., 16 (2006), pp. 563–581.

[28] B. Martin and F. Madelaine, Towards a trichotomy for quantified H-coloring, in Logical
Approaches to Computational Barriers, Second Conference on Computability in Europe,
Lecture Notes in Comput. Sci. 3988, Springer-Verlag, Berlin, 2006, pp. 342–352.

[29] R. N. McKenzie, G. F. McNulty, and W. F. Taylor, Algebras, Lattices, and Varieties,
Vol. I, Wadsworth and Brooks, Monterey, CA, 1987.

[30] T. J. Schaefer, The complexity of satisfiability problems, in Proceedings of the Tenth Annual
ACM Symposium on Theory of Computing (STOC), 1978, pp. 216–226.

[31] L. Stockmeyer and A. R. Meyer, Word problems requiring exponential time, in Proceedings
of the 5th Annual ACM Symposium on Theory of Computing, 1973, pp. 1–10.

[32] A. Szendrei, Clones in Universal Algebra, Séminaire de Mathématiques Supérieures 99, Uni-
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Abstract. The problem of characterizing all the testable graph properties is considered by
many to be the most important open problem in the area of property testing. Our main result
in this paper is a solution of an important special case of this general problem: Call a property
tester oblivious if its decisions are independent of the size of the input graph. We show that a
graph property P has an oblivious one-sided error tester if and only if P is semihereditary. We
stress that any “natural” property that can be tested (either with one-sided or with two-sided error)
can be tested by an oblivious tester. In particular, all the testers studied thus far in the literature
were oblivious. Our main result can thus be considered as a precise characterization of the natural
graph properties, which are testable with one-sided error. One of the main technical contributions
of this paper is in showing that any hereditary graph property can be tested with one-sided error.
This general result contains as a special case all the previous results about testing graph properties
with one-sided error. More importantly, as a special case of our main result, we infer that some
of the most well-studied graph properties, both in graph theory and computer science, are testable
with one-sided error. Some of these properties are the well-known graph properties of being perfect,
chordal, interval, comparability, permutation, and more. None of these properties was previously
known to be testable.

Key words. property testing, hereditary properties, one-sided error, regularity lemma

AMS subject classifications. 05D99, 05C85, 68W20, 68W25

DOI. 10.1137/06064888X

1. Introduction.

1.1. Definitions and background. The meta problem in the area of property
testing is the following: Given a combinatorial structure S, distinguish if S satisfies
some property P or if S is ε-far from satisfying P, where S is said to be ε-far from
satisfying P if an ε-fraction of its representation should be modified in order to make
S satisfy P. The main goal is to design randomized algorithms, which look at a
very small portion of the input, and using this information distinguish with high
probability between the above two cases. Such algorithms are called property testers
or simply testers for the property P. Preferably, a tester should look at a portion of
the input whose size is a function of ε only. Blum, Luby, and Rubinfeld [14] were the
first to formulate a question of this type, and the general notion of property testing
was first formulated by Rubinfeld and Sudan [36], who were motivated in studying
various algebraic properties such as linearity of functions.
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The main focus of this paper is in testing properties of graphs, where a property
of graphs is simply a family of graphs closed under isomorphism. Throughout the
paper we consider only decidable graph properties, that is, properties P for which it
is possible to decide in finite time whether an input graph G satisfies P. In this case
a graph G is said to be ε-far from satisfying a property P if one needs to add/delete
at least εn2 edges to/from G in order to turn it into a graph satisfying P. A tester for
P should distinguish with high probability, say 2/3, between the case that G satisfies
P from the case that G is ε-far from satisfying P. Here we assume that the tester can
query some oracle, whether a pair of vertices, i and j, are adjacent in the input graph
G. In what follows we will say that a tester for a graph property P has one-sided
error if it accepts any graph satisfying P with probability 1 (and still rejects those
that are ε-far with probability at least 2/3). If the tester may reject graphs satisfying
P with nonzero probability, then it is said to have two-sided error.

The study of the notion of testability for combinatorial structures, and mainly
for labelled graphs, was introduced in the seminal paper of Goldreich, Goldwasser,
and Ron [22], where it was shown that many natural graph properties such as k-
colorability, having a large clique and having a large cut, have a tester, whose query
complexity, that is, the number of oracle queries of type “does (i, j) belong to E(G),”
can be upper bounded by a function that depends only on ε and is independent of the
size of the input (the dependence on ε may vary between properties). In this paper we
will say that properties having such efficient testers, that is, whose query complexity
can be upper bounded by a function of ε only, are simply testable. Following [22],
many other graph properties were shown to be testable, while others were shown to
be nontestable. We note that the model of graph property testing that we study here
is the so-called dense graph model as defined in [22]. Graph property testing has also
been studied in other models, such as the bounded degree model [23] and the general
density model [30].

1.2. Related work. The most interesting results in property testing are those
that show that large families of problems are testable. The main result of [22] states
that a certain abstract graph partition problem, which includes as special cases k-
colorability, having a large cut and having a large clique, is testable. The authors
of [24] gave a characterization of the partition problems discussed in [22] that are
testable with one-sided error. In [4], a logical characterization of a family of testable
graph properties was obtained. According to this characterization, every first-order
graph property of type ∃∀ (see subsection 2.3.2) is testable, while there are first-
order graph properties of type ∀∃ that are not testable. These results were extended
in [16]. There are also several general testability and nontestability results in other
areas besides testing graph properties. In [5] it is proved that every regular language
is testable. This result was extended to any read-once branching program in [29]. On
the other hand, it was proved in [19] that there are read-twice branching programs
that are not testable. The main result of [8] states that any constraint satisfaction
problem is testable.

With this abundance of general testability results, a natural question is, What
makes a combinatorial property testable? As graphs are the most well-studied combi-
natorial structures in the theory of computation, it is natural to consider the problem
of characterizing the testable graph properties as the most important open problem
in the area of property testing. Regretfully, though, finding such a characterization
remains a challenging open problem. The main result of this paper, Theorem 2, re-
solves an important natural special case of this open problem, which concerns property
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testers with one-sided error. For additional results and references on graph property
testing as well as on testing properties of other combinatorial structures, the reader
is referred to [17], [21], [35], and [12].

2. The new results.

2.1. The main technical result and its immediate applications. A graph
property is hereditary if it is closed under removal of vertices (and not necessarily
under removal of edges). Equivalently, such properties are closed under taking induced
subgraphs. The main technical result of this paper is the following.

Theorem 1 (main technical result). Every hereditary graph property is testable
with one-sided error.

As we will see later, the testing algorithms we design for a given hereditary prop-
erty P simply sample a set of vertices S and accept if and only if the graph induced
by S satisfies P. This immediately implies that these testers have one-sided error. Of
course, the main difficulty lies in proving that if the input is ε-far from satisfying P,
then the graph induced by a large enough S (but only large enough as a function of
ε) will not satisfy P with high probability.

We note that besides certain partition properties such as having a large cut and
having a large clique, which were proved to be testable with two-sided error in [22],
essentially any graph property that was studied in the literature is hereditary. Thus,
Theorem 1 combined with the graph partition problems of [22] implies the testability
of (nearly) any natural graph property. To demonstrate the generality of Theorem 1,
we use it to infer that many graph properties, which prior to this paper were not
known to be testable, are in fact testable with one-sided error. These include the
following hereditary properties:

• Perfect graphs. A graph G is perfect if for every induced subgraph of G,
denoted G′, the chromatic number of G′ equals the size of the largest clique
in G′.

• Chordal graphs. A graph is chordal if it contains no induced cycle of length
at least 4.

• Interval graphs. A graph G on n vertices is an interval graph if there are
closed intervals on the real line I1, . . . , In such that (i, j) ∈ E(G) if and only
if Ii ∩ Ij �= ∅.

• Circular-arc graphs. A graph G on n vertices is a circular-arc graph if there
are closed intervals on a cycle I1, . . . , In such that (i, j) ∈ E(G) if and only if
Ii ∩ Ij �= ∅.

• Comparability graphs. A graph G is a comparability graph if its edges can
be oriented such that if there is a directed edge from i to j and from j to k,
then there is one from i to k.

• Permutation graphs. A graph G on n vertices is a permutation graph if there
is a permutation σ of {1, . . . , n} such that (i, j) ∈ E(G) if and only if (i, j) is
an inversion under σ.

• Asteroidal triple-free graphs: G is asteroidal triple-free if it contains no in-
dependent set of three vertices such that each pair is joined by a path that
avoids the neighborhood of the third.

• Split graphs. G is a split graph if V (G) can be split into a clique and an
independent set.

Another abstract family of hereditary graph properties, which have been exten-
sively studied, are the so-called intersection graph properties. In this case we fix a
certain “type” T of sets and say that a graph G on n vertices has the intersection
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property defined by T , if there are n sets S1, . . . , Sn of type T , such that vertices i
and j are connected in G if and only if Si ∩ Sj �= ∅. For example, the property of
being a d-Box (see [15] and its references) is obtained by letting the “type” of the
sets be axis parallel boxes in Rd. See the monograph [28] for more information and
examples of intersection graph properties.

It is clear that the above surveyed properties are some of the most well-studied
properties in graph theory as well as in theoretical and applied computer science.
These properties also arise naturally in chemistry, biology, social sciences, statistics,
etc. See [25], [28], [32] and their references, where other hereditary properties and
their applications are also discussed.

To further convey the reader of the power of Theorem 1, we mention that Lemma
4.2, which is the main result needed to obtain Theorem 1, immediately implies, for
example, that for every ε there is c = c(ε), such that if a graph G is ε-far from being
chordal, then G contains an induced cycle of length at most c, and that similar results
hold for any other hereditary property. This is nontrivial, as it is not clear a priori
that there is no graph that is, say, 1

100
-far from being chordal and yet contains only

induced cycles of length at least, say, Ω(logn). Put another way, if G has the property
that all its induced subgraphs of size c = c(ε) are chordal, then G is ε-close to being
chordal. This gives a strong connection between the local properties of a graph and its
global properties. In fact, we can show that an analogous result holds for any graph
property; see Theorem 6.

2.2. The main result: Oblivious testing with one-sided error. By a result
of [4] and [24], it is possible to assume that a property tester works by making its
queries nonadaptively. In other words, the tester first picks a random subset of vertices
S, then queries all pairs (i, j) i, j ∈ S, and then continues without making additional
queries. Inspecting previous results on property testing motivates the following notion
of a slightly more restricted tester, which works while being “oblivious” to the size of
the input.1

Definition 2.1 (oblivious tester). A tester (one-sided or two-sided) for a prop-
erty P is said to be oblivious if it works as follows: Given ε, the tester computes an
integer Q = Q(ε) and asks an oracle for a subgraph induced by a set of vertices S of
size Q, where the oracle chooses S randomly and uniformly from the vertices of the
input graph. If Q is larger than the size of the input graph, then the oracle returns
the entire graph. The tester then accepts or rejects (possibly randomly) according to ε
and the graph induced by S.

Note that by insisting that the oracle chooses the set of vertices S, an oblivious
tester indeed operates without knowing the size of the input, because if the tester had
to choose S, then it would have to know the size of the input graph in order to specify
a vertex of the graph. We believe that the above definition captures the essence of
property testing in the dense graph model: all the testers that have been analyzed in
this model were in fact oblivious or could trivially be turned into oblivious testers.
Even the testers for properties such as having an independent set of size 1

2
n or a cut

with at least 1
8
n2 edges (see [22]), whose definition involves the size of the graph, have

oblivious testers. The reason is simply that these properties can easily be expressed
without using the size of the graph. For example, in order to test if a graph has a cut
with at least 1

8
n2 edges one can sample some Q = Q(ε) vertices and accept the input

1The tester implied by the results of [24] and [4] may use the size of the input in order to
determine the query complexity and in order to make its decisions.
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if and only if the graph induced on the sample has a cut of size at least (1
8
− ε

2
)Q2 (of

course, one needs to prove that this sampling scheme indeed works; see [22]). Another
family of graph properties for which we can confine ourselves to oblivious testers is the
family of hereditary properties, which is shown to be testable by an oblivious tester in
the present paper. We finally note that most “applications” of property testing (see
[17] and [35]) involve testing properties of huge networks such as the Internet, whose
size is unknown anyway.

Observe that there are two restrictions that the above definition imposes on an
oblivious tester. The first is that it cannot use the size of the input in order to
determine the size, Q, of the sample of vertices. In other words, Q is only a function
of ε and not a function of ε and n. The reader should note that a tester for a
testable graph property (as defined in section 1) may have a query complexity that
is bounded by a function of ε but one that depends on the size of the graph (e.g.,
Q(ε, n) = 1/ε+(−1)n). Though this seems like an annoying technicality, it was proved
in [10] that this subtlety may have nontrivial ramifications. The second, seemingly
more severe, restriction on an oblivious tester is that it cannot use the size of the
input in order to make its decisions after the subgraph induced on the set S of Q
vertices has been obtained. One can easily “cook” graph properties that cannot be
tested by an oblivious tester. However, these properties are somewhat nonnatural.
One example out of many is the following property, which we denote by P ′: A graph
on an even number of vertices satisfies P ′ if and only if it is bipartite, while a graph
on an odd number of vertices satisfies P ′ if and only if it is triangle-free. A tester for
P ′ clearly must use the size of the input in order to make its decision regarding the
graph induced by the sample.

We now turn to the main result of this paper, which gives a characterization of
the graph properties that can be tested with one-sided error by an oblivious tester.
Intuitively, in order to test a property with one-sided error the tester must “find”
some kind of proof that the input does not satisfy the property. Of course the graph
itself is such a proof, but as we confine ourselves to testers whose number of queries
is independent of the size of the input, the tester must find a small proof of this fact.
For hereditary properties, such proofs exists and are, in fact, (relatively) abundant.
These are small induced subgraphs that do not satisfy the property. In fact, this is
the main idea behind our algorithm for testing hereditary properties. See Lemma 4.2,
which is the main technical result of this paper.

A natural question is if other nonhereditary properties have such small proofs.
For example, having a clique of size 1

2
n obviously does not have such small proofs.

The reason is that for any fixed graph C there are graphs that contain C as an in-
duced subgraph and have a clique of size 1

2
n, and graphs that contain C as an induced

subgraph and are far from having a clique of size 1
2
n. In [24] it was shown that when

considering the partition problems of [22], which contain the clique property as a
special case, the nonhereditary partition properties cannot be tested with one-sided
error. For general properties, the situation is much more involved. However, consid-
ering only oblivious testers enables us to precisely characterize the graph properties,
which are testable with one-sided error. To state this characterization, we need the
following definition.

Definition 2.2 (semihereditary). A graph property P is semihereditary if there
exists a hereditary graph property H such that the following hold:

1. Any graph satisfying P also satisfies H.
2. There is a function M : (0, 1) �→ N, such that any graph G of size at least
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M(ε), which is ε-far from satisfying P, contains an induced subgraph that
does not satisfy H.

Comment 2.3. As H is hereditary, a simpler condition equivalent to item 2
above is that G itself does not satisfy H. However, the statement above will be more
convenient for the proof of Theorem 2.

Clearly, any hereditary graph property P is also semihereditary because we can
take H in the above definition to be P itself. In simple words, a semihereditary P is
obtained by taking a hereditary graph property H and removing from it a (possibly
infinite) set of graphs. This means that the first item in Definition 2.2 is satisfied.
As there are graphs not satisfying P that do satisfy H, these graphs do not contain
any induced subgraph that does not satisfy H (because H is hereditary). The only
restriction, which is needed in order to get item 2 in Definition 2.2, is that P will be
such that for any ε > 0 there will be only finitely many graphs that are ε-far from
satisfying it and yet contain no induced subgraph that does not satisfy H.

We are now ready to state the main result of this paper.
Theorem 2 (main result). A graph property P has an oblivious one-sided error

tester if and only if P is semihereditary.
Returning to the graph property P ′ discussed above, note that by Theorem 1

this property, which is not semihereditary, can be tested with one-sided error by a
nonoblivious tester. Therefore, it is not the case that a graph property is testable if and
only if it is semihereditary. However, if we disregard this and other nonnatural graph
properties, then we may assume that in order to test them we can confine ourselves
to oblivious testers. Theorem 2 can thus be considered as a precise characterization
of the “natural” graph properties, which are testable with one-sided error. We believe
that it may be very interesting to further study property testing via the framework
of oblivious testers; see section 7.

Theorems 1 and 2 suggest many questions, some of which we discuss and resolve
in the following subsections, while others are discussed in section 7 and are left as
interesting open problems.

2.3. Additional results.

2.3.1. On the (im)possibility of relaxing the notion of property testing.
Theorem 1 implies that any hereditary graph property is testable when one uses the
standard notion of ε-far as defined in section 1. Suppose we forbid addition of edges
and define a graph G on n vertices to be ε-fardel from satisfying property P if one
needs to delete from G at least εn2 edges in order to turn it into a graph satisfying
P. We say that property P is testabledel if there is a tester for distinguishing between
graphs satisfying P from those that are ε-fardel from satisfying it, whose number of
queries can be upper bounded by a function of ε. A natural question is, Which graph
properties are testabledel? Obviously, any hereditary property which is also closed
under removal of edges (such as k-colorability) is testabledel, as in these cases being
ε-fardel is equivalent to ε-far. The following theorem is a sharp contrast to Theorems
1 and 2.

Theorem 3. For any hereditary property P, which is not satisfied by all graphs,
and is satisfied by any complete graph, there is a constant δ = δ(P) > 0 such that
testingdel property P (even with two-sided error) requires nδ queries.

Note that any natural hereditary property, such as any of those discussed in
subsection 2.1, is satisfied by any complete graph, and thus the above result applies
to these properties. We briefly mention that we can also prove a similar statement
when one allows only edge additions. See section 6.
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2.3.2. Unbounded first-order graph properties. A first-order graph prop-
erty is one involving the boolean operators ∧,∨,¬, the ∀,∃ quantifiers, the equality
operator =, and the adjacency relation ∼. For example, the triangle-freeness prop-
erty can be written as ∀ v1, v2, v3¬(v1 ∼ v2 ∧ v2 ∼ v3 ∧ v1 ∼ v3). The main result
of [4] states that every first-order graph property without quantification ∀∃ is testable
(possibly with two-sided error). The main tool in [4] was a theorem stating that any
hereditary graph property which is expressible in terms of a finite family of forbidden
induced subgraphs is testable. Theorem 1 is a powerful extension of this result, as it
allows the family of forbidden induced subgraphs to be infinite. One may thus ask
whether Theorem 1 can be used in order to extend the result of [4]. Theorem 4 below
gives a positive answer to this question. To state this extension, we need the following
definition.

Definition 2.4 (unbounded first-order properties of type ∃∀). An unbounded
first-order graph property of type ∃∀ is of the form

(1) ∃x1, . . . , xt

∞∧

i=1

∀y1, . . . , yi Ai(x1, . . . , xt, y1, . . . , yi),

where each Ai(x1, . . . , xt, y1, . . . , yi) is a quantifier-free first-order expression.
The main result of [4] states that any graph property that can be expressed as

above while using a single relation Ai is testable. Using the main techniques of this
paper, we can extend this to expressions containing infinitely many expressions Ai.

Theorem 4. Every graph property describable by an unbounded first-order graph
property of type ∃∀ is testable (possibly with two-sided error).

It should be noted that it is proved in [4] that there are first-order graph properties
with alternation of type ∀∃ which are not testable, and thus Theorem 4 is in some
sense best possible.

2.3.3. ANDing hereditary graph properties. We next describe a conse-
quence of Theorem 1 (in fact, of the main step of proving Theorem 1), which does not
assert the testability of some graph property, but rather one that may be useful in the
general study of graph property testing. Suppose P = {P1,P1, . . . , } is a (possibly
infinite) set of monotone graph properties, that is, properties that are closed under
removal of vertices and edges. It was proved in [11] that in this case there is a function
δ : (0, 1) �→ (0, 1) such that if a graph G is ε-far from satisfying all the properties of
P, then for some i it is also δ(ε)-far from satisfying Pi. Note that this statement is
nontrivial only when P is infinite, as if P contains k properties, we can clearly take
δ(ε) = ε/k (in fact, to get the case of finite k the properties need only to be closed
under removal of edges). Consider now the case when the properties are assumed
to be hereditary properties which are not necessarily monotone. Now it is not at all
clear that a similar statement holds even for k = 2, as modifying a graph in order to
turn it into a graph satisfying P1 may increase its distance from satisfying P2. Using
Theorem 1, we can show that a similar result holds even for infinite sets of properties.

Theorem 5. For any (possibly infinite) set of hereditary graph properties P =
{P1,P2, . . . }, there is a function δP : (0, 1) �→ (0, 1) with the following property: If a
graph G is ε-far from satisfying all the properties of P, then for some i the graph G
is δP(ε)-far from satisfying Pi.

2.3.4. An extremal result for all graph property. Confirming a conjecture
of Erdős, it was shown in [33] that if a graph is ε-far from being k-colorable, then
it contains a non-k-colorable subgraph of size that depends only on ε. In [11] this
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result was extended to any monotone graph property. As we have alluded to in sub-
section 2.1, the main technical result of this paper, Lemma 4.2, immediately implies
that this result can be extended to any hereditary graph property. In fact, we can
show that a similar result holds for any graph property.

Theorem 6. For every graph property P, there is a function WP(ε) with the fol-
lowing property: If G is ε-far from satisfying P, then G contains an induced subgraph
of size at most WP(ε) which does not satisfy P.

2.4. Comparison to previous results. We next survey the previous results
on graph property testing, which were shown to be testable with one-sided error. As
all these properties are hereditary, their testability with one-sided error follows as a
special case of Theorem 1.

• H-free. For every fixed graph H, let PH be the property of not containing
a copy of H, and let P∗

H be the property of not containing an induced copy
of H. The property PH was (implicitly) shown to be testable in [3], and P∗

H

was shown to be testable in [4].
• k-colorability. The k-colorability property was (implicitly) shown to be testable

already in [33]. In [22], a simplified explicit tester was studied with a signifi-
cantly better query complexity. This result was further improved by [6].

• Induced vertex colorability. The main technical step in the proof of the main
result of [4] was in showing that for every finite set of k-colored graphs K,
one can test the property of a graph being vertex k-colorable with no induced
colored graph from the set K. Note that any such property is hereditary.

• Induced edge colorability. Following [4], further induced edge-colorability
properties were studied in [16]. In this case we have a finite set of k-edge-
colored graphs K, and the property defined by K is that of having a k-edge-
coloring with no induced colored graph from the set K. Note that any such
property is hereditary and that by Theorem 1 we can even take K to be an
infinite family of edge-colored graphs.

• Graph partition problems. One of the main results of [22] is that any graph-
partition problem is testable with two-sided error. A characterization of the
graph-partition properties that are testable with one-sided error was obtained
in [24]. This characterization (essentially) follows as a special case of The-
orem 2, as what it (implicitly) states is that a partition problem is testable
with one-sided error if and only if it is hereditary.

• Monotone graph properties. Very recently, the authors have shown in [11]
that any monotone graph property is testable with one-sided error (a graph
property is monotone if it is closed under removal of vertices and edges;
therefore, any monotone property is in particular hereditary). Though this
family of graph properties is very general and contains many interesting graph
properties such as k-colorability, being H-free and certain Ramsey properties,
it fails to include many interesting hereditary nonmonotone properties such
as those that were discussed in subsection 2.1.

• One-sided vs. two-sided testers. The first author has shown [24, Appendix D],
that if a hereditary graph property is testable with two-sided error, then
it is also testable with one-sided error (but not necessarily with the same
query complexity). By Theorem 1, this transformation becomes obsolete, as
Theorem 1 directly asserts that any hereditary graph property is testable
with one-sided error.
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• Bounded first-order graph properties. Theorem 4 extends the main result
of [4], where the first-order graph property can contain only a single predi-
cate Ai.

It is important to note that Theorems 1 and 2 do not assert the existence of
one-sided error testers, which are as efficient as the ad hoc testers that were designed
for every specific property in the above-mentioned papers. For example, the query
complexity of the tester for k-colorability that follows as a special case of Theorem 1 is
significantly larger than the query complexity which is guaranteed by the main result
of [22] and [6]. These large bounds are obviously a consequence of the generality of
Theorems 1 and 2. Furthermore, by Theorem 4 of [11], the upper bounds of Theorems
1 and 2 cannot be generally improved even for monotone graph properties. See the
precise statement in [11].

2.5. Recent results. Recently, Lovász and Szegedy [27] found an alternative
proof of Theorem 1 using the method of convergent graph sequences. Their result is
slightly weaker than ours, as it does not give any explicit upper bound on the query
complexity of testing even simple hereditary properties such as triangle-freeness. Rödl
and Schacht [34] have generalized Theorem 1 and showed that any hereditary property
of k-uniform hypergraphs is testable. This proof applies variants of the recently proved
hypergraph regularity lemmas. In a joint work with Fischer and Newman [2], we have
managed to give a combinatorial characterization of the testable graph properties
(recall that in the present paper we mainly deal with one-sided error testers). This
characterization implies that the regularity lemma is in some sense essential to graph
property testing. Finally, the main techniques developed in this paper have been
applied in another recent study [13] of the family of hereditary graph properties.

2.6. Organization. Our main tool in the proof of Theorem 1 is a novel applica-
tion of a powerful variant of Szemerédi’s regularity lemma proved in [4]. In section 3
we introduce the basic notions of regularity and state the regularity lemmas that we
use and some of their standard consequences. The proof of Theorem 1 is quite in-
volved technically, and thus we give in section 4 an overview of it. In this section we
also prove Theorem 6. The ideas of this proof, especially the usage of the notion of
colored-homomorphism, may be useful for handling other problems involving induced
subgraphs.2 In section 5 we give the full proof of Theorem 1 as well as the proof of
Theorem 2. The proofs of Theorems 3, 4, and 5 appear in section 6. In section 7,
we describe several possible extensions and open problems that this paper suggests.
Throughout the paper, whenever we relate, for example, to a function f3.1, we mean
the function f defined in Lemma/Claim/Theorem 3.1. We would like to mention that
readers that are not familiar with applications of the regularity lemma may find it
useful to refer to [11] prior to reading this paper.

3. Regularity lemma background. In this section we discuss the basic notions
of regularity and some of the basic applications of regular partitions, and we state the
regularity lemmas that we use in the proof of Theorem 1. See [26] for a comprehensive
survey on the regularity lemma. We start with some basic definitions. For every two
nonempty disjoint vertex sets A and B of a graph G, we define e(A,B) to be the
number of edges of G between A and B. The edge density of the pair is defined as
d(A,B) = e(A,B)/|A||B|.

2As pointed to us by one of the referees, similar homomorphisms were also used in [31].
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Definition 3.1 (γ-regular pair). A pair (A,B) is γ-regular if for any two
subsets A′ ⊆ A and B′ ⊆ B, satisfying |A′| ≥ γ|A| and |B′| ≥ γ|B|, the inequality
|d(A′, B′) − d(A,B)| ≤ γ holds.

A very useful lemma that we use in this paper is Lemma 3.2, which helps us
find many induced copies of some fixed graph F , whenever a family of vertex sets are
pairwise regular “enough” and their densities correspond to the edge set of F . Several
versions of this lemma were previously proved in papers using the regularity lemma.
See [4] for one such proof.

Lemma 3.2. For every real 0 < η < 1 and integer f ≥ 1, there exist γ = γ3.2(η, f)
and δ = δ3.2(η, f) with the following property. Suppose U1, . . . , Uf is an f-tuple of
disjoint vertex sets of a graph G such that for every 1 ≤ i < j ≤ f the pair (Ui, Uj) is
γ-regular. Let F be a graph on f vertices v1, . . . , vf such that whenever (vi, vj) ∈ E(F )
we have d(Ui, Uj) ≥ η, and whenever (vi, vj) �∈ E(F ) we have d(Ui, Uj) ≤ 1−η. Then

at least δ
∏f

i=1 |Ui| of the f-tuples u1 ∈ U1, . . . , uf ∈ Uf span an induced copy of F ,
where each ui plays the role of vi.

Comment 3.3. Observe that the functions γ3.2(η, f) and δ3.2(η, f) may and will
be assumed to be monotone nonincreasing in f . Also, for ease of future definitions (in
particular the one given in (4)) we set γ3.2(η, 0) = δ3.2(η, 0) = 1 for any 0 < η < 1.

Note that in terms of regularity, Lemma 3.2 requires all the pairs (Ui, Uj) to be γ-
regular. However, and this will be very important later in the paper, the requirements
in terms of density are not very restrictive. In particular, if η ≤ d(Ui, Uj) ≤ 1 − η,
then we do not care if (i, j) is an edge of F .

A partition A = {Vi | 1 ≤ i ≤ k} of the vertex set of a graph is called an
equipartition if |Vi| and |Vj | differ by no more than 1 for all 1 ≤ i < j ≤ k (so in
particular each Vi has one of two possible sizes). The regularity lemma of Szemerédi
can be formulated as follows.

Lemma 3.4 (see [37]). For every m and ε > 0, there exists a number T =
T3.4(m, ε) with the following property: Any graph G on n ≥ T vertices has an equipar-
tition A = {Vi | 1 ≤ i ≤ k} of V (G) with m ≤ k ≤ T for which all pairs (Vi, Vj), but

at most ε
(
k
2

)
of them, are ε-regular.

The function T3.4(m, ε) may and is assumed to be monotone nondecreasing in m
and monotone nonincreasing in ε. Another lemma which will be very useful in this
paper is Lemma 3.5. Some versions of this lemma appear in various papers applying
the regularity lemma. See [4] for one such proof.

Lemma 3.5. For every l and γ, there exists δ = δ3.5(l, γ), such that for every
graph G with n ≥ δ−1 vertices there exist disjoint vertex sets W1, . . . ,Wl satisfying
the following:

1. |Wi| ≥ δn.
2. All

(
l
2

)
pairs are γ-regular.

3. Either all pairs have densities at least 1
2
, or all pairs have densities less

than 1
2
.

Comment 3.6. Observe that the function δ3.5(l, γ) may and will be assumed to be
monotone nonincreasing in l and monotone nondecreasing in γ. Therefore, for ease
of future applications we will assume that for all l and γ we have δ3.5(l, γ) ≤ 1/2.

Our main tool in the proof of Theorem 1 in addition to Lemmas 3.2 and 3.5 is
Lemma 3.8, proved in [4]. This lemma can be considered a variant of the standard
regularity lemma, where one can use a function that defines ε as a function of the
size of the partition, rather than having to use a fixed ε as in Lemma 3.4. We denote
such functions by E throughout the paper. To state the lemma, we need the following
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definition.
Definition 3.7 (the function WE,m). Let E(r) : N �→ (0, 1) be an arbitrary

monotone nonincreasing function and m be an arbitrary positive integer. We define
the function WE,m : N �→ (0, 1) inductively as follows: WE,m(1) = T3.4(m, E(0)). For
any integer i > 1, put R = WE,m(i− 1) and define

(2) WE,m(i) = T3.4(R, E(R)/R2) .

Lemma 3.8 (see [4]). For every integer m and monotone nonincreasing function
E : N �→ (0, 1), define

S = S3.8(m, E) = WE,m(100/E(0)4) .

For any graph G = (V,E) on n ≥ S vertices, there exists an equipartition A = {Vi |
1 ≤ i ≤ k} of V (G) as well as an equipartition B = {Ui | 1 ≤ i ≤ k} of a subset of
vertices U ⊆ V (G), which satisfy the following:

1. m ≤ k ≤ S.
2. Ui ⊆ Vi for all i ≥ 1, and |Ui| ≥ n/S.
3. In the equipartition B, all pairs are E(k)-regular.
4. All but at most E(0)

(
k
2

)
of the pairs 1 ≤ i < j ≤ k are such that |d(Vi, Vj) −

d(Ui, Uj)| < E(0).
Comment 3.9. For technical reasons (see the proof in [4]), Lemma 3.8 requires

that for any r > 0 the function E(r) will satisfy E(r) ≤ min{E(0)/4, 1/4r2}. However,
we can always assume without loss of generality that E satisfies this condition because
if it does not, then we can apply Lemma 3.8 with E ′, which is defined as E ′(r) =
min{E(r), E(0)/4, 1/4r2}. We will thus disregard this technicality.

The main power of Lemma 3.8 is that for any function E it allows us to find k
sets of vertices U1, . . . , Uk of size Ω(n) such that all pairs (Ui, Uj) are E(k)-regular.
Note that in Lemma 3.4 we have no “control” of the relation between the number of
sets and the regularity measure between them, as we first fix the regularity measure
ε, and then get via the lemma k sets of vertices, where k can be very large in terms
of ε. In Lemma 3.8, k can also be very large, but the lemma guarantees that so will
be the regularity measure between the sets, via the function E .

One of the difficulties in the proof of Theorem 2 is in showing that all the constants
that are used in the course of the proof can be upper bounded by functions depending
only on ε. The following observation will thus be useful.

Proposition 3.10. For any fixed E : N �→ (0, 1) and integer m that is bounded
by a function of ε only, the integer S = S3.8(m, E) can be upper bounded by a function
of ε only.3

It should be noted that the dependency of the function T3.4(m, ε) on ε is a tower of
exponents of height polynomial in 1/ε (see the proof in [26]). Thus, even for moderate
functions E the integer S has a huge dependency on ε, which is a tower of towers of
exponents of height polynomial in 1/ε.

One of the main results of [4] is that for every finite set of graphs F the property of
not containing any member of F as an induced subgraph can be tested with one-sided
error and with query complexity depending only on ε. The proof technique in [4],

3In our application of Lemma 3.8, the function E(r) will (implicitly) depend on the error param-
eter ε and on the fixed property P being tested. For example, we will set E(r) = f(r,P, ε) for some
function f . However, that will not change the fact that for a fixed property P the integer S3.8(m, E)
can be bounded from above by a function only of ε.
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which applies Lemmas 3.2, 3.5, and 3.8 critically, relies on the fact that the family of
graphs is finite. The main step in the proof of Theorem 1 is in extending the above to
infinite families of graphs. To this end, we use the main idea of [11], as well as a new
type of homomorphism, in order to prove this stronger result. As in [11], the main
idea of the proof is to apply Lemma 3.8 with a suitable function E(r). However, as it
turns out, dealing with hereditary properties, which are not necessarily monotone, is
considerably more involved. The techniques we apply in the next section, in particular
the notion of colored-homomorphism, may be useful in dealing with other problems
involving induced subgraphs.

4. Overview of the proof of Theorem 1. The proof of Theorem 1 is very
technical and rather long and appears in its entirety in section 5. In this section we
try to give an overview of the proof, while keeping out most of the (unnecessary)
technical details. We start with an equivalent formulation of Theorem 1. To this end,
we introduce a convenient way of handling hereditary graph properties.

Definition 4.1 (forbidden induced subgraphs). For a hereditary graph property
P, define F = FP to be the set of graphs which are minimal with respect to not
satisfying property P. In other words, a graph F belongs to F if it does not satisfy
P, but any graph obtained from F by removing a vertex satisfies P.

For a (possibly infinite) family of graph F , a graph G is said to be induced F-free
if it contains no induced copy of any graph F ∈ F . Note that for any hereditary graph
property P there is a family of graphs F = FP such that a graph satisfies P if and
only if it is induced F-free. For F , one can simply take the family of forbidden induced
subgraphs as in Definition 4.1. For example, when P is the property of being chordal
(see subsection 2.1), then FP is the set of cycles of length at least 4. As another
example, note that if P is the property of being bipartite, then FP is the family
of odd cycles. Observe that F may contain infinitely many graphs. Clearly, for any
family F the property of being induced F-free is hereditary; thus, the hereditary graph
properties are precisely the graph properties, which are equivalent to being induced
F-free for some family F . For ease of presentation, it will be more convenient to
derive Theorem 1 from the following (essentially equivalent4) lemma, whose proof is
the main technical step in this paper.

Lemma 4.2 (main technical result). For every (possibly infinite) family of graphs
F , there are functions NF (ε), fF (ε), and δF (ε) such that the following holds for any
ε > 0: If a graph G on n ≥ NF (ε) vertices is ε-far from being induced F-free, then
G contains δnf induced copies of a graph F ∈ F of size f , where f ≤ fF (ε) and
δ ≥ δF (ε).

Before continuing with the overview of the proof of Theorem 1, we note that the
above lemma immediately implies Theorem 6. Indeed, given any graph property P,
let F be the family of graphs not satisfying P. Observe that if a graph is ε-far from
satisfying P, then it is also ε-far from being induced F-free, and thus by Lemma 4.2
it contains an induced subgraph F ∈ F of size at most fF (ε), and by our choice of F
the graph F does not satisfy P. Therefore, as the function WP(ε) in the statement of
Theorem 6 we can take the function fF (ε).

4.1. Homomorphism and colored-homomorphism. For the proof of Lem-
ma 4.2, we will need a new type of homomorphism which is suitable for handling
induced subgraph.

4See section 5 for a discussion about the subtle difference due to the possible necessity of testing
some properties nonuniformly.
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Definition 4.3 (colored-homomorphism). Let K be a complete graph whose
vertices are colored black or white and whose edges are colored black, white, or grey
(neither the vertex coloring nor the edge coloring is assumed to be proper in the stan-
dard sense). A colored-homomorphism from a graph F to a graph K is a mapping
ϕ : V (F ) �→ V (K), which satisfies the following:

1. If (u, v) ∈ E(F ), then either ϕ(u) = ϕ(v) = t and t is colored black, or
ϕ(u) �= ϕ(v) and (ϕ(u), ϕ(v)) is colored black or grey.

2. If (u, v) �∈ E(F ), then either ϕ(u) = ϕ(v) = t and t is colored white, or
ϕ(u) �= ϕ(v) and (ϕ(u), ϕ(v)) is colored white or grey.

If there is a colored-homomorphism from a graph F to a colored complete graph
K, we write for brevity F �→c K. Some explanation is in place as to the meaning
of the colors in the above definition. To this end, it is instructive to compare the
definition of a colored-homomorphism to the standard notion of homomorphism.

Definition 4.4 (homomorphism). A homomorphism from a graph F to a graph
K is a mapping ϕ : V (F ) �→ V (K), which maps edges to edges; namely, (v, u) ∈ E(F )
implies (ϕ(v), ϕ(u)) ∈ E(K).

For brevity, we denote by F �→ K the fact that there is a homomorphism from F
to K. The fact that F �→ K simply means that we can partition the vertex set of F
into k = |V (K)| subsets V1, . . . , Vk, such that each Vi is edgeless and if (i, j) �∈ E(K),
then none of the vertices of F that belong to Vi is connected to any of the vertices of
F that belong to Vj . In particular, note that F �→ Kk if and only if F is k-colorable
(where Kk is a clique of size k). The standard notion of homomorphism is sufficient for
dealing with not necessarily induced subgraphs, as was carried out in [11]. The reason
is that having a homomorphism to a graph K is “closed under removal of vertices and
edges” in the sense that if F �→ K and F ′ is a subgraph of F , then F ′ �→ K. When one
wants to handle induced subgraphs, it soon turns out that a standard homomorphism
is not sufficient, as it does not supply enough information about F . The reason for
that is that a standard homomorphism has no requirement about the nonedges of
the graph. Returning to the colored-homomorphism from Definition 4.3, suppose we
interpret the colors of K as follows: A white edge of K represents a nonedge, a black
edge of K represents an existing edge, and a grey edge represents a “do not care.”
As for the vertex colors, we think of a black vertex as a complete graph and a white
vertex as an edgeless graph. Thus, the fact that F �→c K, where K is a colored
complete graph of size k, is equivalent to the following: There is a partition of V (F )
into k subsets V1, . . . , Vk such that each Vi is either complete or edgeless, where Vi

is complete if i ∈ V (K) is black and edgeless if i ∈ V (K) is white. Also, if (i, j) is
colored white, then none of the vertices of F that belong to Vi is connected to any
of the vertices of F that belong to Vj . Similarly, if (i, j) is colored black, then all
the vertices of F that belong to Vi are connected to all the vertices of F that belong
to Vj . Finally, if (i, j) is colored grey, then there is no restriction on pairs (v ∈ Vi,
u ∈ Vj) (or in our “formal” notation, we “do not care” if (v ∈ Vi, u ∈ Vj) is an edge
of F ). It is clear that a colored-homomorphism carries a lot more information about
the structure of F than a standard homomorphism.

Our definition of colored-homomorphism should also be thought of with Lemma
3.2 in mind. Note that in this lemma we require only d(Ui, Uj) ≥ η when (i, j) ∈ E(F )
and d(Ui, Uj) ≤ 1 − η when (i, j) �∈ E(F ). In particular, if η ≤ d(Ui, Uj) ≤ 1 − η,
then we “do not care” whether (i, j) ∈ E(F ). In fact, as the details of the proof of
Lemma 4.2 reveal, the possibility of having grey edges in the coloring of K in the
definition of the colored-homomorphism is unavoidable (at least in our proof). Note
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that as far as Lemma 3.2 is concerned, we need only the edge coloring in the colored-
homomorphism. The details below supply some explanation for the need of the vertex
coloring.

We now turn to discuss the relation between the standard regularity lemma
(Lemma 3.4), the stronger regularity lemma (Lemma 3.8), and colored-homomorphism.
We stress that some of the explanations we give below are not completely accurate
and are given in order to explain the main ideas of the proof. The formal proof ap-
pears in section 5. Given ε > 0 and a graph G, Lemma 3.4 returns an equipartition
of V (G) of size k. Let the regularity graph of G, denoted R = R(G), be the following
graph. R is a graph on k vertices, where vertices i and j are connected if and only if
(Vi, Vj) is a dense regular pair (with the appropriate parameters). In some sense, the
regularity graph is an approximation of the original graph, up to εn2 modifications.
This approximation was good enough when considering monotone properties in [11]
(this notion of regularity graph is standard when applying Lemma 3.4), but it is not
good enough when dealing with induced graphs, which is the case we consider here.
The reason is that R approximates only the dense pairs of the equipartition, while it
carries no restriction or information on the sparse pairs in this equipartition. This is
somewhat analogous to the fact that a standard homomorphism is not good enough
for dealing with induced subgraphs. Just like we defined colored-homomorphism, we
introduce colored regularity graphs as follows: Let R be a complete graph on k ver-
tices. Color (i, j) black if (Vi, Vj) is a very dense pair, white if (Vi, Vj) is a very sparse
pair, and grey if (Vi, Vj) is neither very dense nor very sparse (we omit the precise def-
inition of “very”). Note that a colored regularity graph carries a lot more information
about G. Note also how this definition relates to a colored-homomorphism.

4.2. Proof strategy. Our overall strategy for the proof of Lemma 4.2 can be
described as follows: Given a graph G, which is ε-far from being induced F-free,
we will construct another “well-structured” graph G̃ by making fewer than εn2 edge
modifications. This will guarantee that G̃ spans an induced copy of some F ∈ F .
One of the key ingredients of the proof will be that as G is close to G̃ and G̃ is “well
structured” we will be able to infer that G also contains a copy of some graph F ′ ∈ F
in a way that will allow us to infer that G actually contains many induced copies
of some (possibly other) F ′′ ∈ F . For simplicity, in the following overview, we will
briefly argue how to find many induced copies of some graph F ∈ F in the graph
G̃ rather than G. The way to argue why G must also contain many copies of some
F ∈ F is that the densities of the partition of G and G̃ are very similar. See the next
section for the full details.

Suppose a graph G is ε-far from being induced F-free. We would want to apply
Lemma 3.4 on G, then construct the colored regularity graph, and then argue that
if we make few (fewer than εn2) modifications in G, then the new graph G̃ contains
an induced copy of a graph F ∈ F . Furthermore, as we make very few changes, the
colored regularity graph is also a “good” approximation of G̃. We would thus want
to use Lemma 3.2, where for the sets U1, . . . , Uf we take the clusters V1, . . . , Vk of the

equipartition in order to get that there are many induced copies of F in G̃. However,
we are faced with the following two problems: (i) As F may be infinite, we do not
know the size of the graph F ∈ F that we may expect to find in G̃. As Lemma 3.2
needs to know the size of F in advance, we do not know how small a γ we should
choose in order to apply Lemma 3.4. (ii) Note that Lemma 3.2 allows the copies of
F to have only one vertex in each of the sets Ui. However, the induced copy of the
graph F ∈ F that we may find in G̃ may have many vertices in each cluster Vi. Note
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further that Lemma 3.4 does not guarantee anything about the graphs induced by
each Vi.

The main idea of the proof is to overcome the first problem by applying Lemma 3.8
with a suitable function E that will guarantee that the partition is regular enough
even for the largest graph F ∈ F we may expect to find in G̃. For the second
problem, we apply Lemma 3.5 on each of the clusters Vi in order to find subsets
Wi,1, . . . ,Wi,f ⊂ Vi. Note that by Lemma 3.2, if for all j′, j′′ we have d(Wi,j′ ,Wi,j′′) ≥
1/2, then Wi,1, . . . ,Wi,f span many cliques of size f , while if for all j′, j′′ we have
d(Wi,j′ ,Wi,j′′) ≤ 1/2, then they span many independent sets of size f . This is the
main reason for the vertex coloring of R; that is, we color vertex i of R black if the
sets returned by Lemma 3.5 are very dense and white if they are sparse. We note
that overcoming both problems mentioned above simultaneously adds another level
of complication.

An important ingredient in the proof of Lemma 4.2 will be the following func-
tion. The reader should think of the graphs R considered below as the set of colored
regularity graphs discussed above and the parameter r as representing the size of R.

Definition 4.5 (the family Fr). For any (possibly infinite) family of graphs F
and any integer r, let Fr be the following set of colored complete graphs: A colored
complete graph R belongs to Fr if and only if it has at most r vertices and there is at
least one F ∈ F such that F �→c R.

In the proof of Lemma 4.2, the set Fr, defined above, will represent a subset of
the colored regularity graphs of size at most r, namely, those R for which there is at
least one F ∈ F such that F �→c R. We now arrive at the key definition used in the
proof of Lemma 4.2.

Definition 4.6 (the function ΨF). For any family of graphs F and integer r
for which Fr �= ∅, let

(3) ΨF (r) = max
R∈Fr

min
{F∈F :F �→cR}

|V (F )|.

Define ΨF (r) = 0 if Fr = ∅. Therefore, ΨF (r) is monotone nondecreasing in r.
One of the key definitions in [11] is a function analogous to ΨF but with respect

to standard homomorphism. In our case as well, ΨF is one of the main tools with
which we apply Lemma 3.8. As by Lemma 3.4 we can upper bound the size of the
regularity graph R, we can also upper bound the size of the smallest graph F ∈ F for
which F �→c R.

As we have mentioned in the previous section, the main difficulty that prevents
one from proving Theorem 1 using Lemma 3.2 is that one does not know a priori the
size of the graph that one may expect to find in the equipartition. This leads us to
define the following function:

(4) E(r) = γ3.2

( ε

6
, ΨF (r)

)
· δ3.5

(
ΨF (r), γ3.2

( ε

6
, ΨF (r)

))
.

We next try to explain why the above defined E(r) when applied with Lemma 3.8
is useful in resolving the two difficulties mentioned above. Recall that r stands for the
size of the regularity graph returned by Lemma 3.8. If we apply Lemma 3.8 with the
above E , then by the first term in the definition of E we know that the sets Ui (recall
the statement of Lemma 3.4) are regular enough to allow one to apply Lemma 3.2
with the largest member of F , which we may need to work with. This is due to
invoking ΨF (r). The reason we need the second term in the definition of E is that we
intend to apply Lemma 3.5 on each of the sets Ui in order to obtain certain subsets
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of Ui. This term guarantees that even the subsets of Ui will be “regular enough” for
our purposes (via Claim 5.1).

5. Proofs of main results. We start with the proof of Lemma 4.2, which is the
main technical step in the proof of Theorem 1. We then use Theorem 1 in order to
prove Theorem 2. We assume the reader is familiar with the overview of the proof of
Lemma 4.2 given in section 4. For the proof, we need the following simple fact, which
states that large enough subsets of a regular pair are themselves somewhat regular.

Claim 5.1. If (A,B) is a γ-regular pair with density η, and A′ ⊆ A and B′ ⊆ B
satisfy |A′| ≥ ξ|A| and |B′| ≥ ξ|B| for some ξ ≥ γ, then (A′, B′) is a max{2γ, γ/ξ}-
regular pair.

Proof. As (A,B) is a γ-regular pair with density η, then by definition of a regular
pair, for every pair of subsets of A′ ⊆ A with |A′| ≥ ξ|A| ≥ γ|A| and B′ ⊆ B
with |B′| ≥ ξ|B| ≥ γ|B| we have |d(A′, B′) − d(A,B)| ≤ γ. Note that if A′ and
B′ are as above, then for every pair of subsets A′′ ⊆ A′ and B′′ ⊆ B′ satisfying
|A′′| ≥ γ

ξ |A′| and |B′′| ≥ γ
ξ |B′| also satisfy |A′′| ≥ γ|A| and |B′′| ≥ γ|B|. Therefore,

by the γ-regularity of (A,B) we have |d(A′′, B′′) − d(A,B)| ≤ γ. We thus conclude
that |d(A′′, B′′) − d(A′, B′)| ≤ 2γ. Hence, (A′, B′) is max{2γ, γ/ξ}-regular.

Proof of Lemma 4.2. Fix any family of graphs F . Let ΨF (r) be the function from
Definition 4.6 and define the following functions of r:

α(r) = αF (r) = δ3.5(ΨF (r), γ3.2(ε/6, ΨF (r))),(5)

β(r) = βF (r) = α(r) · γ3.2(ε/6, ΨF (r)),(6)

and

(7) E(r) = EF (r) =

{
ε/6, r = 0,
min{β(r), ε/6}, r ≥ 1.

For the rest of the proof, set

(8) S(ε) = SF (ε) = S3.8(6/ε, E),

and note that as we define S(ε) in terms of m = 6/ε we get by Proposition 3.10 that
S(ε) is indeed a function only of ε. We now set NF (ε) to be the following function
of ε:

(9) N = NF (ε) = S(ε)

(as we have just argued, S(ε) and therefore also N can be upper bounded by functions
only of ε). We postpone the definition of fF (ε) and δF (ε) until the end of the proof.

In the rest of the proof, we consider any graph G on n vertices, with n ≥ N ≥ S(ε),
which is ε-far from being induced F-free. Given G, we can use Lemma 3.8 with
m = 6/ε and E(r) as defined in (7) in order to obtain an equipartition A of V (G)
into 6/ε ≤ k ≤ S(ε) clusters V1, . . . , Vk (this is possible by item 1 in Lemma 3.8).
Throughout the rest of the proof, k will denote the size of the equipartition returned
by Lemma 3.8. By item 2 of Lemma 3.8, for every 1 ≤ i ≤ k we have sets Ui ⊆ Vi each
of size at least n/S(ε). Also, by item 3 of Lemma 3.8, every pair of these sets is at least
β(k)-regular (recall that E(k) ≤ β(k)). For each 1 ≤ i ≤ k, apply Lemma 3.5 on the
subgraph induced by G on each Ui with � = ΨF (k) and γ = γ3.2(ε/6,ΨF (k)) in order
to obtain the appropriate sets Wi,1, . . . ,Wi,ΨF (k) ⊂ Ui, all of size at least α(k)|Ui|
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(recall the definition of α(r) in (5)). It is crucial to note that we apply Lemma 3.5 on
each of the sets U1, . . . , Uk after we apply Lemma 3.8 on G, and thus we “know” the
value of k. The following observation will be useful for the rest of the proof.

Claim 5.2. All the pairs (Wi,i′ ,Wj,j′) are γ3.2(ε/6,ΨF (k))-regular. Also, if
i �= j, then we also have |d(Wi,i′ ,Wj,j′) − d(Ui, Uj)| ≤ ε/6.

Proof. Consider first pairs that belong to the same set Ui. In this case, the fact
that any pair (Wi,i′ ,Wi,j′) is γ3.2(ε/6,ΨF (k))-regular follows immediately from our
choice of these sets, as we applied Lemma 3.5 on each set Ui with γ = γ3.2(ε/6,ΨF (k)).
Consider now pairs that belong to different sets Ui, Uj . As was mentioned above,
any pair (Ui, Uj) is β(k)-regular. As each set Wi,j satisfies |Wi,j | ≥ α(k)|Ui|, we
get from Claim 5.1 and the definition of β(k) that any pair (Wi,i′ ,Wj,j′) is at least
max{2β(k), β(k)/α(k)} ≤ γ3.2(ε/6,ΨF (k))-regular (here we use the fact that α(k) ≤
1/2, which is guaranteed by Comment 3.6). Finally, as each of the sets Wi,j satisfies
|Wi,j | ≥ α(k)|Ui| ≥ β(k)|Ui| ≥ E(k)|Ui| we get from the fact that each pair (Ui, Uj)
is E(k)-regular that |d(Wi,i′ ,Wj,j′) − d(Ui, Uj)| ≤ E(k) ≤ ε/6, thus completing the
proof.

Recall that our goal is to show that G contains many induced copies of some
graph F ∈ F . To this end, we would like to apply Lemma 3.2 on some appropriately
chosen subset of the sets Wi,j defined above. As by Claim 5.2 all the pairs of sets
Wi,j are regular (we will later infer that they are regular enough for our purposes),
we just have to find sets whose densities will correspond to the edge set of some graph
F ∈ F (recall the statement of Lemma 3.2). To this end, we define a graph G̃ that
will help us in choosing the sets Wi,j . The graph G̃ is obtained from G by adding and
removing the following edges in the following order:

1. For 1 ≤ i < j ≤ k such that |d(Vi, Vj) − d(Ui, Uj)| > ε/6, for all v ∈ Vi

and v′ ∈ Vj the pair (v, v′) becomes an edge if d(Ui, Uj) ≥ 1
2

and becomes a
nonedge if d(Ui, Uj) <

1
2
.

2. For 1 ≤ i < j ≤ k such that d(Ui, Uj) <
1
3
ε, all edges between Vi and Vj are

removed. For all 1 ≤ i < j ≤ k such that d(Ui, Uj) > 1 − 1
3
ε, all nonedges

between Vi and Vj become edges.
3. If for a fixed i all densities of pairs from Wi,1, . . . ,Wi,l are less than 1

2
, all

edges within the vertices of Vi are removed. Otherwise, all the above densities
are at least 1

2
(by the choice of Wi,1, . . . ,Wi,l through Lemma 3.5), in which

case all nonedges within Vi become edges.
In what follows we denote by d(A,B) and d̃(A,B) the edge density of the pair

(A,B) in G and G̃, respectively. The following claim states several relations between
the densities of G and G̃.

Claim 5.3. For any i and i′ < j′, we either have d̃(Wi,i′ ,Wi,j′) = 1 and

d(Wi,i′ ,Wi,j′) ≥ 1
2

or d̃(Wi,i′ ,Wi,j′) = 0 and d(Wi,i′ ,Wi,j′) ≤ 1
2
. Also, for any

i < j and any i′, j′ precisely one of the following holds:
(1) d̃(Vi, Vj) = 1 and d(Wi,i′ ,Wj,j′) ≥ ε/6.

(2) d̃(Vi, Vj) = 0 and d(Wi,i′ ,Wj,j′) ≤ 1 − ε/6.

(3) ε/6 ≤ d̃(Vi, Vj) ≤ 1 − ε/6 and ε/6 ≤ d(Wi,i′ ,Wj,j′) ≤ 1 − ε/6.

Proof. The proof follows easily from the three steps for obtaining G̃ from G.
The first assertion of the claim (concerning the relation between d̃(Wi,i′ ,Wi,j′) and

d(Wi,i′ ,Wi,j′)) follows directly from the third step of obtaining G̃. As for the second

assertion (concerning the relation between d̃(Vi, Vj) and d(Wi,i′ ,Wj,j′)), assume the

first step was applied to a pair (Vi, Vj). In this case either d̃(Vi, Vj) = 1 and d(Ui, Uj) ≥
1/2 or d̃(Vi, Vj) = 0 and d(Ui, Uj) ≤ 1/2. By Claim 5.2 we get that in the former
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case for any i′, j′ we have d(Wi,i′ ,Wj,j′) ≥ 1/2 − ε/6 ≥ ε/6, while in the latter
d(Wi,i′ ,Wj,j′) ≤ 1/2+ε/6 ≤ 1−ε/6, as needed. Note that if the first step was applied
to a pair (Vi, Vj), then the second step has no effect, and thus either item (1) or (2)
will hold at the end of the process. Assume the second step was applied to a pair
(Vi, Vj). In this case either d̃(Vi, Vj) = 1 and d(Ui, Uj) ≥ 1 − ε/3 or d̃(Vi, Vj) = 0 and
d(Ui, Uj) ≤ ε/3. Again, by Claim 5.2, we get that in the former case d(Wi,i′ ,Wj,j′) ≥
1 − ε/3 − ε/6 ≥ ε/6, while in the latter d(Wi,i′ ,Wj,j′) ≤ ε/3 + ε/6 ≤ 1 − ε/6. If
neither of the two steps was applied to (Vi, Vj), then we initially had |d(Vi, Vj) −
d(Ui, Uj)| ≤ ε/6 and ε/3 ≤ d(Ui, Uj) ≤ 1 − ε/3. Thus, item (3) holds, as in this case

we have ε/6 ≤ d(Vi, Vj) = d̃(Vi, Vj) ≤ 1 − ε/6 and by Claim 5.2 for any i′, j′ we have
ε/6 ≤ d(Wi,i′ ,Wj,j′) ≤ 1 − ε/6.

Claim 5.4. The graphs G and G̃ differ by fewer than εn2 edges.
Proof. As the number of pairs v ∈ Vi, v

′ ∈ Vj is n2/k2, and by item 4 of Lemma 3.8
the number of pairs 1 ≤ i < j ≤ k for which |d(Vi, Vj) − d(Ui, Uj)| > ε/6 = E(0) is

at most E(0)
(
k
2

)
= 1

6
ε
(
k
2

)
, in the first step we changed fewer than 1

6
ε
(
k
2

)
n2

k2 ≤ 1
6
εn2

edges. In the second stage, if d(Ui, Uj) < 1
3
ε, then by the modifications made in

the first step, we have d(Vi, Vj) < 1
2
ε. Similarly, if d(Ui, Uj) > 1 − 1

3
ε, then by the

modifications made in the first step, we have d(Vi, Vj) > 1 − 1
2
ε. Thus, in this step

we make at most
(
k
2

)
1
2
ε(n2/k2) ≤ 1

2
εn2 modifications. Finally, in the third step we

make at most k
(
n/k
2

) ≤ n2/k modifications. As we apply Lemma 3.8 with m = 6/ε,
we have n2/k ≤ 1

6
εn2. Altogether, we make fewer than εn2 modifications.

We now turn to use the notion of colored-homomorphism, which was introduced
in section 4. For the rest of the proof, let R be the following colored complete graph
on k vertices. We color i ∈ V (R) white if Vi is edgeless in G̃. Otherwise (i.e., Vi is
a complete graph in G̃, by the third step in obtaining G̃ from G) we color vi black.
If d̃(Vi, Vj) = 0, we color (i, j) white; if d̃(Vi, Vj) = 1, we color (i, j) black; otherwise

(i.e., ε/6 ≤ d̃(Vi, Vj) ≤ 1 − ε/6, by Claim 5.3) we color (i, j) grey. Our goal in the
following two claims is to identify a graph F ∈ F , which we will later show to be
abundant in G.

Claim 5.5. G̃ spans an induced copy of a graph F ′ ∈ F . Moreover, F ′ �→c R.
Proof. As G is by assumption ε-far from being induced F-free, and by Claim 5.4 G̃

is obtained from G by making fewer than εn2 modifications (of adding and removing
edges), G̃ spans an induced copy of a graph F ′ ∈ F . We claim that there is a colored-
homomorphism from F ′ to R. Indeed, consider a mapping ϕ : V (F ′) �→ V (R) which
maps all the vertices of F ′ that belong to Vi to vertex i of R. We claim that this is a
colored-homomorphism from F ′ to R. Suppose first that (u, v) is an edge of F ′. If u
and v belong to the same vertex set Vi, then Vi must be complete in G̃. By definition
of ϕ, they are both mapped to i ∈ V (R) and by our coloring of R, vertex i is colored
black. If u ∈ Vi and v ∈ Vj , then it cannot be the case that d̃(Vi, Vj) = 0, and hence
(i, j) ∈ E(R) was not colored white. Similarly, if (u, v) is not an edge of F ′, then if u
and v belong to the same vertex set Vi, then Vi must be edgeless. Hence, vertex i is
colored white. If u ∈ Vi and v ∈ Vj , then it cannot be the case that d′(Vi, Vj) = 1, and
hence (i, j) ∈ E(R) was not colored black. We thus get that ϕ satisfies the definition
of a colored-homomorphism.

Claim 5.6. There is a graph F ∈ F of size f ≤ ΨF (k) for which F �→c R.
Proof. By Claim 5.5, there is a graph F ′ ∈ F for which F ′ �→c R. Therefore, R

belongs to Fk (recall Definition 4.5 and the fact that R is of size k). It thus follows
from the definition of ΨF (see Definition 4.6) that F contains a graph of size at most
ΨF (k) such that F �→c R.
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The reader may want to recall at this stage that in order to apply Lemma 3.2
with respect to a graph on f vertices we need f distinct vertex sets. The following
proposition will enable us to apply Lemma 3.2 on an appropriately chosen f set of
vertices in order to infer that G contains many induced copies of F .

Proposition 5.7. Let F be the graph from Claim 5.6 and denote its vertex set
by {1, . . . , f} with f ≤ ΨF (k). Let ϕ : V (F ) �→ V (R) be the colored homomorphism
from F to R, which is guaranteed to exist by Claim 5.6, and put ti = ϕ(i) for every
i ∈ V (F ). The following hold with respect to the sets Wt1,1, . . . ,Wtf ,f :

• If (i, j) ∈ E(F ), then d(Wti,i,Wtj ,j) ≥ ε/6.
• If (i, j) �∈ E(F ), then d(Wti,i,Wtj ,j) ≤ 1 − ε/6.

Proof. First, note that we choose the sets as Wt1,1, . . . ,Wtf ,f in order to make
sure that we do not choose the same Wi,i′ twice, because we may need to use several
sets Wi,j from the same set Ui (in the case that ti = tj for some i �= j). Also, observe
that as f ≤ ΨF (k) and we obtained through Lemma 3.5 � = ΨF (k) sets Wi,j from
each Ui, we can indeed choose the sets in the above manner, even if all the chosen
sets Wi,j belong to the same Ui.

Assume that (i, j) ∈ E(F ). As ϕ is a colored homomorphism from F to R,
we conclude that either ϕ(i) = ϕ(j) = t and t ∈ V (R) is colored black or ϕ(i) =
t �= t′ = ϕ(j) and (t, t′) ∈ E(R) is colored black or grey. By the way we colored
R in the paragraph preceding Claim 5.5, this means that either ϕ(i) = ϕ(j) = t
and Vt is a complete graph in G̃ or ϕ(i) = t �= t′ = ϕ(j) and d̃(Vt, Vt′) ≥ ε/6.
Finally, by Claim 5.3 this means that in both cases d(Wti,i,Wtj ,j) ≥ ε/6. The case of
(i, j) �∈ E(F ) is analogous.

The proof of Lemma 4.2 now follows easily from the above proposition. Consider
the sets Wt1,1, . . . ,Wtf ,f as in Proposition 5.7. By Claim 5.2 any pair of these sets is
at least γ3.2(ε/6,ΨF (k))-regular in G. Moreover, by Proposition 5.7, these f ≤ ΨF (k)
sets satisfy in G (not in G̃) the edge requirements of Lemma 3.2, which are needed
in order to infer that they span many induced copies of F (recall that F has at most
ΨF (k) vertices). Thus, Lemma 3.2 ensures that Wt1,1, . . . ,Wtf ,f span in G (not in

G̃) at least

(10) δ3.2(ε/6,ΨF (k)) ·
f∏

i=1

|Wti,i|

induced copies of F . We next show that we can take F as the graph in the statement
of Lemma 4.2. To show this, we should define only the functions fF (ε) and δF (ε)
(the function NF (ε) is defined in (9)). As |Ui| ≥ n/S(ε) and |Wti,i| ≥ α(k)|Ui|, we
conclude from (10) that G contains at least

(11) δ3.2(ε/6,ΨF (k)) · (α(k)/S(ε))f · nf

induced copies of F . Thus, as f ≤ ΨF (k), k ≤ S(ε), and by the monotonicity
properties of all the functions considered in the proof, we can replace k with S(ε) and
f with ΨF (S(ε)) and thus define

(12) fF (ε) = ΨF (S(ε)).

Similarly, we can replace k and f in (11) in order to define

(13) δF (ε) =
δ3.2(ε/6,ΨF (S(ε)))

(S(ε)/α(S(ε)))ΨF (S(ε))
.
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This completes the proof of Lemma 4.2.

Before proving Theorem 1 we briefly discuss the notions of uniform and nonuni-
form testing, which were defined and studied in [11] and [10]. We give here only a
rough overview of the result of [10]. A tester is defined in [10] as nonuniform if it
knows ε in advance, and therefore it should be able to distinguish between graphs that
satisfy P from those that are ε-far from satisfying it (only for that specific ε). A tester
is uniform if it can accept ε as part of the input. The main result of [10] is that there
are monotone graph properties which have nonuniform one-sided testers but cannot
be tested by a uniform (one-sided or two-sided) tester. The main reason is that there
are monotone and decidable properties (in fact even in coNP ) with the property that
the query complexity of testing them cannot be computed given only the value of
ε. It thus follows that we cannot design uniform testers for all the hereditary graph
properties.

Note that in (9), (12), and (13) the only function that may be noncomputable
is ΨF . Thus, whenever this function is computable so are the three functions of
Lemma 4.2. As the proof of Theorem 1 suggests (see below), once these functions
are computable, the tester is uniform. Finally, we note that for any reasonable graph
property, and in particular those that were discussed in subsection 2.1, ΨF is indeed
computable (not necessarily very efficiently). Thus, these properties are testable in
the usual sense. We thus assume henceforth that F is such that the functions NF (ε),
fF (ε), and δF (ε) are computable. Note, however, that even if they are not computable,
we still get a nonuniform tester for any (decidable) hereditary graph property.

Proof of Theorem 1. We show that any hereditary property can be tested with
one-sided error even by an oblivious tester. Fix any hereditary graph property P,
and let F be the family of forbidden induced subgraphs of P as in Definition 4.1.
Let NF (ε), fF (ε), and δF (ε) be the functions of Lemma 4.2 and assume they are
computable. To design our one-sided error tester for P, we just need to note that if a
graph on n vertices contains at least δnf induced copies of a graph F on f vertices,
then sampling 2/δ sets of f vertices each, which is a total of 2f/δ, finds an induced
copy of F with probability at least 2/3.

Given a graph G, the one-sided error tester for P works as follows: It asks the ora-
cle for a subgraph of G induced by a randomly chosen set of max{NF (ε), 2fF (ε)/δF (ε)}
vertices. It declares G to be a graph satisfying P if and only if the induced subgraph
on S satisfies P. Clearly, if G satisfies P, then as P is hereditary the algorithm ac-
cepts G with probability 1. If G is ε-far from satisfying P and G has less that NF (ε)
vertices, the algorithm answers correctly with probability 1, as in this case S spans
G. If G has more than NF (ε) vertices, then by Lemma 4.2 there is a member of F of
size f ≤ fF (ε) such that G spans δF (ε)nf induced copies of F . By the observation
from the preceding paragraph, S spans an induced copy of F with probability at least
2/3. As F ∈ F and P is hereditary, we get that with probability at least 2/3, the
graph spanned by S does not satisfy P. Hence, the tester rejects G with probability
at least 2/3. Also, its query complexity is always a function only of ε.

Proof of Theorem 2. Let P be a semihereditary property and let H be the hered-
itary graph property as in Definition 2.2. We next show that P has an oblivious one-
sided error tester. As H is hereditary, we get from Theorem 1 and the fact that its
proof actually gives an oblivious tester for H that there is a function QH(ε) such that
H can be tested by an oblivious one-sided error tester with query complexity QH(ε).
The oblivious tester T we design for testing P works as follows: Its query complexity
is Q(ε) = max{M(ε/2), QH(ε/2)} (the function M is part of Definition 2.2). After
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getting from the oracle the randomly chosen induced subgraph, which we denote by
G′, the tester T proceeds as follows: If G′ is of size strictly smaller than Q(ε), the
algorithm accepts if and only if G′ satisfies P. If G′ is of size at least Q(ε), the
algorithm accepts if and only if G′ satisfies H.

We turn to show that T is indeed an oblivious one-sided error tester for P. We first
observe that T satisfies the definition of an oblivious tester. We also note that if the
input graph is of size less than Q(ε), then we accept the input if and only if it satisfies
P because by the definition of an oblivious tester this means that the input graph was
of size less than Q(ε), and therefore the oracle returned the entire input graph. Let
us now consider an input of size at least Q(ε) and recall that Q(ε) ≥ M(ε/2). If this
input satisfies P, then by the first item of Definition 2.2 it also satisfies H, and as in
this case we accept if and only if G′ satisfies H, this means that T accepts the input.
Hence, T has one-sided error. Suppose now that the input is ε-far from satisfying
P. This means that after adding/deleting 1

2
εn2 edges, the input is still ε

2
-far from

satisfying P. By item 2 of Definition 2.2 and as in this case the input must be of
size at least M(ε/2), this means that after adding/deleting 1

2
εn2 edges, the input still

contains an induced subgraph not satisfying H. In other words, this means that the
input is at least ε

2
-far from satisfying H. As Q(ε) ≥ QH(ε/2), we infer that with

probability at least 2/3 the graph G′ spans an induced subgraph not satisfying H,
and therefore G′ does not satisfy H (as it is hereditary). As in this case T accepts
if and only if G′ satisfies H, this means that T will reject an input that is ε-far from
satisfying P with probability at least 2/3.

Assume now that property P has a one-sided error oblivious tester T . Our goal
is to show the existence of a hereditary property H as in Definition 2.2. Let F be
the following family of graphs: A graph F on |V (F )| vertices belongs to F (i) if for
some ε > 0 the query complexity of T satisfies Q(ε) = |V (F )| (recall that the query
complexity of T is a function of ε only); and (ii) if for this ε the sample of vertices
spans a graph isomorphic to F , then T rejects the input with positive probability.
We claim that we can take H in Definition 2.2 to be the property of being induced
F-free.

To establish the first item of Definition 2.2, it is enough to show that there is no
graph G satisfying P which spans an induced subgraph isomorphic to a graph F ∈ F .
Suppose such a G exists, and consider the execution of T on G with an ε for which
Q(ε) = |V (F )|. By definition of F we get that T asks for a random subgraph of G
of size |V (F )| and that if T gets a graph isomorphic to F , it rejects G with positive
probability. As we assume that G spans an induced copy of a graph isomorphic to
F , this means that T has a nonzero probability of rejecting G, contradicting our
assumption that T is one-sided.

To establish the second item of Definition 2.2, we claim that we can take M(ε) =
Q(ε). Indeed, consider a graph G on at least Q(ε) vertices that is ε-far from satisfying
P. As T is a tester for P, it should reject G with nonzero probability. By definition
of an oblivious tester and as G has at least Q(ε) vertices, this means that G must
contain an induced subgraph F , of size precisely Q(ε), with the property that if T
gets F from the oracle, then it rejects G. By definition of F this means that F ∈ F .
Hence, we can take F itself to be the graph not satisfying H.

6. Proofs of additional results. In this section we give the proofs of Theorems
3, 4, and 5. We start with the proof of Theorem 3. Note that when considering
the notion of ε-fardel there is no sense in considering hereditary properties which
are not satisfied by some independent set, as in this case any graph with even a
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single independent set (say, of size 3) is arbitrarily far from satisfying the property.
Moreover, finding this independent set requires Ω(n2) queries.

Our main tool for the proof of Theorem 3 is the following result, which is a
strengthened version of a result of Frankl and Füredi in [20] and can be deduced, for
example, from the main result of [38].

Theorem 7 (see [20], [38]). For any graph F = (R, T ) with |T | = t > 0 edges,
there is a constant δ = δ(F ) with the following property: For any integer n, there is
a graph Gn = (V,E) on n vertices, which consists of (1 − n−δ)

(
n
2

)
/t induced copies

of F , such that no two copies of F share an edge.

Proof of Theorem 3. By the discussion above we may assume that P has at least
one forbidden induced subgraph F = (R, T ) and that F is not an independent set.
Put t = |T | and for any n let Gn be the graph whose existence is guaranteed by
Theorem 7. As all these graphs consist of (1 − n−δ)

(
n
2

)
/t > n2/4t induced copies of

F , where none of the copies shares an edge, these graphs are all at least 1
4t -fardel from

being induced F -free. Hence, they are also at least 1
4t -fardel from satisfying P. On

the other hand, as we assume that any clique satisfies P, and G contains (1−n−δ)
(
n
2

)

edges, any randomized algorithm with query complexity much smaller than nδ cannot
testdel property P. The reason is that the algorithm has a negligible probability of
distinguishing between the graphs Gn, which are 1

4t -fardel from satisfying P, and a
clique of size n, which by assumption satisfies P.

Suppose we define ε-faradd and testableadd but now allowing only edge additions.
One can easily see that simple modifications of the proof of Theorem 3 imply that
the same lower bound can be proved for testingadd any hereditary property which is
not closed under edge additions and which is satisfied by any edgeless graph.

We continue with the proof of Theorem 4. As most of the technical details are
very similar to those appearing in [4], we discuss only the main idea needed to obtain
the extension of the result of [4]. We start with a useful result of [4].

Definition 6.1 (indistinguishability). Two graph properties P and Q are called
indistinguishable if for every ε > 0 there exists N = N(ε) satisfying the following; A
graph on n ≥ N vertices satisfying one of the properties is never ε-far from satisfying
the other.

Lemma 6.2 (see [4]). If P and Q are indistinguishable graph properties, then P
is testable if and only if Q is testable.

We next define an extension of the notion of colorability. A similar notion was
used in [4], where F was restricted to be finite.

Definition 6.3 (F-colorability). Suppose we are given an integer c, and a (pos-
sibly infinite) family (with repetitions) F of graphs, each of which is provided with a
c-coloring (i.e., a function from its vertex set to {1, . . . , c} which is not necessarily a
proper c-coloring in the usual sense). A c-coloring of a graph G is called an F-coloring
if no member of F appears as an induced subgraph of G with an identical coloring. A
graph G is called F-colorable if there exists an F-coloring of it.

Note that for any family of colored graphs F (finite or infinite), being F-colorable
is a hereditary graph property. We thus get the following from Theorem 1.

Lemma 6.4. For any family of colored graphs F , being F-colorable is testable.

Note that by Theorem 1, being F-colorable is in fact testable with one-sided
error, but we do not need this stronger assertion here. The following lemma shows
the relevance of the notion of F-colorability for the proof of Theorem 4.
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Lemma 6.5. For every first order property P of the form

∃x1, . . . , xt

∞∧

i=1

∀y1, . . . , yi Ai(x1, . . . , xt, y1, . . . , yi),

there exists a (possibly infinite) family F of (2t+(t
2) + 1)-colored graphs such that the

property P is indistinguishable from the property of being F-colorable.
The proof of the above lemma uses ideas very similar to those used to prove

Lemma 2.2 in [4] and is thus omitted. We briefly mention that one can use the same
technique of [4] along with the fact that one is allowed to put in F infinitely many
forbidden colored subgraphs. The proof of Theorem 4 is immediate from Lemmas 6.2,
6.4, and 6.5.

We conclude this section with the proof of Theorem 5.
Proof of Theorem 5. For each of the hereditary properties Pi, let Fi be the family

of forbidden induced subgraphs of Pi as in Definition 4.1, and let F = F1

⋃F2

⋃F3

⋃

. . . . Clearly, a graph G satisfies all the properties of P if and only if it is induced
F-free. Consider a graph G which is ε-far from satisfying all the properties of P. In
this case G is also ε-far from being induced F-free; hence, by Lemma 4.2, there is a
graph F ∈ F of size f = fF (ε) such that G contains δF (ε)nf induced copies of F .
Note that adding or removing an edge from G destroys at most

(
n

f−2

) ≤ nf−2 induced

copies of F . Thus, one must add or delete at least δF (ε)n2 edges to G in order to
turn it into a graph containing no induced copy of F . Let i be such that F ∈ Fi.
We may now infer that G is δF (ε)-far from satisfying Pi. Finally, note that as F is
determined by P, we can also say that G is δP(ε)-far from satisfying Pi.

7. Concluding remarks and open problems.
• Our main result in this paper can be considered a characterization of the

natural graph properties that are testable with one-sided error. Thus, a
natural and interesting open problem related to this paper is to complete the
characterization of the graph properties that are testable with one-sided error
by arbitrary testers, and not just oblivious ones.

• Theorem 1 asserts that any hereditary property is testable with one-sided
error. However, the upper bounds on the query complexity, which this the-
orem guarantees, are huge. Even for rather simple properties, these bounds
are towers of towers of exponents of height polynomial in 1/ε. Some specific
properties, such as k-colorability, have far more efficient testers, whose query
complexity is polynomial in 1/ε (see [6]). For others, like being H-free (that
is, containing no copy of H as a (not necessarily induced) subgraph), it is
known that whenever H is not bipartite, there is no tester (one-sided or two-
sided) whose query complexity is polynomial in 1/ε (see [1], [9]). Recall that
a hereditary property P is equivalent to being FP -free for a possibly infinite
family of graphs FP . The hardness of testing hereditary properties for which
FP is finite is (relatively) well understood, as it follows from the main result
of [7] that if FP has a graph on at least five vertices, then there is no tester
(one-sided or two-sided) for P whose query complexity is polynomial in 1/ε.
When FP is infinite, the situation is much more complicated, and there are no
general results which guarantee or rule out the possibility of designing testers
with query complexity polynomial in 1/ε. In particular, a natural intriguing
and probably challenging problem is the following:
Which hereditary graph properties can be tested with poly(1/ε) queries?
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As a special case of this problem, it seems interesting to study the query
complexity needed to test the natural graph properties that were discussed
in subsection 2.1.

• Theorem 2 gives a precise characterization of the graph properties that have
oblivious one-sided testers. As we have explained in section 1, any natural
property that can be tested can be tested by an oblivious tester. It may thus
be simpler, but still very interesting, to resolve the following problem:
Which graph properties have (possibly two-sided) oblivious testers?
Note that the definition of an oblivious tester implicitly assumes that the
query complexity of such a tester is a function only of ε.

• Fischer and Newman [18] have recently shown that every testable graph prop-
erty is also estimable; namely, for any such property one can estimate how
far a given graph is from satisfying the property (in this paper this quan-
tity is denoted by ε) while making a constant number of queries. Combining
Theorem 1 and the result of [18], we get that any hereditary property is
estimable.

Acknowledgment. We would like to thank the referees for many helpful com-
ments that improved the presentation of our results.
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[26] J. Komlós and M. Simonovits, Szemerédi’s regularity lemma and its applications in graph
theory, in Combinatorics, Paul Erdős is Eighty, Vol. II, D. Miklós, V. T. Sós, and T. Szőnyi,
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Abstract. Extending the Szemerédi regularity lemma for graphs, P. Frankl and V. Rödl [Ran-
dom Structures Algorithms, 20 (2002), pp. 131–164] established a 3-graph regularity lemma triple
systems Gn admit bounded partitions of their edge sets, most classes of which consist of regularly
distributed triples. Many applications of this lemma require a companion counting lemma [B. Nagle
and V. Rödl, Random Structures Algorithms, 23 (2003), pp. 264–332] allowing one to find and enu-
merate subhypergraphs of a given isomorphism type in a “dense and regular” environment created
by the 3-graph regularity lemma. Combined applications of these lemmas are known as the 3-graph
regularity method. In this paper, we provide an algorithmic version of the 3-graph regularity lemma
which, as we show, is compatible with a counting lemma. We also discuss some applications.
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1. Introduction. Szemerédi’s regularity lemma [40] is one of the most impor-
tant tools in combinatorics, with applications ranging across combinatorial number
theory, extremal graph theory, and theoretical computer science (see [25, 26] for ex-
cellent surveys of applications). This lemma hinges on the notion of ε-regularity. A
bipartite graph H = (X ∪ Y,E) is (d, ε)-regular if for every X ′ ⊆ X, |X ′| > ε|X|,
and Y ′ ⊆ Y , |Y ′| > ε|Y |, we have |dH(X ′, Y ′) − d| < ε, where dH(X ′, Y ′) =
|H[X ′, Y ′]|/(|X ′||Y ′|) is the density of the bipartite graph H[X ′, Y ′] induced on the
sets X ′ and Y ′. (In this paper, graphs and hypergraphs are identified with their edge
sets.) We say H is ε-regular if it is (d, ε)-regular for some d. Szemerédi’s regularity
lemma is stated as follows.

Theorem 1.1 (Szemerédi’s regularity lemma [40]). For all ε > 0 and integers
t0 ≥ 1, there exist integers T0 = T0(ε, t0) and N0 = N0(t0, ε) so that every graph G on
N > N0 vertices admits a partition of its vertex set V (G) = V1 ∪ · · ·∪Vt, t0 ≤ t ≤ T0,
satisfying

1. V (G) = V1 ∪ · · · ∪ Vt is equitable: |V1| ≤ · · · ≤ |Vt| ≤ |V1| + 1;
2. V (G) = V1 ∪ · · · ∪ Vt is ε-regular: all but ε

(
t
2

)
pairs Vi, Vj, 1 ≤ i < j ≤ t, are

ε-regular.
Much of the strength of Szemerédi’s regularity lemma rests on the ability to embed

fixed subgraphs within appropriate parts of an ε-regular partition, a phenomenon
formally due to the following easily proved graph “counting lemma.”

Fact 1.2 (counting lemma). For all integers k and nonnegative d, there exists
ε0 > 0 so that for all 0 < ε < ε0, whenever H =

⋃
1≤i<j≤k H

ij is a k-partite graph
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on V1 ∪ · · · ∪ Vk, |V1| = · · · = |Vk| = n, where each Hij, 1 ≤ i < j ≤ k, is (d, ε)-

regular, then the number of k-cliques in H, |K(2)

k (H)|, satisfies d(
k
2)nk

(
1 − ε1/k

) ≤
|K(2)

k (H)| ≤ d(
k
2)nk

(
1 + ε1/k

)
.

Combined applications of Theorem 1.1 and Fact 1.2 are known as the graph
regularity method and will be discussed shortly.

The great importance of Szemerédi’s regularity lemma has led to a search for
extensions to k-uniform hypergraphs—for example, [4, 7, 12, 13, 14]. While these
early generalizations did lead to some interesting applications, they did not seem to
capture the full power of Szemerédi’s lemma for graphs. In particular, they did not
allow for the embedding of small subsystems within a regular structure. The first
hypergraph regularity lemma shown to admit a corresponding counting lemma was
due to Frankl and Rödl [11] for 3-uniform hypergraphs (we shall refer to 3-uniform
hypergraphs as 3-graphs for short). In what follows, we refer to this regularity lemma
for 3-uniform hypergraphs as the 3R-lemma for short. The 3R-lemma guarantees that
any large 3-graph G admits a bounded partition of its triples, most classes of which
are “regularly distributed.” The corresponding 3-graph counting lemma was due to
Frankl, Nagle, and Rödl [11, 27]. Joint applications of these lemmas are known as
the 3-graph regularity method , which has been used in several hypergraph problems
[6, 18, 20, 21, 28, 31, 32, 38] (see also [33, 34, 36]).

The original proof of Szemerédi’s regularity lemma for graphs was not algorith-
mic. An algorithmic version of Szemerédi’s lemma was later established in [1, 2] by
Alon et al. (see also [10]), rendering constructive solutions to many problems where
Szemerédi’s lemma is applied (see [1] for applications). Correspondingly,

the object of this paper is to establish compatible algorithmic
versions of the 3R-lemma and the counting lemma.

Results in this paper were announced in our earlier paper [8] (see the abstract of [8]),
and outlined in the extended abstract [17]. We state our results precisely in section 2.

Extending the 3R-lemma, regularity lemmas and counting lemmas for k-uniform
hypergraphs, also allowing the embedding of small substructures, were recently de-
veloped by Gowers [15, 16], Nagle, Rödl, and Schacht [29], and Rödl and Skokan [35].
Most likely, it would be possible to extend our current work to provide an algorithmic
version of the general k-graph regularity method. It appears that our approach here
has some similarities to that of Gowers [15]. In particular, we use the concept of a

hypergraph having “minimally many” copies of K
(3)

2,2,2, where K
(3)

2,2,2 is the complete 3-
partite 3-graph with two vertices in each class (we call this concept “(α, δ)-minimal”).
In [15], Gowers uses a related concept (cf. “α-quasirandom”), although the arguments
in our paper are quite different from those in [15].

To accomplish the object of this paper, one seeks to use the approach of Alon
et al. [1] for the graph case. Extending their approach in this paper becomes technical
for several reasons. For one, the 3R-lemma and counting lemma of [11, 27] involve
more technical environments. More importantly, however, and as we discuss momen-
tarily, the approach taken in [1, 10] is based on the implication that “C4-minimality
implies regularity,” the analogy of which fails to be true in the context of the 3R-
lemma (cf. (8) and our earlier work with Dementieva [8]). To handle this problem,
our paper does the following:

1. formulates a variant of the regularity lemma from [11] in the upcoming The-
orem 2.4;
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2. modifies the approach of Alon et al. [1] to prove Theorem 2.4 constructively;
and

3. formulates and proves a counting lemma in the upcoming Theorem 2.7 which
is compatible with Theorem 2.4.

The work of this paper represents some departure from the original 3R-lemma
of [11] and the original counting lemma from [27]. To motivate our work, section 1.1
reviews the original approach of Alon et al. for constructively proving Szemerédi’s
regularity lemma. Section 1.2 then emphasizes which parts from section 1.1 shall be
the same in this paper and illustrates how we modify the remaining parts. In section 2,
we then precisely state the main results of our paper and discuss an application. The
remainder of the paper proves the main results discussed in section 2.

1.1. Constructive proof of the regularity lemma. The algorithmic version
of Szemerédi’s regularity lemma states that for each ε > 0 and t0, for each graph G
on N > N0(ε, t0) vertices, an ε-regular t-equitable partition V (G) = V1 ∪ · · · ∪ Vt,
1 ≤ t ≤ T0 = T0(ε, t0) (the existence of which is guaranteed by Theorem 1.1), can
be constructed in time polynomial in N . In what immediately follows, we sketch the
constructive proof of statement 2 of Theorem 1.1 (the essence of Theorem 1.1) where
it is enough to consider the special case t0 = 1.

The proof boils down to one central problem. Indeed, let ε > 0 be fixed and
let bipartite graph H be given with bipartition X ∪ Y and positive density d =
|H|/(|X||Y |) > 0. As we explain below, to prove Theorem 1.1 constructively, one is
faced with the problem of

(1) efficiently deciding if H is ε-regular,

a problem which, unfortunately, is co-NP-complete [1]. To handle (1), one circumvents

the problem by counting the number |K(2)

2,2(H)| (cf. (42)) of copies of K
(2)

2,2 = C4

appearing in H, an operation easily completed in time |X|2|Y |2. It is always the case

that |K(2)

2,2(H)| ≥ d4
(|X|

2

)(|Y |
2

)
(1 − o(1)), where o(1) → 0 as min{|X|, |Y |} → ∞. We

now consider the relationship between ε-regularity and the number |K(2)

2,2(H)|.
On the one hand, it is not difficult to show that

(2) H is ε-regular =⇒
∣∣∣K(2)

2,2(H)
∣∣∣ ≤ (d + f(ε))4

(|X|
2

)(|Y |
2

)

for a fixed function f(ε) > ε satisfying f(ε) → 0 as ε → 0. Moreover, the same proof
gives

∣∣∣K(2)

2,2(H)
∣∣∣ > (d + f(ε))4

(|X|
2

)(|Y |
2

)
=⇒ ∃ O(|X||Y |)-time algorithm(3)

which builds X ′ ⊂ X and Y ′ ⊂ Y , |X ′| > ε|X| and |Y ′| > ε|Y |,
such that |dH(X ′, Y ′) − d| > ε.

(We shall often refer to sets X ′, Y ′ as above as witnesses of irregularity .) On the
other hand, convexity arguments show [1, 10]

(4)
∣∣∣K(2)

2,2(H)
∣∣∣ ≤ (d + g(ε))4

(|X|
2

)(|Y |
2

)
=⇒ H is ε-regular

for a fixed (positive) function g(ε) < ε. We note the following crucial remark.
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Remark 1.3. For the fixed functions f and g in (2) and (4), respectively, suppose

|K(2)

2,2(H)| > (d + g(ε))4
(|X|

2

)(|Y |
2

)
. Then from (2), H is not f−1(g(ε))-regular, where

from f(ε) > ε > g(ε) we necessarily have f−1(g(ε)) < g(ε) < ε. As such, H may
simultaneously be both ε-regular and f−1(g(ε))-irregular.

We now use the implications in (2)–(4) to give the constructive proof of Theo-
rem 1.1 from [1]. Indeed, with ε > 0 fixed and N -vertex graph G given, one iteratively

builds a special sequence of partitions P� : V (G) = V
(�)
1 ∪· · ·∪V

(�)
t�

, � ≥ 1, and defines
for each � ≥ 1 the corresponding index (cf. [39, 40])

(5) ind P� =
1

N2

∑

1≤i<j≤t�

d2
G

(
V

(�)
i , V

(�)
j

) ∣∣∣V (�)
i

∣∣∣
∣∣∣V (�)

j

∣∣∣,

noting that ind P� never exceeds one.

Suppose partitions P1, . . . ,P� have been constructed where P� : V (G) = V
(�)
1 ∪

· · · ∪ V
(�)
t�

. We seek to know if P� is ε-regular (for if it is, then P� is the partition
desired). Recalling (1), however, we cannot, in general, efficiently decide the regularity

status of G[V
(�)
a , V

(�)
b ], 1 ≤ a < b ≤ t�, for a given ε > 0. As such, we instead count

|K(2)

2,2(G[V
(�)
a , V

(�)
b ])|. With d

(�)
ab denoting the density of G[V

(�)
a , V

(�)
b ] and with the

functions f and g given in (2) and (4), respectively, we compute |K(2)

2,2(G[V
(�)
a , V

(�)
b ])|

and record the following information:

1. if |K(2)

2,2(G[V
(�)
a , V

(�)
b ])| ≤ (d

(�)
ab + g(ε))4

(|V (�)
a |
2

)(|V (�)
b |
2

)
, then G[V

(�)
a , V

(�)
b ] is ε-

regular by (4);

2. if |K(2)

2,2(G[V
(�)
a , V

(�)
b ])| > (d

(�)
ab + g(ε))4

(|V (�)
a |
2

)(|V (�)
b |
2

)
, then G[V

(�)
a , V

(�)
b ] is not

f−1(g(ε))-regular (cf. Remark 1.3), and by (3), we may efficiently construct

witnesses Ṽ
(�)
a and Ṽ

(�)
b of the f−1(g(ε))-irregularity of G[V

(�)
a , V

(�)
b ].

Correspondingly, if

(1′) all but ε
(
t�
2

)
of the bipartite graphs G[V

(�)
a , V

(�)
b ], 1 ≤ a < b ≤ t�, have the

“minimal number” of K
(2)

2,2 ’s, i.e., such that (4) is satisfied, then the partition
P� is ε-regular, as desired;

(2′) at least f−1(g(ε))
(
t�
2

)
< ε
(
t�
2

)
of the bipartite graphs G[V

(�)
a , V

(�)
b ], 1 ≤ a <

b ≤ t�, do not have the minimal number of K
(2)

2,2 ’s, then by (3), we have

constructed a system of witnesses Ṽ
(�)
a and Ṽ

(�)
b , {a, b} ∈ I(�) for some “large”

indexing set I(�) ⊆ ([t�]
2

)
, for the f−1(g(ε))-irregularity of G[V

(�)
a , V

(�)
b ].

While (1′) signifies the end of the proof, (2′) puts one directly in the center of Sze-
merédi’s proof [39, 40] of the regularity lemma.

Indeed, with the system of constructed witnesses Ṽ
(�)
a and Ṽ

(�)
b , {a, b} ∈ I(�),

as above, Szemerédi’s original proof [39, 40] establishes the existence of a partition

P�+1 : V (G) = V
(�+1)

1 ∪ · · · ∪ V
(�+1)
t�+1

for which

(6) t�+1 ≤ t�2
t�−1

and

(7) ind P�+1 ≥ ind P� +
(f−1(g(ε)))5

2
.

Moreover, since the system of witnesses Ṽ
(�)
a and Ṽ

(�)
b , {a, b} ∈ I(�), was already

constructed, Szemerédi’s proof [39, 40] can be easily made to construct the partition
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P�+1 in time O(N). As such, within 2/(f−1(g(ε)))5 iterations � of the process above
(recall the index never exceeds one), one must have constructed an ε-regular partition
P(�), as desired.

1.2. Modifying the graph approach. We see from the outline of the previous
section that the constructive proof of Szemerédi’s regularity lemma hinges on the

relationship between the ε-regularity of a bipartite graph H and the number of K
(2)

2,2 ’s
of H. The implications in (2)–(4) assert that the property of ε-regularity in graph

H is essentially equivalent to the parameter |K(2)

2,2(H)| being asymtotically minimized
over all bipartite graphs of the same density.

The concept of 3-graph regularity in [11] is so-called (δ, r)-regularity for 3-graphs
H. While we define this concept precisely in Definition 3.1 below, we say, for now,
that it plays the role of ε-regularity in Szemerédi’s regularity lemma and is, corre-
spondingly, the central concept in the counting lemma from [11, 27]. Similarly to (1),
it is a co-NP-complete problem to verify the property of (δ, r)-regularity, and thus as
in (2)–(4), we seek an easily verifiable property which is essentially equivalent to (δ, r)-
regularity. Following the outline of the previous section, a primary candidate would

be to consider the number of K
(3)

2,2,2’s in a 3-graph H, where we recall that K
(3)

2,2,2 is the
complete 3-partite 3-graph with two vertices in each class. In Definition 2.2 below, we
define the appropriate sense in which a 3-graph H contains “minimally many” copies

of K
(3)

2,2,2 (viz. (α, δ)-minimality). Then, one hopes to transparently extend the graph
approach above, going between (δ1, r)-regularity and (α, δ2)-minimality analogously

to how we went between ε-regularity and “K
(2)

2,2 -minimality” with (2)–(4).
The problem in extending the approach above is that, unlike the case of graphs

where one has the equivalence established in (2)–(4),

(8) (δ1, r)-regularity is not equivalent to (α, δ2)-minimality.

In particular, our earlier work in [8] established that (with appropriately quantified
constants)

(9) (δ1, r)-regularity implies (α, δ2)-minimality

but that

(10) (α, δ2)-minimality does not imply (δ1, r)-regularity.

(The details of (9) will be discussed in Proposition 3.2 below.) Then (10) implies
that step (1′) of the graph outline above cannot be extended to the context of (δ1, r)-
regular hypergraphs. We now very roughly indicate the main idea we take in resolving
this technicality. (The precise details are given in section 3.)

Unlike Frankl and Rödl’s regularity lemma, we formulate our algorithmic regu-
larity lemma in terms of (α, δ2)-minimality, meaning that for a given 3-graph H on n
vertices, we want to construct a partition P, most “parts” of which have minimally

many K
(3)

2,2,2’s. Although the concepts are (technically) different, the main idea is
similar to Szemerédi’s proof [39, 40]. Let Pi be a constructed partition for H.

• If Pi already has most parts with minimally many K
(3)

2,2,2’s, then our algorithm
terminates with Pi, as desired.

• If Pi has many parts, each with too many K
(3)

2,2,2’s, then by (9), these parts
cannot be (δ1, r)-regular (and witnesses against the (δ1, r)-regularity can be
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found in time O(n5)). Now, however, we are philosophically at the center of
Frankl and Rödl’s proof: we may refine Pi to obtain a new partition Pi+1

whose index (defined later) is significantly larger than that of Pi.
The rough sketch above indicates that we find a minimal partition P rather than

a (δ1, r)-regular one. A main result in this paper (the upcoming Theorem 2.7) asserts
that

(11) the concept of (α, δ2)-minimality admits a corresponding counting lemma.

As such, we do not need to find a (δ1, r)-regular partition, as did Frankl and Rödl, in
order to cooperatively apply a counting lemma.

2. Main results of paper. In this section, we state the main results of this
paper, an algorithmic 3R-lemma, Theorem 2.4, and a corresponding 3-graph counting
lemma, Theorem 2.7. We conclude the section with an application of our theorems
to a constructive hypergraph problem.

To state Theorems 2.4 and 2.7, we require some notation and concepts. We shall
begin this section by presenting concepts needed to state Theorem 2.4.

2.1. 3R-partitions. Given a 3-graph G with vertex set V , the 3R-lemma guar-
antees partitions of the vertices V and the pairs

(
V
2

)
, w.r.t. which G behaves “regu-

larly.” In what follows, we refer to such families of partitions as 3R-partitions. We
now describe the vertex and pair structure of 3R-partitions.

Let V be a set with |V | = N and let integers � and t and reals γ > 0 and ε > 0 be
given. An (�, t, γ, ε)-partition P of

(
V
2

)
is an (auxiliary) partition V = V0∪V1∪· · ·∪Vt

of V , together with a system of edge-disjoint bipartite graphs B = {P ij
a : 1 ≤ i < j ≤ t,

0 ≤ a ≤ �ij ≤ �}, such that

1. |V0| < t and |V1| = |V2| = · · · = |Vt| =
⌊
N
t

⌋ def
= n,

2.
⋃�ij

a=0 P
ij
a = K(Vi, Vj) is a partition of the complete bipartite graph K(Vi, Vj)

for all 1 ≤ i < j ≤ t, and
3. setting Breg to be the collection of those bipartite graphs from B that are

ε-regular, we have

∑

P ij
a ∈Breg

∣∣P ij
a

∣∣ > (1 − γ)

(
t

2

)
n2.

An (�, t, γ, ε)-partition P is said to be equitable if for all but γ
(
t
2

)
pairs 1 ≤ i < j ≤ t,

|P ij
0 | ≤ γn2 and P ij

a has density dP ij
a

(Vi, Vj) satisfying |dP ij
a

(Vi, Vj) − �−1| < ε for all
a = 1, . . . , �ij .

To describe the “triple structure” of 3R-partitions requires still more definitions
and notation. For a fixed set V , let an (�, t, γ, ε)-partition P of V be given. Any
3-partite graph P ⊆ B of the form
(12)

P = P ij
a ∪ P jk

b ∪ P ik
c , 1 ≤ i < j < k ≤ t, 0 ≤ a ≤ �ij , 0 ≤ b ≤ �jk, 0 ≤ c ≤ �ik,

is called a triad. Denote by Triad(P) the set of all such triads P . For P ∈ Triad(P),

let K(2)

3 (P ) denote the system of triangles of P :

K(2)

3 (P ) =

{
{x, y, z} ∈

(
V

3

)
: {x, y, z} induces a triangle K

(2)

3 in P

}
.
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Now, let G be a 3-graph on vertex set V = V (G), where V has (�, t, γ, ε)-partition P.

For P ∈ Triad(P), we write GP = G ∩ K(2)

3 (P ) and define the density of GP w.r.t. P

as αP = dGP
(P ) = |GP |/|K(2)

3 (P )|. Set

K(3)

2,2,2 (GP ) =

{
J ∈

(
V

6

)
: J induces a copy of K

(3)

2,2,2 in GP

}
,

where K
(3)

2,2,2 is the complete 3-partite 3-graph with 2 vertices in each class.

2.2. Algorithmic regularity lemma. Our regularity lemma hinges on the con-
cept of (α, δ)-minimality which is defined for the following environment.

Setup 2.1. Let P = P 12 ∪ P 23 ∪ P 13 be a 3-partite graph and H be a 3-partite
3-graph satisfying the following conditions:

1. H and P have common 3-partition V = V (P ) = V1 ∪ V2 ∪ V3, |V1| = |V2| =
|V3| = n;

2. P ij is (�−1, ε)-regular for each 1 ≤ i < j ≤ 3; and

3. H ⊆ K(2)

3 (P ) and dH(P ) = α.

We note that Setup 2.1 models the environment of a “typical” triad P ij
a ∪P jk

b ∪P ik
c

from an equitable (�, t, γ, ε)-partition P of
(
V
2

)
, where, here, V = V (G) is the vertex

set of a 3-graph G and H plays the role of G ∩ K(2)

3 (P ).
We will confirm in section 4 that, with ε sufficiently small, Setup 2.1 ensures

(13)
∣∣∣K(3)

2,2,2 (H)
∣∣∣ ≥ α8

�12

(
n

2

)3 (
1 − ε1/10

)

(see upcoming Proposition 4.1). The following definition is therefore motivated.
Definition 2.2 ((α, δ)-minimality). For δ > 0, we say 3-graph H, as in

Setup 2.1, is (α, δ)-minimal w.r.t. P if

∣∣∣K(3)

2,2,2 (G)
∣∣∣ ≤ α8

�12

(
n

2

)3

(1 + δ) .

If H is not (α, δ)-minimal w.r.t. P , then we say H is (α, δ)-excessive w.r.t. P .
We now define a notion of “minimality” for an (�, t, γ, ε)-partition P of G. For

α0, δ > 0, we first set

Triad(α0,δ)-exc(P) =
{
P ∈ Triad(P) : GP = G ∩ K(2)

3 (P ) is (αP , δ)-excessive(14)

w.r.t. P , where dGP
(P ) = αP ≥ α0

}
.

We say partition P is (α0, δ)-minimal w.r.t. G if

(15)
∑

P∈Triad(α0,δ)-exc(P)

∣∣∣K(2)

3 (P )
∣∣∣ < δN3

and (α0, δ)-excessive w.r.t. G otherwise. For future reference, we make the following
remark.

Remark 2.3. As defined, every triad P = P ij
a ∪ P jk

b ∪ P ik
c ∈ Triad(α0,δ)-exc(P)

necessarily satisfies that each of P ij
a , P jk

b , P ik
c is (1/�, ε)-regular. In particular, the set
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Triad(P) splits into three classes: those which are minimal, those which are excessive,
and those which contain an irregular bipartite graph.

We arrive at our first main theorem.

Theorem 2.4 (algorithmic regularity lemma). For all reals α0, δ, γ > 0, integers
t0 and �0, and functions ε : N

+ → (0, 1), there exist integers T0, L0, and N0 so
that every 3-graph G on N > N0 vertices admits an equitable and (α0, δ)-minimal
(�, t, γ, ε(�))-partition P where �0 ≤ � ≤ L0 and t0 ≤ t ≤ T0. Moreover, there exists
an algorithm which produces the partition P in time O(N6).

In our proof of Theorem 2.4, the running time O(N6) will be easy to see. It is not,
however, optimal. Indeed, combining ideas from [23, 24] with some from the current
paper, one can prove a running time of O(N4). It seems likely that a running time of
O(N3) should be possible. However, as refinements to the running time are not our
focus in this paper, we do not discuss the issue here.

One can also prove the following form of Theorem 2.4 which may be slightly more
convenient in some applications.

Theorem 2.5. For all α0, δ > 0, integers t0 and �0 and functions ε : N
+ → (0, 1),

there exist integers T0, L0, and N0 so that for every 3-graph G on vertex set V ,
|V | = N > N0, there exist integers �0 ≤ � ≤ L0 and t0 ≤ t ≤ T0 and a partition P of(
V
2

)
with the following properties:

1. P has auxiliary partition V = V1 ∪ · · · ∪ Vt split as evenly as possible, i.e.,
|V1| ≤ · · · ≤ |Vt| ≤ |V1| + 1.

2. For each 1 ≤ i < j ≤ t, we have K(Vi, Vj) =
⋃

1≤a≤� P
ij
a , where for each

1 ≤ a ≤ �, the graph P ij
a is (�−1, ε(�))-regular.

3. For all but δt3�3 triads P ∈ Triad(P) of density dGP
(P ) = αP ≥ α0, we have

that P is (αP , δ)-minimal w.r.t. GP .

Moreover, there exists an algorithm which produces partition P in time O(N6).

While we only sketch the details, Theorem 2.5 follows from Theorem 2.4 by
employing ideas considered in [29]. In particular, one can, in time O(N2), alter a
partition P2.4 produced by Theorem 2.4 to obtain a partition P2.5 promised by The-
orem 2.5. Indeed, first equitably distribute vertices of the “garbage class” V0 of P2.4

into V1 ∪ · · · ∪ Vt. It is easy to show that this process interferes with the regular-
ity/minimality of P2.4 by at most a measure of o(1) → 0 as N → ∞. Now, fix
1 ≤ i < j ≤ t, where we suppose there are rij ≤ �ij ≤ � many (�−1, ε(�))-regular
bipartite graphs P ij

a , 1 ≤ a ≤ �ij . It is not hard to show that the union of these
rij graphs is itself (rij/�, rijε(�))-regular, and therefore, (rij/�, �ε(�))-regular. It then

easily follows that the complement of this union (which contains P ij
0 and the �ij − rij

many (�−1, ε(�))-irregular bipartite graphs P ij
a ) is (1 − rij/�, �ε(�))-regular. As such,

one “randomly” slices this complement into � − rij new bipartite graphs Rij
a , each

of which is (almost surely) (�−1, 3�ε(�))-regular (see, [29, Lemma 30, p. 129]). More-
over, in time O(N2), this random slicing may be algorithmically derandomized using
Lemma 3.8 of [19, p. 144]. Repeating this procedure for all 1 ≤ i < j ≤ t produces the
partition P2.5 promised by Theorem 2.5. (Note that triads P which were originally
(αP , δ)-minimal w.r.t. GP are unaffected by the process above since each bipartite
graph of P was already (�−1, ε(�))-regular (cf. Remark 2.3).)

2.3. Counting lemma. We prove a hypergraph counting lemma compatible
with our algorithmic regularity lemma, Theorem 2.4. In what follows, for a hyper-

graph G on vertex set V and an integer k, let K(3)

k (G) denote the system of k-cliques
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in G:

K(3)

k (G) =

{
K ∈

(
V

k

)
: K induces a clique K

(3)

k of size k in G
}
.

Our counting lemma takes place in the following environment.
Setup 2.6. Suppose

1. P =
⋃

1≤i<j≤k P
ij is a k-partite graph and H =

⋃
1≤h<i<j≤k Hhij ⊆ K(2)

3 (P )
is a k-partite 3-graph, each with k-partition V (P ) = V (H) = V1 ∪ · · · ∪ Vk,
|V1| = · · · = |Vk| = n.

2. Each graph P ij, 1 ≤ i < j ≤ k, is (1/�, ε)-regular.

3. Each 3-graph Hhij ⊆ K(2)

3 (Phi ∪ P ij ∪ Phj), 1 ≤ h < i < j ≤ k, is
(α, δ)-minimal w.r.t. Phi ∪ P ij ∪ Phj, i.e., dHhij (Phi ∪ P ij ∪ Phj) = α

and |K(3)

2,2,2

(Hhij
) | ≤ α8

�12

(
n
2

)3
(1 + δ).

In the environment of Setup 2.6 and with appropriately chosen constants, we

estimate |K(3)

k (H)| with the following counting lemma.
Theorem 2.7 (counting lemma). For all integers k and α > 0 there exists δ0 > 0

so that for all 0 < δ < δ0 and integers � there exists ε > 0 so that, with n sufficiently
large, whenever H =

⋃
1≤h<i<j≤k Hhij and P =

⋃
1≤i<j≤k P

ij are as in Setup 2.6
with these constants,

∣∣∣K(3)

k (H)
∣∣∣ =

α(k3)

�(
k
2)

nk
(
1 ± δ

1
120k

)
.

We mention that our error term is not optimal and is taken in this paper for
convenience.

2.4. Application: Constructive fractional packings. In [1, 10] and, more
recently, [3], a number of applications are given using the algorithmic version of Sze-
merédi’s regularity lemma. It is likely that the work of the current paper allows some
of these applications to be extended to a 3-uniform hypergraph setting. In what fol-
lows, however, we discuss an application of our work to a different problem, which
concerns constructive fractional packings.

Let fixed 3-graph F be given. For a 3-graph G, let
(G
F
)

denote the set of copies
F0 of F contained in G. An F-packing of G is a collection of pairwise edge-disjoint
elements of

(G
F
)
. We denote by νF (G) the maximum size of an F-packing of G. A

fractional F-packing of G is any function ψ :
(G
F
)→ [0, 1] such that for every fixed edge

e ∈ G, we have
∑

(G
F)�F0�e ψ(F0) ≤ 1. Then, ν∗F (G) is defined to be the maximum

value of
∑

F0∈(G
F) ψ(F0) taken over all fractional F-packings of G. It is clear that

ν∗F (G) ≥ νF (G) holds for all 3-graphs G.
While computing νF (G) is an NP-hard problem (cf. [9]), computing ν∗F (G) is

known to be a linear programming problem (and hence can be done in polynomial
time). Extending a result of the first and third author [19] for graphs, the current
authors proved in [18] that

(16) ν∗F (G) − νF (G) = o(|V (G)|3)

holds for all 3-graphs G.
Theorems 2.4 and 2.7 may be combined to give the following constructive exten-

sion of (16).
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Theorem 2.8. For all fixed 3-graphs F and constants ε > 0, there exists N0 so
that for all 3-graphs G on N > N0 vertices, an F-packing of G of size νF (G) − εN3

can be constructed in polynomial time.
Proving Theorem 2.8 requires attention to a few technical details. We defer its

proof to a forthcoming paper.

2.5. Organization of paper. The remainder of this paper is organized as fol-
lows. In section 3, we prove Theorem 2.4, the regularity lemma. In section 4, we
present some facts on (α, δ)-minimality we need to prove Theorem 2.7, the counting
lemma. In section 5, we prove Theorem 2.7. In section 7, we show how the upcoming
Proposition 3.2 follows from our earlier work, Lemma 5.8 of [8].

3. Proof of Theorem 2.4. Our proof of Theorem 2.4 follows the outline set
forth in sections 1.1 and 1.2, but uses the hypergraph language established in this
paper as well as in Frankl and Rödl [11]. We begin by reviewing some concepts
from [11], beginning with the crucial concept of (δ, r)-regularity (compare this with
the concept of our paper, (α, δ)-minimality; see Definition 2.2).

Definition 3.1. Let δ > 0 and integer r be given. We say 3-graph H is (δ, r)-
regular w.r.t. graph P if for any sequence Qr = (Q1, . . . , Qr) of subgraphs Qs ⊆ P ,
1 ≤ s ≤ r,

∣∣∣
r⋃

s=1

K(2)

3 (Qs)
∣∣∣ > δ

∣∣∣K(2)

3 (P )
∣∣∣ =⇒ |dH(Qr) − dH(P )| < δ,

where

dH(Qr) =

∣∣∣H ∩⋃r
s=1 K(2)

3 (Qs)
∣∣∣

∣∣∣
⋃r

s=1 K(2)

3 (Qs)
∣∣∣

is the density of Qr w.r.t. H. If H is not (δ, r)-regular w.r.t. P , we say H is
(δ, r)-irregular w.r.t. P , and in this case, any vector Qr = (Q1, . . . , Qr) violating
the regularity condition above is said to be a witness of the (δ, r)-irregularity of H
w.r.t. P .

(In the definition above, when
⋃r

s=1 K(2)

3 (Qs) = ∅, we shall define dH(Qr) = ∅.)
The paper [11] also extends the notion of the graph “index” (cf. (5)) to hyper-

graphs. For a 3-graph G with (�, t, γ, ε)-partition P, define the index of P w.r.t. G
as

(17) ind P =
1

N3

∑

P∈Triad(P)

d2
GP

(P )
∣∣∣K(2)

3 (P )
∣∣∣ .

Similarly to (5), it is easy to see that ind P ≤ 1.
We need one final preparation before proceeding to the proof of Theorem 2.4. As

in (14), where we defined the family Triad(α0,δ)-exc(Ps) of all “excessive” triads, we
define

Triad(δ,r)-irr(P) =
{
P ∈ Triad(P) : GP = G ∩ K(2)

3 (P ) is (δ, r)-irregular w.r.t. P
}

(18)

as the family of all “irregular” triads. (By our definitions, a triad P ∈ Triad(δ,r)-irr(P)
is allowed to have a bipartite graph P ij

a which is not (�−1, ε)-regular (where 1 ≤ i <
j ≤ t and 1 ≤ a ≤ �ij), while a triad P ∈ Triad(α0,δ)-exc(P) is not.)
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Now, to prove Theorem 2.4 according to the outline from the introduction, we
need Propositions 3.2 and 3.4, and we begin by presenting the former. Proposition 3.2
below generalizes the common implication of (2) and (3) (which said that, for graphs,

ε-regularity implies K
(2)

2,2 -minimality). Proposition 3.2 asserts that if H is (δA, r)-
regular w.r.t. P , then it is also (α, δB)-minimal w.r.t. P (or, as we shall apply it, if H
is (α, δB)-excessive w.r.t. P , then it is also (δA, r)-irregular w.r.t. P ).

Proposition 3.2 (excessiveness ⇒ irregularity). For all α and δB, there exists
δA > 0 so that for all integers �, there exist ε > 0 and integer r so that whenever H
and P satisfy the hypothesis of Setup 2.1 with constants α, �, and ε and n sufficiently
large, then the following hold:

1. if H is (α, δB)-excessive w.r.t. P , then H is (δA, r)-irregular w.r.t. P ;
2. moreover, one may construct, in time O(n5), a witness Qr of the (δA, r)-

irregularity of H w.r.t. P .
Remark 3.3. Statement (1) of Proposition 3.2 can be inferred from Lemma 3.1.1,

the counting lemma, of [27]. Indeed, let H and P be given as in Setup 2.1 with
suitably chosen constants, where H is (δ, r)-regular w.r.t. P . The counting lemma
implies that H contains (asymptotically) the same number of copies of any fixed

subhypergraph (and, in particular, K
(3)

2,2,2) as is expected in the corresponding random
3-partite hypergraph. (Here, the corresponding random hypergraph is the binomial

random subset of triangles from P including each element of K(2)

3 (P ) independently
with probability α.)

In this paper, we shall need statement 2 of Proposition 3.2. This statement
was proved, in slightly different language, in Lemma 5.8 (Algorithm A) of [8]. For
completeness, we prove that Proposition 3.2 follows from Lemma 5.8 (Algorithm A)
of [8] and give this proof in section 7.

We remind the reader (cf. (8)) that the converse of Proposition 3.2 is, in general,
not true (see [8] for details).

In our proof of the hypergraph regularity lemma, Theorem 2.4, we will also use
Proposition 3.4 below. This proposition will extend the “index-increasing” step (7)
stated in the introduction from graphs to hypergraphs. To motivate this proposition,

note that we may count the number of copies of K
(3)

2,2,2 spanned in each triad P of
an (�, t, γ, ε)-partition P. For those triads P with “excessively many” copies, Propo-
sition 3.2 asserts P is “irregular” and builds a corresponding witness QP . If many of
these triads P are found, in this way, to be irregular, then the following proposition
will construct a new partition P ′ from P and the witnesses QP , where P ′ has index
nontrivially larger than that of P. (In what follows, one may therefore think of the
subfamily T ∗ as a class of suitably “excessive” triads.)

Proposition 3.4 (inflating the index). Let constants δ and γ be given as well
as functions ε : N

+ → (0, 1) and r : N
+ → N

+ and integers �old and told. There exist
constants

L0 = L0(δ, γ, ε, r, �old, told), T0 = T0(δ, γ, ε, r, �old, told), N0 = N0(δ, γ, ε, r, �old, told)

so that the following holds.
Suppose G is a 3-graph on N > N0 vertices with (�old, told, γ, ε(�old))-partition

Pold, and suppose T ∗ = Triad∗
(δ,r(�old))-irr(Pold) is a subfamily of the collection of all

(δ, r(�old))-irregular triads Triad(δ,r(�old))-irr(Pold) (see the notation in (18)), satisfy-
ing the following properties:

1. for each triad P of the subfamily T ∗, one is given witness Qr(�old),P of the

(δ, r(�old))-irregularity of GP = G ∩ K(2)

3 (P ) w.r.t. P ;
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2.

∑

P∈T ∗

∣∣∣K(2)

3 (P )
∣∣∣ ≥ δN3.

Then,
(a) there exists an equitable (�new, tnew, γ, ε(�new))-partition Pnew of

(
V
2

)
for which

(19) ind Pnew ≥ ind Pold +
δ4

2
,

where �old ≤ �new ≤ L0 and told ≤ tnew ≤ T0. Moreover,
(b) there exists an algorithm which in time O(N2) constructs the partition Pnew

above from Pold and the given collection of witnesses {Qr(�old),P : P ∈ T ∗}.
The proof of Proposition 3.4 is given in [11] with no focus on it being algorithmic.

We shall not give a formal proof of Proposition 3.4, but we will now sketch a proof to
indicate how its algorithmic part is obtained.

The approach in [11] is similar to Szemerédi’s [40]. Consider the Venn diagram
of the intersections of the witnesses QP = Qr(�old),P over all P ∈ T ∗. In (1) of the
hypothesis in Proposition 3.4, these witnesses are given to us. (In Szemerédi [40],
these witnesses were subsets of vertices; here, the witnesses are (r-tuples of) subsets
of pairs.) This Venn diagram has at most

2|T
∗|r(�old) ≤ 2t

3
old�

3
oldr(�old)

regions (this number is independent of N), where each region is a bipartite graph.
This Venn diagram defines a refinement P ′

old of Pold, so that P ′
old is itself a partition.

(The index of P ′
old is larger than that of Pold on account of the fact that in (2), we

assumed “many” triangles were lost to irregular triads in Pold.) The bipartite graphs
of P ′

old may not be “regular,” so we apply Szemerédi’s regularity lemma to each. (The
regularity lemma is known to be algorithmic by the result of Alon et al. [1, 10].) The
resulting (regular) bipartite graphs may have differing densities, so we “randomly
slice” each into thinner “equidense” layers (this is the same idea we discussed ear-
lier after stating Theorem 2.5). This random slicing is derandomized, however, in
Lemma 6 (p. 17) of Haxell and Rödl [19]. (These latter two refinements of P ′

old are
done at no real cost to the index of P ′

old.) The process above produces the partition
Pnew. For the formal details of this outline, see Lemmas 3.9 and 3.10 of [11, pp. 145
and 149] and Lemma 6 of [19].

We now give the proof of Theorem 2.4 using Propositions 3.2 and 3.4 and following
the outline of the introduction.

3.1. Proof of Theorem 2.4. For quick reference on the proof that follows, we
provide a flow-chart in Figure 1. In what immediately follows, we formally describe
all parameters used in our argument.

3.1.1. Constants of Theorem 2.4. Let α0, δ, γ > 0 be given as well as function
ε : N → (0, 1). For simplicity, let �0 = 1 (most applications of the original Frankl–Rödl
hypergraph regularity lemma (cf. Theorem 3.5 of [11]) take �0 = 1). Let integer t0 be
given. Let us now briefly describe a few auxiliary constants we will need momentarily.

For α0 and δB = δ, let

(20) δ
(3.2)
A = δ

(3.2)
A (α0, δ)
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compute
∑

P∈Texc
|K(2)

3 (P )| if−→ ∑
P∈Texc

|K(2)

3 (P )| < δN3

if

⏐⏐� then

⏐⏐�
∑

P∈Texc
|K(2)

3 (P )| > δN3 (Ps

is ‘excessive’)
Ps is (α0, δ)-minimal; stop

Prop. 3.2

⏐⏐�

∀P ∈ Texc, construct wit-
ness Qr(3.2)(�s),P ∈ Qexc of
irregularity

repeat process for Ps+1.

so that

⏐⏐�
�⏐⏐

triads T ∗ = Texc satisfy hypothesis
of Prop. 3.4

Prop. 3.4−−−−−−→
construct partition Ps+1 where

indPs+1 ≥ indPs +
(δ

(3.2)
A )4

2
;

Fig. 1. Flow chart for the proof of Theorem 2.4. Here, Ps is a given (�s, ts, γ, ε(�s))-partition,

δ
(3.2)
A ≤ δ (cf. (21)), and T ∗ = Texc is defined in (28).

be the constant guaranteed by Proposition 3.2 where we may assume, without loss of
generality, that

(21) δ
(3.2)
A ≤ δ.

For an integer variable � ∈ N, let

(22) ε(3.2)(�) = ε(3.2)(α0, δ, δ
(3.2)
A , �) and r(3.2)(�) = r(3.2)(α0, δ, δ

(3.2)
A , �)

be the functions guaranteed by Proposition 3.2. Without loss of generality, we shall
assume the given function ε satisfies

(23) ε(�) ≤ ε(3.2)(�)

for every integer � ∈ N.
Theorem 2.4 promises constants L0, T0, and N0, which we shall now formally

describe (although they will be easier to see later in context). With γ > 0 (given as

above), δ
(3.2)
A (given in (20)), function ε(�) ≤ ε(3.2)(�) (given as in (23)), and r(3.2)(�)

(given in (22)) fixed, and for arbitrary integers �old and told, Proposition 3.4 promises
constants

L0(�old, told) = L
(3.4)
0 (γ, δ

(3.2)
A , ε(�), r(3.2)(�), �old, told),

T0(�old, told) = T
(3.4)
0 (γ, δ

(3.2)
A , ε(�), r(3.2)(�), �old, told),

and

N0(�old, told) = N
(3.4)
0 (γ, δ

(3.2)
A , ε(�), r(3.2)(�), �old, told).

We successively define constants L
(i)
0 , T

(i)
0 , and N

(i)
0 , 0 ≤ i ≤ 2/(δ

(3.2)
A )4, as follows:

with already given constants �0 = 1 and t0, set

L
(0)

0 = L0(�0 = 1, t0), T
(0)

0 = T0(�0 = 1, t0), N
(0)

0 = N0(�0 = 1, t0).
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For 1 ≤ i ≤ 2/(δ
(3.2)
A )4, set

(24)

L
(i)
0 = L0(L

(i−1)

0 , T
(i−1)

0 ), T
(i)
0 = T0(L

(i−1)

0 , T
(i−1)

0 ), N
(i)
0 = N0(L

(i−1)

0 , T
(i−1)

0 ).

Then, the constants L0, T0, and N0 of Theorem 2.4 are given by

(25) L0 = L
(i∗)

0 , T0 = T
(i∗)

0 , N0 = N
(i∗)

0 ,

where

i∗ =

⌊
2

(δ
(3.2)
A )4

⌋
.

This concludes our discussion of the constants.

3.1.2. The argument. Let 3-graph G be given on sufficiently large vertex set V ,
|V | = N . We are going to construct, in time O(N6), an (α0, δ)-minimal and equitable
(�, t, γ, ε(�)) partition P for G for which 1 ≤ � ≤ L0 and t0 ≤ t ≤ T0 for L0 and T0

given in (25). The main idea of the proof is outlined in the introduction as well as
the flow-chart in Figure 1.

Start with the partition P1, taken as K(V0, V1, . . . , Vt0), where V (G) = V0 ∪
V1 ∪ · · · ∪ Vt0 is any vertex partition with |V0| < t0 and |V1| = · · · = |Vt0 | (so that B
consists of the

(
t0
2

)
complete bipartite graphs K[Vi, Vj ], 1 ≤ i < j ≤ t0). Then P1 is an

equitable (�0 = 1, t0, γ, ε(�0))-partition since, in fact, it is an equitable (�0 = 1, t0, 0, ε)-
partition for any ε > 0.

For an integer 1 ≤ s < 2/(δ
(3.2)
A )4 (this upper bound will become clearer within

the context of the proof), assume P1, . . . ,Ps are constructed partitions where Ps is
an equitable (�s, ts, γ, ε(�s))-partition of

(
V
2

)
where

(26) 1 ≤ �s ≤ L
(s−1)

0 and t0 ≤ ts ≤ T
(s−1)

0

for the constants L
(s−1)

0 and T
(s−1)

0 defined in (24). The main idea here is similar
to that used by Szemerédi [40]. We shall either verify that Ps is (α0, δ)-minimal or
else construct a new partition Ps+1 whose index (cf. (17)) is larger than that of Ps.
Moreover, we show that these steps can be carried out in time O(N6).

Our first step in the algorithm is to compute, for the partition Ps above, the sum
(cf. (15))

(27)
∑

P∈Triad(α0,δ)-exc(Ps)

∣∣∣K(2)

3 (P )
∣∣∣ .

The central operation in computing this sum consists of identifying

(28) Texc
def
= Triad(α0,δ)-exc(Ps) ⊆ Triad(Ps).

Indeed, for each of the
(
ts
3

)
�3s triads P ∈ Triad(Ps), we count the number of K

(3)

2,2,2’s

appearing in GP = G ∩ K(2)

3 (P ). As such, computing (27) has complexity O(N6).
Upon computing the sum in (27), two outcomes can occur (cf. (28)):

(29)
∑

P∈Texc

∣∣∣K(2)

3 (P )
∣∣∣ < δN3 (15)

=⇒ Ps is (α0, δ)-minimal
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or

(30)
∑

P∈Texc

∣∣∣K(2)

3 (P )
∣∣∣ ≥ δN3 (15)

=⇒ Ps is (α0, δ)-excessive.

If we determine that (29) occurs, then we are done. Indeed, Ps is the (α0, δ)-minimal
and equitable (�s, ts, γ, ε(�s))-partition we wanted to construct. This situation is the
analogue of step (1′) in the introduction.

Otherwise, we determine that (30) occurs and we are in a situation similar to
step (2′) in the outline of the introduction where we increased the graph index in (7).
Here, we want to show that from the large sum in (30), we may construct a new
and equitable (�s+1, ts+1, γ, ε(�s+1))-partition Ps+1 of

(
V
2

)
whose index is nontrivially

larger than ind Ps. Moreover, we want to show that the new parameters �s+1 and

ts+1 satisfy �s+1 ≤ L
(s)
0 and ts+1 ≤ T

(s)
0 (cf. (24)). Proposition 3.4 is precisely the

tool to do this.
Before we can apply Proposition 3.4 to the partition Ps, we need to show that its

hypothesis is met. To that end, set

(31) T ∗ = Triad∗
(δ

(3.2)
A ,r(3.2)(�s))-irr

(Ps) = Triad(α0,δ)-exc(Ps) = Texc.

Proposition 3.2 will guarantee that for each excessive triad P ∈ Texc,

(32) one may construct, in time O((N/ts)
5), a witness Qr(�s),P

of the (δ
(3.2)
A , r(3.2)(�s))-irregularity of GP = G ∩ K(2)

3 (P ) w.r.t. P ,

so that, in particular (cf. (18)),

T ∗ = Texc ⊆ Triad
(δ

(3.2)
A ,r(3.2)(�s))-irr(Ps).

Indeed, fix triad P = P ij
a ∪ P jk

b ∪ P ik
c ∈ Triad(α0,δ)-exc(Ps), where 1 ≤ i < j < k ≤ ts

and 1 ≤ a, b, c ≤ �s (so that P has 3-partition Vi ∪ Vj ∪ Vk, where �N/ts� ≤
|Vi|, |Vj |, |Vk| ≤ �N/ts�). We intend to apply Proposition 3.2 to graph P and hy-
pergraph H = GP = G ∩ K3(P ). Note that the constants involved with P and GP

meet the requirements of Proposition 3.2. Indeed, P ∈ Texc means that with δB = δ,

GP is (αP , δB)-excessive w.r.t. P where αP = |GP |/|K(2)

3 (P )| ≥ α0 where α0 was
given in the beginning of the proof (cf. Definition 2.2 and Remark 2.3). Moreover,

each of the bipartite graphs P ij
a , P jk

b , P ik
c is (1/�s, ε(�s))-regular, where by (23),

ε(�s) ≤ ε(3.2)(�s), where ε(3.2)(�s) is chosen in (22) sufficiently small to apply Propo-
sition 3.2. Therefore, statement (2) of Proposition 3.2 guarantees a O((N/ts)

5)-time

algorithm which constructs a witness Qr(3.2)(�s),P of the (δ
(3.2)
A , r(3.2)(�s))-irregularity

of GP w.r.t. P .
Continuing, (32) implies that statement (1) in the hypothesis of Proposition 3.4 is

met by the partition Ps. To see that statement (2) in the hypothesis of Proposition 3.4
is also met, we return to the large sum in (30) (cf. (31)) to see

∑

P∈T ∗

∣∣∣K(2)

3 (P )
∣∣∣ ≥ δN3

(21)

≥ δ
(3.2)
A N3.

Thus, Proposition 3.4 applies to the partition Ps.
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Proposition 3.4 constructs, in time O(N2), an equitable (�s+1, ts+1, γ, ε(�s+1))-
partition Ps+1 of

(
V
2

)
for which

(33) ind Ps+1 ≥ ind Ps +

(
δ
(3.2)
A

)4

2

and for which

�s+1 ≤ L0(�s, ts)
(26)

≤ L0(L
(s−1)

0 , T
(s−1)

0 )
(24)
= L

(s)
0

and

(34) t0 ≤ ts+1 ≤ T0(�s, ts)
(26)

≤ T0(L
(s−1)

0 , T
(s−1)

0 )
(24)
= T

(s)
0 .

Now, the proof of Theorem 2.4 is essentially complete. Indeed, by (33), we can repeat

the constructive procedure above at most 2/(δ
(3.2)
A )4 times (the index cannot exceed

one), in which case, for some iteration, we must have constructed an (α0, δ)-minimal
and equitable (�, t, γ, ε(�))-partition P, where � ≤ L0 and t0 ≤ t ≤ T0 for L0 and T0

defined in (25).
As a final note, it is easy to see that the construction above is completed in

time O(N6). Indeed, the application of Proposition 3.2, which constructs witnesses
Qr(3.2)(�s),P for each P ∈ T ∗ = Texc, contributes O(N5) complexity. The applica-

tion of Proposition 3.4, which constructs the new partition Ps+1, contributes O(N2)
complexity. As such, the complexity O(N6) of the algorithm is generated by count-

ing copies of K
(3)

2,2,2 in (27) (by which we determine whether or not partitions P are
(α0, δ)-minimal). This completes the proof of Theorem 2.4.

4. Properties of (α, δ)-minimality. It is well known that, in certain hyper-

graph contexts, having the (asymptotic) minimum number of copies of K
(3)

2,2,2 implies
various other properties (see [5, 22]). In our proof of the counting lemma, Theorem 2.7,
we shall need some of these properties for the context of Setup 2.11 (these properties
are stated as upcoming the Propositions 4.1–4.6). At the end of this section, we sketch
the proofs of the upcoming Propositions 4.1–4.6.

Recall that we asserted in (13) that a hypergraph H (with graph P ) as in Setup 2.1

will contain at least ∼ (α8/�12)
(
n
2

)3
many copies of K

(3)

2,2,2. If H has at most ∼
(α8/�12)

(
n
2

)3
many such copies, then we defined (in Definition 2.2) H to be (α, δ)-

minimal w.r.t. P . In this section, we also wish to consider a notion of minimality for

the frequency of the subhypergraph K
(3)

1,2,2, where K
(3)

1,2,2 is the complete 3-uniform
3-partite hypergraph whose vertex partition classes have sizes 1, 2, and 2. To that
end, with H and P given as in Setup 2.1, let

K(3)

1,2,2(H) =

{
({x}, {a, b}, {u, v}) : x ∈ V1, {a, b} ∈

(
V2

2

)
, {u, v} ∈

(
V3

2

)
,

{x} ∪ {a} ∪ {b} ∪ {u} ∪ {v} induces K
(3)

1,2,2 in H
}
.

1Setup 2.1 allows for the possibility that 1/� � δ, while the opposite situation δ � 1/� is
considered in [5, 22]. The proofs we sketch for Propositions 4.1–4.6 are similar, nonetheless, to the
proofs given in [5, 22].
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Note that this family is different from, say,

K(3)

2,2,1(H) =

{
({x, y}, {a, b}, {u}) : {x, y} ∈

(
V1

2

)
, {a, b} ∈

(
V2

2

)
, u ∈ V3,

{x} ∪ {y} ∪ {a} ∪ {b} ∪ {u} induces K
(3)

2,2,1 in H
}
,

and different from K(3)

2,1,2(H), which is defined similarly. We proceed to state Propo-
sitions 4.1–4.6, and conclude this section with (sketches of) their proofs.

Proposition 4.1. With given constants α, δ, and �, sufficiently small ε =
ε(α, δ, �) > 0, and sufficiently large n = n(α, δ, �, ε), suppose H and P are as in
Setup 2.1. Then

∣∣∣K(3)

1,2,2(H)
∣∣∣ ≥ α4

�8
n

(
n

2

)2 (
1 − ε1/10

)
and

∣∣∣K(3)

2,2,2(H)
∣∣∣ ≥ α8

�12

(
n

2

)3 (
1 − ε1/10

)
.

The following definition is now motivated (cf. Definition 2.2).
Definition 4.2. With H and P given as in Setup 2.1, we say H is (α, δ)1-

minimal w.r.t. P if

∣∣∣K(3)

1,2,2(H)
∣∣∣ ≤ α4

�8
n

(
n

2

)2

(1 + δ) .

Remark 4.3. For a clear distiction in this section, we shall refer to the original
(α, δ)-minimality as (α, δ)2-minimality.

The following proposition relates (α, δ)2-minimality with (α, δ)1-minimality.
Proposition 4.4. With given constants α, δ, and �, sufficiently small ε =

ε(α, δ, �) > 0, and sufficiently large n = n(α, δ, �, ε), suppose H and P are as in
Setup 2.1. If H is (α, δ)2-minimal w.r.t. P , then H is also (α, δ)1-minimal w.r.t. P .
In particular, if H is (α, δ)2-minimal w.r.t. P , then all of the following inequalities
hold:

(35)
∣∣∣K(3)

1,2,2(H)
∣∣∣ ,
∣∣∣K(3)

2,1,2(H)
∣∣∣ ,
∣∣∣K(3)

2,2,1(H)
∣∣∣ ≤ α4

�8
n

(
n

2

)2

(1 + δ).

We sketch the proof of Proposition 4.4 at the end of this section.
To present Propositions 4.5 and 4.6, we require some notation. With H and P

given as in Setup 2.1 and x ∈ V an arbitrary vertex, let

(36) Lx =
{
{u, v} ∈ P : {x, u, v} ∈ H

}

denote the link of x. For vertices x, y ∈ V , let

(37) Lxy = Lx ∩ Ly

denote the colink of x and y. For Propositions 4.5 and 4.6, we also consider the
following supplemental notation. For x ∈ V , let

Px =
{
{u, v} ∈ P : {x, u, v} ∈ K(2)

3 (P )
}

= P [NP (x)]

be the subgraph of P induced on the P -neighborhood of x. For vertices x, y ∈ V1, let

(38) Pxy = Px ∩ Py = P [NP (x, y)].
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In the context of Setup 2.1, it is well known (cf. Fact 1.4 from [26]) from the (�−1, ε)-
regularity of P 12, P 23, and P 13 that all but 4εn vertices x ∈ V1 (8ε

(
n
2

)
pairs {x, y} ∈(

V1

2

)
) satisfy

(39) degP 1j (x) = |NP 1j (x)| =

(
1

�
± ε

)
n, j = 2, 3,

(
degP 1j (x, y) = |NP 1j (x, y)| =

(
1

�
± ε

)2

n, j = 2, 3

)
.

As such, with ε sufficiently small (say, 0 < ε ≤ 1/(2�)2), all but 4εn vertices x ∈ V1

(8ε
(
n
2

)
pairs {x, y} ∈ (V1

2

)
) satisfy

(40) |Px| =

(
1

�
± ε

)
degP 12(x) · degP 13(x) =

(
1

�
± ε

)3

n2 =
n2

�3
(1 ± 4�ε) ,

(
|Pxy| =

(
1

�
± ε

)
degP 12(x, y) · degP 13(x, y) =

(
1

�
± ε

)5

n2 =
n2

�5
(1 ± 6�ε)

)
,

which follows from the (�−1, ε)-regularity of P 23. In particular, one can prove (cf.
Fact 1.5 from [26]) that all but 4εn vertices x ∈ V1 (pairs {x, y} ∈ (V1

2

)
) satisfy that

(41) Px is (�−1, 2�ε)-regular (Pxy is (�−1, 4�2ε)-regular).

We now present Proposition 4.5.
Proposition 4.5. With given constants α, δ, and �, sufficiently small ε =

ε(α, δ, �) > 0, and sufficiently large n = n(α, δ, �, ε), whenever H and P are as in
Setup 2.1, the following hold:

1. If H is (α, δ)1-minimal w.r.t. P , then all but 3δ1/3n vertices x ∈ V1 satisfy

|Lx| =
α

�3
n2
(
1 ± 3δ1/3

)
(40)
= α|Px|

(
1 ± 4δ1/3

)
.

2. If H is (α, δ)2-minimal w.r.t. P , then all but 3δ1/3n2 pairs {x, y} ∈ (V1

2

)

satisfy

|Lxy| =
α2

�5
n2
(
1 ± 3δ1/3

)
(40)
= α2|Pxy|

(
1 ± 4δ1/3

)
.

The upcoming Proposition 4.6 establishes a “local characterization” of (α, δ)1-
minimality and (α, δ)2-minimality, respectively. We use the following supplemental
notation in our presentation. For a pair 1 ≤ i < j ≤ 3 and integers s1, s2 ∈ {1, 2}, let

(42) K(2)
s1,s2(P

ij) =

{
(S1, S2) : S1 ∈

(
Vi

s1

)
, S2 ∈

(
NP ij (S1)

s2

)}
.

Note that for each element (S1, S2) ∈ K(2)
s1,s2(P

ij), the set S1 ∪ S2 induces a copy of

the complete bipartite graph K
(2)
s1,s2 in P ij . In context, we shall use the standard fact

that for s1, s2 ∈ {1, 2},

(43)
∣∣∣K(2)

s1,s2

(
P ij
)∣∣∣ =

1

�s1s2

(
n

s1

)(
n

s2

)(
1 ± ε1/2

)
,
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which follows from the (�−1, ε)-regularity of P ij (cf. Setup 2.1) whenever ε > 0 is
sufficiently small and n = n(�, ε) is sufficiently large.

Proposition 4.6. With given constants α, δ, and �, sufficiently small ε =
ε(α, δ, �) > 0, and sufficiently large integer n = n(α, δ, �, ε), whenever H and P are
as in Setup 2.1 with these constants, the following hold:

1. (a) if H is (α, δ)1-minimal w.r.t. P , then all but 3δ1/3|K(2)

1,2(P
12)| many

elements ({x}, {a, b}) ∈ K(2)

1,2(P
12) satisfy

degLx
(a, b) =

(α
�

)2 n

�

(
1 ± 3δ1/3

)
(39)
=
(α
�

)2

degP 13(x)
(
1 ± 6δ1/3

)
;

conversely,

(b) if all but δ|K(2)

1,2(P
12)| many elements ({x}, {a, b}) ∈ K(2)

1,2(P
12) satisfy

degLx
(a, b) =

(α
�

)2 n

�
(1 ± δ) ,

then H is (α, 3δ1/3)1-minimal w.r.t. P ;

2. (a) if H is (α, δ)2-minimal w.r.t. P , then all but 3δ1/3|K(2)

2,2(P
12)| many

elements ({x, y}, {a, b}) ∈ K(2)

2,2(P
12) satisfy

degLxy
(a, b) =

(
α2

�

)2
n

�2

(
1 ± 3δ1/3

)
(39)
=

(
α2

�

)2

degP 13(x, y)
(
1 ± 6δ1/3

)
;

conversely,

(b) if all but δ|K(2)

2,2(P
12)| many elements ({x, y}, {a, b}) ∈ K(2)

2,2(P
12) satisfy

degLxy
(a, b) =

(
α2

�

)2
n

�2
(1 ± δ) ,

then H is (α, 3δ1/3)2-minimal w.r.t. P .

4.1. Proofs. In all that follows, H and P are as in Setup 2.1. The constants
α, δ, � are fixed, and we shall take ε = ε(α, δ, �) > 0 sufficiently small and n =
n(α, δ, �, ε) sufficiently large whenever needed. We denote an application of the
Cauchy–Schwarz inequality by “CS,” and we denote by o(1) a quantity vanishing
as n → ∞.

Proof of Proposition 4.1. Here, we prove only the promised lower bound for

|K(3)

2,2,2(H)|. The proof of the corresponding lower bound for |K(3)

1,2,2(H)| is similar
(and can, in fact, be derived from the calculations below).

Summing over all ({x, y}, {a, b}) ∈ K(2)

2,2(P
12) yields

(44)
∣∣∣K(3)

2,2,2(H)
∣∣∣ =

∑

K(2)
2,2(P

12)

(
degLxy

(a, b)

2

)
=

(
1

2
− o(1)

) ∑

K(2)
2,2(P

12)

deg2
Lxy

(a, b)

CS≥
(

1

2
− o(1)

) ∣∣∣K(2)

2,2(P
12)
∣∣∣
−1

⎛
⎜⎝

∑

K(2)
2,2(P

12)

degLxy
(a, b)

⎞
⎟⎠

2

=

(
1

2
− o(1)

) ∣∣∣K(2)

2,2(P
12)
∣∣∣
−1 ∣∣∣K(3)

2,2,1(H)
∣∣∣
2 (43)

≥
(
2 − ε1/3

) �4

n4

∣∣∣K(3)

2,2,1(H)
∣∣∣
2

,



ALGORITHMIC HYPERGRAPH REGULARITY METHOD 1747

where we used ε > 0 sufficiently small and n sufficiently large. Summing over all

({a, b}, {u}) ∈ K(2)

2,1(P
23) yields

(45)
∣∣∣K(3)

2,2,1(H)
∣∣∣ =

∑

K(2)
2,1(P

23)

(
degLu

(a, b)

2

)
=

(
1

2
− o(1)

) ∑

K(2)
2,1(P

23)

deg2
Lu

(a, b)

CS≥
(

1

2
− o(1)

) ∣∣∣K(2)

2,1(P
23)
∣∣∣
−1

⎛
⎜⎝

∑

K(2)
2,1(P

23)

degLu
(a, b)

⎞
⎟⎠

2

(43)

≥
(
1 − ε1/3

) �2

n3

⎛
⎜⎝

∑

K(2)
2,1(P

23)

degLu
(a, b)

⎞
⎟⎠

2

,

where we used that ε > 0 is sufficiently small and n is sufficiently large. Note that

(46)
∑

K(2)
2,1(P

23)

degLu
(a, b) =

∑

{x,u}∈P 13

(
degLx

(u)

2

)
=

(
1

2
− o(1)

) ∑

{x,c}∈P 13

deg2
Lx

(u)

CS≥
(

1

2
− o(1)

)
|P 13|−1

⎛
⎝

∑

{x,u}∈P 13

degLx
(u)

⎞
⎠

2

=

(
1

2
− o(1)

)
|P 13|−1|H|2.

Now, the ε-regularity of P 13 gives |P 13| = (n2/�)(1 ± ε), and Setup 2.1 and Fact 1.2
ensure

(47) |H| = α|K3(P )| = α
n3

�3

(
1 ± ε1/3

)

so that, in view of (46) (and ε > 0 sufficiently small and n sufficiently large),

(48)
∑

K(2)
2,1(P

23)

degLu
(a, b) ≥

(
1

2
− ε1/4

)
α2n

4

�5
.

Combining (44)–(48) and employing ε > 0 sufficiently small and n sufficiently large,
we conclude

(49)
∣∣∣K(3)

2,2,2(H)
∣∣∣ ≥ α8

�12

(
n

2

)3 (
1 − ε1/10

)
,

as promised.
Proof of Proposition 4.4. Suppose H is (α, δ)2-minimal w.r.t. P . We show H

is also (α, δ)1-minimal w.r.t. P . For this, note that it suffices to prove any of the
inequalities in (35) since swapping the roles of V1, V2, V3 preserves (α, δ)2-minimality.

We show |K(3)

2,2,1(H)| ≤ (α4/�8)n
(
n
2

)2
(1 + δ). Indeed, the inequalities of (44) give

∣∣∣K(3)

2,2,1(H)
∣∣∣
2

≤ (2 + o(1))
∣∣∣K(2)

2,2(P
12)
∣∣∣
∣∣∣K(3)

2,2,2(H)
∣∣∣

(43)

≤ (2 + o(1))
1

�4

(
n

2

)2 (
1 + ε1/2

) ∣∣∣K(3)

2,2,2(H)
∣∣∣ .
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Since H is (α, δ)2-minimal, i.e., |K(3)

2,2,2(H)| ≤ (α8/�12)
(
n
2

)3
(1 + δ), it now follows

(with ε sufficiently small and n sufficiently large) that |K(3)

2,2,1(H)| ≤ (α4/�8)n
(
n
2

)2
(1+

δ).
In our proofs below, we shall use the following well-known “approximate” version

of the Cauchy–Schwarz inequality (for a reference and a proof, see, for example,
Proposition 1, [37, p. 5]).

Fact 4.7 (approximate Cauchy–Schwarz). Let γ > 0 be given and suppose
a1, . . . , as ≥ 0 satisfy

1.
∑s

i=1 ai ≥ as(1 − γ),
2.
∑s

i=1 a
2
i < a2s(1 + γ).

Then
∣∣{i ∈ [s] : |a− ai| < 2γ1/3a

}∣∣ >
(
1 − 2γ1/3

)
s.

Proof of Proposition 4.5. We sketch the proof of statement 1 (for single links)
(the proof of statement 2 for colinks Lxy is similar). Assume that H is (α, δ)1-minimal
w.r.t. P . We show that all but 3δ1/3n vertices x ∈ V1 satisfy |Lx| = (α/�3)n2(1 ±
3δ1/3). In our proof, we shall need the following inequalities, which are virtually
identical to (45) and (46):

(50)
∣∣∣K(3)

1,2,2(H)
∣∣∣ =

∑

K(2)
1,2(P

12)

(
degLx

(a, b)

2

)

CS≥
(

1

2
− o(1)

) ∣∣∣K(2)

1,2(P
12)
∣∣∣
−1

⎛
⎜⎝

∑

K(2)
1,2(P

12)

degLx
(a, b)

⎞
⎟⎠

2

(where we sum over all ({x}, {a, b}) ∈ K(2)

1,2(P
12)) and

(51)
∑

K(2)
1,2(P

12)

degLx
(a, b) =

∑

{x,u}∈P 13

(
degLx

(u)

2

)
=

(
1

2
− o(1)

) ∑

{x,u}∈P 13

deg2
Lx

(u).

We want to use Fact 4.7 (with the ai’s being the terms |Lx|, x ∈ V1). To that
end, we need the following preparations. Observe that

∑

x∈V1

|Lx| = |H|
(47)

≥ α
n3

�3

(
1 − ε1/3

)
≥
(
α
n2

�3

)
n (1 − 3δ) .

To bound
∑

x∈V1
|Lx|2, we separate the sum into two groups. Let V ′

1 denote those

vertices x ∈ V1 for which degP 13(x) = (�−1 ± ε)n. Then |V1 \ V ′
1 | < 2εn and so

(52)
∑

x∈V1

|Lx|2 =
∑

x∈V ′
1

|Lx|2 +
∑

x∈V1\V ′
1

|Lx|2 ≤ 2εn5 +
∑

x∈V ′
1

|Lx|2.

We now bound
∑

x∈V ′
1
|Lx|2. To that end, observe that

∑

{x,u}∈P 13

deg2
Lx

(u) =
∑

x∈V1

∑

u∈NP13 (x)

deg2
Lx

(u) ≥
∑

x∈V ′
1

∑

u∈NP13 (x)

deg2
Lx

(u)

CS≥
∑

x∈V ′
1

deg−1
P 13(x)

⎛
⎝

∑

u∈NP13 (x)

degLx
(u)

⎞
⎠

2

=
∑

x∈V ′
1

deg−1
P 13(x)|Lx|2 ≥ �

n
(1 + �ε)−1

∑

x∈V ′
1

|Lx|2,
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where we used that each x ∈ V ′
1 satisfies degP 13(x) = (�−1 ± ε)n. These inequalities,

combined with (50) and (51) (and ε > 0 sufficiently small and n sufficiently large)
then yield

⎛
⎝
∑

x∈V ′
1

|Lx|2
⎞
⎠

2

≤
(
8 + ε1/2

) n2

�2

∣∣∣K(2)

1,2(P
12)
∣∣∣
∣∣∣K(3)

1,2,2(H)
∣∣∣

(43)

≤
(
4 + ε1/3

) n5

�4

∣∣∣K(3)

1,2,2(H)
∣∣∣ .

Since H is (α, δ)1-minimal w.r.t. P , i.e., |K(3)

1,2,2(H)| ≤ (α4/�8)n
(
n
2

)2
(1 + δ), we then

see that (with 0 < ε � δ)

(53)
∑

x∈V ′
1

|Lx|2 ≤
(
α
n2

�3

)2

n(1 + 2δ).

Combining (52) and (53), we then see that (with 0 < ε � δ)

∑

x∈V1

|Lx|2 ≤ 2εn5 +

(
α
n2

�3

)2

n(1 + 2δ) ≤
(
α
n2

�3

)2

n(1 + 3δ).

Now, to conclude the proof of (statement 1 of) Proposition 4.5, we set, as in
Fact 4.7,

γ = 3δ, s = n, a = α
n2

�3

and set the ai’s to be the terms |Lx|, x ∈ V1. Fact 4.7 applies in that for all but
2(3δ)1/3n many vertices x ∈ V1, we have

|Lx| = α
n2

�3

(
1 ± 2(3δ)1/3

)
.

Since 2 · 31/3 < 3, we have shown that all but 3δ1/3n vertices x ∈ V1 have |Lx| =
α(n2/�3)(1 ± 3δ1/3), as promised by statement 1 of Proposition 4.5.

Proof of Proposition 4.6. We sketch the proof of statement 2 (involving col-
inks Lxy) (the proof of statement 1 (involving links) is similar). To that end, we
shall concentrate on the proof of statement 2(a), since the proof of statement 2(b)

is quite standard. (Indeed, to briefly sketch it, suppose all but δ|K(2)

2,2(P
12)| many

copies ({x, y}, {a, b}) of C4 in P 12 satisfy degLxy
(a, b) = (α2/�)2(n/�2)(1± δ). Recall

(cf. (44))

∣∣∣K(3)

2,2,2(H)
∣∣∣ =

∑

K(2)
2,2(P

12)

(
degLxy

(a, b)

2

)
,

where our assumption is that we may control (from above) all but a δ proportion

of the terms in the sum. Therefore, to establish an upper bound on |K(3)

2,2,2(H)|,
we need to estimate the contribution of those at most δ proportion of terms over
which we no not have such tight control. To this end, we use the ε-regularity of
the graphs P 12, P 23, P 13 to conclude that all but ε1/3n4 many terms ({x, y}, {a, b})
satisfy degLxy

(a, b) ≤ 2n/�4, which essentially ends the argument.)
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We now prove statement 2(a). To that end, assume H is (α, δ)2-minimal w.r.t. P .

We prove that for all but 3δ1/3|K(2)

2,2(P
12)| many elements ({x, y}, {a, b}) ∈ K(2)

2,2(P
12),

we have

degLxy
(a, b) =

(
α2

�

)
n

�2

(
1 ± 3δ1/3

)
.

We want to use Fact 4.7 (with the ai’s being the terms degLxy
(a, b), ({x, y}, {a, b})

∈ K(2)

2,2(P
12)). To that end, we need the following preparations. From (44), we infer

that

∑

K(2)
2,2(P

12)

deg2
Lxy

(a, b) ≤ (2 + o(1))
∣∣∣K(3)

2,2,2(H)
∣∣∣

so that, by the (α, δ)2-minimality of H (and n sufficiently large), we have

∑

K(2)
2,2(P

12)

deg2
Lxy

(a, b) ≤ α8 n6

4�12
(1 + 2δ)

(43)

≤
[(

α2

�

)2
n

�2

]2 ∣∣∣K(2)

2,2(P
12)
∣∣∣ (1 + 3δ),

where in the last inequality we used ε > 0 sufficiently small. On the other hand,

⎛
⎜⎝

∑

K(2)
2,2(P

12)

degLxy
(a, b)

⎞
⎟⎠

2

=
∣∣∣K(3)

2,2,1(H)
∣∣∣
2

(45)

≥

⎡
⎢⎣
(
1 − ε1/3

) �2

n3

⎛
⎜⎝

∑

K(2)
2,1(P

23)

degLu
(a, b)

⎞
⎟⎠

2⎤
⎥⎦

2

(48)

≥
[(

1 − ε1/3
) �2

n3

((
1

2
− ε1/4

)
α2n

4

�5

)2
]2

≥ α8 n10

16�16

(
1 − ε1/5

)

(using ε > 0 sufficiently small), so that

∑

K(2)
2,2(P

12)

degLxy
(a, b) ≥

[(
α2

�

)2
n

�2

]
n4

4�4

(
1 − ε1/5

)

(43)

≥
[(

α2

�

)2
n

�2

] ∣∣∣K(2)

2,2(P
12)
∣∣∣
(
1 − ε1/6

)

≥
[(

α2

�

)2
n

�2

] ∣∣∣K(2)

2,2(P
12)
∣∣∣ (1 − 3δ) .

Now to conclude the proof of (statement 2(a) of) Proposition 4.6, we set, as in
Fact 4.7,

γ = 3δ, s = |K(2)

2,2(P
12)|, a =

(
α2

�

)2
n

�2



ALGORITHMIC HYPERGRAPH REGULARITY METHOD 1751

and set the ai’s to be the terms degLxy
(a, b), ({x, y}, {a, b}) ∈ K(2)

2,2(P
12). Fact 4.7

applies to say that for all but 2(3δ)1/3|K(2)

2,2(P
12)| many terms, we have

degLxy
(a, b) =

(
α2

�

)2
n

�2

(
1 ± 2(3δ)1/3

)
.

Since 2 · 31/3 < 3, this proves statement 2(a) of Proposition 4.6.

5. Proof of the counting lemma. In this section, we prove the counting
lemma, Theorem 2.7. Our proof proceeds formally by induction on k ≥ 3.

Base case. The base case k = 3 holds trivially. Indeed, H123 = H has density

α = |H|/|K(2)

3 (P )| w.r.t. P = P 12 ∪P 23 ∪P 13. With constant ε ≤ δ sufficiently small
w.r.t. �−1, Fact 1.2 renders

∣∣∣K(2)

3 (P )
∣∣∣ =

n3

�3

(
1 ± ε1/3

)
=⇒

∣∣∣K(3)

3 (H)
∣∣∣ = |H| = α

n3

�3

(
1 ± ε1/3

)

= α
n3

�3

(
1 ± δ1/360

)
,

confirming the counting lemma for k = 3.
Induction step. We assume Theorem 2.7 holds up through k − 1 ≥ 3 and

consider Theorem 2.7 for k ≥ 4. With appropriately defined constants (which we
comment on momentarily), we consider H =

⋃
1≤h<i<j≤k Hhij and P =

⋃
1≤i<j≤k P

ij

as in Setup 2.6 on k-partition V = V1 ∪ · · · ∪ Vk, |V1| = · · · = |Vk| = n, where each
Hhij , 1 ≤ h < i < j ≤ k, is (α, δ)-minimal w.r.t. Phi ∪ P ij ∪ Phj and each P ij ,
1 ≤ i < j ≤ k, is (�−1, ε)-regular. We prove

(54)
∣∣∣K(3)

k (H)
∣∣∣ =

α(k3)

�(
k
2)

nk
(
1 ± δ

1
120k

)
.

We now discuss the constants k, α, δ0, δ, �, ε, n required to enable (54).
With k fixed (by induction), the counting lemma is quantified as

∀α, ∃δ0 : ∀δ < δ0, ∀�, ∃ε : with n sufficiently large.

This quantification is consistent with the following hierarchy:

(55)
1

k
, α � δ0 > δ ≥ min

{
δ,

1

�

}
� ε � 1

n
.

Rather than presenting a tedious determination of the constants α, δ0, δ, �, ε, n, we
shall, in all calculations below, appeal to the hierarchy in (55).

To establish (54), we find it convenient to reformulate the counting lemma in
terms of a slightly different language given by auxiliary bipartite graphs Λ ⊆ Π,
which we now define.

Construction 5.1 (defining Λ ⊆ Π). With k-partition V1 ∪ · · · ∪ Vk of H =⋃
1≤h<i<j≤k Hhij and P =

⋃
1≤i<j≤k P

ij given as in Setup 2.6, define auxiliary bi-
partite graphs Λ ⊆ Π with bipartition X ∪ Y as follows:

•
X = V1 and Y = K(2)

k−1(P [V2, . . . , Vk]) = K(2)

k−1

( ⋃

1<i<j≤k

P ij
)
,
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where elements of Y , each denoted by K−, correspond to the vertex sets

of graph (k − 1)-cliques K
(2)

k−1 in the (k − 1)-partite graph P [V2, . . . , Vk] =⋃
1<i<j≤k P

ij. Note that

(56) |X| = n and |Y | Fact 1.2
=

nk−1

�(
k−1
2 )

(
1 ± ε

1
k−1

)
.

• For x ∈ X and K− ∈ Y ,

{
x,K−} ∈ Π ⇐⇒ {x} ∪K− ∈ K(2)

k (P ) ⇐⇒ K− ∈ K(2)

k−1(Px)

⇐⇒ K− ⊂ NP (x),

where Px = P [NP (x)] = P [NP 12(x), . . . , NP 1k(x)] is the subgraph of P in-
duced on the neighborhood NP (x) = NP 12(x) ∪ · · · ∪NP 1k(x) of x.

• For x ∈ X and K− ∈ Y ,

{
x,K−} ∈ Λ ⇐⇒ K− ∈ K(2)

k−1(Lx) ⇐⇒
(
K−

2

)
⊂ Lx,

where Lx = {{y, z} ∈ Px : {x, y, z} ∈ H} ⊆ Px is the link graph of x
(cf. (36)).

Note that since each x ∈ V1 has Lx ⊆ Px, it follows that Λ ⊆ Π. We also note
the following useful but standard fact concerning graph Π.

Fact 5.2. With ε given in (55), the graph Π is (�1−k, ε1/3)-regular.

We omit the standard proof of Fact 5.2.

We now make a few straightforward observations establishing connections between
graphs Λ and Π and the counting lemma, Theorem 2.7. For the purpose of stating
these observations, set

YH
def
= K(3)

k−1(H[V2, . . . , Vk]) = K(3)

k−1

( ⋃

1<h<i<j≤k

Hhij
)

and note that elements of YH correspond to vertex sets of hypergraph (k− 1)-cliques

K
(3)

k−1 in the (k − 1)-partite 3-graph H[V2, . . . , Vk] =
⋃

1<h<i<j≤k Hhij . We observe
the following.

Observations.

1. Since H ⊆ K(2)

3 (P ) (cf. Setup 2.6), YH ⊆ Y is a subset of the vertices Y .
2. By our induction hypothesis on the counting lemma (for k − 1),

|YH| =
∣∣∣K(3)

k−1(H[V2, . . . , Vk])
∣∣∣ =
∣∣∣K(3)

k−1

( ⋃

1<h<i<j≤k

Hhij
)∣∣∣

=
α(k−1

3 )

�(
k−1
2 )

nk−1
(
1 ± δ

1
120(k−1)

)
(55), (56)

= α(k−1
3 )|Y |

(
1 ± 2δ

1
120(k−1)

)
.(57)

3.

(58)
∣∣∣K(3)

k (H)
∣∣∣ =

∑

K−∈YH

degΛ

(
K−) .
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We see from (57) and (58) that, to prove the counting lemma, it suffices to analyze
the terms in the sum (58). Proposition 5.3 does precisely this.

Proposition 5.3 (key to counting lemma). All but 3δ
1

111(k−1) |Y | vertices K− ∈
Y satisfy

(59) degΛ

(
K−) =

α(k−1
2 )

�k−1
|X|
(
1 ± 3δ

1
111(k−1)

)
=

α(k−1
2 )

�k−1
n
(
1 ± 3δ

1
111(k−1)

)
.

We defer the proof of Proposition 5.3 to section 5.2. We proceed now with the
confirmation that the counting lemma follows from Proposition 5.3.

5.1. Proposition 5.3 =⇒ counting lemma. Combining Proposition 5.3 with
(57) and (58), the proof of the counting lemma is virtually immediate. Indeed, Propo-
sition 5.3 and (57) imply “almost all” (cf. δ � α in (55)) of the (57) many terms in (58)
have degree in (59). As such,

(60)
∣∣∣K(3)

k (H)
∣∣∣ =

∑

K−∈YH

degΛ

(
K−) ∼ α(k−1

2 )

�k−1
n× α(k−1

3 )

�(
k−1
2 )

nk−1 =
α(k3)

�(
k
2)

nk,

where ∼ denotes an “essential” equality we make precise by accounting for the degrees
of vertices K− ∈ YH not satisfying (59).

To make (60) precise, we will use (59) for all K− ∈ YH satisfying it, and for the
remaining ones, we employ the natural upper bound degΛ(K−) ≤ degΠ(K−) (recall
Λ ⊆ Π). As such, Fact 5.2 implies

all but 2ε1/3|Y | vertices K− ∈ Y satisfy

degΠ

(
K−) =

(
1

�k−1
± ε1/3

)
|X|

(55)

≤ 2
n

�k−1
.(61)

Now, set
(62)
YΛ =

{
K− ∈ Y : K− satisfies (59)

}
and YΠ =

{
K− ∈ Y : K− satisfies (61)

}

so that

|YH \ YΛ| ≤ |Y \ YΛ|
Prop. 5.3

≤ 3δ
1

111(k−1) |Y |
(56)

≤ 6δ
1

111(k−1)
nk−1

�(
k−1
2 )

,(63)

|YH \ YΠ| ≤ |Y \ YΠ|
(61)

≤ 2ε1/3|Y |
(56)

≤ 4ε1/3 nk−1

�(
k−1
2 )

.(64)

We now make (60) precise. Observe that

∣∣∣K(3)

k (H)
∣∣∣ =

∑

K−∈YΛ∩YH

degΛ

(
K−)+

∑

K−∈(YΠ\YΛ)∩YH

degΛ

(
K−)(65)

+
∑

K−∈YH\(YΛ∪YΠ)

degΛ

(
K−) .

To obtain the formula for |K(3)

k (H)| promised in (54), we need to bound (65) from
above and below. We do so now.
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To see the lower bound, we use that every K− ∈ YΛ ∩ YH satisfies degΛ(K−) ≥
(α(k−1

2 )/�k−1)n(1 − 3δ111(k−1)) (cf. (59)) to obtain (from (65))

∣∣∣K(3)

k (H)
∣∣∣≥ α(k−1

2 )

�k−1
n
(
1 − 3δ

1
111(k−1)

)
|YΛ ∩ YH|

=
α(k−1

2 )

�k−1
n
(
1 − 3δ

1
111(k−1)

)
(|YH| − |YH \ YΛ|)

(57), (63)

≥ α(k3)

�(
k
2)

nk
(
1 − 3δ

1
111(k−1)

)[
1 − δ

1
120(k−1) − 6

δ
1

111(k−1)

α(k−1
3 )

]
(55)

≥ α(k3)

�(
k
2)

nk
(
1 − δ

1
120k

)
.

To see the upper bound, we argue similarly, this time showing that the terms
of (65) outside of

∑
K−∈YΛ∩YH

degΛ(K−) contribute to only little error. Indeed,

∣∣∣K(3)

k (H)
∣∣∣ ≤

∑

K−∈YΛ∩YH

degΛ

(
K−)+

∑

K−∈(YΠ\YΛ)∩YH

degΠ

(
K−)+ n

∣∣∣YH \ (YΛ ∪ YΠ)
∣∣∣

(59), (61)

≤ α(k−1
2 )

�k−1
n
(
1 + 3δ

1
111(k−1)

) ∣∣∣YΛ ∩ YH
∣∣∣+ 2

n

�k−1

∣∣∣
(
YΠ \ YΛ

)
∩ YH

∣∣∣

+n
∣∣∣YH \

(
YΛ ∪ YΠ

)∣∣∣

≤ α(k−1
2 )

�k−1
n
(
1 + 3δ

1
111(k−1)

)
|YH| + 2

n

�k−1
|YH \ YΛ| + n |YH \ YΠ|

(57), (63), (64)

≤ α(k3)

�(
k
2)

nk
(
1 + 3δ

1
111(k−1)

)(
1 + δ

1
120(k−1)

)
+ 6δ

1
111(k−1)

nk

�(
k
2)

+ 8ε1/3 nk

�(
k−1
2 )

=
α(k3)

�(
k
2)

nk

[(
1 + 3δ

1
111(k−1)

)(
1 + δ

1
120(k−1)

)
+ 6

δ
1

111(k−1)

α(k3)
+ 8

ε1/3�k−1

α(k3)

]

(55)

≤ α(k3)

�(
k
2)

nk
(
1 + δ

1
120k

)
.

This completes the proof of the induction step for the counting lemma.

5.2. Proof of Proposition 5.3. It remains to prove Proposition 5.3. We do so
by proving the following stronger version of Proposition 5.3.

Proposition 5.3
∗
.

• All but δ1/36|X| = δ1/36n vertices x ∈ X = V1 satisfy

(66)

degΛ(x) =
(α
�

)(k−1
2 ) (n

�

)k−1 (
1 ± δ

1
36(k−1)

)
(56)
=

α(k−1
2 )

�k−1
|Y |
(
1 ± 2δ

1
36(k−1)

)
.

In particular,

(67)
∑

K−∈Y

degΛ(K−) ≥
(
α(k−1

2 )

�k−1
|X|
)
|Y |
(
1 − δ

1
37(k−1)

)
.
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• All but δ1/36|X|2 = δ1/36n2 pairs x, y ∈ X = V1 satisfy

degΛ (x, y) =

(
α2

�

)(k−1
2 ) ( n

�2

)k−1 (
1 ± δ

1
36(k−1)

)
(68)

(56)
=

(
α(k−1

2 )

�k−1

)2

|Y |
(
1 ± 2δ

1
36(k−1)

)
.

In particular,

(69)
∑

K−∈Y

degΛ(K−)2 <

(
α(k−1

2 )

�k−1
|X|
)2

|Y |
(
1 + 3δ

1
37(k−1)

)
.

It is easy to prove Proposition 5.3 from (67) and (69) of Proposition 5.3∗. We do
so using the approximate Cauchy–Schwarz inequality, Fact 4.7. Indeed, in Fact 4.7, set

a = (α(k−1
2 )/�k−1)|X|, r = |Y | and γ = 3δ

1
37(k−1) . The terms ai, 1 ≤ i ≤ r, correspond

to terms degΛ(K−), K− ∈ Y . Fact 4.7 then gives that all but 2(3δ
1

37(k−1) )1/3|Y | <
3δ

1
111(k−1) |Y | terms degΛ(K−), K− ∈ Y , satisfy

degΛ(K−) =
α(k−1

2 )

�k−1
|X|
(

1 ± 2
(
3δ

1
37(k−1)

)1/3
)

=
α(k−1

2 )

�k−1
|X|
(
1 ± 3δ

1
111(k−1)

)
,

where we used that 2 · 31/3 < 3. This proves Proposition 5.3.
To prove Proposition 5.3∗, we must show four things: the assertions of (66) and (68)

and the implications (66) =⇒ (67) and (68) =⇒ (69). The assertions of (66) and (68)
follow from Lemma 5.4 given at the beginning of this section, but the work requires
some effort to prepare. The implications are, on the other hand, easy, and so we
proceed with those first. We shall then immediately return to the task of proving the
assertions of (66) and (68).

5.2.1. Proof that (66) =⇒ (67). Observe that

∑

K−∈Y

degΛ(K−) =
∑

x∈X

degΛ(x).

Now, denote by Xgood the set of vertices x ∈ X for which (66) holds. Then,

∑

K−∈Y

degΛ(K−) =
∑

x∈X

degΛ(x) ≥
∑

x∈Xgood

degΛ(x)
(66)

≥ α(k−1
2 )

�k−1
|Y |
(
1 − 2δ

1
36(k−1)

)
|Xgood|

(66)

≥ α(k−1
2 )

�k−1
|Y |
(
1 − 2δ

1
36(k−1)

)(
1 − δ1/36

)
|X|

(55)

≥
(
α(k−1

2 )

�k−1
|X|
)
|Y |
(
1 − δ

1
37(k−1)

)
,

as promised in (67).

5.2.2. Proof that (68) =⇒ (69). Recall that we are supposed to bound∑
K−∈Y degΛ(K−)2. To this end, we first observe that

(70)
∑

{x,y}∈(X2 )

degΛ(x, y) =
∑

K−∈Y

(
degΛ(K−)

2

)
(55)
=

(
1

2
− o(1)

) ∑

K−∈Y

degΛ(K−)2,
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where o(1) → 0 as n → ∞. It therefore suffices to work with the sum
∑

{x,y}∈(X2 )
˙degΛ(x, y).

Denote by
(
X
2

)
good

the set of pairs {x, y} ∈ (X
2

)
for which (68) holds. For pairs

{x, y} ∈ (X
2

) \ (X
2

)
good

, we observe degΛ(x, y) ≤ degΠ(x, y) (since Λ ⊆ Π), where we

recall from Fact 5.2 that Π is (�1−k, ε1/3)-regular. As such (and similarly to (61)), we
have that all but 4ε1/3n2 pairs {x, y} ∈ (X

2

)
satisfy

(71) degΠ(x, y) =

(
1

�k−1
± ε1/3

)2

|Y | (55)

<
2

�2(k−1)
|Y |.

Denote by
(
X
2

)
fair

the set of pairs {x, y} ∈ (X
2

)
for which (71) holds.

Returning to (70), we then see that the sum
∑

{x,y}∈(X2 )
degΛ(x, y) equals

∑

{x,y}∈(X2 )good

degΛ(x, y) +
∑

{x,y}∈(X2 )fair
\(X2 )good

degΛ(x, y)

+
∑

{x,y}∈(X2 )\
(
(X2 )fair

∪(X2 )good

)
degΛ(x, y)

≤
∑

{x,y}∈(X2 )good

degΛ(x, y) +
∑

{x,y}∈(X2 )fair
\(X2 )good

degΠ(x, y) + |Y |
∣∣∣∣
(
X

2

)
\
(
X

2

)

fair

∣∣∣∣

(68), (71)

≤
(
α(k−1

2 )

�k−1

)2

|Y |
(
1 + 2δ

1
36(k−1)

) ∣∣∣∣∣

(
X

2

)

good

∣∣∣∣∣+
2

�2(k−1)
|Y |
∣∣∣∣∣

(
X

2

)
\
(
X

2

)

good

∣∣∣∣∣

+4ε1/3n2|Y |
(68)

≤
(
α(k−1

2 )

�k−1

)2

|Y |
(
1 + 2δ

1
36(k−1)

)(n
2

)
+ 2δ1/36 n2

�2(k−1)
|Y | + 4ε1/3n2|Y |

≤
(
α(k−1

2 )

�k−1

)2

|Y |n2

(
1

2
+ δ

1
36(k−1) + 2

δ1/36

α2(k−1
2 )

+ 4ε1/3 �
2(k−1)

α2(k−1
2 )

)

(55)

≤
(
α(k−1

2 )

�k−1
|X|
)2

|Y |
(

1

2
+ δ

1
37(k−1)

)
,

so that, from (70), we have

∑

K−∈Y

degΛ(K−)2 ≤
(
α(k−1

2 )

�k−1
|X|
)2

|Y |
(
1 + 2δ

1
37(k−1)

)
(1 + o(1))

(55)

<

(
α(k−1

2 )

�k−1
|X|
)2

|Y |
(
1 + 3δ

1
37(k−1)

)
,

as promised in (69).

5.3. Proofs of (66) and (68): Setting up the proofs. We claim that (66)
and (68) are direct applications of the following auxiliary graph counting lemma.
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Lemma 5.4 (a “two graphs” counting lemma). For all integers t and constants
λ0 ≥ 0 there exists δ0,λ0 > 0 so that for all 0 < δλ0 ≤ δ0,λ0 and p > 0 there exists
εp > 0 so that the following holds.

Let

L =
⋃

1≤i<j≤t

L
ij ⊆ P =

⋃

1≤i<j≤t

P
ij

be t-partite graphs with common t-partition U1∪· · ·∪Ut, |Ui| = mi > m0(t, λ0, δλ, p, εp),
satisfying that for all 1 ≤ i �= j ≤ t,

1. |Lij |/|Pij | def
= λij ≥ λ0,

2. all but δλ0m
2
i pairs u1, u2 ∈ Ui satisfy

(72) degLij (u1, u2) = (λijp)
2
mj (1 ± δλ0) ,

3. the graph Pij is (p, εp)-regular.
Then,

∣∣∣K(2)
t (L)

∣∣∣ =

⎛
⎝

∏

1≤i<j≤t

λij

⎞
⎠ p(

t
2)

(
t∏

i=1

mi

)(
1 ± δ

1
5t

λ0

)
.

We prove Lemma 5.4 in section 6.
We now connect (66) and (68) with Lemma 5.4. Indeed, for arbitrary vertices

x, y ∈ X = V1, observe from Construction 5.1 that

(73) degΛ(x) =
∣∣∣K(2)

k−1(Lx)
∣∣∣ and degΛ (x, y) =

∣∣∣K(2)

k−1(Lxy)
∣∣∣,

where

(74) Lx =
{
{u, v} ∈ P : {x, u, v} ∈ H

}
and Lxy = Lx ∩ Ly

are the links Lx and colinks Lxy of x and {x, y}, respectively (cf. (36) and (37)).
In view of (73), we may prove (66) and (68) by respectively applying Lemma 5.4 to
graphs Lx (i.e., L = Lx) and Lxy (i.e., L = Lxy), x, y ∈ X = V1, whenever it is
appropriate to do so.

To further develop our plans for proving (66) and (68) by applying Lemma 5.4,
we continue with some notation (some of which is similar to that used in section 4).

Notation 5.5. Let T be a fixed one- or two-element subset of X. We set

(75) Ui,T = NP 1i(T ) =
⋂

x∈T

NP 1i(x) and mi,T = |Ui,T |, 1 < i ≤ k.

Set

P
ij
T = P ij

T = P ij [NP 1i(T ), NP 1j (T )], 1 < i < j ≤ k,

and

PT =
⋃

1<i<j≤k

P
ij
T =

⋃

1<i<j≤k

P ij
T = PT .
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Note that PT is (k − 1)-partite with (k − 1)-partition U2,T ∪ · · · ∪ Uk,T . Set

LT = LT =
⋂

x∈T

Lx,

where Lx, x ∈ T , is given in (74). For 1 < i < j ≤ k, set L
ij
T = LT ∩ P ij so that

LT =
⋃

1<i<j≤k

L
ij
T

is (k − 1)-partite with (k − 1)-partition U2,T ∪ · · · ∪ Uk,T . Note that LT ⊆ PT .
We now make further preparations by considering some constants. For T ∈(

X
1

) ∪ (X
2

)
=
(
V1

1

) ∪ (V1

2

)
, set

(76) λij
T =

|Lij
T |

|Pij
T |

, 1 < i < j ≤ k, λ0 =
α3

2
, δλ0 = 4δ1/7, p =

1

�
, εp = 4�2ε.

Recall from the hierarchy in (55) that

1

k
, α � δ ≥ min{�−1, δ} � ε.

As such, we are easily afforded the hierarchy

(77)
1

k − 1
, λ0 =

α3

2
� δλ0

= 4δ1/7 ≥ min{p = �−1, δλ0
= 4δ1/7} � εp = 4�2ε.

As such, the quantification of constants in Lemma 5.4 implies that

constants k − 1, λ0, δλ0 , p, εp (defined in (76)) are sufficient for(78)

an application of Lemma 5.4.

We conclude our preparations with the following fact.
Fact 5.6. For t = 1, 2, all but (k − 1)2tε

(
n
t

)
sets T ∈ (Xt

)
=
(
V1

t

)
satisfy that

P
ij
T is (p, εp)-regular for all 1 < i < j ≤ k.

Indeed, we see from (39) and (41) that all but (k − 1)2tε
(
n
t

)
sets T ∈ (Xt

)
=
(
V1

t

)

satisfy that for all 1 < i ≤ k,

(79) mi,T = |Ui,T | =

(
1

�
± ε

)t

n =
n

�t
(1 ± �tε) .

As a consequence (cf. (39), (41)) these same sets T ∈ (Xt
)

=
(
V1

t

)
, t = 1, 2, satisfy

that for all 1 < i < j ≤ k, P
ij
T is (�−1, (2�)tε)-regular, or, in the language above, P

ij
T

is (p, εp)-regular, 1 < i < j ≤ k.
We now prove (66) and (68), in reverse order.

5.4. Proof of (68). We wish to apply Lemma 5.4 to the graphs L = Lxy,

{x, y} ∈ (X
2

)
=
(
V1

2

)
. The following claims qualify the pairs for which this end is

appropriate.
Claim 5.7. All but 3δ1/3

(
k−1

2

)(
n
2

)
pairs {x, y} ∈ (X

2

)
=
(
V1

2

)
satisfy

(80) λij
xy

(76)
=

|Lij
xy|

|Pij
xy|

= α2
(
1 ± 4δ1/3

) (55)

≥ α3

2

(76)
= λ0

for all 1 < i < j ≤ k.
Claim 5.8. All but 2δ1/6(k − 1)2

(
n
2

)
pairs {x, y} ∈ (X

2

)
=
(
V1

2

)
satisfy the

following property:
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all but δλ0

(mi,{x,y}
2

)
pairs {a, b} ∈ (Ui,{x,y}

2

)
satisfy

(81) deg
L

ij
xy

(a, b) =
(
λij
xyp
)2

mj,{x,y} (1 ± δλ0)

for all 1 < i �= j ≤ k.
Before verifying Claims 5.7 and 5.8, let us use them to prove (68).
Claims 5.7 and 5.8 confirm that the hypothesis of Lemma 5.4 is met by the

graph Lxy for “most” choices of {x, y} ∈ (X
2

)
=
(
V1

2

)
. Indeed, Claim 5.7 confirms

that property 1 of Lemma 5.4 is met for all but 3δ1/3
(
k−1

2

)(
n
2

)
pairs {x, y} ∈ (V1

2

)
.

Claim 5.8 confirms that property 2 of Lemma 5.4 is met for all but an additional
2(k − 1)2δ1/6

(
n
2

)
pairs {x, y} ∈ (V1

2

)
. By Fact 5.6, we see that all but 4(k − 1)ε

(
n
2

)

pairs {x, y} ∈ (V1

2

)
satisfy property 3 of Lemma 5.4. Finally, (78) confirms that our

set of constants is sufficient for an application of Lemma 5.4. As such, for all but

3δ1/3

(
k − 1

2

)(
n

2

)
+ 2δ1/6(k − 1)2

(
n

2

)
+ 4(k − 1)ε

(
n

2

)
≤ 9δ1/6k2n2

(55)

≤ δ1/8n2

pairs {x, y} ∈ (X
2

)
=
(
V1

2

)
, the graphs Lxy = Lxy and Pxy = Pxy satisfy the hypothesis

of Lemma 5.4 with appropriate constants. Fixing one such pair {x, y} ∈ (X
2

)
=
(
V1

2

)
,

Lemma 5.4 yields

degΛ(x, y)
(73)
=
∣∣∣K(2)

k−1(Lxy)
∣∣∣ =
∣∣∣K(2)

k−1(Lxy)
∣∣∣

=

⎛
⎝

∏

1<i<j≤k

λij
xy

⎞
⎠ p(

k−1
2 )

⎛
⎝
∏

1<i≤k

mi,xy

⎞
⎠
(

1 ± δ
1

5(k−1)

λ0

)

(75), (76), (79), (80)
=

[
α2
(
1 ± 4δ1/3

)](k−1
2 ) 1

�(
k−1
2 )

[ n
�2

(1 ± 2�ε)
]k−1

[
1 ±
(
4δ1/7

) 1
5(k−1)

]

=

(
α2

�

)(k−1
2 ) ( n

�2

)k−1 (
1 ± δ

1
36(k−1)

)
,(82)

as promised in (68).
It now remains to prove Claims 5.7 and 5.8. Claims 5.7 and 5.8 are ensured by

Propositions 4.5 and 4.6, respectively, from section 4. We emphasize the following
remark for future reference.

Remark 5.9. Claims 5.7 and 5.8 are guaranteed by applying statement 2 of
Proposition 4.5 and statement 2(a) of Proposition 4.6, respectively.

In what immediately follows, we easily (and simultaneously) check that these lem-
mas may be applied in our current context. Afterward, we confirm that Propositions
4.5 and 4.6 indeed yield Claims 5.7 and 5.8.

5.4.1. Applying Propositions 4.5 and 4.6. Fix 1 < i < j ≤ k. We check that
statement 2 of Proposition 4.5 and statement 2(a) of Proposition 4.6 (see section 4)
may be applied to H1ij and P 1i∪P 1j∪P ij . Note that our hypothesis in Theorem 2.7,
the counting lemma, includes that H1ij and P 1i∪P 1j ∪P ij satisfy the assumptions in
Setup 2.1 with constants α, �, and ε, as required by statement 2 of Proposition 4.5 and
statement 2(a) of Proposition 4.6. Moreover, our hypothesis in Theorem 2.7 includes
that H1ij is (α, δ)-minimal w.r.t. P 1i∪P 1j ∪P ij , or in the language of section 4, H1ij

is (α, δ)2-minimal w.r.t. P 1i∪P 1j ∪P ij , as required by statement 2 of Proposition 4.5
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and statement 2(a) of Proposition 4.6. Our hypothesis in Theorem 2.7 also includes
that our constants α, δ, �, ε, and n satisfy the hierarchy in (55), and as such, satisfy
the quantifications of Propositions 4.5 and 4.6. We conclude that statement 2 of
Proposition 4.5 and statement 2(a) of Proposition 4.6 may be applied to H1ij and
P 1i ∪ P 1j ∪ P ij .

5.4.2. Proof of Claim 5.7. We simply apply statement 2 of Proposition 4.5
for fixed 1 < i < j ≤ k. This statement guarantees that all but 3δ1/3

(
n
2

)
pairs

{x, y} ∈ (X
2

)
=
(
V1

2

)
satisfy

λij
xy

(76)
=

|Lij
xy|

|Pij
xy|

=
|Lij

xy|
|P ij

xy|
= α2

(
1 ± 4δ1/3

)
.

Thus, all but 3δ1/3
(
k−1

2

)(
n
2

)
pairs satisfy the above inequalities for all 1 < i < j ≤ k.

5.4.3. Proof of Claim 5.8. We shall use statement 2(a) of Proposition 4.6 in
the context of a proof by contradiction.

Assume, on the contrary, that there exist 2δ1/6(k − 1)2
(
n
2

)
pairs {x, y} ∈ (X

2

)
=(

V1

2

)
for which there exist 1 < i �= j ≤ k for which some δλ0

(mi,{x,y}
2

)
pairs {a, b} ∈(Ui,{x,y}

2

)
satisfy

(83) deg
L

ij
xy

(a, b) �= (λij
xyp)

2mj,{x,y}(1 ± δλ0
).

As such, for some fixed pair of indices 1 < i < j ≤ k, there must exist 2δ1/6
(
n
2

)

pairs {x, y} ∈ (X
2

)
(the set of which we denote by X(i, j)) for which there exist at

least δλ0

(mi,{x,y}
2

)
pairs {a, b} ∈ (Ui,{x,y}

2

)
(the set of which we denote by U(i, x, y))

satisfying

(84) deg
L

ij
xy

(a, b) �= (λij
xyp)

2mj,{x,y}(1 ± δλ0
).

We show that the existence of the set X(i, j), as described above, contradicts state-
ment 2(a) of Proposition 4.6.

Our first step is to refine the set X(i, j) down to suitable pairs. Denote by
X ′(i, j) ⊆ X(i, j) the set of those pairs {x, y} for which

(85) λij
xy = α2(1 ± 4δ1/3) and mi,{x,y},mj,{x,y} =

(
1

�
± ε

)2

n.

We claim

(86) |X ′(i, j)| ≥ δ1/6

(
n

2

)
.

Indeed, by Claim 5.7, we lose 3δ1/3
(
k−1

2

)(
n
2

)
pairs from X(i, j) on account of the left

condition of (85) failing. By the (�−1, ε)-regularity of graphs P 1i and P 1j , we lose
another 8ε

(
n
2

)
pairs from X(i, j) on account of the right condition of (85) failing. This

shows

|X ′(i, j)| ≥ |X(i, j)| − 3δ1/3

(
k − 1

2

)(
n

2

)
− 8ε

(
n

2

)
≥ |X(i, j)| − 4δ1/3

(
k − 1

2

)(
n

2

)
,

where the last inequality holds with ε � δ (cf. (55)). On account of our assumption
that |X(i, j)| ≥ 2δ1/6

(
n
2

)
, we see that (86) holds with δ > 0 sufficiently small (cf. (55)).
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We claim the set

C4(1, i) = {({x, y}, {a, b}) : {x, y} ∈ X ′(i, j), {a, b} ∈ U(i, x, y)} ⊆ K(2)

2,2(P
1i)

is in contradiction with statement 2(a) of Proposition 4.6. (Note that every element
({x, y}, {a, b}) ∈ C4(1, i) corresponds to a copy of C4, with vertices x, y, a, b and edges
{x, a}, {a, y}, {y, b}, {b, x}, where x, y ∈ V1 and a, b ∈ Vi.) In particular, we claim that

(87) |C4(1, i)| > 3δ1/3
∣∣∣K(2)

2,2(P
1i)
∣∣∣

and that for each ({x, y}, {a, b}) ∈ C4(1, i),

(88) degLij
xy

(a, b) �=
(
α2

�

)2
n

�2

(
1 ± 3δ1/3

)
.

Then (87) and (88) are in violation with statement 2(a) of Proposition 4.6. As such,
establishing (87) and (88) shows that our assumption in (83) is incorrect, and, there-
fore, proves Claim 5.8.

To see (87), note that, on account of (84)–(86), we have
(89)

|C4(1, i)| ≥ δ1/6

(
n

2

)
× δλ0

(
( 1
� − ε)2n

2

)
(55),(76)

≥ δ13/42 n4

2�4
(43),(55)

> 3δ1/3
∣∣∣K(2)

2,2(P
1i)
∣∣∣ .

We now verify (88). Fix ({x, y}, {a, b}) ∈ C4(1, i). Since

degLij
xy

(a, b) = deg
L

ij
xy

(a, b) �= (λij
xyp)

2mj,{x,y}(1 ± δλ0
),

we have either

degLij
xy

(a, b) < (λij
xyp)

2mj,{x,y}(1− δλ0) or degLij
xy

(a, b) > (λij
xyp)

2mj,{x,y}(1+ δλ0).

Without loss of generality, we assume the former inequality holds and will prove that
the former inequality implies

(90) degLij
xy

(a, b) <

(
α2

�

)2
n

�2

(
1 − 3δ1/3

)
.

This will complete our proof of (88).

Indeed, by (85), where λij
xy = α2(1 ± 4δ1/3), and since in (76), where we set

δλ0 = 4δ1/7 and p = 1/�, we have

degLij
xy

(a, b) < (λij
xyp)

2mj,{x,y}(1 − δλ0
) ≤
(
α2

�

(
1 + 4δ1/3

))2(
1

�
+ ε

)2

n
(
1 − 4δ1/7

)

<

(
α2

�

)2
n

�2

(
1 − 3δ1/3

)
,

where we used 0 < ε � �−1, δ and δ > 0 sufficiently small, as given in (55). This
proves (90).
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5.5. Proof of (66). The proof of (66) is nearly identical to what we did above in
section 5.4, save one detail: we argue that all steps above can be done for a “typical”
vertex x ∈ X = V1 rather than for a “typical” pair {x, y} ∈ (X

2

)
=
(
V1

2

)
. More

formally, we assert the following claims.

Claim 5.10. All but 3δ1/3
(
k−1

2

)
n vertices x ∈ X = V1 satisfy

(91) λij
x

(76)
=

|Lij
x |

|Pij
x |

= α
(
1 ± 4δ1/3

) (55)

≥ α3

2

(76)
= λ0

for all 1 < i < j ≤ k.

Claim 5.11. All but 2(k − 1)2δ1/6n many vertices x ∈ X = V1 satisfy the
following property:

all but δλ0

(
mi,x

2

)
pairs {a, b} ∈ Ui,x satisfy

(92) deg
L

ij
x

(a, b) =
(
λij
x p
)2

mj,x (1 ± δλ0
)

for all 1 < i �= j ≤ k.

Precisely as we did in section 5.4, Claims 5.10 and 5.11, Fact 5.6, and the hierarchy
in (77) say that for all but

3δ1/3

(
k − 1

2

)
n + 2(k − 1)2δ1/6n + 2(k − 1)εn ≤ 7δ1/6k2n2

(55)

≤ δ1/8n

vertices x ∈ X = V1, the graphs Lx = Lx and Px = Px satisfy the hypothesis
of Lemma 5.4 with appropriate constants. Fixing one such vertex x ∈ X = V1,
Lemma 5.4 yields (with t = k − 1)

degΛ(x)
(73)
=
∣∣∣K(2)

k−1(Lx)
∣∣∣ =
∣∣∣K(2)

k−1(Lx)
∣∣∣

=

⎛
⎝

∏

1<i<j≤k

λij
x

⎞
⎠ p(

k−1
2 )

⎛
⎝
∏

1<i≤k

mi,x

⎞
⎠
(

1 ± δ
1

5(k−1)

λ0

)

(75), (76), (79), (91)
=

[
α
(
1 ± 4δ1/3

)](k−1
2 ) 1

�(
k−1
2 )

[n
�

(1 ± �ε)
]k−1

[
1 ±
(
4δ1/7

) 1
5(k−1)

]

=
(α
�

)(k−1
2 ) (n

�

)k−1 (
1 ± δ

1
36(k−1)

)
,(93)

as promised in (66).

As before, Claims 5.10 and 5.11 follow from Propositions 4.5 and 4.6, respectively,
from section 4. We stress, importantly, that

we now seek to apply statement 1 of Proposition 4.5 and statement
1(a) of Proposition 4.6

(recall Remark 5.9). As such, verifying that we may apply these statements of Propo-
sitions 4.5 and 4.6 requires the additional attention of one small detail which we now
consider. Fix 1 < i < j ≤ k. We wish to repeat the same verification we did in
section 5.4.1. For this, we need that H1ij is (α, δ)1-minimal w.r.t. P 1i ∪ P 1j ∪ P ij , a
condition not initially assumed in the hypothesis of Theorem 2.7, but which follows
by an application of Proposition 4.4.
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6. Proof of Lemma 5.4. In this section, we prove Lemma 5.4. For simplicity,
we prove Lemma 5.4 in the special case that λ = λ0 = λij , 1 ≤ i < j ≤ t, and mi = m
for all 1 ≤ i ≤ t. Note that we also applied Lemma 5.4 in essentially the same special
case (cf. (79) and Claims 5.7 and 5.10).

Our proof follows by induction on t where the base case t = 2 is trivial. We
assume Lemma 5.4 holds up through t − 1 ≥ 2 and consider Lemma 5.4 for t ≥ 3.
We do not wish to begin our fairly simple argument with a tedious determination of
constants. As such, with integer t given above, let constants λ, δ0,λ, δλ, p, εp, and m
be given satisfying the hierarchy

(94)
1

t
, λ � δ0,λ > δλ ≥ min {δλ, p} � εp � 1

m
,

which we note is consistent with the quantification of Lemma 5.4. With constants t,
λ = λ0 = λij , 1 ≤ i < j ≤ t, δλ, p, εp, and m, let graphs

L =
⋃

1≤i<j≤t

L
ij ⊆ P =

⋃

1≤i<j≤t

P
ij

on t-partition

U1 ∪ · · · ∪ Ut, |U1| = · · · = |U1| = m

be given as in the hypothesis of Lemma 5.4. We show

(95)
∣∣∣K(2)

t (L)
∣∣∣ = (λp)(

t
2)mt

(
1 ± δ

1
5t

λ

)
,

as promised by Lemma 5.4.
To prove Lemma 5.4, we first define auxiliary bipartite graphs L ⊆ P. As we see

momentarily, these graphs formulate Lemma 5.4 in slightly different language.
Construction 6.1. With t-partition U1 ∪ · · · ∪ Ut of graphs L =

⋃
1≤i<j≤t Lij

and P =
⋃

1≤i<j≤t Pij, define auxiliary bipartite graphs L ⊆ P with bipartition A∪B
as follows:

•
A = U1 and B = K(2)

t−1

(
P

[
U2, . . . , Ut

])
= K(2)

t−1

( ⋃

1<i<j≤t

P
ij
)
,

where elements of B, each denoted by K−, correspond to vertex sets of (t−1)-

cliques K
(2)

t−1 in the (t−1)-partite graph P

[
U2, . . . , Ut

]
=
⋃

1<i<j≤t Pij. Note

that

(96) |A| = m and |B| Fact 1.2
= p(

t−1
2 )mt−1

(
1 ± ε

1
t−1
p

)
.

• For a ∈ A and K− ∈ B,

{a,K−} ∈ P ⇐⇒ {a} ∪K− ∈ K(2)
t (P) ⇐⇒ K− ⊂ NP(a)

⇐⇒ K− ∈ K(2)

t−1

(
P[NP(a)]

)
,

where P[NP(a)] is the subgraph of P induced on the P-neighborhood NP(a) =
NP12(a) ∪ · · · ∪NP1t(a) of a.
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• For a ∈ A and K− ∈ B,

{a,K−} ∈ L ⇐⇒ K− ⊂ NL(a) ⇐⇒ K− ∈ K(2)

t−1

(
P[NL(a)]

)

where P[NL(a)] is the subgraph of P induced on the L-neighborhood NL(a) =
NL12(a) ∪ · · · ∪NL1t(a) of a.

Note that L ⊆ P implies L ⊆ P. The following fact is identical to Fact 5.2.

Fact 6.2. With εp given in (94), the graph P is (pt−1, ε
1/3
p )-regular.

We now make a few easy observations establishing connections between the graphs
L and P and Lemma 5.4. For the purpose of stating these observations, set

BL

def
= K(2)

t−1

(
L

[
U2, . . . , Ut

])
= K(2)

t−1

( ⋃

1<i<j≤t

L
ij
)

and note that elements of BL correspond to (t− 1)-cliques K
(2)

t−1 in the (t− 1)-partite

graph L

[
U2, . . . , Ut

]
=
⋃

1<i<j≤t Lij .

Observations.

• Since L ⊆ P, BL ⊆ B.
• By our induction hypothesis on Lemma 5.4 (for t− 1),

∣∣∣BL

∣∣∣ =
∣∣∣K(2)

t−1

(
L

[
U2, . . . , Ut

])∣∣∣ =
∣∣∣K(2)

t−1

( ⋃

1<i<j≤t

L
ij
)∣∣∣

= (λp)(
t−1
2 )mt−1

(
1 ± δ

1
5(t−1)

λ

)
(94), (96)

= λ(t−1
2 )|B|

(
1 ± 2δ

1
5(t−1)

λ

)
.(97)

•
(98)

∣∣∣K(2)
t (L)

∣∣∣ =
∑

K−∈BL

deg
L

(
K−) .

We see from (97) and (98) that, to prove Lemma 5.4, it suffices to analyze the
terms in the sum (98). Proposition 6.3 does precisely this (and is similar to Proposi-
tion 5.3 of the preceding section).

Proposition 6.3. All but 2δ
1/12
λ |B| = 2δ

1/12
λ |K(2)

t−1(
⋃

1<i<j≤t Pij)| many vertices

K− ∈ B = K(2)

t−1(
⋃

1<i<j≤t Pij) satisfy

(99) deg
L

(
K−) = (λp)

t−1 |A|
(
1 ± 2δ

1/12
λ

)
= (λp)

t−1
m
(
1 ± 2δ

1/12
λ

)
.

We defer the proof of Proposition 6.3 to section 6.2 and proceed now with the
easy confirmation that Lemma 5.4 follows from Proposition 6.3.

6.1. Proposition 6.3 =⇒ Lemma 5.4. Our proof that follows is quite similar
to what we saw when using Proposition 5.3 to prove Theorem 2.7.

We employ deg
L
(K−) ≤ deg

P
(K−) for all K− ∈ BL not satisfying (99). As such,

we note from Fact 6.2 that all but 2ε
1/3
p |B| vertices K− ∈ B satisfy

(100) deg
P

(
K−) = pt−1|A|

(
1 ± ε1/3

p

) (94)

≤ 2pt−1m.

Now, set

BL = {K− ∈ B : K− satisfies (99)} and BP = {K− ∈ B : K− satisfies (100)}.
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Proposition 6.3 and (100) then imply

|BL \BL| ≤ |B \BL| ≤ 2δ
1/12
λ |B|

(96)

≤ 4δ
1/12
λ p(

t−1
2 )mt−1,(101)

|BL \BP| ≤ 2ε1/3
p |B| ≤ 4ε1/3

p p(
t−1
2 )mt−1.

Now the proof of Lemma 5.4 is immediate. Returning to (98), we see

∣∣∣K(2)
t (L)

∣∣∣ =
∑

K−∈BL

deg
L

(
K−)

=
∑

K−∈(BL∩BL)

deg
L

(
K−)+

∑

K−∈(BP\BL)∩BL

deg
L

(
K−)+

∑

K−∈(BL\(BL∪BP))

deg
L

(
K−) .

(102)

To obtain the formula for |K(2)
t (L)| promised in (95), we need to bound (102) from

above and below. For the lower bound, we employ (99) in (102) to obtain

∣∣∣K(2)
t (L)

∣∣∣ ≥ (λp)t−1m
(
1 − 2δ

1/12
λ

)
|BL ∩BL|

= (λp)t−1m
(
1 − 2δ

1/12
λ

)
(|BL| − |BL \BL|) .

By (97) and (101), we then see

∣∣∣K(2)
t (L)

∣∣∣ ≥ (λp)(
t
2)mt

(
1 − 2δ

1/12
λ

)(
1 − δ

1
5(t−1)

λ − 4
δ
1/12
λ

λ(t−1
2 )

)
≥ (λp)(

t
2)mt

(
1 − δ

1
5t

λ

)
,

which holds with t ≥ 3 and 0 < δλ � λ, t−1 sufficiently small in (94).

For the upper bound, we employ (99) and (100) in (102) to see that

∣∣∣K(2)
t (L)

∣∣∣ ≤ (λp)t−1m
(
1 + 2δ

1/12
λ

)
|BL ∩BL| + 2pt−1m| (BP \BL) ∩BL|

+m|BL \ (BL ∪BP) |
≤ (λp)t−1m

(
1 + 2δ

1/12
λ

)
|BL| + 2pt−1m|BL \BL| + m|BL \BP|.

Using (97) and (101), we obtain

∣∣∣K(2)
t (L)

∣∣∣ ≤ (λp)(
t
2)mt

(
1 + 2δ

1/12
λ

)(
1 + δ

1
5(t−1)

λ

)
+ 8δ

1/12
λ p(

t
2)mt + 4ε1/3

p p(
t−1
2 )mt

= (λp)(
t
2)mt

[(
1 + 2δ

1/12
λ

)(
1 + δ

1
5(t−1)

λ

)
+

8δ
1/12
λ

λ(t
2)

+
4ε

1/3
p

pt−1

]
(94)

≤ (λp)(
t
2)mt

(
1 + δ

1
5t

λ

)
,

which holds with t ≥ 3 and the hierarchy in (94). This completes the proof of the
induction step for Lemma 5.4.

6.2. Proof of Proposition 6.3. All that remains is to prove Proposition 6.3.
We do so by proving the following slightly stronger version of Proposition 6.3 (which
is similar to how we handled Proposition 5.3 through Proposition 5.3∗).
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Proposition 6.3
∗
.

• All but 4δ
1/3
λ m vertices u ∈ A = U1 satisfy

(103)

deg
L
(u) = p(

t−1
2 ) (λpm)

t−1
(
1 ± (4t)2δ

1/3
λ

)
(94), (96)

= (λp)t−1|B|
(
1 ± 2(4t)2δ

1/3
λ

)
.

In particular,

(104)
∑

K−∈B

deg
L
(K−) >

(
(λp)t−1|A|) |B|

(
1 − δ

1/4
λ

)
.

• All but δλm
2 pairs u, v ∈ A = U1 satisfy

(105)

deg
L
(u, v) = p(

t−1
2 )
(
(λp)

2
m
)t−1 (

1 ± t2δλ
) (94), (96)

= (λp)2(t−1)|B| (1 ± 2t2δλ
)
.

In particular,

∑

K−∈B

deg
L
(K−)2 ≤ (

(λp)t−1|A|)2 |B|
(
1 + 3δ

1/2
λ

)
(106)

(94)

<
(
(λp)t−1|A|)2 |B|

(
1 + δ

1/4
λ

)
.

It is easy to prove Proposition 6.3 from Proposition 6.3∗. Indeed, using the
approximate Cauchy–Schwarz inequality (that is, Fact 4.7), Proposition 6.3 is an
immediate corollary of (104) and (106). (To see this, in Fact 4.7 set a = (λp)t−1|A|,
r = |B|, and γ = δ

1/4
λ , and let terms ai, 1 ≤ i ≤ r, correspond to terms deg

L
(K−),

K− ∈ B.) It therefore remains to prove Proposition 6.3∗.
To prove Proposition 6.3∗, we must show four things: the assertions of (103) and

(105) and the implications (103) =⇒ (104) and (105) =⇒ (106). We proceed to first
prove the implications, and then we shall prove the assertions.

6.2.1. Proof that (103) =⇒ (104). Observe that

∑

K−∈B

deg
L
(K−) =

∑

u∈A

deg
L
(u).

Now, denote by Agood the set of vertices u ∈ A = U1 for which (103) holds. We then
have

∑

K−∈B

deg
L
(K−) =

∑

u∈A

deg
L
(u) ≥

∑

u∈Agood

deg
L
(u)

(103)

≥ (λp)t−1|B|
(
1 − 2(4t)2δ

1/3
λ

)
|Agood|

Prop. 6.3∗

≥ (λp)t−1|B|
(
1 − 2(4t)2δ

1/3
λ

)(
1 − 4δ

1/3
λ

)
|A|

(94)

≥
(
(λp)

t−1 |A|
)
|B|
(
1 − δ

1/4
λ

)
,

as promised in (104).

6.2.2. Proof that (105) =⇒ (106). Recall that we are supposed to bound∑
K−∈B deg

L
(K−)2 from above. First we observe that

(107)
∑

{u,v}∈(A2)

deg
L
(u, v) =

∑

K−∈B

(
deg

L
(K−)

2

)
(94)
=

(
1

2
− o(1)

) ∑

K−∈B

deg
L
(K−)2,
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where o(1) → 0 as m → ∞. It therefore suffices to consider the sum
∑

{u,v}∈(A2)
˙deg

L
(u, v).
Denote by

(
A
2

)
good

the set of all pairs {u, v} ∈ (A
2

)
for which (105) holds. For

pairs {u, v} �∈ (A
2

)
good

, we observe deg
L
(u, v) ≤ deg

P
(u, v) (since L ⊆ P), where we

recall from Fact 6.2 that P is (pt−1, ε
1/3
p )-regular. As such (and similarly to (100)),

we have that all but 4ε
1/3
p m2 pairs {u, v} ∈ (A

2

)
satisfy

(108) deg
P
(u, v) =

(
pt−1 + ε1/3

p

)2

|B|
(94)

≤ 2p2(t−1)|B|.

Denote by
(
A
2

)
fair

the set of all pairs {u, v} ∈ (A
2

)
for which (108) holds.

Returning to (107), we see that the sum
∑

{u,v}∈(A2)
deg

L
(u, v) equals

∑

{u,v}∈(A2)good

deg
L
(u, v) +

∑

{u,v}∈(A2)fair
\(A2)good

deg
L
(u, v)

+
∑

{u,v}∈(A2)\
(
(A2)fair

∪(A2)good

)
deg

L
(u, v)

≤
∑

{u,v}∈(A2)good

deg
L
(u, v) +

∑

{u,v}∈(A2)fair
\(A2)good

deg
P
(u, v) + |B|

∣∣∣∣
(
A

2

)
\
(
A

2

)

fair

∣∣∣∣

Prop. 6.3∗, (108)

≤ (λp)2(t−1)|B| (1 + 2t2δλ
)
∣∣∣∣∣

(
A

2

)

good

∣∣∣∣∣+ 2p2(t−1)|B|
∣∣∣∣∣

(
A

2

)
\
(
A

2

)

good

∣∣∣∣∣

+4ε1/3
p m2|B|

Prop. 6.3∗

≤ (λp)2(t−1)|B| (1 + 2t2δλ
)(m

2

)
+ 2δλp

2(t−1)|B|m2 + 4ε1/3
p m2|B|

≤ (λp)2(t−1)|B|m2

((
1

2
+ t2δλ

)
+ 2

δλ
λ2(t−1)

+ 4
ε
1/3
p

(λp)
2(t−1)

)

(94)

<
(
(λp)t−1|A|)2 |B|

(
1

2
+ δ

1/2
λ

)
,

so that, with (107), we have

∑

K−∈B

deg
L
(K−)2 ≤ (

(λp)t−1|A|)2 |B|
(
1 + 2δ

1/2
λ

)
(1 + o(1))

(94)

<
(
(λp)t−1|A|)2 |B|

(
1 + 3δ

1/2
λ

)
,

as promised in (106).
It remains to prove (103) and (105). We begin with the latter.

6.2.3. Proof of (105). For an arbitrary pair of vertices u, v ∈ A = U1, observe
that
(109)

deg
L
(u, v) =

∣∣∣K(2)

t−1

(
P [NL(u, v)]

)∣∣∣ =
∣∣∣K(2)

t−1

( ⋃

1<i<j≤t

P
ij [NL1i(u, v), NL1j (u, v)]

)∣∣∣
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follows by our construction of graph L. Estimating |K(2)

t−1(P[NL(u, v)])| is, however,
a mere application of Fact 1.2.

Indeed, the hypothesis of Lemma 5.4 gives that all but δλm
2 pairs u, v ∈ U1 = A

satisfy degL1i(u, v) = (λp)2m(1± δλ), 1 < i ≤ t. Fix one such pair u, v ∈ U1 = A. We
claim u, v satisfy the conclusion of Proposition 6.3∗. Indeed, fix 1 < i < j ≤ t and
observe that

(110) min {degL1i(u, v), degL1j (u, v)} ≥ (λp)2m(1 − δλ)
(94)

≥ 1

2
(λp)2m

(94)� ε1/2
p m.

Using (110), the (p, εp)-regularity of Pij implies that the graph Pij [NL1i(u, v), NL1j (u, v)]

is (p, ε
1/2
p )-regular (see Fact 1.5, the slicing lemma, from [26]). As such, we apply

Fact 1.2 to conclude
∣∣∣K(2)

t−1

(
P [NL(u, v)]

)∣∣∣ = p(
t−1
2 ) [(λp)2m (1 ± δλ)

]t−1

(
1 ± ε

1
2(t−1)
p

)

(94)
= p(

t−1
2 ) [(λp)2m

]t−1 (
1 ± t2δλ

)

which renders the result.

6.2.4. Proof of (103). We will follow essentially the same procedure as de-
scribed above, but for single vertices u ∈ A = U1 rather than pairs u, v ∈ A = U1.
Note that, however, in this case, Lemma 5.4 admits no hypothesis on degL1i(u) for
single vertices u ∈ A = U1. For this reason, we require the following fact.

Fact 6.4. With L and P given in Lemma 5.4, all but 4δ
1/3
λ m vertices u ∈ U1

satisfy that for each 1 < i ≤ t,

degL1i(u) = λpm
(
1 ± 4δ

1/3
λ

)
.

Note that Fact 6.4 gives the analogue of condition 2 of Lemma 5.4 for single
vertices u ∈ U1, 1 ≤ i < t. The proof of Fact 6.4 follows from conditions 1 and 2 of
Lemma 5.4 by a standard Cauchy–Schwarz argument. We omit the standard details.
We now use Fact 6.4 to finish the proof of Proposition 6.3∗.

Similarly to (109), for a fixed vertex u ∈ A = U1, we have

deg
L
(u) =

∣∣∣K(2)

t−1

(
P [NL(u)]

)∣∣∣ =
∣∣∣K(2)

t−1

( ⋃

1<i<j≤t

P
ij [NL1i(u), NL1j (u)]

)∣∣∣.

Fact 6.4 ensures that all but 4δ
1/3
λ m vertices u ∈ U1 satisfy that for all 1 < i < j ≤ t,

min {degL1i(u), degL1j (u)} ≥ λpm
(
1 − 4δ

1/3
λ

) (94)

≥ 1

2
λpm

(94)� ε1/2
p m.

Fix one such vertex u ∈ U1. Similar to (110), the (p, εp)-regularity of Pij , 1 < i <

j ≤ t, implies that the graph Pij [NL1i(u)NL1j (u)] is (p, ε
1/2
p )-regular. As such, we

apply Fact 1.2 to conclude that

∣∣∣K(2)

t−1

(
P [NL(u)]

)∣∣∣ = p(
t−1
2 )
[
λpm

(
1 ± 4δ

1/3
λ

)]t−1
(

1 ± ε
1

2(t−1)
p

)

(94)
= p(

t−1
2 ) (λpm)

t−1
(
1 ± (4t)2δ

1/3
λ

)
,

which renders the result.
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7. Proof of statement 2 of Proposition 3.2. In section 2.4, we asserted
that statement 2 of Proposition 3.2 follows from Lemma 5.8 (cf. Algorithm A) of [8].
(Proposition 3.2 and Lemma 5.8 of [8] are very similar statements, with almost the
same quantification.) In this section, we show that the earlier Lemma 5.8 implies
Proposition 3.2. We begin by presenting Lemma 5.8 from [8], as well as the upcoming
Fact 7.3 that we shall also employ in our proof.

7.1. Background material. To state Lemma 5.8 of [8], we need the following
concept.

Definition 7.1 ((γ, δ, R)-regular). Let bipartite graph F have bipartition U ∪W .
For given constants γ, δ > 0 and for given integer R, we say that F is (γ, δ, R)-regular
if, for all U1, . . . , UR ⊆ U and all W1, . . . ,WR ⊆ W for which

∣∣∣∣∣

R⋃

i=1

(
Ui ×Wi

)
∣∣∣∣∣ > δ|U ||W |,

we have
∣∣∣∣∣F ∩

R⋃

i=1

(
Ui ×Wi

)
∣∣∣∣∣ = γ(1 ± δ)

∣∣∣∣∣

R⋃

i=1

Ui ×Wi

∣∣∣∣∣ .

(Here, for a fixed 1 ≤ i ≤ R, we define Ui×Wi to be {{ui, wi} : ui ∈ Ui, wi ∈ Wi}.)
Lemma 5.8 of [8] is then stated2 as follows. (In what follows, we use primes

for some of our constants to distinguish them from their corresponding constants in
Proposition 3.2.)

Lemma 7.2. For all α, δ′B > 0 there exists δ′A > 0 such that for all integers � and
r′B, there exist ε′ > 0 and integer r′A so that whenever H and P satisfy the hypothesis
of Setup 2.1 with constants α, �, and ε′ and with n sufficiently large, the following
holds.

Suppose there exist δ′Bn
2 pairs {x, y} ∈ (V1

2

)
for which Lxy is not (α2/�, δ′B , r

′
B)-

regular and for which witnesses Uxy
1 , . . . , Uxy

r′B
⊆ NP 12(x, y) and W xy

1 , . . . ,W xy
r′B

⊆
NP 13(x, y) against the (α2/�, δ′B , r

′
B)-regularity of Lxy are given. Then H is not

(δ′A, r
′
A)-regular w.r.t. P , and there exists an algorithm A7.2 which, in time O(n5),

converts the witnesses Uxy
1 , . . . , Uxy

r′B
and W xy

1 , . . . ,W xy
r′B

, over the δ′Bn
2 pairs {x, y}

above, into a witness Qr′A
= (Q1, . . . , Qr′A

) of the (δ′A, r
′
A)-irregularity of H w.r.t. P .

To prove that statement 2 of Proposition 3.2 follows from Lemma 7.2, we shall
need the following auxiliary fact. (This fact will allow us to build, in the context of
Lemma 7.2, the witnesses Uxy

1 , . . . , Uxy
r′B

and W xy
1 , . . . ,W xy

r′B
.)

Fact 7.3. For all β, δ2 > 0, there exists δ1 > 0 so that for all d > 0, there exist
integer R and ζ > 0 so that the following holds: let F ⊆ G be bipartite graphs with
bipartition U ∪ W , where |U |, |W | are sufficiently large, and G is (d, ζ)-regular. If
there exist δ2|U |2 pairs {u, u′} ∈ (U

2

)
satisfying

degF (u, u′) �= (βd)2|W |(1 ± δ2),

then F is not (βd, δ1, R)-regular, and there exists an algorithm A7.3 which, in time
O(|U |2|W |), constructs witnesses U1, . . . , UR ⊆ U and W1, . . . ,WR ⊆ W of the
(βd, δ1, R)-irregularity of F .

2In [8], a slightly stronger statement is proved which includes an additional parameter β. To
derive Lemma 7.2 from the original Lemma 5.8 of [8], one sets β = δ′B/2 and then uses that we may

take ε < δ′B/2. (For the definition of V good
1 in Lemma 5.8 of [8], see Definition 4.4 [8, p. 303].)
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Fact 7.3 was proved, without any focus on the algorithmic assertion, as Fact 8.12
[30, p. 395]. For completeness, we repeat the proof at the end of the paper and
emphasize the algorithmic aspects.

7.2. Proof of Proposition 3.2. We begin our proof by formally describing the
constants involved. The reader not interested in the determination of these constants
may skip ahead.

7.2.1. Constants. As in the quantification of Proposition 3.2, let α, δB > 0 be
given. In Fact 7.3, put β = α2 and

(111) δ2 =
δ3
B

1000
≤ δ2

B

4
.

Let

(112) δ1 = δ
(7.3)
1 (α2, δ2) ≤ δ2

B

2

be the constant guaranteed by Fact 7.3 (where we may assume, without loss of gen-
erality, that δ1 ≤ δ2

B/2). Putting δ′B = δ1, let

(113) δ′A = δ′A,(7.2)(α, δ
′
B)

be the constant guaranteed by Lemma 7.2. For Proposition 3.2, we take the promised
constant δA as

(114) δA = δ′A = δ′A,(7.2)(α, δ
′
B).

Now, as in Proposition 3.2, let integer � be given. In Fact 7.3, set d = 1/� and let

(115) ζ = ζ(7.3)(α2, δ2, δ1, 1/�) and R = R(7.3)(α2, δ2, δ1, 1/�)

be the constants guaranteed by Fact 7.3. In Lemma 7.2, set r′B = R and let

(116) ε′A,(7.2) = ε′A,(7.2)(α, δ
′
B , δ

′
A, �, r

′
B), r′A,(7.2) = r′A,(7.2)(α, δ

′
B , δ

′
A, �, r

′
B)

be the constants guaranteed by Lemma 7.2. Let

ε(4.6) = ε(4.6)(α, δB , �)

be the constant guaranteed by Proposition 4.6. For Proposition 3.2, we take

(117) r = r′A,(7.2) and ε = min{ε′A,(7.2), ζ
2, ε(4.6)}.

This concludes our definitions of the constants.

7.2.2. The algorithm. We now prove statement 2 of Proposition 3.2. Let H
and P = P 12 ∪ P 23 ∪ P 13 be given as in Setup 2.1 with constants α, δB , δA, �, r, ε
described in (111)–(117). Suppose H is (α, δB)-excessive w.r.t. P . We establish an
algorithm A3.2 which, in time O(n5), constructs a witness Qr = (Q1, . . . , Qr) of the
(δA, r)-irregularity of H w.r.t. P . In what immediately follows, we list the steps of
the algorithm A3.2. Afterward, we fill in all the details.

Algorithm A3.2.
Given. H and P , as in the hypothesis of Proposition 3.2, where H is (α, δB)-

excessive w.r.t. P .
Output. In time O(n5), a witness Qr = (Q1, . . . , Qr) of the (δA, r)-irregularity

of H w.r.t. P .
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Steps.
1. Statement 2(b) of Proposition 4.6 guarantees δ2n

2 pairs {x, y} ∈ (V1

2

)
so that

for each such {x, y}, there are δ2[degP 12(x, y)]2 pairs {a, b} ∈ (NP12 (x,y)

2

)
, each

of which satisfies

degLxy
(a, b) �=

(
α2

�

)2

degP 13(x, y)(1 ± δ2).

The pairs {x, y} and corresponding pairs {a, b} can be found in time O(n5).
2. For a fixed {x, y} from Step 1, Algorithm A7.3 (cf. Fact 7.3) constructs, in

time O(n3), witnesses Uxy
1 , . . . , Uxy

R and W xy
1 , . . . ,W xy

R of the (α2/�, δ1, R)-
irregularity of Lxy. Over all {x, y} from Step 1, we build a family of witnesses
in time O(n5).

3. Algorithm A7.2 (cf. Lemma 7.2) converts, in time O(n5), the witnesses Uxy
1 , . . . ,

Uxy
R and W xy

1 , . . . ,W xy
R , over all {x, y} from Step 1, into a witness Qr =

(Q1, . . . , Qr) of the (δA, r)-irregularity of H w.r.t. P .
We now establish the steps above, beginning with the first.
Step 1. We appeal to statement 2(b) of Proposition 4.6, setting, in that context,

δ = δB . Since H is (α, δB)-excessive w.r.t. P , statement 2(b) of Proposition 4.6
guarantees at least (with ε � 1/�)

δ3
B

27
|K(2)

2,2(P
12)|

(43)

≥ δ3
B

28�4

(
n

2

)2

≥ δ3
B

115�4
n4

elements ({x, y}, {a, b}) ∈ K(2)

2,2(P
12) for which

degLxy
(a, b) �=

(
α2

�

)2

|NP 13(x, y)|
(

1 ± 2
δ3
B

27

)
.

Our choice of δ2 < 2δ3
B/(27) in (111) then ensures that these elements also satisfy

(118) degLxy
(a, b) �=

(
α2

�

)2

|NP 13(x, y)| (1 ± δ2) .

These elements can be found in time O(n5). In the next two steps, we shall consider
only those elements ({x, y}, {a, b}) for which

(119)
n

2�2
≤ degP 12(x, y), degP 13(x, y) ≤ 2

n

�2
,

of which the (�−1, ε)-regularity of P 12 and P 13 implies there must be at least (using
ε � 1/�)

(120)
δ3
B

115�4
n4 − 4εn4 >

δ3
B

120�4
n4

many. Using (119) and (120), a simple pigeon-hole calculation then shows that there
must be at least

δ3
B

500
n2

(111)

≥ δ2n
2
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pairs {x, y} ∈ (V1

2

)
, each of which has at least

δ3
B

250

n2

�4
≥ δ3

B

1000

[
degP 12(x, y)

]2 (111)
= δ2

[
degP 12(x, y)

]2

pairs {a, b} ∈ (NP12 (x,y)

2

)
for which (118) holds. Let

(
V1

2

)
bad

denote the set of these

pairs {x, y}, and for each such {x, y}, let
(
NP12 (x,y)

2

)
bad

denote its set of corresponding
pairs {a, b}.

Step 2. Fix a pair {x, y} ∈ (V1

2

)
bad

. As in Fact 7.3, set β = α2, d = �−1, and

ζ = ε1/2, and set

F = Lxy, G = Pxy, U = NP 12(x, y), W = NP 13(x, y).

Since the graph Pxy is (1/�, ε1/2)-regular (cf. (41)) where ε ≤ ζ2 (see (117)), the

graph G is (d, ζ)-regular. The set
(
NP12 (x,y)

2

)
bad

=
(
U
2

)
bad

corresponds to a collection

of δ2|U |2 pairs {u, u′} ∈ (U
2

)
for which

degF (u, u′) = degLxy
(u, u′) �=

(
α2

�

)
|NP 13(x, y)|(1 ± δ2) = (βd)2|W |(1 ± δ2).

By our choice of δ1 in (112), R in (115), and ζ in (115), Fact 7.3 applies to say that
the graph F = Lxy is (α2/�, δ1, R)-irregular. Moreover, Algorithm A7.3 constructs,
in time O(|U |2|W |) = O(n3), witnesses Uxy

1 , . . . , Uxy
R ⊆ U and W xy

1 , . . . ,W xy
R ⊆ W

of the (α2/�, δ1, R)-irregularity of Lxy. In time O(n5), we repeat this process over all

{x, y} ∈ (V1

2

)
.

Step 3. We apply Lemma 7.2 to H, P , and the collection of witnesses Uxy
1 , . . . , Uxy

R

and W xy
1 , . . . ,W xy

R over {x, y} ∈ (V1

2

)
bad

. To begin, we recall that H and P are as in
Setup 2.1 with constants α, �, and ε. Step 2 constructed witnesses Uxy

1 , . . . , Uxy
R and

W xy
1 , . . . ,W xy

R of the (α2/�, δ1, R)-irregularity of Lxy for δ1n
2 pairs {x, y} ∈ (V1

2

)
bad

.
By our choice of δA = δ′A in (113) and (114) and rA = r′A,(7.2) and ε ≤ ε′A,(7.2) in

(116) and (117), Lemma 7.2 applies to say that H is (δA, r)-irregular w.r.t. P . More-
over, Algorithm A7.2 converts the witnesses Uxy

1 , . . . , Uxy
R and W xy

1 , . . . ,W xy
R , over

all {x, y} ∈ (V1

2

)
bad

, into a witness Qr = (Q1, . . . , Qr) of the (δA, r)-irregularity of H
w.r.t. P .

7.3. Proof of Fact 7.3. For simplicity, we shall give an informal description of
the constants. Let β, δ2 > 0 be given. Without loss of generality, we shall assume
that δ2 � β. Choose 0 < δ1 � δ2. Let d > 0 be given. Set R = δ3

2/d and
choose 0 < ζ � min{d, δ1}. With these constants, let F and G be given as in the
hypothesis of Fact 7.3. We show that in time O(|U |2|W |), we may construct witnesses
U1, . . . , UR ⊆ U and W1, . . . ,WR ⊆ W against the (βd, δ1, R)-regularity of F .

Denote by U− the set of vertices u ∈ U for which degF (u) < βd|W |(1 − δ1).
If |U−| > δ1|U |, then we are done. Indeed, we may take U1 = U− and W1 =
W so that the 1-tuple U1,W1 satisfies |U1||W1| > δ1|U ||W | but, by construction,
|F ∩ (U1 × W1)| < βd|U1||W1|(1 − δ1). As such, F is not (βd, δ1, 1)-regular, and
therefore, not (βd, δ1, R)-regular, and the witness U1,W1 is found in time O(|U ||W |).
In the remainder of the proof, we shall therefore assume that |U−| ≤ δ1|U |.

Now, suppose that there exist δ2|U |2 pairs {u, u′} ∈ (U
2

)
for which

degF (u, u′) �= (βd)2|W |(1 ± δ2).
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Then, at least (δ2/2)|U |2 pairs must have codegree in F which is, say, too small,
and these pairs can be found in time O(|U |2|V |). We can then find a set U0 ⊆ U ,
|U0| ≥ (δ2/4)|U |, so that for each u ∈ U0, there exists a set Uu ⊆ U , |Uu| ≥ (δ2/4)|U |,
so that for each u′ ∈ Uu,

degF (u, u′) < (βd)2|W |(1 − δ2).

Moreover, the set U0 and corresponding sets Uu, u ∈ U0, can be found in time O(|U |2).
We show that the graph F cannot be (βd, δ1, R)-regular, and we shall construct a
witness U1, . . . , UR, W1, . . . ,WR to this effect.

To this end, we find in time O(|U |2|W |) a subset U∗
0 = {u1, . . . , uR} ⊂ U0 \ U−

with the property that for each 1 ≤ i < j ≤ R,

(121) degG(ui, uj) ≤ 2d2|W |.
Indeed, it is well known from the (d, ζ)-regularity of G that all but 4ζ|U |2 pairs
ui, uj satisfy (121). Let Γ be the graph of the pairs ui, uj not satisfying (121). Pick
u1 ∈ U0 \ U− to be any vertex with degΓ(u1) ≤ 3ζ1/2|U |. There are at least

|U0| − δ1|U | − 3ζ1/2|U | ≥
(
δ2
4

− δ1 − 3ζ1/2

)
|U | > 0

choices for u1. If {u1, . . . , ut−1} ⊂ U0 \U− have already been chosen, t− 1 < R, pick
any ut ∈ U0 \ (U− ∪⋃1≤i≤t−1 NΓ(ui)) with degΓ(ut) ≤ 3ζ1/2|U |. There are at least

|U0| − δ1|U | − 3(t− 1)ζ1/2|U | − 3ζ1/2|U | ≥
(
δ2
4

− δ1 − 3Rζ1/2

)
|U |

=

(
δ2
4

− δ1 − 3ζ1/2

d

)
|U | > 0

choices for ut.
We now give the promised witness. For each 1 ≤ i ≤ R, let Ui = Uui , where

ui ∈ U∗
0 , and let Wi = NF (ui). This R-tuple was constructed in time O(|U |2|W |).

We now verify that the R-tuple is a witness for the (βd, δ1, R)-irregularity of F . To
that end, we see by inclusion-exclusion that

∣∣∣∣∣

R⋃

i=1

(
Ui ×Wi

)
∣∣∣∣∣ ≥

R∑

i=1

|Ui ×Wi| −
∑

1≤i<j≤R

∣∣(Ui ×Wi

) ∩ (Uj ×Wj

)∣∣ .

For a fixed 1 ≤ i ≤ R, note that

|Ui ×Wi| = |Ui|degF (ui) ≥ |Ui|(βd)|W |(1−δ1) ≥ δ2βd

4
|U ||W |(1−δ1) ≥ δ2βd

8
|U ||W |

and for a fixed 1 ≤ i < j ≤ R,

∣∣(Ui ×Wi

) ∩ (Uj ×Wj

)∣∣ ≤ |U |degG(ui, uj) ≤ 2d2|U ||W |.
As such, with R = δ3

2/d and δ1 � δ2 � β, we have

(122)

∣∣∣∣∣

R⋃

i=1

(
Ui ×Wi

)
∣∣∣∣∣ ≥

δ4
2β

8
|U ||W | − δ6

2 |U ||W | > δ4
2β

16
|U ||W | > δ1|U ||W |.
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To finish verifying the witness, note that implicit in the work above is the inequality

(123)

∣∣∣∣∣

R⋃

i=1

(
Ui ×Wi

)
∣∣∣∣∣ ≥ βd|W |(1 − δ1)

R∑

i=1

|Ui| − δ6
2 |U ||W |.

We have, with δ1 � δ2 � β,

∣∣∣∣∣F ∩
R⋃

i=1

(
Ui ×Wi

)
∣∣∣∣∣ ≤

R∑

i=1

∣∣F ∩ (Ui ×Wi

)∣∣ =
R∑

i=1

∑

u′∈Ui

degF (ui, u
′)

<
R∑

i=1

∑

u′∈Ui

(βd)2|W |(1 − δ2) = (βd)2|W |(1 − δ2)

R∑

i=1

|Ui|

(123)

≤ (βd)2|W |(1 − δ2)

[∣∣∣
⋃R

i=1

(
Ui ×Wi

)∣∣∣+ δ6
2 |U ||W |

]

βd|W |(1 − δ1)

= βd

(
1 − δ2
1 − δ1

)⎡
⎣1 +

δ6
2 |U ||W |∣∣∣

⋃R
i=1

(
Ui ×Wi

)∣∣∣

⎤
⎦
∣∣∣∣∣

R⋃

i=1

(
Ui ×Wi

)
∣∣∣∣∣

(122)

≤ βd

(
1 − δ2
1 − δ1

)(
1 +

16δ2
2

β

) ∣∣∣∣∣

R⋃

i=1

(
Ui ×Wi

)
∣∣∣∣∣

< βd

(
1 − δ2

2

) ∣∣∣∣∣

R⋃

i=1

(
Ui ×Wi

)
∣∣∣∣∣ < βd(1 − δ1)

∣∣∣∣∣

R⋃

i=1

(
Ui ×Wi

)
∣∣∣∣∣ .

This completes the proof.
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[20] Y. Kohayakawa, B. Nagle, and V. Rödl, Hereditary properties of triple systems, Combin.
Probab. Comput., 12 (2003), pp. 155–189.
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[23] Y. Kohayakawa, V. Rödl, and L. Thoma, An optimal algorithm for checking regularity
(extended abstract), in Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2002), San Francisco, CA, 2002, pp. 277–286.

[24] Y. Kohayakawa, V. Rödl, and L. Thoma, An optimal algorithm for checking regularity,
SIAM J. Comput., 32 (2003), pp. 1210–1235.

[25] J. Komlós, A. Shokoufandeh, M. Simonovits, and E. Szemerédi, The regularity lemma
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[39] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta
Arith., 27 (1975), pp. 199–245.
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Abstract. We give a computationally efficient algorithm that learns (under distributional as-
sumptions) a halfspace in the difficult agnostic framework of Kearns, Schapire, and Sellie [Mach.
Learn., 17 (1994), pp. 115–141], where a learner is given access to a distribution on labelled exam-
ples but where the labelling may be arbitrary (similar to malicious noise). It constructs a hypothesis
whose error rate on future examples is within an additive ε of the optimal halfspace, in time poly(n)
for any constant ε > 0, for the uniform distribution over {−1, 1}n or unit sphere in R

n, as well as any

log-concave distribution in R
n. It also agnostically learns Boolean disjunctions in time 2Õ(

√
n) with

respect to any distribution. Our algorithm, which performs L1 polynomial regression, is a natural
noise-tolerant arbitrary-distribution generalization of the well-known “low-degree” Fourier algorithm
of Linial, Mansour, and Nisan. We observe that significant improvements on the running time of our
algorithm would yield the fastest known algorithm for learning parity with noise, a challenging open
problem in computational learning theory.
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1. Introduction. Halfspaces have been used extensively in machine learning for
decades. From the early work on the Perceptron algorithm in the 1950’s, through the
learning of artificial neural networks in the 1980’s, and up to and including today’s
AdaBoost [14] and support vector machines [45], halfspaces have played a central role
in the development of the field’s most important tools.

Formally, a halfspace is a Boolean function f(x) = sgn(
∑n

i=1 wixi − θ). While
efficient algorithms are known for learning halfspaces if the data is guaranteed to
be noise-free, learning a halfspace from noisy examples remains a challenging and
important problem. Halfspace-based learning methods appear repeatedly in both
theory and practice, and they are frequently applied to labeled data sets which are not
linearly separable. This motivates the following natural and well-studied questions:
What can one provably say about the performance of halfspace-based learning methods
in the presence of noisy data or distributions that do not obey constraints induced
by an unknown halfspace? Can we develop learning algorithms which tolerate data
generated from a “noisy” halfspace and output a meaningful hypothesis?

1.1. Agnostic learning. We consider the standard model in statistical learn-
ing theory, which is a natural model for learning from possibly noisy data. Kearns,
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Schapire, and Sellie [25] termed this agnostic learning and gave an elegant formal-
ization of this model and defined what it means to be a computationally efficient
learner. In this model the learner receives labeled examples (x, y) drawn from a fixed
distribution over example-label pairs, but (in contrast with Valiant’s standard prob-
ably approximately correct (PAC) learning model [43]) it is not necessarily the case
that the labels y are generated by applying some target function f to the examples
x. Of course, without any assumptions on the distribution it is impossible for the
learner to always output a meaningful hypothesis. Kearns et al. instead require the
learner to output a hypothesis whose accuracy with respect to future examples drawn
from the distribution approximates that of the optimal concept from some fixed con-
cept class of functions C, such as the class of all halfspaces f(x) = sgn(v · x − θ).
Given a concept class C and a distribution D over labeled examples (x, y), we write
opt = minf∈C PrD[f(x) �= y] to denote the error rate of the optimal (smallest error)
concept from C with respect to D.

For intuition, one can view agnostic learning as a noisy learning problem in the
following way: There is a distribution D over examples x and the data is assumed to
be labeled according to a function f ∈ C, but an adversary is allowed to corrupt an
η = opt fraction of the labels given to the learning algorithm. The goal is to find a
hypothesis h with error PrD[h(x) �= y] as close as possible to η. (We note that such
a noise scenario is far more challenging than the random classification noise model,
in which an η fraction of labels are flipped independently at random and for which a
range of effective noise-tolerant learning algorithms are known [23, 4].)

Unfortunately, only few positive results are known for agnostically learning ex-
pressive concept classes. Kearns, Schapire, and Sellie [25] gave an algorithm for ag-
nostically learning piecewise linear functions, and Goldman, Kearns, and Schapire [17]
showed how to agnostically learn certain classes of geometric patterns. Lee, Bartlett,
and Williamson [29] showed how to agnostically learn some very restricted classes of
neural networks in time exponential in the fan-in. We note that standard results on
the Perceptron algorithm and support vector machines [15, 41] give error rates for
those algorithms in terms of the hinge loss of the optimal linear threshold function.
Our goal is different, since we want to give a bound on the error rate that depends
on—in fact, is almost identical to—the error rate (rather than the hinge loss) of the
optimal linear threshold function.

1.2. Known negative results. Some strong negative results are known for the
case of proper agnostic learning, where the output hypothesis must belong to the
concept class to be learned. Properly agnostically learning halfspaces, for example, is
known to be NP-hard [18, 13]; it is even NP-hard to properly agnostically learn the
concept class of disjunctions [25, 12]. More specifically, these results [18, 13] show that
there exist distributions that are consistent with a halfspace on a 1− ε (for any ε > 0)
fraction of inputs, and it is NP-hard to output a halfspace with accuracy 1/2+ ε with
respect to this distribution (the same holds for even disjunctions [12]).

For nonproper learning, fewer negative results are known. Given the recent
representation-independent hardness results for learning majorities of halfspaces [13]
and intersections of halfspaces [28], it is easy to see (and pointed out in [13]) that
a polynomial-time, distribution-free agnostic learning algorithm for halfspaces for
ε = o(1/nγ) for some γ > 0 (regardless of the output representation of the hypothesis)
would imply polynomial-time solutions to well-studied lattice problems. These lattice
problems are thought to be intractable and form the basis of several recent public
key cryptosystems (see, e.g., [39]). It is also known [30] that agnostically learning
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disjunctions, again with no restrictions on the hypotheses used, is at least as hard as
PAC learning DNF formulas, a longstanding open question in learning theory.

Thus, it is natural to consider, as we do in this paper, agnostic learning with
respect to various restricted distributions D for which the marginal distribution DX

over the example space X satisfies some prescribed property. This corresponds to a
learning scenario in which the labels are arbitrary, but the distribution over examples
is restricted.

1.3. Our main technique. The following two observations are the starting
point of our work:

• The “low-degree” Fourier learning algorithm of Linial et al. can be viewed as
an algorithm for performing L2-norm polynomial regression under the uniform
distribution on {−1, 1}n. (See section 2.2.)

• A simple analysis (Observation 3) shows that the low-degree algorithm has
some attractive agnostic learning properties under the uniform distribution
on {−1, 1}n. (See section 2.3.)

The “low-degree” algorithm, however, will achieve only partial results for agnostic
learning (the output hypothesis will be within a factor of 8 of optimal). As described
in section 3, the above two observations naturally motivate a new algorithm which
can be viewed as an L1-norm version of the low-degree algorithm; we call this simply
the polynomial regression algorithm. (At this point, it may be slightly mysterious why
the L1-norm would be significantly better than the L2-norm; we discuss this point in
section 3.)

Roughly speaking, our main result about the polynomial regression algorithm,
Theorem 5, shows the following (see section 3 for the detailed statement):

Given a concept class C and a distribution D, if concepts in C can be
approximated by low-degree polynomials in the L2-norm relative to
the marginal distribution DX , then the L1 polynomial regression al-
gorithm is an efficient agnostic learning algorithm for C with respect
to D.

A long line of research has focused on how well the truncated Fourier polynomial
over the parity basis approximates concept classes with respect to the L2-norm; this
has led to numerous algorithms for learning concepts with respect to the uniform
distribution over the Boolean hypercube {−1, 1}n [31, 8, 20, 22, 26]. For learning with
respect to the uniform distribution on the unit sphere, our analysis uses the Hermite
polynomials [42], a family of orthogonal polynomials with a weighting scheme related
to the density function of the Gaussian distribution. As such, these polynomials are
well suited for approximating concepts with respect to the L2-norm over Sn−1. We
believe this approach will find further applications in the future.

Additionally, we show that a slightly modified version of the wildly popular sup-
port vector machine (SVM) algorithm [45], with a polynomial kernel, can achieve the
same result.1 Unfortunately, with the number of examples we require for our analysis,
the SVM algorithm is no more efficient than our simple polynomial regression algo-
rithm (the “Kernel trick” does not help). But it is interesting to give strong provable
guarantees about the agnostic learning ability of an algorithm that is so popular in
practice.

1.4. Our main results. As described below, our main result about the polyno-
mial regression algorithm can be applied to obtain many results for agnostic learning

1This was pointed out to us by Avrim Blum.
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of halfspaces with respect to a number of different distributions, both discrete and
continuous, some uniform and some nonuniform.

Theorem 1. Let D be a distribution over R
n × {−1, 1}. The L1 polynomial

regression algorithm has the following properties: its runtime is polynomial in the
number of examples it is given, and

1. if the marginal DX is (a) uniform on {−1, 1}n or (b) uniform on the unit
sphere in R

n, then with probability 1 − δ the polynomial regression algorithm
outputs a hypothesis with error opt + ε given poly(n1/ε4 , log 1

δ ) examples;
2. if the marginal DX is log-concave, then with probability 1−δ the polynomial re-

gression algorithm outputs a hypothesis with error opt+ε given poly(nd(ε), log 1
δ )

examples, where d : R+ → Z+ is a universal function independent of DX or
n.

Part 1(a) follows from our analysis of the L1 polynomial regression algorithm
combined with the Fourier bounds on halfspaces given by Klivans, O’Donnel, and
Servedio [26]. Part 1(b) follows from the same analysis of the algorithm combined
with concentration bounds over the n-dimensional sphere. In proving such bounds, we
use the Hermite polynomial basis in analogy with the Fourier basis used previously.
(We note that learning halfspaces under the uniform distribution on the sphere is a
well-studied problem; see, e.g., [1, 2, 23, 32, 33].) As before, we show that a related

algorithm gives a hypothesis with error O(opt + ε) in time nO(1/ε2).
In section 4.2 we show that algorithms for agnostically learning halfspaces with

respect to the uniform distribution on {0, 1}n can be used to solve the well-known
problem of learning parity functions with respect to random classification noise [6].
This indicates that substantially improving the results of part 1 of Theorem 1 may
be very difficult. For example, improving our nO(1/ε4) time algorithm for agnostically
learning halfspaces to accuracy opt + ε (with respect to the uniform distribution over

the hypercube) to an nO(1/ε2−β) time algorithm (β > 0) would yield the fastest known
algorithm for learning parity with noise.

As indicated by part 2 of Theorem 1, for any constant ε, we can also achieve
a polynomial-time algorithm for learning with respect to any log-concave distribu-
tion. Recall that any Gaussian distribution, exponential distribution, and uniform
distribution over a convex set is log-concave.

We next consider a simpler class of halfspaces: disjunctions on n variables. The
problem of agnostically learning an unknown disjunction (or learning noisy disjunc-
tions) has long been a difficult problem in computational learning theory and was
recently reposed as a challenge by Avrim Blum in his FOCS 2003 tutorial [3]. By
combining Theorem 5 with known constructions of low-degree polynomials that are
good L∞-approximators of the OR function, we obtain a subexponential time algo-
rithm for agnostically learning disjunctions with respect to any distribution (recall
that since this problem is at least as hard as PAC-learning DNF, given the current
state of the art we do not expect to achieve a polynomial-time algorithm).

Theorem 2. Let D be a distribution on X × Y , where D is an arbitrary distri-
bution over {−1, 1}n and Y = {−1, 1}. For the class of disjunctions, with probability
1− δ the polynomial regression algorithm outputs a hypothesis with error ≤ opt + ε in

time 2Õ(
√
n·log(1/ε)) · poly(log 1

δ ).

1.5. Extensions and other applications. We believe that the polynomial re-
gression algorithm will have many extensions and applications; so far we have explored
only a few of these, which we now describe.

In section 4.3 we show how our approach can be used to improve the algorithm
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due to Klivans, O’Donnel, and Servedio [26] for learning intersections of halfspaces
with respect to the uniform distribution over the hypercube.

In section 5 we give a detailed analysis of an algorithm, which is essentially the
same as the degree-1 version of the polynomial regression algorithm, for agnostic
learning the concept class of origin-centered halfspaces sgn(v · x) over the uniform
distribution on the unit sphere, Sn−1 = {x ∈ R

n | ‖x‖ = 1}. (Similar results also
hold for the ball {x ∈ R

n | ‖x‖ ≤ 1}.) While our analysis from section 3 implies only
that this algorithm should achieve some fixed constant error Θ(1) independent of opt,
we are able to show that in fact we do much better if opt is small.

Theorem 3. Let D be a distribution on X × Y , where Y = {−1, 1} and the
marginal DX is uniform on the sphere Sn−1 in R

n. There is a simple algorithm for
agnostically learning origin-centered halfspaces with respect to D which uses m =

O(n
2

ε2 log n
δ ) examples, runs in poly(n, 1/ε, log 1

δ ) time, and outputs a hypothesis with

error O(opt
√

log 1
opt + ε).

This result thus trades off accuracy versus runtime compared with Theorem 1.
We feel that Theorem 3 is intriguing, since it suggests that a deeper analysis might
yield improved runtime bounds for Theorem 1 as well.

In section 6 we consider the problem of learning an unknown origin-centered
halfspace under the uniform distribution on Sn−1 in the presence of malicious noise
(we give a precise definition of the malicious noise model in section 6). Recall from
section 1.1 that we can view agnostic learning with respect to a particular marginal
distribution DX as the problem of learning under DX in the presence of an adversary
who may change the labels of an η fraction of the examples, without changing the
actual distribution DX over examples. In contrast, in the model of learning under
malicious noise with respect to DX , roughly speaking the adversary is allowed to
change an η fraction of the labels and examples given to the learner. As described in
section 6 this is a very challenging noise model in which only limited positive results
are known. We show that by combining the algorithm of Theorem 3 with a simple
preprocessing step, we can achieve relatively high tolerance to malicious noise.

Theorem 4. There is a simple algorithm for learning origin-centered half-
spaces under the uniform distribution on Sn−1 to error ε in the presence of mali-
cious noise when the noise rate η is at most O( ε

n1/4 log1/4(n/ε)
). The algorithm runs

in poly(n, 1/ε, log 1
δ ) time and uses m = O(n

2

ε2 log n
δ ) many examples.

This is the highest known rate of malicious noise that can be tolerated in poly-
nomial time for any nontrivial halfspace learning problem. The preprocessing step
can be viewed as a somewhat counterintuitive form of outlier removal—instead of
identifying and discarding examples that lie “too far” from the rest of the data set,
we discard examples that lie too close to any other data point. The analysis of this
approach relies on classical results from sphere packing.

2. Preliminaries. Let D be an arbitrary distribution on X × {−1, 1} for some
set X. Let C be a class of Boolean functions on X. Define the error of f : X → {−1, 1}
and the optimal error of C to be

err(f) = Pr(x,y)←D[f(x) �= y], opt = min
c∈C

err(c),

respectively. Roughly speaking, the goal in agnostic learning of a concept class C is
as follows: given access to examples drawn from distribution D, we wish to efficiently
find a hypothesis with error not much larger than opt. More precisely, we say C is
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agnostically learnable if there exists an algorithm which takes as input δ and ε, has
access to an example oracle EX(D), and outputs with probability greater than 1 − δ
a hypothesis h : X → {−1, 1} such that err(h) ≤ opt + ε. We say C is agnostically
learnable in time t if its running time (including calls to the example oracle) is bounded
by t(ε, δ, n). If the above holds only for a distribution D whose margin is uniform over
X, we say the algorithm agnostically learns C over the uniform distribution. See [25]
for a detailed description of the agnostic learning framework.

A distribution is log-concave if its support is convex and it has a probability
density function whose logarithm is a concave function from R

n to R.
In all our algorithms we assume that we are given m labeled examples Z =

(x1, y1), . . . , (xm, ym) drawn independently from the distribution D over X×{−1, 1}.
The sgn : R → {−1, 1} function is defined by sgn(z) = 1 if z ≥ 0 and sgn(z) = −1 if
z < 0.

2.1. Fourier preliminaries and the low-degree algorithm. For S ⊆ [n], the
parity function χS : {−1, 1}n → {−1, 1} over the variables in S is simply the multi-
linear monomial χS(x) =

∏
i∈S xi. The set of all 2n parity functions {χS}S⊆[n] forms

an orthonormal basis for the vector space of real-valued functions on {−1, 1}n with
respect to the inner product (f, g) = E[f(x)g(x)] (which we write as E[fg]; here and
throughout section 2.1 unless otherwise indicated all probabilities and expectations
are with respect to the uniform distribution over {−1, 1}n). Hence every real-valued
function f : {−1, 1}n → R can be uniquely expressed as a linear combination:

(1) f(x) =
∑

S⊆[n]

f̂(S)χS(x).

The coefficients f̂(S) = E[fχS ] of the Fourier polynomial (1) are called the Fourier
coefficients of f ; collectively they constitute the Fourier spectrum of f . We re-
call Parseval’s identity, which states that for every real-valued function f we have
E[f(x)2] =

∑
S f̂(S)2. For Boolean functions, we thus have

∑
S f̂(S)2 = 1.

The “low-degree algorithm” for learning Boolean functions under the uniform
distribution via their Fourier spectra was introduced by Linial, Mansur, and Nisan [31]
and has proved to be a powerful tool in uniform distribution learning. The algorithm
works by empirically estimating each coefficient f̂(S) ≈ f̃(S) := 1

m

∑m
j=1 f(xj)χS(xj)

with |S| ≤ d from the data and constructing the degree-d polynomial p(x) =
∑

|S|≤d f̃

(S)χS(x) as an approximation to f . (Note that the polynomial p(x) is real-valued
rather than Boolean-valued. If a Boolean-valued classifier h is desired, it can be
obtained by taking h(x) = sgn(p(x)) and using the simple fact PrD[sgn(p(x)) �=
g(x)] ≤ ED[(p(x) − f(x))2] which holds for any polynomial p, any Boolean function
f : {−1, 1}n → {−1, 1}, and any distribution D.)

Let α(ε, n) be a function α : (0, 1/2) × N → N. We say that concept class C has
a Fourier concentration bound of α(ε, n) if, for all n ≥ 1, all 0 < ε < 1

2
, and all

f ∈ Cn, we have
∑

|S|≥α(ε,n) f̂(S)2 ≤ ε. The low-degree algorithm is useful because
it efficiently constructs a high-accuracy approximator for functions that have good
Fourier concentration bounds (we suppress the logarithmic dependence on the failure
probability δ to improve readability).

Fact 1 (see [31]). Let C be a concept class with concentration bound α(ε, n).
Then for any f ∈ C, given data labeled according to f and drawn from the uniform
distribution on X = {−1, 1}n, the low-degree algorithm outputs, with probability 1−δ,
a polynomial p such that E[(p(x)−f(x))2] ≤ ε and runs in time poly(nα(ε/2,n), log 1

δ ).
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The idea behind Fact 1 is simple: if the coefficients of p were precisely f̂(S)
instead of f̃(S), then the Fourier concentration bound and Parseval’s identity would
give

∑
|S|≥α(ε/2,n) = E[(p(x) − f(x))2] ≤ ε/2. The extra ε/2 is incurred because of

approximation error in the estimates f̃(S).

2.2. The low-degree algorithm and L2 polynomial regression. The main
observation of this section is that the low-degree Fourier algorithm of [31] can be
viewed as a special case of least-squares polynomial regression over uniform distribu-
tions on the n-dimensional cube.

Let D be a distribution over X ×{−1, 1}. In least-squares (L2-norm) polynomial
regression, one attempts to minimize the following:

(2) min
p:deg(p)≤d

ED
[
(p(x) − y)

2
]
≈ min

p:deg(p)≤d

1

m

m∑

j=1

(
p(xj) − yj

)2
.

Ideally, one would like to minimize the left-hand side (LHS), i.e., find the best degree-
d polynomial L2 approximation to y over D. To do this (approximately) given a data
set, we minimize the right-hand side (RHS). In particular, we write a polynomial as a
sum over all degree ≤ d monomials, p(x) =

∑
b pb

∏n
i=1(xi)

bi , where the sum is over
{b ∈ Z

n|∑n
i=1 bi ≤ d for all i bi ≥ 0}. In turn, this can be viewed as a standard linear

regression problem if we expand example xj into a vector with a coordinate
∏n

i=1(x
j
i )

bi

for each of the ≤ nd+1 different b’s. Least-squares linear regression, in turn, can be
solved by a single matrix inversion; and thus in general we can approximate the RHS
of (2) in nO(d) time.

Now let us consider L2 polynomial regression in the uniform distribution scenario
where X = {−1, 1}n, y = f(x) for some function f : X → {−1, 1}, and we have
a uniform distribution UX over x ∈ {−1, 1}n. Since x2 = 1 for x ∈ {−1, 1}, we
may consider only degree-d multilinear polynomials, i.e., sums of monomials χS(x) =∏

i∈S xi with S ⊆ [n], |S| ≤ d. Using Parseval’s identity, it is not difficult to show
that best degree-d polynomial is exactly

arg min
p:deg(p)≤d

EUX

[
(p(x) − f(x))

2
]

=
∑

S⊆[n]:|S|≤d

f̂(S)χS(x),

where f̂(S) = EUX
[f(x)χS(x)]. Thus in this uniform case, one can simply estimate

each coefficient f̂(S) ≈ 1
m

∑m
j=1 f(xj)χS(xj) rather than solving the general least-

squares regression problem; and this is precisely what the low-degree algorithm does.
In the nonuniform case, it is natural to consider running general L2 polynomial

regression rather than the low-degree algorithm. We do something similar to this
in section 3, but first we consider the agnostic learning properties of the low-degree
algorithm in the next subsection.

2.3. Using the low-degree algorithm as an agnostic learner. Kearns et
al. prove the following statement about agnostic learning with the low-degree algo-
rithm.

Fact 2 (see [25, Corollary 1]). Let C be a concept class with concentration
bound α(ε, n). Then the low-degree algorithm agnostically learns C under the uniform
distribution to error 1

2
− ( 1

2
− opt)2 + ε = 1

4
+ opt(1 − opt) + ε with probability 1 − δ

and in time poly(nα(ε/2,n), log 1
δ ).

This was termed a “weak agnostic learner” in [25] because as long as opt is
bounded away from 1/2, say opt = 1/2 − γ, this resulting hypothesis has error at
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most 1/2−γ2 + ε < 1/2. However, if opt is near 0, their bound is still > 1/4. We now
show that if opt is small, the low-degree algorithm can in fact achieve very low error.

Observation 3. Let C be a concept class with concentration bound α(ε, n). Then
the low-degree algorithm agnostically learns C under the uniform distribution to error
8opt + ε in time nO(α(ε/2,n)).

Proof. Let f ∈ C be an optimal function, i.e., Pr[y �= f(x)] = opt. As described
above, the low-degree algorithm (approximately) finds the best degree-d approxima-
tion p(x) to the data y, i.e., mindeg(p)≤d E[(p(x)− y)2], and the same term represents
the mean squared error of p. This can be bounded using the “almost-triangle” in-
equality (a− c)2 ≤ 2

(
(a− b)2 + (b− c)2

)
for a, b, c ∈ R:

min
p:deg(p)≤d

E[(y − p(x))2] ≤ E

[(
y −

∑
|S|<d

f̂(S)χS(x)

)2
]

≤ 2E

[
(y − f(x))2 +

(
f(x) −

∑
|S|<d

f̂(S)χS(x)

)2
]

= 2

(
4Pr[y �= f(x)] +

∑
|S|≥d

f̂(S)2
)
.

The first term is 8opt and the second is at most ε/2 for d = α(n, ε/2), where an
additional ε/2 is due to the sampling. Outputting h(x) = sgn(p(x)) gives error at
most 8opt + ε because Pr[sgn(p(x)) �= y] ≤ E[(p(x) − y)2].

Another way to state this is that if f and f̃ are two functions and f has a
Fourier concentration bound of α(ε, n), then f̃ satisfies the concentration bound
∑

|S|≥α(n,ε)
ˆ̃
f(S)2 ≤ 8 Pr[f(x) �= f̃(x)] + 2ε.

3. L1 polynomial regression. Given the setup in the previous sections, it is
natural to expect that we will now show that the general L2 polynomial regression
algorithm has agnostic learning properties similar to those established for the low-
degree algorithm in Observation 3. However, such an approach yields only error
bounds of the form O(opt + ε), and for agnostic learning our real goal is a bound of
the form opt + ε. To achieve this, we will instead use the L1-norm rather than the
L2-norm.

Analogous to (2), in L1-norm polynomial regression we attempt to minimize the
following:

(3) min
p:deg(p)≤d

ED [|p(x) − y|] ≈ min
p:deg(p)≤d

1

m

m∑

j=1

∣∣p(xj) − yj
∣∣ .

To solve the RHS minimization problem, again each example is expanded into a vector
of length ≤ nd+1, and an algorithm for L1 linear regression is applied. L1 linear
regression is a well-studied problem, and the minimizing polynomial p for the RHS of
(3) can be obtained in poly(nd) time using linear programming (see Appendix A for an
elaboration on this point). For our purposes, we will be satisfied with an approximate
minimum, and hence one can use a variety of techniques for approximately solving
linear programs efficiently.

How do L1 and L2 polynomial regression compare? In the noiseless case, both
(2) and (3) approach 0 at related rates as d increases. However, in the noisy/agnostic
case, flipping the sign of y = ±1 changes (p(x) − y)2 by 4p(x), which can potentially
be very large; in contrast, flipping y’s sign can change |p(x) − y| only by 2. On the
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Input: Z = (x1, y1), . . . , (xm, ym), d.
1. Find polynomial p of degree ≤ d to minimize the following:

1
m

∑m
j=1 |p(xj)− yj |. (This can be done by expanding examples

to include all monomials of degree ≤ d and then performing L1

linear regression, as described earlier.)
2. Output h(x) = sgn (p(x) − t), where t ∈ [−1, 1] is chosen so as

to minimize the error of the hypothesis on Z.

Fig. 1. The L1 polynomial regression algorithm.

other hand, it is often easier to bound the L1-error in terms of the mathematically
convenient L2-error. Thus while our polynomial regression algorithm works only with
the L1-norm, the performance bound and analysis depend on the L2-norm.

3.1. The algorithm and proof of correctness. We now give the polynomial
regression algorithm (see Figure 1) and establish conditions under which it is an
agnostic learner achieving error opt + ε. The algorithm takes as input m examples,
Z = (x1, y1), . . . , (xm, ym), and a degree d.

Theorem 5. Suppose mindeg(p)≤d Ex∼DX
[(p(x)− c(x))2] ≤ ε2 for some degree d,

some distribution D over X × {−1, 1} with marginal DX , and any c in the concept
class C. Then for h output by the degree-d L1 polynomial regression algorithm with
m = poly(nd/ε) examples, EZ∼Dm [err(h)] ≤ opt + ε.

If we repeat the same algorithm r = O(log(1/δ)/ε) times with fresh examples
each and let h be the hypothesis with lowest error on an independent test set of size
O(log(1/δ)/ε2), then with probability 1 − δ, err(h) ≤ opt + ε.

Remark 4. Note that using Theorem 5, a Fourier concentration bound of α(n, ε)
immediately implies that the L1 regression algorithm achieves error opt + ε in time
nO(α(n,ε2)) for distributions D with marginal DX that is uniform on {−1, 1}n. As we
will see in the next section, Theorem 5 can be applied to other distributions as well.

Proof of Theorem 5. Suppose the algorithm chooses polynomial p and threshold
t. First, we claim that the empirical error of h on Z is at most one half the L1-error
of p:

(4)
1

m

m∑

j=1

I(h(xj) �= yj) ≤ 1

2m

m∑

j=1

∣∣yj − p(xj)
∣∣ .

To see this, note that h(xj) �= yj if and only if the threshold t ∈ [−1, 1] lies in between
the numbers p(xj) and yj ; i.e., if they are on the same side of t, then sgn(p(xj)− t) =
sgn(yj − t) = yj . Hence, even if we chose a uniformly random t ∈ [−1, 1], for any j,
the chance of t splitting these numbers is at most

∣∣yj − p(xj)
∣∣ /2 because the width of

[−1, 1] is 2 and the separation between the numbers is
∣∣yj − p(xj)

∣∣. Thus, (4) holds
in expectation for random t ∈ [−1, 1]. Since the algorithm chooses t to minimize
the LHS of (4), it holds with certainty. (This reduction is a general procedure for
converting an L1 bound on error to a classification error, and a similar randomized
threshold idea was used by Blum et al. [5] for the low-degree algorithm.)

Let c be an optimal classifier in C, and let p∗ be a polynomial of degree ≤ d with
ED[(c(x)− p∗(x))2] ≤ ε2. By the fact that E[|Z|] ≤ √

E[Z2] for any random variable
Z, we have ED[|c(x) − p∗(x)|] ≤ ε. By the algorithm’s choice of p, we have

1

m

m∑

j=1

∣∣yj − p(xj)
∣∣ ≤ 1

m

m∑

j=1

∣∣yj − p∗(xj)
∣∣ ≤ 1

m

m∑

j=1

∣∣yj − c(xj)
∣∣ +

∣∣c(xj) − p∗(xj)
∣∣ .
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The expectation of the RHS is ≤ 2opt + ε. Taking expectations and combining with
(4) gives

EZ

⎡
⎣ 1

m

m∑

j=1

I(h(xj) �= yj)

⎤
⎦ ≤ opt +

ε

2
.

By VC theory, for m = poly(nd/ε) examples, the empirical error 1
m

∑m
j=1 I(h(xj) �=

yj) above and generalization error err(h) will differ by at most an expected ε/4. Hence,
the first part of the theorem is implied by

EZ [err(h)] ≤ opt + (3/4)ε.

The second part of the theorem is a relatively standard reduction from expected
error to high-probability guarantees. In particular, by Markov’s inequality, on any
single repetition,

PrZ

[
err(h) ≥ opt +

(
7

8

)
ε

]
≤ opt + (3/4)ε

opt + (7/8)ε
≤ 1 − ε

16
.

Hence, after r = O(log(1/δ)/ε) repetitions of the algorithm, with probability 1− δ/2,
one of them will have err(h) ≤ opt + (7/8)ε. In this case, using an independent set
of size O(log(1/δ)/ε2), with probability at most δ/2, we will choose one with error
> opt + ε.

As noted at the very beginning of this section, an analogous L2-algorithm could
be defined to minimize 1

m

∑m
j=1(p(x

j) − yj)2 rather than 1
m

∑m
j=1 |p(xj) − yj |. Error

guarantees of the form O(opt + ε) can be shown for this L2-algorithm, following the
same argument but again using the “almost-triangle” inequality.

3.2. Relationship to SVMs. As pointed out by Avrim Blum, our algorithm
is very similar to an SVM with a polynomial kernel and can be made even more
similar. The standard SVM with a degree-d polynomial kernel solves the following
minimization problem:

min
deg(p)≤d

(1 − λ)
1

m

m∑

i=1

L(yi, z) + λ(regularization term),

where L(yi, z) = max{0, 1− yiz}. It does this using an algorithmic trick that requires
time only poly(m,n, d). In theory, this could be substantially faster than our nO(d)

algorithm. However, for our analysis, we require m = nO(d) samples, in which case
the SVM algorithm is no faster.

Step 1 of our algorithm could be replaced by the above minimization problem,
with λ = 0, and the analysis would hold almost exactly as is. Intuitively, this is
because, for |y| = 1, L(y, z) = |y−z| unless yz > 1. However, if yz > 1, thresholding z
with t ∈ [−1, 1] will certainly give us the correct prediction of this y. More technically,
we have that, for |y| = 1, L(y, z) ≤ |y − z|, yet we still have that Prt∈[−1,1][y �=
sgn(z − t)] ≤ 1

2
L(y, z) (we now have L(y, z) where we had |y − z|).

Hence one can use a standard SVM package to implement our algorithm, setting
the regularization parameter to 0. The only nonstandard part would be choosing an
optimal threshold t rather than using standard SVM choice of t = 0.
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4. Agnostic learning halfspaces and disjunctions via polynomial regres-
sion. In this section we show how to apply Theorem 5 to prove Theorems 1 and 2.

As noted in Remark 4, Theorem 5 implies that any concept class with a Fourier
concentration bound is in fact agnostically learnable to error opt+ε under the uniform
distribution on {−1, 1}n. In particular, Theorem 1, part 1(a), follows immediately
from the Fourier concentration bound for halfspaces of [26].

Fact 5 (see [26]). The concept class C of all halfspaces over {−1, 1}n has a
Fourier concentration bound of α(ε, n) = 441/ε2.

For the uniform distribution on Sn−1 and any log-concave distribution, we can
prove the existence of a good low-degree polynomial as follows. Suppose we had a
good degree-d univariate approximation to the sign function pd(x) ≈ sgn(x), and say
we have an n-dimensional halfspace sgn(v · x − θ). Then sgn(v · x − θ) ≈ pd(v · x −
θ). Moreover, this latter quantity is now a degree-d multivariate polynomial. The
sense in which we measure approximations will be distributional, the L2 error of our
multivariate polynomial over the distribution D. Hence, we need a polynomial pd that
well-approximates the sign function on the marginal distribution in the direction v,
i.e., the distribution over projections onto the vector v.

For the uniform distribution on a sphere, the projection onto a single coordinate
is distributed very close to Gaussian distribution. For a log-concave distribution, its
projection is distributed log-concavely. In both of these cases, it so happens that
the necessary degree to get approximation error ε boils down to a one-dimensional
problem! For the sphere, we can upper bound the degree necessary as a function of ε
using the following for the normal distribution N(0, 1√

2
) with density e−x2

/
√
π.

Theorem 6. For any d > 0 and any θ ∈ R, there is a degree-d univariate
polynomial pd,θ such that

(5)

∫ ∞

−∞
(pd,θ(x) − sgn(x− θ))2

e−x2

√
π
dx = O

(
1√
d

)
.

We note that the nO(1/ε2)-time, O(opt + ε)-error analogues of Theorem 1, part
1, mentioned in section 1.4 follow from Fact 5 and Theorem 6 using the L2-norm
analogue of the polynomial regression algorithm mentioned at the end of section 3.
The improved time bound comes from the fact that we no longer need to invoke
E[|Z|] ≤ √

E[Z2] to bound the square loss, since we are minimizing the square loss
directly rather than the absolute loss. We defer the proof of Theorem 6 to Appendix
B.

Using Theorem 6, it is not difficult to establish Theorem 1, part 1(b), which we
restate below:

Let D be a distribution over R
n × {−1, 1} with DX uniform over

Sn−1. With probability 1 − δ, the L1 polynomial regression outputs
a hypothesis with error opt + ε given poly(n1/ε4 , log 1

δ ) examples.
Proof. Let f(x) = sgn(v · x− τ) be any halfspace over the unit ball Sn−1, where

without loss of generality we may assume ‖v‖ = 1 (and thus |τ | ≤ 1). Let U denote
the uniform distribution over Sn−1. It suffices to establish the existence of a degree-
d polynomial P (x), with d = O(1/ε4), which satisfies the condition Ex∈U [(P (x) −
f(x))2] ≤ ε2; given such a polynomial, we apply Theorem 5, and Theorem 1, part
1(b), immediately follows.

Let θ =
√

n−3
2

τ , and let P (x) = pd,θ(
√

n−3
2

v · x). For d = O(1/ε4), we show that

the polynomial P (x) = pd,θ
(√

n−3
2

(v · x)
)

satisfies EU [(P (x) − f(x))2] ≤ ε2.



1788 A. KALAI, A. KLIVANS, Y. MANSOUR, AND R. SERVEDIO

We have (justifications are given below)

Ex∈U [(P (x) − f(x))2]

= Ex∈U

[(
pd,θ

(√
n−3

2
(v · x)

)
− sgn

(√
n−3

2
(v · x) − θ

))2
]

=
An−2

An−1

∫ 1

−1

(1 − z2)(n−3)/2
(
pd,θ

(√
n−3

2
z
)
− sgn

(√
n−3

2
z − θ

))2

dz(6)

≤ An−2

An−1

∫ ∞

−∞
e−z2(n−3)/2

(
pd,θ

(√
n−3

2
z
)
− sgn

(√
n−3

2
z − θ

))2

dz(7)

=
An−2

An−1

∫ ∞

−∞
e−y2

(pd,θ(y) − sgn (y − θ))
2 dy√

(n−3)/2
(8)

≤ ε2,(9)

where (6) follows from Fact 10 on the PDF of the uniform distribution over Sn−1;
(7) follows from 1 − z ≤ exp(−z) and the fact that the integrand is nonnegative; (8)

follows from a change of variable y =
√

n−3
2

· z; and (9) follows from An−2

An−1
= Θ(

√
n),

Theorem 6, and our choice of d = O(1/ε4). This concludes the proof of Theorem 1,
part 1(b).

Since we have proven Theorem 1, part 1(a), in section 4, we are now ready to
move on to the log-concave part. The first thing to notice is that, just as the normal
distribution served as a prototypical distribution for all spheres, there is a log-concave
distribution that is not much smaller than any other.

Lemma 6. Let ν be the distribution on R with density dν(x) = e−|x|/16/32. Let
μ be any log-concave distribution on R with mean 0 and variance 1. Then, for all
x ∈ R, dμ(x) ≤ (32e)dν(x).

In the above, we necessarily chose a distribution ν that did not have variance 1.
Proof. To prove this lemma, we will use the properties of log-concave functions

given by Lovász and Vempala [34]. Specifically, for any log-concave density dμ with
mean 0 and variance 1, for all x dμ(x) ≤ 1, and dμ(0) ≥ 1/8. From the latter fact, we
next argue that dμ(x) ≤ e−|x|/16 for |x| > 16. It suffices to show this for x > 16 by
symmetry. Suppose not; i.e., suppose there exists r > 16 such that dμ(r) ≥ e−r/16.
Then log-concavity implies that dμ(x) ≥ (1/8)1−x/r(e−r/16)x/r for x ∈ [0, r]. In turn,
this means

∫ 16

0

dμ(x) ≥
∫ 16

0

1

8
e−x/16dx > 1,

which is a contradiction. Hence, dμ(x) ≤ e−|x|/16 = 32dν(x) for |x| > 16. (These
bounds are far from tight.) Also, for |x| < 16, dμ(x) ≤ 1 ≤ (32e)dν(x).

This lemma will enable us to transfer a bound on the error of a fixed log-concave
function such as e−2|x| to all log-concave functions.

Lemma 7. There exists a fixed function d : R → R, such that, for any log-concave
distribution μ, and any θ ∈ R, there exists a degree-d(ε) polynomial p, such that

∫ ∞

−∞
(p(x) − sgn(x− θ))2dμ(x) ≤ ε.

Proof. It suffices to show it for any log-concave distribution μ with mean 0
and variance 1. This is because we can always apply an affine transformation to x,
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x → ax + b, which puts it in such a standard position and maintains the properties
of the lemma (for a suitably transformed polynomial p and θ). Thus, we assume that
μ has mean 0 and variance 1.

Next, we claim it suffices to show the lemma for the log-concave density dν(x) =
e−|x|/16/32, which has mean 0 but variance > 1. To see this, suppose it holds for dν
and p, and we have some mean 0 variance 1 log-concave density dμ. Then by Lemma
6,

∫ ∞

−∞
(p(x) − sgn(x− θ))2dμ(x) ≤ 32e

∫ ∞

−∞
(p(x) − sgn(x− θ))2dν(x) ≤ 32eε.

Hence it would hold for mean-0 variance-1 dμ with function d′ : R → R, where d′(ε) =
d(ε/(32e)). By a similar stretching argument, it suffices to show it for dν(x) = e−2|x|.

Next, again without loss of generality, it suffices to show it for |θ| < log 1/ε. For
if |θ| > 2 log 1/ε, then the constant polynomial p(x) = −sgn(θ) has error less than ε
under dν(x) = e−2|x|. Continuing on the seemingly endless chain of without losses of
generalities, next it suffices to show it for θ = 0. Suppose it holds for dν(x) = e−2|x|,
a particular p and ε, and sgn(x). That is,

(10)

∫ ∞

−∞
(p(x) − sgn(x))2dν(x) ≤ ε.

Then consider the function sgn(x−θ) and the density dρ(x) = e−2|x−θ|/ log(1/ε)/ log(1/ε).
For this density, by (10) and change of variable z = log(1/ε)(x− θ),

(11)

∫ ∞

−∞
(p(z) − sgn(z))2dν(z) =

∫ ∞

−∞
(p(log(1/ε)(x− θ)) − sgn(x− θ))2dρ(x) ≤ ε.

Now observe that as long as log(1/ε) > 1 (where ε ≤ 1/e),

dν(x)

dρ(x)
= log

(
1

ε

)
e2(

|x−θ|
log(1/ε)−|x|) ≤ log

(
1

ε

)
e2(

|x−θ|−|x|
log(1/ε) ) ≤ log

(
1

ε

)
e2

|θ|
log(1/ε) ≤ log

(
1

ε

)
e2.

By this and (11),

∫ ∞

−∞
(p(log(1/ε)(x− θ)) − sgn(x− θ))2dμ(x) ≤ e2ε log(1/ε).

Hence a bound of ε on the error of p for sgn(x) implies a bound of e2ε log(1/ε) on the
error of p(log(1/ε)(x − θ)). So, it suffices to show we can achieve such a bound for
sgn(x), dν(x) = e−2|x|, and arbitrarily small ε.

At this point, we have a single function sgn(x) and a single density e−2|x|,
and we must establish that for any ε there is some d = d(ε) for which there is a
degree-d polynomial p for which (10) holds. But sgn(x) ∈ L2(R, e−2|x|) because∫∞
−∞ sgn(x)2e−2|x|dx = 1 < ∞ and it is known that polynomials are dense in L2(R, e−2|x|)

[42].

4.1. Agnostically learning disjunctions under any distribution. We can
use the polynomial regression algorithm to learn disjunctions agnostically with respect
to any distribution in subexponential time. We make use of the existence of low-degree
polynomials that strongly approximate the OR function in the L∞-norm.
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Theorem 7 (see [38, 36, 26]). Let f(x1, . . . , xn) compute the OR function on
some subset of (possibly negated) input variables. Then there exists a polynomial p of
degree O(

√
n log(1/ε)) such that, for all x ∈ {−1, 1}n, we have |f(x) − p(x)| ≤ ε.

For ε = Θ(1), this fact appears in [38, 36]; an easy extension to arbitrary ε
is given in [26]. Theorem 2 follows immediately from Theorems 7 and 5, since for
any distribution D the L∞ bound given by Theorem 7 clearly implies the bound on
expectation required by Theorem 5.

We note that low-degree L∞-approximators are know for richer concept classes
than just disjunctions. For example, results of O’Donnell and Servedio [37] show that
any Boolean function f : {−1, 1}n → {−1, 1} computed by a Boolean formula of
linear size and constant depth is ε-approximated in the L∞-norm by a polynomial of
degree Õ(

√
n) · poly log 1

ε . By combining Theorem 5 with such existence results, one
can immediately obtain arbitrary-distribution agnostic learning results analogous to
Theorem 2 for concept classes of such formulas as well; one well-studied example of
such a concept class is the class of read-k DNF formulas for constant k.

4.2. Hardness results for agnostically learning halfspaces over the hy-
percube. In this section we show that the challenging “learning noisy parity” prob-
lem reduces to the problem of agnostically learning halfspaces with respect to the
uniform distribution over the hypercube. Recall that a vector c ∈ {0, 1}n induces a
parity function c : {0, 1}n → {0, 1} as follows: c(x) = c·x mod 2 (the indices of c equal
to 1 are the relevant variables). The noisy parity learning problem is the problem of
PAC learning an unknown parity function with respect to the uniform distribution
on {0, 1}n where the label of each example is flipped (independently) with probability
η. The fastest known learning algorithm for this well-known problem is due to Blum,
Kalai, and Wasserman [6] and runs in time 2O(n/ logn).

An algorithm for agnostically learning halfspaces can be easily transformed into
an algorithm for learning parity with noise.

Theorem 8. Let A be an algorithm for agnostically learning halfspaces to ac-
curacy opt + ε with respect to the uniform distribution over {0, 1}n running in time
t = t(1/ε, n). Then there exists an algorithm B for learning parity with noise which
runs in time poly(n, t).

Proof. Assume that the unknown parity function c has k relevant variables (and
for simplicity assume k is even). Note that for a set S of k variables, the majority
function on S (equal to 1 if k/2 + 1 or more of the variables in S are set to 1) agrees
with the parity function on all variables in S for a 1/2+Θ(1/

√
k) fraction of inputs of

{0, 1}n. This is because the majority function equals parity for all inputs of hamming
weight equal to k/2 (which have mass Θ(1/

√
k)) and agrees with parity on half of all

other inputs.
Now choose a random example (labeled by c) and flip its label with probability η.

The probability that the majority function on S correctly labels the example equals
η + (1− 2η)(1/2−Θ(1/

√
k)) = 1/2− (1− 2η)Θ(1/

√
k). That is, the error rate of the

majority function on S with respect to noisy examples is bounded away from 1/2 by
(1 − 2η)Θ(1/

√
k).

We can now use an algorithm for agnostically learning halfspaces to identify the
relevant variables of the unknown parity function c. To determine if the variable
xi is relevant, set ε = (1/2)(1 − 2η)/

√
k and take a number of random examples as

specified by the agnostic learner. Feed the examples to the agnostic learner with the
ith bit removed from every example. If xi is a relevant variable, then the labels will
be totally uncorrelated with the examples (now of length n − 1), and the agnostic
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learner will not produce a hypothesis with error rate bounded away from 1/2. If xi is
irrelevant, then the majority function on the relevant variables has error rate bounded
away from 1/2, and the agnostic learner will output a hypothesis with error less than
1/2 − (1/2)(1 − 2η)/

√
k.

If the error rate η is Θ(1) and the agnostic learning algorithm runs in time

nO(1/ε2−β), then the above algorithm will learn a noisy parity in time 2O(nγ) for some
0 < γ < 1.

4.3. An application to learning intersections of halfspaces. Learning an
intersection of halfspaces is a challenging and well-studied problem even in the noise-
free setting. Klivans, O’Donnell, and Servedio [26] showed that the standard low-
degree algorithm can learn the intersection of k halfspaces with respect to the uniform
distribution on {−1, 1}n to error ε in time nO(k2/ε2), provided that ε < 1/k2. Note

that because of the requirement on ε, the algorithm always takes time at least nΩ(k6),
even if the desired final error is ε = Θ(1) independent of k.

We can use the idea of learning halfspaces agnostically to obtain the following
runtime bound, which is better than [26] for ε > 1

k .
Theorem 9. Let f = h1 ∧ · · · ∧ hk be an intersection of k halfspaces over

{−1, 1}n. Then f is learnable with respect to the uniform distribution over {−1, 1}n
in time nO(k4/ε2) for any ε > 0.

We note that a comparable bound can be proved via techniques from a recent
work due to Jackson, Klivans, and Servedio [22] which does not involve agnostic
learning. The presentation here, however, is more straightforward and shows how
agnostic learning can have applications even in the nonnoisy framework.

The approach that establishes Theorem 9 is similar to Jackson’s Harmonic Sieve
[21]: we apply a boosting algorithm, using the polynomial regression algorithm at each
stage to identify a low-degree polynomial which, after thresholding, has advantage at
least Ω(1/k) on the target function.

We begin with the following easy fact which follows directly from the “discrimi-
nator lemma” [19].

Fact 8. Let f = h1 ∧ · · · ∧ hk be an intersection of k halfspaces. Then for any
distribution D on {0, 1}n either there exists an hi such that |ED[fhi]| ≥ 1/k or we
have |ED[f ]| ≥ 1/k.

Hence for any distribution D there exists a single halfspace which has accuracy at
least 1/2+1/2k with respect to f and D. We will be concerned only with distributions
that are c-bounded (c will be chosen later), i.e., distributions D such that D(x) ≤ c/2n

for all x. Fix such a c-bounded distribution D, and let hD denote the halfspace
obtained from Fact 8. Applying Fact 5, it is not difficult to see that for any halfspace
(and in particular hD) and sufficiently large constant a,

∑

S,|S|≥a·k4c2

ĥD(S)2 ≤ 1/16ck2.

By setting g =
∑

S,|S|≤a·k4c2 ĥD(S)χS(x), we have ED[|g − hD|] ≤ 1/4k for any
c-bounded distribution D.

We now show that the polynomial regression algorithm can be used as a weak
learning algorithm for f .

Lemma 9. There exists an algorithm A such that for any c-bounded distribution
D and 0 < δ < 1, if A is given access to examples drawn from D labeled according to
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f , then A runs in time poly(nk4c2 , 1/δ) and, with probability at least 1− δ, A outputs
a hypothesis h such that PrD[f(x) = h(x)] ≥ 1/2 + 1/8k.

Proof. Let � = ak4c2 for a sufficiently large constant a. Apply the polynomial
regression algorithm from section 3 to obtain a hypothesis g∗ = sgn

(∑
|S|≤�wSχS(x)−

t
)
. For ξ > 0, we claim that g∗ has error less than 1/2 − 1/4k + ξ as long as

m ≥ poly(n�, 1/ξ2, log(1/δ)) as in Theorem 5. To see this, note that

ED[|f(x) − g∗|] ≤ ED[|f(x) − hD(x)|] + ED[|hD(x) − g∗|]
and recall that the first term on the RHS is at most 1/2− 1/2k. For the second term,
recall that minw ED[|hD(x) −∑

|S|≤� wSχS |] ≤ 1/4k. But g∗ is an approximation to

the truncated Fourier polynomial for hD(x), and as in the proof of Theorem 5, for
our choice of m, ED[|hD(x) − g∗(x)|] ≤ minw ED[|hD(x) − ∑

|S|≤� wSχS |] + ξ with

probability greater than 1 − δ. Hence with probability 1 − δ we have ED[|f(x) −
g∗(x)|] ≤ 1/2 − 1/4k + ξ. Taking ξ = 1/(8k) gives the lemma.

At this point, we will need to recall the definition of a boosting algorithm; see,
e.g., [16]. Roughly speaking, a boosting algorithm iteratively applies a weak learning
algorithm as a subroutine in order to construct a highly accurate final hypothesis.
At each iteration, the boosting algorithm generates a distribution D and runs the
weak learner to obtain a hypothesis which has accuracy 1/2 + γ with respect to D.
After t = poly(1/γ, 1/ε) iterations, the boosting algorithm outputs a hypothesis with
accuracy greater than 1− ε. The following fact from [27] is sufficient for our purposes.

Theorem 10. There is a boosting algorithm which runs in t = O(1/ε2γ2) itera-
tions and at each stage generates an O(1/ε)-bounded distribution D.

By combining this boosting algorithm with the weak learning algorithm from
Lemma 9, we obtain Theorem 9.

Proof of Theorem 9. Run the boosting algorithm to learn f using the weak
learner from Lemma 9 as a subroutine. The boosting algorithm requires at most
O(1/ε2k2) iterations, since the distributions are all O(1/ε) bounded and the weak
learner outputs a hypothesis with accuracy 1/2 + Ω(1/k). The running time of the

weak learning algorithm is at most nO(k4/ε2), since each distribution is c = O(1/ε)
bounded.

5. Learning halfspaces over the sphere with the degree-1 version of the
polynomial regression algorithm. Let us return to the case where the marginal
distribution DX is uniform over Sn−1, and now consider the homogeneous d = 1
version of the polynomial regression algorithm. In this case, we would like to find the
vector w ∈ R

n that minimizes EDX
[(w ·x− y)2]. By differentiating with respect to wi

and using the fact that E[xi] = E[xixj ] = 0 for i �= j and E[x2
i ] = 1

n , we see that the
minimum is achieved at wi = 1

nE[xiyi].
This is essentially the same as the simple Average algorithm which was proposed

by Servedio in [40] for learning origin-centered halfspaces under uniform in the pres-
ence of random misclassification noise. The Average algorithm draws examples until
it has a sample of m positively labeled examples x1, . . . , xm, and then it returns the
hypothesis h(x) = sgn(v ·x), where v = 1

m

∑m
i=1 x

i is the vector average of the positive
examples. The intuition for this algorithm is simple: if there were no noise, then the
average of the positive examples should (in the limit) point exactly in the direction
of the target normal vector.

A straightforward application of the bounds from sections 3 and 4 implies only
that the degree-1 polynomial regression algorithm should achieve some fixed con-
stant accuracy Θ(1) independent of opt for agnostic learning halfspaces under the



AGNOSTICALLY LEARNING HALFSPACES 1793

uniform distribution on Sn−1. However, a more detailed analysis shows that the sim-
ple Average algorithm does surprisingly well, in fact obtaining a hypothesis with
error rate O(opt

√
log(1/opt)) + ε; this is Theorem 3. We give useful preliminaries in

section 5.1 and prove Theorem 3 in section 5.2.

5.1. Learning halfspaces on the unit sphere: Preliminaries. We write
U to denote the uniform distribution over Sn−1 = {x ∈ R

n | ‖x‖ = 1}. Given
two nonzero vectors u, v ∈ R

n, we write α(u, v) to denote arccos( u·v
‖u‖·‖v‖ ), the angle

between u and v. If the target halfspace is sgn(u · x) and sgn(v · x) is a hypothesis
halfspace, then it is easy to see that we have Prx∈U [sgn(u ·x) �= sgn(v ·x)] = α(u, v)/π.

We write An−1 to denote the surface area of Sn−1. It is well known (see, e.g., [1])
that An−2/An−1 = Θ(n1/2). The following fact (see, e.g., [1]) is useful.

Fact 10. For any unit vector v ∈ R
n and any −1 ≤ α < β ≤ 1, we have

Pr
x∈U

[α ≤ v · x ≤ β] =
An−2

An−1

·
∫ β

α

(1 − z2)(n−3)/2dz.

The following straightforward result lets us deal easily with sample error.

Fact 11. Let D be any distribution over Sn−1. Let v denote the expected location
Ex∈D[x] of a random draw from D, and suppose that ‖v‖ ≥ ξ. Then if v = 1

m

∑m
i=1 x

i

is a sample estimate of Ex∈D[x], where each xi is drawn independently from D and
m = O( n

ε2ξ2 log n
δ ), we have that Prx∈U [sgn(v · x) �= sgn(v · x)] ≤ ε with probability at

least 1 − δ.

Proof. We define an orthonormal basis for R
n by letting vector u1 denote v

‖v‖ and

letting u2, . . . , un be an arbitrary orthonormal completion. Given a vector z ∈ R
n,

we may write z1 for z · u1 and z2, . . . , zn for z · u2, . . . , z · un, respectively. We have
Ex∈D[x1] = ξ so that standard additive Chernoff bounds imply that taking m =
O( 1

ξ2 log 1
δ ) many draws will result in |v1 − ξ| ≤ ξ

2
with probability at least 1− δ

2
. For

i = 2, . . . , n, we have Ex∈D[xi] = 0; again standard additive Chernoff bounds imply
that taking m = O( n

ε2ξ2 log n
δ ) many draws will result in |vi| ≤ εξ

2
√
n

for each i with

probability at least 1 − δ
2
. Thus, with overall probability at least 1 − δ we have

α(v, v) = arctan

(√
v2
2 + · · · + v2

n

v1

)
≤ arctan (ε) ≤ ε,

and thus Prx∈U [sgn(v · x) �= sgn(v · x)] ≤ α(v, v)/π < ε/π < ε.

5.2. Proof of Theorem 3. We have that D is a distribution over X × {−1, 1}
whose marginal is the uniform distribution U on Sn−1. Without loss of generality we
may suppose that the optimal origin-centered halfspace is f(x) = sgn(x1); i.e., the
normal vector to the separating hyperplane is e1 = (1, 0, . . . , 0). We write S+ to denote
the “positive hemisphere” {x ∈ Sn−1 : x1 ≥ 0} and write S− to denote Sn−1 \ S+.
We may also suppose without loss of generality that the optimal halfspace’s error rate

opt is such that O(opt
√

log 1
opt ) is less than 1

4
; i.e., opt is less than some fixed absolute

constant that we do not specify here.

Let p : Sn−1 → [0, 1] be the function

p(z) = Pr
(x,y)∈D

[y �= f(z) | x = z](12)
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so intuitively p(z) is the probability of getting a “noisy label” y on instance z. (We
assume the joint distribution D on X × Y is sufficiently “nice” in terms of measura-
bility, etc., so that p is well defined as specified above.) Let v denote the true vector
average of all positively labeled examples generated by D, i.e.,

v =

∫

x∈S+

x(1 − p(x))U(x) +

∫

x∈S−
xp(x)U(x).

If the number m of examples used by Average went to infinity, the vector average v
that Average computes would converge to v. We prove Theorem 3 by first establishing
bounds on v and then using Fact 11 (in Appendix 5.1) to deal with sample error.

Let u denote the vector average of all points in S+. It is clear from symmetry
that u = (u1, 0, . . . , 0) for some u1 > 0; in fact we have the following.

Claim 12. u1 = 2 · An−2

An−1
· ∫ 1

0
z(1 − z2)(n−3)/2dz = Θ( 1√

n
).

Proof. The first equality follows immediately from Fact 10 (the factor of 2 is
present because u is the vector average of half the points of Sn−1). For the second

equality, since An−2

An−1
= Θ(

√
n) we need to show that

∫ 1

0
z(1 − z2)(n−3)/2dz is Θ(1/n).

For each z ∈ [1/
√
n, 2/

√
n], the value of the integrand z(1 − z2)(n−3)/2 is at least

(1/
√
n)(1 − 4

n )(n−3)/2 = Θ(1/
√
n), and so this implies that the whole integral is

Ω(1/n). The integrand is clearly at most 1/
√
n for all z ∈ [0, 1/

√
n], and so we

have
∫ 2/

√
n

0
z(1 − z2)(n−3)/2dz = Θ(1/n); to finish the proof we need only show that∫ 1

2/
√
n
z(1 − z2)(n−3)/2dz = O(1/n). We can piecewise approximate this integral (in

increments of 1/
√
n) as

∫ 1

2/
√
n

z(1 − z2)(n−3)/2dz

≈
√
n∑

j=2

j√
n
e−j2/2 · 1√

n
=

1

n

√
n∑

j=2

je−j2/2 <
1

n

∞∑

j=2

je−j2/2 = O

(
1

n

)
,

and this gives the claim.
If there were no noise, then the vector average v would equal u; since there is noise

we must add in a contribution from true negative examples that are falsely labeled as
positive and subtract off a contribution from true positive examples that are falsely
labeled as negative.

Let opt− and opt+ be defined as

opt− =

∫

x∈S−
p(x)U(x) and opt+ =

∫

x∈S+

p(x)U(x),

and so opt− is the overall probability of receiving an example that is truly negative
but falsely labeled as positive, and vice versa for opt+. Clearly, opt = opt− + opt+.
Let u− and u+ be the vectors

u− =

∫
x∈S− xp(x)U(x)

opt−
and u+ =

∫
x∈S+ xp(x)U(x)

opt+
,

and so u− (u+, respectively) is the vector average of all the false positive (false
negative, respectively) examples generated by p. Then the vector average v of all
positively labeled examples is

v =
u/2 + opt−u

− − opt+u
+

1/2 + opt− − opt+
= C1 · v′,
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where v′ = u/2 + opt−u
− − opt+u

+ and 4
3
≤ C1 = 1

1/2+opt−−opt+
≤ 4; the bounds on

C1 hold, since by assumption we have opt ≤ 1
4
. So v′ is a constant multiple of v, and

it suffices to analyze v′.
We have v′ = (v′1, . . . , v

′
n), where v′1 is the component parallel to e1. In the rest

of this subsection we will establish the following bounds on v′.
Theorem 11. (i) The component of v′ that is parallel to the target vector e1 is

v′1 ≥ u1(
1
2
−O(opt

√
log 1

opt )) >
u1

4
.

(ii) The component of v′ that is orthogonal to e1, namely v′⊥ = v′ − v′1e1 =

(0, v′2, . . . , v
′
n), satisfies ‖v′⊥‖ = O(opt

√
log 1

opt )u1.

Given Theorem 11, the error rate of the hypothesis sgn(v · x) under U is

Pr[sgn(v′·x) �= sgn(x1)] =
arctan

(‖v′
⊥‖
v′
1

)

π
≤

arctan(O(opt
√

log 1
opt ))

π
= O

(
opt

√
log 1

opt

)
.

By Fact 11, the sample average vector v has Prx∈U [sgn(v · x) �= sgn(v · x)] ≤ ε with
probability at least 1 − δ, and we obtain Theorem 3.

Now we prove Theorem 11. Note that if opt−u
−−opt+u

+ is the zero vector, then
the theorem clearly holds, and so we henceforth assume that opt−u

− − opt+u
+ is not

the zero vector.

Fix any unit vector w ∈ Sn−1. Suppose that p is such that the vector opt−u
− −

opt+u
+ points in the direction of w, i.e., w =

opt−u−−opt+u+

‖opt−u−−opt+u+‖ ; let τ > 0 denote

‖opt−u
−−opt+u

+‖, and so v′ = u/2+τw. To establish Theorem 11, it suffices to show
that the desired bounds hold for any function p which satisfies (12) and is such that
(a) the vector opt−u

−−opt+u
+ points in the direction of w, and (b) the magnitude of

τ = ‖opt−u
− − opt+u

+‖ is as large as possible. (Since u/2 contributes zero to v′⊥, we
have that ‖v⊥‖ scales with τ , and thus condition (ii) becomes only harder to satisfy
as τ increases. If w1 > 0, then condition (i) holds for any τ > 0, and if w1 < 0, then
the larger τ is, the more difficult it is to satisfy condition (i).) We let τmax denote this

maximum possible value of τ ; if we can show that |τmax| = O(opt
√

log 1
opt )u1, then

since v′1 = u1

2
+ τw1 and v′⊥ = τ(0, w2, w3, . . . , wn), this gives Theorem 11.

We upper bound τmax by considering an even more relaxed scenario. Let w be any
unit vector in Sn−1. Let A be any subset of Sn−1, and let B be any subset of Sn−1\A
such that optA+optB = opt, where optA =

∫
x∈A

p(x)U(x) and optB =
∫
x∈B

p(x)U(x).

Let uA =
∫
x∈A

xp(x)U(x)

optA
and uB =

∫
x∈B

xp(x)U(x)

optB
. Let p : Sn−1 → [0, 1] be any function

such that (i) (12) holds, and (ii) the vector optAu
A − optBu

B points in the direction
of w. If we can upper bound the magnitude of optAu

A − optBu
B , then this gives an

upper bound on τmax. (This is a more relaxed scenario because we are not requiring
that A ⊆ S− and B ⊆ S+.) But now a simple convexity argument shows that
‖optAu

A − optBu
B‖ is maximized by taking A to be {x ∈ Sn−1 : x · w ≥ y}, where

y is chosen so that
∫
x∈A

U(x) = opt
2

; taking B to be −A; and taking p(x) to be 1 on

x ∈ (A∪B) and 0 on x /∈ (A∪B) (note that this gives optA = optB = opt
2

). Let τMAX

be the value of ‖optAu
A − optBu

B‖ that results from taking A,B, optA, optB , and p

as described in the previous sentence; we will show that τMAX = O(opt
√

log 1
opt )u1

and thus prove Theorem 11.

It is clear that optAu
A = −optBu

B , and so it suffices to bound ‖optAu
A‖ = τMAX

2
.
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Let y ∈ [0, 1] be the value specified above, and so

opt

2
= Pr

x∈U
[x · w ≥ y] =

An−2

An−1

·
∫ 1

y

(1 − z2)(n−3)/2dz.(13)

We have

optAu
A =

∫

x∈A

xp(x)U(x) =

(
An−2

An−1

·
∫ 1

y

z(1 − z2)(n−3)/2dz

)
w,

and so it remains to show that γ = O(opt
√

log 1
opt ), where γ > 0 is such that

An−2

An−1

·
∫ 1

y

z(1 − z2)(n−3)/2dz = γu1,(14)

where y satisfies (13). We do this in the following two claims.

Claim 13. Let � be such that y = �√
n
. Then e−�2/2 = Θ(opt).

Proof. We have
∫ 1

y
(1 − z2)(n−3)/2dz = opt

2An−2/An−1
= Θ( opt√

n
). Write y = �√

n
.

Piecewise approximating the integral in increments of 1/
√
n, we have

∫ 1

y

(1 − z2)(n−3)/2dz ≈
√
n∑

j=�

e−j2/2 · 1√
n

= Θ(e−�2/2) · 1√
n
.

Since this equals Θ( opt√
n
), we have that e−�2/2 = Θ(opt), which gives the claim. (Note

that we have � = Θ(
√

log 1
opt ) � 1, which is compatible with approximating the

integral with a sum as done above.)
Claim 14. We have γ = Θ(opt

√
log(1/opt)).

Proof. From Claim 12 we have u1 = Θ( 1√
n
). Since An−2

An−1
= Θ(

√
n), by (14) we

have that γ = Θ(n·∫ 1

y
z(1−z2)(n−3)/2dz). Since y = �/

√
n, where � = Θ(

√
log(1/opt))

(and, more precisely, e−�2/2 = Θ(opt)) by Claim 13, again a piecewise approximation
with pieces of length 1/

√
n gives us

∫ 1

y

z(1 − z2)(n−3)/2dz ≈
√
n∑

j=�

j√
n
· e−j2/2 · 1√

n
<

1

n

∞∑

j=�

je−j2/2 = Θ

(
�e−�2/2

n

)
,

and thus γ = Θ(opt
√

log 1/opt) as desired.

6. Learning halfspaces in the presence of malicious noise. We now con-
sider the problem of PAC learning an unknown origin-centered halfspace, under the
uniform distribution on Sn−1, in the demanding malicious noise model introduced by
Valiant [44] and subsequently studied by Kearns and Li [24] and many others.

We first define the malicious noise model. Given a target function f and a distri-
bution D over X, a malicious example oracle with noise rate η is an oracle EXη(f,D)
that behaves as follows. Each time it is called, with probability 1 − η the oracle re-
turns a noiseless example (x, f(x)), where x is drawn from D, and with probability
η it returns a pair (x, y) about which nothing can be assumed; in particular such
a “malicious” example may be chosen by a computationally unbounded adversary
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which has complete knowledge of f, D, and the state of the learning algorithm when
the oracle is invoked. We say that an algorithm learns to error ε in the presence of
malicious noise at rate η under the uniform distribution if it satisfies the following
condition: given access to EXη(f,U) with probability 1 − δ, the algorithm outputs a
hypothesis h such that Prx∈U [h(x) �= f(x)] ≤ ε.

Few positive results are known for learning in the presence of malicious noise.
Improving on [44, 24], Decatur [10] gave an algorithm to learn disjunctions under
any distribution that tolerates a noise rate of O( ε

n ln 1
ε ). More recently, Mansour and

Parnas [35] studied the problem of learning disjunctions under product distributions
in an “oblivious” variant of the malicious noise model, giving an algorithm that can
tolerate a noise rate of O(ε5/3/n2/3). We note that the Perceptron algorithm can be
shown to tolerate malicious noise at rate O(ε/

√
n) when learning an origin-centered

halfspace under the uniform distribution U on Sn−1.

It is not difficult to show that the simple Average algorithm can also tolerate
malicious noise at rate O(ε/

√
n).

Theorem 12. For any ε > 0, algorithm Average (with m = O(n
2

ε2 · log n
δ )) learns

the class of origin-centered halfspaces to error ε in the presence of malicious noise at
rate η = O( ε√

n
) under the uniform distribution.

Proof. If there were no noise, the true average vector (average of all positive
examples) would be (u1, 0, . . . , 0), where by Claim 12 we have u1 = Θ(1/

√
n). By

Chernoff bounds, we may assume that the true frequency η′ of noisy examples in
the sample is at most 2η = O(ε/

√
n). Let v denote the average of the noiseless

vectors in the sample; Chernoff bounds are easily seen to imply that we have v1 =
Θ(1/

√
n) and |vi| ≤ ε

n for each i = 2, . . . , n. Let z denote the average location of the
malicious examples in the sample; since even malicious examples must lie on Sn−1

(for otherwise we could trivially identify and discard them), it must be the case that
‖z‖ ≤ 1. From this it is easy to see that the average v of the entire sample must

satisfy v1 = Θ(1/
√
n) − ε/

√
n = Θ(1/

√
n) and

√
v2
2 + · · · + v2

n = O(ε/
√
n). We thus

have Prx∈U [sgn(v · x) �= sgn(x1)] = α(v, e1)/π = arctan(O(ε/
√
n)

Θ(1/
√
n)

)/π ≤ ε.

As the main result of this section, in section 6.1 we show that by combining the
Average algorithm with a simple preprocessing step to eliminate some noisy examples,
we can handle a higher malicious noise rate of O( ε

(n logn)1/4 ); this is Theorem 4. This

algorithm, which we call TestClose, is the following:

1. Draw examples from EXη(f,U) until m = O(n
2

ε2 log n
δ ) positively labeled ex-

amples have been received; let S = {x1, . . . , xm} denote this set of examples.

2. Let ρ =
√

C
n log m

δ , where C is a fixed constant (specified later in section 6.1).

If any pair of examples xi, xj with i �= j has ‖xi−xj‖ <
√

2 − ρ, remove both
xi and xj from S. (We say that such a pair of examples is too close.) Repeat
this until no two examples in S are too close to each other. Let S′ denote
this “reduced” set of examples.

3. Now run Average on S′ to obtain a vector v, and return the hypothesis
h(x) = sgn(v · x).

The idea behind this algorithm is simple. If there were no noise, then all examples
received by the algorithm would be independent uniform random draws from the
positive half of Sn−1, and it is not difficult to show that with high probability no
two examples would be too close to each other. Roughly speaking, the adversary
controlling the noise would like to cause v to point as far away from the true target
vector as possible; in order to do this, his best strategy (if we were simply running the
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Average algorithm on the original data set S without discarding any points) would
be to have all noisy examples be located at some single particular point x� ∈ Sn−1.
However, our “closeness” test rules out this adversary strategy, since it would certainly
identify all these collocated points as being noisy and discard them. Thus, intuitively,
in order to fool our closeness test, the adversary is constrained to place his noisy
examples relatively far apart on Sn−1 so that they will not be identified and discarded.
But this means that the noisy examples cannot have a very large effect on the average
vector v, since intuitively placing the noisy examples far apart on Sn−1 causes their
vector average to have small magnitude and thus to affect the overall average v by
only a small amount. The actual analysis in the proof of Theorem 4 uses bounds from
the theory of sphere packing in R

n to make these intuitive arguments precise.

6.1. Proof of Theorem 4. Let Sbad ⊆ S denote the set of “bad” examples in S
that were chosen by the adversary, and let Sgood be S\Sbad, the set of “good” noiseless
examples. Let S′

bad (S′
good, respectively) denote Sbad ∩ S′ (Sgood ∩ S′, respectively),

i.e., the set of bad (good, respectively) examples that survive the closeness test in
step 2 of our algorithm.

Let us write v′good to denote the vector average of all points in S′
good and v′bad to

denote the vector average of all points in S′
bad. If we let η′ denote

|S′
bad|
|S′| , then we have

that the overall vector average v of all examples in S′ is (1 − η′)v′good + η′v′bad.
We first show that our closeness test does not cause us to discard any good

examples.
Lemma 15. With probability at least 1 − δ

4
we have S′

good = Sgood.

Proof. Let x′ be any fixed point on Sn−1. We will show that a uniform example
drawn from U lies within distance

√
2 − ρ of x′ with probability at most δ

4m2 . Since
there are at most m examples in Sgood, this implies that for any individual example
xi ∈ S, the probability that xi lies too close to any example in Sgood is at most δ

2m ;
taking a union bound gives the lemma.

Without loss of generality we may take x′ = (1, 0, . . . , 0). It is easy to see that for
any y = (y1, . . . , yn) ∈ Sn−1, we have ‖y−x′‖ =

√
2 − 2y1 and thus ‖y−x′‖ <

√
2 − ρ

if and only if y > ρ/2. But, by Fact 10, we have that if y is drawn from U , then

(15) Pr
y∈U

[
y >

ρ

2

]
=

An−2

An−1

·
∫ 1

ρ/2

(1 − z2)(n−3)/2dz.

It is easy to verify from the definition of ρ that for a suitable absolute constant C,
the integrand (1 − z2)(n−3)/2 is at most (1 − (ρ/2)2)(n−3)/2 ≤ δ

4m3 over the interval

[ρ/2, 1], and thus (since An−2/An−1 = Θ(
√
n) < m) we have that (15) is at most δ

4m2

as required.
The true noise rate is η, and the previous lemma implies that with probability

1− δ
4

we do not throw away any good examples from S. Using Chernoff bounds, it is

easy to show that with overall probability at least 1 − δ
2

we have η′ < 2η.
Let vgood denote 1

|Sgood|
∑

x∈Sgood
x, the average location of the vectors in Sgood.

We have that the expected value of vgood is (u1, 0, . . . , 0), where u1 = Θ( 1√
n
) is as

defined in Claim 12. For m = O(n
2

ε2 log n
δ ), as in the proof of Fact 11, Chernoff

bounds imply that with probability at least 1 − δ
4

we have that (vgood)1 = Θ( 1√
n
)

while (vgood)i = O( ε
n ) for each i = 2, . . . , n. By Lemma 15, with probability at least

1 − δ
4

we have v′good = vgood, and so with overall probability at least 1 − δ
2

we have

(v′good)1 = Θ( 1√
n
) while (v′good)i = O( ε

n ) for each i = 2, . . . , n.
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We now show that ‖v′bad‖ must be small; once we establish this, as we will see
it is straightforward to combine this with the bounds of the previous two paragraphs
to prove Theorem 4. The desired bound on ‖v′bad‖ is a consequence of the following
lemma.

Lemma 16. Let T be any set of M = ω(n3/2/
√
ρ) many examples on Sn−1

such that no two examples in T lie within distance
√

2 − ρ of each other (recall

that ρ =
√

C
n log m

δ ). Then the vector average t = 1
|T |

∑
x∈T x of T satisfies ‖t‖ =

O
( (log m

δ )1/2

n1/4

)
.

Proof. Without loss of generality we may suppose that t = (c, 0, . . . , 0) for some
c > 0 (by rotating the set T ); our goal is to upper bound c. We consider a partition of
T based on the value of the first coordinate as follows. For τ = 1, 1− 1√

n
, 1− 2√

n
, . . . ,

we define the set Tτ to be {x ∈ T : τ − 1
2
√
n
≤ xi < τ + 1

2
√
n
}. The idea of the proof

is that for any value of τ which is not very small, the set Tτ must be small because
of sphere-packing bounds. This implies that the overwhelming majority of the M
examples in T must have a small first coordinate, which gives the desired result.

More precisely, we have the following claim.

Claim 17. There is a fixed constant K > 0 such that if τ > K
√
ρ, then |Tτ | ≤ n.

Proof. We first give a crude argument to show that if τ > 0.1, then |Tτ | ≤ n.
(It will be clear from the argument that any positive constant could be used in this
argument instead of 0.1.) This argument uses the same basic ideas as the general case
of τ > K

√
ρ but is simpler because we do not need our bounds to be as precise; later,

for the general case it will be useful to be able to assume that τ < 0.1.

Fix some τ > 0.1. We first note that if τ is greater than (say) 4/5, then Tτ

can contain at most one point (since any two points of Sn−1 which both have first
coordinate 4/5± o(1) can have Euclidean distance at most 6/5 + o(1) <

√
2 − ρ from

each other). Thus we may assume that 0.1 < τ < 4/5 (the key aspect of the upper
bound is that τ is bounded away from 1).

For x ∈ R
n, let x′ denote (x2, . . . , xn). Since each x ∈ Tτ has x1 ∈ [τ − 1

2
√
n
, τ +

1
2
√
n
), we have that each x ∈ Tτ satisfies ‖x′‖ =

√
1 − τ2 · (1 ± o(1)). Let x̃′ ∈ R

n−1

denote the rescaled version of x′ so that ‖x̃′‖ equals
√

1 − τ2 exactly, and let T̃ ′
τ

denote {x̃′ : x ∈ Tτ}. Since the first coordinates of any two points in Tτ differ
by at most 1√

n
, it is not difficult to see that that the minimum pairwise distance

condition on Tτ implies that any pair of points in T̃ ′
τ must have distance at least

(
√

2 − ρ− 1√
n
) · (1 − o(1)) =

√
2 · (1 − o(1)) from each other.

We now recall Rankin’s second bound on the minimum pairwise distance for point
sets on Euclidean spheres (see, e.g., Theorem 1.4.2 of [11]). This bound states that
for any value κ >

√
2, at most n + 1 points can be placed on Sn−1 if each point is to

have distance at least κ from all other points. By rescaling, this immediately implies
that at most n points can be placed on the Euclidean sphere of radius

√
1 − τ2 in

R
n−1 if all pairwise distances are at least κ

√
1 − τ2. Now recall from the previous

paragraph that all points in T̃ ′
τ lie on the sphere of radius

√
1 − τ2, and all pairwise

distances in T̃ ′
τ are at least

√
2 · (1 − o(1)). It follows by a suitable choice of κ >

√
2

that |T̃ ′
τ |, and thus |Tτ |, is at most n.

We henceforth assume that K
√
ρ < τ < 0.1 and give a more quantitatively

precise version of the above argument to handle this case. We consider the following
transformation f that maps points in Tτ onto the ball of radius

√
1 − τ2 in R

n−1:
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given x = (x1, . . . , xn) ∈ Tτ , let

f(x) =
√

1 − τ2 · x′

‖x′‖ ;

i.e., f(x) is obtained by removing the first coordinate and normalizing the resulting
(n− 1)-dimensional vector to have magnitude

√
1 − τ2.

We now claim that if x �= y, x, y ∈ Tτ , then we have ‖f(x) − f(y)‖ >
√

2 − ρ −
1√
n
− 3τ2

5
. To see this, fix any x, y ∈ Tτ . By the triangle inequality, we have

(16) ‖f(x) − f(y)‖ ≥ ‖x′ − y′‖ − ‖f(x) − x′‖ − ‖f(y) − y′‖,
and so it suffices to bound the terms on the RHS.

For the first term, we have

√
2 − ρ ≤ ‖x− y‖ ≤ 1√

n
+
√

(x2 − y2)2 + · · · + (xn − yn)2,

where the first inequality holds since x, y ∈ T and the second inequality holds since the
first coordinates of x and y differ by at most 1√

n
. This immediately gives ‖x′ − y′‖ ≥√

2 − ρ− 1√
n
.

For the second term, since x1 ∈ [τ − 1
2
√
n
, τ + 1

2
√
n
), it must be the case that

(17) ‖x′‖2 = x2
2 + · · · + x2

n ∈
(

1 −
(
τ +

1

2
√
n

)2

, 1 −
(
τ − 1

2
√
n

)2
]
.

We have

(18)

‖f(x) − x′‖ =

∥∥∥∥
(1 − τ2)1/2

‖x′‖ x′ − x′
∥∥∥∥ =

∣∣∣∣
(1 − τ2)1/2

‖x′‖ − 1

∣∣∣∣ · ‖x′‖ ≤
∣∣∣∣
(1 − τ2)1/2

‖x′‖ − 1

∣∣∣∣ ,

where the last inequality uses ‖x′‖ ≤ 1. A tedious but straightforward verification
(using the fact that τ < 0.1) shows that condition (17) implies that the RHS of (18)

is at most τ2

10
(see section 6.1.1 for the proof). The third term ‖f(y) − y′‖ clearly

satisfies the same bound.
Combining the bounds we have obtained, it follows from (16) that ‖f(x)−f(y)‖ ≥√

2 − ρ− 1√
n
− τ2

5
. For some fixed absolute constant K > 0, we have that if τ2 > K2ρ

(i.e., τ > K
√
ρ), then the RHS of this last inequality is at least

√
2 − τ2

2
. So we have

established that the transformed set of points f(Tτ ) have all pairwise distances at least√
2 − τ2

2
. But just as in the crude argument at the beginning of the proof, Rankin’s

bound implies that any point set on the radius-
√

1 − τ2 ball in R
n−1 with all pairwise

distances strictly greater than
√

2 · √1 − τ2 must contain at most n points. Since (as

is easily verified)
√

2 − τ2

2
>

√
2 · √1 − τ2, it must be the case that |Tτ | ≤ n.

With Claim 17 in hand, it is clear that at most n3/2 examples x ∈ T can have
x1 ≥ K

√
ρ. Since certainly each point in T has first coordinate at most 1, the average

value of the first coordinate of all M points in T must be at most

n3/2 + MK
√
ρ

M
≤ 2K

√
ρ = Θ

(
(log m

δ )1/4

n1/4

)
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(where we used M = ω(n3/2/
√
ρ) for the inequality above), and Lemma 16 is

proved.

Lemma 16 implies that ‖v′bad‖ = O(
(log m

δ )1/4

n1/4 ). (Note that if S′
bad is not of size M ,

we can augment it with examples from S′
good in order to make it large enough so that

we can apply the lemma. This can easily be done, since we need only M = ω̃(n7/4)

for the lemma and we have |Sgood| = Θ̃(n
2

ε2 ).) Putting all the pieces together, we have
that with probability 1 − δ all the following are true:

• (v′good)1 = Θ( 1√
n
);

• (v′good)i = O( ε
n ) for i = 2, . . . , n;

• ‖v′bad‖ = O(
(log m

δ )1/4

n1/4 );
• η′ ≤ 2η, where v = (1 − η′)v′good + η′v′bad.

Combining all these bounds, a routine analysis shows that the angle between v and
the target (1, 0, . . . , 0) is at most ε, provided that

(2η) log1/4(m/δ)
n1/4

1√
n

≤ c · ε

for some sufficiently small constant c. Rearranging this inequality, Theorem 4 is
proved.

6.1.1. Proof that (18) is at most τ2

10
. We have that (18) ≤ ∣∣ (1−τ2)1/2

‖x′‖ − 1
∣∣.

To bound this quantity, we will consider the largest value greater than 1 and smallest

value less than 1 that (1−τ2)1/2

‖x′‖ can take. Throughout the following bounds, we

repeatedly use the fact that 0 < τ < 0.1.
We have that

‖x′‖ >

√

1 −
(
τ +

1

2
√
n

)2

> 1 − 9τ2

16
,

where the first inequality is from (17) and the second is easily verified (recall that

τ > K
√
ρ > 1

n1/4 ). Since (1 − τ2)1/2 < 1 − τ2

2
, we have (1−τ2)1/2

‖x′‖ < 1−τ2/2
1−9τ2/16 =

1 + τ2/16
1−9τ2/16 < 1 + τ2

10
.

On the other hand, from (17) we also have that ‖x′‖ ≤
√

1 − (τ − 1
2
√
n
)2, and so

consequently we have (writing b for 1
2
√
n

for readability below)

(1 − τ2)1/2

‖x′‖ ≥
√

1 − τ2

1 − (τ − b)2
=

√
1 − 2bτ − b2

1 − (τ − b)2
> 1 − 3

5
· 2bτ − b2

1 − (τ − b)2
.

Recalling that b = 1
2
√
n

whereas 1
n1/4 < τ < 0.1, we see that 3

5
· 2bτ−b2

1−(τ−b)2 is greater

than 0 but is easily less than τ2

10
.

We thus have that
∣∣ (1−τ2)1/4

‖x′‖ − 1
∣∣ < τ2

10
as claimed.

7. Conclusions and future work. We have given an algorithm that learns
(under distributional assumptions) a halfspace in the agnostic setting. It constructs
a polynomial threshold function whose error rate on future examples is within an
additive ε of the optimal halfspace, in time poly(n) for any constant ε > 0, for the
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uniform distribution over {−1, 1}n or unit sphere in R
n, as well as any log-concave

distribution in R
n. It also agnostically learns Boolean disjunctions in time 2Õ(

√
n)

with respect to any distribution. Our algorithm has can be viewed as a noise-tolerant
arbitrary-distribution generalization of the well-known “low-degree” Fourier algorithm
of Linial, Mansour, and Nisan.

There are many natural ways to extend our work. One promising direction is
to try to develop a broader range of learning results over the sphere Sn−1 using the
Hermite polynomials basis, in analogy with the rich theory of uniform distribution
learning that has been developed for the parity basis over {−1, 1}n. Another natural
goal is to gain a better understanding of the distributions and concept classes for
which we can use the polynomial regression algorithm as an agnostic learner. Is there
a way to extend the analysis of the d = 1 case of the polynomial regression algorithm
(establishing Theorem 3) to obtain a stronger version of Theorem 1, part 1(b)? An-
other natural idea would be to use the “kernel trick” with the polynomial kernel to
speed up the algorithm. Finally, it would be interesting to explore whether the poly-
nomial regression algorithm can be used for other challenging noisy learning problems
beyond agnostic learning, such as learning with malicious noise.

Appendix A. Solving L1 polynomial regression in polynomial time.
Let S denote the set of all indices of monomials of degree at most d over variables
x1, . . . , xn, and so |S| ≤ nd+1. Our goal is to find wS ∈ R for S ∈ S to minimize
1
m

∑m
i=1 |yi −

∑
S∈S wS(xi)S |, where xS is the monomial indexed by S. This can be

done by solving the following LP:

min

m∑

i=1

zi such that ∀i :zi ≥ yi −
∑

S∈S
wS(xi)S and

zi ≥ −
(
yi −

∑

S∈S
wS(xi)S

)
.

Using a polynomial-time algorithm for linear programming, this can be solved exactly
in nO(d) time. In fact, for our purposes it is sufficient to obtain an approximate
minimum, and hence one can use even more efficient algorithms [9].

Appendix B. Proof of Theorem 6.
Proof of Theorem 6. We assume without loss of generality that θ ≥ 0; an entirely

similar proof works for θ < 0. First, suppose that θ >
√
d. Then we claim that the

constant polynomial p(x) = −1 will be a sufficiently good approximation of sgn(x−θ).
In particular, it will have error:

∫ ∞

θ

4e−x2

√
π

dx ≤
∫ ∞
√
d

4e−x

√
π

dx =
4e−

√
d

√
π

≤ 4√
πd

.

So the case that θ >
√
d is easy, and for the remainder we assume that θ ∈ [0,

√
d].

We use the Hermite polynomials Hd, d = 0, 1, . . . , (Hd is a degree-d univariate

polynomial) which are a set of orthogonal polynomials given the weighting e−x2

π−1/2.
In particular,

∫ ∞

−∞
Hd1(x)Hd2(x)

e−x2

√
π
dx =

{
0 if d1 �= d2,
2d1d1! if d1 = d2.
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Hence these polynomials form an orthogonal basis of polynomials with respect to the
inner product 〈p, q〉 =

∫∞
−∞ p(x)q(x)e−x2

π−1/2dx. The functions H̄d(x) = Hd(x)/
√

2dd!
are an orthonormal basis.

Now the best degree-d approximation to the function sgn(x− θ), in the sense of

(5), for any d, can be written as
∑d

i=0 ciH̄i(x). The ci ∈ R that minimize (5) are

ci =

∫ ∞

−∞
sgn(x− θ)H̄i(x)

e−x2

√
π
dx

=

∫ ∞

θ

H̄i(x)
e−x2

√
π
dx−

∫ θ

−∞
H̄i(x)

e−x2

√
π
dx

= 2

∫ ∞

θ

H̄i(x)
e−x2

√
π
dx (for i ≥ 1).(19)

The last step follows from the fact that
∫∞
−∞ H̄i(x) e

−x2

√
π
dx = 0 for i ≥ 1 by orthogo-

nality of H̄i with H̄0. Next, to calculate our error, we use Parseval’s identity:

∫ ∞

−∞

(
d∑

i=0

ciH̄i(x) − sgn(x− θ)

)2

e−x2

√
π
dx = 1 −

d∑

i=0

c2i =

∞∑

i=d+1

c2i .

The above holds because
∫∞
−∞

e−x2

√
π

= 1 and hence
∑∞

i=0 c
2
i = 1 (sgn(x) ∈ L2(R, e−x2

)

and polynomials are dense in this set). It thus suffices for us to bound
∑∞

i=d+1 c
2
i .

It is now easy to calculate each coefficient ci using standard properties of the
Hermite polynomials. It is well known [42] that the Hermite polynomials can be
defined by

Hi(x)e−x2

= (−1)i
dn

dxn
e−x2

, which implies
d

dx
Hi(x)e−x2

= −Hi+1(x)e−x2

.

In turn, this and (19) imply that, for i ≥ 1,

ci =
2√
π2ii!

∫ ∞

θ

Hi(x)e−x2

dx

=
2√
π2ii!

(
−Hi−1(x)e−x2

)∣∣∣
∞

θ

=
2√
π2ii!

Hi−1(θ)e
−θ2

.(20)

We must show that
∑∞

i=d+1 c
2
i = O(1/

√
d). To do this, it suffices to show that for

each i we have c2i = O(i−3/2). From (20) we have, for i ≥ 1,

(21) c2i =
4

π2ii!
(Hi−1(θ))

2e−2θ2

.

Now, conveniently, Theorem 1.i of [7] states that, for all i ≥ θ2,

1

2ii!
Hi(θ)

2e−θ2 ≤ C√
i
,

where C is some absolute constant. Since we have θ ≤ √
d by assumption, we have

that, for i ≥ d+1, c2i ≤ 4C
2πi

√
i−1

, which is of the desired form O(i−3/2), and Theorem 6

is proved.
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LOWER BOUNDS FOR THE NOISY BROADCAST PROBLEM∗
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Abstract. We prove the first nontrivial (superlinear) lower bound in the noisy broadcast model,
defined by El Gamal in [Open problems presented at the 1984 workshop on Specific Problems in
Communication and Computation sponsored by Bell Communication Research, in Open Problems
in Communication and Computation, T. M. Cover and B. Gopinath, eds., Springer-Verlag, New
York, 1987, pp. 60–62]. In this model there are n + 1 processors P0, P1, . . . , Pn, each of which is
initially given a private input bit xi. The goal is for P0 to learn the value of f(x1, . . . , xn), for
some specified function f , using a series of noisy broadcasts. At each step a designated processor
broadcasts one bit to all of the other processors, and the bit received by each processor is flipped with
fixed probability (independently for each recipient). In 1988, Gallager [IEEE Trans. Inform. Theory,
34 (1988), pp. 176–180] gave a noise-resistant protocol that allows P0 to learn the entire input with
constant probability in O(n log logn) broadcasts. We prove that Gallager’s protocol is optimal, up
to a constant factor. Our lower bound follows by reduction from a lower bound for generalized noisy
decision trees, a new model which may be of independent interest. For this new model we show
a lower bound of Ω(n logn) on the depth of a tree that learns the entire input. While the above
lower bound is for an n-bit function, we also show an Ω(n log logn) lower bound for the number of
broadcasts required to compute certain explicit boolean-valued functions, when the correct output
must be attained with probability at least 1−n−α for a constant parameter α > 0 (this bound applies
to all threshold functions as well as any other boolean-valued function with linear sensitivity). This
bound also follows by reduction from a lower bound of Ω(n logn) on the depth of generalized noisy
decision trees that compute the same functions with the same error. We also show a (nontrivial)
Ω(n) lower bound on the depth of generalized noisy decision trees that compute such functions with
small constant error. Finally, we show the first protocol in the noisy broadcast model that computes
the Hamming weight of the input using a linear number of broadcasts.
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1. Introduction. The relationships between noise, communication, and com-
putation have been studied extensively. A recurring problem, arising in both theory
and practice, is to minimize the additional resources needed to obtain reliable results
in the presence of noise. This problem was studied in the context of decision trees
[12, 26, 10, 8, 22], formulas and circuits [24, 15, 29, 18, 9, 30], sorting networks [20],
cellular automata [14], quantum computation [1], data structures [13, 4], various com-
munication models [16, 28, 19, 27, 22], and other models [2, 7, 23, 17].

The noisy broadcast model was proposed by El Gamal [6] in 1984, and later
popularized by Yao [33], as a simple model in which to study the effect of noise in

∗Received by the editors March 22, 2006; accepted for publication (in revised form) February 20,
2007; published electronically March 26, 2008.

http://www.siam.org/journals/sicomp/37-6/65486.html
†Department of Computer Science, Rutgers University, Piscataway, NJ 08854 (ngoyal@cs.rutgers.

edu). Current address: School of Computer Science, McGill University, Montreal H3A 2A7, QC,
Canada (navin@cs.mcgill.ca). This author’s work was supported in part by NSF grant CCR-9988526
and a Bevier Fellowship of Rutgers University.

‡Theory Group, Microsoft Research, Redmond, WA 98052 (gkindler@microsoft.com). Current
address: Department of Applied Mathematics and Computer Science, Weizmann Institute of Science,
Rehovot 76100, Israel (gkindler@weizmann.ac.il). This author’s work was supported by NSF grants
CCR-0324906 and DMS-0111298.

§Department of Mathematics, Rutgers University, Piscataway, NJ 08854 (saks@math.rutgers.
edu). This author’s work was supported in part by NSF grants CCR-9988526 and CCR-0515201.

1806



THE NOISY BROADCAST PROBLEM 1807

a highly distributed system. This model considers n processors, P1, . . . , Pn, and a
receiver P0. Each processor Pi has a private input bit xi, and the goal is for P0

to evaluate a specified function f(x1, . . . , xn) using the smallest possible number of
broadcasts. Communication is carried out in synchronous time steps: in each step a
prespecified processor broadcasts a single bit to all other processors. For some fixed
noise parameter ε < 1/2, each of the other processors independently receives the
broadcast bit (with probability 1− ε) or the complement of the bit (with probability
ε). After the final broadcast, P0 determines the output of the protocol from the bits
it has heard. If for every given input x ∈ {0, 1}n the protocol outputs f(x) with
probability at least 1 − δ, we say that it computes f with error at most δ for noise
parameter ε.

In this paper we study the case where the receiver, P0, aims to output the entire
input. Thus the function to be computed is the identity function, denoted id, which is
clearly the hardest function to compute in this model. There is a simple protocol that
computes id with error δ, for any fixed δ ∈ (0, 1/2), using Θ(n log n) broadcasts: for
each i ∈ {1, . . . , n}, Pi broadcasts its bit c log n times (for some large enough constant
c = c(ε, δ)) and P0 outputs the majority value of the copies of xi it received. In 1988,
Gallager [16] gave a protocol for id using only O(n log log n) broadcasts (we give a
simplified variant of his protocol in section 7), and this remains the best upper bound
known. Previous to this paper, the only known lower bound was the trivial Ω(n). In
this paper we prove an Ω(n log log n) lower bound, thereby showing that Gallager’s
upper bound is optimal up to a constant factor.

Related work. Kushilevitz and Mansour [19] showed that the majority function
(or any other threshold function) can be computed using O(n) broadcasts. This
protocol takes advantage of a rather strong and unrealistic feature of the model: that
the noise occurring in different receptions is independent and identically distributed.
To consider protocols that are less dependent on the exact distribution of noise, Feige
and Kilian [11] proposed a stronger adversarial model of noise. Roughly speaking,
this model allows an omniscient adversary to cancel any of the errors introduced by
the random noise, thus preventing the algorithm from taking advantage of stochastic
regularities in the noise. Feige and Kilian showed that even against this stronger
adversary OR can be computed in O(n log∗ n) broadcasts. Newman [22] improved
this to O(n) broadcasts (Newman stated his result for a weaker adversarial model,
but his result easily carries over to the stronger adversarial model of [11].)

Some results in closely related models are also worth mentioning: efficient er-
ror resilient protocols were given for the noisy two-party communication complexity
by Schulman [28], and for noisy communication networks with small degree by Ra-
jagopalan and Schulman [25].

1.1. Our results. In this paper we prove that Gallager’s O(n log log n) protocol
for id is optimal.

Theorem 1. Let ε ∈ (0, 1/2) be any noise parameter, and let β ≥ 1 and n be
a positive integer. Let A be a (possibly randomized) noisy broadcast protocol for n
processors using at most βn broadcasts. If A is executed with noise parameter ε on a
random input X distributed uniformly in {0, 1}n, then the probability that the receiver
outputs X is at most

√
1

n
+

48β2 log(1/ε)

ε4β log n
.

This immediately gives the following corollary.
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Corollary 2. Let ε ∈ (0, 1/2) be any constant. Then any noisy broadcast pro-
tocol which computes the identity function with error at most 1/3 for noise parameter
ε requires Ω(n log log n) broadcasts.

Our lower bound is formulated for the original noise model of El Gamal; trivially,
it also holds for the adversarial noise models as well. Previously, no superlinear lower
bounds were known even for the adversarial noise model.

Generalized noisy decision trees. Our lower bound for the noisy broadcast model
is obtained by reducing that model to a new model, which we call the generalized
noisy decision tree ( gnd-tree) model. This model, which may be of independent inter-
est, considers a more centralized computational setting where a single decision tree
attempts to evaluate a function of the boolean input x. The gnd-tree does not have
direct access to x—instead it has access to an unlimited number of noisy copies of
x. In each noisy copy of x each bit is complemented independently with some fixed
probability ε < 1/2. At each step the tree selects one of the copies of x and asks for
the evaluation of any boolean-valued function at that copy. (A precise definition of
the model appears in section 2.)

The gnd-tree model can be seen as a generalization of the noisy decision tree
(nd-tree) model introduced by Feige et al. [12]. The nd-tree model is obtained by
restricting the gnd-tree model to coordinate queries, namely queries q of the form
q(y1, . . . , yn) = yi, i ∈ {1, . . . , n}. The computational power of these two models is not
the same: the majority function requires Ω(n log n) queries by an nd-tree [12], but can
be computed with just O(n) queries using a gnd-tree, by adapting the aforementioned
noisy broadcast protocol for majority due to Kushilevitz and Mansour [19].

The proof of Theorem 1 has two parts. The first part is a reduction that takes a
protocol in the noisy broadcast model and simulates it by a gnd-tree. The second (and
more substantial) part is a lower bound on the depth of gnd-trees required to compute
the identity function. It seems that proving lower bounds for gnd-trees is easier than
proving them directly for the noisy broadcast model, because the former model is
more centralized, making it easier to analyze the progress made in intermediate steps
of the computation.

Note that id can be easily computed by a gnd-tree (indeed, even by an nd-tree)
of depth O(n log n): the tree just queries all coordinates of O(log n) noisy copies of
the input and outputs the bitwise majority of the copies. Our main lower bound for
gnd-trees implies that this protocol is within a constant factor of optimal.

Theorem 3. Let ε ∈ (0, 1/2) be a noise parameter, and let n be a positive
integer. If a (possibly randomized) gnd-tree T of depth d is run on an input X chosen
uniformly from {0, 1}n, with noise parameter ε, then the probability that T outputs X
is bounded above by

1√
n

+
6 log(1/ε)

ε2 log n
·
(
d

n
+

√
d

n

)
.

In particular, when d ≥ n, the probability that T outputs X is bounded above by

1√
n

+
12 log(1/ε)

ε2 log n
· d
n
.

Decision functions. A significant problem left open by Theorem 1 is whether
there are decision functions (functions that output a boolean value) that require
a superlinear number of broadcasts in the noisy broadcast model. While it seems
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intuitively clear that there should be such functions, proving this seems difficult.
Counting arguments do not seem useful here because the number of possible protocols
grows too quickly as a function of the number of broadcasts. On the other hand, the
linear upper bound on threshold functions of Kushilevitz and Mansour [19], as well as
our linear protocol for computing Hamming weight mentioned below, indicate that it
may be difficult to prove a superlinear lower bound for an explicit function.

Proving lower bounds for decision functions in the gnd-tree model is even more
problematic than in the noisy broadcast model. It is trivial that in the noisy broadcast
model every function that depends on all of its variables needs at least n broadcasts in
the worst case (since the choice of who broadcasts is fixed in advance). For gnd-trees,
however, we cannot rule out the existence of trees of sublinear depth even for functions
whose (noiseless) decision-tree complexity is linear (also, there are highly nontrivial
functions whose decision-tree complexity is sublinear and that can also be computed
in sublinear depth by gnd-trees). We do not know of any simple arguments that yield
linear lower bounds for gnd-trees computing decision functions, or even bounds of the
form n1−α for small positive α > 0.

Our proof of Theorem 3 is based on the idea that it is hard for a gnd-tree or a
noisy broadcast protocol to distinguish an input from its immediate neighbors. This
suggests the parity function as a candidate for proving superlinear lower bounds. It
turns out, however, that any boolean function whose output depends only on the
Hamming weight

∑
i xi of the input can be computed in the noisy broadcast model

with a linear number of broadcasts.
Theorem 4. For any ε, δ ∈ (0, 1/2) there is a noisy broadcast protocol that

computes the Hamming weight of the input with probability of error at most δ for noise
parameter ε, which uses cn broadcasts for some constant c = c(ε, δ). Therefore every
symmetric boolean function (namely a function which depends only on the Hamming
weight of its input) can be computed using a linear number of broadcasts.

Similarly, there exists a gnd-tree that computes
∑

i xi with error at most δ for
noise parameter ε and has depth dn for some constant d = d(ε, δ).

Our protocol for computing the Hamming weight of the input borrows some of
the ideas from the majority protocol of [19]. While it is somewhat surprising that
such a protocol exists, it has the same drawback as the majority protocol: it relies
heavily on the unrealistic assumption of the model that every bit received experiences
independent noise precisely ε.

Lower bounds for decision functions. We are able to get some nontrivial lower
bounds for computing decision functions, both in the noisy broadcast model and for
gnd-trees, by adapting the techniques from the proof of Theorem 3. Our bounds
for computing a boolean function f depend on its sensitivity, sf . The sensitivity of
a function f is the maximum, over all x ∈ {0, 1}n, of the number of neighboring
inputs y (inputs y that differ from x on one coordinate) for which f(y) �= f(x). In
particular, s(f) = n for AND, OR, and PAR, and is at least n/2 for any nontrivial
symmetric boolean function. Our results, which are more accurately stated and proved
in section 5, are summarized below.

Theorem 5. Let ε, δ ∈ (0, 1/2) and α > 0 be fixed constants. Let f : {0, 1}n →
{0, 1} be any decision function, and let s = s(f) denote the sensitivity of f . Then

• the depth of any gnd-tree that computes f with error at most δ for noise
parameter ε is at least Ω(s);

• the depth of any gnd-tree that computes f with error at most n−α for noise
parameter ε is at least Ω(s log(s));

• any noisy broadcast protocol that computes f with error at most n−α for noise
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parameter ε requires Ω(s log log(s)) broadcasts.
We note that the first section in Theorem 5 implies that Theorem 4 is essentially

tight. That is, a gnd-tree that computes a nontrivial symmetric function must be of
at least a linear depth (a similar lower bound for the noisy broadcast model is trivially
true).

1.2. Organization. In section 2 we formally define the noisy broadcast and gnd-
tree models. We then state a reduction theorem between noisy broadcast protocols
and gnd-trees, and use it to show that Theorem 3 implies Theorem 1. Section 3
contains some technical preliminaries for the proofs of the main results. The proof of
Theorem 3 is given in section 4. Section 5 contains the precise statements and proofs
for our lower bounds on decision functions. Section 6 proves the reduction theorem,
showing how to simulate noisy broadcast protocols by gnd-trees. In section 7 we give
our variant of Gallager’s O(n log log n) noisy broadcast protocol for id, and in section 8
we give our linear noisy broadcast protocol for computing the Hamming weight of the
input. We conclude the paper with some open problems in section 9.

2. The noisy broadcast model and gnd-trees. In this section we begin by
defining the noisy broadcast and gnd-tree models. Next, we state a general reduction
lemma from the first model to the second and use this lemma to derive Theorem 1
from Theorem 3.

2.1. Noisy copies. Let ε ∈ (0, 1/2) be a noise parameter. An ε-noise bit is
a {0, 1}-valued random variable that takes value 1 with probability ε. An ε-noise
k-vector N is a sequence of k independent ε-noise bits.

For a bit-vector x ∈ {0, 1}k, an ε-noisy copy of x is a random variable of the
form x ⊕N , where ⊕ denotes the bitwise XOR, and N is an ε-noise k-vector. More
generally, if X is any random variable taking values in {0, 1}k, an ε-noisy copy of
X is a random variable of the form X ⊕ N , where N is an ε-noise k-vector chosen
independently from X.

2.2. Computation under noise. In standard computation models, a deter-
ministic computation is determined by its input, and a randomized computation is
determined by the input and some auxiliary independent unbiased random bits.

We will discuss several models for computing in the presence of noise. In such
models, the computation also depends (in some specified way) on a boolean vector
N that represents the noise that affects the computation. It is assumed that N is a
ε-noise vector for some ε ∈ (0, 1/2), and that N is independent of any random bits
used by the algorithm.

For δ ∈ [0, 1] we say that an algorithm computes a function f with error at most
δ against ε-noise if, for each input x, the algorithm outputs f(x) with probability at
least 1 − δ, where the probability is taken with respect to the auxiliary random bits
of the algorithm and the ε-noise vector N .

2.3. The noisy broadcast model. The noisy broadcast model considers one
receiver P0 and n processors P1, . . . , Pn. The input is a boolean vector x of length
n, and each of the processors Pi initially has coordinate xi. The goal is for P0 to
evaluate a specified function f at x. This goal is to be accomplished by a noisy
broadcast protocol.

The specification of a noisy broadcast protocol consists of
• the number s of broadcasts used in the protocol,
• a sequence i1, . . . , is of indices of processors (with repetitions allowed),
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• a sequence g1, . . . , gs of broadcast functions, where gj : {0, 1}j −→ {0, 1},
• a output function h which is defined over the domain {0, 1}s.

Running a protocol. The execution of a noisy broadcast protocol A depends on the
input x and a noise vector N . We will think of N as a concatenation of s independent
noise vectors N1, . . . , Ns, each of length n + 1. In the jth step of the execution of
A the processor Pij broadcasts a bit bj , and each of the other processors receives
an independent noisy copy of bj . Formally, Ph receives bjh = bj ⊕ N j

h; it will be

convenient (but unimportant) to regard Pij as receiving a noisy copy bjj = bj ⊕ N j
j

of his own message. The bit bj broadcast by Pij at step j is gj evaluated at the
j-vector consisting of Pij ’s input bit and the j − 1 bits received by Pij during the
first j − 1 rounds. Thus bj = gj(xij , b

1
ij , b

2
ij , . . . , b

j−1

ij ). The output of the protocol is
h(b01, . . . , b

0
s), that is, the value of h on the s-vector of bits received by P0.

The randomized version of the model is defined in the natural way. Each processor
has access to a source that generates independent random bits where the processor
has the ability to specify the bias of each successive bit. The function gj determining
the bit broadcast by Pij may depend on the random bits generated by Pij .

Our version of the noisy broadcast model is similar to that of Gallager [16]. Other
minor variants of this model have been proposed, e.g., there is no receiver P0, and
the goal of the computation is for all of the processors to learn the correct value of
f(x). These differences are not significant, as protocols in one model can easily and
efficiently be simulated in another.

This model enforces certain properties typically required of communication pro-
tocols in noisy environments. First, protocols must be oblivious: the sequence of
processors who broadcast is fixed in advance and does not depend on the execution.
Without this requirement, noise could lead to several processors speaking at the same
time. Second, it rules out communication by silence: when it is the turn of a processor
to speak, it must speak.

2.4. gnd-tree model. The gnd-tree model is a centralized computation model
in which an algorithm seeks to evaluate f on input x ∈ {0, 1}n by asking queries. The
algorithm has no direct access to the input x. Instead, there is a collection (yλ : λ ∈ Λ)
of independent ε-noisy copies of x; here Λ is an arbitrary index set. In each step, the
algorithm is allowed to make an arbitrary boolean-valued query about any one of the
noisy copies.

Formally, a gnd-tree algorithm is represented by a rooted labeled binary tree. Each
internal node v is assigned a copy type λv ∈ Λ and a query function qv : {0, 1}n −→
{0, 1}. The two arcs out of internal node v are labeled by 0 and 1. Each leaf v is
labeled by an output value outv.

The noisy copies y1, y2, . . . of x determine a unique root-to-leaf path, called the
execution path, as follows: start from the root r and follow the arc labeled by the
output of qr evaluated at noisy copy yλr to a new node. Upon arriving at internal
node v, evaluate qv(y

iv ) and follow the indicated arc. The output of the computation
is equal to the output value outv labeling the leaf.

We also consider randomized gnd-trees. For our purposes, a randomized gnd-tree
is simply a probability distribution over gnd-trees.

2.5. Proof of Theorem 1 via reduction. Let us now state a reduction theo-
rem between the noisy broadcast model and the gnd-tree model, and show how it can
be used to deduce Theorem 1 from Theorem 3.

To state the reduction theorem we need some notation. For K ⊆ [n], we refer to
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a point in {0, 1}K as a partial assignment to K. If ρ is a partial assignment to K and
x is a partial assignment to [n] −K, we write xρ for the point in {0, 1}n that agrees
with ρ on K and with x on [n] −K.

Theorem 6. Let α > 1 and ε ∈ (0, 1/2). Suppose P is a noisy broadcast protocol
that uses k broadcasts. Then there is a subset K ⊆ [n] of size at most n/α such
that for any partial assignment ρ to K there is a gnd-tree T of depth 2k with input
variables indexed by [n] − K with the following property: for any x ∈ {0, 1}[n]−K ,
when T is run on x with noise parameter εαk/n, the output distribution is exactly the
same as that of the output of P when run on xρ with noise parameter ε.

The proof of this theorem appears in section 6. Now we can deduce Theorem 1
from Theorem 3.

Proof of Theorem 1 from Theorem 3. Suppose that for some β ≥ 1, A is a βn-step
noisy broadcast protocol that computes idn against ε-noise with some probability of
correctness. Choosing α = 2 in Theorem 6, we have a gnd-tree of depth 2k that
computes id�n/2� against ε2β-noise with the same probability of correctness as A. By
Theorem 3, the probability that this gnd-tree is correct is bounded above by

1√
n

+
12 log(1/ε2β)

ε4β log n
(2β)

≤ 1√
n

+
48β2 log(1/ε)

ε4β log n
.

This completes the proof of Theorem 1.

3. Preliminaries to the proof of Theorem 3. In this section we present some
preliminary notation, conventions, and technical facts.

Some notation. We use log to denote logarithm in base 2. When n is implicit
from the context, we use ei to denote the point in {0, 1}n whose ith cooridnate is 1
and whose other coordinates are 0. The point with all zero coordinates is denoted 0.

3.1. Entropy and relative entropy. We use some basic notions from informa-
tion theory. In that context, we consider terms of the form 0 log 1

0
or 0 log 0

0
to have

value 0. For a random variable X taking values in a finite set A, the binary entropy
of X is given by

(1) H [X] :=
∑

x∈A

Pr[X = x] log
1

Pr[X = x]
.

If another random variable Y , taking values in a finite set B, is defined over the same
probability space as X, the conditional entropy of X given Y is defined by

(2) H [X|Y ] :=
∑

y∈B

Pr[Y = y]H [X|Y = y] .

For two probability measures p and q defined over a finite set A, the relative entropy
between p and q, denoted D(p‖q), is defined by

D(p‖q) :=
∑

x∈A

p(x) log
p(x)

q(x)

(if q(x) = 0 for an x where p(x) �= 0, the relative entropy is infinite). Entropy and
relative entropy satisfy the following inequalities (see, e.g., [5]).
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Fact 7. For X, p, q, and A as above, we have

D(p‖q) ≥ 0,

H [X] ≤ log |A|.
3.2. Some estimates for logarithms. The Taylor series

ln(1 + x) =
∑

n≥1

(−1)n+1xn

n
,

which is valid for x ∈ (−1, 1), implies that the following functions are continuous and
differentiable for all x > −1:

a(x) =

{
ln(1+x)

x if x �= 0,

1 if x = 0,
(3)

b(x) =

{
ln(1+x)−x

x2 if x �= 0,

− 1
2

if x = 0.
(4)

Proposition 8. The function a is positive and decreasing on (−1,∞), and the
function b is negative and increasing on (−1,∞).

Proof. For x ∈ (−1, 0) ∪ (0,∞), a′(x) = g(x)

x2 , where g(x) = x
1+x − ln(1 + x). To

prove the statement concerning the function a, it thus suffices to show that g(x) ≤ 0
for x > −1. This follows from the fact that g(0) = 0, and that g′(x) = −x

(1+x)2
, which

is positive for x < 0 and negative for x > 0.
Next we prove the statement about the function b. Since x > ln(1 + x) for all

x ∈ (−1, 0) ∪ (0,∞), it follows that b(x) < 0 for all x ∈ (−1,∞). To show that b is
increasing, we show that b′ is nonnegative. Using the Taylor expansion of ln(1 + x)
around 0, we have that for x ∈ (−1, 1),

b′(x) =

∞∑

n=0

(−1)n
n + 1

n + 3
xn.

Thus b′(0) = 1
3
, and for x < 0, each term in the second sum is positive so that

b′(x) > 0. For x > 0, it suffices to show that the numerator of b′(x) = (x2 + 2x −
2(1+x) ln(1+x))/x3(1+x) is positive. The numerator is 0 at x = 0 and has derivative
2(x− ln(1 + x)), which is positive for all x > 0.

Corollary 9. Let ε ∈ (0, 1
2
) and x ≥ ε− 1. Then

1. 0 < a(x) ≤ 2 ln(1/ε),
2. 0 > b(x) ≥ −2 ln(1/ε).

Proof. Using Proposition 8 and ε ≤ 1/2 we have

0 < a(x) ≤ a(ε− 1) = ln(1/ε)/(1 − ε) ≤ 2 ln(1/ε),

and thus the first part holds.
As for the second part, 0 > b(x) follows from Proposition 8. Also, since b is

negative and increasing, it remains to show that |b(ε − 1)| ≤ 2 ln(1/ε). We consider
two cases: if ε ≤ 1 − 1/

√
2, then it is easy to see that

|b(ε− 1)| ≤ ln(1/ε)

(1 − ε)2
≤ 2 ln

(
1

ε

)
.
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If ε > 1 − 1/
√

2, since a is decreasing we have a(ε − 1) ≤ a(−1/
√

2) which by
direct computation is less than 2. From this and ε ≤ 1/2, we get

|b(ε− 1)| =
a(ε− 1) − 1

1 − ε
=

2a(ε− 1) − 2

2(1 − ε)
≤ a(ε− 1)

2(1 − ε)
=

ln(1/ε)

2(1 − ε)2
≤ 2 ln

(
1

ε

)
.

Proposition 10. Let m be defined on [0, 1] by

m(x) =

{
x2 ln(1/x) if x �= 0,

0 if x = 0.

Then m(x) ≥ m(1 − x) for all x ∈ [ 1
2
, 1].

Proof. Let d(x) = m(x) − m(1 − x) for x ∈ [1/2, 1]. Then d is continuous and
twice differentiable on [1/2, 1] with second derivative given by d′′(x) = 2(ln((1−x)/x)).
Since this is negative for all x ∈ (1/2, 1), and m(1/2) = m(1) = 0, we conclude that
m(x) ≥ 0 for x ∈ [1/2, 1].

Proposition 11. For x, y ∈ [0, 1], x log(x/y) + (1 − x) log((1 − x)/(1 − y)) is
nonnegative.

This a special case of the first assertion in Fact 7, where p and q are distributions
over a two-point space, but we provide a direct proof for completeness.

Proof. Hold x fixed; it suffices to show that as a function of y, g(y) = x log y +
(1 − x) log(1 − y) has a maximum at y = x. Taking the derivative with respect to y
and simplifying yields g′(y) = (x − y)/y(1 − y), which is positive for 0 < y < x and
negative for 1 > y > x, implying g attains a maximum at y = x.

3.3. Tail bounds for sums of noise bits. We will need a standard type of
tail bound for sums of noise bits.

Lemma 12. Let N be an ε-noisy n-vector. For any nonzero vector α ∈ R
n, and

t > 0, we have

Pr
N

[
∑

i

αi(Ni − ε) > t

]
≤ e−2t2/‖α‖2

.

Since we do not know a reference for this version of the bound, we provide a proof.

Proof. For any positive λ,

Pr
N

[
∑

i

αi(Ni − ε) > t

]
≤ e−λt

E[eλ
∑

i αi(Ni−ε)]

= e−λt
∏

i

E[eλαi(Ni−ε)] = e−λt
∏

i

(
εeλαi(1−ε) + (1 − ε)e−λαiε

)

≤ e−λt
∏

i

eα
2
iλ

2/8

(since for p ∈ [0, 1], peγ(1−p) + (1 − p)e−γp ≤ eγ
2/8 (see Lemma A.1.6 of [3]))

= e−λt+λ2‖α‖2/8.

Choosing λ = 4t/‖α‖2 yields the bound of the lemma.
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4. Proof of Theorem 3. In this section we prove Theorem 3. For the rest of
this section, fix T to be a gnd-tree that supposedly computes id for inputs x ∈ {0, 1}n.
The success probability of T is the probability that T gives the correct output when
run on a uniformly random input. Our goal is to give an upper bound on the success
probability of T in terms of its depth depth(T ), n, and the noise parameter ε. In the
case that T is randomized, i.e., a probability distribution over deterministic gnd-trees,
its success probability is the average (with respect to this distribution) of the success
probabilities of various deterministic trees. Thus, any upper bound for deterministic
trees extends to randomized trees.

Therefore, without loss of generality, we assume that T is deterministic.
The vertices of T . Let V be the set of vertices of T . Let Λ be the set of indices

of the noisy copies of the input used by T . For an index λ ∈ Λ, V λ will denote the
set of (internal) vertices of T that query the noisy copy indexed by λ.

The execution space Υ. For noise parameter ε ∈ (0, 1/2) we define the ε-execution
space Υ = Υ(T, ε) of T to be the probability space corresponding to the choice of a
uniformly random input X ∈ {0, 1}n and an indexed family of independent ε-noise
n-vectors NΛ = (Nλ : λ ∈ Λ). For every λ ∈ Λ, Y λ denotes the ε-noisy copy of X
defined by Y λ = X ⊕Nλ. Y Λ = (Y λ : λ ∈ Λ) denotes the indexed family of all noisy
copies.

We say that T is executed on Υ if it is run with input X and has access to Y Λ as
the noisy copies of the input. Note that when T is executed on Υ, the unique root-
to-leaf execution path is a random variable that is completely determined by Y Λ. We
define the following random variables and events over the execution space:

• Let Π denote the leaf that terminates the execution path.
• Let success be the event that T correctly outputs the input X.
• For a vertex v, let vis(v) denote the event that v lies on the execution path.

In this case we say that T visits v.
• When the meaning is clear from context, the event X = x (for x ∈ {0, 1}n)

is abbreviated as x, especially when writing the probability of events. For
example, we may write Pr[x] instead of Pr[X = x] and Pr [success|x] instead
of Pr [success|X = x].

The progress function. As with many lower bound proofs, our proof proceeds by
defining a function that measures the progress of the computation towards its goal.
We show that (1) for T to succeed with high probability, the expected value of the
progress measure at the final leaf must be large; and (2) the aforementioned expected
value is bounded by a function of depth(T ), and thus for it to be large the depth of
T must be large as well.

For a vertex v in T and an input vector x ∈ {0, 1}n we define the following
functions. The final function L serves as our progress measure:

p(v, x) = Pr [vis(v)|X = x] ,

Li(v, x) = log

(
p(v, x)

p(v, x⊕ ei)

)
for i ∈ {1, . . . , n},(5)

and L(v, x) =
1

n

n∑

i=1

Li(v, x).

Some intuition. Theorem 3 gives an upper bound on the success probability of
T in terms of its depth or, equivalently, on the number of queries it makes. Let
us consider the most interesting case, where the success probability is at least some
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constant, say 1/2. In this case the theorem gives a lower bound of Ω(n log n) on the
number of queries.

To prove this lower bound using a progress measure, we want to show that in order
to succeed with high probability, the expectation of the progress measure achieved
by T at the completion of its computation must be higher than some threshold τ .
We then want to show (roughly) that the progress measure achieved by any gnd-tree
making o(n log n) queries is smaller than τ .

So how does one measure the progress made by T after the computation has
reached a vertex v? One natural choice would be to look at H[X] − H[X|vis(v)], the
reduction in entropy of the random input X provided by knowing vis(v). Initially,
at the root, this is equal to 0, and it is not hard to show that for any gnd-tree that
outputs X correctly with probability 1/2 the expectation of this expression must be
at least Ω(n). To prove our result, we would like to show that Ω(n log n) queries are
needed to reduce the entropy of X by Ω(n), but this is not true: if we query all n
coordinates of a single noisy copy, then the expected reduction of entropy in X is
already Ω(n).

The reason for this is that querying each coordinate once already gives us, with
high probability, a guess for X which is correct on roughly (1 − ε)-fraction of co-
ordinates. To go from that to getting all the coordinates right takes many more
queries. Indeed, it turns out that in a sense, distinguishing between X and its neigh-
bors (namely from inputs that differ from it on a singly coordinate) is as hard as
figuring out all the bits of X from scratch. But although after all coordinates have
been queried once, making further queries will provide less of an entropy reduction,
this behavior is difficult to capture and use, since to show that the entropy reduction
is slow one must use the fact that certain information about X is already known.
Furthermore, other algorithms which perform different queries may have a different
pattern of entropy reduction.

The progress measure L turns out to be more useful. For example, it behaves
very nicely when we restrict ourselves to coordinate queries of noisy copies of X.
Indeed, the change in L due to the response to a coordinate query in a noisy copy of
X is context independent, i.e., does not depend on the answers to any of the previous
queries. (The proof of this is easy, but since we do not need it explicitly, it is omitted.)
A single coordinate query to bit i changes Li by Θ(1) while Lj is unchanged, and so
L changes by at most O(1/n). It is easy to show that the final value of L must have
expectation at least Ω(log n), and thus using our progress measure it is relatively easy
to get an Ω(n log n) lower bound on the depth of a tree computing id and making
only coordinate queries. In the case of more general queries we do not have context
independence in progress measure gain, but its behavior is still nice enough for us to
control its increase as a function of the depth of T .

By rewriting the expression for L we can get further intuition. Since x is uniformly
distributed, we have Pr[x] = Pr[x ⊕ ei], and thus by standard laws of conditional
probability the functions Li can be written as

(6) Li(v, x) = log
(
Pr[x|vis(v)])− log

(
Pr[x⊕ ei|vis(v)]

)
.

The term Pr[y|vis(v)] measures the conditional probability of the event [X = y], given
that T was run on the random input X and has reached the node v in the course
of computation. It is therefore the “perceived probability” that T assigns to y being
the value of the input, when it reaches v during the computation. Thus Li(v, x)
compares the perceived probabilities of x and its neighbor x⊕ ei and thus measures



THE NOISY BROADCAST PROBLEM 1817

how well the computation has distinguished x from x⊕ei, given that it has arrived at
v. L(v, x) gives an aggregate measure of how well the computation has distinguished
x from all of its neighbors. Note that while it is also important that the computation
distinguishes x from points other than its neighbors, L does not take this into account
directly. Intuitively, the neighbors are the “hardest” points to distinguish x from, and
so it is enough for L to consider only these.

Let us now get a rough estimate for the change in L at the completion of a
successful algorithm when the true input is x. At the beginning of the computation,
when v is the root, L(v, x) is obviously zero. At the end of the computation, when T
reaches a leaf π, we expect that T should assign a high perceived likelihood to x, say
Ω(1). On the other hand, since the sum of the perceived likelihoods of all points is 1,
the average perceived likelihoods of the neighbors of x is at most 1

n , and the concavity
of the logarithm yields that L(π, x) ≥ log n−O(1).

A coarse intuition for the proof of Theorem 3 is that we bound the expected
gain to L obtained from each query by O( 1

n ). Since the typical value of L(Π, X) is
roughly logn (this is the value of L at the leaf reached by the computation and the
actual input on which T is run), it follows that at least Ω(n log n) queries are typically
required.

As noted above, if we restrict queries to noisy copies of individual input bits, it is
easy to show that each query changes L by at most O( 1

n ). When we turn to general
queries, this is no longer true; indeed, one can construct situations where a single
general query changes L by much more. Nevertheless, we are able to formulate and
prove a weaker statement (Lemma 14) that suffices for our bounds.

The relation to relative entropy. We note that the functions Li and L are related
to relative entropies. For example, looking at (5) one observes that E

[
Li(Π, X)

∣∣ x
]

is the relative entropy between the distribution of the leaf reached when T is run on
x and that of the leaf reached when T is run on the ith neighbor of x.

How we proceed. The next two lemmas formalize the above intuition and imply
Theorem 3 immediately. Lemma 13 states that for T to succeed with constant proba-
bility, the expected value of the progress measure at Π should be at least logarithmic
in n; and Lemma 14 shows that each level of depth in T contributes at most O( 1

n ) to
the expectation of the progress measure at Π (this is shown to be true not just for a
random input but even if the input is arbitrarily fixed). The proof of Theorem 3 will
be completed once we prove those lemmas. The relatively simple proof of Lemma 13
appears below. The proof of Lemma 14, which is considerably more involved, spans
through the rest of this section.

Lemma 13. Let T be a gnd-tree with inputs in {0, 1}n. Then when T is executed
over Υ(T, ε),

Pr[success] ≤ 2

log n
· E

[
|L(Π, X)|

]
+

1√
n
.

Lemma 14. Let T be a gnd-tree with inputs in {0, 1}n. When T is run over
Υ(T, ε), it holds for every x ∈ {0, 1}n that

E

[
|L(Π, X)| ∣∣ x

]
≤ 3 log(1/ε)

ε2
· depth(T )

n
+

5 log(1/ε)

ε
·
√

depth(T )

n
.

Proof of Theorem 3. Since the bound on conditional expectation in Lemma 14
holds for each x, it holds for the deconditioned expectation. Furthermore, since
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ε < 1/2, we can use 5 < 3/ε to get

E

[
|L(Π, X)| ∣∣ x

]
≤ log(1/ε)

ε2

(
3
depthT

n
+ 3

√
depthT

n

)
.

Substituting this into Lemma 13 yields the theorem.
Proof of Lemma 13. We first show that for any leaf π and input x,

(7) Pr[x ∧ π] ≤ Pr[π]
2L(π,x)

n
.

Taking logs, it suffices to show that

(8) L(π, x) ≥ log(Pr[π ∧ x]) − log

(
1

n
Pr[π]

)
.

Using (5), the fact that Pr[x] = Pr[x ⊕ ei], and the convexity of the logarithm
function, we have

L(π, x) =
1

n

n∑

i=1

[
log(Pr[π ∧ x]) − log(Pr[π ∧ (x⊕ ei)])

]

= log(Pr[π ∧ x]) − 1

n

n∑

i=1

log(Pr[π ∧ (x⊕ ei)])

≥ log(Pr[π ∧ x]) − log

(
1

n

n∑

i=1

Pr[π ∧ (x⊕ ei)]

)

≥ log(Pr[π ∧ x]) − log

(
1

n
Pr[π]

)
,

as required to prove (8) and (7).
Now let A(π, x) denote the condition L(π, x) < 1

2
log(n), and let Ā(π, x) denote

the complementary condition. We have

(9) Pr[success] ≤ Pr[Ā(Π, X)] + Pr[success ∧A(Π, X)].

Using the general upper bound E[|Z|] ≥ B Pr[Z ≥ B] for any random variable Z and
positive real B, the first term of (9) satisfies

Pr[Ā(Π, X)] ≤ 2

log n
E[|L(Π, X)|].

To bound the second term, let out(x) denote the set of leaves in T that output x.
Using (7) we have

Pr[success ∧A(Π, X)] ≤
∑

x

∑

{π∈out(x) : A(π,x)}
Pr[π ∧ x]

≤
∑

x

∑

{π∈out(x) : A(π,x)}

1√
n

Pr[π].

Since each leaf π belongs to exactly one set out(x) and
∑

π Pr[π] = 1, this is less than
or equal to 1√

n
.
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4.1. Proof of Lemma 14: Notation. The remainder of this section is devoted
to the proof of Lemma 14. For brevity we fix ε for the rest of the section, and work
over the execution space Υ of T , which we also refer to as simply the execution
space. Also, note that while Lemma 14 is stated for every x ∈ {0, 1}n, it suffices (by
symmetry) to prove it in the case x = 0. We begin by defining some notation.

Restriction to x = 0. Since we prove Lemma 14 only for the case x = 0, we can
use the following simplifications in our notation. For any i ∈ [n], define

p0(v) = p(v,0) = Pr[vis(v)|X = 0],

pi(v) = p(v, ei) = Pr[vis(v)|X = ei],

Li(v) = Li(v,0) = log

(
p0(v)

pi(v)

)
,

L(v) = L(v,0) =
1

n

∑

i

Li(v).(10)

Progress measure for events. Let us now extend the above notation for any event
A defined over the execution space. We denote

p0[A] = Pr[A|X = 0],

pi[A] = Pr[A|X = ei],

Li(A) = log

(
p0(A)

pi(A)

)
,

L(A) =
1

n

∑

i

Li(A).

Progress measures for variables. Given any function F , such as L and Li, that
maps events in the execution space to real numbers, we define an operator F̃ that maps
any random variable Z over the execution space to a real-valued random variable over
the execution space. Let Z be a random variable taking on values from S. Viewing
Z as a function from the execution space to S, we have that for each s ∈ S, Z−1(s)
is an event. We define F̃ (Z) to be the real-valued random variable that gets value
F (Z−1(s)) when Z gets value s. We abuse notation by omitting the “∼” and simply
writing F (Z).

Intuitively, the value of the random variable Li(Z) indicates how helpful the
observed value of Z is for distinguishing between the zero input from ei. The value of
L(Z) indicates how well the observed value of Z is for distinguishing the zero input
from a randomly chosen neighbor.

In the case that Z is the random variable Π, the notation L(Π) as just defined
coincides with the definition we get by using the progress measure for vertices defined
in (10) and evaluating it at the random variable Π.

We define zero-conditioned expectation and entropy by

E0[Z] = E[Z|X = 0],(11)

H0[Z] = H[Z|X = 0].

The goal of proving Lemma 14, formalized using the new notation, is to show
that

(12) E0

[
|L(Π)|

]
≤ 3 log(1/ε)

ε2
· depth(T )

n
+

5 log(1/ε)

ε
·
√

depth(T )

n
.
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4.2. Analyzing a single event involving one noisy copy. To prove (12) we
need to understand the behavior of L(Z) for certain random variables Z (particularly,
for the random variable Π). We begin by understanding its behavior on particularly
simple events and variables.

Definition 15 (λ-events and λ-variables). For an index λ ∈ Λ,
(i) an event over the execution space that depends only on Y λ is called a λ-event;
(ii) a random variable that depends only on Y λ is called a λ-variable.
In this subsection we obtain bounds on L(A) and (L(A))2 for λ-events A, in terms

of ε, p0[A], and the quantities δi[A] defined by δi[A] = pi[A] − p0[A]. We then derive
analogous bounds for expectations of λ-variables.

In the remainder of this subsection we use A to denote a λ-event, and for simplicity
we often denote

p0 = p0[A],

pi = pi[A],

δi = pi − p0,

Li = log(p0/pi)

when A is implicit from the context.
The following is an easy bound on pi[A]/p0[A] in terms of ε.
Lemma 16. For any λ-event A, for all i ∈ [n],

ε

1 − ε
≤ p0[A]

pi[A]
≤ 1 − ε

ε
.

Proof. We have

p0 =
∑

a∈A

p0[Y
λ = a],

pi =
∑

a∈A

pi[Y
λ = a],

and therefore

min
a∈A

p0[Y
λ = a]

pi[Y λ = a]
≤ p0

pi
≤ max

a∈A

p0[Y
λ = a]

pi[Y λ = a]
.

Since

p0[Y
λ = a]

pi[Y λ = a]
=

{
1−ε
ε if ai = 0,
ε

1−ε if ai = 1,

the conclusion of the lemma follows.
To prove the bounds on L(A) and L(A)2, we need the following upper bound for∑

i δi
2.

Lemma 17. For any λ-event A,

(13)
∑

i∈[n]

δ2
i ≤ 2

ε2
p2
0 ln

(
1

p0

)

(where, as usual, p2
0 ln(1/p0) is defined to be 0 for p0 = 0.)
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Proof. Since A depends only on Y λ, A can be identified with the subset of
{0, 1}n of values for Y λ that imply the event A. The bound of the lemma will be
obtained by interpreting the quantities δi as biased Fourier coefficients (see [31]) of
the characteristic function of A. For this we need some definitions and facts.

Biased Fourier transform. Let F denote the inner product space consisting of
functions mapping {0, 1}n to R with the inner product

〈g, h〉 = EN [g(N)h(N)],

where N is an ε-noise vector of length n, defined in section 2.1.
For S ⊆ [n], the biased Fourier character χS ∈ F is defined by

χS(x) =
∏

i∈S

xi − ε√
ε(1 − ε)

.

In particular χ∅ is identically 1. For f ∈ F , the ε-biased fourier transform of f is the
function f̂ mapping subsets of [n] to R defined for S ⊆ [n] by

f̂(S) = 〈f, χS〉.

For ease of notation, we use f̂(i) instead of f̂({i}) and χi for χ{i}.
It is easily verified that {χS : S ⊆ [n]} is an orthonormal basis of F . It follows

that for any f ∈ F

f =
∑

S

f̂(S)χS

and that for any g, h ∈ F

(14) 〈g, h〉 =
∑

S

ĝ(S)ĥ(S).

For i ∈ [n], let Ti denote the linear transformation on F defined by Tif(x) =
f(x⊕ ei). Define the constant d = 1−2ε√

ε(1−ε)
. By direct computation, one obtains

(15) 〈TiχS , χ∅〉 =

⎧
⎪⎨
⎪⎩

1 if S = ∅,
d if S = {i},
0 otherwise.

We now return to the proof of Lemma 17. Let f be the characteristic function of
the set A. Using the definitions and the facts above we have

p0 = 〈f, χ∅〉,
pi = 〈Tif, χ∅〉 =

∑

S

f̂(S)〈Ti(χS), χ∅〉 = f̂(∅) + df̂(i),

δi = df̂(i).

We thus have that
∑

i δ
2
i = d2

∑
f̂(i)2. The proof of Lemma 17 will therefore be

completed once we prove the following lemma.
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Lemma 18. Let f : {0, 1}n −→ [0, 1] be any function. Then

∑
f̂(i)2 ≤ 2

ε(1 − ε)
f̂(∅)2 ln

(
1

f̂(∅)

)
.

Lemma 18 is a generalization to the biased case of a lemma from [32].

Proof. Let S(f) =
∑

f̂(i)2, and let g ∈ F be the function g =
∑

i f̂(i)χi. By (14),

S(f) = 〈f, g〉.
Defining � ∈ F by �(x) =

∑
i f̂(i)xi and μ = EN [�(N)] = ε

∑
i f̂(i), we have that for

all x,

g(x) =
�(x) − μ√
ε(1 − ε)

.

Consequently, we have from Lemma 12 that

Pr[g(N) ≥ s] = Pr[�(x) − μ ≥ s
√
ε(1 − ε)] ≤ e−2ε(1−ε)s2/S(f).

Since f(x) ∈ [0, 1] for every x, it holds for any positive parameter t that

S(f) = 〈f, g〉
≤ tEN [f(N)] + EN [(g(N) − t)1{g(N)>t}]

= tf̂(∅) +

∫ ∞

s=0

Pr[g(N) − t > s]ds

= tf̂(∅) +

∫ ∞

s=t

Pr[g(N) > s]ds

≤ tf̂(∅) +

∫ ∞

s=t

e−2ε(1−ε)s2/S(f)ds

≤ tf̂(∅) +
1

t

∫ ∞

s=t

se−2ε(1−ε)s2/S(f)ds

= tf̂(∅) +
S(f)

4ε(1 − ε)t
e−2ε(1−ε)t2/S(f).

Choosing t =

√
S(f)√

2ε(1−ε)

√
ln(1/f̂(∅)) in the last expression yields

S(f) ≤ f̂(∅)√S(f)√
2ε(1 − ε)

⎡
⎣
√

ln

(
1

f̂(∅)

)
+

1

2

√
ln(1/f̂(∅))

⎤
⎦ .

Now assume that f̂(∅) ≤ 1/2. In this case the second summand is bounded above
by the first, and we get

S(f) ≤
√

2S(f)

ε(1 − ε)
f̂(∅)

√
ln

(
1

f̂(∅)

)
,

which implies the desired inequality

S(f) ≤ 2

ε(1 − ε)
f̂(∅)2 ln

(
1

f̂(∅)

)
.
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Now if f̂(∅) > 1/2 (it always holds that f̂(∅) = E[f ] ≤ 1), take h = 1 − f . Then

ĥ(∅) ≤ 1/2, and we have

(16) S(f) = S(h) ≤ 2

ε(1 − ε)

(
ĥ(∅)2 ln

(
1

ĥ(∅)

))
.

Since f̂(∅) = 1 − ĥ(∅), we may, using Proposition 10, replace ĥ(∅) by f̂(∅) in (16).
This completes the proof of Lemma 18.

This also completes the proof of Lemma 17.
We are now ready to state and prove the bound for λ-events.
Lemma 19. Let A be a λ-event. Then

L (A) ≤ 3 log(1/ε)

ε2n
log

(
1

p0

)
− log e

p0n

n∑

i=1

δi,(17)

L2 (A) ≤ 6(log(1/ε))2

ε2n
log

(
1

p0

)
.(18)

Proof. By definition, L (A) = − 1
n

∑n
i=1 log

(
1 + δi

p0

)
= − log e

n

∑n
i=1 ln

(
1 + δi

p0

)
.

To obtain (17) we rewrite the expression for L (A) in terms of the function b defined
in (4), and use the second part of Corollary 9 together with the inequality pi/p0 ≥ ε,
and then use Lemma 17 to get

L (A) =
− log e

n

[
n∑

i=1

(
δi
p0

)2

b

(
δi
p0

)
+

n∑

i=1

δi
p0

]

≤ log e

n

[
2 ln(1/ε)

p2
0

n∑

i=1

δ2
i −

1

p0

n∑

i=1

δi

]

≤ 3 log(1/ε)

ε2n
log

(
1

p0

)
− log e

p0n

n∑

i=1

δi.

For (18) we rewrite the expression for L (A)
2

in terms of the function a defined
in (3) and obtain the chain of inequalities

L (A)
2

=

(
log e

n

n∑

i=1

(
δi
p0

)
a

(
δi
p0

))2

(1)

≤
(

2 log(1/ε)

p0

1

n

n∑

i=1

δi

)2
(2)

≤
⎛
⎝2 log(1/ε)

p0

√√√√ 1

n

n∑

i=1

δ2
i

⎞
⎠

2

≤ 4(log(1/ε))2

p2
0n

n∑

i−1

δ2
i

(3)

≤ 4(log(1/ε))2

p2
0n

2p2
0 log(1/p0)

ε2 log e
≤ 6(log(1/ε))2

ε2n
log

(
1

p0

)
.

Here (1) comes from the first part of Corollary 9, (2) follows from the Cauchy–Schwarz
inequality, and (3) is obtained from Lemma 17.

We now deduce an analogue of Lemma 19 for expectations of λ-variables.
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Corollary 20. Let Z be a λ-random variable. Then

E0[L (Z)] ≤ 3 log(1/ε)

ε2n
H0[Z]

and E0[L (Z)
2
] ≤ 6(log(1/ε))2

ε2n
H0[Z].

Proof. In the following expressions, the index z ranges over values of Z. Using
the definition of L (Z) and applying (17) we get

E0[L (Z)] =
∑

z

p0[Z = z]L([Z = z])

≤
∑

z

3 log(1/ε)

ε2n
p0[Z = z] log

(
1

p0[Z = z]

)
+
∑

z

log e

n

n∑

i=1

δi[Z = z]

=
3 log(1/ε)

ε2n
H0[Z],

where the last transition is obtained by noting that the second double sum is 0 since
for each fixed i,

∑
z pi[Z = z] =

∑
z p0[Z = z] = 1, and so

∑
z δi[Z = z] = 0.

The bound on E0[L (Z)
2
] follows by a similar (actually simpler) calculation us-

ing (18).

4.3. Box events. In this subsection we define box events and box random vari-
ables, which are more general than λ-events and λ-variables. We then extend the
bounds from the previous section to the box case, and apply these bounds to the
random variable Π, which turns out to be a box random variable.

Box events. A box event is an intersection of λ-events for possibly different λ’s.
Any box event B can be uniquely written as B =

⋂
λ∈Λ Bλ, where each Bλ is a λ-

event. A box random variable is a random variable Z for which each of the events
[Z = s] is a box event.

Our interest in box events stems from the following immediate fact.
Fact 21. For each vertex v in T the event vis(v) is a box event, and therefore Π

is a box random variable.
Let B =

⋂
λ∈Λ Bλ be a box event. The different λ-events (Bλ : λ ∈ Λ) may well

be dependent, as the variables Y λ, each being correlated with X, are dependent. We
observe, however, that once we condition on a fixed value of X they become mutually
independent. This implies the following properties for box events.

Fact 22. Every box event B satisfies

p0[B] =
∏

λ∈Λ

p0[B
λ].

Moreover, for every i ∈ {1, . . . , n},

pi[B] =
∏

λ∈Λ

pi[B
λ],

Li(B) =
∑

λ∈Λ

Li

(
Bλ

)
,

and L(B) =
∑

λ∈Λ

L
(
Bλ

)
.

(19)
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Contribution of copies to progress. Looking at (19) one observes that for box
events the contribution of each noisy copy to the progress measure can be easily
singled out. For a box event B and for λ ∈ Λ we define

Lλ
i (B) = Li

(
Bλ

)

and Lλ(B) = L
(
Bλ

)
.

In the same way that we extended L and Li from events to random variables, we
extend Lλ and Lλ

i from box events to box random variables.
Some more notation. The following notation is used for the bounds for box

random variables below. Throughout this subsection we use the letter y to denote
points in ({0, 1}n)Λ representing an assignment to Y Λ (recall that Y Λ is the set of

all noisy copies of the input). We use yλ to denote a value of Y λ. Also, writing λ̂

for the set Λ − {λ}, we use yλ̂ to denote a value of Y λ̂, namely an assignment to all

noisy copies but Y λ. In a context where a point y ∈ ({0, 1}n)Λ is specified, we use yλ̂

and yλ to denote the restrictions of y to the λ coordinate or the set λ̂ of coordinates,

respectively. We also write y = (yλ, yλ̂).
Lemma 23. Let Z be a box random variable. Then

E0[L
λ(Z)] ≤ 3 log(1/ε)

ε2n
H0[Z|Y λ̂],

E0[(L
λ(Z))2] ≤ 6(log(1/ε))2

ε2n
H0[Z|Y λ̂].

Proof. Since Z is a box random variable, its value is determined by the value

of Y Λ. We can therefore write Z = Z(y) = Z(yλ, yλ̂). Lemma 23 is obtained by

applying Corollary 20 to restrictions of Z of the form Z(Y λ, yλ̂), which are λ-random

variables. Let us therefore denote the random variable Z(Y λ, yλ̂) by Zyλ̂ . Letting y

range over all values of Y Λ, we have

E0[L
λ(Z)] =

∑

y

p0[Y
Λ = y]Lλ([Z = Z(y)])

=
∑

y

p0[Y
Λ = y]L([Z = Z(y)]λ)

=
∑

y

p0[Y
Λ = y]L([Z(Y λ, yλ̂) = Z(y)])

=
∑

yλ̂

p0[Y
λ̂ = yλ̂]E0

[
L(Zyλ̂)

]

≤
∑

yλ̂

p0[Y
λ̂ = yλ̂]

3 log(1/ε)

ε2n
H0[Z|Y λ̂ = yλ̂] (by Corollary 20)

=
3 log(1/ε)

ε2n
H0[Z|Y λ̂].

The bound on E0[(L
λ[Z])2] is obtained similarly.

Lemma 24. For any box random variable Z,

H0[Z] =
∑

λ

H0[Z|Y λ̂].
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Proof. As in the proof of Lemma 23 we can write Z = Z(y), since Z depends
only on the value of Y Λ. We denote the box events [Z = Z(y)] by B(y), and let

B = {B(y)}y. In the sums below, y ranges over the values of Y Λ and yλ̂ ranges over

the values of Y λ̂:

−H0[Z] =
∑

B∈B
p0[B] log p0[B]

=
∑

B∈B
p0[B]

∑

λ

log p0[B
λ]

=
∑

λ

∑

B∈B
p0[B] log p0[B

λ]

=
∑

λ

∑

y

p0[Y
Λ = y] log p0[B(y)λ]

=
∑

λ

∑

yλ̂

(
p0[Y

λ̂ = yλ̂] ·
∑

yλ

p0[Y
λ = yλ] log p0[B(y)λ]

)

=
∑

λ

∑

yλ̂

(
p0[Y

λ̂ = yλ̂] ·
∑

yλ

p0[Y
λ = yλ|Y λ̂ = yλ̂] log p0[B(y)|Y λ̂ = yλ̂]

)

= −
∑

λ

∑

yλ̂

(
p0[Y

λ̂ = yλ̂] ·
∑

yλ

H0[Z|Y λ̂ = yλ̂]
)

= −
∑

λ

H0[Z|Y λ̂].

Since Π is a box random variable, we obtain the following as an immediate con-
sequence of Lemmas 23 and 24.

Corollary 25. Let T be a gnd-tree. Then the random variable Π defined over
the execution space of T satisfies

E0[L(Π)] ≤ 3 log(1/ε)

ε2n
H0[Π](20)

and E0

[
∑

λ

(Lλ(Π))2

]
≤ 6(log(1/ε))2

ε2n
H0[Π].(21)

4.4. Dealing with correlations. Since H0[Π] is obviously bounded from above
by depth(T ), we would be happy to prove a bound on E0[|L(Π)|] of the form H0[Π] ·
polylog(1/ε)/n. Corollary 25 comes close: noting that L(Π) =

∑
λ L

λ(Π) we see that
if only the variables Lλ(Π) were uncorrelated, (21) would have given a bound on the
second moment of L(Π), and together with (20) we would have easily obtained the
desired bound (since L(Π) can be negative, (20) by itself is not sufficient to get the
bound).

However, in general the variables Lλ(Π) can be correlated. For example, T can
decide to query one noisy copy only if queries to a different copy have yielded very
little gain to the progress measure. This would introduce correlation between the
contributions to the progress measure of those two copies. To handle the correlations
we define two random variables, Q = Q(Π) and R = R(Π). Random variable Q is the
sum over nodes on the path to Π, of the expected progress due to the query at that
node (a precise definition appears below), and R = L(Π) −Q.
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We show that Q has the same expectation as L(Π) but is nonnegative, and thus
E0[|Q|] = E0[Q] = E0[L(Π)], which we already know is suitably small from (20).
It is then left to show a bound on E0[|R|]. We show that R can be written as a
sum R =

∑
λ∈Λ Rλ of contributions from the individual noisy copies, but unlike the

variables Lλ(Π), the Rλ’s are uncorrelated. The bound on E0[|R|] is then obtained
by proving a bound on E0[(R

λ)2] for all λ ∈ Λ.

The variables L, Q, and R. In this subsection we write L to denote the random
variable L(Π), and Lλ for Lλ(Π) (we still use the notation L(v) and Lλ(v) for vertices
other than Π). Recall that V is the set of vertices of T , and define a partial order on
V by writing v ≤ w if v lies on the path from the root to w. We say that v and w
are incomparable if neither v ≤ w nor w ≤ v. For an internal vertex v, let v0 and v1
denote its children.

In order to define Q, we first decompose L as a sum of random variables {Lv}v∈V ,
where Lv represents the contribution of the query at vertex v to L. For vertices
v, w ∈ T we define

Lv(w) =

⎧
⎪⎨
⎪⎩

L(v0) − L(v) if v0 ≤ w,

L(v1) − L(v) if v1 ≤ w,

0 otherwise.

Lv(w) measures the contribution of the query made at v to L(w). It easily follows
from the definition that L(w) =

∑
v∈V Lv(w). Moreover, one can verify that

Lλ(w) =
∑

v∈V λ

Lv(w)

(where V λ is the set of vertices in T that query the noisy copy indexed by λ). For
every v we define the random variable Lv = Lv(Π). We further define the following
random variables:

Qv =

{
E0[Lv|vis(v)] if v ≤ Π,

0 otherwise,

Rv = Lv −Qv,

Q =
∑

v∈V

Qv, and Qλ =
∑

v∈V λ

Qv for every λ ∈ Λ,

R =
∑

v∈V

Rv, and Rλ =
∑

v∈V λ

Rv for every λ ∈ Λ.

Qv can be thought of as an a priori approximation to Lv, and Rv can be thought of
as the a posteriori correction to Qv. The following are some properties of Qv and Rv.

Proposition 26. For any internal vertices v and w,
1. E0[Qv] = E0[Lv];
2. if v ≥ w, E0[Qv|vis(w)] = E0[Lv|vis(w)];
3. if v ≥ w, E0[Rv|vis(w)] = 0;
4. Qv ≥ 0.

Proof. Part 1 is immediate from the definitions of Qv and Lv. For part 2, since
Qv = Lv = 0 when w is not visited, we have E0[Qv|vis(w)] = 1

Pr[vis(w)]
E0[Qv] =

1
Pr[vis(w)]

E0[Lv] = E0[Lv|vis(w)]. Part 3 follows immediately from part 2. For part 4,
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fix v, and for j ∈ {0, 1} and i ∈ {0, . . . , n} let ai(j) = pi(vj)/pi(v). Observe that
ai(0) + ai(1) = 1 for each i. Now, if v is not visited, then by definition Qv = 0;
otherwise, if v is visited, we have

Qv =
1

n

n∑

i=1

(
a0(0) log

a0(0)

ai(0)
+ a0(1) log

a0(1)

ai(1)

)
,

and each term of the sum is nonnegative by Proposition 11.
Proposition 27. For any vertices v, w ∈ V ,
1. if v and w are incomparable, then E0[QvQw] = 0;
2. if v ≤ w, then E0[QvQw] = E0[QvLw];
3. if v �= w, then E0[RvRw] = 0.

Proof. If v and w are incomparable, then on any execution of T either v or w
is not visited, and so QvQw = RvRw = 0 and we have part 1. Part 2 follows since
both Qw and Lw are 0 if w is not visited, and conditioned on w being visited, Qv is
constant. Formally,

E0[QvQw] = Pr[vis(w)]E0[QvQw|vis(w)]

= Pr[vis(w)]E0[Qv|vis(w)]E0[Qw|vis(w)]

= Pr[vis(w)]E0[Qv|vis(w)]E0[Lw|vis(w)]

= Pr[vis(w)]E0[QvLw|vis(w)] = E0[QvLw].

For part 3, if v and w are incomparable, then RvRw is 0. If v < w, then the
product is 0 unless w is visited. But conditioned on w being visited, Rv is a constant,
and E0[Rw|vis(w)] = 0.

As an immediate corollary of part 3 of Proposition 27 we have the following.
Corollary 28. For λ �= κ ∈ Λ, E0[R

λRκ] = 0.

Bounds for L, Q, and R. Having defined L, Q, R, and related variables, and
proven their basic properties, we now prove some bounds for these variables that
ultimately yield (12). The first bound is on the contribution that the subtree of T
below a given vertex can make to Lλ.

Proposition 29. Let v ∈ V λ. Then |∑w∈V λ:w≥v Lw| ≤ 2 log(1/ε).
Proof. The sum inside the absolute value equals 0 unless Π ≥ v. If Π ≥ v, then the

sum is equal to |Lλ(Π)−Lλ(v)| ≤ |Lλ(Π)|+ |Lλ(v)| ≤ 2 log(1/ε) by Lemma 16.
Next we show that the second moment of Rλ cannot be much higher than the

second moment of Lλ.
Lemma 30. For each λ ∈ Λ, E0[(R

λ)2] ≤ E0[(L
λ)2] + 6 log(1/ε)E0[L

λ].
Proof.

E0[(R
λ)2] = E0[(L

λ −Qλ)2]

≤ E0[(L
λ)2] + 2|E0[L

λQλ]| + E0[(Q
λ)2].(22)

Since by Lemma 16 we have |Lλ| ≤ log(1/ε), we can bound the second term in (22)
by

2|E0[L
λQλ]| ≤ 2 log(1/ε)E0[|Qλ|] = 2 log(1/ε)E0[L

λ].

For the third term in (22), we have



THE NOISY BROADCAST PROBLEM 1829

E0[(Q
λ)2] =

∑

v,w∈V λ

E0[QvQw]

(1)

≤ 2
∑

v,w∈V λ:v≤w

E0[QvQw]

(2)
= 2

∑

v,w∈V λ:v≤w

E0[QvLw]

= 2
∑

v∈V λ

E0

[
Qv ·

∑

w∈V λ:w≥v

Lw

]

(3)

≤ 2E0

[
∑

v∈V λ

Qv

]
· 2 log(1/ε)

= 4 log(1/ε)E0[Q
λ]

(4)
= 4 log(1/ε)E0[L

λ],

where (1) follows from part 1 of Proposition 27, (2) follows from part 2 of Propo-
sition 27, (3) follows from Proposition 29, and (4) follows from part 1 of Proposi-
tion 26. Combining the bounds for the second and third terms in (22), the lemma is
obtained.

Completing the proof. We are now ready to prove (12), which implies Lemma
14, which in turn completes the proof of Theorem 3.

Since L = Q + R, we have

(23) E0[|L|] ≤ E0[|Q|] + E0[|R|].
Using parts 1 and 4 of Proposition 26, we have that E0[|Q|] = E0[Q] = E0[L]. Hence
using Corollary 20 and the immediate fact that H0[Π] ≤ depth(T ), we can bound the
first term in the right-hand side (r.h.s.) of (23) by

(24) E0[|Q|] = E0[L] ≤ 3 log(1/ε)

ε2n
· H0[Π] ≤ 3 log(1/ε)

ε2
· depth(T )

n
.

For the second term of the r.h.s. of (23), we have using the Cauchy–Schwarz
inequality

E0[|R|]2 ≤ E0[R
2]

=
∑

λ

E0[(R
λ)2] (by part 3 of Proposition 27)

≤
∑

λ

(
E0[(L

λ)2] + 6 log

(
1

ε

)
E0[L

λ]

)
(by Lemma 30)

=

(
∑

λ

E0[(L
λ)2]

)
+ 6 log

(
1

ε

)
E0[L]

≤ 24(log(1/ε))2

ε2n
H0[Π] (by Corollary 25)

≤ 24(log(1/ε))2

ε2

depth(T )

n
.

Combining the bounds for Q and for R we get
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E0[|L|] ≤ 3 log(1/ε)

ε2
· depth(T )

n
+

5 log(1/ε)

ε
·
√

depth(T )

n
,

which completes the proof.

5. Lower bound for decision functions. In this section we prove lower
bounds for computing decision functions (functions that output a single boolean
value), as stated in Theorem 5. Our lower bounds are stated in terms of the sen-
sitivity of the function to be computed, which is defined as follows.

Definition 31. Let f : {0, 1}n → {0, 1} be any function. The sensitivity of
f at input x ∈ {0, 1}n, denoted sx(f), is the number of indices i ∈ [n] such that
f(x) �= f(x⊕ ei). The sensitivity of f is the maximum of sx(f) over all x.

For example, AND, OR, and PAR all have sensitivity n, and every other symmetric
boolean function has sensitivity at least n/2.

We have the following lower bound.
Theorem 32. Let ε ∈ (0, 1/2) and δ ∈ (0, 1/16), and let f be an n-variate

boolean function. Any randomized gnd-tree that, for every input x, outputs f(x) with
probability 1 − δ when run with noise parameter ε satisfies

depth(T ) ≥ ε2 log(1/4δ)

200 log2(1/ε)
· s(f).

Thus gnd-trees that compute symmetric boolean functions with small constant
probability of error require linear depth. While this fact is trivial for noisy broadcast
protocols (since the protocol must consider all bits of the input), it is not so for
gnd-trees. In fact, we do not know how to achieve linear lower bounds for gnd-trees
without applying the full power of the techniques developed in section 4.

Theorem 32 also implies that gnd-trees for symmetric functions that are correct
with probability 1 − nΩ(1) must have depth Ω(n log n). Before proving Theorem 32,
we derive a corollary for noisy broadcast protocols which shows that they require
Ω(n log log n) broadcasts to compute symmetric functions with polynomially small
error probability.

Corollary 33. Let ε ∈ (0, 1/2) and β > 0. Let f be an n-variate boolean
function. Any randomized noisy broadcast protocol for f that, for every input x,
outputs f(x) with probability 1 − n−β when run with noise parameter ε uses at least

Ω(s(f) · log log(nβ)

log(1/ε) ) broadcasts.

Proof. Suppose that A is a noisy broadcast protocol for f that on any input
x has error probability 1 − n−β , and suppose A uses t · s(f) broadcasts. Applying
Theorem 6 with α = 2n

s(f)
yields a subset K of s(f)/2 variables given by the theorem.

Let z be an input with sensitivity s(f). If we fix the variables of K according to z,
the resulting function f ′ with variables indexed by [n] − K has sensitivity at least
s(f)/2. Furthermore, by the conclusion of Theorem 6, there is a gnd-tree T that uses
2t · s(f) queries and for all inputs y ∈ {0, 1}[n]−K outputs f ′(y) with probability at
least 1 − n−β when run with noise parameter ε2t. By Theorem 32, we have

2t · s(f) ≥ ε4t log(nβ/4)

50 log2(1/ε2t)
· s(f),

from which the claimed lower bound easily follows.
The decision-function execution space Υz. Let T be a gnd-tree. To prove Theo-

rem 32, it suffices to prove a suitable upper bound on the probability that T is correct,
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when T is executed on an input selected at random from some distribution. Rather
than use the uniform distribution as we did for Theorem 3, we use a distribution
tailored to f .

Let z ∈ {0, 1}n be chosen such that sz(f) = s(f), and let I ⊆ [n] be such that
f(z) �= f(z ⊕ ei) for i ∈ I. The ε-execution space for f , denoted Υz = Υz(T, ε), is
similar to Υ defined in section 4, except that X is set to z with probability 1/2 and
is set to z ⊕ ei with probability 1/2s for each i ∈ I.

Without loss of generality, we may assume that z = 0 and that f(0) = 0 (we can
replace f by the function mapping x to f(x⊕z)⊕f(z) and make the analogous change
to T ). Furthermore, we may assume that s(f) = n by fixing all variables outside I
to 0 in both f and T . We therefore have that the execution space for f is Υ0, and it
satisfies that the input X is equal to 0 with probability 1/2 (in which case f(X) = 0)
and to any of the vectors ei with probability 1/2n (in which case f(X) = 1). As in
the proof of Theorem 3, since we are proving a lower bound with respect to an input
distribution, we may now assume that T is deterministic.

The progress measure. We use the same progress measure L as was used in
section 4. Note that once X is fixed to be 0 the spaces Υ(T, ε) and Υ0(T, ε) become
identical, and therefore the values of p0(v), pi(v), Li(v), and L(v,0), as defined at
the beginning of section 4.1, remain unchanged when defined over Υ0(T, ε). For the
same reason, Lemma 14 holds for x = 0 with Υ replaced by Υ0. Using the notation
for zero-conditioned expectation as defined in (11) (again, the definition is the same
whether it is done over Υ or over Υ0 since it fixes X), we have that (12) holds over
Υ0(T, ε).

Adaptation of notation. As in section 4, we denote L(v) = L(v,0). We also define
the following random variables and events over Υ0(T, ε):

• Let Π denote the leaf that terminates the execution of T over Υ0(T, ε).
• Let err denote the event that T does not output f(X) (when this occurs we

say that T errs).

5.1. The analogue of Lemma 13. Having observed that Lemma 14 applies in
the decision-function case (for x = 0), we now need an analogue of Lemma 13. The
intuition here is that Lemma 14 bounds how well a gnd-tree can distinguish the zero
input from its neighbors, as a function of its depth. We now need to show that since
on the neighbors of 0 the gnd-tree must return different values than on 0, it must in
fact distinguish well between 0 and its neighbors, or else it will err.

The analogue of Lemma 13 for the decision-function case is given in Lemma 35,
but first we derive a lower bound on the probability that T errs, in terms of the
probability that on input 0, T arrives at a leaf π where L(π) is small. Define, for
every t ≥ 1,

(25) At = {π leaf of T | L(π) ≤ log t}.

Lemma 34. For every t ≥ 1,

Pr[err] ≥ Pr[At|X = 0]

2t
.

Proof. For every leaf π we have

L(π) = log (Pr[Π = π|X = 0]) − 1

n

∑

i

log (Pr[Π = π|X = ei]) (by definition)
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≥ log (Pr[Π = π|X = 0]) − log

(
1

n

∑

i

Pr[Π = π|X = ei]

)
(concavity of log)

= log (Pr[Π = π|X = 0]) − log (Pr[Π = π|X �= 0]) (by definition of Υ0).

Exponentiating both sides of the inequality with base 2, we get

(26) Pr [Π = π|X �= 0] ≥ Pr [Π = π|X = 0]

2L(π)
.

Now let A0
t = {π ∈ At|outπ = 0} denote the set of leaves in At where T outputs

zero, and similarly, let A1
t = {π ∈ At|outπ = 1}. Since f(0) = 0 and f(ei) = 1 for all

i ∈ [n], we have

Pr[err] =
1

2
Pr[err|X = 0] +

1

2
Pr[err|X �= 0]

≥ 1

2
Pr
[
A1

t |X = 0
]
+

1

2
Pr
[
A0

t |X �= 0
]

≥ 1

2
Pr
[
A1

t |X = 0
]
+

1

2
Pr
[
A0

t |X = 0
] · 1

t
(by (26) and definition of At)

≥ 1

2t
· (Pr

[
A1

t |X = 0
]
+ Pr

[
A0

t |X = 0
])

=
Pr [At|X = 0]

2t
,

concluding the proof.
The following lemma is the analogue of Lemma 13 for the decision-function case.
Lemma 35. Denote δ = Pr[err]. Then if δ ≤ 1/4,

E [|L(Π)||X = 0] ≥ 1

2
log

(
1

4δ

)
.

Proof. Take t = 1/4δ. Then by Lemma 34 we have

δ = Pr[err] ≥ Pr[At|X = 0]

2t
= 2δ · Pr[At|X = 0],

and thus

Pr[At|X = 0] ≤ 1/2.

Now on the complement of At with respect to the set of leaves in T , the values of L
are greater than log t. We therefore have

E [|L(Π)||X = 0] ≥ (1 − Pr[At|X = 0]) · log(t) ≥ 1

2
log

(
1

4δ

)
,

as desired.

5.2. Proof of Theorem 32. We are now ready to complete the proof of Theo-
rem 32.

Proof of Theorem 32. Let us consider the execution of T over Υ0(T, ε). It is given
that Pr[err] = δ < 1

16
. Applying Lemma 35 and (12), we thus have that

(27)
3 log(1/ε)

ε2
· depth(T )

n
+

5 log(1/ε)

ε
·
√

depth(T )

n
≥ t,
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where t = 1
2

log
(

1
4δ

) ≥ 1. Therefore either the first or the second summand in (27) is
greater than t

2
, and by isolating depth(T ) in the resulting inequalities we obtain

depth(T ) ≥ min

{
ε2tn

6 log(1/ε)
,

ε2t2n

100 log2(1/ε)

}
≥ ε2tn

100 log2(1/ε)
,

as desired.

6. Proof of the reduction theorem (Theorem 6). Let us now prove The-
orem 6. We are given a noisy broadcast protocol P that uses k broadcasts. We are
also given a noise parameter ε and another parameter α > 1. Our goal is to select
a subset K of size n/α and show that for each partial assignment ρ that fixes K
there is a (possibly randomized) gnd-tree T that uses 2k queries and, for any input
x ∈ {0, 1}[n]−K , when T is run on x with noise parameter εαk/n it gives the same
output that P gives when run on the input xρ ∈ {0, 1}n with noise parameter ε.

We select K to be the index set of processors that broadcast more than αk/n
times in P. Since there are k broadcasts in P, |K| < n/α.

Now fix a partial assignment ρ to K. The gnd-tree T is obtained by a sequence of
reductions. These reductions involve two intermediate models of noisy computation
which we now define.

The seminoisy broadcast model SNB(ε) is similar to the noisy broadcast model.
In this model there are n input processors Q1, . . . , Qn, a receiver P0, and a collection
{Pλ : λ ∈ Λ} of auxiliary processors (where Λ is an arbitrary index set). Qi initially
has input xi and is restricted to making ε-noisy broadcasts of xi. An auxiliary pro-
cessor Pλ may broadcast any boolean function of the bits it heard previously, and this
broadcast is noise-free, i.e., is received by every other processor with no error.

In the noisy-copy broadcast model NCB(ε), there is a receiver P0 and an indexed
collection {Pλ : λ ∈ Λ} of processors. Each of the Pi initially gets an (independent)
ε-noisy copy of the entire input. All broadcasts are noise-free.

Starting from P =: P1, we construct a sequence of protocols:
• P2 in the model SNB(ε) takes input in {0, 1}n.
• P3 in the model SNB(ε) takes input in {0, 1}[n]−K .
• P4 runs in the model NCB(εαk/n) and takes input in {0, 1}[n]−K .
• T is a gnd-tree that takes input in {0, 1}[n]−K .

As stated, there are k broadcasts in P. Using the notation from section 2.3, we
have, for 1 ≤ j ≤ k, the following:

• ij is the index of the processor broadcasting at step j.
• gj is the boolean function (depending on xj and the bits received by Pj prior

to step j) that determines broadcast j.
• bj is the bit broadcast at step j (obtained by evaluating gj).
• For h ∈ [n], bjh is the noisy copy of bj received by Ph.

We also introduce the notation gj0 and gj1 for the functions obtained from gj by
setting xj to 0 and to 1, respectively.

From P1 to P2. Given P1, the protocol P2 in the model SNB(ε) will consist of
k stages. Stage j simulates broadcast j of P1 and consists of three broadcasts.

The index set Λ for auxiliary processors is [n]. In P2, we will maintain the
invariant that after each stage j the following holds:

For 0 ≤ i ≤ n, Pi has constructed a sequence bi1, . . . , b
i
j of bits and the

collection {bih : 0 ≤ i ≤ n, 1 ≤ h ≤ j} has the same joint probability
distribution as it does in P1.
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P0 will compute its output exactly as in P1, and the invariant ensures that the
outputs of the two protocols have the same distribution.

Assume that the invariant holds inductively after stage j − 1. We define stage j
of P2 so as to maintain the invariant. In stage j, Qij broadcasts xij (which is all it

can do in this model) and Pij evaluates both gj0 and gj1 at bi
j

1 , . . . , bi
j

j−1 and broadcasts
the two values.

Each Pi must generate bji . Pi receives three bits (x, a0, a1), where x is a noisy copy
of xij broadcast by Qij , and a0 and a1 are the exact bits sent by Pij . If a0 �= a1, Pi

sets bij to ax, and if a0 = a1, Pi uses its private randomness to generate an ε-noise bit

N and sets bij to a0 ⊕N . It is easy to check that this choice maintains the invariant.

The total number of broadcasts in P2 is 3k, of which k are by input processors
and 2k are by auxiliary processors.

From P2 to P3. We now construct a protocol P3 for the restricted function f�ρ in
the model SNB(ε). For this function, the input (and the Qi) are indexed by [n]−K.
The index set Λ of auxiliary processors is chosen to be [n].

P3 simulates P2 in a step by step fashion. The only difficulty is that the processors
Qi for i ∈ K do not exist when running P3. In P2, processor Qi would send its input
bit, which is now fixed to ρi. In P3, the value ρi can be “hardwired” and each
processor simply simulates the reception of ρi as ρi ⊕ N , where N is an ε-noise bit
that it generates locally. Every other step is done exactly as in P2.

The total number of broadcasts in P3 is 3k, of which at most k are by input
processors and the remaining are by other processors. Furthermore, no input processor
sends its bit more than αk/n times.

From P3 to P4. We now construct a protocol P4 in the NCB(γ) model for
γ = εαk/n that simulates P3.

In P3, each input bit xi is broadcast at most αk times, and so each Pj receives
at most αk noisy copies of xi. In P4, Pj starts with a γ-noisy copy of xi. It suffices
to show that αk/n independent ε-noisy copies of xi can be generated from a single
γ-noisy copy of xi.

Lemma 36. Let t be an arbitrary integer, ε ∈ (0, 1/2), and γ = εt. There is a
randomized algorithm that takes as input a single bit b and outputs a sequence of t
bits and has the property that if the input is a γ-noisy copy of 0 (resp., of 1), then
the output is a sequence of independent ε-noisy copies of 0 (resp., of 1).

Proof. The algorithm is specified by two probability distributions q0 and q1 over
{0, 1}t. On input b, the algorithm outputs a string according to the distribution qb.

If the input b to the algorithm is a γ-noisy copy of 0 (resp., 1), then the output
will be generated according to the distribution function r0 = (1 − γ)q0 + γq1 (resp.,
r1 = (1 − γ)q1 + γq0).

Let p0 (resp., p1) be the distribution on {0, 1}t obtained by taking t independent
ε-noisy copies of 0 (resp., 1). We want to choose q0 and q1 so that r0 = p0 and r1 = p1.
For each s ∈ {0, 1}t, we need

(1 − γ)q0(s) + γq1(s) = p0(s),

(1 − γ)q1(s) + γq0(s) = p1(s).

Solving for q0(s) and q1(s) we get

q0(s) =
(1 − γ)p0(s) − γp1(s)

1 − 2γ
,
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q1(s) =
(1 − γ)p1(s) − γp0(s)

1 − 2γ
.

It suffices to show that q0 and q1 are probability distributions; i.e., they are
nonnegative and sum to 1. That they sum to 1 follows from the fact that p0 and p1

each sum to 1. Nonnegativity follows immediately from the easy fact that for any
s ∈ {0, 1}t, p0(s)/p1(s) ≥ p0(1

t)/p1(1
t) ≥ γ/(1−γ) and p1(s)/p0(s) ≥ p1(0

t)/p0(0
t) ≥

γ/(1 − γ).
From P4 to T . P4 is randomized; i.e., each processor uses its own internal source

of random bits in the protocol. We construct a random gnd-tree that first simulates
the random choices of all the processors in P4. Once these are fixed, P4 reduces to
a deterministic protocol. So it is enough to show how to simulate a deterministic
protocol Q in the NCB(γ) model by a gnd-tree.

Let λ1, . . . , λ2k be the sequence of indices of processors that broadcast in Q,
and let b1, . . . , b2k be the bits broadcast. The gnd-tree makes 2k queries and will be
chosen so that the answer to query j is bj . Query j is made to copy λj . Given that
the sequence of answers to the first j − 1 is b1, . . . , bj−1, the question asked of copy
ij is, What would processor Pij broadcast in Q given that the string of bits received
during the first j − 1 rounds is b1, . . . , bj−1? The answer to this is a boolean function
depending only on copy ij . Since all broadcasts in Q are noise-free, the sequence
of answers in the gnd-tree has exactly the same distribution as the sequence of bits
broadcast by Q.

This completes the proof of Theorem 6.

7. A protocol for identity. In this section we give a protocol for computing
id with O(n log log n) broadcasts. Our protocol is similar to, but simpler than, the
protocol of Gallager mentioned earlier. Gallager’s protocol and ours work in all three
models of noise discussed in the introduction.

Gallager gave an O(n log log n) broadcast protocol for PAR and used that protocol
to construct one for id. Our protocol uses constant rate error correcting codes, which
are well known to exist (random codes are good) but nontrivial to construct explicitly.
Gallager’s protocol has the advantage of being self-contained and explicit.

Error correcting codes are an efficient way to communicate large blocks of data
on a noisy channel. In the noisy broadcast model, each processor has only a single
bit to start, and so error correcting codes are not directly applicable.

For our protocol, we divide the processors into teams of size t = log n. The
processors in each team work together to transmit their bits to the receiver. Processors
ignore transmissions by processors in other teams.

For the analysis, we will need to assume ε < 1/12. This is without loss of
generality since given a protocol P that works for some constant noise parameter
ε′ we can get a protocol that works for larger noise parameter ε < 1/2 by a routine
amplification: every broadcast in P is repeated C times for some appropriate constant
C = C(ε, ε′), and each receiver decodes the broadcast by majority vote.

We will describe a protocol for a single team, denoted T = {Q1, . . . , Qt}. The
protocol uses O(t log t) broadcasts. We show that the probability that the receiver
fails to recover the team’s entire input is at most 2(4−t) = 2/n2. Repeating the same
protocol for each team yields a protocol for id that fails with probability less than
2/(n log n).

Let y = (y1, . . . , yt) denote the team’s input. The protocol works in two phases.
Phase 1. For each i ∈ [t], Qi broadcasts yi s = c1 log t times for some constant

c1 to be chosen according to Lemma 37. Every other processor tries to recover yi by
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taking a majority vote of the s copies it received.
Let yi be the copy of y recovered by Qi. Say that Qi is successful if yi = y. Let

U denote the set of unsuccessful processors.
Lemma 37. There exists a constant c1 = c1(ε) such that

Pr[[|U | ≥ εt] ≤ 4−t].

Proof. Processor Qi decodes yj incorrectly if at least 1/2 of the copies of yj
that Qi received were corrupted by noise. By Lemma 12 with each αi = 1 and t
(in the lemma) equal to (1/2 − ε)s, the probability that Qi decodes yj incorrectly

is at most e−2(1/2−ε)2s. Summing over the t bits of y, Pr[Qi ∈ U ] is at most q =

te−2(1/2−ε)2c1 log t.
For S ⊆ T , Pr[U = S] ≤ q|S|. Summing over subsets S of size at least εt, we

obtain

Pr[|U | ≥ εt] ≤ qεt2t = (2qε)t.

We want that this is at most 4−t, and so it suffices that q < (1/8)1/ε. It is
now easy to choose c1 sufficiently large (depending on ε) so that this last condition
holds.

Phase 2. In this phase the processors of T work together to transmit an encoding
of y based on an error correcting code. For boolean strings v, w of the same length, let
d(v, w) denote the number of coordinates where they differ. The following well-known
result states what we need about the existence of good codes.

Lemma 38. For γ ∈ (0, 1/2) there is an integer K1 = K1(γ) such that for each
positive integer t and each K ≥ K1, there is a subset Ct of {0, 1}Kt having size 2t,
such that for all v, w ∈ Ct with v �= w, d(v, w) ≥ γKt.

This is easily proved by the probabilistic method [3]. For γ sufficiently small,
there are explicit constructions, e.g., Justesen codes (see, e.g., [21]).

Set γ to be 6ε (here is where we need ε < 1/12). Let K = max{K1(γ), 1/ε2},
and let Ct be given by the lemma. Fix a bijection σ from {0, 1}t to Ct. Divide σ(y)
into t blocks of size K, and denote the jth block by σj(y).

In Phase 2, Qi broadcasts σi(y
i) (recall that yi is the copy of y recovered by Qi).

Let ri be the noisy version of this heard by the receiver, and let r be the concatenation
of r1, . . . , rlogn. The receiver chooses w ∈ Ct to minimize d(r, w) and outputs σ−1(w).

If d(r, σ(y)) < γKt/2 = 3εt, then by the choice of Ct, w = σ(y), and the receiver
correctly outputs y.

Since every processor that was successful in Phase 1 broadcasts a part of σ(y), r
differs from σ(y) only on coordinates sent by unsuccessful processors and coordinates
that were flipped due to noise. Let I ⊆ [Kt] be the index set of the coordinates that
were flipped by noise. Thus d(r, σ(y)) ≤ K|U | + |I|.

By Lemma 37, Pr[K|U | ≥ Kεt] ≤ 4−t. By Lemma 12, Pr[|I| ≥ 2Kεt] ≤ e−2ε2Kt,
which is at most 4−t for K ≥ 1/ε2. Thus the probability that the receiver does not
output the input of the team is at most 2 × 4−t ≤ 2/n2. Summing over all n/ log n
teams, the probability that the receiver fails is at most 2/(n log n).

8. A linear noisy broadcast protocol computing weight. In this section
we prove Theorem 4 by giving a protocol for computing weight(x) which uses a linear
number of broadcasts in the noisy broadcast model and showing a gnd-tree of linear
depth that computes it. This immediately implies linear protocols or gnd-trees for
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PAR, or any other boolean function whose value at x depends only on weight(x). Our
protocol does not work under any of the adversarial noise models.

We begin by giving a gnd-tree T of linear depth for weight(x), and then we convert
it to a protocol in the noisy broadcast model.

8.1. A gnd-tree for computing weight. We need some additional notation.
For θ ∈ [0, n], the threshold function fθ : {0, 1}n → {0, 1} is defined to be 1 if
weight(x) ≥ θ. All queries made by T are threshold functions. We define the real
function ρ : [0, n] −→ [0, n] by ρ(a) = (1 − ε)a + ε(n − a). Observe that an ε-noisy
copy of 0 has expectation ε and an ε-noisy copy of 1 has expecation 1− ε. Therefore,
for fixed x, the expected weight of a noisy copy of x satisfies

E[weight(x⊕N)] = ρ(weight(x)).

The gnd-tree T works in two phases. During the first phase, T does a modified
binary search to identify an interval [a, b] of length at most O(

√
n) that contains

weight(x) with high probability. During the second phase, T repeats the threshold
query f(a+b)/2 on O(n) different copies and determines weight(x) from this with high
probability.

Phase I. During this phase T does a modified binary search to identify an interval
of length O(

√
n) that contains weight(x) with high probability. Initially the interval

is [a0, b0] = [0, n]. The phase consists of stages. During stage i, the interval is reduced
to 2/3 of its previous length. The interval after stage i is denoted [ai, bi]. Phase 1
ends when bi − ai ≤ c(ε)

√
n, for c(ε) = 6/(1 − 2ε). This uses O(log n) stages.

The algorithm for a stage depends on the interval [a, b] at the beginning of the
stage and is denoted Sa,b. Let m = (a + b)/2 be the midpoint. Sa,b consists of
k = 16 lnn threshold queries fρ(m) to distinct copies of the input. If the number of

0 answers is more than k/2, then the interval [a′, b′] output by Sa,b is [a, a+2b
3

], and

otherwise it is [ 2a+b
3

, b].
We say that stage Sa,b fails if weight(x) belongs to [a, b] but not to [a′, b′].
Lemma 39. Let c(ε) = 6/(1 − 2ε). Let x ∈ {0, 1}n, and suppose a, b ∈ [0, n]

satisfy b−a > c(ε)
√
n and weight(x) ∈ [a, b]. The probability that Sa,b fails is at most

1/n2.
Proof. We divide the analysis according to which of the intervals [a, 2a+b

3
),

[ 2a+b
3

, a+2b
3

], and (a+2b
3

, b] contains weight(x).

If weight(x) ∈ [ 2a+b
3

, a+2b
3

], then weight(x) ∈ [a′, b′] for either of the two possible
outputs.

We next consider the case weight(x) ∈ [a, 2a+b
3

); the analysis in the other case is
very similar and is omitted. For such an x, we say that the answer to a query to fρ(m)

is correct if it returns 0.
Let q denote the probability a single noisy query of fρ(m) is incorrect. For i ∈ [k],

let Zi be the random variable that is 1 if the answer to the ith noisy query is incor-
rectly 1. The stage fails if

∑
i Zi ≥ k/2. Using Lemma 12 with ε = q and all of the

αi = 1, the probability that the stage fails is at most

Pr

[∑
(Zi − q) ≥ k

(
1

2
− q

)]
≤ e−2(1/2−q)2k = e−32(1/2−q)2 lnn.

If q ≤ 1/4, then this is at most 1/n2. So we complete the proof by showing that
q ≤ 1/4.
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Let X be a noisy copy of x and N the associated noise vector. For i ∈ [n], let
ai = 1 − 2xi. Xi = xi + aiNi = ρ(xi) + ai(Ni − ε) and

∑
i Xi = ρ(weight(x)) +∑

ai(Ni − ε). Note that under the case assumption we have ρ(m) − ρ(weight(x)) =
(m − weight(x))(1 − 2ε) ≥ (b − a)(1 − 2ε)/6 ≥ c(ε)

√
n(1 − 2ε)/6 ≥ √

n. Lemma 12
implies

q = Pr

[
∑

i

Xi ≥ ρ(m)

]
= Pr

[
∑

i

ai(Ni − ε) ≥ ρ(m− weight(x))

]

≤ Pr

[
∑

i

ai(Ni − ε) ≥ √
n

]
≤ e−2.

Observe that the total number of queries in Phase 1 is O((log n)2).
Bias differences. After successfully completing the first phase T “knows” that

the weight of x is in a strip [ar, br] of length roughly
√
n. In the second phase T

simply makes a linear number of queries of the form fρ(θ) to distinct noisy copies of x,

where θ = ar+br
2

. The weight of x is estimated based on the number of “1” answers.
Intuitively, the larger weight(x) is, the more 1’s we expect to see (note that the
distribution on the number of “1” answers depends only on the weight of x). We
make this observation more formal in the next definition and lemma.

Definition 40. Let ε ∈ (0, 1/2) be a noise parameter, and let θ ∈ [0, n]. For any
x ∈ {0, 1}n we define

βn,ε(ω, θ) = Pr
[
fρ(θ)(x⊕N) = 1

]
,

where ω = weight(x), and N is an ε-noise vector.
Lemma 41. There exists a global constant C > 0 which satisfies the following.

Let ε ∈ (0, 1/2) be a noise parameter, and let c(ε) be as in Lemma 39. Then for n
large enough it holds for every θ ∈ [0, n] and every ω ∈ [θ − c(ε)

√
n, θ + c(ε)

√
n] that

(28) βn,ε(ω + 1, θ) − βn,ε(ω, θ) ≥
exp

(
− C

ε(1−2ε)4

)

C
√
n

.

Lemma 41 follows in a straightforward way by writing βn,ε(ω+1, θ)−βn,ε(ω, θ) as
an expression involving binomial coefficients and powers of ε and of (1− ε), and then
applying simple estimations using Stirling’s formula. We omit the full derivation.

Phase II. For brevity, let us denote the expression in the r.h.s. of (28) by Δ(n, ε).
In the second phase, T applies the threshold tree Tk,θ to x, where θ = ar+br

2
and

k = 17/Δ2(n, ε). That is, T queries fρ(θ) on k distinct noisy copies of x (note that k
is linear in n, and thus this adds only a linear depth to T ).

To determine the output of T , let Z denote the number of queries of the threshold
tree for which the result was 1. Also, for every ω ∈ {0, 1, . . . , n} define a segment Iω
by

Iω =
[
k · βn,ε(ω, θ) − 2

√
k , k · βn,ε(ω, θ) + 2

√
k
]
.

As we show below, the segments Iω are all disjoint for ω ∈ [ar, br]. If Z ∈ Iω for such
an ω, T outputs ω. Otherwise T declares failure in computing weight(x).

Analysis of Phase II. As noted above, the depth that the second phase contributes
to T is linear in n (the total depth of T is therefore linear, as required). To show that
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the output is really weight(x) with high probability, we have to first note that the
output is well defined, namely that the segments Iω are disjoint for all ω ∈ [ar, br].
Indeed, since each Iω is a segment of length 4

√
k centered around k · βn,ε(ω, θ), the

choice of k and Lemma 41 directly imply that these segments are disjoint.
Now suppose weight(x) = ω for some ω ∈ [ar, br]. By definition, each query of

the threshold tree applied in the second phase returns the value 1 with probability
βn,ε(ω, θ), and thus

E[Z] = k · βn,ε(ω, θ).

Also, since Z is the sum of k independent random variables (the indicators of events
of the form “the ith query being 1”) each with variance at most 1, it follows that the
variance of Z is at most

√
k. Therefore by Chebyshev’s inequality,

Pr[Z ∈ Iω] = Pr
[
|Z − E[Z]| ≤ 2

√
k
]
≥ Pr

[
|Z − E[Z]| ≤ 2

√
V[Z]

]
≥ 3/4.

It follows that, assuming the first phase succeeds, T outputs weight(x) with probability
at least 3/4. The overall probability that T computed weight(x) correctly is therefore
at least 2/3.

8.2. Translating to a noisy broadcast protocol. We have constructed a
gnd-tree T of linear depth in n, which computes weight(x). Let us sketch how T can
be transfomed into a protocol in the noisy broadcast network model. As each query
that T makes is applied to a distinct ε-noisy copy of the input, we first need to get
hold of that many noisy copies of x.

Obtaining noisy copies of x. Let ε ∈ (0, 1/2) be the noisy parameter in a noisy
broadcast network, and let x ∈ {0, 1}n be an input. The first step in simulating T
is to obtain noisy copies of the input. To achieve d · n noisy copies of x, say, we
can make each processor broadcast its own bit d times. After this step (which takes
d · n broadcasts) is completed, each processor has d noisy copies of each player’s bits.
In the protocol described below we need only a linear number of noisy copies, and
therefore this step takes only a linear number of broadcasts.

Phase I simulation. Once a sufficient number of noisy copies of x has been
obtained, we can start by simulating the first phase of T . We can preassign Θ(log2 n)
processors to perform the queries originally applied by T in the first phase. To avoid
errors, we can have each processor repeat the result of the query it makes, broadcasting
it Θ(logn) times, so that with very high probability all the other processors will get
the result of the query correctly. At the end of the first phase simulation we have
that with probability at least 1− 1/poly(n) all processors agree on the same segment
[ar, br], the same as would have been acheived by T using the same noisy copies.

Since T makes Θ(log2 n) queries in the first phase, and since we simulate each
query by Θ(logn) broadcasts, the simulation of the first phase requires Θ(log3 n)
broadcasts.

Phase II simulation. The second phase in T consists of counting the number of 1’s
obtained in a series of threshold queries. In the simulation of this phase the receiver,
P0, will do the counting and output the result accordingly. The actual threshold
queries will be applied by the other processors: each of them, in turn, will apply fρ(θ)
queries to the noisy copies under its possession and broadcast the results.

A slight problem arises from the fact that P0 may receive the wrong result for
some of the queries due to noise. If weight(x) = ω, the probability that P0 will receive
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the answer 1 for a query of type fρ(θ) is not βn,ε(ω, θ) as before, but rather it is

β′
n,ε(ω, θ) = ε + (1 − 2ε)βn,ε(ω, θ).

But it is obvious that Lemma 41 still holds for β′
n,ε(ω, θ), perhaps with a different

constant C, and thus the simulation of the second phase can still be carried out.

9. Open problems. The main questions left open by this paper concern lower
bounds for decision functions.

1. Can every decision function be computed by a linear noisy broadcast protocol
if constant error is allowed? The same question can be asked for gnd-trees,
and we believe these two questions should have the same answer, and that the
answer should be negative. A random function would seem to be a natural
candidate for a hard function.

2. What other interesting classes of decision functions besides symmetric func-
tions have linear noisy broadcast protocols and/or gnd-trees?

3. Are there any functions that can be computed by a gnd-tree whose depth is
significantly smaller than their randomized decision-tree complexity, namely
the depth required to compute them by a (noiseless) randomized decision
tree?

4. The same questions as above can be asked about the adverserial noise model
of [11]. For this model, the only nontrivial upper bound known for both
the noisy broadcast and gnd-tree models is the protocol for OR due to [22],
which is linear in both models. What other nontrivial functions have linear
protocols? Does the parity function have linear cost protocols/gnd-trees? We
conjecture that the answer to the latter question is negative.

5. In the adversarial noise model, we do not know of any examples of decision
functions where gnd-trees do better than ordinary nd-trees. Are these models
equivalent for adversarial noise?
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1. Introduction: The hidden subgroup problem. Many problems of in-
terest in quantum computing can be reduced to an instance of the hidden subgroup
problem (HSP). We are given a group G and a function f with the promise that, for
some subgroup H ⊆ G, f is invariant precisely under translation by H; that is, f is
constant on the left cosets of H and takes distinct values on distinct cosets. We then
wish to determine the subgroup H by querying f . Most algorithms for the HSP use
the following approach, referred to as the standard method or Fourier sampling [5].
Step 1. Prepare two registers, the first in a uniform superposition over the elements

of G and the second with the value zero, yielding the state

|ψ1〉 =
1√|G|

∑

g∈G

|g〉 ⊗ |0〉 .

Step 2. Query (or calculate) the function f defined on G and XOR it with the second
register. This entangles the two registers and results in the state

|ψ2〉 =
1√|G|

∑

g∈G

|g〉 ⊗ |f(g)〉 .

Step 3. Measure the second register. This puts the first register in a uniform su-
perposition over one of f ’s level sets, i.e., one of the left cosets of H, and
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disentangles it from the second register. If we observe the value f(c), we have
the state ψ3 ⊗ |f(c)〉, where

|ψ3〉 = |cH〉 =
1√|H|

∑

h∈H

|ch〉 .

Alternately, we can view the first register as being in a mixed state with
density matrix

ρ =
1

|G|
∑

g∈G

|cH〉 〈cH| .

Step 4. Carry out the quantum Fourier transform on |ψ3〉 and measure the result;
that is, observe the “frequency” corresponding to one of the Fourier basis
functions.

For example, in Simon’s problem [35], G = Z
n
2 and f is an oracle such that, for

some y, f(x) = f(x+y) for all x; in this case H = {0, y} and we wish to identify y. In
Shor’s factoring algorithm [34], G is essentially the group Z

∗
n, where n is the number

we wish to factor, f(x) = cx mod n for a random c < n, and H is the subgroup
of Z

∗
n whose index is the multiplicative order of c. (However, Shor’s algorithm does

not operate on Z
∗
n directly—indeed, knowing |Z∗

n| would provide an efficient classical
algorithm. Instead, it performs the quantum Fourier transform over Zq for some
q = poly(n); see [34] or [13, 14].)

In both Simon’s and Shor’s algorithms, the group G is abelian and finite. It is
not hard to see that, in this case, a polynomial number (i.e., polynomial in log |G|) of
experiments of this type determine H. In a cyclic group, for instance, the observed
frequency is a random multiple of the index of H, so we can determine this index with
high probability by taking the greatest common divisor of these frequencies. More
generally, each experiment yields a random element of the dual space H⊥ perpen-
dicular to H’s characteristic function. After O(log |G|) such experiments, with high
probability these elements span H⊥, and we can determine H via linear algebra.

While the nonabelian HSP appears to be much more difficult, it has very attrac-
tive applications. In particular, solving the HSP for the symmetric group Sn would
provide an efficient quantum algorithm for the Graph Automorphism and Graph

Isomorphism problems (see, e.g., Jozsa [21] for a review). Another important mo-
tivation is the relationship between the HSP over the dihedral group with hidden
shift problems [7] and cryptographically important cases of the shortest lattice vector
problem [29].

So far, algorithms for the HSP are known for only a few families of nonabelian
groups, including groups whose commutator subgroup is of polynomial size [30, 20];
“smoothly solvable” groups [10]; and some semidirect products of abelian groups [28,
18, 3]. Ettinger and Høyer [8] provided another type of result by showing that Fourier
sampling can solve the HSP for the dihedral groups Dn in an information-theoretic
sense. That is, a polynomial number of experiments gives enough information to
reconstruct the subgroup, though it is unfortunately not known how to determine H
from this information in polynomial time.

Extending the notion of Fourier sampling to nonabelian groups requires that
we define a nonabelian version of the Fourier transform. For abelian groups, the
Fourier basis functions are simply the homomorphisms φ : G → C such as the familiar
exponential function φk(x) = e2πikx/n for the cyclic group Zn. In the nonabelian case,
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there are not enough such homomorphisms to provide a basis for all C-valued functions
on G. To create such a basis, we generalize to the representations of the group,
namely, homomorphisms ρ : G → U(V ), where U(V ) is the group of unitary matrices
acting on some C-vector space V of dimension dρ. It suffices to consider irreducible
representations, namely, those for which no nontrivial subspace of V is fixed by the
various operators ρ(g); Fourier analysis over abelian groups then corresponds to the
special case where all irreducible representations have dimension one, the single entry
in these 1×1 matrices being the values of the Fourier basis functions. In general, once
a basis for each irreducible ρ is chosen, the matrix elements ρij provide an orthogonal
basis for the vector space of all C-valued functions on G.

The quantum Fourier transform then consists of transforming (unit-length) vec-
tors in C[G] = {∑g∈G αg |g〉 | αg ∈ C} from the basis {|g〉 | g ∈ G} to the basis
{|ρ, i, j〉}, where ρ is the name of an irreducible representation and 1 ≤ i, j ≤ dρ
index a row and a column (in a chosen basis for V ). Note, however, that a repre-
sentation ρ : G → U(V ) does not intrinsically distinguish any specific basis for the
underlying space V and, for high-dimensional representations, this appears to require
a rather dramatic choice on the part of the transform designer. For instance, in a
group such as Sn, in most bases a typical representation ρ(g) is a dense matrix of
exponential size, but for a carefully chosen basis it is sparse and highly structured.
Making such choices of bases allows us to efficiently carry out the quantum Fourier
transform for a wide variety of groups [4, 17, 27].

Since the work of [15, 12], the most fundamental question concerning the HSP has
been whether there is a basis for the irreducible representations of a given group such
that measuring coset states in this basis provides enough information to determine
H and, if so, whether this information can be extracted by an efficient algorithm.
This framework is known as strong Fourier sampling. In this article, we answer
this question in the negative for the symmetric group Sn, showing that this process
cannot distinguish relevant subgroups from each other, or from the trivial subgroup,
even information-theoretically. Indeed, we show that no measurement whatsoever,
including arbitrary positive operator-valued measurements (POVMs), on single coset
states can succeed. We remark that the subgroups on which we focus are among
the most important special cases of the HSP, as they are those to which Graph

Isomorphism naturally reduces.
Related work. The terminology “strong Fourier sampling” [12] was invented to

distinguish this approach from the natural variant, called weak Fourier sampling,
where one only measures the name of the representation ρ and ignores the row and
column information. Weak Fourier sampling is basis-independent, making it attractive
from the standpoint of analysis; however, it cannot distinguish conjugate subgroups
from each other, and Hallgren, Russell, and Ta-Shma [15] showed that it cannot
distinguish the trivial subgroup from an order-2 subgroup of Sn consisting of n/2
disjoint transpositions. Specifically, they used character bounds to show that the
probability distributions obtained on representation names for the trivial and order-
2 subgroups are exponentially close in total variation distance: thus one needs an
exponential number of such experiments to distinguish them. Kempe and Shalev [22]
have generalized this result to other conjugacy classes and conjectured that one can
do no better than classical computation with this approach.

In an effort to shed light on the power of strong Fourier sampling, Grigni et al. [12]
showed that, for groups such as Sn, measuring in a random basis yields an exponen-
tially small amount of information. This can be explained, roughly, by the fact that
projecting a vector into a sufficiently high-dimensional random subspace results in
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tightly concentrated length. On the other hand, Moore et al. [28] showed that for the
affine groups and some q-hedral groups, measuring in a well-chosen basis can solve
the HSP in cases where random bases cannot.

Our contribution. In this paper we show that strong Fourier sampling, in an
arbitrary basis of the algorithm designer’s choice, cannot solve the HSP for Sn. As
in [15] we focus on order-2 subgroups of the form {1,m}, where m is an involution
consisting of n/2 disjoint transpositions. We show that strong Fourier sampling—
and more generally, arbitrary measurements of single coset states—cannot distinguish
most subgroups of this form from each other, or from the trivial subgroup, without
an exponential number of experiments.

The motivation for looking at this case of the HSP is as follows. If we fix two rigid
connected graphs of size n, then the automorphism group H of their disjoint union
is a subgroup of S2n. If they are isomorphic, then H is of the form {1,m}, where
m is the involution that swaps the two graphs, while if they are nonisomorphic, then
H is trivial. This yields a classical reduction from Graph Isomorphism to Graph

Automorphism, and our results preclude a quantum algorithm for the latter problem
that works by reducing to the HSP on the symmetric group.

However, the involutions m which switch the two graphs are not generic elements
of the conjugacy class in S2n consisting of n disjoint transpositions, since they switch
the first n vertices with the last n vertices. The set of such elements forms a conjugacy
class in the wreath product Sn 	 Z2 ⊂ S2n, and it is the HSP on this group, rather
than all of S2n, to which Graph Isomorphism naturally reduces. To address the
possibility of a quantum algorithm that uses this reduction, we present an additional
result showing that this case of the HSP also requires an exponential number of
experiments.

We remark that our results do not preclude the existence of an efficient quantum
algorithm for the HSP on Sn or Sn 	 Z2. Rather, they force us to either abandon
coset states or consider multiregister algorithms, in which we prepare multiple coset
states and subject them to entangled measurements, rather than performing a product
measurement where each coset state is measured independently. Some progress in
this direction has been made: Ettinger, Høyer, and Knill [9] showed that the HSP on
arbitrary groups can be solved information-theoretically with a polynomial number
of coset states, and two of the present authors have shown how to carry out such
a measurement in the Fourier basis [25]. Kuperberg [24] devised a subexponential

(2O(
√

logn)) algorithm for the HSP on the dihedral group Dn that uses entangled
measurements, and Alagic, Moore, and Russell [1] obtained a similar algorithm for
the HSP on groups of the form Gn. Bacon, Childs, and van Dam determined the
optimal multiregister measurement for the dihedral group [2] (see also [26]) and used
this approach to construct an algorithm for a class of semidirect product groups [3].

Whether a similar approach can be applied to the symmetric group is a major open
question. Hallgren et al. [16] have shown, however, that no family of measurements
across o(n log n) coset states can distinguish H = {1,m} from the trivial group in Sn

with a polynomial number of repetitions. We remark that in light of the upper bounds
of [9, 25], O(n log n) coset states do, at least information-theoretically, determine the
answer. Constructing such highly entangled measurements poses a major conceptual
challenge, and it is far from clear in what cases they can be carried out efficiently.
Of course, it is also possible that a completely different approach—one which does
not use coset states, or which does not start by reducing to the HSP—will provide an
efficient quantum algorithm for Graph Isomorphism.

The paper is organized as follows. In section 2 we give a brief introduction to
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representation theory and nonabelian Fourier analysis. In section 3 we discuss the
general structure of quantum measurements on coset states and show that the optimal
measurement takes the form of strong Fourier sampling. In section 4 we show how
to bound the variance of the resulting probability distributions with respect to the
choice of hidden subgroup. In section 5 we record some specific facts about the rep-
resentations of the symmetric group, and in section 6 we use these facts to show that
an exponential number of measurements are necessary. Finally, in section 7 we adapt
the argument for the specific family of involutions relevant to Graph Isomorphism.

2. Fourier analysis over finite groups. We briefly discuss the elements of the
representation theory of finite groups. Our treatment is primarily for the purposes of
setting down notation; we refer the reader to [11, 33] for complete accounts.

Let G be a finite group. A representation ρ of G is a homomorphism ρ :
G → U(V ), where V is a finite-dimensional Hilbert space and U(V ) is the group
of unitary operators on V . The dimension of ρ, denoted dρ, is the dimension of the
vector space V . By choosing a basis for V , we can then identify ρ(g) with a unitary
dρ × dρ matrix so that for every g, h ∈ G, ρ(gh) = ρ(g) · ρ(h).

Fixing a representation ρ : G → U(V ), we say that a subspace W ⊂ V is invariant
if ρ(g)W ⊂ W for all g ∈ G. We say ρ is irreducible if it has no invariant subspaces
other than the trivial space {0} and V . If two representations ρ and σ are the same
up to a unitary change of basis, we say that they are equivalent. It is a fact that
any finite group G has a finite number of distinct irreducible representations up to
equivalence, and, for a group G, we let Ĝ denote a set of representations containing
exactly one from each equivalence class. The irreducible representations of G give
rise to the Fourier transform. Specifically, for a function f : G → C and an element
ρ ∈ Ĝ, define the Fourier transform of f at ρ to be

f̂(ρ) =

√
dρ
|G|

∑

g∈G

f(g)ρ(g) .

The leading coefficients are chosen to make the transform unitary, so that it preserves
inner products:

〈f1, f2〉 =
∑

g

f∗
1 (g)f2(g) =

∑

ρ∈Ĝ

tr
(
f̂1(ρ)

† · f̂2(ρ)
)

.

Given a representation ρ and pair of integers 1 ≤ i, j ≤ dρ, we can associate a basis
vector |ρ, i, j〉, which assigns the matrix entry ρ(g)i,j to each element g. As described
above, these form an orthonormal basis for C[G], which implies

∑

ρ∈Ĝ

d2
ρ = |G| .

In the case when ρ is not irreducible, it can be decomposed into a direct sum
of irreducible representations, each of which operates on an invariant subspace. We
write ρ = σ1 ⊕ · · · ⊕ σk and, for the σi appearing at least once in this decomposition,
σi ≺ ρ. In general, a given σ can appear multiple times, in the sense that ρ can have
an invariant subspace isomorphic to the direct sum of aρσ copies of σ. In this case aρσ
is called the multiplicity of σ in ρ, and we write ρ =

⊕
σ≺ρ a

ρ
σσ.

For a representation ρ we define its character as the trace χρ(g) = tr ρ(g). Since
the trace is invariant under conjugation, characters are constant on the conjugacy
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classes, and if m is a conjugacy class, we write χρ(m) = χρ(m), where m is any
element of m. Characters are a powerful tool for reasoning about the decomposition
of reducible representations. In particular, for ρ, σ ∈ Ĝ, we have the orthogonality
conditions

〈χρ, χσ〉G =
1

|G|
∑

g∈G

χρ(g)χσ(g)∗ =

{
1, ρ = σ ,

0, ρ = σ .

If ρ is reducible, we have χρ =
∑

σ≺ρ a
ρ
σχσi , and so the multiplicity aρσ is given by

aρσ = 〈χρ, χσ〉G .

If ρ is irreducible, Schur’s lemma asserts that the only matrices which commute
with ρ(g) for all g are the scalars, {c1 | c ∈ C}. Therefore, for any A we have

(2.1)
1

|G|
∑

g∈G

ρ(g)†Aρ(g) =
trA

dρ
1dρ

since conjugating this sum by ρ(g) simply permutes its terms. In particular, consider
the average of ρ over a conjugacy class m, which we denote ρ(m):

ρ(m) = Expm∈m ρ(m) = Expg ρ(g
−1mg) = Expg ρ(g)

†ρ(m)ρ(g) .

Then since tr ρ(m) = χρ(m), we have

(2.2) ρ(m) =
χ(m)

dρ
1dρ .

Similarly, if ρ is reducible, ρ(m) is scalar in each irreducible subspace, giving

(2.3) ρ(m) =
∑

σ≺ρ

χσ(m)

dσ
Πρ

σ ,

where Πρ
σ projects onto the subspace aρσσ spanned by copies of σ. We use these facts

below.
There is a natural product operation on representations: if ρ : G → U(V ) and

σ : G → U(W ) are representations of G, we may define a new representation ρ ⊗ σ :
G → U(V ⊗W ) by extending the rule (ρ⊗σ)(g) : u⊗v �→ ρ(g)u⊗σ(g)v. In general,
the representation ρ ⊗ σ is not irreducible, even when both ρ and σ are. This leads
to the Clebsch–Gordan problem, that of decomposing ρ ⊗ σ into irreducibles. For
example, since χρ⊗σ(g) = χρ(g) · χσ(g), the multiplicity of τ in ρ⊗ σ is 〈χτ , χρχσ〉G.

Group elements can act on each other on the left or right. Thus we can consider
subspaces of C[G] that are invariant under left multiplication, right multiplication, or

both; these subspaces are called left-, right-, or bi-invariant, respectively. Each ρ ∈ Ĝ
corresponds to a d2

ρ-dimensional bi-invariant subspace of C[G]. We can think of the bi-
invariant subspace as a single d2

ρ-dimensional representation, consisting of the space of
dρ×dρ matrices A. If ρ(g) acts on A by left or right multiplication, the left- and right-
invariant subspaces correspond to A’s columns and rows, respectively; for instance,
each column of A is acted on independently by left multiplication by ρ(g), and the
space of matrices A which are nonzero only in this column form a dρ-dimensional
left-invariant subspace. Thus, each bi-invariant subspace can be decomposed into
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dρ dρ-dimensional left-invariant subspaces, or (transversely) dρ dρ-dimensional right-
invariant subspaces.

However, this decomposition is not unique. If we think of A as the space of linear
operators on the same dρ-dimensional vector space V on which ρ acts, changing the
orthonormal basis for V transforms the matrices A. Thus, each orthonormal basis
B of V gives a way to divide the bi-invariant subspace into left-invariant columns
and right-invariant rows, and each such subspace is associated with some basis vector
b ∈ B.

3. The structure of the optimal measurement. In this section we show that
starting with a single coset state, the optimal measurement for the HSP is precisely
an instance of strong Fourier sampling (possibly in an overcomplete basis). This has
been pointed out several times in the past, at varying levels of explicitness [19, 24];
we state it here for completeness. Everything we say in this section is true for the
HSP in general. However, for simplicity we focus on the special case of the HSP called
the hidden conjugate problem in [28]: there is a (nonnormal) subgroup H, and we are
promised that the hidden subgroup is one of its conjugates, Hg = g−1Hg for some
g ∈ G.

We may treat the states arising after Step 3 of the procedure above as elements
of the group algebra C[G]. We use the notation |g〉 = 1 · g ∈ C[G] so that the vectors
|g〉 form an orthonormal basis for C[G]. Given a set S ⊂ G, |S〉 denotes a uniform
superposition over the elements of S, |S〉 = (1/

√|S|)∑s∈S |s〉.
3.1. The optimal POVM consists of strong Fourier sampling. The most

general type of measurement allowed in quantum mechanics is a POVM. A POVM
with a set of possible outcomes J consists of a set of positive operators {Mj | j ∈ J}
subject to the completeness condition,

(3.1)
∑

j

Mj = 1 .

Since positive operators are self-adjoint, they can be orthogonally diagonalized, and
since their eigenvalues are positive, they can be written as a positive linear combina-
tion of projection operators (see, e.g., [32, sect. 10]). Any POVM may thus be refined
so that each Mj = ajμj , where μj is a projection operator and aj is positive and real.

The result of this refined measurement on the state |ψ〉 is a random variable,
taking values in J , that is equal to j ∈ J with probability Pj = aj 〈ψ|μj |ψ〉. Note
that the outcomes j need not correspond to subgroups directly; the algorithm designer
is free to carry out t of these experiments (where t is, ideally, polynomial), observing
outcomes j1, . . . , jt, and then apply some additional computation to find the most
likely subgroup given these observations.

If g is chosen from G uniformly so that the hidden subgroup is a uniformly random
conjugate of H, we wish to find a POVM that maximizes the probability of correctly
identifying g from the coset state |Hg〉. (Of course, to identify a conjugate Hg, we
need only specify g up to an element of the normalizer of H.) Since a random left
coset of Hg can be written cgHg = cHg for a random c ∈ G, the probability we
observe outcome j is

(3.2) Pj = aj
1

|G|
∑

c∈G

〈cHg|μj |cHg〉 .

Ip [19] observed that in the special case that each outcome j corresponds to a sub-
group, maximizing the probability that j is correct subject to the constraint (3.1)
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gives a semidefinite program. Since such programs are convex, the optimum is unique
and is a fixed point of any symmetries possessed by the problem.

However, our proof relies on an elementary “symmetrization” argument. Given
a group element x ∈ G, let Lx |g〉 = |xg〉 denote the unitary matrix corresponding to
left group multiplication by x. In particular, applying Lx maps one left coset onto
another: |cHg〉 = Lc |Hg〉. Writing

Pj = aj
1

|G|
∑

c∈G

〈cHg|μj |cHg〉 = aj

〈
Hg

∣∣∣∣∣
1

|G|
∑

c∈G

L†
cμjLc

∣∣∣∣∣Hg

〉
,

we conclude that replacing μj for each j with the symmetrization

μ′
j =

1

|G|
∑

g∈G

L†
gμjLg

does not change the resulting probability distribution Pj . Since μ′
j commutes with

Lx for every x ∈ G and provides exactly the same information as the original μj , we
may assume without loss of generality that the optimal POVM commutes with Lx for
every x ∈ G.

It is easy to see that any projection operator that commutes with left multipli-
cation projects onto a left-invariant subspace of C[G], and we can further refine the
POVM so that each μj projects onto an irreducible left-invariant subspace. Each such
space is contained in the bi-invariant subspace corresponding to some irreducible rep-
resentation ρ, in which case we write imμj ⊆ ρ. As discussed in section 2, a given
irreducible left-invariant subspace corresponds to some unit vector b in the vector
space V on which ρ acts. Thus we can write

μj = |bj〉 〈bj | ⊗ 1dρ
,

where 1dρ
is the identity operator on that left-invariant subspace. Let B = {bj |

imμj ∈ ρ}; then (3.1) implies a completeness condition for each ρ ∈ Ĝ,

(3.3)
∑

bj∈B

aj |bj〉 〈bj | = 1dρ ,

and so B is a (possibly overcomplete) basis for V . In other words, the optimal POVM
consists of first measuring the representation name ρ and then performing a POVM
on the vector space V with the set of possible outcomes B. Another way to see this is
to regard the choice of coset as a mixed state; then its density matrix is block-diagonal
in the Fourier basis, and so as Kuperberg puts it [24], measuring the representation
name “sacrifices no entropy.”

We note that in the special case that this POVM is a von Neumann measurement—
that is, when B is an orthonormal basis for V —it corresponds to measuring the column
of ρ in that basis, which is how strong Fourier sampling is usually defined. (As pointed
out in [12], nothing is gained by measuring the row, since we have a random left coset
cHg and left-multiplying by a random element c in an irreducible representation com-
pletely mixes the probability across the rows in each column. Here this is reflected
by the fact that each μj is a scalar in its left-invariant subspace.) However, in general
the optimal measurement might consist of an overcomplete basis, or frame, in each ρ,
consisting of vectors bj with weights aj .
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Now that we know μj takes this form, let us change notation. Given ρ ∈ Ĝ
acting on a vector space V and a unit vector b ∈ V , let Πρ

b = |b〉 〈b| ⊗ 1dρ denote
the projection operator onto the left-invariant subspace corresponding to b. Then
μj = Πρ

bj
, and (3.2) becomes

(3.4) Pj = aj
1

|G|
∑

c∈G

∥∥∥Πρ
bj

|cHg〉
∥∥∥

2

= aj

∥∥∥Πρ
bj

|Hg〉
∥∥∥

2

.

We can write this as the product of the probability P (ρ) that we observe ρ, times the
conditional probability P (ρ,bj) that we observe bj . Note that by (3.3),

Πρ =
∑

bj∈B

ajΠ
ρ
bj

is the projection operator onto the bi-invariant subspace corresponding to ρ. Then

Pj = P (ρ)P (ρ,bj) ,

where

P (ρ) = ‖Πρ |H〉‖2
,(3.5)

P (ρ,bj) = aj
∥∥Πρ

bj
|Hg〉∥∥2 /

P (ρ) .(3.6)

Note that P (ρ,bj) depends on g, but P (ρ) does not, which is why weak sampling is
incapable of distinguishing conjugate subgroups.

3.2. The probability distribution for a conjugate subgroup. Now let us
use the fact that |H〉 is a superposition over a subgroup and calculate P (ρ) and
P (ρ,bj) as defined in (3.5) and (3.6). This will set the stage for asking whether we
can distinguish different conjugates of H from each other or from the trivial subgroup.

Fix an irreducible representation ρ that acts on a vector space V . Then Fourier
transforming the state

|H〉 =
1√|H|

∑

h∈H

|h〉

yields the coefficient

Ĥ(ρ) =

√
dρ

|H||G|
∑

h∈H

ρ(h) =

√
dρ|H|
|G| ΠH ,

where ΠH = (1/|H|)∑h∈H ρ(h) is a projection operator onto a subspace of V . The
probability that we observe ρ is then the norm squared of this coefficient,

(3.7) P (ρ) =
∥∥∥Ĥ(ρ)

∥∥∥
2

=
dρ|H|
|G| rkΠH ,

and, as stated above, this is the same for all conjugates Hg. The conditional proba-
bility that we observe the vector bj , given that we observe ρ, is then

(3.8) P (ρ,bj) = aj

∥∥∥Πρ
bj

|H〉
∥∥∥

2

P (ρ)
= aj

∥∥∥Ĥ(ρ)bj

∥∥∥
2

P (ρ)
= aj

‖ΠHbj‖2

rkΠH
.
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In the case where H is the trivial subgroup, ΠH = 1dρ
and P (ρ,bj) is given by

(3.9) P (ρ,bj) =
aj
dρ

.

We call this the natural distribution on the frame B = {bj}. In the case that B is an
orthonormal basis, aj = 1 and P (ρ,bj) is simply the uniform distribution on B.

This probability distribution over B changes for a conjugate Hg in the following
way. The Fourier transform of |Hg〉 is

Ĥg(ρ) =

√
dρ|H|
|G| ΠHρ(g) ,

and we have

(3.10) P (ρ,bj) = aj
‖ΠH(gbj)‖2

rkΠH
,

where we write gb for ρ(g)b.
Our goal is to understand, for each fixed b, to what extent P (ρ,b) varies with

g, and so to what extent measurements of this type can distinguish the conjugates
Hg from each other. Regarding this as a random variable over the choice of g, its
expectation is easy to calculate: we have

Expg ‖ΠH(gb)‖2
= Expg

〈
b, ρ(g)†ΠHρ(g)b

〉
=

〈
b,

(
Expg ρ(g)

†ΠHρ(g)
)
b
〉

=
rkΠH

dρ
,

where we used (2.1), ‖b‖2
= 1, and the fact that the trace of a projection operator is

its rank. Combining this with (3.10), the expected probability is simply the natural
distribution (3.9),

Expg P (ρ,bj) =
aj
dρ

.

We wish to show that ‖ΠH(gb)‖2, and therefore P (ρ,bj), is in fact very close
to its expectation for most conjugates. In the next section, we present our primary
technical contribution, which is a method for establishing concentration results for
this random variable.

4. The variance of projection through a random involution. In this sec-
tion we focus on the case where H = {1,m} for an element m chosen uniformly at
random from a fixed conjugacy class m of involutions. (Observe that order is pre-
served under conjugation so that if m is an involution, then so are all elements of m.)
Given an irreducible representation ρ : G → U(V ) and a vector b ∈ V , we bound the
variance, over the choice of m ∈ m, of the probability Pm(ρ,b) that b is observed
given that we observed ρ. Our key insight is that this variance depends on how the
tensor product representation ρ ⊗ ρ∗ decomposes into irreducible representations σ,
and how the vector b ⊗ b∗ projects into these constituent subspaces.

Recall that, if a representation ρ is reducible, it can be written as an orthogonal
direct sum of irreducibles ρ =

⊕
σ≺ρ a

ρ
σσ, where aρσ is the multiplicity of σ. We let

Πρ
σ denote the projection operator whose image is aρσσ, that is, the span of all the

irreducible subspaces isomorphic to σ.
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Lemma 4.1. Let ρ be a representation of a group G acting on a space V and let
b ∈ V . Let m be an element chosen uniformly from a conjugacy class m of involutions.
If ρ is irreducible, then

Expm∈m 〈b,mb〉 =
χρ(m)

dρ
‖b‖2

.

If ρ is reducible, then

Expm∈m 〈b,mb〉 =
∑

σ≺ρ

χσ(m)

dσ
‖Πρ

σb‖2
.

Proof. Let ρ(m) denote the average of ρ over the conjugacy class m. Using (2.2),
we have

Expm 〈b,mb〉 = 〈b, ρ(m)b〉 =
χρ(m)

dρ
‖b‖2

.

Similarly, if ρ is reducible, by (2.3) we have

Expm 〈b,mb〉 = 〈b, ρ(m)b〉 =
∑

σ≺ρ

χσ(m)

dσ
〈b,Πρ

σb〉 =
∑

σ≺ρ

χσ(m)

dσ
‖Πρ

σb‖2
.

Turning now to the second moment of 〈b,mb〉, we observe that

|〈b,mb〉|2 = 〈b,mb〉〈b,mb〉∗ = 〈b ⊗ b∗,mb ⊗mb∗〉 = 〈b ⊗ b∗,m(b ⊗ b∗)〉 ,

where the action of m on the vector b⊗b∗ is precisely given by the action of G in the
representations ρ⊗ ρ∗. This will allow us to express the second moment of the inner
product 〈b,mb〉 in terms of the projections of b⊗b∗ into the irreducible constituents
of the tensor product representation ρ⊗ ρ∗.

Lemma 4.2. Let ρ be a representation of a group G acting on a space V and let
b ∈ V . Let m be an element chosen uniformly at random from a conjugacy class m

of involutions. Then

Expm∈m |〈b,mb〉|2 =
∑

σ≺ρ⊗ρ∗

χσ(m)

dσ

∥∥∥Πρ⊗ρ∗

σ (b ⊗ b∗)
∥∥∥

2

.

Proof. We write the second moment as a first moment over the product represen-
tation ρ⊗ ρ∗: as above, |〈b,mb〉|2 = 〈b ⊗ b∗,m(b ⊗ b∗)〉 so that

Expm |〈b,mb〉|2 = Expm〈b ⊗ b∗,m(b ⊗ b∗)〉 ,

and applying Lemma 4.1 completes the proof.
Now let Πm = ΠH denote the projection operator given by

Πmv =
v + mv

2
.

For a given vector b ∈ B, we will focus on the expectation and variance of ‖Πmb‖2
.

These are given by the following lemma.
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Lemma 4.3. Let ρ be an irreducible representation acting on a space V and let
b ∈ V . Let m be an element chosen uniformly at random from a conjugacy class m

of involutions. Then

Expm∈m ‖Πmb‖2
=

1

2
‖b‖2

(
1 +

χρ(m)

dρ

)
,(4.1)

Varm∈m ‖Πmb‖2 ≤ 1

4

∑

σ≺ρ⊗ρ∗

χσ(m)

dσ

∥∥∥Πρ⊗ρ∗

σ (b ⊗ b∗)
∥∥∥

2

.(4.2)

Proof. For the expectation,

Expm ‖Πmb‖2
= Expm 〈b,Πmb〉
=

1

2
Expm (〈b,b〉 + 〈b,mb〉)

=
1

2
‖b‖2

(
1 +

χρ(m)

dρ

)
,

where the last equality follows from Lemma 4.1.

For the variance, we first calculate the second moment,

Expm ‖Πmb‖4
= Expm |〈b,Πmb〉|2

=
1

4
Expm |〈b,b〉 + 〈b,mb〉|2

=
1

4
Expm

(
|〈b,b〉|2 + 2 Re 〈b,b〉〈b,mb〉 + |〈b,mb〉|2

)

=
1

4

(
‖b‖4

+ 2 ‖b‖4 χρ(m)

dρ
+

∑

σ≺ρ⊗ρ∗

χσ(m)

dσ

∥∥∥Πρ⊗ρ∗

σ (b ⊗ b∗)
∥∥∥

2

)
,

where in the last line we applied Lemmas 4.1 and 4.2 and the fact that any character
evaluated at an involution is real. Then

Varm ‖Πmb‖2
= Expm ‖Πmb‖4 −

(
Expm ‖Πmb‖2

)2

=
1

4

[
∑

σ≺ρ⊗ρ∗

χρ(m)

dρ

∥∥∥Πρ⊗ρ∗

σ (b ⊗ b∗)
∥∥∥

2

− ‖b‖4

(
χρ(m)

dρ

)2
]

.(4.3)

Ignoring the second term, which is negative, gives the stated result.

Finally, we point out that since

Expm ‖Πmb‖2
= ‖b‖2 rkΠm

dρ
,

we have

(4.4)
rkΠm

dρ
=

1

2

(
1 +

χρ(m)

dρ

)
,

a fact which we will use below.
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5. The representation theory of the symmetric group. In this section we
record the particular properties of Sn and its representation theory which we apply
in the proofs of our main results. The irreducible representations of Sn are labeled
by Young diagrams or, equivalently, by integer partitions of n,

λ = (λ1, . . . , λt) ,

where
∑

i λi = n and λi ≥ λi+1 for all i. The number of Young diagrams, equal to
the number of conjugacy classes in Sn, is the partition number p(n), which obeys

(5.1) p(n) = (1 + o(1))
1

4
√

3 · n eδ
√
n < eδ

√
n, where δ = π

√
2/3 .

We identify each irreducible representation with its Young diagram λ, and denote its
character χλ and its dimension dλ. In particular, λ is the trivial or parity represen-
tation if λ is a single row (n) or a single column (1, . . . , 1), respectively. Given λ, its
conjugate λ′ is obtained by flipping λ about the diagonal: λ′ = (λ′

1, . . . , λ
′
λ1

), where
λ′
j = |{i | λi ≥ j}|. In particular, λ′

1 = t. The representation λ′ is the (tensor)
product of λ with the parity representation.

The dimension of λ is given by the remarkable hook length formula:

dλ =
n!∏

c hook(c)
,

where this product runs over all cells of the Young diagram associated with λ and
hook(c) is the number of cells appearing in either the same column or row as c,
excluding those that are above or to the left of c.

For example, the partition λ = (λ1, λ2, λ3, λ4) = (6, 5, 3, 2) is associated with the
diagram shown in Figure 5.1 below. The hook associated with the cell (2, 2) in this
diagram appears in Figure 5.2; it has length 6.

1

2

3

4

Fig. 5.1. The Young diagram for λ =
(6, 5, 3, 2).

1

2

3

4

Fig. 5.2. A hook of length 6.

The symmetric groups have the property that every representation λ possesses a
basis in which its matrix elements are real, and so all its characters are real. However,
in a given basis λ might be complex, so we will refer below to its complex conjugate,
the representation λ∗ (not to be confused with λ′).

The study of the asymptotic properties of the representations of Sn typically
focuses on the Plancherel distribution (see, e.g., Kerov’s monograph [23]). For a

general group G, this is the probability distribution obtained on Ĝ by assigning ρ the
probability density d2

ρ/|G|. One advantage of this distribution is that the density at
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ρ is proportional to its contribution, dimensionwise, to the group algebra C[G]. Note
that in the context of the HSP, the Plancherel distribution is exactly the one obtained
by performing weak Fourier sampling on the trivial hidden subgroup.

In the symmetric groups a fair amount is known about representations chosen
according to the Plancherel distribution. In particular, Vershik and Kerov [36] have
given the following result, showing that with high probability they have dimension
equal to eΘ(

√
n)
√
n!.

Theorem 5.1 (see [36]). Let λ be chosen from Ŝn according to the Plancherel
distribution. Then there exist positive constants c1 and c2 for which

lim
n→∞Pr

[
e−c1

√
n
√
n! ≤ dλ ≤ e−c2

√
n
√
n!
]

= 1 .

Vershik and Kerov have also obtained estimates for the maximum dimension of a
representation in Ŝn.

Theorem 5.2 (see [36]). There exist positive constants č and ĉ such that for all
n ≥ 1,

e−č
√
n
√
n! ≤ max

λ∈Ŝn

dλ ≤ e−ĉ
√
n
√
n! .

Along with these estimates, we will use the following (one-sided) large-deviation
versions of Theorem 5.1.

Lemma 5.3. Let λ be chosen according to the Plancherel distribution on Ŝn.
1. Let δ = π

√
2/3 as in (5.1). Then for sufficiently large n,

Pr
[
dλ ≤ e−δ

√
n
√
n!
]
< e−δ

√
n .

2. Let 0 < c < 1/2. Then there is a constant γ > 0 such that

Pr[dλ ≤ ncn] < n−γn .

Proof. For the first bound, setting d = e−δ
√
n
√
n! and using (5.1), we have

∑

λ:dλ≤d

d2
λ

n!
≤ p(n)

d2

n!
< e−δ

√
n .

For the second bound, recalling Stirling’s approximation n! > nne−n, we have

∑

λ:dλ≤ncn

d2
λ

n!
≤ p(n)n2cn

n!
= n−(1−2c)neO(n) ,

and setting γ < 1 − 2c completes the proof.
Finally, we will also apply Roichman’s estimates [31] for the characters of the

symmetric group.
Definition 5.4. For a permutation π ∈ Sn, define the support of π, denoted

supp(π), to be the cardinality of the set {k ∈ [n] | π(k) = k}.
Theorem 5.5 (see [31]). There exist constants b > 0 and 0 < q < 1 so that for

n > 4, for every conjugacy class C of Sn, and for every irreducible representation λ
of Sn,

∣∣∣∣
χλ(C)

dλ

∣∣∣∣ ≤
(

max
(
q,

λ1

n
,
λ′

1

n

))b·supp(C)

,
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where supp(C) = supp(π) for any π ∈ C.
In our application, we take n to be even and consider involutions m in the

conjugacy class of elements consisting of n/2 disjoint transpositions, m = mn =
{σ ((12)(34) · · · (n − 1 n))σ−1 | σ ∈ Sn}. Note that each m ∈ mn is associated with
one of the (n − 1)!! = (n − 1)(n − 3)(n − 5) · · · 1 perfect matchings of n things, and
that supp(m) = n.

6. Strong Fourier sampling over Sn. We consider the hidden subgroup H =
{1,m}, where m is chosen uniformly from m = mn ⊂ Sn, the conjugacy class

{π−1((1 2)(3 4) · · · (n− 1 n))π | π ∈ Sn} ;

we assume throughout that n is even. We start by performing weak sampling, i.e.,
measuring the name of an irreducible representation λ; the resulting probability distri-
bution on Ŝn is the same for all m ∈ Mn, and Hallgren, Russell, and Ta-Shma [15] es-
tablished that this probability distribution on λ is exponentially close to the Plancherel
distribution in total variation. We continue on to strong sampling, by allowing the
algorithm designer to choose an arbitrary POVM with a frame B = {bj} and weights
{aj} obeying the completeness condition (3.3). We will show that with high proba-
bility (over m and λ), the conditional distribution induced on the vectors B is expo-
nentially close to the natural distribution (3.9) on B. It will follow by the triangle
inequality that it requires an exponential number of experiments of this type to dis-
tinguish two involutions from each other or, in fact, to distinguish H from the trivial
subgroup.

For simplicity, and to illustrate our techniques, we first prove this for a von
Neumann measurement, i.e., where B is an orthonormal basis for λ. In this case,
we show that the probability distribution on B is exponentially close to the uniform
distribution.

6.1. Von Neumann measurements.
Theorem 6.1. Let B be an orthonormal basis for an irreducible representation

λ. Given the hidden subgroup H = {1,m}, where m is chosen uniformly at random
from m, let Pm(b) = Pm(λ,b) be the probability that we observe the vector b ∈ B
conditioned on having observed the representation name λ, and let U(b) = U(λ,b)
be the uniform distribution on B. Then there is a constant β > 0 such that for
sufficiently large n, with probability at least 1 − e−βn in m and λ, we have

‖Pm − U‖1 < e−βn .

Proof. First, recall from (3.8) in section 3 that the conditional distribution on B
is given by (since aj = 1)

(6.1) Pm(b) = Pm(λ,b) =
‖Πmb‖2

rkΠm
.

Our strategy will be to bound Varm ‖Πmb‖2 using Lemma 4.3 and apply Chebyshev’s
inequality to conclude that ‖Πmb‖2 is almost certainly close to its expectation (4.1).
Recall, however, that our bounds on the variance of ‖Πmb‖2 depend on the decom-
position of λ ⊗ λ∗ into irreducibles and, furthermore, on the projection of b ⊗ b∗

into these irreducible subspaces. Matters are somewhat complicated by the fact that
certain irreducibles μ appearing in λ⊗ λ∗ may contribute more to the variance than
others. Specifically, while Theorem 5.5 allows us to bound the contribution of those μ
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with Young diagrams whose width μ1 and height μ′
1 are much smaller than n, those

which violate this condition could have large normalized characters χμ(m)/dμ, and
thus could conceivably contribute large terms to the sum (4.2).

Fortunately, we will see that the total fraction of the space λ⊗λ∗, dimensionwise,
consisting of such μ is small with overwhelming probability. Despite this, we cannot
preclude the possibility that for a specific vector b, the quantity Var ‖Πmb‖2 is large,
as b may project solely into spaces of the type described above. On the other hand,
as these troublesome spaces amount to a small fraction of λ ⊗ λ∗, only a few b can
have this property, and this will suffice to control the distance in total variation from
the uniform distribution.

Specifically, let 0 < c < 1/4 be a constant, and let Λc denote the collection of
Young diagrams μ with the property that either μ1 ≥ (1 − c)n or μ′

1 ≥ (1 − c)n. We
have the following upper bounds on the cardinality of Λc and the dimension of any μ
with μ ∈ Λc.

Lemma 6.2. Let p(n) denote the number of integer partitions of n. Then |Λc| ≤
2cn · p(cn), and dμ < ncn for any μ ∈ Λc.

Proof. For the first statement, note that removing the top row of a Young diagram
μ with μ1 ≥ (1− c)n gives a Young diagram of size n−μ1 ≤ cn. The number of these
is at most p(cn), and summing over all such μ1 gives cn ·p(cn). The case μ′

1 ≥ (1−c)n
is similar, and summing the two gives |Λc| ≤ 2cn · p(cn).

Now let μ ∈ Λc with μ1 ≥ (1− c)n. By the hook-length formula, since the ith cell
from the right in the top row has hook(c) ≥ i, dμ < n!/μ1! ≤ n!/((1 − c)n)! ≤ ncn.
The case μ′

1 ≥ (1 − c)n is similar.

To introduce a bit more notation, given a constant d, let Md denote the set of
irreducibles λ such that dλ ≤ ndn. Now Lemma 5.3, part 2 shows that if λ is drawn
according to the Plancherel distribution, the probability that it falls into Md for some
d < 1/2 is n−Ω(n). The following lemma shows that this is also true for the distribution

P (ρ) induced on Ŝn by weak Fourier sampling the coset state |H〉.
Lemma 6.3. Let d < 1/2 be a constant and let λ be drawn according to the

distribution P (·) of (3.7). Then there is a constant γ = γ(d) > 0 such that for
sufficiently large n we have Prλ[dλ ∈ Md] ≤ n−γn.

Proof. As |H| = 2, |G| = n!, and rkΠH ≤ dρ, we have

P (ρ) =
dρ|H|
|G| rkΠH ≤ 2d2

ρ

n!
.

Thus P (·) is at most twice the Plancherel measure, and applying Lemma 5.3, part 2
completes the proof.

Now, for a representation μ with μ /∈ Λc, Theorem 5.5 implies that

(6.2)

∣∣∣∣
χμ(m)

dμ

∣∣∣∣ ≤
(
max(q, 1 − c)

)bn ≤ e−αn

for a constant α > 0. Thus the contribution of such an irreducible to the variance
estimate of Lemma 4.3 is exponentially small. In addition, note that Lemma 6.2
implies that Λc ⊂ Md so long as d > c; we shall in fact assume that c < 1/4 < d (and,
moreover, that 2c < d) so that conditioning on λ /∈ Md, (4.4) and (6.2) imply that

(6.3)
dλ
2

(
1 − e−αn

) ≤ rkΠm ≤ dλ
2

(
1 + e−αn

)
.
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We turn now to the problem of bounding the multiplicities with which representa-
tions μ ∈ Λc can appear in λ⊗λ∗. While no explicit decomposition is known for λ⊗λ∗,
the endomorphism representations of Sn, we record a coarse bound below which will
suffice for our purposes. Recall that a character of λ ⊗ λ∗ is χ2

λ as the characters of
Sn are real. The multiplicity of the representation μ in λ⊗λ∗ is 〈χμ, χ

2
λ〉G. However,

this is equal to 〈χμχλ, χλ〉G, the multiplicity of λ in μ⊗λ. Counting dimensions, this
is clearly no more than dim(μ⊗λ)/dimλ = dμ. Hence the multiplicity of μ in λ⊗λ∗

is bounded by

(6.4) 〈χμ, χ
2
λ〉G ≤ dμ .

Let L ⊂ λ ⊗ λ∗ be the subspace consisting of copies of representations μ with
μ ∈ Λc, and let ΠL be the projection operator onto this subspace. By Lemma 6.2, we
have

dimL ≤
∑

μ∈Λc

d2
μ ≤ 2cn · p(cn) · n2cn = n2cneO(

√
n) .

Moreover, as B is an orthonormal basis for λ, the vectors {b ⊗ b∗ | b ∈ B} are
mutually orthogonal in λ⊗ λ∗. Therefore,

(6.5)
∑

b∈B

‖ΠL(b ⊗ b∗)‖2 ≤ dimL .

Applying the general bound provided by Lemma 4.3 on the variance of ‖Πmb‖2
with

the estimates (6.5) and (6.2) above, assuming pessimistically that χμ(M)/dμ = 1 for
all μ ∈ Λc, and assuming that λ /∈ Md so that |B| = dλ > ndn yields

1

dλ

∑

b

Varm ‖Πmb‖2 ≤ 1

4dλ

[
∑

b

∑

μ∈Λc

∥∥Πλ
μ(b ⊗ b∗)

∥∥2

+
∑

b

∑

μ/∈Λc

χμ(M)

dμ

∥∥Πλ
μ(b ⊗ b∗)

∥∥2

]

≤ 1

4dλ

[
n2cneO(

√
n) + e−αndλ

]
≤ 1

4

(
n(2c−d)neO(

√
n) + e−αn

)

≤ e−αn

2
,

(6.6)

for sufficiently large n.
We return to our goal of bounding ‖P (λ, ·) − U(λ, ·)‖1 for a typical λ. (We note

that the following part of the proof is considerably simplified from the conference
version of this paper and is similar to the argument in the multiregister case appearing
in [16].) First, note that for 1/2 > d > 1/4 > c and sufficiently large n,

Expλ Expm ‖Pm(λ, ·) − U(λ, ·)‖2
1 ≤ 4 Pr[λ ∈ Md] + max

λ/∈Md

Expm ‖Pm(λ, ·) − U(λ, ·)‖2
1

= 4n−γn + max
λ/∈Md

Expm

(
∑

b

∣∣∣∣∣
‖Πmb‖2

rkΠm
− 1

dλ

∣∣∣∣∣

)2

= 4n−γn + max
λ/∈Md

1

(rkΠm)2
Expm

(
∑

b

∣∣∣∣‖Πmb‖2 − rkΠm

dλ

∣∣∣∣

)2

(6.7)
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≤ 4n−γn + max
λ/∈Md

dλ
(rkΠm)2

Expm

∑

b

(
‖Πmb‖2 − rkΠm

dλ

)2

(6.8)

≤ 4n−γn + max
λ/∈Md

4

(1 − e−αn)2

[
1

dλ

∑

b

Expm

(
‖Πmb‖2 − rkΠm

dλ

)2
]

,(6.9)

where (6.8) follows from (6.7) by the Cauchy–Schwarz inequality and (6.9) follows
from (6.8) by applying (6.3). Now observe that the bracketed expression is exactly
that bounded by (6.6) above. Thus we have

Expλ,m ‖Pm(λ, ·) − U(λ, ·)‖2
1 ≤ 4n−γn +

2e−αn

(1 − e−αn)2
≤ 3e−αn

for sufficiently large n. Finally, the assertion of the theorem follows by applying
Markov’s inequality and setting β < α/3.

6.2. Arbitrary POVMs. We now generalize the proof of Theorem 6.1 to the
case where the algorithm designer is allowed to choose an arbitrary finite frame
B = {b} of unit length vectors in λ, with a family of positive real weights ab that
satisfy the completeness condition

(6.10)
∑

b

ab |b〉 〈b| = 1 .

(Note that this is simply (3.3) where we have written b and ab instead of bj and aj .)
Theorem 6.4. Let B be a frame with weights {ab | b ∈ B} satisfying the

completeness condition (6.10) for an irreducible representation λ. Given the hidden
subgroup H = {1,m}, where m is chosen uniformly at random from m, let Pm(b) =
Pm(λ,b) be the probability that we observe the vector b conditioned on having observed
the representation name λ, and let N(b) = N(λ,b) be the natural distribution (3.9)
on B. Then there is a constant β > 0 such that for sufficiently large n, with probability
at least 1 − e−βn in m and λ, we have

‖Pm −N‖1 < e−βn .

Proof. The proof of Theorem 6.1 goes through with a few modifications. Recall
from (3.8) in section 3 that the conditional distribution on B is given by

Pm(b) = Pm(λ,b) = ab
‖Πmb‖2

rkΠm
,

and the natural distribution (3.9) is given by N(b) = ab/dλ.
First, let us change some semantics: given a subset A ⊆ B, we let |A| denote the

weighted size of A,

|A| =
∑

b∈A

ab .

With this definition, the total probability that falls in A under the natural distribution
is N(A) = |A|/dλ. With Λc and Md defined as before, Lemmas 6.2 and 6.3 still apply.
As in the development leading to (6.9), we find that Expλ Expm ‖Pm(λ, ·)−N(λ, ·)‖2

1

is no more than
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4n−γn + max
λ/∈Md

1

(rkΠm)2
Expm

(
∑

b

ab

∣∣∣∣‖Πmb‖2 − rkΠm

dλ

∣∣∣∣

)2

(6.11)

≤ 4n−γn + max
λ/∈Md

dλ
(rkΠm)2

Expm

∑

b

ab

(
‖Πmb‖2 − rkΠm

dλ

)2

(6.12)

≤ 4n−γn + max
λ/∈Md

4

(1 − e−αn)2

[
1

dλ

∑

b

ab Expm

(
‖Πmb‖2 − rkΠm

dλ

)2
]

,(6.13)

where (6.12) follows from (6.11) by applying the Cauchy–Schwarz inequality in the
following way: for any function f(b) we have

(
∑

b

ab|f(b)|
)2

≤
(
∑

b

ab

)(
∑

b

ab |f(b)|2
)

= dλ
∑

b

ab |f(b)|2 .

As before, let L ⊂ λ⊗ λ∗ be the subspace consisting of copies of representations
μ ∈ Λc. In order to control the variance appearing in the bracketed expression of
(6.13), we require an analogue of (6.5) for frames, proved below.

Lemma 6.5. Let L be a subspace of λ⊗λ∗, and let ΠL be the projection operator
onto L. Then

(6.14)
∑

b

ab ‖ΠL(b ⊗ b∗)‖2 ≤ dimL .

Proof. First note that a vector e ∈ λ⊗λ∗ has entries ej,k for 1 ≤ j, k ≤ dλ. There
is a unique linear operator E on λ whose matrix entries are Ej,k = ej,k, and the inner
product 〈b ⊗ b∗, e〉 in λ ⊗ λ∗ can then be written as the bilinear form 〈b, Eb〉 in λ.

The Frobenius norm of E is ‖E‖2
= trE†E = ‖e‖2

.
Now let {ei} be an orthonormal basis for L and let Ei be the operator corre-

sponding to ei. Then

∑

b

ab |〈b ⊗ b∗, ei〉|2 =
∑

b

ab |〈b, Eib〉|2 ≤
∑

b

ab ‖b‖2 ‖Eib‖2
=

∑

b

ab ‖Eib‖2

=
∑

b

ab tr
(
E†

i |b〉 〈b|Ei

)
= tr

[
E†

i

(
∑

b

ab |b〉 〈b|
)
Ei

]

= trE†
iEi = ‖ei‖2

= 1 ,

where we used the Cauchy–Schwarz inequality in the first line and completeness in
the second line. Summing over the dimL basis vectors ei then gives (6.14).

Applying this lemma, we control 1/dλ ·
∑

b ab Varm ‖πmb‖2 just as in (6.6). Sub-
stituting this bound for the bracketed expression of (6.13) and selecting β < α/3 (as
above) completes the proof.

7. Structured involutions and the case of graph isomorphism. The pre-
ceding development focuses on the case where the hidden subgroup is distributed
uniformly among the conjugates of the subgroup H = {1,m}. As such, this shows
that the canonical reduction of Graph Automorphism (the problem of determining
whether a given graph has a nontrivial automorphism) to the HSP does not give rise
to an efficient quantum algorithm via Fourier sampling.
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However, the canonical reduction of Graph Isomorphism to the HSP induces
a more structured set of involutions. As referred to in the introduction, fixing two
rigid graphs G1 = (V1, E1) and G2 = (V2, E2), each with n vertices, the automor-
phism group of their disjoint union (V1 ∪ V2, E1 ∪ E2) is nontrivial exactly when
they are isomorphic, in which case it is generated by an involution m with full
support such that m(V1) = V2 and m(V2) = V1. Identifying V1 and V2 with the
sets {1, . . . , n} and {n + 1, . . . , 2n}, respectively, and letting s denote the involution
(1 n+1)(2 n+2) . . . (n 2n), the standard reduction to the HSP in S2n then results in
a hidden subgroup H = {1,m}, where m is a conjugate involution a−1sa. However,
rather than a being drawn from all of S2n, it is an element of the Young subgroup
Sn,n which fixes V1 and V2:

Sn,n =
{
π ∈ S2n | π({1, . . . , n}) = {1, . . . , n}} ∼= Sn × Sn .

In other words, rather than considering all conjugates of m in S2n, it suffices just to
consider conjugates in Sn,n. A priori, it seems that this smaller set of possible hidden
subgroups might be easier to identify. Moreover, let K be the subgroup generated
by Sn,n and s: this is the wreath product Sn 	 Z2, which can also be written as a
semidirect product K = (Sn × Sn) � Z2. Then each such H is contained in K, and it
seems that it might be more intelligent to Fourier sample over K rather than over all
of S2n.

However, we can show that nothing is gained by this approach. First, note that
the involutions described above form the (K-)conjugacy class

{(
(α, α−1), 1

) ∈ (Sn × Sn) � Z2 | α ∈ Sn

}
.

We remark that the development of section 3 is unchanged and that the optimal
measurement to find a hidden conjugate again consists of strong Fourier sampling.

Now note that Fourier sampling over S2n and over K is equivalent for the following
reason: suppose we are trying to distinguish a set of hidden subgroups Hi ⊂ G, all of
which are contained in a subgroup K ⊂ G. Let T be a set of representatives for the
cosets of K. Then a random left coset of Hi in G is the product of a random left coset
of Hi in K with a random element of T . Thus the mixed state describing a uniformly
random coset of Hi in G can be written as the tensor product of the corresponding
coset state over K with the completely mixed state over T . Since this completely
mixed state (whose density matrix is the identity) contains no information, nothing
is gained, or lost, by sampling over all of G rather than over K.

To proceed, we can determine K’s irreducible representations and their characters,
using the machinery of induced representations [33] as follows. For two irreducible
representations ρ and σ of Sn, let ρ�σ denote their tensor product as a representation
of Sn,n

∼= Sn × Sn. We consider the induced representation τ{ρ,σ} = IndK
Sn,n

(ρ � σ)
and denote its character χ{ρ,σ}. It is easy to see that

χ{ρ,σ}
(
((α, β), t)

)
=

{
χρ(α)χσ(β) + χσ(α)χρ(β) if t = 0 ,

0 if t = 1 ;

as the notation suggests, this depends only on the multiset {ρ, σ}. An easy computa-
tion shows that 〈χ{ρ,σ}, χ{ρ,σ}〉 = 1+ δρ,σ. Thus, if ρ � σ, then τ{ρ,σ} is irreducible of
dimension 2dρdσ. On the other hand, if ρ ∼= σ, then it decomposes into two irreducible
representations of dimension d2

ρ,

(7.1) τ{ρ,ρ} ∼= τ{ρ,ρ},1 ⊕ τ{ρ,ρ},π ,
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where 1 and π are the trivial and sign representations, respectively, of Z2. Each of
these irreducible representations acts on Vρ ⊗ Vρ, the vector space supporting the
action of ρ � ρ. Both realize the element ((α, β), 0) as the linear map ρ(α) ⊗ ρ(β),
while τ{ρ,ρ},1 and τ{ρ,ρ},π realize the element ((1, 1), 1) as the maps which send u⊗ v
to v ⊗ u and −v ⊗ u, respectively. The characters of these representations are

χ{ρ,ρ},1
(
((α, β), t)

)
=

{
χρ(α)χρ(β) if t = 0 ,

χρ(αβ) if t = 1 ,

χ{ρ,ρ},π
(
((α, β), t)

)
=

{
χρ(α)χρ(β) if t = 0 ,

−χρ(αβ) if t = 1 .

(7.2)

In particular, since m is of the form ((α, α−1), 1), we have the normalized characters

(7.3)
χ{ρ,ρ},1(m)

d{ρ,ρ},1
=

1

dρ
,

χ{ρ,ρ},π(m)

d{ρ,ρ},π
= − 1

dρ
,

and χ{ρ,σ}(m) = 0 for all ρ � σ.

Given that the normalized characters (7.3) are very small (indeed, n−Ω(n)) for all
ρ whose Young diagram is outside Λc, the analysis of section 6 can be undertaken
mutatis mutandis and easily implies that an exponential number of strong Fourier
sampling experiments would have to be performed to distinguish the isomorphic and
nonisomorphic cases. We note that a similar result has been obtained by Childs and
Wojcan [6], who treat Graph Isomorphism as a hidden shift problem on Sn.

We remark that the above description (7.1), (7.2) of the irreducible representa-
tions and characters of groups of the form G 	Z2 works for arbitrary G. In particular,
the normalized characters of the involutions that “swap” the two copies of G are either
0 or ±1/dρ for some ρ ∈ Ĝ. It follows that strong Fourier sampling fails to find such
involutions in G 	 Z2 whenever a sufficient fraction of G’s Plancherel measure lies on
sufficiently high-dimensional representations.
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1. Introduction. It is well known that nontrivial two-party cryptographic prim-
itives cannot be securely implemented if only error-free communication is available
and there is no limitation assumed on the computing power and memory of the play-
ers. Fundamental examples of such primitives are bit commitment (BC) and oblivious
transfer (OT). In BC, a committer C commits himself to a choice of a bit b by ex-
changing information with a verifier V. We want that V does not learn b (we say the
commitment is hiding), yet C can later choose to reveal b in a convincing way; i.e.,
only the value fixed at commitment time will be accepted by V (we say the commit-
ment is binding). In (Rabin) OT, a sender S sends a bit b to a receiver R by executing
some protocol in such a way that R receives b with probability 1

2
and nothing with

probability 1
2
, yet S does not learn what was received.

Informally, BC is not possible with unconditional security since hiding means that
when 0 is committed, exactly the same information exchange could have happened
when committing to a 1. Hence, even if 0 was actually committed to, C could always
compute a complete view of the protocol consistent with having committed to 1, and
pretend that this was what he had in mind originally. A similar type of argument
shows that OT is also impossible in this setting.
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One might hope that allowing the protocol to make use of quantum communica-
tion would make a difference. Here, information is stored in qubits, i.e., in the state
of two-level quantum mechanical systems, such as the polarization state of a single
photon. It is well known that quantum information behaves in a way that is funda-
mentally different from classical information, enabling, for instance, unconditionally
secure key exchange between two honest players. However, in the case of two mutu-
ally distrusting parties, we are not so fortunate: even with quantum communication,
unconditionally secure BC and OT remain impossible [31, 34].

There are, however, several scenarios where these impossibility results do not
apply, namely:

(i) if the computing power of players is bounded,
(ii) if the communication is noisy,
(iii) if the adversary is under some physical limitation, e.g., the size of the avail-

able memory is bounded.
The first scenario is the basis of many well-known solutions based on plausible

but unproven complexity assumptions, such as hardness of factoring or discrete loga-
rithms. The second scenario has been used to construct both BC and OT protocols in
various models for the noise [13, 15, 14]. The third scenario is our focus here. In this
model, OT and BC can be done using classical communication, assuming, however,
quite restrictive bounds on the adversary’s memory size [10, 19]; namely, it can be at
most quadratic in the memory size of honest players. Such an assumption is on the
edge of being realistic; it would clearly be more satisfactory to have a larger separation
between the memory size of honest players and that of the adversary. However, this
was shown to be impossible [22].

In this paper, we study for the first time what happens if instead we consider
protocols where quantum communication is used and we place a bound on the adver-
sary’s quantum memory size. There are two reasons why this may be a good idea:
first, if we do not bound the classical memory size, we avoid the impossibility result
of [22]. Second, the adversary’s typical goal is to obtain a certain piece of classical
information that we want to keep hidden from him. However, if he cannot store all
the quantum information that is sent, he must convert some of it to classical informa-
tion by measuring. This may irreversibly destroy information, and we may be able to
arrange it such that the adversary cannot afford to lose information this way, while
honest players can.

It turns out that this is indeed possible: we present protocols for both BC and OT
in which n qubits are transmitted, where honest players need no quantum memory,
but where the adversary must store at least n/2 qubits to break the protocol. We
emphasize that no bound is assumed on the adversary’s computing power, nor on his
classical memory. This is clearly much more satisfactory than the classical case, not
only from a theoretical point of view, but also in practice: while sending qubits and
measuring them immediately as they arrive is well within reach of current technol-
ogy, storing even a single qubit for more than a fraction of a second is a formidable
technological challenge. Furthermore, we show that our protocols also work in a non-
ideal setting where we allow the quantum source to be imperfect and the quantum
communication to be noisy.

We emphasize that what makes OT and BC possible in our model is not so
much the memory bound per se, but rather the loss of information on the part of the
adversary. Indeed, our results also hold if the adversary’s memory device holds an
arbitrary number of qubits but is imperfect in certain ways. This is discussed in more
detail in section 6.2.
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Our protocols are noninteractive; only one party sends information when doing
OT, commitment, or opening. Furthermore, the commitment protocol has the in-
teresting property that the only message is sent to the committer; i.e., it is possible
to commit while only receiving information. Such a scheme clearly does not exist
without a bound on the committer’s memory, even under computational assumptions
and using quantum communication: a corrupt committer could always store (possi-
bly quantumly) all the information sent, until opening time, and only then follow the
honest committer’s algorithm to figure out what should be sent to convincingly open
a 0 or a 1. Note that in the classical bounded-storage model, it is known how to do
time-stamping that is noninteractive in our sense: a player can time-stamp a docu-
ment while only receiving information [35]. However, no reasonable BC or protocol
that time-stamps a bit exists in this model. It is straightforward to see that any such
protocol can be broken by an adversary with classical memory of size twice that of
an honest player, while our protocol requires no memory for the honest players and
remains secure against any adversary unable to store more than half the size of the
quantum transmission.

We also note that it has been shown earlier that BC is possible using quantum
communication, assuming a different type of physical limitation, namely, a bound on
the size of coherent measurement that can be implemented [39]. This limitation is
incomparable to ours: it does not limit the total size of the memory; instead it limits
the number of bits that can be simultaneously operated on to produce a classical
result. Our adversary has a limit on the total memory size, but can measure all of it
coherently. The protocol from [39] is interactive and requires a bound on the maximal
measurement size that is sublinear in n.

On the technical side, we derive a new type of uncertainty relation involving the
min-entropy of a quantum encoding (see Theorem 3.1 and Corollary 3.3), which might
be useful in other contexts as well. The new relation is then used in combination with
a proof technique by Shor and Preskill [41], where the actions of honest players are
purified, and with privacy amplification against quantum adversaries as introduced
by Renner and König [37, 36].

2. Preliminaries.

2.1. Notation and terminology. For a set I = {i1, i2, . . . , i�} ⊆ {1, . . . , n}
and an n-bit string x ∈ {0, 1}n, we define x|I := xi1xi2 · · ·xi� , and we write Bδn(x)
for the set of all n-bit strings at Hamming distance at most δn from x. Note that the
number of elements in Bδn(x) is the same for all x; we denote it by Bδn := |Bδn(x)|.
It is well known that Bδn ≤ 2nh(δ), where h(p) denotes the binary entropy function
h(p) := −(

p · log p+(1−p) · log (1 − p)
)
. All logarithms in this paper are to base two.

We denote by negl(n) any function of n smaller than any polynomial provided that
n is sufficiently large.

For a discrete probability space (Ω, P ), we write P [E ] for the probability of the
event E ⊂ Ω, and we write PX for the distribution of the random variable X :
Ω → X . We use similar notation for conditional probabilities and distributions. As is
common practice, we do not refer to the probability space (Ω, P ) but leave it implicitly
defined by the joint probabilities of all considered events and random variables. For
a probability distribution Q over X , we abbreviate the (overall) probability of a set
L ⊆ X with Q(L) :=

∑
x∈L Q(x).

The pair {|0〉, |1〉} denotes the computational or rectilinear or “+” basis for the
two-dimensional complex Hilbert space C

2. The diagonal or “×” basis is defined as
{|0〉×, |1〉×}, where |0〉× = 1√

2
(|0〉+|1〉) and |1〉× = 1√

2
(|0〉−|1〉). Measuring a qubit in
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the + -basis (resp., ×-basis) means applying the measurement described by projectors
|0〉〈0| and |1〉〈1| (resp., projectors |0〉×〈0|× and |1〉×〈1|×). When the context requires
it, we write |0〉+ and |1〉+ instead of |0〉 and |1〉, respectively, and for any x ∈ {0, 1}n
and r ∈ {+,×}, we write |x〉r =

⊗n
i=1 |xi〉r. If we want to choose the +- or ×-basis

according to the bit b ∈ {0, 1}, we write {+,×}[b].
The behavior of a quantum state in a register E is fully described by its density

matrix ρE. We often consider cases where a quantum state may depend on some
classical random variable X, in that it is described by the density matrix ρxE if and
only if X = x. For an observer who has access only to the register E but not to X,
the behavior of the state is determined by the density matrix

∑
x PX(x)ρxE. The joint

state, consisting of the classical X and the quantum register E and therefore called
a cq-state, is described by the density matrix

∑
x PX(x)|x〉〈x| ⊗ ρxE. In order to have

more compact expressions, we use the following notation. We write

ρXE =
∑

x

PX(x)|x〉〈x| ⊗ ρxE and ρE = trX(ρXE) =
∑

x

PX(x)ρxE .

More generally, for any event E , we write

(2.1) ρXE|E =
∑

x

PX|E(x)|x〉〈x| ⊗ ρxE and ρE|E = trX(ρXE|E) =
∑

x

PX|E(x)ρxE.

We also write ρX =
∑

x PX(x)|x〉〈x| for the quantum representation of the classi-
cal random variable X (and similarly for ρX|E). This notation extends naturally to
quantum states that depend on several classical random variables (i.e., to ccq-states,
etc.).

This notation extends naturally to quantum states that depend on several classical
random variables (i.e., to ccq-states, etc.), defining the density matrices ρXY E, ρXY E|E ,
ρY E|X=x, etc. We tend to slightly abuse notation and write ρxY E = ρXE|X=x and
ρxY E|E = ρY E|X=x,E , as well as ρxE = trY (ρxY E) and ρxE|E = trY (ρxY E|E).1 Note that

writing ρXE = trY (ρXY E) and ρE = trX,Y (ρXY E) is consistent with the above notation.
We also write ρXE|E = trY (ρXY E|E) and ρE|E = trX,Y (ρXY E|E), where one has to be
aware that in contrast to (2.1), here the state E may depend on the event E when
given x (namely, via Y ), so that, e.g., ρE|E =

∑
x PX|E(x)ρxE|E .

Given a cq-state ρXE, by saying that there exists a random variable Y such
that ρXY E satisfies some condition, we mean that ρXE can be understood as ρXE =
trY (ρXY E) for a ccq-state ρXY E that satisfies the required condition.

Obviously, ρXE = ρX ⊗ ρE if and only if the quantum part is independent of X
(in that ρxE = ρE for any x), where the latter in particular implies that no information
on X can be learned by observing only ρE. Furthermore, if ρXE and ρX ⊗ ρE are
ε-close in terms of their trace distance δ(ρ, σ) = 1

2
tr(|ρ − σ|), then the real system

ρXE “behaves” as the ideal system ρX ⊗ ρE except with probability ε [37] in that for
any evolution of the system no observer can distinguish the real system from the ideal
one with advantage greater than ε. Throughout the paper, 1 stands for the identity
matrix (describing the fully mixed state) renormalized by the appropriate dimension.

We consider the notion of the classical Rényi entropy Hα(X) of order α of a
random variable X [38], as well as its generalization to the Rényi entropy Hα(ρ) of

1The density matrix ρxE|E describes the quantum state E in the case that the event E occurs and X

takes on the value x. The corresponding convention holds for the other density matrices considered
here.
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a quantum state ρ [37]. It holds that Hα(ρX) = Hα(X) and Hα(ρX) ≤ Hβ(ρX) if
α ≥ β. The cases that are relevant for us are the classical min-entropy H∞(X) =
− log (maxx PX(x)) as well as the quantum versions of the max- and collision-entropy
H0(ρ) = log (rank(ρ)), respectively, H2(ρ) = − log

(∑
i λ

2
i

)
, where {λi}i are the eigen-

values of ρ.

2.2. Bounded quantum storage and privacy amplification. All our pro-
tocols take place in the bounded-quantum-storage model, which concretely means the
following: the state of an adversarial player may consist of an arbitrary number of
qubits, and he may perform arbitrary quantum computation. At a certain point in
time, though, we say that the memory bound applies, which means that a measure-
ment is applied to the system with the restriction that the resulting quantum state
can be stored in at most q qubits. The classical outcome of the measurement can be of
arbitrary size and (classically) stored for later use. After this point, the player is again
unbounded in (quantum) memory. Throughout, the adversary may have unbounded
computing power and classical memory. We note that our results also apply to some
cases where the adversary’s memory is not bounded but is noisy in certain ways; see
section 6.2.

An important tool we use is universal hashing. A class Fn of hashing functions
from {0, 1}n to {0, 1} is called two-universal if for any pair x, y ∈ {0, 1}n with x �= y,
and F uniformly chosen from Fn,

P
[
F (x) = F (y)

] ≤ 1

2
.

Several two-universal classes of hashing functions are such that evaluating and picking
a function uniformly and at random in Fn can be done efficiently [11, 42].

Theorem 2.1 (see [37]). Let ρXE be a cq-state, where X is distributed over
{0, 1}n and register E contains q qubits. Let F be the random variable corresponding
to the random choice (with uniform distribution and independent from X) of a member
of a two-universal class of hashing functions Fn. Then

δ
(
ρF (X)FE,1 ⊗ ρFE

) ≤ 1

2
2−

1
2 (H2(ρXE)−H0(ρE)−1)(2.2)

≤ 1

2
2−

1
2 (H∞(X)−q−1).(2.3)

The first inequality (2.2) is the original theorem from [37], and (2.3) follows by
observing that H2(ρXE) ≥ H2(ρX) = H2(X) ≥ H∞(X). In this paper, we use only
this weaker version of the theorem.

Note that if the rightmost term of (2.3) is negligible, i.e., say, smaller than 2−εn,
then this situation is 2−εn-close to the ideal situation where F (X) is perfectly uni-
form and independent of E and F . In particular, replacing F (X) by an independent
and uniformly distributed bit results in a common state which essentially cannot be
distinguished from the original one.

The following lemma is a direct consequence of Theorem 2.1. In section 5, this
lemma will be useful for proving the binding condition of our commitment scheme.
Recall that for X ∈ {0, 1}n, Bδn(X) denotes the set of all n-bit strings at Hamming
distance at most δn from X and Bδn := |Bδn(X)| is the number of such strings.

Lemma 2.2. Let ρXE be a cq-state, where X is distributed over {0, 1}n and
register E contains q qubits. Let X̂ be a guess for X obtained by measuring E. Then,
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for all δ < 1
2

it holds that

P
[
X̂ ∈ Bδn(X)

] ≤ 2−
1
2 (H∞(X)−q−1)+log(Bδn).

In other words, given a quantum memory of q qubits arbitrarily correlated with
a classical random variable X, the probability of finding X̂ at Hamming distance at
most δn from X, where nh(δ) < 1

2
(H∞(X) − q), is negligible.

Proof. Here is a strategy to try to bias F (X) when given X̂ and F ∈R Fn.
Sample X ′ ∈R Bδn(X̂) and output F (X ′). Note that, using psucc as shorthand for
the probability P

[
X̂ ∈ Bδn(X)

]
to be bounded,

P
[
F (X ′) = F (X)

]
=

psucc

Bδn
+

(
1 − psucc

Bδn

)
1

2

=
1

2
+

psucc

2 · Bδn
,

where the first equality follows from the fact that if X ′ �= X, then, as Fn is two-
universal, P [F (X) = F (X ′)] = 1

2
. Note that, given F and being allowed to measure

E, the probability of correctly guessing a binary F (X) is upper bounded by 1
2

+
δ(ρF (X)FE,1 ⊗ ρFE) [24]. In combination with Theorem 2.1, the above results in

1

2
+

psucc

2 · Bδn
≤ 1

2
+

1

2
2−

1
2 (H∞(X)−q−1),

and the claim follows immediately.

2.3. Operators and norms. For a linear operator A on the complex Hilbert
space H, we define the operator norm

‖A‖ := sup
〈 x| x〉=1

‖Ax‖

for the Euclidean norm ‖x‖ :=
√〈x|x〉. When A is Hermitian, we have

‖A‖ = λmax(A) := max{|λj | : λj an eigenvalue of A}.
From an equivalent definition of the norm ‖A‖ = sup〈y|y〉=〈x|x〉=1 |〈y|A|x〉|, it is easy
to see that ‖A∗‖ = ‖A‖. For two Hermitian matrices A and B, we have that ‖AB‖ =
‖(AB)∗‖ = ‖B∗A∗‖ = ‖BA‖. The operator norm is unitarily invariant ; i.e., for all
unitary U, V , ‖A‖ = ‖UAV ‖ holds. It is easy to show that

∥∥∥∥
(
A 0
0 B

)∥∥∥∥ = max {‖A‖, ‖B‖} .

Lemma 2.3. Let X,Y be any two n× n matrices such that the products XY and
Y X are Hermitian. Then, we have

‖XY ‖ = ‖Y X‖.
Proof. For any two n× n matrices X and Y , XY and Y X have the same eigen-

values; see, e.g., [5, Exercise I.3.7]. Therefore, ‖XY ‖ = λmax(XY ) = λmax(Y X) =
‖Y X‖.

A linear operator P such that P 2 = P and P ∗ = P is called an orthogonal
projector.
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Proposition 2.4. For two orthogonal projectors A and B, it holds that

‖A + B‖ ≤ 1 + ‖AB‖ .
Proof. We adapt a technique by Kittaneh [28] to our case. We define two 2 × 2-

block matrices X and Y as

X :=

(
A B
0 0

)
and Y :=

(
A 0
B 0

)

and using A2 = A and B2 = B, we compute

XY :=

(
A + B 0

0 0

)
and Y X :=

(
A AB
BA B

)
=

(
A 0
0 B

)
+

(
0 AB

BA 0

)
.

As A and B are Hermitian, so are A+B, AB, BA, XY , and Y X. We use Lemma 2.3
and the triangle inequality to obtain

∥∥∥∥
(
A + B 0

0 0

)∥∥∥∥ =

∥∥∥∥
(

A AB
BA B

)∥∥∥∥ ≤
∥∥∥∥
(
A 0
0 B

)∥∥∥∥ +

∥∥∥∥
(

0 AB
BA 0

)∥∥∥∥ .

Using the unitary invariance of the operator norm to permute the columns in the
rightmost matrix and the facts that ‖A‖ = ‖B‖ = 1 as well as ‖AB‖ = ‖BA‖, we
conclude that ‖A + B‖ ≤ 1 + ‖AB‖.

3. Uncertainty relations. In this section, we prove a general uncertainty result
and derive from that a corollary that plays the crucial role in the security proof of
our protocols. The uncertainty result concerns the situation where the sender holds
an arbitrary quantum register of n qubits. He may measure them in either the +- or
the ×-basis. We are interested in the distribution of both these measurement results,
and we claim that they cannot both be “very far from uniform.”

3.1. History and previous work. The history of uncertainty relations starts
with Heisenberg, who showed that the outcomes of two noncommuting observables
A and B applied to any state ρ are not easy to predict simultaneously. However,
Heisenberg speaks only about the variance of the measurement results, and his result
was shown to have several shortcomings in [25, 18]. More general forms of uncer-
tainty relations were proposed in [6] and [18] to resolve these problems. The new
relations were called entropic uncertainty relations, because they are expressed using
Shannon entropy instead of the statistical variance. Entropic uncertainty relations
have the advantage of being pure information theoretic statements. The first entropic
uncertainty relation was introduced by Deutsch [18] and stated that

(3.1) H(P ) + H(Q) ≥ −2 log
1 + c

2
,

where P,Q are the distributions representing the measurement results and c is the
maximum inner product norm between any eigenvectors of A and B. First conjectured
by Kraus [29], Deutsch’s relation was improved by Maassen and Uffink [32] to the
optimal

(3.2) H(P ) + H(Q) ≥ −2 log c.

Although a bound on Shannon entropy can be helpful in some cases, it is usually
not good enough in cryptographic applications. The main tool to reduce the adver-
sary’s information—privacy amplification [4, 27, 3, 37, 36]—works only if a bound
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on the adversary’s min-entropy (in fact collision entropy) is known. Unfortunately,
knowing a lower bound on the Shannon entropy of a distribution does not in general
allow one to lower bound its higher order Rényi entropies.

An entropic uncertainty relation involving Rényi entropy of order 2 (i.e., collision
entropy) was introduced by Larsen [30, 40]. Larsen’s relation quantifies precisely
the collision entropy for the set {Ai}d+1

i=1 of all maximally noncommuting observables,
where d is the dimension of the Hilbert space. Its use is therefore restricted to quantum
coding schemes that take advantage of all d+ 1 observables, i.e., to schemes that are
difficult to implement in practice.

3.2. Two mutually unbiased bases. In this section, we show that two distri-
butions obtained by measuring in two mutually unbiased bases cannot both be “very
far from uniform.” One way to express this is to say that a distribution is very non-
uniform if one can identify a subset of outcomes that has much higher probability
than for a uniform choice. Intuitively, the theorem below says that such sets cannot
be found for both measurements. In Appendix A, we generalize the results of this
section to more than two mutually unbiased bases.

Theorem 3.1. Let ρ be an arbitrary state of n qubits, and let Q+(·) and Q×(·)
be the respective distributions of the outcome when ρ is measured in the +-basis and
the ×-basis, respectively. Then, for any two sets L+ ⊂ {0, 1}n and L× ⊂ {0, 1}n it
holds that

Q+(L+) + Q×(L×) ≤ 1 + 2−n/2
√
|L+||L×|.

Proof. We define the two orthogonal projectors

A :=
∑

x∈L+

|x〉〈x| and B :=
∑

y∈L×

H⊗n|y〉〈y|H⊗n.

Using the spectral decomposition of ρ =
∑

w λw|ϕw〉〈ϕw|, we have

Q+(L+) + Q×(L×) = tr (Aρ) + tr (Bρ)

=
∑

w

λw (tr (A|ϕw〉〈ϕw|) + tr (B|ϕw〉〈ϕw|))

=
∑

w

λw (〈ϕw|A|ϕw〉 + 〈ϕw|B|ϕw〉)

=
∑

w

λw〈ϕw|(A + B)|ϕw〉

≤ ‖A + B‖ ≤ 1 + ‖AB‖,

where the last line is Proposition 2.4. In order to finish the proof, we show that
‖AB‖ ≤ 2−n/2

√|L+||L×|. Note that an arbitrary state |ψ〉 =
∑

z λzH
⊗n|z〉 can be

expressed with coordinates λz in the diagonal basis. Then, with the sums over x and
y understood as over x ∈ L+ and y ∈ L×, respectively,

∥∥AB|ψ〉∥∥ =

∥∥∥∥
∑

x,y

|x〉〈x|H⊗n|y〉〈y|H⊗n|ψ〉
∥∥∥∥ = 2−n/2

∥∥∥∥
∑

x,y

|x〉〈y|H⊗n|ψ〉
∥∥∥∥

= 2−n/2

∥∥∥∥
∑

x

|x〉
∥∥∥∥
∣∣∣∣
∑

y

λy

∣∣∣∣ ≤ 2−n/2
√
|L+|

∑

y

|λy| ≤ 2−n/2
√
|L+||L×|.
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The second equality holds since |x〉 and H⊗n|y〉 are mutually unbiased, the first in-
equality follows from Pythagoras and the triangle inequality, and the last inequality
follows from Cauchy–Schwarz. This implies that ‖AB‖ ≤ 2−n/2

√|L+||L×| and fin-
ishes the proof.

This theorem yields a meaningful bound as long as |L+| · |L×| < 2n, e.g., if L+

and L× both contain less than 2n/2 elements. The relation is tight in the sense that
for the Hadamard-invariant state

|ϕ〉 =
(
|0〉⊗n

+ (H|0〉)⊗n
)
/
√

2(1 + 2−n/2)

and L+ = L× = {0n}, it is straightforward to verify that Q+(L+) = Q×(L×) = (1 +
2−n/2)/2 and therefore Q+(L+) + Q×(L×) = 1 + 2−n/2. Another state that achieves

equality (for n even) is |ϕ〉 = |0〉⊗n/2 ⊗ (H|0〉)⊗n/2 with L+ = {0n/2x | x ∈ {0, 1}n/2}
and L× = {x0n/2 | x ∈ {0, 1}n/2}. We get that Q+(L+) = Q×(L×) = 1 and thus
Q+(L+) + Q×(L×) = 2 = 1 + 2−n/2

√
2n.

If for r ∈ {+,×}, Lr contains only the n-bit string with the maximal probability
of Qr, we obtain a known tight relation (see inequality (9) in [32]).

Corollary 3.2. Let q+
∞ and q×∞ be the maximal probabilities of the distributions

Q+ and Q× from above. It then holds that q+
∞ · q×∞ ≤ 1

4
(1 + c)2, where c = 2−n/2.

Equality is achieved for the same state |ϕ〉 =
(|0〉⊗n

+(H|0〉)⊗n
)
/
√

2(1 + 2−n/2)
as above.

The following corollary plays a crucial role in the security proof of the OT protocol
in the next section.

Corollary 3.3. Let R be a random variable over {+,×}, and let X be the
outcome when ρ is measured in basis R, such that PX|R(x|r) = Qr(x). Then, for any

λ < 1
2

there exists an event E such that

P [E|R=+] + P [E|R=×] ≥ 1 − negl(n)

and thus P [E ] ≥ 1
2
− negl(n) in case R is uniform, and such that

H∞(X|R=r, E) ≥ λn

for r ∈ {+,×} with PR|E(r) > 0.

Proof. Choose ε > 0 such that λ + ε < 1
2
, define

S+ :=
{
x ∈ {0, 1}n : Q+(x) ≤ 2−(λ+ε)n

}
and

S× :=
{
z ∈ {0, 1}n : Q×(z) ≤ 2−(λ+ε)n

}

to be the sets of strings with small probabilities, and denote by L+ := S
+

and L× :=

S
×

their complements.2 Note that for all x ∈ L+, we have that Q+(x) > 2−(λ+ε)n

and therefore |L+| < 2(λ+ε)n. Analogously, we have |L×| < 2(λ+ε)n. For ease of
notation, we abbreviate the probabilities that strings with small probabilities occur
with q+ := Q+(S+) and q× := Q×(S×). It follows immediately from Theorem 3.1
that q+ + q× ≥ 1 − negl(n).

We define E to be the event X ∈ SR. Then P [E|R=+] = P [X ∈ S+|R=+] = q+

and similarly P [E|R=×] = q×, and the first claim follows immediately. Furthermore,

2Here is the mnemonic: S for the strings with Small probabilities, L for Large.
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if R is uniformly distributed, then P [E ] = P [E|R= +]PR(+) + P [E|R=×]PR(×) =
1
2
(q+ + q×) ≥ 1

2
− negl(n). Regarding the second claim, in case R = +, we have

H∞(X|R=+, E) = − log

(
max
x∈S+

Q+(x)

q+

)

≥ − log

(
2−(λ+ε)n

q+

)
= λn + εn + log(q+).

Thus, if q+ ≥ 2−εn, then indeed H∞(X|R = +, X ∈ S+) ≥ λn. The corresponding
holds for the case R = ×.

Finally, if q+ < 2−εn (or similarly q× < 2−εn), then instead of the above, we
define E as the empty event if R = + and as the event X ∈ S× if R = ×. It follows
that P [E|R = +] = 0 and P [E|R = ×] = q× ≥ 1 − negl(n), as well as H∞(X|R =
×, E) = H∞(X|R=×, X ∈ S×) ≥ λn + εn + log(q×) ≥ λn (for n large enough), both
by the bound on q+ + q× and on q+, whereas PR|E(+) = 0.

4. Rabin oblivious transfer.

4.1. The definition. A protocol for Rabin oblivious transfer (ROT) between
sender Alice and receiver Bob allows for Alice to send a bit b through an erasure chan-
nel to Bob. Each transmission delivers b or an erasure with probability 1

2
. Intuitively,

a protocol for ROT is secure if
(i) the sender Alice gets no information on whether b was received or not, no

matter what she does, and
(ii) the receiver Bob gets no information about b with probability at least 1

2
, no

matter what he does.
In this paper, we are considering quantum protocols for ROT. This means that while
the inputs and outputs of the honest senders are classical, described by random vari-
ables, the protocol may contain quantum computation and quantum communication,
and the view of a dishonest player is quantum and is thus described by a quantum
state.

Any such (two-party) protocol is specified by a family {(Sn,Rn)}n>0 of pairs of
interactive quantum circuits (i.e., interacting through a quantum channel). Each pair
is indexed by a security parameter n > 0, where Sn and Rn denote the circuits for
sender Alice and receiver Bob, respectively. In order to simplify the notation, we often
omit the index n, leaving the dependency on it implicit.

For the formal definition of the security requirements of a ROT protocol, let us
fix the following notation. Let B denote the binary random variable describing S’s
input bit b, and let A and Y denote the binary random variables describing R’s two
output bits, where the meaning is that A indicates whether the bit was received or
not. Furthermore, for a dishonest sender S̃, we have the ccq-state ρAY S̃, where (by

slight abuse of notation) we also denote by S̃ the quantum register that the sender
outputs. Its state may depend on A and Y . Similarly, for a dishonest receiver R̃, we
have the cq-state ρBR̃.

Definition 4.1. A (statistically) secure ROT is a two-party (quantum) protocol
(S,R) with the following properties.
Correctness: For honest S and R, P [B = Y |A = 1] ≥ 1 − negl(n).
Receiver-security: For honest R and any dishonest S̃, there exists a binary random

variable B′ such that P [B′ = Y |A = 1] ≥ 1−negl(n) and δ
(
ρAB′S̃,1⊗ρB′S̃

) ≤
negl(n).
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Sender-security: For any R̃, there exists an event E with P [E ] ≥ 1
2
−negl(n) such that

δ
(
ρBR̃|E , ρB ⊗ ρR̃|E

) ≤ negl(n).
If any of the negligible terms above equals 0, then the corresponding property is said
to hold perfectly. If one of the properties holds only with respect to a restricted class
S of S̃’s (resp., R of R̃’s), then this property is said to hold and the protocol is said
to be secure against S (resp., R).

Statistical receiver-security guarantees that the joint quantum state after the
execution of the protocol is, up to a negligible difference, the same as when the dis-
honest sender prepares the cq-state ρB′S̃, and gives the classical bit B′ to an ideal
functionality which then passes it on to the receiver with probability 1

2
.3 Statistical

sender-security guarantees that the joint quantum state is, up to a negligible differ-
ence, the same as when the dishonest receiver gets the sender’s bit B with probability
at most 1

2
and prepares the state ρR̃|E in case he does not receive it, and else the state

ρb
R̃|Ē = ρR̃|B=b,Ē if B = b. In other words, security guarantees that the dishonest party

cannot do more than when attacking an ideal functionality.
A formal treatment of the composability is beyond the scope of this paper. How-

ever, upcoming work of the authors implies that any quantum ROT protocol which
satisfies Definition 4.1 securely replaces an ideal ROT functionality when used se-
quentially in a purely classical protocol. We also refer to [43] for recent results about
the composition of quantum protocols in the bounded-quantum-storage model.

4.2. The protocol. We introduce a quantum protocol for ROT that will be
shown to be perfectly receiver-secure (against any sender) and statistically sender-
secure against any quantum-memory-bounded receiver. Our protocol exhibits some
similarity to quantum conjugate coding introduced by Wiesner [44].

The protocol is very simple (see Figure 4.1): S picks x ∈R {0, 1}n and sends
to R n qubits in either state |x〉+ or |x〉×, each chosen with probability 1

2
. R then

measures all received qubits either in the rectilinear or in the diagonal basis. With
probability 1

2
, R picks the right basis and gets x, while any R̃ that is forced to measure

part of the state (due to a memory bound) can have full information on x only in case
the +-basis was used or in case the ×-basis was used (but not in both cases). Privacy
amplification based on any two-universal class of hashing functions Fn is then used to
destroy partial information. (In order to avoid aborting, we specify that if a dishonest
S̃ refuses to participate or sends data in incorrect format, then R samples both of its
output bits a and y at random in {0, 1}.)

We first consider receiver-security.
Proposition 4.2. qot is perfectly receiver-secure.
It is obvious that no information about whether R has received the bit is leaked

to any sender S̃, since R does not send anything. However, one needs to show the
existence of a random variable B′ as required by receiver-security.

Proof. Recall that the density matrix ρAY S̃ is defined by the experiment where

the dishonest sender S̃ interacts with the honest memory-bounded R. Consider a
modification of the experiment where we allow R to be unbounded in memory and
where R waits to receive r and then measures all qubits in basis r. Let X ′ be the

3Note that the original definition given in [17] does not guarantee that the distribution of the
input bit is determined at the end of the execution of ROT. This is a strictly weaker definition and
does not fully capture what is expected from a ROT: it is easy to see that if the dishonest sender
can still influence his input bit after the execution of the protocol, then known schemes based on
ROT, such as bit commitments, are not secure anymore. The security definition given here is in the
spirit of the security definition from [16] for 1-2 OT.
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qot(b):
1. S picks x ∈R {0, 1}n, and r ∈R {+,×}.
2. S sends |ψ〉 := |x〉r to R (i.e., the string x in basis r).
3. R picks r′ ∈R {+,×} and measures all qubits of |ψ〉 in basis r′. Let

x′ ∈ {0, 1}n be the result.
4. S announces r, f ∈R Fn, and e := b⊕ f(x).
5. R outputs a := 1 and y := e⊕ f(x′) if r′ = r and else a := 0 and y := 0.

Fig. 4.1. Protocol for quantum Rabin OT.

resulting string. Nevertheless, R picks r′ ∈R {+,×} at random and outputs (A, Y ) =
(0, 0) if r′ �= r and (A, Y ) = (1, e ⊕ f(X ′)) if r′ = r. Since the only difference
between the two experiments is when R measures the qubits and in what basis R
measures them when r �= r′, in which case his final output is independent of the
measurement outcome, the two experiments result in the same ρAY S̃. However, in
the modified experiment we can choose B′ to be e⊕ f(X ′) such that by construction
B′ = Y if A = 1 and A is uniformly distributed, independent of anything, and thus
ρAB′S̃ = 1 ⊗ ρB′S̃.

As we shall see in section 4.4, the security of the qot protocol against receivers
with bounded-size quantum memory holds as long as the bound applies before step 4
is reached. An equivalent protocol is obtained by purifying the sender’s actions.
Although qot is easy to implement, the purified or EPR-based version [23] depicted
in Figure 4.2 is easier to prove secure. A similar approach was taken in the Shor–
Preskill proof of security for the BB84 quantum key distribution scheme [41].

epr-qot(b):
1. S prepares n EPR pairs each in state |Ω〉 = 1√

2
(|00〉 + |11〉).

2. S sends one half of each pair to R and keeps the other halves.
3. R picks r′ ∈R {+,×} and measures all received qubits in basis r′. Let

x′ ∈ {0, 1}n be the result.
4. S picks r ∈R {+,×} and measures all kept qubits in basis r. Let x ∈

{0, 1}n be the outcome. S announces r, f ∈R Fn, and e := b⊕ f(x).
5. R outputs a := 1 and y := e⊕ f(x′) if r′ = r and else a := 0 and y := 0.

Fig. 4.2. Protocol for EPR-based quantum Rabin OT.

Notice that while qot requires no quantum memory for honest players, quantum
memory for S seems to be required in epr-qot. The following lemma shows the strict
equivalence between qot and epr-qot.

Lemma 4.3. qot is sender-secure if and only if epr-qot is.
Proof. The proof follows easily after observing that S’s choices of r and f , to-

gether with the measurements, all commute with R̃’s actions. Therefore, they can be
performed right after step 1 with no change for R̃’s view. Modifying epr-qot that
way results in qot.

Note that for a dishonest receiver it is not only irrelevant whether he tries to
attack qot or epr-qot, but in fact there is no difference in the two protocols from
his point of view.
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4.3. Modeling dishonest receivers. We model dishonest receivers in qot,
respectively, epr-qot, under the assumption that the maximum size of their quantum
storage is bounded. These adversaries are required to have bounded quantum storage
only when they reach step 4 in (epr-)qot. Before that, the adversary can store and
carry out quantum computations involving any number of qubits. Apart from the
restriction on the size of the quantum memory available to the adversary, no other
assumption is made. In particular, the adversary is not assumed to be computationally
bounded, and the size of its classical memory is not restricted.

Definition 4.4. The set Rγ denotes all possible quantum dishonest receivers

{R̃n}n>0 in qot or epr-qot where for each n > 0, R̃n has quantum memory of size
at most γn when step 4 is reached.

In general, the adversary R̃ is allowed to perform any quantum computation
compressing the n qubits received from S into a quantum register M of size at most
γn when step 4 is reached. More precisely, the compression function is implemented
by some unitary transform C acting upon the quantum state received and an ancilla
of arbitrary size. The compression is performed by a measurement that we assume
in the computational basis without loss of generality. Before starting step 4, the
adversary first applies a unitary transform C:

2−n/2
∑

x∈{0,1}n

|x〉 ⊗ C|x〉|0〉 �→ 2−n/2
∑

x∈{0,1}n

|x〉 ⊗
∑

y

αx,y|ϕx,y〉M |y〉Y ,

where for all x,
∑

y |αx,y|2 = 1. Then, a measurement in the computational basis is
applied to register Y providing classical outcome y. The result is a quantum state
in register M of size γn qubits. Ignoring the value of y to ease the notation, the
renormalized state of the system in its most general form when step 4 in epr-qot is
reached is thus of the form

|ψ〉 =
∑

x∈{0,1}n

αx|x〉 ⊗ |ϕx〉M ,

where
∑

x |αx|2 = 1. We will prove security for any such state |ψ〉 and thus conditioned
on any value y that may be observed. It is therefore safe to leave the dependency on
y implicit.

4.4. Security against dishonest receivers. In this section, we show that epr-
qot is secure against any dishonest receiver having access to a quantum storage device
of size strictly smaller than half the number of qubits received at step 2.

Theorem 4.5. For all γ < 1
2
, qot is statistically secure against Rγ .

Proof. After Lemmas 4.3 and 4.2, it remains to show that epr-qot is sender-
secure against Rγ . Since γ < 1

2
, we can find ε > 0 with γ+ε < 1

2
. Consider a dishonest

receiver R̃ in epr-qot with quantum memory of size γn. Let R and X denote the
random variables describing the basis r and the outcome x of S’s measurement (in
basis r) in step 4 of epr-qot, respectively. We implicitly understand the distribution
of X given R to be conditioned on the classical outcome y of the measurement R̃
performed when the memory bound applies, as described in section 4.3; the following
analysis works no matter what y is. Corollary 3.3 with λ = γ+ε implies the existence
of an event E such that P [E ] ≥ 1

2
−negl(n) and such that H∞(X|R=r, E) ≥ γn+εn for

any relevant r. Note that by construction, the random variables X and R, and thus
also the event E , are independent of the sender’s input bit B, and hence ρB|E = ρB .
It remains to show that δ(ρBR̃|E , ρB|E⊗ρR̃|E) ≤ negl(n). As the bit B is masked by the
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output of the hash function F (X) in step 4 of epr-qot (where the random variable F
represents the random choice for f), it suffices to show that F (X) is close to uniform

and essentially independent from R̃’s view, conditioned on E . But this is guaranteed
by the above bound on H∞(X|R=r, E) and by Theorem 2.1.

4.5. On the necessity of privacy amplification. In this section, we show
that randomized privacy amplification is needed for protocol qot to be secure. For
instance, it is tempting to believe that the sender could use the XOR

⊕
i xi in order

to mask the bit b, rather than f(x) for a randomly sampled f ∈ Fn. This would
reduce the communication complexity as well as the number of random coins needed.
However, we argue in this section that this is not secure (against an adversary as we
model it). Indeed, somewhat surprisingly, this variant can be broken by a dishonest
receiver that has no quantum memory at all (but that can do coherent measurements
on pairs of qubits) in the case n is even. For odd n, the dishonest receiver needs to
store a single qubit.

Clearly, a dishonest receiver can break the modified scheme qot and learn the
bit b with probability 1 if he can compute

⊕
i xi with probability 1. Note that, using

the equivalence between qot and epr-qot, xi can be understood as the outcome of
the measurement in either the +- or the ×-basis, performed by the sender on one
part of an EPR pair while the other has been handed over to the receiver. The
following proposition shows that indeed the receiver can learn

⊕
i xi by a suitable

measurement of his parts of the EPR pairs. Concretely, he measures the qubits he
receives pairwise by a suitable measurement which allows him to learn the XOR of
the two corresponding xi’s, no matter what the basis is (and he needs to store one
single qubit in case n is odd). This obviously allows him to learn the XOR of all xi’s
in all cases.

Proposition 4.6. Consider two EPR pairs, i.e., |ψ〉 = 1
2

∑
x |x〉S |x〉R, where x

ranges over {0, 1}2. Let r ∈ {+,×}, and let x1 and x2 be the result when measuring
the two qubits in register S in basis r. There exists a fixed measurement for register
R so that the outcome together with r uniquely determines x1 ⊕ x2.

Proof. The measurement that does the job is the Bell measurement, i.e., the
measurement in the Bell basis {|Φ+〉, |Ψ+〉, |Φ−〉, |Ψ−〉}. Recall that

∣∣Φ+
〉

=
1√
2

(|00〉+ + |11〉+
)

=
1√
2

(|00〉× + |11〉×
)
,

∣∣Ψ+
〉

=
1√
2

(|01〉+ + |10〉+
)

=
1√
2

(|00〉× − |11〉×
)
,

∣∣Φ−〉 =
1√
2

(|00〉+ − |11〉+
)

=
1√
2

(|01〉× + |10〉×
)
,

∣∣Ψ−〉 =
1√
2

(|01〉+ − |10〉+
)

=
1√
2

(|10〉× − |01〉×
)
.

Due to the special form of the Bell basis, when register R is measured and, as a
consequence, one of the four Bell states is observed, the state in register S collapses
to that same Bell state. Indeed, when doing the basis transformation, all cross-
products cancel each other out. It now follows by inspection that knowledge of the
Bell state and the basis r allows one to predict the XOR of the two bits observed
when measuring the Bell state in basis r. For instance, for the Bell state |Ψ+〉, the
XOR is 1 if r = + and 0 if r = ×.

Note that from the above proof one can see that the receiver’s attack (resp., his
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measurement on each pair of qubits) can be understood as teleporting one of the
two entangled qubits from the receiver to the sender using the other as EPR pair.
However, the receiver does not send the outcome of his measurement to the sender,
but keeps it in order to predict the XOR.

Clearly, the same strategy also works against any fixed linear function. Therefore,
the only hope for doing deterministic privacy amplification is by using a nonlinear
function. However, it has been shown recently in [1] that this approach is also doomed
to fail in our scenario, because the outcome of any Boolean function can be perfectly
predicted by a dishonest receiver who can store a single qubit and later learns the
correct basis r ∈ {+,×}.

4.6. Weakening the assumptions. Observe that qot requires error-free quan-
tum communication, in that a transmitted bit b that is encoded by the sender and
measured by the receiver using the same basis is always received as b. In addition, it
also requires a perfect quantum source which on request produces one and only one
qubit in the right state, e.g., one photon with the right polarization. Indeed, in case
of noisy quantum communication, an honest receiver in qot is likely to receive an
incorrect bit, and the sender-security of qot is vulnerable to imperfect sources that
once in a while transmit more than one qubit in the same state: a malicious receiver
R̃ can easily determine the basis r ∈ {+,×} and measure all the following qubits
in the right basis. However, current technology only allows one to approximate the
behavior of single-photon sources and noise-free quantum communication. It would
be preferable to find a variant of qot that allows one to weaken the technological
requirements put upon the honest parties.

In this section, we present such a protocol based on BB84 states [2], bb84-qot (see
Figure 4.3). The security proof follows essentially by adapting the security analysis
of qot in a rather straightforward way, as will be discussed later.

Let us consider a quantum channel with an error probability φ < 1
2
; i.e., φ denotes

the probability that a transmitted bit b that is encoded by the sender and measured
by the receiver using the same basis is received as 1− b. For the sake of simplicity we
assume that the error rate is the same for qubits encoded in the +- and ×-basis. It is
straightforward to adapt the analysis below to basis-dependent error rates. In order
to not have the security rely on any level of noise, we assume the error probability to
be zero when considering a dishonest receiver. Also, let us consider a quantum source
which produces two or more qubits (in the same state), rather than just one, with
probability η < 1 − φ. We assume that the parameters φ and η which describe the
precision of the physical apparatus being used are known to the players.

We call this the (φ, η)-weak quantum model. By adjusting the parameters, this
model can also cope with dark counts and empty pulses; see section 6.1.

In order to deal with noisy quantum communication, we need to do error-correction
without giving the adversary too much information. Techniques for solving this prob-
lem are known as information reconciliation (e.g., [9]) or as secure sketches [20]. Let
x ∈ {0, 1}� be an arbitrary string, and let x′ ∈ {0, 1}� be the result of flipping every bit
in x (independently) with probability φ. It is well known that learning the syndrome
S(x) of x, with respect to a suitable efficiently decodable linear error-correcting code
C of length �, allows us to recover x from x′, except with negligible probability in �
(e.g., [33, 12, 20]). Furthermore, it is known from coding theory that, for large enough
�, such a code can be chosen with rate R arbitrarily close to but smaller than 1−h(φ),
i.e., such that the syndrome length s is bounded by s < (h(φ)+ ε)�, where ε > 0 (see,
e.g., [12] or the full version of [20] and the references therein).
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Regarding the loss of information, we can analyze privacy amplification in a simi-
lar way as before, just by appending a register for the syndrome S(x) to the quantum
register E. Using that S0(ρS(X)E) ≤ q + s, Theorem 2.1 then reads

(4.1) δ
(
ρF (X)FS(X)E,1 ⊗ ρFS(X)E

) ≤ 1

2
2−

1
2 (H∞(X)−q−s−1).

Consider the protocol bb84-qot in the (φ, η)-weak quantum model shown in
Figure 4.3. The protocol uses an efficiently decodable linear code C�, parametrized
in � ∈ N, with codeword length �, rate R = 1 − h(φ) − ε for some small ε > 0,
and the ability to correct errors occurring with probability φ (except with negligible
probability). Let S� be the corresponding syndrome function. As before, the memory
bound in bb84-qot applies before step 4.

bb84-qot(b):
1. S picks x ∈R {0, 1}n and θ ∈R {+,×}n.
2. S sends xi in the corresponding bases |x1〉θ1 , . . . , |xn〉θn to R.
3. R picks r′ ∈R {+,×} and measures all qubits in basis r′. Let x′ ∈ {0, 1}n

be the result.
4. S picks r ∈R {+,×}, sets I := {i : θi = {+,×}[r]} and � := |I|, and

announces r, I, syn := S�(x|I), f ∈R F�, and e := b⊕ f(x|I).
5. R recovers x|I from x′|I and syn, and outputs a := 1 and b′ := e⊕f(x|I)

if r′ = r and else a := 0 and b′ := 0.

Fig. 4.3. Protocol for the BB84 version of quantum Rabin OT.

By the abovementioned properties of the code C�, it is obvious that R receives
the correct bit b if r′ = r, except with negligible probability. (The error probability
is negligible in �, but by Bernstein’s law of large numbers, � is linear in n except with
negligible probability.) Also, since there is no communication from R to S, a dishonest
sender S̃ cannot learn whether R received the bit. In fact, bb84-qot can be shown
to be perfectly receiver-secure in the same way as in Proposition 4.2. In a manner
similar to that for protocol qot, in order to argue about sender-security we compare
bb84-qot with a purified version shown in Figure 4.4. bb84-epr-qot runs in the
(φ, 0)-weak quantum model, and the imperfectness of the quantum source assumed in
bb84-qot is simulated by S in bb84-epr-qot so that there is no difference from R’s
point of view.

The security equivalence between bb84-qot (in the (φ, η)-weak quantum model)
and bb84-epr-qot (in the (φ, 0)-weak quantum model) is omitted here as it follows
essentially along the same lines as in section 4.2.

Theorem 4.7. In the (φ, η)-weak quantum model, bb84-qot is statistically se-

cure against Rγ for any γ < 1−η
4

− h(φ)

2
(if parameter ε is chosen small enough).

Proof sketch. It remains to show that bb84-epr-qot is statistically sender-secure
against Rγ (in the (φ, 0)-weak quantum model). The reasoning goes exactly along
the lines of the proof of Theorem 4.5, except that we restrict our attention to those
i’s which are in J . By Bernstein’s law of large numbers, � lies within (1 ± ε)n/2 and
|J | within (1 − η ± ε)n/2 except with negligible probability. In order to make the
proof easier to read, we assume that � = n/2 and |J | = (1 − η)n/2 and also treat the
ε occurring in the rate of the code C� as zero. For the full proof, we simply need to
carry the ε’s along and then choose them small enough at the end of the proof.
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bb84-epr-qot(b):
1. S prepares n EPR pairs each in state |Ω〉 = 1√

2
(|00〉+ |11〉). Additionally,

S initializes I ′+ := ∅ and I ′× := ∅.
2. For every i ∈ {1, . . . , n}, S does the following. With probability 1 − η, S

sends one half of the ith pair to R and keeps the other half. While with
probability η, S picks θi ∈R {+,×}, replaces I ′θi by I ′θi ∪ {i}, and sends
two or more qubits in the same state |xi〉θi to R, where xi ∈R {0, 1}.

3. R picks r′ ∈R {+,×} and measures all received qubits in basis r′. Let
x′ ∈ {0, 1}n be the result.

4. S picks a random index set J ⊂R {1, . . . , n} \ (I ′+ ∪ I ′×). Then, it picks
r ∈R {+,×}, sets I := J ∪ I ′r and � := |I|, and for each i ∈ J measures
the corresponding qubit in basis r. Let xi be the corresponding outcome,
and let x|I be the collection of all xi’s with i ∈ I. S announces r, I,
syn = S�(x|I), f ∈R F�, and e = b⊕ f(x|I).

5. R recovers x|I from x′|I and syn, and outputs a := 1 and b′ := e⊕f(x|I),
if r′ = r and else a := 0 and b′ := 0.

Fig. 4.4. Protocol for EPR-based quantum Rabin OT, BB84 version.

Write n′ = |J | = (1 − η)n/2, and let γ′ be such that γn = γ′n′, i.e., γ′ =
2γ/(1 − η). Assume κ > 0 such that γ′ + κ < 1

2
, where we make sure later that such

κ exists. It then follows from Corollary 3.3 that there exists an event E such that
P [E ] ≥ 1

2
− negl(n′) = 1

2
− negl(n) and

H∞
(
X|J

∣∣R=r, E) ≥ (γ′ + κ)n′ = γn + κ(1 − η)n/2 .

By (4.1), it remains to argue that this is larger than q + s = γn + h(φ)n/2; i.e.,

κ(1 − η) > h(φ) ,

where κ has to satisfy

κ <
1

2
− γ′ =

1

2
− 2

γ/(1 − η)
.

This can obviously be achieved (by choosing κ appropriately) if and only if the claimed
bound on γ holds.

5. Quantum commitment scheme. In this section, we present a BC scheme
from a committer C with bounded quantum memory to an unbounded receiver V.
The scheme is peculiar since in order to commit to a bit, the committer does not
send anything. During the committing stage information goes only from V to C. The
security analysis of the scheme uses similar techniques as the analysis of epr-qot.

5.1. The protocol. The objective of this section is to present a bounded-
quantum-memory BC scheme comm (see Figure 5.1). Intuitively, a commitment
to a bit b is made by measuring random BB84-states in basis {+,×}[b].

It is clear that epr-comm is hiding, i.e., that the commit phase reveals no infor-
mation on the committed bit, since no information is transmitted to V at all. Hence
we have the following lemma.



1882 I. B. DAMGÅRD, S. FEHR, L. SALVAIL, AND C. SCHAFFNER

comm(b):
1. V picks x ∈R {0, 1}n and r ∈R {+,×}n.
2. V sends xi in the corresponding bases |x1〉r1 , |x2〉r2 , . . . , |xn〉rn to C.
3. C commits to the bit b by measuring all qubits in basis {+,×}[b]. Let

x′ ∈ {0, 1}n be the result.
4. To open the commitment, C sends b and x′ to V.
5. V verifies that xi = x′

i for those i where ri = {+,×}[b]. V accepts if and
only if this is the case.

Fig. 5.1. Protocol for quantum commitment.

Lemma 5.1. epr-comm is perfectly hiding.

As for the OT-protocol of section 4.2, we present an equivalent EPR-version of
the protocol that is easier to analyze (see Figure 5.2).

epr-comm(b):
1. V prepares n EPR pairs each in state |Ω〉 = 1√

2
(|00〉 + |11〉).

2. V sends one half of each pair to C and keeps the other halves.
3. C commits to the bit b by measuring all received qubits in basis {+,×}[b].

Let x′ ∈ {0, 1}n be the result.
4. To open the commitment, C sends b and x′ to V.
5. V measures all his qubits in basis {+,×}[b] and obtains x ∈ {0, 1}n. He

chooses a random subset I ⊆ {1, . . . , n}. V verifies that xi = x′
i for all

i ∈ I and accepts if and only if this is the case.

Fig. 5.2. Protocol for EPR-based quantum commitment.

Lemma 5.2. comm is secure against dishonest C̃ if and only if epr-comm is.

Proof. The proof uses similar reasoning as the proof of Lemma 4.3. First, it
clearly makes no difference if we change step 5 to the following:

5′. V chooses the subset I, measures all qubits with index in I in basis {+,×}[b]

and all qubits not in I in basis {+,×}[1−b]. V verifies that xi = x′
i for all

i ∈ I and accepts if and only if this is the case.

Finally, we can observe that the view of C̃ does not change if V would have done his
choice of I and his measurement already in step 1. Doing the measurements at this
point means that the qubits to be sent to C̃ collapse to a state that is distributed
identically to the state prepared in the original scheme. The EPR-version is therefore
equivalent to the original commitment scheme from C̃’s point of view.

5.2. Modeling dishonest committers. A dishonest committer C̃ with bound-
ed memory of at most γn qubits in epr-comm can be modeled very similarly to the

dishonest OT-receiver R̃ from section 4.3: C̃ consists first of a circuit acting on all n
qubits received, then of a measurement of all but at most γn qubits, and finally of
a circuit that takes the following input: a bit b that C̃ will attempt to open, the γn
qubits in memory, and some ancilla in a fixed state. The output is a string x′ ∈ {0, 1}n
to be sent to V at the opening stage.
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Definition 5.3. We define Cγ to be the class of all committers {C̃n}n>0 in
comm or epr-comm that, at the start of the opening phase (i.e., at step 4), have a
quantum memory of size at most γn qubits.

We adopt the binding condition for quantum BC from [21].
Definition 5.4. A (quantum) BC scheme is (statistically) binding against C

if for all {C̃n}n>0 ∈ C, the probability pb(n) that C̃n opens b ∈ {0, 1} with success
satisfies

p0(n) + p1(n) ≤ 1 + negl(n).

In the next section, we show that epr-comm is binding against Cγ for any γ < 1
2
.

Note that the binding condition given here in Definition 5.4 is weaker than the
classical one, where one would require that a bit b exists such that pb(n) is negligible.
For a general quantum adversary who can always commit to 0 and 1 in superposition,
however, this is too strong a requirement; thus, it is typically argued that Definition 5.4
is the best one can hope for. In upcoming work [16], though, we show that one
can ask for a stronger binding property, and in fact protocol comm proposed here
does satisfy a stronger binding property (but for a smaller bound on the committer’s
quantum memory). While the weaker condition is sufficient for many applications,
the stronger one seems to be necessary in some cases. For instance, intuitively, comm

can easily be transformed into a string commitment scheme simply by committing
bitwise, but in order to prove this string commitment secure, it is necessary that
comm is secure with respect to the stronger security definition. However, proving
comm secure with respect to the stronger binding condition requires quite different
techniques, and therefore we settle here for the weaker version and refer the interested
reader to [16].

5.3. Security proof of the commitment scheme. Note that the first three
steps of epr-qot and epr-comm (i.e., before the memory bound applies) are exactly
the same! This allows us to reuse Corollary 3.3 and the analysis of section 4.4 to
prove the binding property of epr-comm.

Theorem 5.5. For any γ < 1
2
, comm is perfectly hiding and statistically binding

against Cγ .
Proof. It remains to show that epr-comm is binding against Cγ . Let ε, δ > 0

be such that γ + 2h(δ) + 2ε < 1/2, where h is the binary entropy function. Recall
that Bδn ≤ 2h(δ)n. Let R be the basis, determined by the bit that C̃ claims in
step 4, in which V measures the quantum state in step 5, and let X be the outcome.
Corollary 3.3 implies the existence of an event E such that P [E|R=+]+P [E|R=×] ≥
1− negl(n) and H∞(X|R=r, E) ≥ (γ + 2h(δ) + 2ε)n. Applying Lemma 2.2, it follows
that any guess X̂ for X satisfies

P
[
X̂ ∈ Bδn(X) |R=r, E] ≤ 2−

1
2 (H∞(X|X∈S+)−γn−1)+log(Bδn) ≤ 2−εn+ 1

2 .

However, if X̂ �∈ Bδn(X), then sampling a random subset of the positions will detect
an error except with probability at most 2−δn. Hence, writing q+ := P [E|R=+] and
q× := P [E|R=×],

p0(n) ≤ (1 − q+) + q+ · (2−εn+ 1
2 + 2−δn) ≤ 1 − q+ + negl(n),

and analogously p1(n) ≤ 1 − q× + negl(n). We conclude that

p0(n) + p1(n) ≤ 2 − q+ − q× + negl(n) ≤ 1 + negl(n) .
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5.4. Weakening the assumptions. As argued earlier, assuming that a party
can produce single qubits (with probability 1) is not reasonable given current technol-
ogy. Also the assumption that there is no noise on the quantum channel is impractical.
It can be shown that a straightforward modification of comm remains secure in the
(φ, η)-weak quantum model as introduced in section 4.6 (see also section 6.1), with
φ < 1

2
and η < 1 − φ.

Let comm
′ be the modification of comm where in step 5 V accepts if and only if

xi = x′
i for all but about a φ-fraction of the i, where ri = {+,×}[b]. More precisely,

for all but a (φ + ε)-fraction, where ε > 0 is sufficiently small.
Theorem 5.6. In the (φ, η)-weak quantum model, comm

′ is perfectly hiding and
is binding against Cγ for any γ satisfying γ < 1

2
(1 − η) − 2h(φ).

Proof sketch. Using Bernstein’s law of large numbers, one can argue that for
honest C and V, the opening of a commitment is accepted except with negligible
probability. The hiding property holds using the same reasoning as in Lemma 5.1.
And the binding property can be argued essentially along the lines of Theorem 5.5,
with the following modifications. Let J denote the set of indices i where V succeeds
in sending a single qubit. We restrict the analysis to those i’s which are in J . By
Bernstein’s law of large numbers, the cardinality of J is about (1 − η)n (meaning
within (1 − η ± ε)n), except with negligible probability. Thus, restricting to these
i’s has the same effect as replacing γ by γ/(1 − η) (neglecting the ±ε to simplify
notation). Assuming that C̃ knows every xi for i �∈ J , for all xi’s with i ∈ J he has to
be able to guess all but about a φ/(1− η)-fraction correctly, in order to be successful
in the opening. However, C̃ succeeds with only negligible probability if

φ/(1 − η) < δ .

Additionally, δ must be such that

γ

1 − η
+ 2h(δ) <

1

2
.

δ can be chosen that way if

2h

(
φ

1 − η

)
+

γ

1 − η
<

1

2
.

Using the fact that h(νp) ≤ νh(p) for any ν ≥ 1 and 0 ≤ p ≤ 1
2

such that νp ≤ 1, this
is clearly satisfied if 2h(φ) + γ < 1

2
(1 − η).

6. Towards practice. In the following two sections, we elaborate on the ques-
tion of how close to practice our systems are. First, we argue that imperfections oc-
curring in practice like dark counts and empty pulses are covered by our (φ, η)-weak
quantum model used in sections 4.6 and 5.6. Second, we sketch how our techniques
can be extended to the more realistic setting of noisy quantum memory.

6.1. More imperfections. In practice, quantum transmissions are subject to
other imperfections: dark counts and empty pulses. Dark counts occur due to thermal
fluctuation in the detector hardware which results in detection even though no qubit
was received. Dark counts contribute to the error rate (i.e., each dark count accounts
for a bit error with probability 1

2
) of the channel. This imperfection can therefore be

included in the (φ, η)-weak quantum model by an appropriate choice of parameter φ
without the need for any further modification.
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Empty pulses occur in two cases: when the quantum channel lets a transmitted
qubit escape (or when it is absorbed) and when the source does not produce any qubit
for a given time slot. The latter is unavoidable for sources using weak coherent pulses
as is the case in most experimental settings. Weak coherent pulses approximate a
single-qubit source by producing on average only a small fraction of one qubit per
pulse. It means that although most of the pulses are empty, the probability for a
multiqubit pulse is very small. In this case, the receiver must report to the sender
the positions of all pulses detected. Assuming the honest sender knows a tight upper
bound on the rate at which the source produces empty pulses, the adversary can
only take advantage of empty pulses caused by absorption in the fiber. The best
the adversary can do is to substitute the fiber for one that preserves all qubits sent
and to report empty pulses when a single pulse has been received. The effect is
to increase the rate at which multiqubit pulses occur. This attack is known as the
photon number splitting attack [7, 8, 26] in quantum key distribution applications. It
follows that empty pulses can also be included in the (φ, η)-weak quantum model by
an appropriate adjustment of parameter η.

Assume that a practical implementation of bb84-qot or comm takes place in a
setting where φx is the probability for a bit error caused by the channel, φdc is the
probability for a dark count, ηmq is the probability for a multiqubit transmission, and
ηab is the probability for an empty pulse caused by absorption. These parameters are
defined under the condition that the source is sending out a signal. It follows that if
bb84-qot and comm are secure in the (φx + φdc

2
,

ηmq

1−ηab

)-weak quantum model, then
their implementation is also secure provided that it is accurately modeled by these
four parameters.

A variety of imperfections specific to particular implementations can be adapted
to the weak quantum model in a similar way.

6.2. Generalizing the memory model. The bounded-quantum-storage model
limits the number of physical qubits the adversary’s memory can contain. A more
realistic model would rather address the noise process which the adversary’s memory
undergoes. For instance, it is not hard to build a very large but unreliable memory
device containing a large number of qubits. It is reasonable to expect that our pro-
tocols remain secure also in a scenario where the adversary’s memory is of arbitrary
size, but where some quantum operation (modeling noise) is applied to it. Inequality
(2.2) of the privacy amplification theorem, Theorem 2.1, allows us to apply our con-
structions to slightly more general memory models. In particular, all our protocols
that are secure against adversaries with memory of no more than γn qubits are also
secure against any noise model that reduces the rank of the mixed state ρE, held by
the adversary, to at most 2γn.

An example of a noise process resulting in a reduction of H0(ρE) is an erasure
channel. Assuming the n initial qubits are each erased with probability larger than
1−γ when the memory bound applies, it holds except with negligible probability in n
that H0(ρE) < γn. The same applies if the noise process is modeled by a depolarizing
channel with error probability p = 1 − γ. Such a depolarizing channel replaces each
qubit by a random one with probability p and does nothing with probability 1 − p.

The technique we have developed does not allow us to deal with depolarizing
channels with p < 1−γ although one would expect that some 0 < p < 1−γ should be
sufficient to ensure security against such adversaries. The reason for this is that not
knowing the positions where the errors occurred should make it more difficult for the
adversary than when the noise process is modeled by an erasure channel. However,
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it seems that our uncertainty relations (i.e., Theorems 3.1 and A.3) are not strong
enough to address this case. Generalizing the bounded-quantum-storage model to
more realistic noisy-memory models is an interesting open question.

7. Conclusion, further research, and open problems. We have shown how
to construct ROT and BC securely in the bounded-quantum-storage model. Our
protocols require no quantum memory for honest players and remain secure provided
the adversary has access to only quantum memory of size bounded by a large fraction
of all qubits transmitted. Such a gap between the amount of storage required for
honest players and adversaries is not achievable by classical means. All our protocols
are noninteractive and can be implemented using current technology.

In this paper, we considered ROT of only one bit per invocation. Our technique
can easily be extended to deal with string ROT, essentially by using a class of two-
universal functions with range {0, 1}�n rather than {0, 1}, for some � with γ + � < 1

2

(resp., < 1−η
4

− h(φ)

2
for bb84-qot).

Although other flavors of OTs can be constructed from ROT using standard
reductions, a more direct approach would give a better ratio between storage bound
and communication complexity. Recent extensions have shown that a 1-2 OT protocol
built along the lines of bb84-qot is secure against adversaries with bounded quantum
memory [16]. Interestingly, the techniques used are quite different from the ones of
this paper (which appear to fail in the case of 1-2 OT), and they additionally allow
us to analyze and prove secure the BC scheme comm with respect to the stronger
security definition, as briefly discussed in section 5.2.

A main open problem is the optimality of the bound on the adversary’s quantum
memory. The protocol qot for instance, appears to be secure against any adversary
with memory less than n qubits, but our analysis requires the memory to be smaller
than n/2. Also, finding protocols secure against adversaries in more general noisy-
memory models, briefly discussed in section 6.2, would certainly be a natural and
interesting extension of this work to more practical settings.

Appendix A. Uncertainty relation for more mutually unbiased bases.
In this appendix, we generalize the uncertainty relations derived in section 3 to more
than two mutually unbiased bases. Such uncertainty relations over more but not all
mutually unbiased bases in terms of min-entropy may be of independent interest; see
the discussion at the end of section 3.1.

First, we generalize Proposition 2.4 to more projectors.

Proposition A.1. For orthogonal projectors A0, A1, A2, . . . , AM , it holds that

(A.1)

∥∥∥∥∥

M∑

i=0

Ai

∥∥∥∥∥ ≤ 1 + M · max
0≤i<j≤M

‖AiAj‖.

Proof. Defining

X :=

⎛
⎜⎜⎜⎝

A0 A1 · · · AM

0 0 · · · 0
...

...
...

0 0 · · · 0

⎞
⎟⎟⎟⎠ and Y :=

⎛
⎜⎜⎜⎝

A0 0 · · · 0
A1 0 · · · 0
...

...
...

AM 0 · · · 0

⎞
⎟⎟⎟⎠



CRYPTOGRAPHY IN THE BOUNDED-QUANTUM-STORAGE MODEL 1887

yields

XY =

⎛
⎜⎜⎜⎝

A0 + A1 + . . . + AM 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

⎞
⎟⎟⎟⎠ and

Y X =

⎛
⎜⎜⎜⎝

A0 A0A1 · · · A0AM

A1A0 A1 · · · A1AM

...
...

. . .
...

AMA0 AMA1 · · · AM

⎞
⎟⎟⎟⎠ .

The matrix Y X can be additively decomposed into M + 1 matrices according to the
following pattern:

Y X =

⎛
⎜⎜⎜⎜⎜⎝

∗
∗

. . .

∗
∗

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

0 ∗
0

. . .
. . .

0 ∗
∗ 0

⎞
⎟⎟⎟⎟⎟⎠

+ · · · +

⎛
⎜⎜⎜⎜⎜⎝

0 ∗
∗ 0

. . .
. . .

0
∗ 0

⎞
⎟⎟⎟⎟⎟⎠

,

where the ∗’s stand for entries of Y X and for i = 0, . . . ,M the ith star pattern after
the diagonal pattern is obtained by i cyclic shifts of the columns of the diagonal
pattern.

As in the proof of Proposition 2.4, XY and Y X are Hermitian, and we use
Lemma 2.3, the triangle inequality, the unitary invariance of the operator norm, and
the fact that for all i �= j : ‖Ai‖ = 1 and ‖AiAj‖ = ‖AjAi‖ to obtain the desired
statement (A.1).

Definition A.2. Sets B0,B1, . . . ,BM of bases of the complex Hilbert space C
2n

are called mutually unbiased if for all i �= j ∈ {0, . . . ,M}, it holds that

∀|ϕ〉 ∈ Bi, ∀|ψ〉 ∈ Bj : |〈ϕ|ψ〉|2 = 2−n.

Theorem A.3. Let the density matrix ρ describe the state of n qubits, and let
B0,B1, . . . ,BM be mutually unbiased bases of C

2n

. Let Q0(·), Q1(·), . . . , QM (·) be the
distributions of the outcome when ρ is measured in bases B0,B1, . . . ,BM , respectively.
Then, for any sets L0, L1, . . . , LM ⊂ {0, 1}n, it holds that

M∑

i=0

Qi(Li) ≤ 1 + M · 2−n/2 max
0≤i<j≤M

√
|Li||Lj |.

Proof. The proof is analogous to that of Theorem 3.1.
Analogous to Corollary 3.2, we derive an uncertainty relation about the sum of

the min-entropies of up to 2n/2 distributions.
Corollary A.4. For an ε > 0, let 0 < M < 2

n
2 −εn. For i = 0, . . . ,M , let Hi

∞
be the min-entropies of the distributions Qi from the theorem above. Then,

M∑

i=0

Hi
∞ ≥ (M + 1)

(
log(M + 1) − negl(n)

)
.



1888 I. B. DAMGÅRD, S. FEHR, L. SALVAIL, AND C. SCHAFFNER

Proof. For i = 0, . . . ,M , we denote by qi∞ the maximal probability of Qi and let
Li be the set containing only the n-bit string x with this maximal probability qi∞.

Theorem A.3 together with the assumption about M assures
∑M

i=0 q
i
∞ ≤ 1 + negl(n).

By the inequality of the geometric and arithmetic mean it follows that

M∑

i=0

Hi
∞ = − log

M∏

i=0

qi∞ ≥ − log

(
1 + negl(n)

M + 1

)M+1

= (M + 1)
(
log(M + 1) − negl(n)

)
.
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CONCURRENT NONMALLEABLE COMMITMENTS∗
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Abstract. We present a nonmalleable commitment scheme that retains its security properties
even when concurrently executed a polynomial number of times. That is, a man-in-the-middle
adversary who is simultaneously participating in multiple concurrent commitment phases of our
scheme, both as a sender and as a receiver, cannot make the values to which he commits depend on
the values to which he receives commitments. Our result is achieved without assuming an a priori
bound on the number of executions and without relying on any setup assumptions. Our construction
relies on the existence of standard claw-free permutations and requires only a constant number of
communication rounds.

Key words. cryptography, commitments, nonmalleability, concurrency, non-black-box simula-
tion
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1. Introduction. The notion of commitment is central in cryptographic proto-
col design. Often described as the “digital” analogue of sealed envelopes, commitment
schemes enable a party, known as the sender, to commit itself to a value while keep-
ing it secret from the receiver. This property is called hiding. Furthermore, the
commitment is binding, and thus, in a later stage when the commitment is opened,
it is guaranteed that the “opening” can yield only a single value determined in the
committing stage.

For some applications, the above security guarantees are not sufficient, and addi-
tional properties are required. For instance, the definition of commitments does not
rule out the possibility that an adversary, upon seeing a commitment to a specific
value v, is able to commit to a related value (say, v−1), even though it does not know
the actual value of v. This kind of attack might have devastating consequences if the
underlying application relies on the independence of committed values (e.g., consider
a case in which the commitment scheme is used for securely implementing a contract-
bidding mechanism). The state of affairs is even worsened by the fact that many of
the known commitment schemes are actually susceptible to this kind of attack.

1.1. Nonmalleable commitments. In order to address the above concerns,
Dolev, Dwork, and Naor (DDN) introduced the concept of nonmalleable commit-
ments [16]. Loosely speaking, a commitment scheme is said to be nonmalleable if
no adversary can succeed in the attack described above. That is, it is infeasible for
the adversary to maul a commitment to a value v into a commitment to a “related”
value ṽ.

The first nonmalleable commitment protocol was constructed by Dolev, Dwork,
and Naor [16]. The security of their protocol relies on the existence of one-way func-
tions and requires O(log n) rounds of interaction, where n ∈ N is a security parameter.
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A more recent result by Barak presents a constant-round protocol for nonmalleable
commitment, whose security relies on the existence of trapdoor permutations and
hash functions that are collision-resistant against subexponential-sized circuits [2].
Even more recently, Pass and Rosen present a constant-round protocol for the same
task, assuming only a collision-resistant hash function secure against polynomial-sized
circuits [42].

1.2. Concurrent nonmalleable commitments. The basic definition of non-
malleable commitments considers only a scenario in which two executions take place
at the same time. A natural extension of this scenario (already suggested in [16])
is one in which more than two invocations of the commitment protocol take place
concurrently. In the concurrent scenario, the adversary is receiving commitments to
multiple values v1, . . . , vm while attempting to commit to related values ṽ1, . . . , ṽm.
As argued in [16], nonmalleability with respect to two executions can be shown to
guarantee individual independence of any ṽi from any vj . However, it does not rule
out the possibility of an adversary to create joint dependencies between more than
a single individual pair (see [16, section 3.4.1], for an example in the context of non-
malleable encryption). Resolving this issue has been stated as a major open problem
in [16].

Partially addressing this issue, Pass demonstrates the existence of commitment
schemes that remain nonmalleable under bounded concurrent composition [40]. That
is, for any (predetermined) polynomial p(·), there exists a nonmalleable commitment
that remains secure as long as it is not executed more than p(n) times, where n ∈ N
is a security parameter.

One evident disadvantage of the above solution is that it requires that the number
of executions be fixed before the protocol is specified; otherwise, no security guarantee
is provided. Less evidently, the length of the messages in the protocols has to grow
linearly with the number of executions. Thus, from both a theoretical and a practical
point of view, the solution is still not satisfactory. What we would like to have is a
single protocol that preserves its nonmalleability even when it is executed concurrently
for any (not predetermined) polynomial number of times.

1.3. Our results. We present a new protocol for concurrent nonmalleable com-
mitments. Our protocol remains nonmalleable even when concurrently executed an
(unbounded) polynomial number of times. We do not rely on any kind of setup
assumption (such as the existence of a common reference string).

The resulting commitment is statistically binding and satisfies nonmalleability
with respect to commitment. The former condition implies that, except with negligi-
ble probability, a transcript of a commitment corresponds to a unique value, whereas
the latter implies that, upon concurrently participating in polynomially many com-
mitments, both as a receiver and as a sender, the adversary is not able to commit to
a sequence of related values.1 Here we assume that the adversary does not get to see
the decommitment to any of the values to which he is receiving a commitment until
he is done with committing to all of his values.

Theorem 1.1 (concurrent nonmalleable commitment). Suppose that there exists
a family of pairs of claw-free permutations. Then there exists a constant-round sta-
tistically binding commitment scheme that is concurrently nonmalleable with respect

1In a different variant, called nonmalleable commitment with respect to opening [19], the adver-
sary is considered to have succeeded only if it manages to decommit to a related value. This paper
considers only the notion of nonmalleability with respect to commitments.
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to commitment.2

To the best of our knowledge, this result yields the first instance of a nontrivial
protocol that simultaneously satisfies nonmalleability and unbounded concurrency
without relying on set-up assumptions.

Additional contributions. Our proof also yields the first commitment scheme that
satisfies nonmalleability by using a strict polynomial-time simulator (also known as
strict nonmalleability) with respect to commitment.3 By this we mean that the simu-
lation used to prove nonmalleability runs in strict (as opposed to expected) polynomial
time. This was the security notion originally defined (but not achieved in) the DDN
paper [16].

Our definitions of nonmalleable commitments are somewhat different (stronger)
than the ones appearing in the DDN paper [16]. Specifically, we formalize the notion of
two values being unrelated through the concept of computational indistinguishability
(rather than by using polynomial-time computable relations). The main reason for
strengthening the definition is that it yields a notion that is more intuitive and easier
to work with (especially in the concurrent setting). We stress that any protocol
satisfying our definition also satisfies the original one.

Techniques and ideas. Our construction follows the paradigm introduced by Pass
and Rosen, of using a protocol for nonmalleable zero knowledge in order to obtain
(single execution) nonmalleable commitments [42] and relies on the “message-length”
technique of Pass [40]. While our construction relies on the same high-level struc-
ture, the analysis of the protocol is significantly different. The central observation
that enables the analysis is that concurrent simulation of the underlying (nonmal-
leable) zero-knowledge protocol is not actually necessary for proving the concurrent
nonmalleability of our commitments. Indeed, for our analysis to go through, it will
be sufficient to simulate only a single execution of the underlying zero-knowledge
protocol. This will be performed while concurrently extracting multiple witnesses
for the statements proved by the adversary. We call the above property one-many
simulation extractability. We prove that this property is indeed satisfied by a variant
of the nonmalleable zero-knowledge protocols of [40, 42]. To show this, we rely on
a non-black-box simulation argument, which is delicately combined with a black-box
extraction technique. (Here we use the fact that concurrent extraction is significantly
easier than concurrent simulation (cf. [33]).)

1.4. Related work. A large body of previous work deals with the construc-
tion of nonmalleable protocols by assuming various kinds of trusted setup. Known
constructions include nonmalleable commitment schemes assuming the existence of a
common reference string [19, 11] as well as nonmalleable commitment schemes and
noninteractive nonmalleable ZK protocols assuming the existence of a common ran-
dom string [15, 14, 13].

Several of the above works explicitly address the issue of multiple executions of
nonmalleable schemes [13, 11, 9] (also called reusability in the terminology of [11]).
Perhaps most notable among the works addressing concurrency is the one on uni-
versally composable commitments [9]. Universal composability implies concurrent

2The existence of claw-free permutations follows from the assumption that factoring Blum inte-
gers is hard (or from the hardness of finding discrete logarithms modulo a prime). They are required
for obtaining perfectly hiding commitments, as well as collision-resistant hashing.

3This should not be confused with a previous result showing the existence of commitment schemes
that are strictly nonmalleable with respect to opening [42].
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nonmalleability. However, it is impossible to construct universally composable com-
mitments without making setup assumptions [9].

Other related works involve the task of session-key generation in a setting where
the honest parties share a password that is taken from a relatively small dictionary
[22, 39, 3]. These protocols are designed having a man-in-the-middle adversary in
mind and require only the usage of a “mild” setup assumption (namely, the existence
of a “short” password). Some of these works explicitly address the issue of multiple
protocol execution (cf. [22]), but their treatment is limited to the case of sequential
composition. A treatment of the full concurrent case appears in [31] (see also [10, 3]),
but it relies on the existence of a common reference string.

2. Preliminaries.

2.1. Basic notation. We let N denote the set of all integers. For any integer
m ∈ N , denote by [m] the set {1, 2, . . . ,m}. For any x ∈ {0, 1}∗, we let |x| denote the
size of x (i.e., the number of bits used in order to write it). For two machines M,A, we
let MA(x) denote the output of machine M on input x and given oracle access to A.
The term negligible is used for denoting functions that are (asymptotically) smaller
than one over any polynomial. More precisely, a function ν(·) from nonnegative
integers to reals is called negligible if, for every constant c > 0 and all sufficiently
large n, it holds that ν(n) < n−c.

2.2. Witness relations. We recall the definition of a witness relation for an
NP language [20].

Definition 2.1 (witness relation). A witness relation for a language L ∈ NP
is a binary relation RL that is polynomially bounded and polynomial-time recognizable
and characterizes L by

L = {x : ∃y s.t. (x, y) ∈ RL}.

We say that y is a witness for the membership x ∈ L if (x, y) ∈ RL. We will also
let RL(x) denote the set of witnesses for the membership x ∈ L, i.e.,

RL(x) = {y : (x, y) ∈ L}.

In the following, we assume a fixed witness relation RL for each language L ∈ NP.

2.3. Computational indistinguishability and statistical closeness. The
following definition of (computational) indistinguishability originates in the seminal
paper of Goldwasser and Micali [26].

Let X be a countable set of strings. A probability ensemble indexed by X is a
sequence of random variables indexed by X. Namely, any A = {Ax}x∈X is a random
variable indexed by X.

Definition 2.2 ((computational) indistinguishability). Let X and Y be count-
able sets. Two ensembles {Ax,y}x∈X,y∈Y and {Bx,y}x∈X,y∈Y are said to be computa-
tionally indistinguishable over X if, for every probabilistic “distinguishing” machine
D whose running time is polynomial in its first input, there exists a negligible function
ν(·) so that for every x ∈ X, y ∈ Y :

|Pr [D(x, y,Ax,y) = 1] − Pr [D(x, y,Bx,y) = 1]| < ν(|x|).

{Ax,y}x∈X,y∈Y and {Bx,y}x∈X,y∈Y are said to be statistically close over X if the
above condition holds for all (possibly unbounded) machines D.
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2.4. Interactive proofs, zero knowledge, and witness indistinguishabil-
ity. We use the standard definitions of interactive proofs (and interactive Turing
machines) [27, 20] and arguments [4]. Given a pair of interactive Turing machines P
and V , we denote by 〈P, V 〉(x) the random variable representing the (local) output
of V when interacting with machine P on common input x, when the random input
to each machine is uniformly and independently chosen.

Definition 2.3 (interactive proof system). A pair of interactive machines 〈P, V 〉
is called an interactive proof system for a language L if machine V is polynomial-time
and the following two conditions hold with respect to some negligible function ν(·):

• Completeness: For every x ∈ L,

Pr [〈P, V 〉(x) = 1] ≥ 1 − ν(|x|).
• Soundness: For every x �∈ L, and every interactive machine B,

Pr [〈B, V 〉(x) = 1] ≤ ν(|x|).
In the case that the soundness condition is required to hold only with respect to a
computationally bounded prover, the pair 〈P, V 〉 is called an interactive argument
system.

Zero knowledge. An interactive proof is said to be zero knowledge (ZK) if it yields
nothing beyond the validity of the assertion being proved. This is formalized by re-
quiring that the view of every probabilistic polynomial-time adversary V ∗ interacting
with the honest prover P can be simulated by a probabilistic polynomial-time ma-
chine S (the simulator). The idea behind this definition is that, whatever V ∗ might
have learned from interacting with P , he could have actually learned by himself (by
running the simulator S).

The notion of ZK was introduced by Goldwasser, Micali, and Rackoff [27]. To
make ZK robust in the context of protocol composition, Goldreich and Oren [25]
suggested to augment the definition so that the above requirement holds also with
respect to all z ∈ {0, 1}∗, where both V ∗ and S are allowed to obtain z as auxiliary
input. The verifier’s view of an interaction consists of the common input x, followed
by its random tape and the sequence of prover messages the verifier receives during
the interaction. We denote by viewP

V ∗(x, z) a random variable describing V ∗(z)’s view
of the interaction with P on common input x.

Definition 2.4 (zero knowledge). Let 〈P, V 〉 be an interactive proof system. We
say that 〈P, V 〉 is zero knowledge if, for every probabilistic polynomial-time interactive
machine V ∗, there exists a probabilistic polynomial-time algorithm S such that the
ensembles {viewP

V ∗(x, z)}x∈L,z∈{0,1}∗ and {S(x, z)}x∈L,z∈{0,1}∗ are computationally
indistinguishable over L.

A stronger variant of zero knowledge is one in which the output of the simulator
is statistically close to the verifier’s view of real interactions. We focus on argument
systems, in which the soundness property is guaranteed to hold only with respect to
polynomial-time provers.

Definition 2.5 (statistical zero knowledge). Let 〈P, V 〉 be an interactive argu-
ment system. We say that 〈P, V 〉 is statistical zero knowledge if, for every probabilis-
tic polynomial-time V ∗, there exists a probabilistic polynomial-time S such that the
ensembles {viewP

V ∗(x, z)}x∈L,z∈{0,1}∗ and {S(x, z)}x∈L,z∈{0,1}∗ are statistically close
over L.

In the case that the ensembles {viewP

V ∗(x, z)}x∈L,z∈{0,1}∗ and {S(x, z)}x∈L,z∈{0,1}∗

are identically distributed, the protocol 〈P, V 〉 is said to be perfect zero knowledge.
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Witness indistinguishability. An interactive proof is said to be witness indistin-
guishable (WI) if the verifier’s view is “computationally independent” of the witness
used by the prover for proving the statement. In this context, we focus on languages
L ∈ NP with a corresponding witness relation RL. Namely, we consider interactions
in which on common input x the prover is given a witness in RL(x). By saying that
the view is computationally independent of the witness, we mean that, for any two
possible NP-witnesses that could be used by the prover to prove the statement x ∈ L,
the corresponding views are computationally indistinguishable.

Let V ∗ be a probabilistic polynomial-time adversary interacting with the prover,
and let viewP

V ∗(x,w, z) denote V ∗’s view of an interaction in which the witness used
by the prover is w (where the common input is x and V ∗’s auxiliary input is z).

Definition 2.6 (witness indistinguishability). Let 〈P, V 〉 be an interactive proof
system for a language L ∈ NP. We say that 〈P, V 〉 is witness indistinguishable for
RL if, for every probabilistic polynomial-time interactive machine V ∗ and for every
two sequences {w1

x}x∈L and {w2
x}x∈L, such that w1

x, w
2
x ∈ RL(x) for every x ∈ L, the

probability ensembles {viewP

V ∗(x,w1
x, z)}x∈L,z∈{0,1}∗ and {viewP

V ∗(x,w2
x, z)}x∈L,z∈{0,1}∗

are computationally indistinguishable over L.
In the case that the ensembles {viewP

V ∗(x,w1
x, z)}x∈L,z∈{0,1}∗ and {viewP

V ∗(x,w2
x, z)}

x∈L,z∈{0,1}∗ are identically distributed, the proof system 〈P, V 〉 is said to be witness
independent.

2.5. Universal arguments. Universal arguments (introduced in [5] and closely
related to the notion of computationally sound proofs [34]) are used in order to provide
“efficient” proofs to statements of the form y = (M,x, t), where y is considered to be a
true statement if M is a nondeterministic machine that accepts x within t steps. The
corresponding language and witness relation are denoted LU and RU , respectively,
where the pair ((M,x, t), w) is in RU if M (viewed here as a two-input deterministic
machine) accepts the pair (x,w) within t steps. Notice that every language in NP
is linear-time reducible to LU . Thus, a proof system for LU allows us to handle all
NP-statements. In fact, a proof system for LU enables us to handle languages that
are presumably “beyond” NP, as the language LU is NE-complete (hence the name
universal arguments).4

Definition 2.7 (universal argument). A pair of interactive Turing machines
(P, V ) is called a universal argument system if it satisfies the following properties:

• Efficient verification: There exists a polynomial p such that, for any y =
(M,x, t), the total time spent by the (probabilistic) verifier strategy V , on
common input y, is at most p(|y|). In particular, all messages exchanged in
the protocol have length smaller than p(|y|).

• Completeness by a relatively efficient prover: For every ((M,x, t);w) in RU ,

Pr[(P (w), V )(M,x, t) = 1] = 1.

Furthermore, there exists a polynomial q such that the total time spent by
P (w), on common input (M,x, t), is at most q(TM (x,w)) ≤ q(t), where
TM (x,w) denotes the running time of M on input (x,w).

• Computational soundness: For every polynomial-size circuit family {P ∗
n}n∈N ,

and every triplet (M,x, t) ∈ {0, 1}n \ LU ,

Pr[(P ∗
n , V )(M ;x; t) = 1] < ν(n),

4Furthermore, every language in NEXP is polynomial-time (but not linear-time) reducible to LU .
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where ν(·) is a negligible function.
• Weak proof of knowledge: For every positive polynomial p there exists a posi-

tive polynomial p′ and a probabilistic polynomial-time oracle machine E such
that the following holds: For every polynomial-size circuit family {P ∗

n}n∈N ,
and every sufficiently long y = (M ;x; t) ∈ {0, 1}∗, if Pr[(P ∗

n ;V )(y) = 1] >
1/p(|y|), then

Pr[∃w = w1, . . . wt ∈ RU (y) s.t. ∀i ∈ [t], E
P∗

n
r (y; i) = wi] >

1

p′(|y|) ,

where RU (y)
def
= {w : (y, w) ∈ RU} and E

P∗
n

r (·, ·) denotes the function defined
by fixing the random tape of E to equal r and providing the resulting Er with
oracle access to P ∗

n .

2.6. Commitment schemes. Commitment schemes are used to enable a party,
known as the sender, to commit itself to a value while keeping it secret from the re-
ceiver (this property is called hiding). Furthermore, the commitment is binding, and
thus, in a later stage when the commitment is opened, it is guaranteed that the “open-
ing” can yield only a single value determined in the committing phase. Commitment
schemes come in two different flavors: statistically binding and statistically hiding. We
sketch the properties of each one of these flavors. Full definitions can be found in [20].

• Statistically binding. In statistically binding commitments, the binding prop-
erty holds against unbounded adversaries, while the hiding property holds
only against computationally bounded (nonuniform) adversaries. Loosely
speaking, the statistical-binding property asserts that, with overwhelming
probability over the coin tosses of the receiver, the transcript of the interaction
fully determines the value committed to by the sender. The computational-
hiding property guarantees that the commitments to any two different values
are computationally indistinguishable.

• Statistically hiding. In statistically hiding commitments, the hiding property
holds against unbounded adversaries, while the binding property holds only
against computationally bounded (nonuniform) adversaries. Loosely speak-
ing, the statistical-hiding property asserts that commitments to any two dif-
ferent values are statistically close (i.e., have negligible statistical distance).
In the case where the statistical distance is 0, the commitments are said to
be perfectly hiding. The computational-binding property guarantees that no
polynomial-time machine is able to open a given commitment in two different
ways.

Noninteractive perfectly binding commitment schemes can be constructed by us-
ing any 1–1 one-way function (see section 4.4.1 of [20]). By allowing some mini-
mal interaction (in which the receiver first sends a single random initialization mes-
sage), statistically binding commitment schemes can be obtained from any one-way
function [35, 30]. We will think of such commitments as a family of noninteractive
commitments, where the description of members in the family will be the initializa-
tion message. Statistically hiding commitment schemes can be constructed from any
one-way function [36, 28], but constant-round schemes are only known to exist un-
der stronger assumptions specifically, by assuming collision-resistant hash functions
[12, 29]. Perfectly hiding commitment schemes, on the other hand, can be constructed
from one-way permutations [37], but constant-round schemes are known only under
stronger assumptions, such as the existence of a collection of certified claw-free per-
mutations [21].
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2.7. Proofs of knowledge. Informally an interactive proof is a proof of knowl-
edge if the prover convinces the verifier not only of the validity of a statement but
also that it possesses a witness for the statement. This notion is formalized by the
introduction of a machine E, called a knowledge extractor. As the name suggests,
the extractor E is supposed to extract a witness from any malicious prover P ∗ that
succeeds in convincing an honest verifier. More formally, we have the following.

Definition 2.8 (proof of knowledge). Let (P, V ) be an interactive proof system
for the language L with witness relation RL. We say that (P, V ) is a proof of knowl-
edge if there exists a polynomial q and a probabilistic oracle machine E such that,
for every probabilistic polynomial-time interactive machine P ∗, there exists some neg-
ligible function μ(·) such that for every x ∈ L and every y, r ∈ {0, 1}∗ such that
Pr[〈P ∗

x,y,r, V (x)〉 = 1] > 0, where P ∗
x,y,r denotes the machine P ∗ with the common

input fixed to x, the auxiliary input fixed to y, and the random tape fixed to r, the
following hold:

1. The expected number of steps taken by EP∗
x,y,r is bounded by

q(|x|)
Pr[〈P ∗

x,y,r, V (x)〉 = 1]
,

where EP∗
x,y,r denotes the machine E with oracle access to P ∗

x,y,r.
2. Furthermore,

Pr[〈P ∗
x,y,r, V (x)〉 = 1 ∧ EP∗

x,y,r /∈ RL(x)] ≤ μ(|x|).

The machine E is called a (knowledge) extractor.

We remark that, as our definition considers only computationally bounded provers,
we get only a “computationally convincing” notion of a proof of knowledge (arguments
of knowledge) [4]. We additionally point out that our definition is slightly different
from the definition of [6] in that we require that the expected running time of the
extractor is always bounded by poly(|x|)/p, where p denotes the success probability
of P ∗, whereas [6] allows for some additional slackness in the running time. On the
other hand, whereas [6] requires the extractor to always output a valid witness, we
instead allow the extractor to fail with some negligible probability. We will rely on
the following theorem.

Theorem 2.9 (see [7, 4]). Assume the existence of claw-free permutations. Then
there exists a constant-round public-coin witness-independent argument of knowledge
for NP.

Indeed, standard techniques can be used to show that the parallelized version of
the protocol of [7], using perfectly hiding commitments, is an argument of knowledge
(as defined above). As usual, the knowledge extractor E proceeds by feeding new
“challenges” to the prover P ∗ until it gets two accepting transcripts. If the two
accepting challenges contain the same challenge, or if the prover manages to open
up a commitment in two different ways, the extractor outputs fail; otherwise, it can
extract a witness.

3. Concurrent nonmalleable commitments. Nonmalleable commitments were
introduced by DDN [16]. Our definitions of nonmalleability are somewhat stronger
than the ones proposed by DDN [16]. Specifically, we formalize the notion of two val-
ues being unrelated through the concept of computational indistinguishability (rather
than by using polynomial-time computable relations).
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3.1. The general setting. Let 〈C,R〉 be a commitment scheme, and consider a
man-in-the-middle adversary A that is simultaneously participating in multiple con-
current executions of 〈C,R〉. Executions in which A is playing the role of the receiver
are said to belong to the left interaction, whereas executions in which A is playing the
role of the sender are said to belong to the right interaction. We assume for simplicity,
and without loss of generality, that the number of commitment schemes taking place
in the left and right interactions is identical. The total number of the interactions in
which the adversary is involved (either as a sender or as a receiver) is not a priori
bounded by any polynomial (though it is assumed to be polynomial in the security
parameter). We assume that the adversary does not get to see the decommitment
to any of the values to which he is receiving a commitment until he is done with
committing to all of his values.

Besides controlling the messages that it sends in the left and right interactions,
A has control over their scheduling. In particular, it may delay the transmission of
a message in one interaction until it receives a message (or even multiple messages)
in the other interaction. It can also arbitrarily interleave messages that belong to
different executions within an interaction.

The adversary A is trying to take advantage of his participation in the commit-
ments taking place in the left interaction in order to commit to a related value in
the right interaction. The honest sender and receiver are not necessarily aware of the
existence of the adversary and might be under the impression that they are interact-
ing one with the other. We let v1, . . . , vm denote the values committed to in the left
interaction and ṽ1, . . . , ṽm denote the values committed to in the right interaction.5

The above scenario is depicted in Figure 1 (with no explicit demonstration of possible
interleavings of messages between different executions).

C A R

Com(v1) Com(ṽ1)

... ↘ ↗
...

Com(vi) → → Com(ṽi)... ↗ ↘
...

Com(vm) Com(ṽm)

Fig. 1. A concurrent man-in-the-middle adversary.

The traditional definition of nonmalleable commitments [16] considers the case
when m = 1. Loosely speaking, it requires that the left interaction does not “help” the
adversary A in committing to a value ṽ1 that is somehow correlated with the value v1.
In this work we focus on nonmalleability with respect to commitment [16], where the
adversary is said to succeed if it manages to commit to a related value (even without
being able to later decommit to this value). Note that this notion makes sense only
in the case of statistically binding commitments.

3.2. Nonmalleability via indistinguishability. Following the simulation
paradigm [26, 27, 23, 24], the notion of nonmalleability is formalized by comparing
between a man-in-the-middle and a simulated execution. In the man-in-the-middle
execution the adversary is simultaneously acting as a receiver in one interaction and

5The adversary does not necessarily “know” the values ṽ1, . . . , ṽm. However, since the commit-
ment is statistically binding, this value is (almost always) well defined.
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as a committer in another interaction. In the simulated execution the adversary is
engaged in a single interaction where it is acting as a committer.

The original definition of nonmalleability required that, for any polynomial-time
computable (nonreflexive) relation R, the value ṽ committed to by the adversary in
the simulated execution is no (significantly) less likely to satisfy R(v, ṽ) = 1 than the
value committed to by the adversary in the man-in-the-middle execution [16].

To facilitate the formalization for m > 1, we choose to adopt a slightly different
definitional approach and will actually require an even stronger condition (which we
are still able to satisfy with our protocol). Specifically, we require that, for any
adversary in a man-in-the-middle execution, there exists an adversary that commits
to essentially the same value in the simulated execution. By essentially the same
value, we mean that the value committed to by the simulator is computationally
indistinguishable from the value committed to by the adversary in the man-in-the-
middle execution.

Since copying cannot be ruled out, we will be interested only in the case where
copying is not considered success. We therefore impose the condition that, whenever
the adversary has fully copied a transcript of an interaction in which it acts as a
receiver, the value ṽ that he has committed to in the corresponding execution is set
to be a special “failure” symbol, denoted by ⊥.

3.3. The actual definition. Let 〈C,R〉 be a commitment scheme, and let
n ∈ N be a security parameter. Consider man-in-the-middle adversaries that are
participating in left and right interactions in which m = poly(n) commitments take
place. We compare between a man-in-the-middle and a simulated execution.

The man-in-the-middle execution. In the man-in-the-middle execution, the ad-
versary A is simultaneously participating in m left and right interactions. In the left
interactions the man-in-the-middle adversary A interacts with C by receiving commit-
ments to values v1, . . . , vm. In the right interaction A interacts with R by attempting
to commit to a sequence of related values ṽ1, . . . , ṽm. Prior to the interaction, the
values v1, . . . , vm are given to C as local input. A receives an auxiliary input z, which
may contain a priori information about v1, . . . , vm. Let mimA

com(v1, . . . , vm, z) denote
a random variable that describes the values ṽ1, . . . , ṽm to which the adversary has
committed in the right interaction. (Since we are dealing with statistically binding
commitments, ṽ1, . . . , ṽm are (almost always) well defined. Whenever the value of the
commitment is not uniquely defined (which can happen with some negligible proba-
bility in the case of statistically binding commitments), the value of the commitment
is defined to be ⊥.) If the transcript of the ith right commitment is identical to the
transcript of any of the left interactions (which means that the adversary has fully
copied a specific commitment that has taken place on the left), the value ṽi is set to
be ⊥.6

The simulated execution. In the simulated execution, a simulator S directly inter-
acts with R. As in the man-in-the-middle execution, the values v1, . . . , vm are chosen
prior to the interaction, and S receives some a priori information about v1, . . . , vm as
part of its auxiliary input z. We let simS

com(z) denote a random variable that describes
the values committed to in the output of S (which consists of a sequence of values
ṽ1, . . . , ṽm).

6This approach allows ṽi = vj for some i, j ∈ {1, . . . ,m}, as long as the man-in-the-middle
adversary does not fully copy the messages from one of the left executions. This is in contrast to the
original definition which does not handle the case of ṽi = vj (as R is nonreflexive). This means that
the new approach takes into consideration a potentially larger class of attacks.
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Definition 3.1. A commitment scheme 〈C,R〉 is said to be concurrent nonmal-
leable with respect to commitment if, for every polynomial p(·), and every probabilistic
polynomial-time man-in-the-middle adversary A that participates in at most m = p(n)
concurrent executions, there exists a probabilistic polynomial-time simulator S such
that the following ensembles are computationally indistinguishable over {0, 1}∗:

• {
mimA

com(v1, . . . , vm, z)
}
v1,...,vm∈{0,1}n,n∈N,z∈{0,1}∗ ,

• {
simS

com(z)
}
v1,...,vm∈{0,1}n,n∈N,z∈{0,1}∗ .

It can be seen that for m = 1 any protocol that satisfies Definition 3.1 also satisfies
the original (relation-based) definition of nonmalleability of [16]. Loosely speaking,
this is because the existence of a polynomial-time computable relation R that vio-
lates the original definition of nonmalleability could be used to distinguish between the
values of mimA

com(v, z) and simS
com(z). We additionally point out that, even when con-

sidering only the case when m = 1, Definition 3.1 is stronger than the relation-based
definition in that it prevents an adversary from producing a different commitment
to the same value to which it receives a commitment; the original definition did not
consider this as a successful attack.7

3.4. One-many concurrent nonmalleable commitments. A seemingly
more relaxed (and thus potentially easier to satisfy) notion of concurrent nonmal-
leable commitments is one in which the man-in-the-middle adversary A engages in
only a single commitment protocol in the left interaction (but still polynomially many
in the right interaction). Such a notion is a special case of Definition 3.1 in which
the adversary A participates in only one commitment session on the left-hand side
(instead of m sessions).

A commitment protocol that satisfies the relaxed definition is said to be one-
many concurrent nonmalleable. As we argue below, the relaxed notion “in essence”
implies full-fledged nonmalleability. In particular, in order to construct concurrent
nonmalleable commitments, it will be sufficient to come up with a protocol that
is one-many concurrent nonmalleable. To formalize this composability property we
need to restrict our attention to certain “natural” commitment schemes.8 We say
that a commitment scheme is natural if any commitment where the committer aborts
(sending ⊥) before the end of the protocols makes the commitment invalid (i.e., a
commitment to ⊥).

Proposition 3.2. Let 〈C,R〉 be a natural one-many concurrent nonmalleable
commitment. Then 〈C,R〉 is also a (full-fledged) concurrent nonmalleable commit-
ment.

Proof. Let A be a man-in-the-middle adversary that participates in at most
m = p(n) concurrent executions. We show the existence of a simulator S such that
the following ensembles are computationally indistinguishable over {0, 1}∗:

• {
mimA

com(v1, . . . , vm, z)
}
v1,...,vm∈{0,1}n,n∈N,z∈{0,1}∗ ,

• {
simS

com(z)
}
v1,...,vm∈{0,1}n,n∈N,z∈{0,1}∗ .

The simulator S proceeds as follows on input z. S incorporates A(z) and inter-
nally emulates all of the left interactions for A by simply honestly committing to the
string 0n (i.e., in order to emulate the ith left interaction, S executes the algorithm C
on input 0n). Messages from the right interactions are instead forwarded externally,

7In contrast, the definition of nonmalleable encryption of [16] indeed also prevents this type of
attack. In a sense, our definition is thus more in line with their definition of nonmalleability for
encryptions schemes.

8Similar technical restrictions are needed to show composability of nonmalleable encryption [43].
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with the following exception: Whenever A wishes to send the last message qi in the
ith right session, S “holds on” to it without (yet) forwarding it externally. Finally,
when S has completed the emulation of all left interactions for A, it checks whether
A fully copied any of the left executions. For each execution i where A fully copied
one of the left executions, S externally sends ⊥ as its last message in the ith right
execution (to invalidate that commitment); for all other executions j, A instead sends
the final message qj .

We show that the values to which S commits are indistinguishable from the values
to which A commits. Suppose, for contradiction, that this is not the case. That is,
there exists a polynomial-time distinguisher D and a polynomial p(n) such that, for
infinitely many n, there exist strings v1, . . . , vm ∈ {0, 1}n, z ∈ {0, 1}∗ such that

Pr
[
D(mimA

com(v1, . . . , vm, z)) = 1
]
− Pr

[
D(simS

com(z)) = 1
]
≥ 1

p(n)
.

Fix a generic n for which this happens. We provide a hybrid argument that will
contradict the one-many nonmalleability of 〈C,R〉. The “hybrid” random variable
hybk(v1, . . . , vm, z) involves an execution where A(z) is participating in m left and m
right interactions and is defined in the following way:

• For j ≤ k, the jth session in the left interaction consists of a commitment
to 0n.

• For j > k, the jth session in the left interaction consists of a commitment
to vj .

• Output the values ṽ1, . . . , ṽm committed to by A in the right interactions with
an honest R. As in the definition of mimcom (see Definition 3.1), the value ṽi
of a commitment ci is set to ⊥ if A fully copies one of the left executions.

Note that the values ṽ1, . . . , ṽm are not efficiently computable but are well defined
nevertheless. Just as in Definition 3.1, if a commitment can be opened to two (or
more) different values, we set its value to ⊥. By construction, it directly follows that

hyb0(v1, . . . , vm, z) = mimA
com(v1, . . . , vm, z).

By additionally relying on the naturality property of 〈C,R〉, it holds that9

hybm(v1, . . . , vm, z) = simS
com(z).

It follows by a standard hybrid argument that there exists an i ∈ [m] such that

Pr
[
D(hybi−1(v1, . . . , vm, z)) = 1

]
− Pr

[
D(hybi(v1, . . . , vm, z)) = 1

]
≥ 1

p(n)m
.

Note that the only difference between the experiments hybi−1(v1, . . . , vm, z) and
hybi(v1, . . . , vm, z) is that in the former A receives a commitment to vi in session
i, whereas in the latter it receives a commitment to 0n. Now consider the one-many
adversary Ã that when receiving z̃ = (i, v1, . . . , vm, z) as auxiliary input proceeds as
follows. Ã internally incorporates A(z) and emulates the left and right interactions
for A.

1. Ã forwards messages in its jth right execution directly to and from A (as part
of its jth right execution) with the following exception: Whenever A wishes
to send the last message qi in the ith right execution, Ã holds on to it without
forwarding it externally.

9The naturality property together with the construction of S is used to make sure that S produces
a commitment to ⊥ whenever A copies the left interaction.
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2. Ã forwards messages from its left session directly to and from A (as part of
its ith session).

3. Ã emulates all left sessions j �= i, by committing to vj if j > i and committing
to 0n otherwise.

4. Whenever Ã has completed the emulation of all left executions, it checks
whether A fully copied any of the left executions; for each such copied execu-
tion i, Ã sends ⊥ as its last message in the ith right execution and otherwise
sends qi.

It follows directly from the construction and the natural property of 〈C,R〉 that

mimÃ
com(vi, z̃) = hybi−1(v1, . . . , vm, z),

mimÃ
com(0, z̃) = hybi(v1, . . . , vm, z).

This contradicts the fact that there exists a simulator S̃ for Ã such that both
1. mimÃ

com(vi, z̃) and simS̃
com(z̃) are indistinguishable and

2. mimÃ
com(0, z̃) and simS̃

com(z̃) are indistinguishable.
We conclude that 〈C,R〉 is not one-many concurrent nonmalleable.

4. The protocol. Our construction of concurrent nonmalleable commitments
follows the paradigm introduced by Pass and Rosen for obtaining (single execution)
nonmalleable commitments [42]. The commit phase of the Pass–Rosen protocol con-
sists of having the sender engage in a (standard) statistically binding commitment
with the receiver and thereafter also provide a nonmalleable ZK proof of knowledge
of the value committed to. The reveal phase consists of sending the decommitment
information of the statistically binding commitment used in the commit phase.

The basic scenario in which nonmalleable ZK protocols take place involves a
man-in-the-middle adversary A (see Figure 2) that is simultaneously participating in
two executions of the protocol. These executions are called the left and the right
interactions.

Ptag A V ˜tag

x∈L
=====⇒ x̃∈L

=====⇒

Fig. 2. The man-in-the-middle adversary.

The left interaction is tagged by an identity string tag ∈ {0, 1}n, and the right
interaction is tagged by an identity ˜tag ∈ {0, 1}n. The instructions of the protocol
executed in each of the interactions depend on the corresponding identities tag and
˜tag. (The way in which the identity strings are determined and used will become

clear at a later stage.) We let 〈Ptag, Vtag〉 denote a protocol execution in which the
identity tag is used as a tag.

In the left interaction, the adversary A is verifying the validity of a statement x
by interacting with an honest prover Ptag using a protocol 〈Ptag, Vtag〉. In the right
interaction, A proves the validity of a statement x̃ to the honest verifier V ˜tag

. The
statement x̃ proved in the right interaction is chosen by A, possibly depending on the
messages it receives in the left interaction. As in the case of concurrent nonmalleable
commitments, A has control over the scheduling of the messages.

Loosely speaking, a protocol is nonmalleable if, for any such man-in-the-middle
adversary, there exists a “stand-alone” prover that convinces the verifier in the right
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interaction with essentially the same success probability as the adversary does in a
man-in-the-middle execution. See [42] and section 4.1 for further details.

4.1. Nonmalleability and simulation extractability. In [42] it is shown that
a commitment is nonmalleable provided that the underlying ZK protocols satisfy
a simulation extractability property (a strengthening of nonmalleability). Loosely
speaking, simulation extractability requires that, for any man-in-the-middle adversary
A, there exists a simulator extractor that can simulate both the left and the right
interactions for A while outputting a witness for the statement proved by the adversary
in the right interaction.

For the purpose of the current work we will need to show that the ZK protocols
used in the compilation satisfy an even stronger property, which we call one-many
simulation extractability. This is a strengthening of the simulation extractability
property in that it guarantees simulation and extraction (of all witnesses on the right)
even if there is an unbounded number of concurrent right interactions (but still with
only one left interaction).

As we will show later, a (noninteractive) commitment scheme that is compiled
with one-many simulation extractable ZK will result in a one-many concurrent non-
malleable commitment protocol 〈C,R〉. By Proposition 3.2, this implies that 〈C,R〉
is also concurrent nonmalleable.

Let A be a man-in-the-middle adversary that is simultaneously participating in
one left interaction of 〈Ptag, Vtag〉 while acting as verifier and an (unbounded) poly-
nomial number of right interactions of 〈P ˜tagi

, V ˜tagi
〉mi=1 while acting as prover.

Let viewA(x, z,tag) denote the joint view of A(x, z) and the honest verifier V ˜tag

when A is verifying a left proof of the statement x, by using identity tag, and proving
in the right interactions statements of its choice by using tags of its choice. (The view
consists of the messages sent and received by A in both left and right interactions,
the random coins of A, and V ˜tag

).10 Given a function t = t(n) we use the notation
{·}x,z,tag as shorthand for {·}x∈L,z∈{0,1}∗,tag∈{0,1}t(|x|) .

Definition 4.1 (one-many simulation extractability). A family {〈Ptag, Vtag〉}tag∈{0,1}∗

of interactive proofs for L is said to be simulation extractable with tags of length
t = t(n) if, for any polynomial p(·) and any man-in-the-middle adversary A that par-
ticipates in one left interaction and at most m = p(n) right interactions, there exists
a probabilistic expected poly-time machine S such that:

1. The probability ensembles {S1(x, z,tag)}x,z,tag and {viewA(x, z,tag)}x,z,tag

are statistically close over L, where S1(x, z,tag) denotes the first output of
S(x, z,tag).

2. Let x ∈ L, z ∈ {0, 1}∗, and tag ∈ {0, 1}t(|x|), and let (view, w̄) denote the
output of S(x, z,tag) (on input of some random tape). Let x̃1 . . . , x̃m be the
right-execution statements appearing in view, and let ˜tag1 . . . ˜tagm denote
the correspoding right-execution tags. Then, for any i ∈ [m] such that the ith
right execution in view is accepting and tag �= ˜tagi, w̄ contains a witness wi

so that RL(x̃i, wi) = 1.

4.2. A simulation extractable protocol. We now describe our construction
of simulation extractable protocols. At a high level, the construction proceeds in two
steps:

10Since the messages sent by A are fully determined given the code of A and the messages it
receives, including them as part of the view is somewhat redundant. The reason we have chosen to
do so is for convenience of presentation.
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1. For any n ∈ N , construct a family {〈Ptag, Vtag〉}tag∈[2n] of simulation ex-
tractable arguments with tags of length t(n) = logn + 1.

2. For any n ∈ N , use the family {〈Ptag, Vtag〉}tag∈[2n] to construct a fam-
ily {〈Ptag, Vtag〉}tag∈{0,1}n of simulation extractable arguments with tags of
length t(n) = n.

The construction of the family {〈Ptag, Vtag〉}tag∈[2n] relies on Barak’s non-black-
box techniques for obtaining constant-round public-coin ZK for NP [1] and are very
similar in structure to the ZK protocols used by Pass in [40]. Overall, the construction
of 〈Ptag, Vtag〉 is essentially identical to the construction of the simulation extractable
protocols in [42]; the only difference is that in the current paper we will replace
statistically hiding commitments with perfectly hiding commitments and statistically
witness indistinguishable arguments with witness-independent arguments.

Let n ∈ N , and let T : N → N be a function that satisfies T (n) = nω(1). Our
construction relies on a “special” NTIME(T (n)) relation, which we denote by Rsim.
It also makes use of a “special-purpose” universal argument (UARG) [18, 17, 32, 34,
5, 42]. Let {Hn}n be a family of hash functions where a function h ∈ Hn maps
{0, 1}∗ to {0, 1}n, and let Com be a perfectly hiding commitment scheme for strings
of length n, where, for any α ∈ {0, 1}n, the length of Com(α) is upper bounded by
2n. The relation Rsim is described in Figure 3.

Instance: A triplet 〈h, c, r〉 ∈ Hn × {0, 1}n × {0, 1}poly(n).

Witness: A program Π ∈ {0, 1}∗, a string y ∈ {0, 1}∗, and a string s ∈ {0, 1}poly(n).

Relation: Rsim(〈h, c, r〉, 〈Π, y, s〉) = 1 if and only if:

1. |y| ≤ |r| − n.
2. c = Com(h(Π); s).
3. Π(y) = r within T (n) steps.

Fig. 3. The relation Rsim.

Remark 1 (simplifying assumption). For simplicity of exposition, we view Com as
a one-message perfectly hiding commitment scheme (even though such commitments
cannot exist). In reality, Com would be taken to be a two-message commitment
scheme (which may be based on collections of claw-free permutations [21]).

The construction of our protocol employs a universal argument that is specially
tailored for our purposes (a variant of which has already appeared in [42]). The
main distinguishing features of this universal argument, which we call the special-
purpose argument, are (1) it is witness independent and (2) it will enable us to prove
that our protocols satisfy the proof of knowledge property of Definition 2.8.11 Let
〈PpWI, VpWI〉 be a witness-independent argument of knowledge, and let 〈PUA, VUA〉 be
a four-message, public-coin universal argument where the length of the messages is
upper bounded by n.12 The special-purpose UARG, which we denote by 〈PsUA, VsUA〉,
handles statements of the form (x, 〈h, c1, c2, r1, r2〉), where the triplets 〈h, c1, r1〉 and

11The “weak” proof of knowledge property of a universal argument (as defined in [5]) is not
sufficient for our purposes. Specifically, while in a weak proof of knowledge it is required that the
extractor succeeds with a probability that is polynomially related to the success probability of the
prover, in our proof of security we will make use of an extractor that succeeds with a probability
negligibly close to the success probability of the prover.

12Both witness-independent arguments of knowledge and four-message, public-coin, universal ar-
guments can be constructed by assuming a family Hn of claw-free permutations (cf. [20, 32, 34, 5]).
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〈h, c2, r2〉 correspond to instances for Rsim. The protocol 〈PsUA, VsUA〉 is described in
Figure 4.

Parameters: Security parameter 1n.

Common input: x ∈ {0, 1}n, 〈h, c1, c2, r1, r2〉, where, for i ∈ {1, 2}, 〈h, ci, ri〉 is an
instance for Rsim.

Stage 1 (encrypted UARG):

V → P : Send α
r← {0, 1}n.

P → V : Send β̂ = Com(0n).

V → P : Send γ
r← {0, 1}n.

P → V : Send δ̂ = Com(0n).

Stage 2 (body of the proof):
P ↔ V : A witness-independent argument of knowledge 〈PpWI, VpWI〉 proving

the OR of the following statements:
1. ∃ w ∈ {0, 1}poly(|x|) so that RL(x,w) = 1.
2. ∃ 〈β, δ, s1, s2〉 so that:

• β̂ = Com(β; s1).

• δ̂ = Com(δ; s2).
• (α, β, γ, δ) is an accepting transcript for 〈PUA, VUA〉 proving the

statement:
– ∃ 〈i,Π, y, s〉 so that Rsim(〈h, ci, ri〉, 〈Π, y, s〉) = 1.

Fig. 4. A special-purpose universal argument 〈PsUA, VsUA〉.

4.2.1. A family of 2n protocols. We next present a family of protocols
{〈Ptag, Vtag〉}tag∈[2n] (with tags of length t(n) = logn + 1).13 These protocols are
a “two-slot” version of Barak’s ZK arguments [1]. (The idea of using a multiple-slot
version of Barak’s protocol already appeared in [41, 40], and the “message-length”
technique appeared in [40].) There are two aspects in which the protocols presented
here differ from the protocol of [40]: The new protocols satisfy (1) a perfect secrecy
property (note that this is also different from [42], where secrecy is statistical) and
(2) a proof of knowledge property.

Let Com be a perfectly hiding commitment scheme for strings of length n, where,
for any α ∈ {0, 1}n, the length of Com(α) is upper bounded by 2n. Let Rsim be
the perfect variant of the relation Rsim, and let 〈PsUA, VsUA〉 be the special-purpose
universal argument. Protocol 〈Ptag, Vtag〉 is described in Figure 5.

Note that the only difference between two protocols 〈Ptag, Vtag〉 and 〈P ˜tag, V ˜tag〉 is
the length of the verifier’s “next messages”: In fact, the length of those messages in
〈Ptag, Vtag〉 is a parameter that depends on tag (as well as on the length parameter
�(n)). This property will be crucial for the analysis of these protocols in the man-in-
the-middle setting.

4.2.2. A family of 2n protocols. By relying on the protocol family
{〈Ptag, Vtag〉}tag∈[2n], we now show how to construct a family {〈Ptag, Vtag〉}tag∈{0,1}n

with tags of length t(n) = n. The protocols are constant-round and involve n parallel
executions of 〈Ptag, Vtag〉, with appropriately chosen tags. This new family of protocols

13A closer look at the construction will reveal that it will in fact work for any t(n) = O(logn).
The choice of t(n) = logn+ 1 is simply made for the sake of concreteness (as in our constructions it
is the case that tag ∈ [2n]).
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Common input: An instance x ∈ {0, 1}n.

Parameters: Security parameter 1n, length parameter �(n).

Tag string: tag ∈ [2n].

Stage 0 (setup):

V → P : Send h
r← Hn.

Stage 1 (slot 1):
P → V : Send c1 = Com(0n).

V → P : Send r1
r← {0, 1}tag·�(n).

Stage 1 (slot 2):
P → V : Send c2 = Com(0n).

V → P : Send r2
r← {0, 1}(2n+1−tag)·�(n).

Stage 2 (body of the proof):
P ⇔ V : A special-purpose UARG 〈PsUA, VsUA〉 proving the OR of the follow-

ing statements:
1. ∃ w ∈ {0, 1}poly(|x|) s.t. RL(x,w) = 1.
2. ∃ 〈Π, y, s〉 s.t. RSim(〈h, c1, r1〉, 〈Π, y, s〉) = 1.
3. ∃ 〈Π, y, s〉 s.t. RSim(〈h, c2, r2〉, 〈Π, y, s〉) = 1.

Fig. 5. Protocol 〈Ptag, Vtag〉.

Common input: An instance x ∈ {0, 1}n.

Parameters: Security parameter 1n, length parameter �(n).

Tag string: tag ∈ {0, 1}n. Let tag = tag1, . . . ,tagn.

The protocol:

P ↔ V : For all i ∈ {1, . . . , n} (in parallel):
1. Set tagi = (i,tagi).
2. Run 〈Ptagi , Vtagi〉 with common input x and length parameter �(n).

V : Accept if and only if all runs are accepting.

Fig. 6. Protocol 〈Ptag, Vtag〉.

is denoted {〈Ptag, Vtag〉}tag∈{0,1}n and is described in Figure 6.

Notice that 〈Ptag, Vtag〉 has a constant number of rounds (since each 〈Ptagi
, Vtagi

〉
is constant-round). Also notice that for i ∈ [n] the length of tagi = (i,tagi) is

|i| + |tagi| = log n + 1 = log 2n.

By viewing (i,tagi) as elements in [2n] we infer that the length of verifier messages
in 〈Ptagi

, Vtagi
〉 is upper bounded by 2n�(n). Hence, as long as �(n) = poly(n), the

length of verifier messages in 〈Ptag, Vtag〉 is 2n2�(n) = poly(n).

As shown in [42], for any tag ∈ 2n, the protocol 〈Ptag, Vtag〉 is an interactive
argument. In fact, what they show is a stronger statement, namely, that the pro-
tocols 〈Ptag, Vtag〉 are arguments of knowledge (as in Definition 2.8). What [42] ac-
tually shows is how to prove the above by assuming a family of hash functions that
is collision-resistant against T (n) = nω(1)-sized circuits. As mentioned in [42], by
slightly modifying Rsim, one can prove the same statement under the more standard
assumption of collision resistance against polynomial-sized circuits (cf. [5]).
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Proposition 4.2 (argument of knowledge [42]). Let 〈PpWI, VpWI〉 and 〈PUA, VUA〉
be the protocols used in the construction of 〈PsUA, VsUA〉. Suppose that {Hn}n is
collision-resistant for T (n)-sized circuits, that Com is perfectly hiding, that 〈PpWI, VpWI〉
is a witness-independent argument of knowledge, and that 〈PUA, VUA〉 is a universal
argument. Then, for any tag ∈ {0, 1}n, 〈Ptag, Vtag〉 is a perfect zero-knowledge ar-
gument of knowledge.

The main technical contribution of the current paper consists of proving that the
protocol {〈Ptag, Vtag〉}tag∈{0,1}n is one-many simulation extractable.

Lemma 4.3 (main technical lemma). Let 〈PpWI, VpWI〉 and 〈PUA, VUA〉 be the
protocols used in the construction of 〈PsUA, VsUA〉. Suppose that {Hn}n is collision-
resistant for T (n)-sized circuits, that Com is perfectly hiding, that 〈PpWI, VpWI〉 is
a witness-independent argument of knowledge, that 〈PUA, VUA〉 is a universal argu-
ment, and that �(n) ≥ 2n3 +n. Then {〈Ptag, Vtag〉}tag∈{0,1}n is one-many simulation
extractable with tags of length t(n) = n.

Before we go on and prove Lemma 4.3, we turn to describe our commitment
protocol and to show how one-many simulation extractability is used in order to
establish its one-many concurrent nonmalleability. The full proof of Lemma 4.3 can
be found in section 5.

4.3. The commitment protocol. By using protocols from {〈Ptag, Vtag〉}tag∈{0,1}n

as a subroutine, we present the construction of concurrent nonmalleable commitments.
Let {Comr}r∈{0,1}∗ be a family of noninteractive statistically binding commitment
schemes (e.g., Naor’s commitment [35]). Let (Gen,Sign,Verify) be a one-time signa-
ture scheme secure against a chosen-message attack. Consider the protocol in Figure
7 (which is a variant of the nonmalleable commitment of Pass and Rosen [42]).14

Security parameter: 1n.

String to be committed to: v ∈ {0, 1}n.

Commit phase:

R → C: Send a uniformly chosen r ∈ {0, 1}n.
C → R: Let vk, sk ← Gen(1n). Pick uniformly s ∈ {0, 1}n.

Set tag = vk and send c = Comr(v; s),tag.
C ↔ R: Prove using 〈Ptag, Vtag〉 that there exist v, s ∈ {0, 1}n so that c =

Comr(v; s).
C → R: Let T denote the transcript of the above interaction.

Compute σ = Sign(sk, T ) and send σ.
R: Verify that 〈Ptag, Vtag〉 is accepting and that Verify(vk, T, σ) = 1.

Reveal phase:

C → R: Send v and s.
R: Verify that c = Comr(v; s).

Fig. 7. Concurrent nonmalleable commitment 〈C,R〉.

As argued in [42], the statistical binding property of 〈C,R〉 follows directly from
the statistical binding of Com. The computational hiding property follows from
the computational hiding of Com, as well as from the (stand-alone) ZK property
of 〈Ptag, Vtag〉. Hence, we have the following.

14The difference between this protocol and the protocol of [42] is that here we also employ a
signature scheme. We note that the important difference, nevertheless, lies in the analysis of the
protocol.
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Proposition 4.4 (see [42]). Suppose that {Comr}r∈{0,1}∗ is a family of nonin-
teractive statistically binding commitment schemes and that all members in the family
{〈Ptag, Vtag〉}tag∈{0,1}n are (stand-alone) zero knowledge. Then 〈C,R〉 is a statisti-
cally binding commitment protocol.

4.4. Concurrent nonmalleability. By relying on the one-many simulation ex-
tractability of 〈Ptag, Vtag〉, we next argue that 〈C,R〉 is one-many nonmalleable.

Theorem 4.5. Suppose that {Comr}r∈{0,1}∗ is a family of noninteractive sta-
tistically binding commitment schemes and that {〈Ptag, Vtag〉}tag∈{0,1}n is one-many
simulation extractable and natural. Then 〈C,R〉 is a natural one-many concurrent
nonmalleable commitment.

Proof. We start by noting that it follows directly from the fact that the last mes-
sage of 〈C,R〉 is supposed to be a signature on the transcript (in case the commitment
is valid) and that any commitment where the committer aborts before the last round
is invalid—in other words, 〈C,R〉 is natural.

Next, consider a man-in-the-middle adversary A that participates in one left ex-
ecution and m = m(n) right executions. We assume without loss of generality that
A is deterministic (since A can obtain its “best” random tape as auxiliary input).
Consider the simulator S that proceeds as follows on input z. S incorporates A(z)
and internally emulates the left interactions for A by simply honestly committing to
the string 0n (i.e., S executes the algorithm C on input 0n). Messages from the right
interactions are instead forwarded externally, with the following exception: Whenever
A wishes to send the last message qi in the ith right session, S “holds on” to it without
(yet) forwarding it externally. Finally, when S has completed the emulation of the
left interactions for A, it checks whether A fully copied any of the left executions. For
each execution i where A fully copied any of the left executions, S externally sends ⊥
as its last message in the ith right execution (to invalidate that commitment); for all
other executions j, Ã instead sends the final message qj . We show that the following
distributions are indistinguishable over {0, 1}∗:

• {
mimA

com(v, z)
}
v∈{0,1}n,n∈N,z∈{0,1}∗ ,

• {
simS

com(z)
}
v∈{0,1}n,n∈N,z∈{0,1}∗ .

Suppose, for contradiction, that this is not the case. That is, there exists a
polynomial-time distinguisher D and a polynomial p(n) such that, for infinitely many
n, there exist strings v ∈ {0, 1}n, z ∈ {0, 1}∗ such that

Pr
[
D(mimA

com(v, z)) = 1
]
− Pr

[
D(simS

com(z)) = 1
]
≥ 1

p(n)
.

Fix a generic n for which this happens. We show how this contradicts the simula-
tion extractability property of 〈Ptag, Vtag〉. We start by providing an (oversimplified)
sketch. On a high level, the proof consists of the following steps:

1. We first note that, since the commit phase of (C,R) “essentially” consists
only of a statement (c, r) (i.e., the commitment) and a proof of the validity of
(c, r), A can be interpreted as a one-many simulation extractability adversary
A′ for 〈Ptag, Vtag〉.

2. It follows from the simulation extractability property of 〈Ptag, Vtag〉 that there
exists a combined simulator-extractor S′ for A′ that outputs a view that is
statistically close to that of A′ while at the same time outputting witnesses
to all accepting right proofs.
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3. Since the view output by the simulator-extractor S′ is statistically close to
the view of A′ in the real interaction, it follows that also the values commit-
ted to in that view are statistically close to the values committed to by A′.
(Note that computational indistinguishability would not have been enough
to argue the indistinguishability of these values, since they are not efficiently
computable from the view.)

4. It also follows that, except with negligible probability, the simulator-extractor
S′ will output also the witnesses to all accepting right executions.15 We
conclude that S′ additionally outputs the values committed to in the right
executions.

5. We finally note that if D can distinguish between the values committed to by
A and by S, then D can also distinguish the second output (which consists of
the committed values) of S′ when run on input a commitment (using Com)
to v and the second output of S′ when run on input a commitment to 0. This
contradicts the hiding property of Com.

We proceed to a formal proof. One particular complication that arises with the
above proof sketch is that in the construction of 〈C,R〉 we are relying on the use
of a family of commitment schemes {Comr}r∈{0,1}∗ and not a single noninteractive
commitment scheme. To address this issue we make use of nonuniformity to show the
existence of a particular “prefix” of right interactions such that A always chooses the
instance Comr in its left interaction, yet A commits to different values when receiving
a commitment to v (as in mim) and 0 (as in sim).

More precisely, since in both experiments mim and sim are identical up until the
point where A sends its first message in the left interaction, there must exist some
fixed prefix transcript τ of A’s right interactions (see Figure 8) such that

1. A sends its first message rτ in its left interaction directly after receiving the
messages in τ (as part of its right executions);

2. D distinguishes between mimA
com(v, z) and simS

com(z) with probability 1/p(n),
conditioned on the event that the right executions are consistent with τ .

C R

A
←−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−→rτ←−−−−−−−−−−−−

}
the prefix τ

Fig. 8. The prefix τ before rτ is sent.

Note that, since the receiver R sends the first message in the protocol, τ contains

all first messages r sent by the honest R in all m right executions. Let r
(1)
τ , .., r

(m)
τ

denote these first messages. Let committedτ ⊆ [m] denote the set of executions i such
that A(z) has sent its first message in the ith execution in τ . (Recall that the first
message sent by A, playing the “role” of C in execution i, consists of a commitment
using Com

r
(i)
τ

.) For each i ∈ committedτ , let valueτ (i) denote the value committed

to in the first message sent by A(z) in execution i in τ . (If this value is not uniquely
defined, set valueτ (i) = ⊥.) Additionally, for each i ∈ committedτ , let coinsτ (i) be

15More precisely, the simulator-extractor outputs only witnesses to all right executions that use a
different tag than the left interaction. We rely on the use of the digital signature to handle the case
when A copies the tag of the left interaction.
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a random tape for R such that D distinguishes between mimA
com(v, z) and simS

com(z)
with probability 1

p(n)
, conditioned on the event that the right executions are consistent

with τ and that, in each right execution i ∈ committedτ , R uses the random tape
coinsτ (i). (It follows by an averaging argument that such random tapes must exist.)

Given the partial transcript τ we next proceed in the following three steps:

1. We first define a simulation extractability adversary A′.
2. We next show that A′ can be used to violate the nonmalleability property of

Com.
3. In the final step, we show how to use the simulator-extractor S′ for A′ to

violate the hiding property of Com.

Step 1: Defining a simulation extractability adversary A′. We define a one-many
simulation extractability adversary A′ for 〈Ptag, Vtag〉. On a high level A′ internally
incorporates A on input the transcript τ and externally forwards all messages that
are part of 〈Ptag, Vtag〉 while internally handling all other messages. Additionally,
A′ internally emulates (without externally forwarding) all messages that are part
of executions i ∈ committedτ (note that messages in these executions cannot be
externally forwarded as the execution of protocol 〈Ptag, Vtag〉 could potentially have
already begun).

We proceed to a formal description of A′. To simplify notation we assume that
the machine A′ has the values τ, committedτ , coinsτ hard-coded in its description
(as it can always receive them as part of its auxiliary input z′). On input x′,tag

′, z′

(i.e., A′(z′) expects to receive a proof of the statement x′ using tag tag
′), where

x′ = (c, rτ ), and z′ = (z, sk) such that sk is the corresponding secret key for the
signature verification key tag

′, A′ then internally incorporates A(z) and emulates
the left and right interactions for A in the following manner:

1. It starts by feeding A all messages in τ as part of its right executions.
2. For each i ∈ committedτ , A

′ internally emulates the (rest of the) ith right
execution for A by honestly following the strategy of R using the random
tape coinsτ (i).

3. For each i ∈ [m] such that i /∈ committedτ , A
′ externally forwards messages

in the ith right interaction, as follows. Whenever A sends its first message

ci, vki, in the ith execution, A externally forwards (ci, r
(i)
τ ) as its statement

and vki as its tag. Thereafter, it externally forwards all of the messages
from 〈Ptag, Vtag〉. (Note that, since i /∈ committedτ , A has not yet sent
any messages in execution i; thus, A is expected to produce a proof of the

statement (c′, r(i)
τ ) using tag

′ as a tag.)
4. Messages in A’s left interaction are instead forwarded externally as part of

A′’s left interaction. Once A has sent its first message rτ , A
′ starts by feeding

it c,tag
′ and next externally forwards all remaining messages (i.e., all of the

messages that are part of 〈Ptag, Vtag〉). Once the execution of 〈Ptag, Vtag〉
has concluded, A′ signs the transcript of the left interaction by using sk (re-
ceived as auxiliary input) and feeds the signature to A. (Recall that whereas
A′ receives only a proof as part of its left interaction, A expects to see a
commitment using 〈C,R〉. It is therefore essential that A′ adds a signature
to the proof.)

Step 2: Show that A′ violates nonmalleability of Com. Define the following ex-
periment hyb1(v

′):
1. Pick vk, sk ← Gen(1n), and pick uniformly s ∈ {0, 1}n.
2. Let c = Comrτ (v′, s).
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3. Let x′ = (c, rτ ), tag
′ = vk, z′ = (z, sk).

4. Emulate an execution for A′(x′,tag
′, z′) by honestly providing a proof of x′

(using tag tag
′ and the witness (v′, s)) as part of its left interaction and

honestly verifying all right interactions.
5. Finally, given the view of A′ in the above emulation, reconstruct the view of

A in the emulation by A′. Output the pair (view, v̄), where view denotes the
reconstructed view of A and v̄ denotes the values committed to in the view
of A. (As in Definition 3.1, if a commitment is undefined or invalid, or if the
transcript of the commitment is identical to the transcript of the commitment
received by A on the left, its value is set to ⊥.) Note that, although the values
committed to are not necessarily efficiently computable from the view of A,
they are determined.

Note that hyb1(·) is not efficiently samplable, since the last step in the description of
hyb1 is not efficient. However, except for that last step, every other operation in hyb1

is indeed efficient. (This will be useful to us at a later stage.)

Claim 4.6.

Pr
[
D(hyb1(v)) = 1

]
− Pr

[
D(hyb1(0

n)) = 1
]
≥ 1

p(n)
.

Proof. By construction of A′ and hyb1, it directly follows that the view of A in
hyb1(v) is identically distributed to the view of A in mimA

com(v, z), conditioned on the
event that the right executions (in the view of A) are consistent with τ and coinsτ .
Additionally, by relying on the natural property of 〈C,R〉 (which guarantees that S
outputs a commitment to ⊥ whenever A fully copies any of the left executions), it
holds that the view of A in hyb1(0

n) is identically distributed to the view of A in
simS

com(z), conditioned on the event that the right executions (in the view of A) are
consistent with τ and coinsτ . Since the outputs of hyb1, mim, and sim are computed
by applying the same function to the view of A, in the corresponding experiments, it
follows that

1. the output of hyb1(v) is identically distributed to the output of mimA
com(v, z),

conditioned on the event that the right executions (in the view of A) are
consistent with τ and coinsτ ;

2. the output of hyb1(0
n) is identically distributed to the output of simS

com(v, z),
conditioned on the event that the right executions (in the view of A) are
consistent with τ and coinsτ .

The claim now follows from the fact that D distinguishes mimA
com(v, z) and simS

com(z)
with probability 1

p(n)
, conditioned on the right executions being consistent with τ and

coinsτ .

Step 3: Show that the simulator for A′ violates the hiding property of Com. We
next use the simulator-extractor S′ for A′ to construct a (nonuniformly) efficiently
computable experiment that is statistically close to hyb1. Towards this goal, we first
define an additional hybrid experiment hyb2(·). hyb2(·) proceeds just as hyb1, except
that, instead of emulating the left and right interactions for A′, hyb2 runs the combined
simulator-extractor S′ for A′ to generate the view of A′. (The second output of hyb2

is, however, still computed as in hyb1—i.e., hyb2 ignores the second output of S′.)
Claim 4.7. The ensembles {hyb1(v

′)}v′∈{0,1}∗ and {hyb2(v
′)}v′∈{0,1}∗ are sta-

tistically close over {0, 1}∗.
Proof. It directly follows from the statistical indistinguishability property of S′

that the first output of hyb1(·) is statistically close to the first output of hyb2(·).
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The claim is concluded by observing that the second output in both experiments is
determined in the same way (as a function of the first output).

Remark 2. Note that the proof of Claim 4.7 inherently relies on the statistical
indistinguishability property of S′. Indeed, if the simulation had only been computa-
tionally indistinguishable, we would not have been able to argue indistinguishability
of the second output of hyb1(·) and hyb2(·). This follows from the fact that the second
output (which consists of the actual committed values) is not efficiently computable
from the first output (i.e., the view).

We next define the final experiment hyb3(·). hyb3(·) proceeds just as hyb2 with the
exception that, instead of setting its second output v̄ to the actual values committed
to in the view of A, hyb3 efficiently computes values v̄ = v1, .., vm as follows. Recall
that the combined-simulator extractor S′ outputs both a view and witnesses to all
accepting right interactions. For each accepting right interaction i in the reconstructed
view of A, hyb3 lets vi = valueτ (i) if i ∈ committedτ and otherwise sets vi to be
consistent with the witness output for execution i by the combined simulator-extractor
S′. For all right executions j for which the reconstructed view of A is rejecting, instead
set vj = ⊥.16 Note that, in contrast to hyb2(·), hyb3(·) is efficiently computable.

Claim 4.8. The ensembles {hyb2(v
′)}v′∈{0,1}∗ and {hyb3(v

′)}v′∈{0,1}∗ are sta-
tistically close over {0, 1}∗.

Proof. Recall that the only difference between the experiments hyb2(·) and hyb3(·)
is the way the second output is computed; in the former it is computed as the actual
values committed to in the view of A, whereas in the latter it is computed by relying on
valueτ and the witnesses output by the simulator-extractor S′. We show that except
with negligible probability these values are identical, which concludes the claim.

First, note that in any given view of A it “trivially” holds that hyb3 outputs the
correct value for all rejecting right executions and all accepting right executions i such
that i ∈ committedτ . It remains only to consider accepting right executions i such
that i /∈ committedτ . For these executions the value vi computed by hyb3 is obtained
from the witnesses output by the simulator-extractor S′.

Assume, first, that A never is able to violate the security of (Gen,Sign,Verify) or
is able to construct a commitment using Com that can be opened up in two different
ways (i.e., violates the statistical binding property of Com). Under these assumptions,
we show that the values computed by hyb3 are identical to the actual values committed
to in the view of A.

By the definition of the simulator-extractor, it holds that the witnesses output
by S′, for all accepting right interactions which use a different tag than the one
used in the left interaction, are valid. In other words, values for all (nonrejected)
right commitments that use a verification key vk for the signature scheme that is
different from the one used in the left commitment are extracted. Furthermore, by
our assumption that A is not able to break the statistical binding property of Com,
it follows that the extracted values are identical to the actual values committed to in
the view of A. Additionally, note that values for right commitments that have exactly
the same transcript as the left commitment are “trivially” extracted (as they are just
⊥). It remains only to analyze what happens to (nonrejecting) right commitments
that use the same verification key as the left commitment but a different transcript.
In this case, A must have been able to produce a signature on a new message, given
only a randomly generated verification key and a single signed message of its choice

16Note that an interaction that is accepting in the view of A′ can still be rejecting in the view of
A, since in the latter we additionally require a valid signature.
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(namely, the transcript on the left). This contradicts our assumption that A does not
forge signatures.

We conclude that, conditioned on the event that A is not able to forge a signature
or is able to break the statistical binding property of Com, hyb2(·) and hyb3(·) are
identical. The claim now follows by the security of (Gen,Sign,Verify) and Com.

By combining the above two claims we thus get the following.

Claim 4.9. The ensembles {hyb1(v
′)}v′∈{0,1}∗ and {hyb3(v

′)}v′∈{0,1}∗ are sta-
tistically close over {0, 1}∗. Furthermore, hyb3(·) is (nonuniformly) efficiently com-
putable.

Finally, by combining Claim 4.9 with Claim 4.6 we get that D distinguishes the
second outputs of hyb3(v) and hyb3(0

n) with inverse polynomial probability. However,
since hyb3 is (nonuniformly) efficiently samplable, this contradicts the (nonuniform)
hiding property of Comrτ . More formally, define the distinguisher D′ that proceeds
as follows on input a commitment c′ using Comrτ :

1. D′ performs the same operations as hyb3, except that, instead of generating
the commitment c, it simply sets c = c′. Let (view, v̄) denote the output when
executing H̃ in this manner.

2. Finally, D′ outputs D(view, v̄).

It directly follows from the construction that D′(c′) is identically distributed to
D(hyb3(0

n)) when c′ is a random commitment to 0n and identically distributed to
D(hyb3(v)) when c′ is a random commitment to v. We conclude that D′—which is
efficient—distinguishes commitments (using Comrτ ) to 0n and v.

5. Simulation extractability. We now turn to prove Lemma 4.3. We start by
proving an analogous lemma for the “small” family {〈Ptag, Vtag〉}tag∈[2n] of 2n proto-
cols. Then we show how to extend the analysis to the family {〈Ptag, Vtag〉}tag∈{0,1}n .

Lemma 5.1. Suppose that {Hn}n is collision-resistant for T (n)-sized circuits,
that Com is perfectly hiding, that 〈PpWI, VpWI〉 is a witness-independent argument of
knowledge, that 〈PUA, VUA〉 is a universal argument, and that �(n) ≥ 2n2 + n. Then
{〈Ptag, Vtag〉}tag∈[2n] is one-many simulation extractable with tags of length t(n) =
log n + 1.

Proof. Recall that one-many simulation extractability (Definition 4.1) means
that there exists a combined simulator-extractor S = (SIM,EXT) that is able to
simulate both the left and the right interactions for a man-in-the-middle adversary
A, while simultaneously extracting witnesses to the m statements proved in the right
interaction. The construction of S is fairly complex. To keep things simple, we
decompose the description of the simulator into three simulation procedures, where
each procedure relies on the previous (simpler) ones:

• Basic simulator. This consists of the simulator that is used to establish
the traditional (stand-alone) zero-knowledge property of 〈Ptag, Vtag〉. The
simulator is similar to the one used in Barak’s original protocol [1].

• Alternative simulator. This consists of the simulator that is used for estab-
lishing the “simulation soundness” (cf. [44]) of 〈Ptag, Vtag〉. The simulator is
designed to work in the presence of a man-in-the-middle adversary that is
conducting a single left interaction of 〈Ptag, Vtag〉 concurrently with a single
right interaction of 〈P ˜tag, V ˜tag〉. It guarantees that an adversary whose left
view consists of a simulated execution of 〈Ptag, Vtag〉 cannot break the sound-
ness of 〈P ˜tag, V ˜tag〉. The simulator is essentially identical to the one used by
Pass [40].
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• Simulator-extractor. The description of the simulation extraction procedure
S = (SIM,EXT) relies on the previous two simulators. The simulator SIM
relies on the basic simulator, whereas the extractor EXT (which also employs
a simulation of the left interaction) makes use of the alternative simulator.

We turn to provide a description of the above simulation procedures. (We provide only
a brief sketch of the basic and alternative simulators and assume familiarity with the
protocols of [1] and [40]. For completeness, the description of the simulator-extractor
is nevertheless self-contained.)

5.1. Basic simulator. Given the program V ∗
tag of an adversary verifier, the basic

simulator acts as follows. In stage 1 of the protocol (i.e., in slots 1 and 2), the simulator

proceeds by committing to the program Π
def
= V ∗

tag. Let s1, s2 be the randomness used
for the commitments.

In stage 2 of the protocol, the simulator proves that it committed to the program
of the verifier in slot 1. More concretely, the simulator uses the tuple 〈Π, c1, s1〉 as a
witness for 〈h, c1, r1〉 ∈ Lsim (where Lsim is the language that corresponds to Rsim).
This is a valid witness, since (1) by the definition of Π it holds that Π(c1) = r1, and
(2) as long as �(n) ≥ 3n, for every tag ∈ [n], |ri| − |ci| = �(n) − |ci| ≥ n.

5.2. Alternative simulator. The alternative simulator is constructed with a
man-in-the-middle adversary A in mind. Consider an A that manages to violate the
soundness of protocol 〈P ˜tag, V ˜tag〉 while verifying a simulated proof of 〈Ptag, Vtag〉. We
show how to construct a cheating prover P ∗ for a single instance of 〈P ˜tag, V ˜tag〉 by
forwarding A’s messages in 〈P ˜tag, V ˜tag〉 to an external honest verifier V and internally
simulating the messages of 〈Ptag, Vtag〉 for A. The problem that arises in the attempt
to simulate is that the code of the external verifier V is not available to the simula-
tor. This means that a stand-alone simulation of the protocol 〈Ptag, Vtag〉 cannot be
completed as it is, since it explicitly requires possession of a “short” program Π that
would have generated the corresponding verifier messages.

On a high level, the prover P ∗ simulates the left interaction in the following
way.17 In slot 1 of the protocol, the simulator proceeds by committing to the program

Π1
def
= A. So far its instructions are just like the basic simulator. In slot 2, however,

the simulator commits to a program Π2 which consists of both the code of A and all
messages A has received from V ˜tag in the right interaction. In stage 2 of the protocol,
the simulator attempts to prove that it committed to the program of the verifier in
either slot 1 or slot 2. The simulator will succeed in this task provided that there
exists a “short” message y (the actual required length of y is determined by the tag
tag and the slot number) such that Π1(y) = r1 or Π2(y) = r2, where r1 and r2 denote
the challenges receive in slots 1 and 2, respectively (of 〈Ptag, Vtag〉).

Note that, except for the “long” challenges r̃1, r̃2 sent by the verifier of 〈P ˜tag, V ˜tag〉,
we do have a description of all messages sent to the adversary A that is shorter than
�(n) − n (since �(n) = �′(n) + n, where �′(n) upper bounds the total length of both
prover and verifier messages, except for the challenges r1, r2). In order to show that
we can still perform a simulation, even in the presence of these messages (for which
we do not have a short description), we use the fact that it is sufficient to have a
short description of the messages sent in one of the slots of 〈Ptag, Vtag〉. As in [40], we
separate between two different schedulings:

17We provide a detailed description of the actual simulation procedure when we later apply it in
the construction of the simulator-extractor.
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• There exists one “free” slot j in 〈Ptag, Vtag〉 in which neither of r̃1, r̃2 are
contained. In this case the “free” slot j in 〈Ptag, Vtag〉 can be used to perform
a basic simulation (since in this case the simulator did indeed produce a
commitment cj to the code of a machine that on input cj outputs the challenge
rj in slot j).

• The messages r1 and r2 in 〈P ˜tag, V ˜tag〉 occur in slots 1 and 2, respectively, in
〈Ptag, Vtag〉. By the construction of the protocols it follows that the length
of either the first or the second challenge in 〈P ˜tag, V ˜tag〉 is at least �(n) bits
longer than the corresponding challenge in 〈Ptag, Vtag〉. Thus there exists a
slot j in 〈Ptag, Vtag〉 such that, even if we include the verifier’s challenge r̃j
from the protocol 〈P ˜tag, V ˜tag〉 in the description y, we still have �(n) − n bits
to describe all other messages.

5.3. Simulator-extractor. Consider a man-in-the-middle adversary A. We as-
sume without loss of generality that A is deterministic and has the auxiliary input
z hardwired in. Let k denote the number of rounds in 〈Ptag, Vtag〉, and let m be an
upper bound on the number of right interactions in which A participates. We describe
a combined simulator-extractor S = (SIM,EXT) that proceeds as follows on input x,
z, and tag.

5.3.1. Simulation of view. We start by describing a machine SIM that simu-
lates the view of A. This requires simulating all of the left and the right interactions
for A. In the right interactions SIM acts as a verifier. Thus, simulation is straight-
forward and is performed by simply playing the role of an honest verifier in all of the
executions of the protocol. In the left interaction, on the other hand, SIM is supposed
to act as a prover, and thus the simulation task is more involved. Towards its goals,
SIM acts as follows:

1. For all i ∈ [m], pick random r̄i = (ri,1, . . . , ri,k) honest verifier messages for
the right interactions. Messages in the right interactions are then emulated
by playing the role of the honest verifiers with the fixed random messages
r̄1, . . . , r̄m. That is, in order to emulate the jth message in the ith right
interaction, SIM forwards the message ri,j to A.

2. The left interaction is simulated as follows. SIM views the execution of A and
the emulation of the right interactions (with the fixed messages r̄1, . . . , r̄m)
as a stand-alone verifier for the left interaction and applies a close variant of
the basic simulator to this interaction. Let Π(·) denote the joint code of A
and the emulation of the right interactions (including the coins r̄1, . . . , r̄m).
Whereas the basic simulator would have committed to Π(·), we instead let
SIM commit to a program Π′(b, ·) that is defined as follows:
(a) If b = 0, execute Π(·);
(b) if b = 1, execute Π(·) with the exception that messages r̄i = (ri,1, . . . , ri,k)

(i.e., messages of the ith right interaction) are not emulated but rather
received externally as input.

Thereafter, SIM proceeds exactly as the basic simulator, by additionally using
both b = 0 and Π′ as a witness in stage 2 of the protocol. More concretely, SIM
starts by computing h = Π(·). It then generates prover commitments c1 =

Com(h(Π′); s1) and c2 = Com(h(Π′); s2), where s1, s2
r← {0, 1}poly(n). By

using c1 and c2, it computes r1 = Π(c1) and r2 = Π(c1, c2). By combining the
messages together, this results in a stage 1 transcript τ1 = 〈h, c1, r1, c2, r2〉.
By the definition of 〈Ptag, Vtag〉, the transcript τ1 induces a stage 2 WIUARG
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with Π(h, c1, c2) as the verifier and (x, 〈h, c1, r1〉, 〈h, c2, r2〉) as the common
input. By using 〈Π′, (0, h, c1), s1〉 as the witness for the statement 〈h, c1, r1〉 ∈
Lsim, the SIM follows the prescribed prover strategy of the WIUARG and
produces a convincing stage 2 transcript τ2. Since r1 = Π(c1) = Π′(0, c1) and
since |0| + |c1| ≤ �(n), it follows that SIM can always succeed in this task.

Figure 9 demonstrates the definition of SIM as well as of the program Π′(b, ·) (for
simplicity the various sessions are depicted as if they were executed sequentially).

SIM Π′(0, ·) Π′(1, ·)
P A V

←−−−−→←−−−−→
...

←−− ←−−−−→ −−→←−− ←−−−−→ −−→
...

←−−−−→←−−−−→

}
r̄1

}
r̄i

}
r̄m

A V
←−−−−→←−−−−→
...

←−− ←−−−−→ −−→←−− ←−−−−→ −−→
...

←−−−−→←−−−−→

}
r̄1

}
r̄i

}
r̄m

A V
←−−−−→←−−−−→
...

←−− ←−−−−−−−−−−−−−−→ −−→←−− ←−−−−−−−−−−−−−−→ −−→
...
←−−−−→←−−−−→

}
r̄1

}
r̄i

}
r̄m

Fig. 9. The simulator SIM and the program Π′(b, ·).

5.3.2. Extraction of witnesses. Once the view of A has been simulated, we
turn to the extraction of witnesses to the statements proved by A. Note that we
need to extract witnesses to all concurrent right interactions. Towards this goal we
rely on a variant of Lindell’s concurrent extraction technique [33] combined with the
alternative simulator technique described in section 5.2. In a sense, this can be seen
as a (nontrivial) extension of the method of Pass and Rosen [42] (which was used to
show a similar property for the simpler case of only one right interaction).

The machine EXT fixes the random coins of the simulator SIM and iteratively
extracts witnesses for each of the right interactions. More specifically, EXT starts by
sampling a random execution of SIM, using random coins s̄, r̄. Let x1, . . . , xm be the
inputs corresponding to the m sessions that have taken place in the right interaction.

For each i ∈ [m] such that the ith right session was not accepting, EXT will
assume that no witness exists for the corresponding statement xi and will refrain
from extraction. For all i ∈ [m] so that the ith right session is accepting in this
execution of SIM, and for which the tag of the ith session is different from the tag
of the left session, EXT will attempt to extract a witness for the statement xi being
proved in the corresponding session.

To do so EXT constructs a stand-alone prover Pi for the ith right interaction
〈P ˜tagi

, V ˜tagi
〉 and from which it will later attempt to extract the witness. In principle,

the prover Pi will follow SIM’s actions by using the same random coins s̄, r̄ used for
initially sampling the execution of SIM. However, Pi’s execution will differ from SIM’s
execution in the following important ways:

1. Messages in the ith right session are no longer emulated internally but for-
warded externally.

2. In the simulation of the left protocol, use the alternative simulator from
section 5.2 in order to complete stage 2 of the protocol.

Figure 10 demonstrates the definition of Pi (as before, the sessions are depicted se-
quentially).

The reason for using the alternative simulation instead of the basic one is that
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Pi V
P A V

←−−−−→←−−−−→
...

←−− ←−−−−−−−−−−−−−−→ −−−−−−−−−−−−→←−− ←−−−−−−−−−−−−−−→ −−−−−−−−−−−−→
...

←−−−−→←−−−−→

}
ith session

Fig. 10. The prover Pi.

the latter might not be able to commit to the external messages of the ith right
interaction (as it might not know these messages at the time it commits). Note that
the way the simulation within Pi is defined the program committed to in stage 1 is
Π′. To enable the alternative simulation with a commitment to Π′ in stage 1, we let
the simulator additionally provide the input b = 1 to Π′ as part of the witness in
stage 2 (this enables Π′ to depend on the external messages in the ith right session).
The alternative simulation technique, combined with the fact that there is only one
external interaction on the right-hand side, is what eventually enables the simulation
to go through.

The actual witness used by the simulator in stage 2 depends on the scheduling of
the messages. We distinguish between the following cases, depending on where the ith
session has started with relation to the messages c1, c2 in the left-hand side protocol
(see Figure 11).

(a) (b) (c)

P A V
c1−−−−→
c2−−−−→

session i−−−−−−−−−→

P A V
c1−−−−→

session i−−−−−−−−−→
c2−−−−→

P A V
session i−−−−−−−−−→

c1−−−−→
c2−−−−→

Fig. 11. Three possible “starting points” for session i.

In each corresponding case, EXT acts as follows:
• Both c1 and c2 have been sent before session i begins (Figure 11(a)). In

this event slot 1 has no external messages, and the basic simulation can be
performed; i.e., EXT can use Π′ as a witness for 〈h, c1, r1〉 ∈ Lsim in stage 2
(just as in SIM).

• c1 has been sent but not c2 (Figure 11(b)). Let M1 and M2 denote the “exter-
nal” messages A receives on the right-hand side in slots 1 and 2 of the left in-
teraction, respectively (see Figure 12 for two “representative” schedulings). In
this case, we define Π′

2(b, ·) = Π′(b,M1, ·) and let EXT send c2 = Com(Π′
2; s)

(whereas c1 is defined just as in SIM).
Consider a stage 1 transcript τ1 = 〈h, c1, r1, c2, r2〉 of the left interaction. By
the construction of 〈Ptag, Vtag〉, and from the fact that ˜tagi is different from
tag, it must be the case that either |M1| ≤ |r1| − �(n) or |M2| ≤ |r2| − �(n).
This is implied by the following simple fact.
Fact 5.2. If tag �= ˜tag then there exists i ∈ {1, 2} so that |r̃i| ≤ |ri| − �(n).
In particular, either |M1| + |c1| + n ≤ |r1| − n or |M2| + |c1| + n ≤ |r2| − n.
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(a) (b)

P A V
c1−−−−→

c̃1−−−−−−−−−→
r̃1←−−−−−−−−−
c̃2−−−−−−−−−→
r̃2←−−−−−−−−−

r1←−−−−
c2−−−−→
r2←−−−−

}
M1

P A V
c1−−−−→

c̃1−−−−−−−−−→
r̃1←−−−−−−−−−

r1←−−−−
c2−−−−→

c̃2−−−−−−−−−→
r̃2←−−−−−−−−−

r2←−−−−

}
M1

}
M2

Fig. 12. Two “representative” schedulings.

Furthermore, c1 is a commitment to Π′, c2 is a commitment to Π′
2, r1 =

Π′(1, (c1,M1)), and r2 = Π′
2(1, (c1,M2)). Thus, either w1 = Π′, 1, (c1,M1), s1

is a valid witness for 〈h, c1, r1〉 ∈ Lsim or w2 = Π′
2, 1, (c2,M2), s2 is a valid

witness for 〈h, c2, r2〉 ∈ Lsim. If the former is true, EXT follows the prescribed
prover by using w1 as a witness and otherwise uses w2 as a witness.

• Neither of c1 or c2 have been sent (Figure 11(c)). In this case EXT first
generates a commitment c1 just as SIM would, i.e., lets c1 be a commitment
to Π′, and then performs the same operations as in the previous case.

It follows from the description above that the simulation employed by Pi on the
left interaction is always able to convince A of the validity of the statement proved
on the left interaction.

Once Pi is constructed, EXT can apply the (stand-alone) extractor, guaranteed
by the proof of knowledge property of 〈Ptag, Vtag〉, to Pi and extract a witness to
the statement xi. In the unlikely event that the extraction failed in any of the m
executions, EXT outputs fail; otherwise, it outputs all of the extracted witnesses.

Remark 3. It is important to have a Pi for the entire protocol 〈P ˜tagi
, V ˜tagi

〉 (and
not just for 〈PUA, VUA〉). This is in order to argue that the witness extracted is a
witness for xi and not a witness to 〈h, c1, r1〉 ∈ Lsim or to 〈h, c2, r2〉 ∈ Lsim (which
could indeed be the case if we fixed the messages 〈h, c1, r1, c2, r2〉 in advance).

The output of S. Finally the combined simulator-extractor S outputs fail when-
ever EXT does. Otherwise, S outputs whatever SIM outputs, followed by whatever
EXT outputs.

Remark 4. It is important to have both SIM and EXT use the same simulator
program S (with the same random coins) in their respective executions. Otherwise,
we are not guaranteed that the statement x̃ appearing in the output of SIM is the
same one from which EXT extracts a witness.18

5.4. Correctness of the simulation-extraction. We proceed to show the
correctness of the combined simulator-extractor S = (SIM,EXT). We start by showing
that the view of A in the simulation by SIM is identical to its view in an actual
interaction. Let the random variable SIM(x, z,tag) denote the view of A in the
simulation by SIM performed in the execution of S(x, z,tag).

18The statement x̃i will remain unchanged because x̃i occurs prior to any message in 〈P ˜tagi
, V ˜tagi

〉
(and hence does not depend on the external messages received by Pi).
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Claim 5.3.

{SIM(x, z,tag)}x∈L,z∈{0,1}∗,tag∈[2|x|] and {viewA(x, z,tag)}x∈L,z∈{0,1}∗,tag∈[2|x|]

are identically distributed.
Proof. The claim follows from (1) the perfect zero-knowledge property of 〈Ptag, Vtag〉,

and (2) the fact that the emulation of the right interactions by SIM is perfect. Specif-
ically, consider the following hybrid experiments:

1. Let H0 denote the view of A in the simulated execution.
2. Let H1 denote the view of A in a simulated execution when letting the simu-

lator use the true witness w for x in the special-purpose UARG 〈PsUA, VsUA〉
in stage 2 (instead of using the “fake” witness). Thus the only difference
between H0 and H1 is the choice of the witness used in 〈PsUA, VsUA〉.

3. Let H2 denote the real execution. Note that the only difference between
H1 and H2 is that, in H1, A receives commitments c1, c2 to a program Π′,
whereas in H2 it receives a commitment to the string 0k.

Subclaim 5.4. H0 is identically distributed to H1.
Proof. The claim follows from the witness-independent property of 〈PpWI, VpWI〉

used in stage 2. More precisely, assume for contradiction that H0 is not identically
distributed to H1. Then there must exist some stage 1 transcript such that the proofs
generated in stage 2 in H0 and H1 are not identically distributed, in contradiction
to the witness independence property. (Here we use the fact that there exist two
possible witnesses for stage 2—one is the witness used by the simulator and the other is
w.)

Subclaim 5.5. H1 is identically distributed to H2.
Proof. The claim directly follows from the perfect hiding property of the commit-

ments used to generate c1 and c2.
This completes the proof of Claim 5.3.
We proceed to show that EXT outputs fail with negligible probability. Let

the random variable EXT(x, z, tag) denote the output of EXT in the execution of
S(x, z, tag).

Claim 5.6. There exists a negligible function μ(·) such that for every x ∈ L,
z ∈ {0, 1}∗, tag ∈ [2|x|]

Pr [EXT(x, z, tag) = fail] ≤ μ(|x|).
Proof. Recall that EXT proceeds by constructing stand-alone provers Pi and then

applying the (stand-alone) extractor, guaranteed by the proof of knowledge property
of 〈Ptag, Vtag〉, to Pi, in order to extract witnesses wi to the statements xi. Note that
EXT outputs fail only in the event that extraction from one of the right interactions
i ∈ [m] fails. By the proof of knowledge property of 〈Ptag, Vtag〉 it holds that for each
execution i extraction for execution i fails only with negligible probability (recall that
the extractor is invoked only when A provides an accepting proof in execution i).
Since the extraction procedure is repeated at most m times (at most once per right
interaction), we conclude (by the union bound) that the probability that extraction
fails for any of the right interactions is negligible.

By combining Claims 5.3 and 5.6, we conclude that the first output of S is statis-
tically close to A’s view in an actual interaction. As in Definition 4.1, let the random
variable S1(x, z,tag) denote the first output of S(x, z,tag).

Claim 5.7. {S1(x, z,tag)}x∈L,z∈{0,1}∗,tag∈[2|x|] and {viewA(x, z,tag)x∈L,z∈{0,1}∗,tag∈[2|x|]
are statistically close over L.
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Proof. Recall that the first output of S consists of the view of A as generated by
SIM. By Claim 5.3 it follows that the first output of S is identically distributed to a
“real” interaction, conditioned on the event that S does not output fail. However,
since this event happens only when EXT outputs fail, which by Claim 5.6 happens
only with negligible probability, the claim follows.

We proceed to show the correctness of the extraction.

Claim 5.8. Let x ∈ L, z ∈ {0, 1}∗, and tag ∈ {0, 1}2|x|, and let (view, w̄) denote
the output of S(x, z,tag) (on input some random tape). Let x̃1 . . . , x̃m be the right-
execution statements appearing in view, and let ˜tag1 . . . ˜tagm denote the corresponding
right-execution tags. Then, for any i ∈ [m] such that the ith right execution in view
is accepting and tag �= ˜tagi, w̄ contains a witness wi so that RL(x̃i, wi) = 1.

Proof. First, note that, since S always outputs fail whenever the extraction
by EXT fails, the claim trivially holds in the event that the extraction by EXT fails.
Consider, next, the case when extraction by EXT does not fail. Recall that EXT
performs extraction for all right executions which satisfy the properties described
in the hypothesis (i.e., accepting proofs and different tags). Furthermore, for each
such interaction i, the stand-alone prover Pi—constructed by EXT—uses the same
random coins as SIM in order to emulate all of the interactions before session i begins.
In addition, the prescribed actions for the simulation by EXT are identical to the
prescribed actions for the simulation by SIM. This means that the statement proved
by Pi will be identical to the statement proved in the view output by SIM. Finally,
by our assumption that the extraction by EXT does not fail, we conclude that a valid
witness for the statement proved by Pi is extracted. This concludes the claim.

We conclude the proof by bounding the running time of the combined simulator-
extractor S.

Claim 5.9. S(x, z, tag) runs in expected polynomial time (in |x|).
Proof. We start by noting that the running time of SIM is polynomial. Recall

that the program Π′ committed to by SIM is of size poly(n). It thus directly follows
that simulation of stage 1 messages can be done in polynomial time. Furthermore, it
follows that the verification time of Rsim on the instance 〈h, c1, r1〉 is polynomial in n.
Finally, by the relative prover efficiency of 〈PUA, VUA〉 it holds that the simulator can
also generate stage 2 messages in polynomial time.

It now remains only to show that the expected running time of EXT is also poly-
nomial. Recall that EXT proceeds by first sampling a view by using SIM and then
proceeds to extract witnesses in all accepting right executions. We show that, for ev-
ery right execution i, the expected running time needed to extract a witness from that
execution is polynomially bounded. Since the number of right interactions is poly-
nomially bounded, we conclude by linearity of expectations that the total expected
running time of the combined simulator-extractor S = (SIM,EXT) is polynomially
bounded.

Let viewi denote the partial view for A in an emulation by SIM up until A is about
to start its ith right execution. Let pi(viewi) denote the probability that A produces
an accepting proof in the ith right execution in the simulation by SIM, given that SIM
has fed to A the view viewi. Let p′i(viewi) denote the probability that A produces
an accepting proof in the ith right execution in the simulation by Pi (constructed in
EXT), given that EXT has fed A the view viewi.

Subclaim 5.10. Let viewi denote the partial view for A in an emulation by SIM
up until A is about to start its ith right execution. Then pi(viewi) = p′i(viewi).

Proof. The claim follows from the perfect indistinguishability of the basic simula-
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tor used by SIM and the alternative simulator used by EXT (this is proved similarly
to Claim 5.3).

Note that if we assume only that 〈Ptag, Vtag〉 is statistical zero knowledge, we
could conclude only that p′i(viewi) is negligibly close to pi(viewi). This would not be
sufficient to bound the running time of the simulator (as this would have introduced
difficulties similar to the ones discussed in [21]).

By the proof of knowledge property of 〈Ptag, Vtag〉 it holds that, for any partial
view viewi up until A is about to start its ith right execution, the expected running
time of the extractor is bounded by

poly(n)

p′i(viewi)
.

Since the probability of invoking the extraction procedure given this partial view is
pi(viewi), the expected number of steps used to extract a witness is19

pi(viewi)
poly(n)

p′i(viewi)
= pi(viewi)

poly(n)

pi(viewi)
= poly(n).

We conclude that the expected time needed to extract the witness in the ith right
execution is polynomially bounded. The claim follows.

This completes the proof of Lemma 5.1.

5.5. Analyzing the family of 2n protocols. By relying on the proof from
section 5.3, we now argue that the family {〈Ptag, Vtag〉}tag∈{0,1}n is also one-many
simulation extractable. The key for demonstrating this is to show that the protocols
〈Ptag, Vtag〉 are simulation extractable as long as the number of left interactions is a
priori bounded (in contrast to the single left interaction considered in Definition 4.1)
and even if the number of right interactions is unbounded.

Specifically, consider a man-in-the-middle adversary A that is simultaneously
participating in k = k(n) left interactions of 〈Ptag, Vtag〉, acting as a verifier, and
an (unbounded) polynomial number of right interactions of 〈Ptag, Vtag〉, acting as a
prover. Let viewA(x, z, tag) denote the view of A(x, z) when receiving left proofs of
statements x̄ = x1, . . . , xk, using identity strings ¯tag = tag1, . . . , tagk, and proving
statements of its choice in the right interaction (using tags of its choice). Given a
function t = t(n) and some k ∈ N , we use the notation {·}x̄,z, ¯tag as shorthand for
{·}x1,...,xk∈L,z∈{0,1}∗,tag1,...,tagk∈{0,1}t(|x|) .

Definition 5.11 (bounded-many simulation extractability). A family
{〈Ptag, Vtag〉}tag∈{0,1}∗ of interactive proofs for the language L is said to be k-bounded-
many simulation extractable with tags of length t = t(n) if, for any polynomial p(·)
and any man-in-the-middle adversary A that participates in k = k(n) left interactions
and at most m = p(n) right interactions, there exists a probabilistic expected poly-time
machine S such that:

1. The probability ensembles {S1(x̄, z, ¯tag)}x̄,z, ¯tag and {viewA(x̄, z, ¯tag)}x̄,z, ¯tag

are statistically close over L, where S1(x̄, z, ¯tag) denotes the first output of
S(x̄, z, ¯tag).

2. Let x1, . . . , xk ∈ L, z ∈ {0, 1}∗, and tag1 . . . tagk ∈ {0, 1}t(|x|), and let
(view, w̄) denote the output of S(x̄, z, ¯tag) (on input some random tape).
Let x̃1 . . . , x̃m be the right-execution statements appearing in view, and let

19It is here that complications arise in the case when p′i �= pi. Note that the expected number of
steps is no longer guaranteed to be polynomial in this case, even if p′i is negligibly close to pi.
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˜tag1, . . . , ˜tagm denote the corresponding right-execution tags. Then, for any
i ∈ [m] such that the ith right execution in view is accepting and, for all
j ∈ [k] ˜tagi �= tagj, w̄ contains a witness wi so that RL(x̃i, wi) = 1.

Lemma 5.12. Suppose that {Hn}n is collision-resistant for T (n)-sized circuits,
that Com is perfectly hiding, that 〈PpWI, VpWI〉 is a witness-independent argument
of knowledge, that 〈PUA, VUA〉 is a universal argument, and that �(n) ≥ 2n3 + n.
Then {〈Ptag, Vtag〉}tag∈[2n] is n-bounded-many simulation extractable with tags of length
t(n) = log n + 1.

Proof. The proof is essentially identical to the proof of one-many simulation
extractability of 〈Ptag, Vtag〉 (Lemma 5.1). The only difference is that, in the simulation
by SIM (and EXT), the message r1 in the ith left execution can no longer be computed
as Π(c1) but is in fact defined as Π(M), where M denotes all left-hand side prover
messages that have occurred before r1 (the same holds analogously for r2). This
creates a potential problem when simulating the stage 2 messages in the jth left
protocol.

The key observation is that the total length of all prover messages on the left
interaction does not exceed 2n3 (here we assume without loss of generality that the
length of all prover messages in a session is upper bounded by n2). Thus SIM (as well
as EXT) can include all left-hand side prover messages sent to A before the message
r1 (or r2 depending on what “slot” the simulator uses) as part of the witness for either
〈h, c1, r1〉 ∈ Lsim or 〈h, c2, r2〉 ∈ Lsim.

Our main technical lemma (Lemma 4.3) is finally obtained by combining Lemmas
5.1 and 5.12.

Lemma 4.3 (main technical lemma). Suppose that {Hn}n is collision-resistant
for T (n)-sized circuits, that Com is perfectly hiding, that 〈PpWI, VpWI〉 is a witness-
independent argument of knowledge, that 〈PUA, VUA〉 is a universal argument, and that
�(n) ≥ 2n3+n. Then {〈Ptag, Vtag〉}tag∈{0,1}n is one-many simulation extractable with
tags of length t(n) = n.

Proof. Consider a man-in-the-middle adversary A that is verifying a statement
x with identity string tag = tag1, . . . ,tagn in the left interaction while proving m
statements x̃1, . . . , x̃m in the right interaction, where for i ∈ [m] the ith right session

has identity string ˜tag
i

= ˜tag
i
1, . . . , ˜tag

i
n. We show how to construct a simulator-

extractor S = (SIM,EXT) that simulates the view of A while extracting all of the

witnesses for statements x̃i for which ˜tag
i �= tag.

First, observe that, for any i ∈ [m] so that ˜tag
i �= tag, there exist i0 ∈ [n] for

which (i0, ˜tag
i
i0) �= (j,tagj) for all j ∈ [n] (just take the i0 for which ˜tag

i
i0 �= tagi0).

Let ˜tagi = (i0, ˜tag
i
i0).

Given a one-many adversary A for 〈Ptag, Vtag〉, we next construct an n-many
adversary A′ for 〈Ptag, Vtag〉 that runs n parallel sessions in the left interaction and
m′ = mn concurrent sessions in the right interaction. The inputs and identity strings
for the various sessions are defined as follows:

• Left sessions. For j ∈ [n] the common input of the jth left session is xj = x,
and the identity string is ¯tag = (j,tagj).

• Right sessions. For (i, j) ∈ [m] × [n], the input to the (i, j)th right session is

x̃j , and the identity string is ˜tag
i
j = (j, ˜tag

i
j).

By Lemma 5.12 there exists a simulator S′ that produces a view that is statis-
tically close to the real view of A′ and outputs witnesses to all right executions for
which the tag is different from all of (1,tag1), . . . , (n,tagn). By relying on S′, we
construct the simulator-extractor S. S(x, z,tag) proceeds as follows. It parses tag as
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tag = tag1, . . . ,tagn, where tagi ∈ {0, 1}. For i ∈ [n], let xi = x, tagi = (i,tagi).
Let (view, w̄) denote the output of S′(x1, . . . xn, z, tag1, . . . tagn). Additionally, let

x̃1 . . . , x̃m′ be the right-execution statements appearing in view and ˜tag
1
. . . ˜tag

m′

the correspoding right-execution tags. As observed above, for any i ∈ [m] so that
˜tag

i �= tag, there exists some identity ˜tagi that A′ uses in the proof of the ith
right interaction which is different than all identities (tag1, . . . , tagn) used in the n
left interactions. Thus, for every i ∈ [m] so that ˜tagi �= tag, S can successfully
find a witness for the statement x̃i in w̄. S finally outputs view and the witnesses
obtained above. The correctness of the simulator-extractor S follows directly from
the construction.
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[30] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby, A pseudorandom generator from any
one-way function, SIAM J. Comput., 28 (1999), pp. 1364–1396.

[31] J. Katz, R. Ostrovsky, and M. Yung, Efficient password-authenticated key exchange using
human-memorable passwords, in Proceedings of EUROCRYPT 2001, pp. 475–494.

[32] J. Kilian, A note on efficient zero-knowledge proofs and arguments, in Proceedings of the 24th
Annual ACM Symposium on the Theory of Computing, 1992, pp. 723–732.

[33] Y. Lindell, Bounded-concurrent secure two-party computation without setup assumptions,
Chic. J. Theoret. Comput. Sci., (2006), article 1.

[34] S. Micali, Computationally sound proofs, SIAM J. Comput., 30 (2000), pp. 1253–1298.
[35] M. Naor, Bit commitment using pseudorandomness, J. Cryptology, 4 (1991), pp. 151–158.
[36] M. Nguyen, S. Ong, and S. Vadhan, Statistical zero-knowledge arguments for NP from any

one-way function, in Proceedings of the 37th Annual IEEE Symposium on Foundations of
Computer Science, 2006, pp. 3–14.

[37] M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung, Perfect zero-knowledge arguments
for NP using any one-way permutation, J. Cryptology, 11 (1998), pp. 87–108.

[38] M. Naor and M. Yung, Universal one-way hash functions and their cryptographic applica-
tions, in Proceedings of the 21st Annual ACM Symposium on the Theory of Computing,
1989, pp. 33–43.

[39] M. Nguyen and S. Vadhan, Simpler session-key generation from short random passwords,
in Proceedings of the 1st Theory of Cryptology Conference, Lecture Notes in Comput.
Sci. 2951, Springer, New York, 2004, pp. 428–445.

[40] R. Pass, Bounded-concurrent secure multi-party computation with a dishonest majority, in
Proceedings of the 36th Annual ACM Symposium on the Theory of Computing, 2004, pp.
232–241.

[41] R. Pass and A. Rosen, Bounded-concurrent secure two-party computation in a constant num-
ber of rounds, in Proceedings of the 34th Annual IEEE Symposium on Foundations of
Computer Science, 2003, pp. 404–413.

[42] R. Pass and A. Rosen, New and improved constructions of non-malleable cryptographic pro-
tocols, SIAM J. Comput., to appear.

[43] R. Pass, A. Shelat, and V. Vaikuntanathan, Relations among notions of non-malleability
for encryption schemes, in Proceedings of AsiaCrypt’07, 2007, to appear.

[44] A. Sahai, Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext secu-
rity, in Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer
Science, 1999, pp. 543–553.



SIAM J. COMPUT. c© 2008 Society for Industrial and Applied Mathematics
Vol. 37, No. 6, pp. 1926–1952

A LINEAR-TIME APPROXIMATION SCHEME FOR TSP IN
UNDIRECTED PLANAR GRAPHS WITH EDGE-WEIGHTS∗

PHILIP N. KLEIN†
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1. Introduction. The traveling salesman problem (TSP) is often the first prob-
lem researchers use to test a new optimization technique [32]. In a metric space, a tour
is a cycle (v0 v2 . . . vn−1) of the points of the metric space, and the weight of the tour
is the sum

∑n
i=0 dist(vi, v(i+1) mod n), where dist(u, v) is the distance between u and v.

The goal is to find the minimum-weight tour. The problem is MAXSNP-hard [36, 37]
in arbitrary metric spaces, and the best approximation ratio known, that proved by
Christofides [14], is 1.5. For the shortest-path metric of an unweighted planar graph
(one in which every edge has weight one), Grigni, Koutsoupias, and Papadimitriou [23]
gave an algorithm that requires nO(1/ε) to find a 1 + ε-optimal tour. Thus for fixed ε,
the algorithm runs in polynomial time. Such a family of polynomial-time algorithms
is called an approximation scheme.

Arora et al. [5] subsequently gave a polynomial-time approximation scheme (PTAS)
for the more general problem in which the planar graph’s edges have arbitrary non-
negative weights. Their algorithm requires nO(ε−2) time. Both algorithms are some-
what complicated and involve a recursive decomposition using new planar-separator
lemmata. The latter paper introduced the idea of using a spanner result to handle
edge-weights.

Arora [3] and Mitchell [34] had shown that a PTAS exists for Euclidean TSP (i.e.,
the subcase in which the points lie in �2 and distance is measured using the Euclidean
metric). This PTAS finds an ε-optimal tour in nO(1/ε) time. Arora [4, 2] improved
the running time of his algorithm to O(n ·(log n)O(1/ε)), using randomization. Finally,
Rao and Smith [38] gave a PTAS for the two-dimensional Euclidean case that takes
time O(ε−O(ε)n + n log n). (Their algorithm also used a spanner result.) The latter
two approximation schemes are said to be efficient polynomial-time approximation
schemes (EPTAS) because the time can be bounded by a function of ε times a poly-
nomial function of n. Thus for an EPTAS, the degree of the polynomial does not
grow with 1/ε.

In view of the fact that an ε-optimal tour can be found in the Euclidean case
in time that is polynomial with a fixed degree, independent of ε, it seems natural to
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ask whether the same holds true for the planar case. In this paper, we answer this
question.

Theorem 1.1. There is an algorithm that, for any ε > 0 and any planar graph
G with nonnegative edge-weights, finds a 1 + ε-optimal tour. The running time is
O(c1/ε

2

n), where c is a constant. For the special case where all weights are 1, a
similar algorithm requires O(c1/εn) time.

Marx [33] subsequently showed that the running time for the unit-weight case is
essentially optimal under a widely held complexity assumption.

1.1. Other related work. In a seminal paper, Baker [6] gives a method for ob-
taining PTASs for a variety of optimization problems in planar graphs, e.g., maximum-
weight independent set and minimum-weight vertex cover. The resulting algorithms
are linear time (for fixed ε). The key idea (interpreted in modern parlance) is to turn
a problem in a planar graph into a problem in a graph with bounded treewidth.

Grigni and Sissokho ([24], building on [25]) have given a quasi-polynomial ap-
proximation scheme for weighted TSP in minor-excluded graphs. This paper proved
a spanner result for minor-excluded graphs. Berger et al. ([7], building on [16])
give a PTAS for the problem of finding a minimum-weight 2-edge-connected spanning
multisubgraph1 of an edge-weighted planar graph, and a quasi-polynomial approxima-
tion scheme for finding a minimum-weight 2-edge-connected or biconnected spanning
subgraph2 of an edge-weighted planar graph. This paper introduced a new spanner
construction.

Demaine and Hajiaghayi [17] describe a framework for PTASs that is based on
the notion of bidimensionality. They derive approximation schemes for subclasses
of minor-excluded graphs that involve turning the input graph into a low-treewidth
graph. Their results apply to graphs that are not planar. Their framework can
be viewed as a way to generalize Baker’s approach so as to derive algorithms for
nonlocal problems, such as feedback vertex set and connected dominating set. For
planar graphs in particular, they derive EPTASs for several unit-weight problems. In
relation to their framework, our result is an example of how one can more thoroughly
exploit planarity to derive a fast and simple EPTAS.

For a positive number s, an s-spanner of a graph G is a subgraph of G that
approximately preserves the node-to-node distances of G: for any pair u, v of nodes
of G, the distance in the subgraph must be at most s times the distance in G. There
is a vast literature on spanner constructions. In this paper, we require a construction
for 1 + ε-spanners of planar graphs. Henceforth, for brevity we use the term spanner
and omit mention of the parameter 1 + ε.

1.2. The approach. The TSP approximation scheme consists of the following
steps.

Spanner step: Delete some edges of the input graph while approximately preserv-
ing the optimal value.3

Slicing step: Using breadth-first search in the planar dual together with a shifting
argument, identify subgraphs (called slices). The weight of edges belonging to more
than one slice is at most 1/k times the weight of the graph, and each connected

1Duplicate edges of the input graph are allowed in the solution.
2No duplicates are allowed.
3This was the also the first step in [5] and subsequently in, e.g., [24] and one of the algorithms

of [7].
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component of each slice has a spanning tree of depth at most k + 1, where k is a
parameter.

Dynamic-programming step: Use dynamic programming to find an optimal solu-
tion in each connected component of each slice.

Combining step: The union of the tours found in the previous step comprises a
tour for the original graph.
The time required by the dynamic-programming step is exponential in k. We show
that there is a choice of k that depends only on ε for which the resulting tour is nearly
optimal.

In the preliminary version of this paper [30], a slightly different algorithm was
described. In the second step, a procedure called thinning was applied to the planar
dual of the graph. Thinning involves deleting edges; thinning the planar dual corre-
sponds to contracting edges in the primal. Thinning in either the primal or the dual
results in a graph with small branch-width. The method of thinning in the dual graph
is novel, though quite simple. One nice way to formulate the result is as follows:

For any positive integer k, there is a partition of the edges of a planar
graph into k sets such that contracting the edges in any one of the sets
yields a graph with bounded treewidth (where the bound depends on
k).

This formulation of the result is due to Demaine, Hajiaghayi, and Mohar [19], who
learned of this result from the preliminary version of this paper and subsequently
generalized the result to apply to graphs of any bounded genus.

Because of the potential applicability of the planar result and of its role in sub-
sequent developments, we provide a proof in section 7.

The approach used in this version of the paper to formulate the TSP approxi-
mation scheme, which we call slicing, emerged from joint work with Borradaile and
Mathieu [10, 11]. This formulation does not require the algorithm to perform any
contractions, which leads to a simpler algorithm.

The general approach used for TSP has proved useful in obtaining approxima-
tion schemes for other problems in planar graphs, including minimum-weight 2-edge-
connected spanning multisubgraph,4 TSP on a subset of the nodes [31], minimum-
weight 2-edge-connected spanning subgraph [8], and Steiner tree [10]. As mentioned
above, the basic technique has been generalized [19] to apply to bounded-genus graphs,
giving rise to new approximation schemes for such graphs.

1.3. Spanner step. The spanner step requires an algorithm that, given an n-
node planar graph G0 with edge-weights and given a parameter ε, deletes edges so as
to obtain a graph G such that

S1: weight(G) ≤ ρε · OPT(G0),

S2: OPT(G) ≤ (1 + ε)OPT(G0), and
where OPT(G) is the value of the optimum for input graph G, and weight(G) is the
sum of weights of edges in G.

We refer to the first step as spanner step because of the connection to s-spanners.
An s-spanner of a graph G0 is a subgraph G of G0 with the same set of nodes, such
that, for any pair u, v of nodes, the u-to-v distance in G is at most s times the u-to-v
distance in G0. As discussed in Lemma 3.2, to achieve property S2 in the case of

4An O(c1/εn) algorithm for this problem can be obtained from the TSP algorithm by modifying
the dynamic program.



PLANAR-GRAPH TSP LINEAR-TIME APPROXIMATION SCHEME 1929

TSP, it suffices that G be a 1 + ε-spanner of G0. In section 3, we discuss a spanner
construction that also achieves property S1.

An n-node planar graph G0 with no parallel edges or self-loops has at most 3n
edges. For unit-weight edges, OPT(G0) is at least n, so weight(G0) ≤ ρεOPT(G0)
holds for ρε=3. In this sense, a trivial spanner result suffices for the unit-weight case.

We remark that properties S1 and S2 can be considered for optimization prob-
lems other than TSP, and indeed for problems where a traditional s-spanner would
not suffice. We propose use of the term spanner result to refer more generally to a
construction achieving properties S1 and S2. We have obtained such constructions
for two other problems in planar graphs, leading to approximation schemes for these
problems. The first problem [31] is a generalization of the problem studied here; the
tour must visit a specified subset of nodes of the input graph (not necessarily all the
nodes). The second problem [10] is Steiner tree, in which one seeks a minimum-weight
tree spanning a specified subset of nodes.

2. Preliminaries. In this section, we describe the basic definitions and results
on planar embeddings and planar duals. Most of the material is standard in concept,
but the notation may be unfamiliar, and we also introduce a variant of contraction
that we call compression, and state some related results. In subsection 2.5, we give
some definitions and results that help us reformulate the TSP.

For a rooted tree T and a node v that is not the root of T , the parent edge of v
is the edge of T that connects v to its parent.

2.1. Combinatorial embeddings. The traditional geometric definition of pla-
nar embeddings involves drawings of a graph on the plane. Proofs and algorithms
become simpler when one uses an alternative definition of embedded planar graphs,
a combinatorial definition. See [35].

The idea of a combinatorial embedding was implicit in the work of Heffter [27].
Edmonds [21] first made the idea explicit, and Youngs [46] formalized the idea. A
combinatorial embedding is sometimes called a rotation system. The idea is to rep-
resent at each node the arrangement of edges around that node, as illustrated in
Figure 1.

However, it is convenient to represent at each node not just which edges are
incident to the node and in what order but more specifically which ends of which edges
are incident to the node. For example, if e is a self-loop (an edge whose endpoints are
the same), the edge e would appear twice in the arrangement of incident edges, and
it is helpful to be able to distinguish these two occurrences. We will refer to the ends
of an edge as its darts, as we explain next.

For any given finite set E, we can interpret E as a set of edges, and we define
E×{±1} to be the corresponding set of darts. For each edge e, the darts of e, namely
〈e, 1〉 and 〈e,−1〉, represent the two opposite orientations of e. The edge of 〈e, i〉 is e.
We define rev(·) (rev is short for reverse) to be the function that takes each dart to
the corresponding dart in the opposite direction: rev(〈e, i〉) = 〈e,−i〉.

We define an embedded graph on E to be a pair G = 〈π,E〉, where π is a
permutation of the darts of E. The permutation cycles of π are called the nodes of G.
Note that nodes are defined in terms of edges, rather than the other way around. This
definition precludes isolated nodes. Each node v is a permutation cycle (d1 d2 . . . dk).

For a graph G, we use V (G), E(G), and D(G) to denote the node-set, the edge-set,
and the dart-set of G. We use the same notation for subgraphs of G.

For a dart d of G, we define the tail of d in G, denoted tailG(d), to be the
permutation cycle of π containing d. (We may omit the subscript when doing so
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Fig. 1. The figure on the left shows an undirected planar graph embedded in the plane, with
its edges labeled. The rotation corresponding to the top left node is the permutation cycle (a b e),
indicating that the edges a, b, and e are incident to that node and are arranged counterclockwise
around that node in the order a, b, e. Similarly, the rotation in the middle node is (e f g h). The
figure on the right shows the same undirected graph but with darts instead of edges. There are two
oppositely directed darts for each (undirected) edge. The darts corresponding to edge e are 〈e, 1〉
and 〈e,−1〉. The rotation corresponding to a node consists of the darts that point away from the
node. Thus the rotation corresponding to the top left node is (〈a, 1〉 〈b,−1〉 〈e,−1〉). The rotation
corresponding to the middle node is (〈e, 1〉 〈f, 1〉 〈g, 1〉 〈h, 1〉).

creates no ambiguity.) We define headG(d) = tailG(rev(d)). The tail and head of a
dart d are called the endpoints of d and also the endpoints of the edge of d.

A walk of darts in G is a sequence d1 . . . dk of darts such that, for i = 2, . . . , k,
headG(di−1) = tail(di).

5 The start of the walk is tailG(d1) and the end is headG(dk).
It is a closed walk if in addition headG(dk) = tailG(d1). It is a simple path/cycle
(cycle if closed, path if not) if no node occurs twice as the head of a dart. The walk,
path, or cycle is said to contain an edge e if it contains a dart of e. It is said to
contain a node v if v is the head or tail of some dart in the sequence. We define
rev(d1 . . . dk) = rev(dk) . . . rev(d1). A walk/path whose start is u and whose end is v
is called a u-to-v walk/path.

To define the faces of the embedded graph, we define another permutation π∗ of
the set of darts by composing π with rev: π∗ = π◦rev. Then the faces of the embedded
graph 〈π,E〉 are defined to be the permutation cycles of π∗. (See Figure 2.) Note
that a face of G can be interpreted as a closed walk in G.

Note that this definition diverges from the traditional geometric definition of faces
in the case of a disconnected graph. In that case, according to the definition considered
here, for each connected component there will be a different external face. (In fact,
this is necessary if one wishes to preserve the desirable property that the dual of the
dual is the primal.)

5Note that, even though we are concerned with undirected graphs, we use (directed) darts in our
definition of walks because they provide more information about the structure of the walks.
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b,1
a,1
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Fig. 2. The figure on the left shows the dart representation of part of a graph. We can trace out
the face containing the dart 〈a, 1〉 as follows. First apply rev, obtaining the dart 〈a,−1〉 emanating
from the node v. Next, apply π, obtaining 〈b, 1〉, the dart after 〈a,−1〉 in the permutation cycle
corresponding to v. This shows that 〈b, 1〉 is the successor to 〈a, 1〉 in the face. We apply the
same process to 〈b, 1〉, obtaining its successor 〈c, 1〉 and that dart’s successor in turn, 〈a, 1〉. The
face (permutation cycle of π ◦ rev) is thus (〈a, 1〉 〈b, 1〉 〈c, 1〉). The figure on the right shows the
corresponding fragment of the dual graph. There is a dual node corresponding to the face discussed
above. The permutation cycle corresponding to this dual node is exactly the permutation cycle
comprising the face: (〈a, 1〉 〈b, 1〉 〈c, 1〉). However, we follow the convention of drawing the dual
in such a way that the permutation cycle gives the clockwise order of darts. This convention helps
when drawing the dual superimposed on the primal, for it enables us to draw primal and dual edges
at approximately right angles to one another, as shown in Figure 3. The convention does not affect
the dual graph as a mathematical object, only its depiction.

2.2. Planarity. We say that an embedding π of a graph G is planar if it satisfies
Euler’s formula: n − m + φ = 2κ, where n=number of nodes, m=number of edges,
φ=number of faces, and κ=number of connected components. In this case, we say
G = 〈π,E〉 is a planar embedded graph. We say a graph is a planar graph if there is
a planar embedding for it.6 Finding a planar embedding for a planar graph is a well-
studied problem, and linear-time algorithms are known,7 so we assume throughout
this paper that every planar graph comes equipped with an embedding. It follows
from Euler’s formula that an n-node planar graph with no parallel edges has O(n)
edges.

2.3. Duality. The dual of a connected embedded graph G = 〈π,E〉 is defined to
be the embedded graph G∗ = 〈π∗, E〉. The permutation cycles of π∗ are the faces of
G. (See Figure 3.) According to this definition, the edge-set of the dual is identical
to the edge-set of the original graph (called the primal). This identification of primal
edges and dual edges is mathematically and notationally convenient (albeit sometimes
confusing).

Since rev ◦ rev is the identity, (π∗)∗ = π, we obtain the following.
Proposition 2.1. G∗∗ = G.
It can be shown that the dual of a connected graph is connected. It follows that the

connected components of G∗ correspond one-to-one with the connected components
of G. Hence if G satisfies Euler’s formula, then so does G∗. Thus the dual of a planar
embedded graph is a planar embedded graph.8

6For the purpose of the current result, all we need is that every graph embeddable on an orientable
surface of genus zero has a combinatorial embedding that satisfies Euler’s formula. However, it is
known (see, e.g., [35]) more generally that for any graph embedded on a closed, orientable surface, the
corresponding combinatorial embedding determines the geometric embedding up to homeomorphism.

7The first was due to Hopcroft and Tarjan [29]. See [12] for a discussion of later work.
8For disconnected graphs, this definition of dual diverges from the geometric definition in that

it assigns multiple dual nodes to a single region of the sphere/plane. According to the geometric
definition, the dual of a graph is always connected. However, choosing that definition means giving
up, for example, the nice property that G∗∗ = G.
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Fig. 3. The figure shows a graph (the solid nodes and edges) and, superimposed, its planar dual
(the open nodes and dashed edges).

Let T be a spanning tree of G. For an edge e �∈ T , there is a unique simple cycle
consisting of e and the unique path in T between the endpoints of e. This cycle is
called the elementary cycle of e with respect to T in G.

For a spanning tree T of G, we denote by T ∗ the set of edges of G that are not
in T . The following is a classical result.

Proposition 2.2. If G is a planar embedded graph and T is a spanning tree of
G, then T ∗ is a spanning tree of G∗.

We refer to T ∗ as the tree dual to T .

If S ⊆ V (G), we use ΓG(S) to denote the set of edges e such that in G the edge
e has one endpoint in S and one endpoint not in S. A set of this form is called a cut
of G. Note that ΓG(S) = ΓG(V (G) − S).

If S is connected in G and V (G) − S is connected in G, we call ΓG(S) a bond.

Proposition 2.3. If G is a planar embedded graph, the edges of a bond in G
form a simple cycle in G∗ and vice versa.

It follows from Proposition 2.3 that every simple cycle C in G defines a bipartition
of the faces of G; namely the bipartition (S, V (G) − S) where E(C) = ΓG∗(S).

Let f∞ be a face of G. We call f∞ the infinite face by analogy to geometric
embeddings. For combinatorial embeddings, the choice is arbitrary.9

We say the simple cycle C encloses a face f with respect to f∞ if f belongs to
the set S such that E(C) = ΓG∗(S) and f∞ �∈ S. We say that C encloses an edge
with respect to f∞ if the edge belongs to a face enclosed by C, and that it strictly

9For geometric intuition, consider that a planar graph can be embedded on the surface of a
sphere. According to this embedding, every face is finite.
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encloses the edge if in addition the edge does not belong to C.
Lemma 2.4. Let G be a connected planar embedded graph, let T be a rooted

spanning tree of G, let v be a nonroot node of T , and let e be the parent edge of
v. Then the elementary cycle of e in G∗ with respect to T ∗ consists of the edges of
ΓG(descendents of v in T ).

Proof. Removing e from T breaks T into two connected components: one con-
taining the descendents of v in T and one containing the nondescendents. It follows
that the cut ΓG(descendents of v in T ) is a bond, and therefore, by Proposition 2.3,
the edges in that cut form a simple cycle C in G∗. The only edge of E(T ) belonging
to E(C) is e, so C consists of e together with a simple path of edges not in E(T )
connecting the endpoints of e in G∗. The edges not in E(T ) are in E(T ∗), so the
simple path is a simple path in T ∗. This proves the lemma.

2.4. Deletion and compression. We discuss two ways of removing edges from
an embedded graph—deleting and compressing, both of which preserve the embedding
(and preserve planarity). Compressing an edge is very similar to the operation of
contracting the edge (the difference arises when the edge is a self-loop).

Deleting an edge e of an embedded graph G = 〈π,E〉 is an operation that produces
the graph G′ = 〈π′, E′〉, where E′ = E − {e} and, for each dart of E′,

π′[d] =

⎧
⎨
⎩

π[π[π[d]]] if π[d] and π[π[d]] are the darts of e,
π[π[d]] if π[d] is a dart of e but π[π[d]] is not,
π[d] otherwise.

For a set S of edges, we denote by G − S the embedded graph obtained by deleting
the edges of S. The order of deletion does not affect the final embedded graph. It is
easy to see that deletion preserves planarity.

Proposition 2.5. An edge e is a self-loop of G iff it is a cut-edge of G∗.
We define edge compression to be deletion in the dual. That is, compressing

an edge e of G is an operation that produces the graph (G∗ − {e})∗. We denote the
result as G/{e}. Since deletion preserves planarity and the dual of a planar embedded
graph is a plane graph, compression preserves planarity. The operations of deletion
and compression commute.

Figure 4 illustrates the effect of edge compression on the underlying graph in
three examples. If e is not a self-loop in G, then the effect of compressing e in G is
to contract e as shown in the top left diagram. The thick line represents the edge to
compress. If e is a self-loop in G and thus a cut-edge in G∗ and is not the only edge
incident to either of its endpoints in G∗, then the effect is to duplicate v, as shown
in the bottom left diagram; one copy has as its incident edges those edges that in G
are incident to v and strictly enclosed by e (with respect to some designated face f∞)
and the other copy has as its incident edges those edges that in G are incident to v
and not enclosed by e (and not equal to e). If e is a self-loop in G and is the only
edge incident to one of its endpoints in G∗, the effect is to delete e.

2.5. Preliminaries related to TSP. For an assignment weight(·) of nonnega-
tive weights to the edges of G and a set S of edges, define weight(S) =

∑{weight(e) :
e ∈ S}. For a subgraph H, define weight(H) = weight(E(H)).

For the metric space of shortest paths in a graph, a tour corresponds to a closed
walk in the graph that visits every node. The weight of the tour is the sum of weights
of the edges comprising the walk, counting multiplicities. For a connected graph G,
let OPT(G,weight) be the minimum weight of such a tour. (We omit the second
argument when doing so creates no ambiguity.)
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Fig. 4. Three examples of compression. The graph with solid edges and solid nodes is the
primal. The graph with dashed edges and open nodes is the dual. The edge being compressed is
signified by a heavy line.

Lemma 2.6. For any walk W in a graph, there is a walk W ′ that visits the same
nodes as W , such that every edge used by W ′ is used by W and occurs at most twice
in W ′.

Proof. Let W be a closed walk in G, and suppose some dart d occurs at least
twice in W . Write W = W1 d W2 d. Then W1 rev(W2) is a closed walk of G that
visits the same nodes as W but uses dart d fewer times. Repeating this step yields
the lemma.

Lemma 2.6 shows that, in seeking the minimum-weight walk visiting a given set
of nodes, we can restrict ourselves to considering walks in which each edge occurs at
most twice.

Let W be a walk, and let P = a W b and Q = c W d be walks that are identical
except for their first and last darts. Let c′ be the successor of c in Q and let d′ be the
predecessor of d in Q. We say Q forms a crossing configuration with P (see Figure 5)
if the permutation cycle at head(c) induces the cycle (c c′ rev(a)) and the permutation
cycle at tail(d) induces the cycle (rev(d′) b d).

We say a walk P crosses a walk Q if a subwalk of P and a subwalk of Q form a
crossing configuration. The following folklore result was used by Arora et al. in [5].

Proposition 2.7. For any tour in a planar graph, there exists a tour that visits
the same nodes and comprises the same darts in the same multiplicities, and does not
cross itself.

Proof. Suppose Ŵ = W1 a W b W2 c W d is a closed walk where c W d forms a
crossing configuration with a W b. Then d W1 a rev(c W2 b) rev(W ) W is a closed
walk visiting the same nodes and comprising the same darts in the same multiplicities,
and with one fewer crossing configurations.

Proposition 2.7 shows that we can restrict our attention to non-self-crossing walks.
An Eulerian graph is a graph G with the following properties:
• G is connected, and
• every node of G has even degree.

Perhaps the best-known result in graph theory is the following.
Proposition 2.8. A graph G is Eulerian iff there is a walk in G in which each

edge occurs exactly once.
Such a walk is called an Eulerian cycle. There is a linear-time algorithm that,

given an Eulerian graph, finds an Eulerian cycle.
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Fig. 5. The light walk forms a crossing configuration with the bold walk.

A graph H is a multisubgraph of G if H can be obtained from a subgraph of G by
duplicating some edges. We call it a bisubgraph if the maximum multiplicity of any
edge is at most two.

It follows from the Eulerian characterization that finding a minimum-weight tour
in a graph G is equivalent to finding a minimum-weight Eulerian multisubgraph of G
that includes every node of G. Lemma 2.6 shows that furthermore it suffices to find
a minimum-weight Eulerian bisubgraph that includes every node.

We slightly generalize the notion of Eulerian multisubgraph to handle discon-
nected graphs. For a possibly disconnected graph G, we say H is a multi-Eulerian
multisubgraph of G if for each connected component K of G there is a connected com-
ponent of H that is an Eulerian multisubgraph of K. For a disconnected graph, define
OPT(G,weight) to be the sum over connected components K of OPT(K,weight).
Then OPT(G,weight) is the minimum weight of a multi-Eulerian multisubgraph of
G.

3. Spanner. Althöfer et al. [1] considered a simple and general procedure for
producing a spanner in a (not necessarily planar) graph G0: start with an empty
graph G, consider the edges of G0 in increasing order of weight, and add an edge
to G if the edge’s weight was much smaller than the minimum-weight path in G0

between its endpoints. They did not address the exact running time of the procedure,
but it clearly consists of O(n) iterations, each involving a shortest-path computation.
For planar graphs, therefore, it runs in O(n2) time [28]. They proved several results
about the size and weight of the resulting spanner, including the following result that
is specific to planar graphs.

Theorem 3.1 (Althöfer et al.). For any planar graph G0 with edge-weights and
any ε > 0, there is an edge subgraph G such that

A1: weight(G) ≤ (1+2ε−1)MST (G0), where MST (G0) is the weight of the min-
imum spanning tree of G0, and
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A2: for every pair of nodes u and v,

minimum weight of a u-to-v path in G

≤ (1 + ε) · minimum weight of a u-to-v path in G0.

Lemma 3.2. Properties A1 and A2 imply properties S1 and S2 of section 1.3 with
ρε = 1 + 2ε−1.

Proof. Because a tour includes a spanning tree, MST (G) ≤ OPT(G). Hence
property A1 implies that property S1 of section 1.3 is achieved with ρε = 1 + 2ε−1.

Now we show that property A2 implies property S2, i.e., that OPT(G) ≤ (1 +
ε0)OPT(G0). (This argument was used in [5].) Let T0 be an optimal tour of G0. For
each edge uv of T0 that is not in G, there is a u-to-v path in G of weight at most
(1+ ε)weight(uv); replace uv in T0 with that path. The result of all the replacements
is a tour T1 whose weight is at most 1 + ε times that of T0. This shows OPT(G) ≤
(1 + ε) OPT(G0).

By exploiting planarity, we can give an algorithm that runs in linear time but
that can be shown (using the same analysis technique used by Althöfer et al.) to
achieve the same properties.

Theorem 3.3. There is a linear-time algorithm that, given a planar graph G0

with edge-weights and any ε > 0, outputs an edge subgraph G with properties A1 and
A2.

The algorithm is as follows. (Refer to Figure 6.)
define spanner(G0, ε):

let x[·] be an array of numbers, indexed by edges
find a minimum spanning tree T of G0

assign x[e] := weight(e) for each edge e of T
initialize S := {edges of T}
let T ∗ be the dual tree, rooted at the infinite face
for each edge e of T ∗, in order from leaves to root

let fe be the face of G0 whose parent edge in T ∗ is e
let e=e0, e1, . . . , es be the sequence of edges comprising fe
xomit :=

∑s
i=1 x[ei]

if xomit > (1 + ε)weight(e)
then add e to S and assign x[e] := weight(e)
else assign x[e] := xomit

return S
The minimum spanning tree of G0 can be found in linear time using the algorithm

of Cheriton and Tarjan [13].
Now we address correctness of the procedure. Say an edge e is accepted when e

is added to S, and rejected if e is considered but not added to S.
Lemma 3.4. In the for-loop iteration in which e is considered, for every other

edge ei of fe, x[ei] has been assigned a number.
Proof. The face fe has only one parent edge in T ∗, and it is e. For every other

edge ei of fe, either ei belongs to T or ei is a child edge of fe in T ∗.
For any edge e of G0 not in T ,

• let Ĝe denote the subgraph of G0 consisting of accepted edges together with
e,

• let f̂e denote the face of Ĝe that contains e and encloses fe,
• let Ŵe denote the walk formed by the sequence of edges comprising f̂e not

including e itself, and
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Fig. 6. Diagram showing part of dual tree (in light edges) and primal tree (in dark edges)
and primal nontree edges (dashed): e2 and e4 are child edges of e in the dual tree. The face fe is
indicated.

• let

Pe =

{
e if e is accepted,

Ŵe otherwise.

Note that each of Ŵe and Pe has the same endpoints as e. For an edge e of T , define
Pe = e. The basic argument of the following lemma comes from [1].

Lemma 3.5. For any edge e of G0 not in T ,
1. every edge of f̂e is either in T or is a descendent of e in T ∗, and
2. Ŵe = Pe1 · · · Pes , where e1 . . . es is the walk consisting of the edges com-

prising fe other than e.
Proof. The proof is by induction. Consider the case in which e is a leaf-edge of

T ∗. Let f be the corresponding leaf-node in G∗
0. Because f is a leaf, the only incident

edge that is in T ∗ is e itself, so e1, . . . , es belong to T . All these edges are accepted,
proving part 1. To prove part 2, note that We = e1 · · · es and that Pei = ei for
i = 1, . . . , s. Thus the lemma holds for e.

Consider the case where e is not a leaf. Let Ĝe+ be the subgraph of G0 consisting
of accepted edges together with e, e1, . . . , es. For each ei, recall that f̂ei is the face

of Ĝei that contains ei and encloses fei . We claim that f̂ei is also a face of Ĝe+.
To prove the claim, note that Ĝei can be obtained from Ĝe+ by deleting a subset of
{e, e1, . . . , es} − {ei}. None of these edges are edges of T or descendents in T ∗ of ei,

so, by part 1 of the inductive hypothesis, none belongs to f̂ei .
Note that Ĝe can be obtained from Ĝe+ by deleting those edges among e1, . . . , es

that are rejected. By the claim, each such deletion replaces a rejected edge ei in fe
with the walk Ŵei . This, together with the definition of Pei , proves part 2. By part
1 of the inductive hypothesis, every edge in each Ŵei is an edge of T or a descendent
of ei in T and hence a descendent of e as well. This proves part 1.

Lemma 3.6. In the for-loop iteration that considers e,
• the value assigned to xomit is weight(Ŵe), and
• the value assigned to x[e] is weight(Pe).
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Proof. The proof is by induction. By Lemma 3.4, the edges e1, . . . , es are con-
sidered before e. By the inductive hypothesis, x[ei] = weight(Pe). By Lemma 3.5,
weight(Ŵe) =

∑s
i=1 x[ei], which proves the first statement. The second statement

follows by definition of Pe.
Corollary 3.7. For each edge e, weight(Pe) ≤ (1 + ε)weight(e).
Proof. If e is accepted, Pe = e so the statement holds trivially. Suppose e is

rejected. By the conditional in the algorithm, in the iteration considering e, the value
assigned to xomit was at most (1 + ε)weight(e). By the first part of Lemma 3.6,
weight(Ŵe) and therefore weight(Pe) are at most (1 + ε)weight(e).

Corollary 3.8. The graph of accepted edges satisfies property A2.
Proof. For any pair of nodes u and v, let P be the shortest u-to-v path in G0.

For each edge e of P , there is a walk Pe consisting of accepted edges between the
endpoints of e. By Corollary 3.7, weight(Pe) ≤ (1+ε)weight(e). Replacing each edge
e of P with Pe therefore yields a walk of weight at most

∑
e∈P (1+ ε)weight(e), which

is at most (1 + ε)weight(P ).
Lemma 3.9. At any time during the algorithm’s execution, the weight of the

infinite face in the graph consisting of accepted edges is at most

2 ·MST (G0) − ε · weight(accepted edges not in T ).

Proof. The proof is by induction. Before the for-loop commences, the graph of
accepted edges is T , the minimum spanning tree of G0. Hence the weight of the
infinite face is exactly 2 · MST (G0), so the lemma’s statement holds for this time.
Consider a for-loop iteration, and let e be the edge being considered. If e is not
accepted, there is no change to the set of accepted edges, so the lemma’s statement
continues to hold.

Suppose e is accepted. Let Gafter be the subgraph consisting of edges accepted
so far, and let Gbefore = Gafter − {e}. Note that Gafter can be obtained from Ĝe by
deleting edges that will be accepted in the future. By the leaves-to-root ordering, none
of the deleted edges are descendents of e in T ∗. By part 1 of Lemma 3.5, therefore,
f̂e is a face of Gafter. Let g be the other face of Gafter that contains e.

We claim that g is the infinite face of Gafter. To prove the claim, note that Gafter

can be obtained from G0 by deleting edges that have already been rejected and edges
not yet considered. By the leaves-to-root ordering, e’s proper ancestors in T ∗ have
not yet been considered, so they are among the edges deleted. These deletions are
contractions in the dual. The root of T ∗ is the infinite face, so the contractions result
in g being the infinite face.

Note that Gbefore can be obtained from Gafter by deleting e. This deletion replaces
e in the face g with Ŵe. This shows that

weight of infinite face in Gbefore − weight of infinite face in Gafter

= weight(Ŵe) − weight(e)

> (1 + ε)weight(e) − weight(e) because e was accepted

= ε · weight(e),
which shows that the lemma’s statement continues to hold.

Corollary 3.10. The graph G of accepted edges satisfies property A1.
Proof. By Lemma 3.9, the weight of the infinite face in the graph consisting of

all accepted edges is at most

2 ·MST (G0) − ε · weight(accepted edges not in T ),



PLANAR-GRAPH TSP LINEAR-TIME APPROXIMATION SCHEME 1939

so weight(accepted edges not in T ) ≤ 2ε−1·MST (G0). Since weight(T ) = MST (G0),
it follows that the weight of all accepted edges is at most (1 + 2ε−1)MST (G0).

This completes the proof of Theorem 3.3.

4. Slices. Let G be a connected planar embedded graph and let weight(·) be an
edge-weight assignment. Let k be a parameter. Recall that G∗ denotes the planar
dual of G. Let f∞ be the infinite face of G, which is a vertex of G∗. Define the
level of a node v of G∗ to be its breadth-first-search distance in G∗ from f∞, i.e., the
minimum number of edges in an f∞-to-v path in G∗. Define the level of an edge e to
be � if one endpoint has level � and the other endpoint has level � + 1.

For j = 0, 1, . . . , k− 1, let Sj denote the set of edges e whose levels are congruent
to j mod k. Let t = minargjweight(Sj), and let S = St. We obtain the following
bound:

weight(S) ≤ (1/k)weight(G).(1)

For i = 0, 1, 2, . . . , let Ei be the set of edges e having at least one endpoint with
level in the range (t+ (i− 1)k, t+ ik]. We define slice i of G to be the subgraph of G
(the primal graph) consisting of the edges Ei. Note that an edge of G belongs to two
distinct slices only if the edge belongs to S.

The theorem below shows that the total weight of optimal tours in the slices
exceeds the weight of the optimal tour of G by at most twice the weight of S.

Theorem 4.1.

∑
i OPT(slice i) ≤ 2weight(S) + OPT(G).

The next theorem states that the planar dual of each slice has a low-depth span-
ning tree.

Theorem 4.2. For i = 0, 1, 2, . . . , each connected component of the planar dual
of slice i has a rooted spanning tree of depth at most k + 1.

In the rest of this section, we prove Theorems 4.1 and 4.2.
The following lemma is illustrated in Figure 7.
Lemma 4.3. For i = 1, 2, 3, . . . , the edges of level t + (i − 1)k form a set Ai of

simple cycles in G with the following properties:
1. The cycles are edge-disjoint.
2. Every face is enclosed by at most one of the cycles.
3. A face u of G is enclosed by one of the cycles iff in the dual graph G∗ the

node u has level greater than t + (i− 1)k.
Proof. Let T be a breadth-first-search tree of G∗ rooted at f∞. For i = 1, 2, . . . ,

let Ki be the set of connected components of the subgraph of G∗ consisting of nodes
whose levels exceed t + (i− 1)k. Let Ai = {ΓG∗(V (K)) : K ∈ Ki}.

Let K be a connected component in Ki. For any node v not in K, if v is not f∞,
then v has a parent p whose level is one less than that of v. If p’s level is at most
t + (i− 1)k, then p is not in K; if p’s level is greater than t + (i− 1)k, then so is v’s,
so if p were in K, then v would also be in K, a contradiction. Thus p is not in K.
By induction, G∗ contains a v-to-f∞ path that avoids K, proving that the nodes of
G∗ not in K are connected, so ΓG∗(V (K)) is a bond. By Proposition 2.3, the edges
of ΓG∗(V (K)) form a simple cycle CK in G. The faces enclosed by CK are the nodes
of K.

Consider two components K1,K2 ∈ Ki. Since V (K1) and V (K2) are disjoint, the
faces enclosed by CK1 are disjoint from the faces enclosed by CK2 . Furthermore, for
j = 1, 2, an edge belongs to CKj if in G∗ the edge connects a node of Kj to a node at
level t + (i− 1)k, which shows that CK1 and CK2 are edge-disjoint.
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Ai

Ai+1

(a)

(b)

Fig. 7. Cycles in Ai and Ai+1 are shown. Note that the cycles of Ai+1 are enclosed within
cycles of Ai. In the figure on the bottom, the dual edges corresponding to cycles in Ai are indicated
by thick lines.

Lemma 4.4. Let A1, . . . be the set of cycles from Lemma 4.3. For i ≥ 1, an edge
e of G belongs to slice i iff e is enclosed by some cycle in Ai and not strictly enclosed
by any cycle in Ai+1. An edge e belongs to slice 0 iff e is not strictly enclosed by any
cycle in A1.

Proof. By definitions of slice and dual, for i ≥ 1, an edge e belongs to slice i iff e
belongs to a face f whose level in G∗ is in (t + (i − 1)k, t + ik]. By Lemma 4.3, the
level of f is in (t+ (i− 1)k, t+ ik] iff f is enclosed by a cycle in Ai and not by a cycle
in Ai+1. The lemma follows by the definition of a cycle enclosing an edge. The case
of slice 0 is similar.

We say a subgraph is even if every node has even degree.
Lemma 4.5. Let R be an Eulerian multisubgraph of G, let C be a simple cycle of

G, and let X be the set of nodes enclosed by C. There is a subset Ĉ of the edges of
C such that

1. weight(Ĉ) ≤ 1
2
weight(C), and
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2. each connected component of R− ΓG(X) ∪ Ĉ is even.
For a graph G, a node v, and a set A of edges, we define degG(v,A) to be the

number of edges in A that in G are incident to v.
Proof. Because R is Eulerian, deg(v,R) is even for every node v, so

∑{deg(v,R) :
v ∈ V (C)} is even. The closed walk (Eulerian cycle) corresponding to R enters
X the same number of times as it leaves, so |R ∩ ΓG(X)| is even. It follows that∑{deg(v,R− ΓG(X)) : v ∈ V (C)} is even. Hence the set

Y = {v ∈ V (C) : deg(v,R− ΓG(X)) is odd}
has even cardinality.

Write C = P1 . . . P|Y |, where each Pi is a path whose endpoints belong to Y and

whose internal nodes do not. Let Ĉ denote the set of edges in P1, P3, P5, . . . , P|Y |−1 or
the set of edges in P2, P4, P6, . . . , P|Y |, whichever has less weight. This choice ensures

property 1 in the lemma’s statement. Also, for each vertex v ∈ V (C), deg(v, Ĉ) is
odd iff v ∈ Y , which proves property 2.

Lemma 4.6. For some i ≥ 1, let W denote the set of nodes on cycles C ∈ Ai.
Two nodes of W are connected via a path in slice i iff they are connected via a path
that consists only of edges belonging to cycles C in Ai.

Proof. For two nodes x, y ∈ W , let P be the x-to-y path in slice i that uses
the fewest edges not belonging to cycles C ∈ Ai. Assume for a contradiction that P
contains some edge e that does not belong to a cycle C ∈ Ai. Let P̂ be the maximal
subpath of P that contains e but whose internal nodes do not belong to W .

By Lemma 4.4, e is strictly enclosed by some cycle C ∈ Ai. Since no internal
node of P̂ belongs to W , every edge of P̂ must be enclosed by the same cycle C. But
then the endpoints of P̂ must belong to that same cycle C. Consequently, P̂ can be
replaced by a subpath of C, contradicting the choice of P .

Now we can prove Theorems 4.1 and 4.2.
Proof of Theorem 4.1. Let M be the multiset of edges comprising the optimal

tour of G. Then M is an Eulerian bisubgraph of G. Let Mi denote the submultiset
of M consisting of edges in slice i. To prove Theorem 4.1, we will show that, for
each slice i, there is a multiset Di of edges of slice i such that Mi ∪Di is an Eulerian
multisubgraph of slice i, i.e.,

1. every node of slice i has even degree with respect to Mi ∪Di, and
2. for every connected component K of slice i, there is a corresponding connected

component of Mi ∪Di that visits all nodes of K.
We ensure that

∑
i weight(Di) ≤ 2weight(S).

We build Di in three steps. The first two steps address achieving property 1.
By Lemma 4.4, slice i consists of the edges enclosed by cycles of Ai and not strictly
enclosed by cycles of Ai+1. If v belongs to no cycle in either Ai or Ai+1, then every
edge of M incident to v belongs to Mi, so deg(v,Mi) is already even.

In step one, we address the case of nodes v belonging to cycles in Ai. For each
cycle C ∈ Ai, we apply Lemma 4.5 to M and C, obtaining an edge-subset Ĉ ⊆ E(C),

and we include Ĉ in Di. This change affects the degree of a node v only if v belongs
to some cycle C ∈ Ai. Such a node v has even degree with respect to those edges of
M ∪ Ĉ that are enclosed in C. Summing over all cycles C ∈ Ai, the node has even
degree with respect to those edges of M ∪⋃{Ĉ : C ∈ Ai} that belong to slice i.

In step two, we address the case of nodes v belonging to cycles in Ai+1. Be-
cause the infinite face of a planar embedded graph can be chosen arbitrarily (and
by definition of enclosed), we can apply Lemma 4.5 to each cycle C ∈ Ai+1 and to
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the set X of nodes not strictly enclosed by C, obtaining a set Ĉ of edges such that
deg(v,R − ΓG(X) ∪ Ĉ) is even for each node v of C. We include each set Ĉ in Di.
As before, this change affects the degree of a node v only if v belongs to some cycle
C ∈ Ai+1, and it ensures that such a node v has even degree with respect to those

edges of M ∪⋃{Ĉ : C ∈ Ai+1} that belong to slice i.

In step three, we address property 2. For each C ∈ Ai, we add E(C) to Di. This
does not change the parity of any node’s degree. Let v1 and v2 be two nodes in slice
i. For j = 1, 2, it follows from Lemma 4.4 that vj is enclosed by some cycle Cj ∈ Ai.
Let w be a node on the boundary of the infinite face. Let Pj be a vj-to-w path using

edges of M , and let P̂j be a maximal prefix of Pj consisting of edges enclosed by Cj .

Since w is not strictly enclosed by Cj , P̂j must end at a node wj of Cj .

Suppose v1 and v2 belong to the same connected component K of slice i. Then
w1 and w2 also belong to K. By Lemma 4.6, there is a w1-to-w2 path using only
edges of {E(C) : C ∈ Ai} and hence using only edges of Di. Combining this path

with P̂1 and P̂2, we obtain a path using only edges of M ∪Di that belong to slice i.
This proves property 2.

Finally, we bound
∑

i weight(Di). The cycles C ∈ Ai consist of edges having
level t + (i− 1)k, so

∑

i

∑
{weight(C) : C ∈ Ai} = weight(S).

The weight added to
⋃
Di in each of steps one and two is at most

∑
i

1
2

∑{weight(C) :
C ∈ Ai}. The weight added in step three is

∑
i

∑{weight(C) : C ∈ Ai}. The total
is at most 2weight(S). This completes the proof of Theorem 4.1.

Proof of Theorem 4.2. Let K be a connected component of slice i where i ≥ 1.
By Lemmas 4.4, slice i can be obtained from G by (i) deleting edges properly enclosed
by cycles of Ai+1 and (ii) deleting edges not enclosed by cycles of Ai. For each cycle
C ∈ Ai+1, deleting the edges properly enclosed by C merges the faces enclosed by C
into a single face. Let D be the set of edges not enclosed by cycles of Ai. Deleting
the edges in D corresponds in the planar dual G∗ to compressing edges both of whose
endpoints have levels at most t + (i − 1)k. Let T be the breadth-first-search tree
of G∗, and consider the effect of these operations on T . Recall that compressing a
non-self-loop edge is equivalent to contracting. First, in the planar dual, compress
all the edges of T that are in D. Because these edges form a subtree of T , none is a
self-loop, so these compressions are contractions. For each (dual) node v having level
at most t+ (i− 1)k, there is a path in T consisting of edges of D from v to the root,

so the contractions merge all these nodes into a single node r̂. Let T̂ be the set of
edges of T that remain.

Each face of slice i that was a face of G had distance at most t+ ik from the root
in T , and hence has distance at most (t + ik) − (t + (i − 1)k) from the root r̂ in T̂ .
Each face arising from deleting edges properly enclosed by cycles of Ai+1 is adjacent
in the dual to some node that had been at level t+ ik, and hence has distance at most
k + 1 from r̂.

Each of the remaining edges of D is now a self-loop with common endpoint r̂.
Compressing these edges in the dual might in general split r̂ into multiple nodes
corresponding to multiple connected components in the primal graph. However, each
connected component retains its own low-depth spanning tree. This completes the
proof of Theorem 4.2.



PLANAR-GRAPH TSP LINEAR-TIME APPROXIMATION SCHEME 1943

5. TSP algorithm. Now we describe the TSP algorithm.
Let G0 be the input planar embedded graph, and let weight(·) be the input

edge-weight assignment.

Step 1 (spanner step). Let ε0 be the desired accuracy. Define ε = ε0/2. Obtain a
subgraph G of G0 that has properties S1 and S2 of section 1.3.

Step 2 (slicing step). Use breadth-first search in the planar dual to find the slices
as described in section 4, with k = 2ε−1ρε, where ρε is the multiplier in property S1.
For each slice, for each connected component of that slice, the planar dual has a
spanning tree of depth at most k + 1.

Step 3 (dynamic programming). For each slice, for each connected component of
that slice, find a minimum-weight Eulerian multisubgraph of that component.

Step 4. Combine the multisubgraphs to obtain an Eulerian multisubgraph of G,
then turn it into a tour of G.

5.1. Running time. Let n be the number of nodes in the input graph G0.
Assume G0 has no parallel edges, so it has O(n) edges. For unit-weight graphs,
Step 1 is trivial: G = G0 and ρε is a constant. For arbitrary weights, Theorem 3.3
gives an O(n) algorithm achieving ρε = 1 + 2ε−1. Steps 2 and 4 take O(n) time.

As for Step 3, Cook and Seymour observe [15] that TSP can be solved in a graph
of bounded branchwidth. In section 7, we state a theorem, due to Tamaki [45], that
shows that each slice has branch-width at most 2k + 3.

Because Cook and Seymour do not formally describe or analyze their dynamic
program, in section 6 we describe a dynamic program that can be used in Step 3.
This dynamic program exploits planarity to get a running time of O(ckn′) for a graph
of size n′ (where c is a constant). Summing over all connected components of all
slices, the running time for Step 3 is O(ckn). The choice of k yields a running time

of O(d1/εn) for unit-weight graphs and O(d1/ε2n) for arbitrary weights, where d is a
constant.

5.2. Correctness.
Theorem 5.1. The algorithm finds a tour of weight at most (1 + ε0)OPT(G0).
Proof. The tours found in Step 3 are connected and jointly visit all nodes, so their

union is connected and spans all nodes. Every node v has even degree with respect
to every tour that contains it, so v has even degree with respect to the multiset union
of these tours. Thus the multiset union is Eulerian. The Eulerian characterization
(Proposition 2.8) implies that the union can be transformed into a tour.

The weight of the tour is
∑

i OPT(slice i), which by Theorem 4.1 is at most
OPT(G) + 2weight(S). To complete the proof of Theorem 5.1, we bound these two
terms. Property S2 states that OPT(G) ≤ (1 + ε)OPT(G0). Observe that

2weight(S) ≤ (2/k)weight(G) by (1)

≤ ερ−1
ε weight(G) by choice of k

≤ ε · OPT(G0) by property S1.

Since ε0 = 2ε, this completes the proof of Theorem 5.1.

6. Solving TSP in a planar embedded graph with bounded dual radius.
In this section we describe an algorithm that, given an edge-weighted planar embedded
graph H, a low-depth spanning tree of H∗, and a set R of nodes, finds a minimum-
weight walk W such that R ⊆ V (W ). To find an optimal tour, R is set to V (H).
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Rather than describe the algorithm for this special case, we describe the algorithm
for the more general case because doing so requires very little change.

Theorem 6.1. There is an algorithm that, given a planar embedded graph H
without parallel edges, an edge-weight assignment for H, a subset R of nodes of H,
and a spanning tree T ∗ of H∗ in which every simple path has length at most �, finds
a minimum-weight connected even multisubgraph of H that visits all nodes in R. The
algorithm takes time O(c�|V (H)|) for some constant c.

First we show how to reduce the problem to the case in which the degree of the
input graph is bounded by three. Then we show how to solve this case using dynamic
programming.

6.1. Reduction to degree three.

Lemma 6.2. Let H be a graph, let W be an even connected multisubgraph of
H, and let e be an edge of H. Then W − {e} is an even connected multisubgraph of
H/{e}.

Proof. Since the edges of W are connected in H, the edges of W − {e} are
connected in H/{e}. For every node v that is not an endpoint of e in H, the degree
of v in H/{e} with respect to W − {e} equals the degree of v in H with respect to
W . Let u1 and u2 be the endpoints of e in H. These nodes are coalesced in H/{e}
to form a single node whose degree with respect to W − {e} is

2∑

i=1

(degH(ui,W ) − |W ∩ {e}|) = degH(u1,W ) + degH(u2,W ) − 2|W ∩ {e}|.

Since each of the terms on the right-hand side is even, the sum is even.

Lemma 6.3. Let H be a graph, let e be an edge of H, and let W be an even
connected multisubgraph of H/{e}. Then one of W , W ∪ {e}, W ∪ {e} ∪ {e} is an
even connected multisubgraph of H.

Proof. The proof is trivial if e is a self-loop. Otherwise, let u1 and u2 be the
endpoints of e in H. These nodes are coalesced in H/{e} to form a node v. Since

degH/{e}(v,W ) is even,
∑2

i=1 degH(ui,W ) is even.

Case 1: degH(u1,W ) is odd. Then degH(u2,W ) is also odd, and there are edges
in W incident to u1. Hence degH(ui,W ∪ {e}) is even for i = 1 and 2, and W ∪ {e}
is connected.

Case 2: degH(u1,W ) is even but at least one edge of W is incident to u1 or u2.
Then degH(u2,W ) is also even, so degH(ui,W ∪ {e} ∪ {e}) is even for i = 1 and 2,
and W ∪ {e} ∪ {e} is connected.

Case 3: No edge of W is incident to u1 or u2. Then in H/{e} no path in W passes
through v, so the fact that W is connected in H/{e} implies that W is connected in
H. Clearly degH(ui,W ) is even for i = 1 and 2.

Now we give the reduction to the degree-three case.

Step 1. Triangulate the faces of H∗ by adding zero-weight artificial edges until
every face has size at most three. Let A be the set of artificial edges added. Let Ĥ∗

be the resulting planar embedded graph.

Step 2. H can be obtained from Ĥ by contracting the artificial edges, which
merges some nodes. Let R̂ =

⋃
v∈R{nodes of Ĥ merged to form v}.

Step 3. Let W be a minimum-weight connected even multisubgraph of Ĥ that
visits all nodes of R̂.

Step 4. Return W −A.
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Lemma 6.4. W − A is a minimum-weight even multisubgraph visiting all nodes
of R.

Proof. The proof is by repeated application of Lemma 6.3, using the fact that
the artificial edges have zero weight. We infer OPT(Ĥ) ≤ OPT(H). Therefore
weight(W ) ≤ OPT(H). By repeated application of Lemma 6.2, we infer that W −A
is an even connected multisubgraph of H that visits all nodes of R.

6.2. Overview of dynamic program. Now we describe how to find an optimal
tour of Ĥ visiting all nodes of R̂. The graph H∗ has a rooted spanning tree T ∗ in
which every simple path has at most � edges, and Ĥ∗ is obtained from H∗ by adding
edges, so T ∗ is also a spanning tree of Ĥ. Because every face of Ĥ∗ is a triangle, Ĥ
has degree at most three. Let T̂ be the set of edges of Ĥ not in T ∗. Then T̂ is a
spanning tree of Ĥ and hence has degree at most three. Root T̂ at a node r of degree
1 in T̂ . The dynamic program will work up T̂ from the leaves to the root. For each
edge of T̂ , the dynamic program will construct a table. The value of OPT(Ĥ) will
be computed from the table associated with the edge connecting the root to its child.
The dynamic program can be augmented to maintain enough information that the
tour itself can be constructed in a postprocessing phase by working down from the
root to the leaves. (The postprocessing is straightforward, and we do not describe it
here.)

6.3. Terminology. Before giving a detailed description of the tables, we need
to introduce some terminology.

Traversals. Let ΓĤ(S) be a cut. We say a nonempty, dart-disjoint set P of walks

in Ĥ is a traversal of S in Ĥ if
• the start node and end node of each path are not in S,
• the internal nodes of each path are in S.

It follows that the first and last darts of each path belong to ΓĤ(S), i.e., that each is
a dart of some edge in ΓĤ(S).

Define

weight(P) =
∑

{weight(d) : d ∈ P, d not a dart of ΓĤ(S)}

+
1

2

∑
{weight(d) : d ∈ P, d a dart of ΓĤ(S)}.

Configurations. A configuration K of a cut ΓĤ(S) is a nonempty set of ordered
pairs 〈di, dj〉 of darts of ΓĤ(S) such that each dart occurs at most once in each
position. The number of configurations is at most (2η)!, where η = |ΓĤ(S)|.

If S is connected in Ĥ, then the embedding determines a cyclic ordering of the
edges of ΓĤ(S), say (e1 · · · eη). In this case, we say that a configuration is crossing if
it includes a dart pair corresponding to the pair 〈ep, eq〉 of edges and also a dart pair
corresponding to the pair 〈er, es〉 of edges, where p < r < q < s. A Catalan bound
shows that the number of noncrossing configurations is 2O(η). This is where planarity
is used in the dynamic program.10

For a configuration K, define weight(K) to be the sum of the weights of the darts
in K.11

10For a discussion of Catalan numbers, see any text on combinatorics, e.g., [43]. Noncrossing
configurations and a Catalan bound were used in a dynamic program for TSP by Arora et al. [5].
Concurrent with the appearance of a preliminary version of this paper, Dorn et al. [20] published an
extended abstract discussing planar-graph algorithms that also exploited Catalan-type bounds and
noncrossing matchings.

11The weight of a dart is the weight of the corresponding edge.
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e1 2e
ve

e

v

Fig. 8. A subgraph arising in the dynamic program. The edge e, the child node ve, and
the child edges e1 and e2 are labeled. The dark edges are tree edges. On the right is the same
subgraph with some edges of the dual graph also shown. Note that the edges of Γ({descendents of ve})
form an elementary cycle in the dual, as do the edges of Γ({descendents of e1}) and the edges of
Γ({descendents of e2}).

Let C1, . . . , Cd be cuts in a graph, and let K1, . . . ,Kd be corresponding configu-
rations. We say K1, . . . ,Kd are consistent if, for each pair Ci, Cj of cuts, each dart
represented in both Ci and Cj occurs in both Ki and Kj or occurs in neither.

Define

κ(P) = {〈first dart of P, last dart of P 〉 : P ∈ P}.
6.4. Definition of the tables. In this subsection we describe the tables pro-

duced by the dynamic program. For each edge e of T̂ , let ve denote the child endpoint
of e, and let De denote the descendents of ve. By Lemma 2.4, the edges comprising
ΓĤ(De) are exactly the edges comprising the elementary cycle of e in Ĥ∗ with respect
to T ∗. We denote this cycle by Ce. (See Figure 8.) That elementary cycle consists of
e together with a simple path in T ∗ between the endpoints of e. The cycle therefore
contains at most � + 1 edges. This shows |ΓĤ(De)| ≤ � + 1.

For a cut ΓĤ(S) of Ĥ where S is connected in Ĥ, for a configuration K of ΓĤ(S),
define

MS(K) = min{weight(P) : κ(P) = K,
P is a traversal of S, and

S ∩ R̂ ⊆ V (P)}.
We show in Corollary 6.8 that, for each edge e of T , the dynamic program will
construct a table Tabe, indexed by the noncrossing configurations K of ΓĤ(De), such
that Tabe[K] = MDe(K).

For the root edge ê of T (the edge of T incident to r), each edge of ΓĤ(Dê) is

incident to the root r. It follows that every traversal of Dê defines a tour of Ĥ using
each dart at most once, and vice versa. By Proposition 2.7, there is an optimal tour
that is noncrossing. Hence

OPT(Ĥ) = min

{
Mê(K) +

1

2
weight(K) : K a configuration of Cê

}



PLANAR-GRAPH TSP LINEAR-TIME APPROXIMATION SCHEME 1947

because only half the weight of each edge of K is counted in Mê(K). Since r has
degree at most three, Cê has O(1) configurations. Thus OPT(Ĥ) can be computed
in O(1) time from the table tabê.

6.5. The recurrence relation. Let e be an edge of the tree T̂ , and let e1, . . . , es
be its child edges (s ≤ 2). Let D0 = {ve}. For i = 1, . . . , s, let Di = Dei . Note that
De is the disjoint union

⋃s
i=0 Di. For i = 0, 1, . . . , s, let Ci denote ΓĤ(Di).

A traversal P of De induces a traversal Pi of Di for i = 0, 1 . . . , s as follows: for
each path P ∈ P, break P into subpaths at the nodes of P that are not in Di, and
retain only those darts d such that at least one endpoint of d is in Di. The remaining
subpaths form a traversal of Di. The following lemma is immediate.

Lemma 6.5. Let P be a traversal of De, and let P0, . . . ,Ps be the traversals that
P induces for D0, . . . , Ds. Then

weight(P) =
s∑

i=0

weight(Pi)

and κ(P), κ(P0), κ(P1), . . . , κ(Ps) are consistent.
Lemma 6.6. For traversals P0, . . . ,Ps of D0, . . . , Ds, if K is a configuration of

Ce such that K,κ(P0), . . . , κ(Ps) are consistent, then there is a traversal P of Ce that
induces P0, . . . ,Ps such that κ(P) = K.

Proof. By gluing together paths from different Pi’s that have a common dart,
one constructs paths whose start and end darts are in Γ(De). The consistency con-
dition ensures that the gluing can be completed and that the start and end darts are
represented in K.

Corollary 6.7. For any configuration K of Ce,

MDe
(K) = min

{
s∑

i=0

MDi
(Ki) : K,K0, . . . ,Ks are consistent

}
.

Proof. To show that the left-hand side is at most the right-hand side, fix consistent
configurations K,K0, . . . ,Ks. For i = 0, . . . , let Pi be the traversal achieving the
minimum in the definition of MDi(Ki). (If there is no such traversal, the right-hand
side is infinity.) By Lemma 6.6, there is a traversal P of De that induces P0, . . . , Ps.
It follows that De ∩ R̂ ⊆ V (P).

By the first part of Lemma 6.5, weight(P) =
∑s

i=0 weight(Pi), so MDe(K) ≤∑s
i=0 MDi(Ki).

To show that the right-hand side is at most the left-hand side, let K be a con-
figuration such that MDe(K) is finite, and let P be the traversal achieving the min-
imum in the definition of MDe(K). Let P0, . . . ,Ps be the traversals that P induces
for D0, . . . , Ds. It follows from Lemma 6.5 that the right-hand side is at most
weight(P).

6.6. The dynamic program. We now give a recursive algorithm TSP-DP(e)
that for each edge e of T populates the table Tabe.
define TSP-DP(e):
1 let e1, . . . , es be the child edges of e (s ≤ 2)
2 for i = 1, . . . , s,
3 recursively call TSP-DP(ei).
4 initialize each entry of Tabe to ∞.
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5 for each consistent tuple (K,K0,K1, . . . ,Ks)
of configurations of Γ(De),Γ({ve}),Γ(De1), . . . ,Γ(Des)

6 Tabe[K] := min{Tabe[K] ,

M{ve}(K0) +
∑k

i=1 Tabei [Ki]}
Note that in step 6, M{ve}(K0) can be computed directly in O(1) time. The

correctness of the algorithm follows from Corollary 6.7 by induction.

Corollary 6.8 (correctness of TSP-DP). For each edge e of T , for each non-
crossing configuration K of Ce, Tabe[K] = MDe(K).

6.7. Analysis of the dynamic program. In step 5, each of the cuts Γ(De1), . . . ,
Γ(Des) has size at most � + 1, so it has O(c�) configurations for a constant c. The
cut Γ({ve}) has size at most three, and s ≤ 2, so the number of tuples in step 5
is O(d�) for a constant d. Thus each invocation of TSP-DP requires O(d�) time.
The number of invocations is |V (Ĥ)| − 1, so the entire dynamic program takes time
O(d�|V (Ĥ)|). Combined with the reduction of subsection 6.1, this completes the proof
of Theorem 6.1.

7. Achieving low branch-width by contracting edges. Branch-width is a
graph measure akin to (and within a constant factor of) tree-width. (We will review
the definition presently.) Many computational graph problems that are NP-hard for
general graphs can be solved for graphs with bounded branch-width. The approach
used for TSP in this paper can be used for other problems as well. The purpose of
this section is to present a result that facilitates broader application of the approach.

Theorem 7.1. There is a linear-time algorithm that, for any planar graph G
and integer k, finds a decomposition S0, . . . , Sk−1 of the edges of G such that, for
i = 0, 1, 2, . . . , k − 1, the graph obtained from G by contracting the edges of Si has
branch-width at most 2(k + 2).

The analogous theorem with contraction replaced by deletion was implicit in the
work of Baker [6] and made explicit by Demaine, Hajiaghayi, and Karabayashi [18],
who proved a version for H-minor free graphs.

An easy but useful consequence of Theorem 7.1 is as follows.

Corollary 7.2. There is a linear-time algorithm, that, for any planar graph
G, edge-weight assignment weight(·), and integer k, finds a set S of edges of weight
at most (1/k)weight(G) whose contraction yields a graph of branch-width at most
2(k + 2).

Before proving Theorem 7.1, we review the definition of branch-width given by
Seymour and Thomas [42]. For a graph G and a set X of edges, ∂(X) denotes the set
of nodes v of G such that at least one edge incident to v is in X and at least one is
not. Two sets cross if neither contains the other and they are not disjoint.

For a finite set X , a carving of X is a family C of subsets of X such that

1. ∅,X �∈ C,
2. no two members of C cross, and
3. C is maximal subject to 1 and 2.

Let G be a graph. Let C be a carving of E(G). The branch-width of C in G is
maxX∈C |∂(X)|. The branch-width of G is the minimum, over all carvings C of E(G),
of the width of C.

The following lemma is implicit in Baker’s approach [6], and the idea has been
used several times since then (e.g., [9, 22, 26]).

Lemma 7.3 (thinning algorithm). There is a linear-time algorithm that, for any
planar embedded graph G and integer k, finds a decomposition of the edges into subsets
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S0, . . . , Sk−1 such that, for i = 0, 1, 2, . . . , k − 1, there is a planar embedded graph Hi

with the following properties:
1. Hi has the same edges as G.
2. Each connected component of Hi has a spanning tree of depth at most k.
3. Hi − Si = G− Si.

Proof. Assume without loss of generality that G is connected. For some node r,
define the level of a node v of G to be its breadth-first-search distance from r, i.e., the
minimum number of edges in an r-to-v path in G. Define the level of an edge e to be
i if one endpoint has distance i from r and the other endpoint has distance i + 1.

For i = 0, 1, . . . , k− 1, let Si denote the set of edges e whose levels are congruent
to i mod k.

For i = 0, 1, . . . , k − 1 and for j = 0, 1, 2, . . ., let H
(j)
i be the graph obtained

from G by deleting all nodes at distances greater than jk + i and contracting every
edge e of the breadth-first-search tree T whose level is less than (j − 1)k + i. The
contractions coalesce into a single root all nodes at distances less than or equal to
(j − 1)k + i. (For j = 0, there is already a single root, namely r.) Since every

node of G that remains in H
(j)
i had distance at most jk + i in G, it follows that

(A) in H
(j)
i every node has distance at most k from the root. Moreover, (B) the

graph H
(j)
i − {edges at level (j − 1)k + i in G} is exactly the subgraph of G induced

by nodes with levels in ((j − 1)k + i, jk + i].

Let Hi be the disjoint union of H
(0)

i , H
(1)

i , H
(2)

i , . . .. Property 2 follows from (A).
Property 3 follows from (B). Property 1 follows from property 3 and the definition of
Si.

We first give a technical lemma; then we state a result of Tamaki [45] and prove
Theorem 7.1.

Lemma 7.4. Let G be a planar embedded graph and let e be a self-loop in G.
Every biconnected component of G except {e} is a biconnected component of G/{e}.

Proof. Let v be the common endpoint of e. Any path in G that contains e must
pass through e, so the only simple cycle in G that contains e is the cycle consisting
solely of e. Any path in G from an edge enclosed by e to an edge not enclosed by
e must pass through v. Hence a simple cycle C in G cannot include both an edge
strictly enclosed by e and an edge not enclosed by e. Assume without loss of generality
that C consists only of edges strictly enclosed by e. Any two such edges incident to a
common node in G are also incident to a common node in G/{e}, which proves that
C is a simple cycle in G/{e}.

For a planar embedded graph G, Tamaki [45] defined V F (G) to be the node-face
incidence graph, i.e., the planar embedded bipartite graph whose node set is the union
of the node set of G and the face set of G and where there is an edge between a node
and a face if the node is on the boundary of the face. Tamaki proved the following
theorem.

Theorem 7.5 (Tamaki). There is a linear-time algorithm that, given a pla-
nar embedded graph G and a rooted spanning tree T of V F (G), outputs a branch-
decomposition of G whose width is at most the height of T .

Proof of Theorem 7.1. Apply Lemma 7.3 to G∗ to find a decomposition of the
edges into subsets L0, . . . , Lk−1 such that, for each i, there is a planar embedded graph
H∗

i such that H∗
i −Li = G∗−Li and each connected component of H∗

i has a spanning
tree of depth at most k. The nodes of H∗

i are faces of Hi, so V F (Hi) has a spanning
tree of depth at most 2k + 1. By Tamaki’s result, therefore, Hi has branch-width
at most 2k + 1. It is known [41] that contraction does not increase branch-width.
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Hence Hi/Li has branch-width at most 2k + 1. Since H∗
i − Li = G∗ − Li, we have

Hi/Li = G/Li, so we have shown that G/Li has branch-width at most 2k + 1.

Consider the process of obtaining G/Li by compressing the edges of Li one by
one in an order that postpones compressing self-loops until only self-loops remain to
be compressed. (Recall that a self-loop corresponds in the dual to cut-edges, so this
corresponds in the dual to first deleting only non-cut-edges.)

Let Si be the set of edges e of Li such that e was not a self-loop when it was
compressed, and let L′

i be the remaining edges of Li. Then G/Si is obtained from G
by contracting the edges of Si, and G/Li is obtained from G/Si by compressing the
edges of L′

i. By Lemma 7.4, every biconnected component of G/Si is a biconnected
component of G/Li. Since the branch-width of a graph is at most one more than the
maximum of the branch-widths of its biconnected components (assuming at least one
such component has more than one edge), it follows that that branch-width of G/Si

is at most one plus the branch-width of G/Li.
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